]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/genet/bcmgenet.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014-2017 Broadcom
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_addr(priv, d, addr);
108 dmadesc_set_length_status(priv, d, val);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 DMA_INDEX2RING_0,
201 DMA_INDEX2RING_1,
202 DMA_INDEX2RING_2,
203 DMA_INDEX2RING_3,
204 DMA_INDEX2RING_4,
205 DMA_INDEX2RING_5,
206 DMA_INDEX2RING_6,
207 DMA_INDEX2RING_7,
208 DMA_RING0_TIMEOUT,
209 DMA_RING1_TIMEOUT,
210 DMA_RING2_TIMEOUT,
211 DMA_RING3_TIMEOUT,
212 DMA_RING4_TIMEOUT,
213 DMA_RING5_TIMEOUT,
214 DMA_RING6_TIMEOUT,
215 DMA_RING7_TIMEOUT,
216 DMA_RING8_TIMEOUT,
217 DMA_RING9_TIMEOUT,
218 DMA_RING10_TIMEOUT,
219 DMA_RING11_TIMEOUT,
220 DMA_RING12_TIMEOUT,
221 DMA_RING13_TIMEOUT,
222 DMA_RING14_TIMEOUT,
223 DMA_RING15_TIMEOUT,
224 DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 [DMA_RING_CFG] = 0x00,
229 [DMA_CTRL] = 0x04,
230 [DMA_STATUS] = 0x08,
231 [DMA_SCB_BURST_SIZE] = 0x0C,
232 [DMA_ARB_CTRL] = 0x2C,
233 [DMA_PRIORITY_0] = 0x30,
234 [DMA_PRIORITY_1] = 0x34,
235 [DMA_PRIORITY_2] = 0x38,
236 [DMA_RING0_TIMEOUT] = 0x2C,
237 [DMA_RING1_TIMEOUT] = 0x30,
238 [DMA_RING2_TIMEOUT] = 0x34,
239 [DMA_RING3_TIMEOUT] = 0x38,
240 [DMA_RING4_TIMEOUT] = 0x3c,
241 [DMA_RING5_TIMEOUT] = 0x40,
242 [DMA_RING6_TIMEOUT] = 0x44,
243 [DMA_RING7_TIMEOUT] = 0x48,
244 [DMA_RING8_TIMEOUT] = 0x4c,
245 [DMA_RING9_TIMEOUT] = 0x50,
246 [DMA_RING10_TIMEOUT] = 0x54,
247 [DMA_RING11_TIMEOUT] = 0x58,
248 [DMA_RING12_TIMEOUT] = 0x5c,
249 [DMA_RING13_TIMEOUT] = 0x60,
250 [DMA_RING14_TIMEOUT] = 0x64,
251 [DMA_RING15_TIMEOUT] = 0x68,
252 [DMA_RING16_TIMEOUT] = 0x6C,
253 [DMA_INDEX2RING_0] = 0x70,
254 [DMA_INDEX2RING_1] = 0x74,
255 [DMA_INDEX2RING_2] = 0x78,
256 [DMA_INDEX2RING_3] = 0x7C,
257 [DMA_INDEX2RING_4] = 0x80,
258 [DMA_INDEX2RING_5] = 0x84,
259 [DMA_INDEX2RING_6] = 0x88,
260 [DMA_INDEX2RING_7] = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 [DMA_RING_CFG] = 0x00,
265 [DMA_CTRL] = 0x04,
266 [DMA_STATUS] = 0x08,
267 [DMA_SCB_BURST_SIZE] = 0x0C,
268 [DMA_ARB_CTRL] = 0x30,
269 [DMA_PRIORITY_0] = 0x34,
270 [DMA_PRIORITY_1] = 0x38,
271 [DMA_PRIORITY_2] = 0x3C,
272 [DMA_RING0_TIMEOUT] = 0x2C,
273 [DMA_RING1_TIMEOUT] = 0x30,
274 [DMA_RING2_TIMEOUT] = 0x34,
275 [DMA_RING3_TIMEOUT] = 0x38,
276 [DMA_RING4_TIMEOUT] = 0x3c,
277 [DMA_RING5_TIMEOUT] = 0x40,
278 [DMA_RING6_TIMEOUT] = 0x44,
279 [DMA_RING7_TIMEOUT] = 0x48,
280 [DMA_RING8_TIMEOUT] = 0x4c,
281 [DMA_RING9_TIMEOUT] = 0x50,
282 [DMA_RING10_TIMEOUT] = 0x54,
283 [DMA_RING11_TIMEOUT] = 0x58,
284 [DMA_RING12_TIMEOUT] = 0x5c,
285 [DMA_RING13_TIMEOUT] = 0x60,
286 [DMA_RING14_TIMEOUT] = 0x64,
287 [DMA_RING15_TIMEOUT] = 0x68,
288 [DMA_RING16_TIMEOUT] = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 [DMA_CTRL] = 0x00,
293 [DMA_STATUS] = 0x04,
294 [DMA_SCB_BURST_SIZE] = 0x0C,
295 [DMA_ARB_CTRL] = 0x30,
296 [DMA_PRIORITY_0] = 0x34,
297 [DMA_PRIORITY_1] = 0x38,
298 [DMA_PRIORITY_2] = 0x3C,
299 [DMA_RING0_TIMEOUT] = 0x2C,
300 [DMA_RING1_TIMEOUT] = 0x30,
301 [DMA_RING2_TIMEOUT] = 0x34,
302 [DMA_RING3_TIMEOUT] = 0x38,
303 [DMA_RING4_TIMEOUT] = 0x3c,
304 [DMA_RING5_TIMEOUT] = 0x40,
305 [DMA_RING6_TIMEOUT] = 0x44,
306 [DMA_RING7_TIMEOUT] = 0x48,
307 [DMA_RING8_TIMEOUT] = 0x4c,
308 [DMA_RING9_TIMEOUT] = 0x50,
309 [DMA_RING10_TIMEOUT] = 0x54,
310 [DMA_RING11_TIMEOUT] = 0x58,
311 [DMA_RING12_TIMEOUT] = 0x5c,
312 [DMA_RING13_TIMEOUT] = 0x60,
313 [DMA_RING14_TIMEOUT] = 0x64,
314 [DMA_RING15_TIMEOUT] = 0x68,
315 [DMA_RING16_TIMEOUT] = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 enum dma_reg r)
328 {
329 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 u32 val, enum dma_reg r)
335 {
336 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 enum dma_reg r)
342 {
343 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 u32 val, enum dma_reg r)
349 {
350 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355 * we merge the common fields and just prefix with T/D the registers
356 * having different meaning depending on the direction
357 */
358 enum dma_ring_reg {
359 TDMA_READ_PTR = 0,
360 RDMA_WRITE_PTR = TDMA_READ_PTR,
361 TDMA_READ_PTR_HI,
362 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 TDMA_CONS_INDEX,
364 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 TDMA_PROD_INDEX,
366 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 DMA_RING_BUF_SIZE,
368 DMA_START_ADDR,
369 DMA_START_ADDR_HI,
370 DMA_END_ADDR,
371 DMA_END_ADDR_HI,
372 DMA_MBUF_DONE_THRESH,
373 TDMA_FLOW_PERIOD,
374 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 TDMA_WRITE_PTR,
376 RDMA_READ_PTR = TDMA_WRITE_PTR,
377 TDMA_WRITE_PTR_HI,
378 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382 * for obvious reasons the LO and HI word parts
383 * are contiguous, but this offsets the other
384 * registers.
385 */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 [TDMA_READ_PTR] = 0x00,
388 [TDMA_READ_PTR_HI] = 0x04,
389 [TDMA_CONS_INDEX] = 0x08,
390 [TDMA_PROD_INDEX] = 0x0C,
391 [DMA_RING_BUF_SIZE] = 0x10,
392 [DMA_START_ADDR] = 0x14,
393 [DMA_START_ADDR_HI] = 0x18,
394 [DMA_END_ADDR] = 0x1C,
395 [DMA_END_ADDR_HI] = 0x20,
396 [DMA_MBUF_DONE_THRESH] = 0x24,
397 [TDMA_FLOW_PERIOD] = 0x28,
398 [TDMA_WRITE_PTR] = 0x2C,
399 [TDMA_WRITE_PTR_HI] = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403 [TDMA_READ_PTR] = 0x00,
404 [TDMA_CONS_INDEX] = 0x04,
405 [TDMA_PROD_INDEX] = 0x08,
406 [DMA_RING_BUF_SIZE] = 0x0C,
407 [DMA_START_ADDR] = 0x10,
408 [DMA_END_ADDR] = 0x14,
409 [DMA_MBUF_DONE_THRESH] = 0x18,
410 [TDMA_FLOW_PERIOD] = 0x1C,
411 [TDMA_WRITE_PTR] = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 unsigned int ring,
419 enum dma_ring_reg r)
420 {
421 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 unsigned int ring, u32 val,
428 enum dma_ring_reg r)
429 {
430 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 unsigned int ring,
437 enum dma_ring_reg r)
438 {
439 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 unsigned int ring, u32 val,
446 enum dma_ring_reg r)
447 {
448 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_begin(struct net_device *dev)
454 {
455 struct bcmgenet_priv *priv = netdev_priv(dev);
456
457 /* Turn on the clock */
458 return clk_prepare_enable(priv->clk);
459 }
460
461 static void bcmgenet_complete(struct net_device *dev)
462 {
463 struct bcmgenet_priv *priv = netdev_priv(dev);
464
465 /* Turn off the clock */
466 clk_disable_unprepare(priv->clk);
467 }
468
469 static int bcmgenet_get_link_ksettings(struct net_device *dev,
470 struct ethtool_link_ksettings *cmd)
471 {
472 struct bcmgenet_priv *priv = netdev_priv(dev);
473
474 if (!netif_running(dev))
475 return -EINVAL;
476
477 if (!priv->phydev)
478 return -ENODEV;
479
480 phy_ethtool_ksettings_get(priv->phydev, cmd);
481
482 return 0;
483 }
484
485 static int bcmgenet_set_link_ksettings(struct net_device *dev,
486 const struct ethtool_link_ksettings *cmd)
487 {
488 struct bcmgenet_priv *priv = netdev_priv(dev);
489
490 if (!netif_running(dev))
491 return -EINVAL;
492
493 if (!priv->phydev)
494 return -ENODEV;
495
496 return phy_ethtool_ksettings_set(priv->phydev, cmd);
497 }
498
499 static int bcmgenet_set_rx_csum(struct net_device *dev,
500 netdev_features_t wanted)
501 {
502 struct bcmgenet_priv *priv = netdev_priv(dev);
503 u32 rbuf_chk_ctrl;
504 bool rx_csum_en;
505
506 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
507
508 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
509
510 /* enable rx checksumming */
511 if (rx_csum_en)
512 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
513 else
514 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
515 priv->desc_rxchk_en = rx_csum_en;
516
517 /* If UniMAC forwards CRC, we need to skip over it to get
518 * a valid CHK bit to be set in the per-packet status word
519 */
520 if (rx_csum_en && priv->crc_fwd_en)
521 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
522 else
523 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
524
525 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
526
527 return 0;
528 }
529
530 static int bcmgenet_set_tx_csum(struct net_device *dev,
531 netdev_features_t wanted)
532 {
533 struct bcmgenet_priv *priv = netdev_priv(dev);
534 bool desc_64b_en;
535 u32 tbuf_ctrl, rbuf_ctrl;
536
537 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
538 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
539
540 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
541
542 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
543 if (desc_64b_en) {
544 tbuf_ctrl |= RBUF_64B_EN;
545 rbuf_ctrl |= RBUF_64B_EN;
546 } else {
547 tbuf_ctrl &= ~RBUF_64B_EN;
548 rbuf_ctrl &= ~RBUF_64B_EN;
549 }
550 priv->desc_64b_en = desc_64b_en;
551
552 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
553 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
554
555 return 0;
556 }
557
558 static int bcmgenet_set_features(struct net_device *dev,
559 netdev_features_t features)
560 {
561 netdev_features_t changed = features ^ dev->features;
562 netdev_features_t wanted = dev->wanted_features;
563 int ret = 0;
564
565 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
566 ret = bcmgenet_set_tx_csum(dev, wanted);
567 if (changed & (NETIF_F_RXCSUM))
568 ret = bcmgenet_set_rx_csum(dev, wanted);
569
570 return ret;
571 }
572
573 static u32 bcmgenet_get_msglevel(struct net_device *dev)
574 {
575 struct bcmgenet_priv *priv = netdev_priv(dev);
576
577 return priv->msg_enable;
578 }
579
580 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
581 {
582 struct bcmgenet_priv *priv = netdev_priv(dev);
583
584 priv->msg_enable = level;
585 }
586
587 static int bcmgenet_get_coalesce(struct net_device *dev,
588 struct ethtool_coalesce *ec)
589 {
590 struct bcmgenet_priv *priv = netdev_priv(dev);
591
592 ec->tx_max_coalesced_frames =
593 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
594 DMA_MBUF_DONE_THRESH);
595 ec->rx_max_coalesced_frames =
596 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
597 DMA_MBUF_DONE_THRESH);
598 ec->rx_coalesce_usecs =
599 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
600
601 return 0;
602 }
603
604 static int bcmgenet_set_coalesce(struct net_device *dev,
605 struct ethtool_coalesce *ec)
606 {
607 struct bcmgenet_priv *priv = netdev_priv(dev);
608 unsigned int i;
609 u32 reg;
610
611 /* Base system clock is 125Mhz, DMA timeout is this reference clock
612 * divided by 1024, which yields roughly 8.192us, our maximum value
613 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
614 */
615 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
616 ec->tx_max_coalesced_frames == 0 ||
617 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
618 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
619 return -EINVAL;
620
621 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
622 return -EINVAL;
623
624 /* GENET TDMA hardware does not support a configurable timeout, but will
625 * always generate an interrupt either after MBDONE packets have been
626 * transmitted, or when the ring is empty.
