]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/broadcom/sb1250-mac.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / broadcom / sb1250-mac.c
1 /*
2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 *
18 *
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21 *
22 * Updated to the driver model and the PHY abstraction layer
23 * by Maciej W. Rozycki.
24 */
25
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/cache.h>
47 #include <asm/io.h>
48 #include <asm/processor.h> /* Processor type for cache alignment. */
49
50 /* Operational parameters that usually are not changed. */
51
52 #define CONFIG_SBMAC_COALESCE
53
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT (2*HZ)
56
57
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
60
61 /* A few user-configurable values which may be modified when a driver
62 module is loaded. */
63
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
65 static int debug = 1;
66 module_param(debug, int, S_IRUGO);
67 MODULE_PARM_DESC(debug, "Debug messages");
68
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx = 255;
71 module_param(int_pktcnt_tx, int, S_IRUGO);
72 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
73
74 static int int_timeout_tx = 255;
75 module_param(int_timeout_tx, int, S_IRUGO);
76 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
77
78 static int int_pktcnt_rx = 64;
79 module_param(int_pktcnt_rx, int, S_IRUGO);
80 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
81
82 static int int_timeout_rx = 64;
83 module_param(int_timeout_rx, int, S_IRUGO);
84 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
85 #endif
86
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
96 #else
97 #error invalid SiByte MAC configuration
98 #endif
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
102
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
107 #else
108 #error invalid SiByte MAC configuration
109 #endif
110
111 #ifdef K_INT_PHY
112 #define SBMAC_PHY_INT K_INT_PHY
113 #else
114 #define SBMAC_PHY_INT PHY_POLL
115 #endif
116
117 /**********************************************************************
118 * Simple types
119 ********************************************************************* */
120
121 enum sbmac_speed {
122 sbmac_speed_none = 0,
123 sbmac_speed_10 = SPEED_10,
124 sbmac_speed_100 = SPEED_100,
125 sbmac_speed_1000 = SPEED_1000,
126 };
127
128 enum sbmac_duplex {
129 sbmac_duplex_none = -1,
130 sbmac_duplex_half = DUPLEX_HALF,
131 sbmac_duplex_full = DUPLEX_FULL,
132 };
133
134 enum sbmac_fc {
135 sbmac_fc_none,
136 sbmac_fc_disabled,
137 sbmac_fc_frame,
138 sbmac_fc_collision,
139 sbmac_fc_carrier,
140 };
141
142 enum sbmac_state {
143 sbmac_state_uninit,
144 sbmac_state_off,
145 sbmac_state_on,
146 sbmac_state_broken,
147 };
148
149
150 /**********************************************************************
151 * Macros
152 ********************************************************************* */
153
154
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156 (d)->sbdma_dscrtable : (d)->f+1)
157
158
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
160
161 #define SBMAC_MAX_TXDESCR 256
162 #define SBMAC_MAX_RXDESCR 256
163
164 #define ENET_PACKET_SIZE 1518
165 /*#define ENET_PACKET_SIZE 9216 */
166
167 /**********************************************************************
168 * DMA Descriptor structure
169 ********************************************************************* */
170
171 struct sbdmadscr {
172 uint64_t dscr_a;
173 uint64_t dscr_b;
174 };
175
176 /**********************************************************************
177 * DMA Controller structure
178 ********************************************************************* */
179
180 struct sbmacdma {
181
182 /*
183 * This stuff is used to identify the channel and the registers
184 * associated with it.