627 */
628 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
629 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
630 return -EOPNOTSUPP;
631
632 /* Program all TX queues with the same values, as there is no
633 * ethtool knob to do coalescing on a per-queue basis
634 */
635 for (i = 0; i < priv->hw_params->tx_queues; i++)
636 bcmgenet_tdma_ring_writel(priv, i,
637 ec->tx_max_coalesced_frames,
638 DMA_MBUF_DONE_THRESH);
639 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
640 ec->tx_max_coalesced_frames,
641 DMA_MBUF_DONE_THRESH);
642
643 for (i = 0; i < priv->hw_params->rx_queues; i++) {
644 bcmgenet_rdma_ring_writel(priv, i,
645 ec->rx_max_coalesced_frames,
646 DMA_MBUF_DONE_THRESH);
647
648 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
649 reg &= ~DMA_TIMEOUT_MASK;
650 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
651 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
652 }
653
654 bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
655 ec->rx_max_coalesced_frames,
656 DMA_MBUF_DONE_THRESH);
657
658 reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
659 reg &= ~DMA_TIMEOUT_MASK;
660 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
661 bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
662
663 return 0;
664 }
665
666 /* standard ethtool support functions. */
667 enum bcmgenet_stat_type {
668 BCMGENET_STAT_NETDEV = -1,
669 BCMGENET_STAT_MIB_RX,
670 BCMGENET_STAT_MIB_TX,
671 BCMGENET_STAT_RUNT,
672 BCMGENET_STAT_MISC,
673 BCMGENET_STAT_SOFT,
674 };
675
676 struct bcmgenet_stats {
677 char stat_string[ETH_GSTRING_LEN];
678 int stat_sizeof;
679 int stat_offset;
680 enum bcmgenet_stat_type type;
681 /* reg offset from UMAC base for misc counters */
682 u16 reg_offset;
683 };
684
685 #define STAT_NETDEV(m) { \
686 .stat_string = __stringify(m), \
687 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
688 .stat_offset = offsetof(struct net_device_stats, m), \
689 .type = BCMGENET_STAT_NETDEV, \
690 }
691
692 #define STAT_GENET_MIB(str, m, _type) { \
693 .stat_string = str, \
694 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
695 .stat_offset = offsetof(struct bcmgenet_priv, m), \
696 .type = _type, \
697 }
698
699 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
700 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
701 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
702 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
703
704 #define STAT_GENET_MISC(str, m, offset) { \
705 .stat_string = str, \
706 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
707 .stat_offset = offsetof(struct bcmgenet_priv, m), \
708 .type = BCMGENET_STAT_MISC, \
709 .reg_offset = offset, \
710 }
711
712 #define STAT_GENET_Q(num) \
713 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
714 tx_rings[num].packets), \
715 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
716 tx_rings[num].bytes), \
717 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
718 rx_rings[num].bytes), \
719 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
720 rx_rings[num].packets), \
721 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
722 rx_rings[num].errors), \
723 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
724 rx_rings[num].dropped)
725
726 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
727 * between the end of TX stats and the beginning of the RX RUNT
728 */
729 #define BCMGENET_STAT_OFFSET 0xc
730
731 /* Hardware counters must be kept in sync because the order/offset
732 * is important here (order in structure declaration = order in hardware)
733 */
734 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
735 /* general stats */
736 STAT_NETDEV(rx_packets),
737 STAT_NETDEV(tx_packets),
738 STAT_NETDEV(rx_bytes),
739 STAT_NETDEV(tx_bytes),
740 STAT_NETDEV(rx_errors),
741 STAT_NETDEV(tx_errors),
742 STAT_NETDEV(rx_dropped),
743 STAT_NETDEV(tx_dropped),
744 STAT_NETDEV(multicast),
745 /* UniMAC RSV counters */
746 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
747 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
748 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
749 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
750 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
751 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
752 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
753 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
754 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
755 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
756 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
757 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
758 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
759 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
760 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
761 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
762 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
763 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
764 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
765 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
766 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
767 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
768 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
769 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
770 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
771 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
772 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
773 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
774 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
775 /* UniMAC TSV counters */
776 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
777 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
778 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
779 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
780 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
781 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
782 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
783 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
784 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
785 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
786 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
787 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
788 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
789 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
790 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
791 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
792 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
793 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
794 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
795 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
796 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
797 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
798 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
799 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
800 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
801 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
802 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
803 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
804 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
805 /* UniMAC RUNT counters */
806 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
807 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
808 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
809 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
810 /* Misc UniMAC counters */
811 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
812 UMAC_RBUF_OVFL_CNT_V1),
813 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
814 UMAC_RBUF_ERR_CNT_V1),
815 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
816 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
817 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
818 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
819 /* Per TX queues */
820 STAT_GENET_Q(0),
821 STAT_GENET_Q(1),
822 STAT_GENET_Q(2),
823 STAT_GENET_Q(3),
824 STAT_GENET_Q(16),
825 };
826
827 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
828
829 static void bcmgenet_get_drvinfo(struct net_device *dev,
830 struct ethtool_drvinfo *info)
831 {
832 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
833 strlcpy(info->version, "v2.0", sizeof(info->version));
834 }
835
836 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
837 {
838 switch (string_set) {
839 case ETH_SS_STATS:
840 return BCMGENET_STATS_LEN;
841 default:
842 return -EOPNOTSUPP;
843 }
844 }
845
846 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
847 u8 *data)
848 {
849 int i;
850
851 switch (stringset) {
852 case ETH_SS_STATS:
853 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
854 memcpy(data + i * ETH_GSTRING_LEN,
855 bcmgenet_gstrings_stats[i].stat_string,
856 ETH_GSTRING_LEN);
857 }
858 break;
859 }
860 }
861
862 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
863 {
864 u16 new_offset;
865 u32 val;
866
867 switch (offset) {
868 case UMAC_RBUF_OVFL_CNT_V1:
869 if (GENET_IS_V2(priv))
870 new_offset = RBUF_OVFL_CNT_V2;
871 else
872 new_offset = RBUF_OVFL_CNT_V3PLUS;
873
874 val = bcmgenet_rbuf_readl(priv, new_offset);
875 /* clear if overflowed */
876 if (val == ~0)
877 bcmgenet_rbuf_writel(priv, 0, new_offset);
878 break;
879 case UMAC_RBUF_ERR_CNT_V1:
880 if (GENET_IS_V2(priv))
881 new_offset = RBUF_ERR_CNT_V2;
882 else
883 new_offset = RBUF_ERR_CNT_V3PLUS;
884
885 val = bcmgenet_rbuf_readl(priv, new_offset);
886 /* clear if overflowed */
887 if (val == ~0)
888 bcmgenet_rbuf_writel(priv, 0, new_offset);
889 break;
890 default:
891 val = bcmgenet_umac_readl(priv, offset);
892 /* clear if overflowed */
893 if (val == ~0)
894 bcmgenet_umac_writel(priv, 0, offset);
895 break;
896 }
897
898 return val;
899 }
900
901 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
902 {
903 int i, j = 0;
904
905 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
906 const struct bcmgenet_stats *s;
907 u8 offset = 0;
908 u32 val = 0;
909 char *p;
910
911 s = &bcmgenet_gstrings_stats[i];
912 switch (s->type) {
913 case BCMGENET_STAT_NETDEV:
914 case BCMGENET_STAT_SOFT:
915 continue;
916 case BCMGENET_STAT_RUNT:
917 offset += BCMGENET_STAT_OFFSET;
918 /* fall through */
919 case BCMGENET_STAT_MIB_TX:
920 offset += BCMGENET_STAT_OFFSET;
921 /* fall through */
922 case BCMGENET_STAT_MIB_RX:
923 val = bcmgenet_umac_readl(priv,
924 UMAC_MIB_START + j + offset);
925 offset = 0; /* Reset Offset */
926 break;
927 case BCMGENET_STAT_MISC:
928 if (GENET_IS_V1(priv)) {
929 val = bcmgenet_umac_readl(priv, s->reg_offset);
930 /* clear if overflowed */
931 if (val == ~0)
932 bcmgenet_umac_writel(priv, 0,
933 s->reg_offset);
934 } else {
935 val = bcmgenet_update_stat_misc(priv,
936 s->reg_offset);
937 }
938 break;
939 }
940
941 j += s->stat_sizeof;
942 p = (char *)priv + s->stat_offset;
943 *(u32 *)p = val;
944 }
945 }
946
947 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
948 struct ethtool_stats *stats,
949 u64 *data)
950 {
951 struct bcmgenet_priv *priv = netdev_priv(dev);
952 int i;
953
954 if (netif_running(dev))
955 bcmgenet_update_mib_counters(priv);
956
957 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
958 const struct bcmgenet_stats *s;
959 char *p;
960
961 s = &bcmgenet_gstrings_stats[i];
962 if (s->type == BCMGENET_STAT_NETDEV)
963 p = (char *)&dev->stats;
964 else
965 p = (char *)priv;
966 p += s->stat_offset;
967 if (sizeof(unsigned long) != sizeof(u32) &&
968 s->stat_sizeof == sizeof(unsigned long))
969 data[i] = *(unsigned long *)p;
970 else
971 data[i] = *(u32 *)p;
972 }
973 }
974
975 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
976 {
977 struct bcmgenet_priv *priv = netdev_priv(dev);
978 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
979 u32 reg;
980
981 if (enable && !priv->clk_eee_enabled) {
982 clk_prepare_enable(priv->clk_eee);
983 priv->clk_eee_enabled = true;
984 }
985
986 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
987 if (enable)
988 reg |= EEE_EN;
989 else
990 reg &= ~EEE_EN;
991 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
992
993 /* Enable EEE and switch to a 27Mhz clock automatically */
994 reg = __raw_readl(priv->base + off);
995 if (enable)
996 reg |= TBUF_EEE_EN | TBUF_PM_EN;
997 else
998 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
999 __raw_writel(reg, priv->base + off);
1000
1001 /* Do the same for thing for RBUF */
1002 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1003 if (enable)
1004 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1005 else
1006 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1007 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1008
1009 if (!enable && priv->clk_eee_enabled) {
1010 clk_disable_unprepare(priv->clk_eee);
1011 priv->clk_eee_enabled = false;
1012 }
1013
1014 priv->eee.eee_enabled = enable;
1015 priv->eee.eee_active = enable;
1016 }
1017
1018 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1019 {
1020 struct bcmgenet_priv *priv = netdev_priv(dev);
1021 struct ethtool_eee *p = &priv->eee;
1022
1023 if (GENET_IS_V1(priv))
1024 return -EOPNOTSUPP;
1025
1026 e->eee_enabled = p->eee_enabled;
1027 e->eee_active = p->eee_active;
1028 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1029
1030 return phy_ethtool_get_eee(priv->phydev, e);
1031 }
1032
1033 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1034 {
1035 struct bcmgenet_priv *priv = netdev_priv(dev);
1036 struct ethtool_eee *p = &priv->eee;
1037 int ret = 0;
1038
1039 if (GENET_IS_V1(priv))
1040 return -EOPNOTSUPP;
1041
1042 p->eee_enabled = e->eee_enabled;
1043
1044 if (!p->eee_enabled) {
1045 bcmgenet_eee_enable_set(dev, false);
1046 } else {
1047 ret = phy_init_eee(priv->phydev, 0);
1048 if (ret) {
1049 netif_err(priv, hw, dev, "EEE initialization failed\n");
1050 return ret;
1051 }
1052
1053 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1054 bcmgenet_eee_enable_set(dev, true);
1055 }
1056
1057 return phy_ethtool_set_eee(priv->phydev, e);
1058 }
1059
1060 /* standard ethtool support functions. */
1061 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1062 .begin = bcmgenet_begin,
1063 .complete = bcmgenet_complete,
1064 .get_strings = bcmgenet_get_strings,
1065 .get_sset_count = bcmgenet_get_sset_count,
1066 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1067 .get_drvinfo = bcmgenet_get_drvinfo,
1068 .get_link = ethtool_op_get_link,
1069 .get_msglevel = bcmgenet_get_msglevel,
1070 .set_msglevel = bcmgenet_set_msglevel,
1071 .get_wol = bcmgenet_get_wol,
1072 .set_wol = bcmgenet_set_wol,
1073 .get_eee = bcmgenet_get_eee,
1074 .set_eee = bcmgenet_set_eee,
1075 .nway_reset = phy_ethtool_nway_reset,
1076 .get_coalesce = bcmgenet_get_coalesce,
1077 .set_coalesce = bcmgenet_set_coalesce,
1078 .get_link_ksettings = bcmgenet_get_link_ksettings,
1079 .set_link_ksettings = bcmgenet_set_link_ksettings,
1080 };
1081
1082 /* Power down the unimac, based on mode. */
1083 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1084 enum bcmgenet_power_mode mode)
1085 {
1086 int ret = 0;
1087 u32 reg;
1088
1089 switch (mode) {
1090 case GENET_POWER_CABLE_SENSE:
1091 phy_detach(priv->phydev);
1092 break;
1093
1094 case GENET_POWER_WOL_MAGIC:
1095 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1096 break;
1097
1098 case GENET_POWER_PASSIVE:
1099 /* Power down LED */
1100 if (priv->hw_params->flags & GENET_HAS_EXT) {
1101 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1102 if (GENET_IS_V5(priv))
1103 reg |= EXT_PWR_DOWN_PHY_EN |
1104 EXT_PWR_DOWN_PHY_RD |
1105 EXT_PWR_DOWN_PHY_SD |
1106 EXT_PWR_DOWN_PHY_RX |
1107 EXT_PWR_DOWN_PHY_TX |
1108 EXT_IDDQ_GLBL_PWR;
1109 else
1110 reg |= EXT_PWR_DOWN_PHY;
1111
1112 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1113 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1114
1115 bcmgenet_phy_power_set(priv->dev, false);
1116 }
1117 break;
1118 default:
1119 break;
1120 }
1121
1122 return 0;
1123 }
1124
1125 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1126 enum bcmgenet_power_mode mode)
1127 {
1128 u32 reg;
1129
1130 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1131 return;
1132
1133 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1134
1135 switch (mode) {
1136 case GENET_POWER_PASSIVE:
1137 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1138 if (GENET_IS_V5(priv)) {
1139 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1140 EXT_PWR_DOWN_PHY_RD |
1141 EXT_PWR_DOWN_PHY_SD |
1142 EXT_PWR_DOWN_PHY_RX |
1143 EXT_PWR_DOWN_PHY_TX |
1144 EXT_IDDQ_GLBL_PWR);
1145 reg |= EXT_PHY_RESET;
1146 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1147 mdelay(1);
1148
1149 reg &= ~EXT_PHY_RESET;
1150 } else {
1151 reg &= ~EXT_PWR_DOWN_PHY;
1152 reg |= EXT_PWR_DN_EN_LD;
1153 }
1154 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1155 bcmgenet_phy_power_set(priv->dev, true);
1156 bcmgenet_mii_reset(priv->dev);
1157 break;
1158
1159 case GENET_POWER_CABLE_SENSE:
1160 /* enable APD */
1161 if (!GENET_IS_V5(priv)) {
1162 reg |= EXT_PWR_DN_EN_LD;
1163 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164 }
1165 break;
1166 case GENET_POWER_WOL_MAGIC:
1167 bcmgenet_wol_power_up_cfg(priv, mode);
1168 return;
1169 default:
1170 break;
1171 }
1172 }
1173
1174 /* ioctl handle special commands that are not present in ethtool. */
1175 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1176 {
1177 struct bcmgenet_priv *priv = netdev_priv(dev);
1178
1179 if (!netif_running(dev))
1180 return -EINVAL;
1181
1182 if (!priv->phydev)
1183 return -ENODEV;
1184
1185 return phy_mii_ioctl(priv->phydev, rq, cmd);
1186 }
1187
1188 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1189 struct bcmgenet_tx_ring *ring)
1190 {
1191 struct enet_cb *tx_cb_ptr;
1192
1193 tx_cb_ptr = ring->cbs;
1194 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1195
1196 /* Advancing local write pointer */
1197 if (ring->write_ptr == ring->end_ptr)
1198 ring->write_ptr = ring->cb_ptr;
1199 else
1200 ring->write_ptr++;
1201
1202 return tx_cb_ptr;
1203 }
1204
1205 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1206 struct bcmgenet_tx_ring *ring)
1207 {
1208 struct enet_cb *tx_cb_ptr;
1209
1210 tx_cb_ptr = ring->cbs;
1211 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1212
1213 /* Rewinding local write pointer */
1214 if (ring->write_ptr == ring->cb_ptr)
1215 ring->write_ptr = ring->end_ptr;
1216 else
1217 ring->write_ptr--;
1218
1219 return tx_cb_ptr;
1220 }
1221
1222 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1223 {
1224 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1225 INTRL2_CPU_MASK_SET);
1226 }
1227
1228 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1229 {
1230 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1231 INTRL2_CPU_MASK_CLEAR);
1232 }
1233
1234 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1235 {
1236 bcmgenet_intrl2_1_writel(ring->priv,
1237 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1238 INTRL2_CPU_MASK_SET);
1239 }
1240
1241 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1242 {
1243 bcmgenet_intrl2_1_writel(ring->priv,
1244 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1245 INTRL2_CPU_MASK_CLEAR);
1246 }
1247
1248 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1249 {
1250 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1251 INTRL2_CPU_MASK_SET);
1252 }
1253
1254 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1255 {
1256 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1257 INTRL2_CPU_MASK_CLEAR);
1258 }
1259
1260 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1261 {
1262 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1263 INTRL2_CPU_MASK_CLEAR);
1264 }
1265
1266 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1267 {
1268 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1269 INTRL2_CPU_MASK_SET);
1270 }
1271
1272 /* Simple helper to free a transmit control block's resources
1273 * Returns an skb when the last transmit control block associated with the
1274 * skb is freed. The skb should be freed by the caller if necessary.
1275 */
1276 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1277 struct enet_cb *cb)
1278 {
1279 struct sk_buff *skb;
1280
1281 skb = cb->skb;
1282
1283 if (skb) {
1284 cb->skb = NULL;
1285 if (cb == GENET_CB(skb)->first_cb)
1286 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1287 dma_unmap_len(cb, dma_len),
1288 DMA_TO_DEVICE);
1289 else
1290 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1291 dma_unmap_len(cb, dma_len),
1292 DMA_TO_DEVICE);
1293 dma_unmap_addr_set(cb, dma_addr, 0);
1294
1295 if (cb == GENET_CB(skb)->last_cb)
1296 return skb;
1297
1298 } else if (dma_unmap_addr(cb, dma_addr)) {
1299 dma_unmap_page(dev,
1300 dma_unmap_addr(cb, dma_addr),
1301 dma_unmap_len(cb, dma_len),
1302 DMA_TO_DEVICE);
1303 dma_unmap_addr_set(cb, dma_addr, 0);
1304 }
1305
1306 return 0;
1307 }
1308
1309 /* Simple helper to free a receive control block's resources */
1310 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1311 struct enet_cb *cb)
1312 {
1313 struct sk_buff *skb;
1314
1315 skb = cb->skb;
1316 cb->skb = NULL;
1317
1318 if (dma_unmap_addr(cb, dma_addr)) {
1319 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1320 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1321 dma_unmap_addr_set(cb, dma_addr, 0);
1322 }
1323
1324 return skb;
1325 }
1326
1327 /* Unlocked version of the reclaim routine */
1328 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1329 struct bcmgenet_tx_ring *ring)
1330 {
1331 struct bcmgenet_priv *priv = netdev_priv(dev);
1332 unsigned int txbds_processed = 0;
1333 unsigned int bytes_compl = 0;
1334 unsigned int pkts_compl = 0;
1335 unsigned int txbds_ready;
1336 unsigned int c_index;
1337 struct sk_buff *skb;
1338
1339 /* Clear status before servicing to reduce spurious interrupts */
1340 if (ring->index == DESC_INDEX)
1341 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1342 INTRL2_CPU_CLEAR);
1343 else
1344 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1345 INTRL2_CPU_CLEAR);
1346
1347 /* Compute how many buffers are transmitted since last xmit call */
1348 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1349 & DMA_C_INDEX_MASK;
1350 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1351
1352 netif_dbg(priv, tx_done, dev,
1353 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1354 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1355
1356 /* Reclaim transmitted buffers */
1357 while (txbds_processed < txbds_ready) {
1358 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1359 &priv->tx_cbs[ring->clean_ptr]);
1360 if (skb) {
1361 pkts_compl++;
1362 bytes_compl += GENET_CB(skb)->bytes_sent;
1363 dev_consume_skb_any(skb);
1364 }
1365
1366 txbds_processed++;
1367 if (likely(ring->clean_ptr < ring->end_ptr))
1368 ring->clean_ptr++;
1369 else
1370 ring->clean_ptr = ring->cb_ptr;
1371 }
1372
1373 ring->free_bds += txbds_processed;
1374 ring->c_index = c_index;
1375
1376 ring->packets += pkts_compl;
1377 ring->bytes += bytes_compl;
1378
1379 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1380 pkts_compl, bytes_compl);
1381
1382 return txbds_processed;
1383 }
1384
1385 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1386 struct bcmgenet_tx_ring *ring)
1387 {
1388 unsigned int released;
1389 unsigned long flags;
1390
1391 spin_lock_irqsave(&ring->lock, flags);
1392 released = __bcmgenet_tx_reclaim(dev, ring);
1393 spin_unlock_irqrestore(&ring->lock, flags);
1394
1395 return released;
1396 }
1397
1398 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1399 {
1400 struct bcmgenet_tx_ring *ring =
1401 container_of(napi, struct bcmgenet_tx_ring, napi);
1402 unsigned int work_done = 0;
1403 struct netdev_queue *txq;
1404 unsigned long flags;
1405
1406 spin_lock_irqsave(&ring->lock, flags);
1407 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1408 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1409 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1410 netif_tx_wake_queue(txq);
1411 }
1412 spin_unlock_irqrestore(&ring->lock, flags);
1413
1414 if (work_done == 0) {
1415 napi_complete(napi);
1416 ring->int_enable(ring);
1417
1418 return 0;
1419 }
1420
1421 return budget;
1422 }
1423
1424 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1425 {
1426 struct bcmgenet_priv *priv = netdev_priv(dev);
1427 int i;
1428
1429 if (netif_is_multiqueue(dev)) {
1430 for (i = 0; i < priv->hw_params->tx_queues; i++)
1431 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1432 }
1433
1434 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1435 }
1436
1437 /* Reallocate the SKB to put enough headroom in front of it and insert
1438 * the transmit checksum offsets in the descriptors
1439 */
1440 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1441 struct sk_buff *skb)
1442 {
1443 struct status_64 *status = NULL;
1444 struct sk_buff *new_skb;
1445 u16 offset;
1446 u8 ip_proto;
1447 u16 ip_ver;
1448 u32 tx_csum_info;
1449
1450 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1451 /* If 64 byte status block enabled, must make sure skb has
1452 * enough headroom for us to insert 64B status block.
1453 */
1454 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1455 dev_kfree_skb(skb);
1456 if (!new_skb) {
1457 dev->stats.tx_dropped++;
1458 return NULL;
1459 }
1460 skb = new_skb;
1461 }
1462
1463 skb_push(skb, sizeof(*status));
1464 status = (struct status_64 *)skb->data;
1465
1466 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1467 ip_ver = htons(skb->protocol);
1468 switch (ip_ver) {
1469 case ETH_P_IP:
1470 ip_proto = ip_hdr(skb)->protocol;
1471 break;
1472 case ETH_P_IPV6:
1473 ip_proto = ipv6_hdr(skb)->nexthdr;
1474 break;
1475 default:
1476 return skb;
1477 }
1478
1479 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1480 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1481 (offset + skb->csum_offset);
1482
1483 /* Set the length valid bit for TCP and UDP and just set
1484 * the special UDP flag for IPv4, else just set to 0.
1485 */
1486 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1487 tx_csum_info |= STATUS_TX_CSUM_LV;
1488 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1489 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1490 } else {
1491 tx_csum_info = 0;
1492 }
1493
1494 status->tx_csum_info = tx_csum_info;
1495 }
1496
1497 return skb;
1498 }
1499
1500 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1501 {
1502 struct bcmgenet_priv *priv = netdev_priv(dev);
1503 struct device *kdev = &priv->pdev->dev;
1504 struct bcmgenet_tx_ring *ring = NULL;
1505 struct enet_cb *tx_cb_ptr;
1506 struct netdev_queue *txq;
1507 unsigned long flags = 0;
1508 int nr_frags, index;
1509 dma_addr_t mapping;
1510 unsigned int size;
1511 skb_frag_t *frag;
1512 u32 len_stat;
1513 int ret;
1514 int i;
1515
1516 index = skb_get_queue_mapping(skb);
1517 /* Mapping strategy:
1518 * queue_mapping = 0, unclassified, packet xmited through ring16
1519 * queue_mapping = 1, goes to ring 0. (highest priority queue
1520 * queue_mapping = 2, goes to ring 1.
1521 * queue_mapping = 3, goes to ring 2.
1522 * queue_mapping = 4, goes to ring 3.