185 */
186 struct sbmac_softc *sbdma_eth; /* back pointer to associated
187 MAC */
188 int sbdma_channel; /* channel number */
189 int sbdma_txdir; /* direction (1=transmit) */
190 int sbdma_maxdescr; /* total # of descriptors
191 in ring */
192 #ifdef CONFIG_SBMAC_COALESCE
193 int sbdma_int_pktcnt;
194 /* # descriptors rx/tx
195 before interrupt */
196 int sbdma_int_timeout;
197 /* # usec rx/tx interrupt */
198 #endif
199 void __iomem *sbdma_config0; /* DMA config register 0 */
200 void __iomem *sbdma_config1; /* DMA config register 1 */
201 void __iomem *sbdma_dscrbase;
202 /* descriptor base address */
203 void __iomem *sbdma_dscrcnt; /* descriptor count register */
204 void __iomem *sbdma_curdscr; /* current descriptor
205 address */
206 void __iomem *sbdma_oodpktlost;
207 /* pkt drop (rx only) */
208
209 /*
210 * This stuff is for maintenance of the ring
211 */
212 void *sbdma_dscrtable_unaligned;
213 struct sbdmadscr *sbdma_dscrtable;
214 /* base of descriptor table */
215 struct sbdmadscr *sbdma_dscrtable_end;
216 /* end of descriptor table */
217 struct sk_buff **sbdma_ctxtable;
218 /* context table, one
219 per descr */
220 dma_addr_t sbdma_dscrtable_phys;
221 /* and also the phys addr */
222 struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */
223 struct sbdmadscr *sbdma_remptr; /* next dscr for sw
224 to remove */
225 };
226
227
228 /**********************************************************************
229 * Ethernet softc structure
230 ********************************************************************* */
231
232 struct sbmac_softc {
233
234 /*
235 * Linux-specific things
236 */
237 struct net_device *sbm_dev; /* pointer to linux device */
238 struct napi_struct napi;
239 struct phy_device *phy_dev; /* the associated PHY device */
240 struct mii_bus *mii_bus; /* the MII bus */
241 spinlock_t sbm_lock; /* spin lock */
242 int sbm_devflags; /* current device flags */
243
244 /*
245 * Controller-specific things
246 */
247 void __iomem *sbm_base; /* MAC's base address */
248 enum sbmac_state sbm_state; /* current state */
249
250 void __iomem *sbm_macenable; /* MAC Enable Register */
251 void __iomem *sbm_maccfg; /* MAC Config Register */
252 void __iomem *sbm_fifocfg; /* FIFO Config Register */
253 void __iomem *sbm_framecfg; /* Frame Config Register */
254 void __iomem *sbm_rxfilter; /* Receive Filter Register */
255 void __iomem *sbm_isr; /* Interrupt Status Register */
256 void __iomem *sbm_imr; /* Interrupt Mask Register */
257 void __iomem *sbm_mdio; /* MDIO Register */
258
259 enum sbmac_speed sbm_speed; /* current speed */
260 enum sbmac_duplex sbm_duplex; /* current duplex */
261 enum sbmac_fc sbm_fc; /* cur. flow control setting */
262 int sbm_pause; /* current pause setting */
263 int sbm_link; /* current link state */
264
265 unsigned char sbm_hwaddr[ETH_ALEN];
266
267 struct sbmacdma sbm_txdma; /* only channel 0 for now */
268 struct sbmacdma sbm_rxdma;
269 int rx_hw_checksum;
270 int sbe_idx;
271 };
272
273
274 /**********************************************************************
275 * Externs
276 ********************************************************************* */
277
278 /**********************************************************************
279 * Prototypes
280 ********************************************************************* */
281
282 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
283 int txrx, int maxdescr);
284 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
285 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
286 struct sk_buff *m);
287 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
288 static void sbdma_emptyring(struct sbmacdma *d);
289 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
290 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
291 int work_to_do, int poll);
292 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
293 int poll);
294 static int sbmac_initctx(struct sbmac_softc *s);
295 static void sbmac_channel_start(struct sbmac_softc *s);
296 static void sbmac_channel_stop(struct sbmac_softc *s);
297 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
298 enum sbmac_state);
299 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
300 static uint64_t sbmac_addr2reg(unsigned char *ptr);
301 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
302 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
303 static void sbmac_setmulti(struct sbmac_softc *sc);
304 static int sbmac_init(struct platform_device *pldev, long long base);
305 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
306 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
307 enum sbmac_fc fc);
308
309 static int sbmac_open(struct net_device *dev);
310 static void sbmac_tx_timeout (struct net_device *dev);
311 static void sbmac_set_rx_mode(struct net_device *dev);
312 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
313 static int sbmac_close(struct net_device *dev);
314 static int sbmac_poll(struct napi_struct *napi, int budget);
315
316 static void sbmac_mii_poll(struct net_device *dev);
317 static int sbmac_mii_probe(struct net_device *dev);
318
319 static void sbmac_mii_sync(void __iomem *sbm_mdio);
320 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
321 int bitcnt);
322 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
323 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
324 u16 val);
325
326
327 /**********************************************************************
328 * Globals
329 ********************************************************************* */
330
331 static char sbmac_string[] = "sb1250-mac";
332
333 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
334
335
336 /**********************************************************************
337 * MDIO constants
338 ********************************************************************* */
339
340 #define MII_COMMAND_START 0x01
341 #define MII_COMMAND_READ 0x02
342 #define MII_COMMAND_WRITE 0x01
343 #define MII_COMMAND_ACK 0x02
344
345 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
346
347 #define ENABLE 1
348 #define DISABLE 0
349
350 /**********************************************************************
351 * SBMAC_MII_SYNC(sbm_mdio)
352 *
353 * Synchronize with the MII - send a pattern of bits to the MII
354 * that will guarantee that it is ready to accept a command.