1523 */
1524 if (index == 0)
1525 index = DESC_INDEX;
1526 else
1527 index -= 1;
1528
1529 ring = &priv->tx_rings[index];
1530 txq = netdev_get_tx_queue(dev, ring->queue);
1531
1532 nr_frags = skb_shinfo(skb)->nr_frags;
1533
1534 spin_lock_irqsave(&ring->lock, flags);
1535 if (ring->free_bds <= (nr_frags + 1)) {
1536 if (!netif_tx_queue_stopped(txq)) {
1537 netif_tx_stop_queue(txq);
1538 netdev_err(dev,
1539 "%s: tx ring %d full when queue %d awake\n",
1540 __func__, index, ring->queue);
1541 }
1542 ret = NETDEV_TX_BUSY;
1543 goto out;
1544 }
1545
1546 if (skb_padto(skb, ETH_ZLEN)) {
1547 ret = NETDEV_TX_OK;
1548 goto out;
1549 }
1550
1551 /* Retain how many bytes will be sent on the wire, without TSB inserted
1552 * by transmit checksum offload
1553 */
1554 GENET_CB(skb)->bytes_sent = skb->len;
1555
1556 /* set the SKB transmit checksum */
1557 if (priv->desc_64b_en) {
1558 skb = bcmgenet_put_tx_csum(dev, skb);
1559 if (!skb) {
1560 ret = NETDEV_TX_OK;
1561 goto out;
1562 }
1563 }
1564
1565 for (i = 0; i <= nr_frags; i++) {
1566 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1567
1568 if (unlikely(!tx_cb_ptr))
1569 BUG();
1570
1571 if (!i) {
1572 /* Transmit single SKB or head of fragment list */
1573 GENET_CB(skb)->first_cb = tx_cb_ptr;
1574 size = skb_headlen(skb);
1575 mapping = dma_map_single(kdev, skb->data, size,
1576 DMA_TO_DEVICE);
1577 } else {
1578 /* xmit fragment */
1579 frag = &skb_shinfo(skb)->frags[i - 1];
1580 size = skb_frag_size(frag);
1581 mapping = skb_frag_dma_map(kdev, frag, 0, size,
1582 DMA_TO_DEVICE);
1583 }
1584
1585 ret = dma_mapping_error(kdev, mapping);
1586 if (ret) {
1587 priv->mib.tx_dma_failed++;
1588 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1589 ret = NETDEV_TX_OK;
1590 goto out_unmap_frags;
1591 }
1592 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1593 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1594
1595 tx_cb_ptr->skb = skb;
1596
1597 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1598 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1599
1600 if (!i) {
1601 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1602 if (skb->ip_summed == CHECKSUM_PARTIAL)
1603 len_stat |= DMA_TX_DO_CSUM;
1604 }
1605 if (i == nr_frags)
1606 len_stat |= DMA_EOP;
1607
1608 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1609 }
1610
1611 GENET_CB(skb)->last_cb = tx_cb_ptr;
1612 skb_tx_timestamp(skb);
1613
1614 /* Decrement total BD count and advance our write pointer */
1615 ring->free_bds -= nr_frags + 1;
1616 ring->prod_index += nr_frags + 1;
1617 ring->prod_index &= DMA_P_INDEX_MASK;
1618
1619 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1620
1621 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1622 netif_tx_stop_queue(txq);
1623
1624 if (!skb->xmit_more || netif_xmit_stopped(txq))
1625 /* Packets are ready, update producer index */
1626 bcmgenet_tdma_ring_writel(priv, ring->index,
1627 ring->prod_index, TDMA_PROD_INDEX);
1628 out:
1629 spin_unlock_irqrestore(&ring->lock, flags);
1630
1631 return ret;
1632
1633 out_unmap_frags:
1634 /* Back up for failed control block mapping */
1635 bcmgenet_put_txcb(priv, ring);
1636
1637 /* Unmap successfully mapped control blocks */
1638 while (i-- > 0) {
1639 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1640 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1641 }
1642
1643 dev_kfree_skb(skb);
1644 goto out;
1645 }
1646
1647 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1648 struct enet_cb *cb)
1649 {
1650 struct device *kdev = &priv->pdev->dev;
1651 struct sk_buff *skb;
1652 struct sk_buff *rx_skb;
1653 dma_addr_t mapping;
1654
1655 /* Allocate a new Rx skb */
1656 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1657 if (!skb) {
1658 priv->mib.alloc_rx_buff_failed++;
1659 netif_err(priv, rx_err, priv->dev,
1660 "%s: Rx skb allocation failed\n", __func__);
1661 return NULL;
1662 }
1663
1664 /* DMA-map the new Rx skb */
1665 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1666 DMA_FROM_DEVICE);
1667 if (dma_mapping_error(kdev, mapping)) {
1668 priv->mib.rx_dma_failed++;
1669 dev_kfree_skb_any(skb);
1670 netif_err(priv, rx_err, priv->dev,
1671 "%s: Rx skb DMA mapping failed\n", __func__);
1672 return NULL;
1673 }
1674
1675 /* Grab the current Rx skb from the ring and DMA-unmap it */
1676 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1677
1678 /* Put the new Rx skb on the ring */
1679 cb->skb = skb;
1680 dma_unmap_addr_set(cb, dma_addr, mapping);
1681 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1682 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1683
1684 /* Return the current Rx skb to caller */
1685 return rx_skb;
1686 }
1687
1688 /* bcmgenet_desc_rx - descriptor based rx process.
1689 * this could be called from bottom half, or from NAPI polling method.
1690 */
1691 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1692 unsigned int budget)
1693 {
1694 struct bcmgenet_priv *priv = ring->priv;
1695 struct net_device *dev = priv->dev;
1696 struct enet_cb *cb;
1697 struct sk_buff *skb;
1698 u32 dma_length_status;
1699 unsigned long dma_flag;
1700 int len;
1701 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1702 unsigned int p_index, mask;
1703 unsigned int discards;
1704 unsigned int chksum_ok = 0;
1705
1706 /* Clear status before servicing to reduce spurious interrupts */
1707 if (ring->index == DESC_INDEX) {
1708 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1709 INTRL2_CPU_CLEAR);
1710 } else {
1711 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1712 bcmgenet_intrl2_1_writel(priv,
1713 mask,
1714 INTRL2_CPU_CLEAR);
1715 }
1716
1717 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1718
1719 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1720 DMA_P_INDEX_DISCARD_CNT_MASK;
1721 if (discards > ring->old_discards) {
1722 discards = discards - ring->old_discards;
1723 ring->errors += discards;
1724 ring->old_discards += discards;
1725
1726 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1727 if (ring->old_discards >= 0xC000) {
1728 ring->old_discards = 0;
1729 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1730 RDMA_PROD_INDEX);
1731 }
1732 }
1733
1734 p_index &= DMA_P_INDEX_MASK;
1735 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1736
1737 netif_dbg(priv, rx_status, dev,
1738 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1739
1740 while ((rxpktprocessed < rxpkttoprocess) &&
1741 (rxpktprocessed < budget)) {
1742 cb = &priv->rx_cbs[ring->read_ptr];
1743 skb = bcmgenet_rx_refill(priv, cb);
1744
1745 if (unlikely(!skb)) {
1746 ring->dropped++;
1747 goto next;
1748 }
1749
1750 if (!priv->desc_64b_en) {
1751 dma_length_status =
1752 dmadesc_get_length_status(priv, cb->bd_addr);
1753 } else {
1754 struct status_64 *status;
1755
1756 status = (struct status_64 *)skb->data;
1757 dma_length_status = status->length_status;
1758 }
1759
1760 /* DMA flags and length are still valid no matter how
1761 * we got the Receive Status Vector (64B RSB or register)
1762 */
1763 dma_flag = dma_length_status & 0xffff;
1764 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1765
1766 netif_dbg(priv, rx_status, dev,
1767 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1768 __func__, p_index, ring->c_index,
1769 ring->read_ptr, dma_length_status);
1770
1771 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1772 netif_err(priv, rx_status, dev,
1773 "dropping fragmented packet!\n");
1774 ring->errors++;
1775 dev_kfree_skb_any(skb);
1776 goto next;
1777 }
1778
1779 /* report errors */
1780 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1781 DMA_RX_OV |
1782 DMA_RX_NO |
1783 DMA_RX_LG |
1784 DMA_RX_RXER))) {
1785 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1786 (unsigned int)dma_flag);
1787 if (dma_flag & DMA_RX_CRC_ERROR)
1788 dev->stats.rx_crc_errors++;
1789 if (dma_flag & DMA_RX_OV)
1790 dev->stats.rx_over_errors++;
1791 if (dma_flag & DMA_RX_NO)
1792 dev->stats.rx_frame_errors++;
1793 if (dma_flag & DMA_RX_LG)
1794 dev->stats.rx_length_errors++;
1795 dev->stats.rx_errors++;
1796 dev_kfree_skb_any(skb);
1797 goto next;
1798 } /* error packet */
1799
1800 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1801 priv->desc_rxchk_en;
1802
1803 skb_put(skb, len);
1804 if (priv->desc_64b_en) {
1805 skb_pull(skb, 64);
1806 len -= 64;
1807 }
1808
1809 if (likely(chksum_ok))
1810 skb->ip_summed = CHECKSUM_UNNECESSARY;
1811
1812 /* remove hardware 2bytes added for IP alignment */
1813 skb_pull(skb, 2);
1814 len -= 2;
1815
1816 if (priv->crc_fwd_en) {
1817 skb_trim(skb, len - ETH_FCS_LEN);
1818 len -= ETH_FCS_LEN;
1819 }
1820
1821 /*Finish setting up the received SKB and send it to the kernel*/
1822 skb->protocol = eth_type_trans(skb, priv->dev);
1823 ring->packets++;
1824 ring->bytes += len;
1825 if (dma_flag & DMA_RX_MULT)
1826 dev->stats.multicast++;
1827
1828 /* Notify kernel */
1829 napi_gro_receive(&ring->napi, skb);
1830 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1831
1832 next:
1833 rxpktprocessed++;
1834 if (likely(ring->read_ptr < ring->end_ptr))
1835 ring->read_ptr++;
1836 else
1837 ring->read_ptr = ring->cb_ptr;
1838
1839 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1840 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1841 }
1842
1843 return rxpktprocessed;
1844 }
1845
1846 /* Rx NAPI polling method */
1847 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1848 {
1849 struct bcmgenet_rx_ring *ring = container_of(napi,
1850 struct bcmgenet_rx_ring, napi);
1851 unsigned int work_done;
1852
1853 work_done = bcmgenet_desc_rx(ring, budget);
1854
1855 if (work_done < budget) {
1856 napi_complete_done(napi, work_done);
1857 ring->int_enable(ring);
1858 }
1859
1860 return work_done;
1861 }
1862
1863 /* Assign skb to RX DMA descriptor. */
1864 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1865 struct bcmgenet_rx_ring *ring)
1866 {
1867 struct enet_cb *cb;
1868 struct sk_buff *skb;
1869 int i;
1870
1871 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1872
1873 /* loop here for each buffer needing assign */
1874 for (i = 0; i < ring->size; i++) {
1875 cb = ring->cbs + i;
1876 skb = bcmgenet_rx_refill(priv, cb);
1877 if (skb)
1878 dev_consume_skb_any(skb);
1879 if (!cb->skb)
1880 return -ENOMEM;
1881 }
1882
1883 return 0;
1884 }
1885
1886 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1887 {
1888 struct sk_buff *skb;
1889 struct enet_cb *cb;
1890 int i;
1891
1892 for (i = 0; i < priv->num_rx_bds; i++) {
1893 cb = &priv->rx_cbs[i];
1894
1895 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1896 if (skb)
1897 dev_consume_skb_any(skb);
1898 }
1899 }
1900
1901 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1902 {
1903 u32 reg;
1904
1905 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1906 if (enable)
1907 reg |= mask;
1908 else
1909 reg &= ~mask;
1910 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1911
1912 /* UniMAC stops on a packet boundary, wait for a full-size packet
1913 * to be processed
1914 */
1915 if (enable == 0)
1916 usleep_range(1000, 2000);
1917 }
1918
1919 static int reset_umac(struct bcmgenet_priv *priv)
1920 {
1921 struct device *kdev = &priv->pdev->dev;
1922 unsigned int timeout = 0;
1923 u32 reg;
1924
1925 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1926 bcmgenet_rbuf_ctrl_set(priv, 0);
1927 udelay(10);
1928
1929 /* disable MAC while updating its registers */
1930 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1931
1932 /* issue soft reset, wait for it to complete */
1933 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1934 while (timeout++ < 1000) {
1935 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1936 if (!(reg & CMD_SW_RESET))
1937 return 0;
1938
1939 udelay(1);
1940 }
1941
1942 if (timeout == 1000) {
1943 dev_err(kdev,
1944 "timeout waiting for MAC to come out of reset\n");
1945 return -ETIMEDOUT;
1946 }
1947
1948 return 0;
1949 }
1950
1951 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1952 {
1953 /* Mask all interrupts.*/
1954 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1955 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1956 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1957 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1958 }
1959
1960 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1961 {
1962 u32 int0_enable = 0;
1963
1964 /* Monitor cable plug/unplugged event for internal PHY, external PHY
1965 * and MoCA PHY
1966 */