355 *
356 * Input parameters:
357 * sbm_mdio - address of the MAC's MDIO register
358 *
359 * Return value:
360 * nothing
361 ********************************************************************* */
362
363 static void sbmac_mii_sync(void __iomem *sbm_mdio)
364 {
365 int cnt;
366 uint64_t bits;
367 int mac_mdio_genc;
368
369 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
370
371 bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
372
373 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
374
375 for (cnt = 0; cnt < 32; cnt++) {
376 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
377 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
378 }
379 }
380
381 /**********************************************************************
382 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
383 *
384 * Send some bits to the MII. The bits to be sent are right-
385 * justified in the 'data' parameter.
386 *
387 * Input parameters:
388 * sbm_mdio - address of the MAC's MDIO register
389 * data - data to send
390 * bitcnt - number of bits to send
391 ********************************************************************* */
392
393 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
394 int bitcnt)
395 {
396 int i;
397 uint64_t bits;
398 unsigned int curmask;
399 int mac_mdio_genc;
400
401 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
402
403 bits = M_MAC_MDIO_DIR_OUTPUT;
404 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
405
406 curmask = 1 << (bitcnt - 1);
407
408 for (i = 0; i < bitcnt; i++) {
409 if (data & curmask)
410 bits |= M_MAC_MDIO_OUT;
411 else bits &= ~M_MAC_MDIO_OUT;
412 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
413 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
414 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
415 curmask >>= 1;
416 }
417 }
418
419
420
421 /**********************************************************************
422 * SBMAC_MII_READ(bus, phyaddr, regidx)
423 * Read a PHY register.
424 *
425 * Input parameters:
426 * bus - MDIO bus handle
427 * phyaddr - PHY's address
428 * regnum - index of register to read
429 *
430 * Return value:
431 * value read, or 0xffff if an error occurred.
432 ********************************************************************* */
433
434 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
435 {
436 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
437 void __iomem *sbm_mdio = sc->sbm_mdio;
438 int idx;
439 int error;
440 int regval;
441 int mac_mdio_genc;
442
443 /*
444 * Synchronize ourselves so that the PHY knows the next
445 * thing coming down is a command
446 */
447 sbmac_mii_sync(sbm_mdio);
448
449 /*
450 * Send the data to the PHY. The sequence is
451 * a "start" command (2 bits)
452 * a "read" command (2 bits)
453 * the PHY addr (5 bits)
454 * the register index (5 bits)
455 */
456 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
457 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
458 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
459 sbmac_mii_senddata(sbm_mdio, regidx, 5);
460
461 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
462
463 /*
464 * Switch the port around without a clock transition.
465 */
466 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
467
468 /*
469 * Send out a clock pulse to signal we want the status
470 */
471 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
472 sbm_mdio);
473 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
474
475 /*
476 * If an error occurred, the PHY will signal '1' back
477 */
478 error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
479
480 /*
481 * Issue an 'idle' clock pulse, but keep the direction
482 * the same.
483 */
484 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
485 sbm_mdio);
486 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
487
488 regval = 0;
489
490 for (idx = 0; idx < 16; idx++) {
491 regval <<= 1;
492
493 if (error == 0) {
494 if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
495 regval |= 1;
496 }
497
498 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
499 sbm_mdio);
500 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
501 }
502
503 /* Switch back to output */
504 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
505
506 if (error == 0)
507 return regval;
508 return 0xffff;
509 }
510
511
512 /**********************************************************************
513 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
514 *
515 * Write a value to a PHY register.
516 *
517 * Input parameters:
518 * bus - MDIO bus handle
519 * phyaddr - PHY to use
520 * regidx - register within the PHY
521 * regval - data to write to register
522 *
523 * Return value:
524 * 0 for success
525 ********************************************************************* */
526
527 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
528 u16 regval)
529 {
530 struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
531 void __iomem *sbm_mdio = sc->sbm_mdio;
532 int mac_mdio_genc;
533
534 sbmac_mii_sync(sbm_mdio);
535
536 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
537 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
538 sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
539 sbmac_mii_senddata(sbm_mdio, regidx, 5);
540 sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
541 sbmac_mii_senddata(sbm_mdio, regval, 16);
542
543 mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
544
545 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
546
547 return 0;
548 }
549
550
551
552 /**********************************************************************
553 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
554 *
555 * Initialize a DMA channel context. Since there are potentially
556 * eight DMA channels per MAC, it's nice to do this in a standard
557 * way.
558 *
559 * Input parameters:
560 * d - struct sbmacdma (DMA channel context)
561 * s - struct sbmac_softc (pointer to a MAC)
562 * chan - channel number (0..1 right now)
563 * txrx - Identifies DMA_TX or DMA_RX for channel direction
564 * maxdescr - number of descriptors
565 *
566 * Return value:
567 * nothing
568 ********************************************************************* */
569
570 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
571 int txrx, int maxdescr)
572 {
573 #ifdef CONFIG_SBMAC_COALESCE
574 int int_pktcnt, int_timeout;
575 #endif
576
577 /*
578 * Save away interesting stuff in the structure
579 */
580
581 d->sbdma_eth = s;
582 d->sbdma_channel = chan;
583 d->sbdma_txdir = txrx;
584
585 #if 0
586 /* RMON clearing */
587 s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
588 #endif
589
590 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
591 __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
592 __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
593 __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
594 __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
595 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
596 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
597 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
598 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
599 __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
600 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
601 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
602 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
603 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
604 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
605 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
606 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
607 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
608 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
609 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
610 __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
611
612 /*
613 * initialize register pointers
614 */
615
616 d->sbdma_config0 =
617 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
618 d->sbdma_config1 =
619 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
620 d->sbdma_dscrbase =
621 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
622 d->sbdma_dscrcnt =
623 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
624 d->sbdma_curdscr =
625 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
626 if (d->sbdma_txdir)
627 d->sbdma_oodpktlost = NULL;
628 else
629 d->sbdma_oodpktlost =
630 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
631
632 /*
633 * Allocate memory for the ring
634 */
635
636 d->sbdma_maxdescr = maxdescr;
637
638 d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
639 sizeof(*d->sbdma_dscrtable),
640 GFP_KERNEL);
641
642 /*
643 * The descriptor table must be aligned to at least 16 bytes or the
644 * MAC will corrupt it.
645 */
646 d->sbdma_dscrtable = (struct sbdmadscr *)
647 ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
648 sizeof(*d->sbdma_dscrtable));
649
650 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
651
652 d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
653
654 /*
655 * And context table
656 */
657
658 d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
659 sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
660
661 #ifdef CONFIG_SBMAC_COALESCE
662 /*
663 * Setup Rx/Tx DMA coalescing defaults
664 */
665
666 int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
667 if ( int_pktcnt ) {
668 d->sbdma_int_pktcnt = int_pktcnt;
669 } else {
670 d->sbdma_int_pktcnt = 1;
671 }
672
673 int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
674 if ( int_timeout ) {
675 d->sbdma_int_timeout = int_timeout;
676 } else {
677 d->sbdma_int_timeout = 0;
678 }
679 #endif
680
681 }
682
683 /**********************************************************************
684 * SBDMA_CHANNEL_START(d)
685 *
686 * Initialize the hardware registers for a DMA channel.