1967 if (priv->internal_phy) {
1968 int0_enable |= UMAC_IRQ_LINK_EVENT;
1969 } else if (priv->ext_phy) {
1970 int0_enable |= UMAC_IRQ_LINK_EVENT;
1971 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1972 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1973 int0_enable |= UMAC_IRQ_LINK_EVENT;
1974 }
1975 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1976 }
1977
1978 static int init_umac(struct bcmgenet_priv *priv)
1979 {
1980 struct device *kdev = &priv->pdev->dev;
1981 int ret;
1982 u32 reg;
1983 u32 int0_enable = 0;
1984
1985 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1986
1987 ret = reset_umac(priv);
1988 if (ret)
1989 return ret;
1990
1991 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1992 /* clear tx/rx counter */
1993 bcmgenet_umac_writel(priv,
1994 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1995 UMAC_MIB_CTRL);
1996 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1997
1998 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1999
2000 /* init rx registers, enable ip header optimization */
2001 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2002 reg |= RBUF_ALIGN_2B;
2003 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2004
2005 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2006 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2007
2008 bcmgenet_intr_disable(priv);
2009
2010 /* Configure backpressure vectors for MoCA */
2011 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2012 reg = bcmgenet_bp_mc_get(priv);
2013 reg |= BIT(priv->hw_params->bp_in_en_shift);
2014
2015 /* bp_mask: back pressure mask */
2016 if (netif_is_multiqueue(priv->dev))
2017 reg |= priv->hw_params->bp_in_mask;
2018 else
2019 reg &= ~priv->hw_params->bp_in_mask;
2020 bcmgenet_bp_mc_set(priv, reg);
2021 }
2022
2023 /* Enable MDIO interrupts on GENET v3+ */
2024 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2025 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2026
2027 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2028
2029 dev_dbg(kdev, "done init umac\n");
2030
2031 return 0;
2032 }
2033
2034 /* Initialize a Tx ring along with corresponding hardware registers */
2035 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2036 unsigned int index, unsigned int size,
2037 unsigned int start_ptr, unsigned int end_ptr)
2038 {
2039 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2040 u32 words_per_bd = WORDS_PER_BD(priv);
2041 u32 flow_period_val = 0;
2042
2043 spin_lock_init(&ring->lock);
2044 ring->priv = priv;
2045 ring->index = index;
2046 if (index == DESC_INDEX) {
2047 ring->queue = 0;
2048 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2049 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2050 } else {
2051 ring->queue = index + 1;
2052 ring->int_enable = bcmgenet_tx_ring_int_enable;
2053 ring->int_disable = bcmgenet_tx_ring_int_disable;
2054 }
2055 ring->cbs = priv->tx_cbs + start_ptr;
2056 ring->size = size;
2057 ring->clean_ptr = start_ptr;
2058 ring->c_index = 0;
2059 ring->free_bds = size;
2060 ring->write_ptr = start_ptr;
2061 ring->cb_ptr = start_ptr;
2062 ring->end_ptr = end_ptr - 1;
2063 ring->prod_index = 0;
2064
2065 /* Set flow period for ring != 16 */
2066 if (index != DESC_INDEX)
2067 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2068
2069 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2070 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2071 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2072 /* Disable rate control for now */
2073 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2074 TDMA_FLOW_PERIOD);
2075 bcmgenet_tdma_ring_writel(priv, index,
2076 ((size << DMA_RING_SIZE_SHIFT) |
2077 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2078
2079 /* Set start and end address, read and write pointers */
2080 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2081 DMA_START_ADDR);
2082 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2083 TDMA_READ_PTR);
2084 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2085 TDMA_WRITE_PTR);
2086 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2087 DMA_END_ADDR);
2088 }
2089
2090 /* Initialize a RDMA ring */
2091 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2092 unsigned int index, unsigned int size,
2093 unsigned int start_ptr, unsigned int end_ptr)
2094 {
2095 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2096 u32 words_per_bd = WORDS_PER_BD(priv);
2097 int ret;
2098
2099 ring->priv = priv;
2100 ring->index = index;
2101 if (index == DESC_INDEX) {
2102 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2103 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2104 } else {
2105 ring->int_enable = bcmgenet_rx_ring_int_enable;
2106 ring->int_disable = bcmgenet_rx_ring_int_disable;
2107 }
2108 ring->cbs = priv->rx_cbs + start_ptr;
2109 ring->size = size;
2110 ring->c_index = 0;
2111 ring->read_ptr = start_ptr;
2112 ring->cb_ptr = start_ptr;
2113 ring->end_ptr = end_ptr - 1;
2114
2115 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2116 if (ret)
2117 return ret;
2118
2119 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2120 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2121 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2122 bcmgenet_rdma_ring_writel(priv, index,
2123 ((size << DMA_RING_SIZE_SHIFT) |
2124 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2125 bcmgenet_rdma_ring_writel(priv, index,
2126 (DMA_FC_THRESH_LO <<
2127 DMA_XOFF_THRESHOLD_SHIFT) |
2128 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2129
2130 /* Set start and end address, read and write pointers */
2131 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2132 DMA_START_ADDR);
2133 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2134 RDMA_READ_PTR);
2135 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2136 RDMA_WRITE_PTR);
2137 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2138 DMA_END_ADDR);
2139
2140 return ret;
2141 }
2142
2143 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2144 {
2145 unsigned int i;
2146 struct bcmgenet_tx_ring *ring;
2147
2148 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2149 ring = &priv->tx_rings[i];
2150 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2151 }
2152
2153 ring = &priv->tx_rings[DESC_INDEX];
2154 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2155 }
2156
2157 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2158 {
2159 unsigned int i;
2160 u32 int0_enable = UMAC_IRQ_TXDMA_DONE;
2161 u32 int1_enable = 0;
2162 struct bcmgenet_tx_ring *ring;
2163
2164 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2165 ring = &priv->tx_rings[i];
2166 napi_enable(&ring->napi);
2167 int1_enable |= (1 << i);
2168 }
2169
2170 ring = &priv->tx_rings[DESC_INDEX];
2171 napi_enable(&ring->napi);
2172
2173 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2174 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2175 }
2176
2177 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2178 {
2179 unsigned int i;
2180 u32 int0_disable = UMAC_IRQ_TXDMA_DONE;
2181 u32 int1_disable = 0xffff;
2182 struct bcmgenet_tx_ring *ring;
2183
2184 bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2185 bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2186
2187 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2188 ring = &priv->tx_rings[i];
2189 napi_disable(&ring->napi);
2190 }
2191
2192 ring = &priv->tx_rings[DESC_INDEX];
2193 napi_disable(&ring->napi);
2194 }
2195
2196 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2197 {
2198 unsigned int i;
2199 struct bcmgenet_tx_ring *ring;
2200
2201 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2202 ring = &priv->tx_rings[i];
2203 netif_napi_del(&ring->napi);
2204 }
2205
2206 ring = &priv->tx_rings[DESC_INDEX];
2207 netif_napi_del(&ring->napi);
2208 }
2209
2210 /* Initialize Tx queues
2211 *
2212 * Queues 0-3 are priority-based, each one has 32 descriptors,
2213 * with queue 0 being the highest priority queue.
2214 *
2215 * Queue 16 is the default Tx queue with
2216 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2217 *
2218 * The transmit control block pool is then partitioned as follows:
2219 * - Tx queue 0 uses tx_cbs[0..31]
2220 * - Tx queue 1 uses tx_cbs[32..63]
2221 * - Tx queue 2 uses tx_cbs[64..95]
2222 * - Tx queue 3 uses tx_cbs[96..127]
2223 * - Tx queue 16 uses tx_cbs[128..255]
2224 */
2225 static void bcmgenet_init_tx_queues(struct net_device *dev)
2226 {
2227 struct bcmgenet_priv *priv = netdev_priv(dev);
2228 u32 i, dma_enable;
2229 u32 dma_ctrl, ring_cfg;
2230 u32 dma_priority[3] = {0, 0, 0};
2231
2232 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2233 dma_enable = dma_ctrl & DMA_EN;
2234 dma_ctrl &= ~DMA_EN;
2235 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2236
2237 dma_ctrl = 0;
2238 ring_cfg = 0;
2239
2240 /* Enable strict priority arbiter mode */
2241 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2242
2243 /* Initialize Tx priority queues */
2244 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2245 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2246 i * priv->hw_params->tx_bds_per_q,
2247 (i + 1) * priv->hw_params->tx_bds_per_q);
2248 ring_cfg |= (1 << i);
2249 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2250 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2251 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2252 }
2253
2254 /* Initialize Tx default queue 16 */
2255 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2256 priv->hw_params->tx_queues *
2257 priv->hw_params->tx_bds_per_q,
2258 TOTAL_DESC);
2259 ring_cfg |= (1 << DESC_INDEX);
2260 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2261 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2262 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2263 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2264
2265 /* Set Tx queue priorities */
2266 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2267 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2268 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2269
2270 /* Initialize Tx NAPI */
2271 bcmgenet_init_tx_napi(priv);
2272
2273 /* Enable Tx queues */
2274 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2275
2276 /* Enable Tx DMA */
2277 if (dma_enable)
2278 dma_ctrl |= DMA_EN;
2279 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2280 }
2281
2282 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2283 {
2284 unsigned int i;
2285 struct bcmgenet_rx_ring *ring;
2286
2287 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2288 ring = &priv->rx_rings[i];
2289 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2290 }
2291
2292 ring = &priv->rx_rings[DESC_INDEX];
2293 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2294 }
2295
2296 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2297 {
2298 unsigned int i;
2299 u32 int0_enable = UMAC_IRQ_RXDMA_DONE;
2300 u32 int1_enable = 0;
2301 struct bcmgenet_rx_ring *ring;
2302
2303 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2304 ring = &priv->rx_rings[i];
2305 napi_enable(&ring->napi);
2306 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
2307 }
2308
2309 ring = &priv->rx_rings[DESC_INDEX];
2310 napi_enable(&ring->napi);
2311
2312 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2313 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
2314 }
2315
2316 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2317 {
2318 unsigned int i;
2319 u32 int0_disable = UMAC_IRQ_RXDMA_DONE;
2320 u32 int1_disable = 0xffff << UMAC_IRQ1_RX_INTR_SHIFT;
2321 struct bcmgenet_rx_ring *ring;
2322
2323 bcmgenet_intrl2_0_writel(priv, int0_disable, INTRL2_CPU_MASK_SET);
2324 bcmgenet_intrl2_1_writel(priv, int1_disable, INTRL2_CPU_MASK_SET);
2325
2326 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2327 ring = &priv->rx_rings[i];
2328 napi_disable(&ring->napi);
2329 }
2330
2331 ring = &priv->rx_rings[DESC_INDEX];
2332 napi_disable(&ring->napi);
2333 }
2334
2335 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2336 {
2337 unsigned int i;
2338 struct bcmgenet_rx_ring *ring;
2339
2340 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2341 ring = &priv->rx_rings[i];
2342 netif_napi_del(&ring->napi);
2343 }
2344
2345 ring = &priv->rx_rings[DESC_INDEX];
2346 netif_napi_del(&ring->napi);
2347 }
2348
2349 /* Initialize Rx queues
2350 *
2351 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2352 * used to direct traffic to these queues.