687 *
688 * Input parameters:
689 * d - DMA channel to init (context must be previously init'd
690 * rxtx - DMA_RX or DMA_TX depending on what type of channel
691 *
692 * Return value:
693 * nothing
694 ********************************************************************* */
695
696 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
697 {
698 /*
699 * Turn on the DMA channel
700 */
701
702 #ifdef CONFIG_SBMAC_COALESCE
703 __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
704 0, d->sbdma_config1);
705 __raw_writeq(M_DMA_EOP_INT_EN |
706 V_DMA_RINGSZ(d->sbdma_maxdescr) |
707 V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
708 0, d->sbdma_config0);
709 #else
710 __raw_writeq(0, d->sbdma_config1);
711 __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
712 0, d->sbdma_config0);
713 #endif
714
715 __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
716
717 /*
718 * Initialize ring pointers
719 */
720
721 d->sbdma_addptr = d->sbdma_dscrtable;
722 d->sbdma_remptr = d->sbdma_dscrtable;
723 }
724
725 /**********************************************************************
726 * SBDMA_CHANNEL_STOP(d)
727 *
728 * Initialize the hardware registers for a DMA channel.
729 *
730 * Input parameters:
731 * d - DMA channel to init (context must be previously init'd
732 *
733 * Return value:
734 * nothing
735 ********************************************************************* */
736
737 static void sbdma_channel_stop(struct sbmacdma *d)
738 {
739 /*
740 * Turn off the DMA channel
741 */
742
743 __raw_writeq(0, d->sbdma_config1);
744
745 __raw_writeq(0, d->sbdma_dscrbase);
746
747 __raw_writeq(0, d->sbdma_config0);
748
749 /*
750 * Zero ring pointers
751 */
752
753 d->sbdma_addptr = NULL;
754 d->sbdma_remptr = NULL;
755 }
756
757 static inline void sbdma_align_skb(struct sk_buff *skb,
758 unsigned int power2, unsigned int offset)
759 {
760 unsigned char *addr = skb->data;
761 unsigned char *newaddr = PTR_ALIGN(addr, power2);
762
763 skb_reserve(skb, newaddr - addr + offset);
764 }
765
766
767 /**********************************************************************
768 * SBDMA_ADD_RCVBUFFER(d,sb)
769 *
770 * Add a buffer to the specified DMA channel. For receive channels,
771 * this queues a buffer for inbound packets.
772 *
773 * Input parameters:
774 * sc - softc structure
775 * d - DMA channel descriptor
776 * sb - sk_buff to add, or NULL if we should allocate one
777 *
778 * Return value:
779 * 0 if buffer could not be added (ring is full)
780 * 1 if buffer added successfully
781 ********************************************************************* */
782
783
784 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
785 struct sk_buff *sb)
786 {
787 struct net_device *dev = sc->sbm_dev;
788 struct sbdmadscr *dsc;
789 struct sbdmadscr *nextdsc;
790 struct sk_buff *sb_new = NULL;
791 int pktsize = ENET_PACKET_SIZE;
792
793 /* get pointer to our current place in the ring */
794
795 dsc = d->sbdma_addptr;
796 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
797
798 /*
799 * figure out if the ring is full - if the next descriptor
800 * is the same as the one that we're going to remove from
801 * the ring, the ring is full
802 */
803
804 if (nextdsc == d->sbdma_remptr) {
805 return -ENOSPC;
806 }
807
808 /*
809 * Allocate a sk_buff if we don't already have one.
810 * If we do have an sk_buff, reset it so that it's empty.
811 *
812 * Note: sk_buffs don't seem to be guaranteed to have any sort
813 * of alignment when they are allocated. Therefore, allocate enough
814 * extra space to make sure that:
815 *
816 * 1. the data does not start in the middle of a cache line.
817 * 2. The data does not end in the middle of a cache line
818 * 3. The buffer can be aligned such that the IP addresses are
819 * naturally aligned.
820 *
821 * Remember, the SOCs MAC writes whole cache lines at a time,
822 * without reading the old contents first. So, if the sk_buff's
823 * data portion starts in the middle of a cache line, the SOC
824 * DMA will trash the beginning (and ending) portions.
825 */
826
827 if (sb == NULL) {
828 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
829 SMP_CACHE_BYTES * 2 +
830 NET_IP_ALIGN);
831 if (sb_new == NULL)
832 return -ENOBUFS;
833
834 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
835 }
836 else {
837 sb_new = sb;
838 /*
839 * nothing special to reinit buffer, it's already aligned
840 * and sb->data already points to a good place.
841 */
842 }
843
844 /*
845 * fill in the descriptor
846 */
847
848 #ifdef CONFIG_SBMAC_COALESCE
849 /*
850 * Do not interrupt per DMA transfer.
851 */
852 dsc->dscr_a = virt_to_phys(sb_new->data) |
853 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
854 #else
855 dsc->dscr_a = virt_to_phys(sb_new->data) |
856 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
857 M_DMA_DSCRA_INTERRUPT;
858 #endif
859
860 /* receiving: no options */
861 dsc->dscr_b = 0;
862
863 /*
864 * fill in the context
865 */
866
867 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
868
869 /*
870 * point at next packet
871 */
872
873 d->sbdma_addptr = nextdsc;
874
875 /*
876 * Give the buffer to the DMA engine.
877 */
878
879 __raw_writeq(1, d->sbdma_dscrcnt);
880
881 return 0; /* we did it */
882 }
883
884 /**********************************************************************
885 * SBDMA_ADD_TXBUFFER(d,sb)
886 *
887 * Add a transmit buffer to the specified DMA channel, causing a
888 * transmit to start.
889 *
890 * Input parameters:
891 * d - DMA channel descriptor
892 * sb - sk_buff to add
893 *
894 * Return value:
895 * 0 transmit queued successfully
896 * otherwise error code
897 ********************************************************************* */
898
899
900 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
901 {
902 struct sbdmadscr *dsc;
903 struct sbdmadscr *nextdsc;
904 uint64_t phys;
905 uint64_t ncb;
906 int length;
907
908 /* get pointer to our current place in the ring */
909
910 dsc = d->sbdma_addptr;
911 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
912
913 /*
914 * figure out if the ring is full - if the next descriptor
915 * is the same as the one that we're going to remove from
916 * the ring, the ring is full
917 */
918
919 if (nextdsc == d->sbdma_remptr) {
920 return -ENOSPC;
921 }
922
923 /*
924 * Under Linux, it's not necessary to copy/coalesce buffers
925 * like it is on NetBSD. We think they're all contiguous,
926 * but that may not be true for GBE.
927 */
928
929 length = sb->len;
930
931 /*
932 * fill in the descriptor. Note that the number of cache
933 * blocks in the descriptor is the number of blocks
934 * *spanned*, so we need to add in the offset (if any)
935 * while doing the calculation.
936 */
937
938 phys = virt_to_phys(sb->data);
939 ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
940
941 dsc->dscr_a = phys |
942 V_DMA_DSCRA_A_SIZE(ncb) |
943 #ifndef CONFIG_SBMAC_COALESCE
944 M_DMA_DSCRA_INTERRUPT |
945 #endif
946 M_DMA_ETHTX_SOP;
947
948 /* transmitting: set outbound options and length */
949
950 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
951 V_DMA_DSCRB_PKT_SIZE(length);
952
953 /*
954 * fill in the context
955 */
956
957 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
958
959 /*
960 * point at next packet
961 */
962
963 d->sbdma_addptr = nextdsc;
964
965 /*
966 * Give the buffer to the DMA engine.