2353 *
2354 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2355 */
2356 static int bcmgenet_init_rx_queues(struct net_device *dev)
2357 {
2358 struct bcmgenet_priv *priv = netdev_priv(dev);
2359 u32 i;
2360 u32 dma_enable;
2361 u32 dma_ctrl;
2362 u32 ring_cfg;
2363 int ret;
2364
2365 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2366 dma_enable = dma_ctrl & DMA_EN;
2367 dma_ctrl &= ~DMA_EN;
2368 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2369
2370 dma_ctrl = 0;
2371 ring_cfg = 0;
2372
2373 /* Initialize Rx priority queues */
2374 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2375 ret = bcmgenet_init_rx_ring(priv, i,
2376 priv->hw_params->rx_bds_per_q,
2377 i * priv->hw_params->rx_bds_per_q,
2378 (i + 1) *
2379 priv->hw_params->rx_bds_per_q);
2380 if (ret)
2381 return ret;
2382
2383 ring_cfg |= (1 << i);
2384 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2385 }
2386
2387 /* Initialize Rx default queue 16 */
2388 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2389 priv->hw_params->rx_queues *
2390 priv->hw_params->rx_bds_per_q,
2391 TOTAL_DESC);
2392 if (ret)
2393 return ret;
2394
2395 ring_cfg |= (1 << DESC_INDEX);
2396 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2397
2398 /* Initialize Rx NAPI */
2399 bcmgenet_init_rx_napi(priv);
2400
2401 /* Enable rings */
2402 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2403
2404 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2405 if (dma_enable)
2406 dma_ctrl |= DMA_EN;
2407 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2408
2409 return 0;
2410 }
2411
2412 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2413 {
2414 int ret = 0;
2415 int timeout = 0;
2416 u32 reg;
2417 u32 dma_ctrl;
2418 int i;
2419
2420 /* Disable TDMA to stop add more frames in TX DMA */
2421 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2422 reg &= ~DMA_EN;
2423 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2424
2425 /* Check TDMA status register to confirm TDMA is disabled */
2426 while (timeout++ < DMA_TIMEOUT_VAL) {
2427 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2428 if (reg & DMA_DISABLED)
2429 break;
2430
2431 udelay(1);
2432 }
2433
2434 if (timeout == DMA_TIMEOUT_VAL) {
2435 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2436 ret = -ETIMEDOUT;
2437 }
2438
2439 /* Wait 10ms for packet drain in both tx and rx dma */
2440 usleep_range(10000, 20000);
2441
2442 /* Disable RDMA */
2443 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2444 reg &= ~DMA_EN;
2445 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2446
2447 timeout = 0;
2448 /* Check RDMA status register to confirm RDMA is disabled */
2449 while (timeout++ < DMA_TIMEOUT_VAL) {
2450 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2451 if (reg & DMA_DISABLED)
2452 break;
2453
2454 udelay(1);
2455 }
2456
2457 if (timeout == DMA_TIMEOUT_VAL) {
2458 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2459 ret = -ETIMEDOUT;
2460 }
2461
2462 dma_ctrl = 0;
2463 for (i = 0; i < priv->hw_params->rx_queues; i++)
2464 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2465 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2466 reg &= ~dma_ctrl;
2467 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2468
2469 dma_ctrl = 0;
2470 for (i = 0; i < priv->hw_params->tx_queues; i++)
2471 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2472 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2473 reg &= ~dma_ctrl;
2474 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2475
2476 return ret;
2477 }
2478
2479 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2480 {
2481 struct netdev_queue *txq;
2482 struct sk_buff *skb;
2483 struct enet_cb *cb;
2484 int i;
2485
2486 bcmgenet_fini_rx_napi(priv);
2487 bcmgenet_fini_tx_napi(priv);
2488
2489 /* disable DMA */
2490 bcmgenet_dma_teardown(priv);
2491
2492 for (i = 0; i < priv->num_tx_bds; i++) {
2493 cb = priv->tx_cbs + i;
2494 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2495 if (skb)
2496 dev_kfree_skb(skb);
2497 }
2498
2499 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2500 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2501 netdev_tx_reset_queue(txq);
2502 }
2503
2504 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2505 netdev_tx_reset_queue(txq);
2506
2507 bcmgenet_free_rx_buffers(priv);
2508 kfree(priv->rx_cbs);
2509 kfree(priv->tx_cbs);
2510 }
2511
2512 /* init_edma: Initialize DMA control register */
2513 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2514 {
2515 int ret;
2516 unsigned int i;
2517 struct enet_cb *cb;
2518
2519 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2520
2521 /* Initialize common Rx ring structures */
2522 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2523 priv->num_rx_bds = TOTAL_DESC;
2524 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2525 GFP_KERNEL);
2526 if (!priv->rx_cbs)
2527 return -ENOMEM;
2528
2529 for (i = 0; i < priv->num_rx_bds; i++) {
2530 cb = priv->rx_cbs + i;
2531 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2532 }
2533
2534 /* Initialize common TX ring structures */
2535 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2536 priv->num_tx_bds = TOTAL_DESC;
2537 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2538 GFP_KERNEL);
2539 if (!priv->tx_cbs) {
2540 kfree(priv->rx_cbs);
2541 return -ENOMEM;
2542 }
2543
2544 for (i = 0; i < priv->num_tx_bds; i++) {
2545 cb = priv->tx_cbs + i;
2546 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2547 }
2548
2549 /* Init rDma */
2550 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2551
2552 /* Initialize Rx queues */
2553 ret = bcmgenet_init_rx_queues(priv->dev);
2554 if (ret) {
2555 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2556 bcmgenet_free_rx_buffers(priv);
2557 kfree(priv->rx_cbs);
2558 kfree(priv->tx_cbs);
2559 return ret;
2560 }
2561
2562 /* Init tDma */
2563 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2564
2565 /* Initialize Tx queues */
2566 bcmgenet_init_tx_queues(priv->dev);
2567
2568 return 0;
2569 }
2570
2571 /* Interrupt bottom half */
2572 static void bcmgenet_irq_task(struct work_struct *work)
2573 {
2574 unsigned long flags;
2575 unsigned int status;
2576 struct bcmgenet_priv *priv = container_of(
2577 work, struct bcmgenet_priv, bcmgenet_irq_work);
2578
2579 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2580
2581 spin_lock_irqsave(&priv->lock, flags);
2582 status = priv->irq0_stat;
2583 priv->irq0_stat = 0;
2584 spin_unlock_irqrestore(&priv->lock, flags);
2585
2586 if (status & UMAC_IRQ_MPD_R) {
2587 netif_dbg(priv, wol, priv->dev,
2588 "magic packet detected, waking up\n");
2589 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2590 }
2591
2592 /* Link UP/DOWN event */
2593 if (status & UMAC_IRQ_LINK_EVENT)
2594 phy_mac_interrupt(priv->phydev,
2595 !!(status & UMAC_IRQ_LINK_UP));
2596 }
2597
2598 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2599 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2600 {
2601 struct bcmgenet_priv *priv = dev_id;
2602 struct bcmgenet_rx_ring *rx_ring;
2603 struct bcmgenet_tx_ring *tx_ring;
2604 unsigned int index, status;
2605
2606 /* Read irq status */
2607 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2608 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2609
2610 /* clear interrupts */
2611 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2612
2613 netif_dbg(priv, intr, priv->dev,
2614 "%s: IRQ=0x%x\n", __func__, status);
2615
2616 /* Check Rx priority queue interrupts */
2617 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2618 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2619 continue;
2620
2621 rx_ring = &priv->rx_rings[index];
2622
2623 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2624 rx_ring->int_disable(rx_ring);
2625 __napi_schedule_irqoff(&rx_ring->napi);
2626 }
2627 }
2628
2629 /* Check Tx priority queue interrupts */
2630 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2631 if (!(status & BIT(index)))
2632 continue;
2633
2634 tx_ring = &priv->tx_rings[index];
2635
2636 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2637 tx_ring->int_disable(tx_ring);
2638 __napi_schedule_irqoff(&tx_ring->napi);
2639 }
2640 }
2641
2642 return IRQ_HANDLED;
2643 }
2644
2645 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2646 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2647 {
2648 struct bcmgenet_priv *priv = dev_id;
2649 struct bcmgenet_rx_ring *rx_ring;
2650 struct bcmgenet_tx_ring *tx_ring;
2651 unsigned int status;
2652 unsigned long flags;
2653
2654 /* Read irq status */
2655 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2656 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2657
2658 /* clear interrupts */
2659 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2660
2661 netif_dbg(priv, intr, priv->dev,
2662 "IRQ=0x%x\n", status);
2663
2664 if (status & UMAC_IRQ_RXDMA_DONE) {
2665 rx_ring = &priv->rx_rings[DESC_INDEX];
2666
2667 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2668 rx_ring->int_disable(rx_ring);
2669 __napi_schedule_irqoff(&rx_ring->napi);
2670 }
2671 }
2672
2673 if (status & UMAC_IRQ_TXDMA_DONE) {
2674 tx_ring = &priv->tx_rings[DESC_INDEX];
2675
2676 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2677 tx_ring->int_disable(tx_ring);
2678 __napi_schedule_irqoff(&tx_ring->napi);
2679 }
2680 }
2681
2682 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2683 UMAC_IRQ_PHY_DET_F |
2684 UMAC_IRQ_LINK_EVENT |
2685 UMAC_IRQ_HFB_SM |
2686 UMAC_IRQ_HFB_MM)) {
2687 /* all other interested interrupts handled in bottom half */
2688 schedule_work(&priv->bcmgenet_irq_work);
2689 }
2690
2691 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2692 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2693 wake_up(&priv->wq);
2694 }
2695
2696 /* all other interested interrupts handled in bottom half */
2697 status &= (UMAC_IRQ_LINK_EVENT |
2698 UMAC_IRQ_MPD_R);
2699 if (status) {
2700 /* Save irq status for bottom-half processing. */
2701 spin_lock_irqsave(&priv->lock, flags);
2702 priv->irq0_stat |= status;
2703 spin_unlock_irqrestore(&priv->lock, flags);
2704
2705 schedule_work(&priv->bcmgenet_irq_work);
2706 }
2707
2708 return IRQ_HANDLED;
2709 }
2710
2711 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2712 {
2713 struct bcmgenet_priv *priv = dev_id;
2714
2715 pm_wakeup_event(&priv->pdev->dev, 0);
2716
2717 return IRQ_HANDLED;
2718 }
2719
2720 #ifdef CONFIG_NET_POLL_CONTROLLER
2721 static void bcmgenet_poll_controller(struct net_device *dev)
2722 {
2723 struct bcmgenet_priv *priv = netdev_priv(dev);
2724
2725 /* Invoke the main RX/TX interrupt handler */
2726 disable_irq(priv->irq0);
2727 bcmgenet_isr0(priv->irq0, priv);
2728 enable_irq(priv->irq0);
2729
2730 /* And the interrupt handler for RX/TX priority queues */
2731 disable_irq(priv->irq1);
2732 bcmgenet_isr1(priv->irq1, priv);
2733 enable_irq(priv->irq1);
2734 }
2735 #endif
2736
2737 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2738 {
2739 u32 reg;
2740
2741 reg = bcmgenet_rbuf_ctrl_get(priv);
2742 reg |= BIT(1);
2743 bcmgenet_rbuf_ctrl_set(priv, reg);
2744 udelay(10);
2745
2746 reg &= ~BIT(1);
2747 bcmgenet_rbuf_ctrl_set(priv, reg);
2748 udelay(10);
2749 }
2750
2751 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2752 unsigned char *addr)
2753 {
2754 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2755 (addr[2] << 8) | addr[3], UMAC_MAC0);
2756 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2757 }
2758
2759 /* Returns a reusable dma control register value */
2760 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2761 {
2762 u32 reg;
2763 u32 dma_ctrl;
2764
2765 /* disable DMA */
2766 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2767 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2768 reg &= ~dma_ctrl;
2769 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2770
2771 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2772 reg &= ~dma_ctrl;
2773 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2774
2775 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2776 udelay(10);
2777 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2778
2779 return dma_ctrl;
2780 }
2781
2782 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2783 {
2784 u32 reg;
2785
2786 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2787 reg |= dma_ctrl;
2788 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2789
2790 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2791 reg |= dma_ctrl;
2792 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2793 }
2794
2795 /* bcmgenet_hfb_clear
2796 *
2797 * Clear Hardware Filter Block and disable all filtering.
2798 */
2799 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2800 {
2801 u32 i;
2802
2803 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2804 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2805 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2806
2807 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2808 bcmgenet_rdma_writel(priv, 0x0, i);
2809
2810 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2811 bcmgenet_hfb_reg_writel(priv, 0x0,
2812 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2813
2814 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2815 priv->hw_params->hfb_filter_size; i++)
2816 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2817 }
2818
2819 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2820 {
2821 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2822 return;
2823
2824 bcmgenet_hfb_clear(priv);
2825 }
2826
2827 static void bcmgenet_netif_start(struct net_device *dev)
2828 {
2829 struct bcmgenet_priv *priv = netdev_priv(dev);
2830
2831 /* Start the network engine */
2832 bcmgenet_enable_rx_napi(priv);
2833 bcmgenet_enable_tx_napi(priv);
2834
2835 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2836
2837 netif_tx_start_all_queues(dev);
2838
2839 /* Monitor link interrupts now */
2840 bcmgenet_link_intr_enable(priv);
2841
2842 phy_start(priv->phydev);
2843 }
2844
2845 static int bcmgenet_open(struct net_device *dev)
2846 {
2847 struct bcmgenet_priv *priv = netdev_priv(dev);
2848 unsigned long dma_ctrl;
2849 u32 reg;
2850 int ret;
2851
2852 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2853
2854 /* Turn on the clock */
2855 clk_prepare_enable(priv->clk);
2856
2857 /* If this is an internal GPHY, power it back on now, before UniMAC is
2858 * brought out of reset as absolutely no UniMAC activity is allowed
2859 */
2860 if (priv->internal_phy)
2861 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2862
2863 /* take MAC out of reset */
2864 bcmgenet_umac_reset(priv);
2865
2866 ret = init_umac(priv);
2867 if (ret)
2868 goto err_clk_disable;
2869
2870 /* disable ethernet MAC while updating its registers */
2871 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2872
2873 /* Make sure we reflect the value of CRC_CMD_FWD */
2874 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2875 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2876
2877 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2878
2879 if (priv->internal_phy) {
2880 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2881 reg |= EXT_ENERGY_DET_MASK;
2882 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2883 }
2884
2885 /* Disable RX/TX DMA and flush TX queues */
2886 dma_ctrl = bcmgenet_dma_disable(priv);
2887
2888 /* Reinitialize TDMA and RDMA and SW housekeeping */
2889 ret = bcmgenet_init_dma(priv);
2890 if (ret) {
2891 netdev_err(dev, "failed to initialize DMA\n");
2892 goto err_clk_disable;
2893 }
2894
2895 /* Always enable ring 16 - descriptor ring */
2896 bcmgenet_enable_dma(priv, dma_ctrl);
2897
2898 /* HFB init */
2899 bcmgenet_hfb_init(priv);
2900
2901 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2902 dev->name, priv);
2903 if (ret < 0) {
2904 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2905 goto err_fini_dma;
2906 }
2907
2908 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2909 dev->name, priv);
2910 if (ret < 0) {
2911 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2912 goto err_irq0;
2913 }
2914
2915 ret = bcmgenet_mii_probe(dev);
2916 if (ret) {
2917 netdev_err(dev, "failed to connect to PHY\n");
2918 goto err_irq1;
2919 }
2920
2921 bcmgenet_netif_start(dev);
2922
2923 return 0;
2924
2925 err_irq1:
2926 free_irq(priv->irq1, priv);
2927 err_irq0:
2928 free_irq(priv->irq0, priv);
2929 err_fini_dma:
2930 bcmgenet_fini_dma(priv);
2931 err_clk_disable:
2932 if (priv->internal_phy)
2933 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2934 clk_disable_unprepare(priv->clk);
2935 return ret;
2936 }
2937
2938 static void bcmgenet_netif_stop(struct net_device *dev)
2939 {
2940 struct bcmgenet_priv *priv = netdev_priv(dev);
2941
2942 netif_tx_stop_all_queues(dev);
2943 phy_stop(priv->phydev);
2944 bcmgenet_intr_disable(priv);
2945 bcmgenet_disable_rx_napi(priv);
2946 bcmgenet_disable_tx_napi(priv);
2947
2948 /* Wait for pending work items to complete. Since interrupts are
2949 * disabled no new work will be scheduled.
2950 */
2951 cancel_work_sync(&priv->bcmgenet_irq_work);
2952
2953 priv->old_link = -1;
2954 priv->old_speed = -1;
2955 priv->old_duplex = -1;
2956 priv->old_pause = -1;
2957 }
2958
2959 static int bcmgenet_close(struct net_device *dev)
2960 {
2961 struct bcmgenet_priv *priv = netdev_priv(dev);
2962 int ret;
2963
2964 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2965
2966 bcmgenet_netif_stop(dev);
2967
2968 /* Really kill the PHY state machine and disconnect from it */
2969 phy_disconnect(priv->phydev);
2970
2971 /* Disable MAC receive */
2972 umac_enable_set(priv, CMD_RX_EN, false);
2973
2974 ret = bcmgenet_dma_teardown(priv);
2975 if (ret)
2976 return ret;
2977
2978 /* Disable MAC transmit. TX DMA disabled must be done before this */
2979 umac_enable_set(priv, CMD_TX_EN, false);
2980
2981 /* tx reclaim */
2982 bcmgenet_tx_reclaim_all(dev);
2983 bcmgenet_fini_dma(priv);
2984
2985 free_irq(priv->irq0, priv);
2986 free_irq(priv->irq1, priv);
2987
2988 if (priv->internal_phy)
2989 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2990
2991 clk_disable_unprepare(priv->clk);
2992
2993 return ret;
2994 }
2995
2996 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2997 {
2998 struct bcmgenet_priv *priv = ring->priv;
2999 u32 p_index, c_index, intsts, intmsk;
3000 struct netdev_queue *txq;
3001 unsigned int free_bds;
3002 unsigned long flags;
3003 bool txq_stopped;
3004
3005 if (!netif_msg_tx_err(priv))
3006 return;
3007
3008 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3009
3010 spin_lock_irqsave(&ring->lock, flags);
3011 if (ring->index == DESC_INDEX) {
3012 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3013 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3014 } else {
3015 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3016 intmsk = 1 << ring->index;
3017 }
3018 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3019 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3020 txq_stopped = netif_tx_queue_stopped(txq);
3021 free_bds = ring->free_bds;
3022 spin_unlock_irqrestore(&ring->lock, flags);
3023
3024 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3025 "TX queue status: %s, interrupts: %s\n"
3026 "(sw)free_bds: %d (sw)size: %d\n"
3027 "(sw)p_index: %d (hw)p_index: %d\n"
3028 "(sw)c_index: %d (hw)c_index: %d\n"
3029 "(sw)clean_p: %d (sw)write_p: %d\n"
3030 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3031 ring->index, ring->queue,
3032 txq_stopped ? "stopped" : "active",
3033 intsts & intmsk ? "enabled" : "disabled",
3034 free_bds, ring->size,
3035 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3036 ring->c_index, c_index & DMA_C_INDEX_MASK,
3037 ring->clean_ptr, ring->write_ptr,
3038 ring->cb_ptr, ring->end_ptr);
3039 }
3040
3041 static void bcmgenet_timeout(struct net_device *dev)
3042 {
3043 struct bcmgenet_priv *priv = netdev_priv(dev);
3044 u32 int0_enable = 0;
3045 u32 int1_enable = 0;
3046 unsigned int q;
3047
3048 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3049
3050 for (q = 0; q < priv->hw_params->tx_queues; q++)
3051 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3052 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3053
3054 bcmgenet_tx_reclaim_all(dev);
3055
3056 for (q = 0; q < priv->hw_params->tx_queues; q++)
3057 int1_enable |= (1 << q);
3058
3059 int0_enable = UMAC_IRQ_TXDMA_DONE;
3060
3061 /* Re-enable TX interrupts if disabled */
3062 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3063 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3064
3065 netif_trans_update(dev);
3066
3067 dev->stats.tx_errors++;
3068
3069 netif_tx_wake_all_queues(dev);
3070 }
3071
3072 #define MAX_MC_COUNT 16
3073
3074 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3075 unsigned char *addr,
3076 int *i,
3077 int *mc)
3078 {
3079 u32 reg;
3080
3081 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3082 UMAC_MDF_ADDR + (*i * 4));
3083 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3084 addr[4] << 8 | addr[5],
3085 UMAC_MDF_ADDR + ((*i + 1) * 4));
3086 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3087 reg |= (1 << (MAX_MC_COUNT - *mc));
3088 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3089 *i += 2;
3090 (*mc)++;
3091 }
3092
3093 static void bcmgenet_set_rx_mode(struct net_device *dev)
3094 {
3095 struct bcmgenet_priv *priv = netdev_priv(dev);
3096 struct netdev_hw_addr *ha;
3097 int i, mc;
3098 u32 reg;
3099
3100 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3101
3102 /* Promiscuous mode */
3103 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3104 if (dev->flags & IFF_PROMISC) {
3105 reg |= CMD_PROMISC;
3106 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3107 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3108 return;
3109 } else {
3110 reg &= ~CMD_PROMISC;
3111 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3112 }
3113
3114 /* UniMac doesn't support ALLMULTI */
3115 if (dev->flags & IFF_ALLMULTI) {
3116 netdev_warn(dev, "ALLMULTI is not supported\n");
3117 return;
3118 }
3119
3120 /* update MDF filter */
3121 i = 0;
3122 mc = 0;
3123 /* Broadcast */
3124 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3125 /* my own address.*/
3126 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3127 /* Unicast list*/
3128 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3129 return;
3130
3131 if (!netdev_uc_empty(dev))
3132 netdev_for_each_uc_addr(ha, dev)
3133 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3134 /* Multicast */
3135 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3136 return;
3137
3138 netdev_for_each_mc_addr(ha, dev)
3139 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3140 }
3141
3142 /* Set the hardware MAC address. */
3143 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3144 {
3145 struct sockaddr *addr = p;
3146
3147 /* Setting the MAC address at the hardware level is not possible
3148 * without disabling the UniMAC RX/TX enable bits.
3149 */
3150 if (netif_running(dev))
3151 return -EBUSY;
3152
3153 ether_addr_copy(dev->dev_addr, addr->sa_data);
3154
3155 return 0;
3156 }
3157
3158 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3159 {
3160 struct bcmgenet_priv *priv = netdev_priv(dev);
3161 unsigned long tx_bytes = 0, tx_packets = 0;
3162 unsigned long rx_bytes = 0, rx_packets = 0;
3163 unsigned long rx_errors = 0, rx_dropped = 0;
3164 struct bcmgenet_tx_ring *tx_ring;
3165 struct bcmgenet_rx_ring *rx_ring;
3166 unsigned int q;
3167
3168 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3169 tx_ring = &priv->tx_rings[q];
3170 tx_bytes += tx_ring->bytes;
3171 tx_packets += tx_ring->packets;
3172 }
3173 tx_ring = &priv->tx_rings[DESC_INDEX];
3174 tx_bytes += tx_ring->bytes;
3175 tx_packets += tx_ring->packets;
3176
3177 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3178 rx_ring = &priv->rx_rings[q];
3179
3180 rx_bytes += rx_ring->bytes;
3181 rx_packets += rx_ring->packets;
3182 rx_errors += rx_ring->errors;
3183 rx_dropped += rx_ring->dropped;
3184 }
3185 rx_ring = &priv->rx_rings[DESC_INDEX];
3186 rx_bytes += rx_ring->bytes;
3187 rx_packets += rx_ring->packets;
3188 rx_errors += rx_ring->errors;
3189 rx_dropped += rx_ring->dropped;
3190
3191 dev->stats.tx_bytes = tx_bytes;
3192 dev->stats.tx_packets = tx_packets;
3193 dev->stats.rx_bytes = rx_bytes;
3194 dev->stats.rx_packets = rx_packets;
3195 dev->stats.rx_errors = rx_errors;
3196 dev->stats.rx_missed_errors = rx_errors;
3197 return &dev->stats;
3198 }
3199
3200 static const struct net_device_ops bcmgenet_netdev_ops = {
3201 .ndo_open = bcmgenet_open,
3202 .ndo_stop = bcmgenet_close,
3203 .ndo_start_xmit = bcmgenet_xmit,
3204 .ndo_tx_timeout = bcmgenet_timeout,
3205 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3206 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3207 .ndo_do_ioctl = bcmgenet_ioctl,
3208 .ndo_set_features = bcmgenet_set_features,
3209 #ifdef CONFIG_NET_POLL_CONTROLLER
3210 .ndo_poll_controller = bcmgenet_poll_controller,
3211 #endif
3212 .ndo_get_stats = bcmgenet_get_stats,
3213 };
3214
3215 /* Array of GENET hardware parameters/characteristics */
3216 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3217 [GENET_V1] = {
3218 .tx_queues = 0,
3219 .tx_bds_per_q = 0,
3220 .rx_queues = 0,
3221 .rx_bds_per_q = 0,
3222 .bp_in_en_shift = 16,
3223 .bp_in_mask = 0xffff,
3224 .hfb_filter_cnt = 16,
3225 .qtag_mask = 0x1F,
3226 .hfb_offset = 0x1000,
3227 .rdma_offset = 0x2000,
3228 .tdma_offset = 0x3000,
3229 .words_per_bd = 2,
3230 },
3231 [GENET_V2] = {
3232 .tx_queues = 4,
3233 .tx_bds_per_q = 32,
3234 .rx_queues = 0,
3235 .rx_bds_per_q = 0,
3236 .bp_in_en_shift = 16,
3237 .bp_in_mask = 0xffff,
3238 .hfb_filter_cnt = 16,
3239 .qtag_mask = 0x1F,
3240 .tbuf_offset = 0x0600,
3241 .hfb_offset = 0x1000,
3242 .hfb_reg_offset = 0x2000,
3243 .rdma_offset = 0x3000,
3244 .tdma_offset = 0x4000,
3245 .words_per_bd = 2,
3246 .flags = GENET_HAS_EXT,
3247 },
3248 [GENET_V3] = {
3249 .tx_queues = 4,
3250 .tx_bds_per_q = 32,
3251 .rx_queues = 0,
3252 .rx_bds_per_q = 0,
3253 .bp_in_en_shift = 17,
3254 .bp_in_mask = 0x1ffff,
3255 .hfb_filter_cnt = 48,
3256 .hfb_filter_size = 128,
3257 .qtag_mask = 0x3F,
3258 .tbuf_offset = 0x0600,
3259 .hfb_offset = 0x8000,
3260 .hfb_reg_offset = 0xfc00,
3261 .rdma_offset = 0x10000,
3262 .tdma_offset = 0x11000,
3263 .words_per_bd = 2,
3264 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3265 GENET_HAS_MOCA_LINK_DET,
3266 },
3267 [GENET_V4] = {
3268 .tx_queues = 4,
3269 .tx_bds_per_q = 32,
3270 .rx_queues = 0,
3271 .rx_bds_per_q = 0,
3272 .bp_in_en_shift = 17,
3273 .bp_in_mask = 0x1ffff,
3274 .hfb_filter_cnt = 48,
3275 .hfb_filter_size = 128,
3276 .qtag_mask = 0x3F,
3277 .tbuf_offset = 0x0600,
3278 .hfb_offset = 0x8000,
3279 .hfb_reg_offset = 0xfc00,
3280 .rdma_offset = 0x2000,
3281 .tdma_offset = 0x4000,
3282 .words_per_bd = 3,
3283 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3284 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3285 },
3286 [GENET_V5] = {
3287 .tx_queues = 4,
3288 .tx_bds_per_q = 32,
3289 .rx_queues = 0,
3290 .rx_bds_per_q = 0,
3291 .bp_in_en_shift = 17,
3292 .bp_in_mask = 0x1ffff,
3293 .hfb_filter_cnt = 48,
3294 .hfb_filter_size = 128,
3295 .qtag_mask = 0x3F,
3296 .tbuf_offset = 0x0600,
3297 .hfb_offset = 0x8000,
3298 .hfb_reg_offset = 0xfc00,
3299 .rdma_offset = 0x2000,
3300 .tdma_offset = 0x4000,
3301 .words_per_bd = 3,
3302 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3303 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3304 },
3305 };
3306
3307 /* Infer hardware parameters from the detected GENET version */
3308 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3309 {
3310 struct bcmgenet_hw_params *params;
3311 u32 reg;
3312 u8 major;
3313 u16 gphy_rev;
3314
3315 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3316 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3317 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3318 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3319 } else if (GENET_IS_V3(priv)) {
3320 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3321 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3322 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3323 } else if (GENET_IS_V2(priv)) {
3324 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3325 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3326 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3327 } else if (GENET_IS_V1(priv)) {
3328 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3329 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3330 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3331 }
3332
3333 /* enum genet_version starts at 1 */
3334 priv->hw_params = &bcmgenet_hw_params[priv->version];
3335 params = priv->hw_params;
3336
3337 /* Read GENET HW version */
3338 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3339 major = (reg >> 24 & 0x0f);
3340 if (major == 6)
3341 major = 5;
3342 else if (major == 5)
3343 major = 4;
3344 else if (major == 0)
3345 major = 1;
3346 if (major != priv->version) {
3347 dev_err(&priv->pdev->dev,
3348 "GENET version mismatch, got: %d, configured for: %d\n",
3349 major, priv->version);
3350 }
3351
3352 /* Print the GENET core version */
3353 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3354 major, (reg >> 16) & 0x0f, reg & 0xffff);
3355
3356 /* Store the integrated PHY revision for the MDIO probing function
3357 * to pass this information to the PHY driver. The PHY driver expects
3358 * to find the PHY major revision in bits 15:8 while the GENET register
3359 * stores that information in bits 7:0, account for that.