967 */
968
969 __raw_writeq(1, d->sbdma_dscrcnt);
970
971 return 0; /* we did it */
972 }
973
974
975
976
977 /**********************************************************************
978 * SBDMA_EMPTYRING(d)
979 *
980 * Free all allocated sk_buffs on the specified DMA channel;
981 *
982 * Input parameters:
983 * d - DMA channel
984 *
985 * Return value:
986 * nothing
987 ********************************************************************* */
988
989 static void sbdma_emptyring(struct sbmacdma *d)
990 {
991 int idx;
992 struct sk_buff *sb;
993
994 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
995 sb = d->sbdma_ctxtable[idx];
996 if (sb) {
997 dev_kfree_skb(sb);
998 d->sbdma_ctxtable[idx] = NULL;
999 }
1000 }
1001 }
1002
1003
1004 /**********************************************************************
1005 * SBDMA_FILLRING(d)
1006 *
1007 * Fill the specified DMA channel (must be receive channel)
1008 * with sk_buffs
1009 *
1010 * Input parameters:
1011 * sc - softc structure
1012 * d - DMA channel
1013 *
1014 * Return value:
1015 * nothing
1016 ********************************************************************* */
1017
1018 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1019 {
1020 int idx;
1021
1022 for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1023 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1024 break;
1025 }
1026 }
1027
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 static void sbmac_netpoll(struct net_device *netdev)
1030 {
1031 struct sbmac_softc *sc = netdev_priv(netdev);
1032 int irq = sc->sbm_dev->irq;
1033
1034 __raw_writeq(0, sc->sbm_imr);
1035
1036 sbmac_intr(irq, netdev);
1037
1038 #ifdef CONFIG_SBMAC_COALESCE
1039 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1040 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1041 sc->sbm_imr);
1042 #else
1043 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1044 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1045 #endif
1046 }
1047 #endif
1048
1049 /**********************************************************************
1050 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1051 *
1052 * Process "completed" receive buffers on the specified DMA channel.
1053 *
1054 * Input parameters:
1055 * sc - softc structure
1056 * d - DMA channel context
1057 * work_to_do - no. of packets to process before enabling interrupt
1058 * again (for NAPI)
1059 * poll - 1: using polling (for NAPI)
1060 *
1061 * Return value:
1062 * nothing
1063 ********************************************************************* */
1064
1065 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1066 int work_to_do, int poll)
1067 {
1068 struct net_device *dev = sc->sbm_dev;
1069 int curidx;
1070 int hwidx;
1071 struct sbdmadscr *dsc;
1072 struct sk_buff *sb;
1073 int len;
1074 int work_done = 0;
1075 int dropped = 0;
1076
1077 prefetch(d);
1078
1079 again:
1080 /* Check if the HW dropped any frames */
1081 dev->stats.rx_fifo_errors
1082 += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1083 __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1084
1085 while (work_to_do-- > 0) {
1086 /*
1087 * figure out where we are (as an index) and where
1088 * the hardware is (also as an index)
1089 *
1090 * This could be done faster if (for example) the
1091 * descriptor table was page-aligned and contiguous in
1092 * both virtual and physical memory -- you could then
1093 * just compare the low-order bits of the virtual address
1094 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1095 */
1096
1097 dsc = d->sbdma_remptr;
1098 curidx = dsc - d->sbdma_dscrtable;
1099
1100 prefetch(dsc);
1101 prefetch(&d->sbdma_ctxtable[curidx]);
1102
1103 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1104 d->sbdma_dscrtable_phys) /
1105 sizeof(*d->sbdma_dscrtable);
1106
1107 /*
1108 * If they're the same, that means we've processed all
1109 * of the descriptors up to (but not including) the one that
1110 * the hardware is working on right now.
1111 */
1112
1113 if (curidx == hwidx)
1114 goto done;
1115
1116 /*
1117 * Otherwise, get the packet's sk_buff ptr back
1118 */
1119
1120 sb = d->sbdma_ctxtable[curidx];
1121 d->sbdma_ctxtable[curidx] = NULL;
1122
1123 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1124
1125 /*
1126 * Check packet status. If good, process it.
1127 * If not, silently drop it and put it back on the
1128 * receive ring.
1129 */
1130
1131 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1132
1133 /*
1134 * Add a new buffer to replace the old one. If we fail
1135 * to allocate a buffer, we're going to drop this
1136 * packet and put it right back on the receive ring.