3360 *
3361 * On newer chips, starting with PHY revision G0, a new scheme is
3362 * deployed similar to the Starfighter 2 switch with GPHY major
3363 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3364 * is reserved as well as special value 0x01ff, we have a small
3365 * heuristic to check for the new GPHY revision and re-arrange things
3366 * so the GPHY driver is happy.
3367 */
3368 gphy_rev = reg & 0xffff;
3369
3370 if (GENET_IS_V5(priv)) {
3371 /* The EPHY revision should come from the MDIO registers of
3372 * the PHY not from GENET.
3373 */
3374 if (gphy_rev != 0) {
3375 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3376 gphy_rev);
3377 }
3378 /* This is reserved so should require special treatment */
3379 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3380 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3381 return;
3382 /* This is the good old scheme, just GPHY major, no minor nor patch */
3383 } else if ((gphy_rev & 0xf0) != 0) {
3384 priv->gphy_rev = gphy_rev << 8;
3385 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3386 } else if ((gphy_rev & 0xff00) != 0) {
3387 priv->gphy_rev = gphy_rev;
3388 }
3389
3390 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3391 if (!(params->flags & GENET_HAS_40BITS))
3392 pr_warn("GENET does not support 40-bits PA\n");
3393 #endif
3394
3395 pr_debug("Configuration for version: %d\n"
3396 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3397 "BP << en: %2d, BP msk: 0x%05x\n"
3398 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3399 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3400 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3401 "Words/BD: %d\n",
3402 priv->version,
3403 params->tx_queues, params->tx_bds_per_q,
3404 params->rx_queues, params->rx_bds_per_q,
3405 params->bp_in_en_shift, params->bp_in_mask,
3406 params->hfb_filter_cnt, params->qtag_mask,
3407 params->tbuf_offset, params->hfb_offset,
3408 params->hfb_reg_offset,
3409 params->rdma_offset, params->tdma_offset,
3410 params->words_per_bd);
3411 }
3412
3413 static const struct of_device_id bcmgenet_match[] = {
3414 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3415 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3416 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3417 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3418 { .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3419 { },
3420 };
3421 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3422
3423 static int bcmgenet_probe(struct platform_device *pdev)
3424 {
3425 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3426 struct device_node *dn = pdev->dev.of_node;
3427 const struct of_device_id *of_id = NULL;
3428 struct bcmgenet_priv *priv;
3429 struct net_device *dev;
3430 const void *macaddr;
3431 struct resource *r;
3432 int err = -EIO;
3433 const char *phy_mode_str;
3434
3435 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3436 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3437 GENET_MAX_MQ_CNT + 1);
3438 if (!dev) {
3439 dev_err(&pdev->dev, "can't allocate net device\n");
3440 return -ENOMEM;
3441 }
3442
3443 if (dn) {
3444 of_id = of_match_node(bcmgenet_match, dn);
3445 if (!of_id)
3446 return -EINVAL;
3447 }
3448
3449 priv = netdev_priv(dev);
3450 priv->irq0 = platform_get_irq(pdev, 0);
3451 priv->irq1 = platform_get_irq(pdev, 1);
3452 priv->wol_irq = platform_get_irq(pdev, 2);
3453 if (!priv->irq0 || !priv->irq1) {
3454 dev_err(&pdev->dev, "can't find IRQs\n");
3455 err = -EINVAL;
3456 goto err;
3457 }
3458
3459 if (dn) {
3460 macaddr = of_get_mac_address(dn);
3461 if (!macaddr) {
3462 dev_err(&pdev->dev, "can't find MAC address\n");
3463 err = -EINVAL;
3464 goto err;
3465 }
3466 } else {
3467 macaddr = pd->mac_address;
3468 }
3469
3470 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3471 priv->base = devm_ioremap_resource(&pdev->dev, r);
3472 if (IS_ERR(priv->base)) {
3473 err = PTR_ERR(priv->base);
3474 goto err;
3475 }
3476
3477 spin_lock_init(&priv->lock);
3478
3479 SET_NETDEV_DEV(dev, &pdev->dev);
3480 dev_set_drvdata(&pdev->dev, dev);
3481 ether_addr_copy(dev->dev_addr, macaddr);
3482 dev->watchdog_timeo = 2 * HZ;
3483 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3484 dev->netdev_ops = &bcmgenet_netdev_ops;
3485
3486 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3487
3488 /* Set hardware features */
3489 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3490 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3491
3492 /* Request the WOL interrupt and advertise suspend if available */
3493 priv->wol_irq_disabled = true;
3494 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3495 dev->name, priv);
3496 if (!err)
3497 device_set_wakeup_capable(&pdev->dev, 1);
3498
3499 /* Set the needed headroom to account for any possible
3500 * features enabling/disabling at runtime
3501 */
3502 dev->needed_headroom += 64;
3503
3504 netdev_boot_setup_check(dev);
3505
3506 priv->dev = dev;
3507 priv->pdev = pdev;
3508 if (of_id)
3509 priv->version = (enum bcmgenet_version)of_id->data;
3510 else
3511 priv->version = pd->genet_version;
3512
3513 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3514 if (IS_ERR(priv->clk)) {
3515 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3516 priv->clk = NULL;
3517 }
3518
3519 clk_prepare_enable(priv->clk);
3520
3521 bcmgenet_set_hw_params(priv);
3522
3523 /* Mii wait queue */
3524 init_waitqueue_head(&priv->wq);
3525 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3526 priv->rx_buf_len = RX_BUF_LENGTH;
3527 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3528
3529 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3530 if (IS_ERR(priv->clk_wol)) {
3531 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3532 priv->clk_wol = NULL;
3533 }
3534
3535 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3536 if (IS_ERR(priv->clk_eee)) {
3537 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3538 priv->clk_eee = NULL;
3539 }
3540
3541 /* If this is an internal GPHY, power it on now, before UniMAC is
3542 * brought out of reset as absolutely no UniMAC activity is allowed
3543 */
3544 if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3545 !strcasecmp(phy_mode_str, "internal"))
3546 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3547
3548 err = reset_umac(priv);
3549 if (err)
3550 goto err_clk_disable;
3551
3552 err = bcmgenet_mii_init(dev);
3553 if (err)
3554 goto err_clk_disable;
3555
3556 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3557 * just the ring 16 descriptor based TX
3558 */
3559 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3560 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3561
3562 /* libphy will determine the link state */
3563 netif_carrier_off(dev);
3564
3565 /* Turn off the main clock, WOL clock is handled separately */
3566 clk_disable_unprepare(priv->clk);
3567
3568 err = register_netdev(dev);
3569 if (err)
3570 goto err;
3571
3572 return err;
3573
3574 err_clk_disable:
3575 clk_disable_unprepare(priv->clk);
3576 err:
3577 free_netdev(dev);
3578 return err;
3579 }
3580
3581 static int bcmgenet_remove(struct platform_device *pdev)
3582 {
3583 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3584
3585 dev_set_drvdata(&pdev->dev, NULL);
3586 unregister_netdev(priv->dev);
3587 bcmgenet_mii_exit(priv->dev);
3588 free_netdev(priv->dev);
3589
3590 return 0;
3591 }
3592
3593 #ifdef CONFIG_PM_SLEEP
3594 static int bcmgenet_suspend(struct device *d)
3595 {
3596 struct net_device *dev = dev_get_drvdata(d);
3597 struct bcmgenet_priv *priv = netdev_priv(dev);
3598 int ret;
3599
3600 if (!netif_running(dev))
3601 return 0;
3602
3603 bcmgenet_netif_stop(dev);
3604
3605 if (!device_may_wakeup(d))
3606 phy_suspend(priv->phydev);
3607
3608 netif_device_detach(dev);
3609
3610 /* Disable MAC receive */
3611 umac_enable_set(priv, CMD_RX_EN, false);
3612
3613 ret = bcmgenet_dma_teardown(priv);
3614 if (ret)
3615 return ret;
3616
3617 /* Disable MAC transmit. TX DMA disabled must be done before this */
3618 umac_enable_set(priv, CMD_TX_EN, false);
3619
3620 /* tx reclaim */
3621 bcmgenet_tx_reclaim_all(dev);
3622 bcmgenet_fini_dma(priv);
3623
3624 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3625 if (device_may_wakeup(d) && priv->wolopts) {
3626 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3627 clk_prepare_enable(priv->clk_wol);
3628 } else if (priv->internal_phy) {
3629 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3630 }
3631
3632 /* Turn off the clocks */
3633 clk_disable_unprepare(priv->clk);
3634
3635 return ret;
3636 }
3637
3638 static int bcmgenet_resume(struct device *d)
3639 {
3640 struct net_device *dev = dev_get_drvdata(d);
3641 struct bcmgenet_priv *priv = netdev_priv(dev);
3642 unsigned long dma_ctrl;
3643 int ret;
3644 u32 reg;
3645
3646 if (!netif_running(dev))
3647 return 0;
3648
3649 /* Turn on the clock */
3650 ret = clk_prepare_enable(priv->clk);
3651 if (ret)
3652 return ret;
3653
3654 /* If this is an internal GPHY, power it back on now, before UniMAC is
3655 * brought out of reset as absolutely no UniMAC activity is allowed
3656 */
3657 if (priv->internal_phy)
3658 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3659
3660 bcmgenet_umac_reset(priv);
3661
3662 ret = init_umac(priv);
3663 if (ret)
3664 goto out_clk_disable;
3665
3666 /* From WOL-enabled suspend, switch to regular clock */
3667 if (priv->wolopts)
3668 clk_disable_unprepare(priv->clk_wol);
3669
3670 phy_init_hw(priv->phydev);
3671 /* Speed settings must be restored */
3672 bcmgenet_mii_config(priv->dev, false);
3673
3674 /* disable ethernet MAC while updating its registers */
3675 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3676
3677 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3678
3679 if (priv->internal_phy) {
3680 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3681 reg |= EXT_ENERGY_DET_MASK;
3682 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3683 }
3684
3685 if (priv->wolopts)
3686 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3687
3688 /* Disable RX/TX DMA and flush TX queues */
3689 dma_ctrl = bcmgenet_dma_disable(priv);
3690
3691 /* Reinitialize TDMA and RDMA and SW housekeeping */
3692 ret = bcmgenet_init_dma(priv);
3693 if (ret) {
3694 netdev_err(dev, "failed to initialize DMA\n");
3695 goto out_clk_disable;
3696 }
3697
3698 /* Always enable ring 16 - descriptor ring */
3699 bcmgenet_enable_dma(priv, dma_ctrl);
3700
3701 netif_device_attach(dev);
3702
3703 if (!device_may_wakeup(d))
3704 phy_resume(priv->phydev);
3705
3706 if (priv->eee.eee_enabled)
3707 bcmgenet_eee_enable_set(dev, true);
3708
3709 bcmgenet_netif_start(dev);
3710
3711 return 0;
3712
3713 out_clk_disable:
3714 if (priv->internal_phy)
3715 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3716 clk_disable_unprepare(priv->clk);
3717 return ret;
3718 }
3719 #endif /* CONFIG_PM_SLEEP */
3720
3721 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3722
3723 static struct platform_driver bcmgenet_driver = {
3724 .probe = bcmgenet_probe,
3725 .remove = bcmgenet_remove,
3726 .driver = {
3727 .name = "bcmgenet",
3728 .of_match_table = bcmgenet_match,
3729 .pm = &bcmgenet_pm_ops,
3730 },
3731 };
3732 module_platform_driver(bcmgenet_driver);
3733
3734 MODULE_AUTHOR("Broadcom Corporation");
3735 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3736 MODULE_ALIAS("platform:bcmgenet");
3737 MODULE_LICENSE("GPL");