1137 */
1138
1139 if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1140 -ENOBUFS)) {
1141 dev->stats.rx_dropped++;
1142 /* Re-add old buffer */
1143 sbdma_add_rcvbuffer(sc, d, sb);
1144 /* No point in continuing at the moment */
1145 printk(KERN_ERR "dropped packet (1)\n");
1146 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1147 goto done;
1148 } else {
1149 /*
1150 * Set length into the packet
1151 */
1152 skb_put(sb,len);
1153
1154 /*
1155 * Buffer has been replaced on the
1156 * receive ring. Pass the buffer to
1157 * the kernel
1158 */
1159 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1160 /* Check hw IPv4/TCP checksum if supported */
1161 if (sc->rx_hw_checksum == ENABLE) {
1162 if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1163 !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1164 sb->ip_summed = CHECKSUM_UNNECESSARY;
1165 /* don't need to set sb->csum */
1166 } else {
1167 skb_checksum_none_assert(sb);
1168 }
1169 }
1170 prefetch(sb->data);
1171 prefetch((const void *)(((char *)sb->data)+32));
1172 if (poll)
1173 dropped = netif_receive_skb(sb);
1174 else
1175 dropped = netif_rx(sb);
1176
1177 if (dropped == NET_RX_DROP) {
1178 dev->stats.rx_dropped++;
1179 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1180 goto done;
1181 }
1182 else {
1183 dev->stats.rx_bytes += len;
1184 dev->stats.rx_packets++;
1185 }
1186 }
1187 } else {
1188 /*
1189 * Packet was mangled somehow. Just drop it and
1190 * put it back on the receive ring.
1191 */
1192 dev->stats.rx_errors++;
1193 sbdma_add_rcvbuffer(sc, d, sb);
1194 }
1195
1196
1197 /*
1198 * .. and advance to the next buffer.
1199 */
1200
1201 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1202 work_done++;
1203 }
1204 if (!poll) {
1205 work_to_do = 32;
1206 goto again; /* collect fifo drop statistics again */
1207 }
1208 done:
1209 return work_done;
1210 }
1211
1212 /**********************************************************************
1213 * SBDMA_TX_PROCESS(sc,d)
1214 *
1215 * Process "completed" transmit buffers on the specified DMA channel.
1216 * This is normally called within the interrupt service routine.
1217 * Note that this isn't really ideal for priority channels, since
1218 * it processes all of the packets on a given channel before
1219 * returning.
1220 *
1221 * Input parameters:
1222 * sc - softc structure
1223 * d - DMA channel context
1224 * poll - 1: using polling (for NAPI)
1225 *
1226 * Return value:
1227 * nothing
1228 ********************************************************************* */
1229
1230 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1231 int poll)
1232 {
1233 struct net_device *dev = sc->sbm_dev;
1234 int curidx;
1235 int hwidx;
1236 struct sbdmadscr *dsc;
1237 struct sk_buff *sb;
1238 unsigned long flags;
1239 int packets_handled = 0;
1240
1241 spin_lock_irqsave(&(sc->sbm_lock), flags);
1242
1243 if (d->sbdma_remptr == d->sbdma_addptr)
1244 goto end_unlock;
1245
1246 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1247 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1248
1249 for (;;) {
1250 /*
1251 * figure out where we are (as an index) and where
1252 * the hardware is (also as an index)
1253 *
1254 * This could be done faster if (for example) the
1255 * descriptor table was page-aligned and contiguous in
1256 * both virtual and physical memory -- you could then
1257 * just compare the low-order bits of the virtual address
1258 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1259 */
1260
1261 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1262
1263 /*
1264 * If they're the same, that means we've processed all
1265 * of the descriptors up to (but not including) the one that
1266 * the hardware is working on right now.
1267 */
1268
1269 if (curidx == hwidx)
1270 break;
1271
1272 /*
1273 * Otherwise, get the packet's sk_buff ptr back
1274 */
1275
1276 dsc = &(d->sbdma_dscrtable[curidx]);
1277 sb = d->sbdma_ctxtable[curidx];
1278 d->sbdma_ctxtable[curidx] = NULL;
1279
1280 /*
1281 * Stats
1282 */
1283
1284 dev->stats.tx_bytes += sb->len;
1285 dev->stats.tx_packets++;
1286
1287 /*
1288 * for transmits, we just free buffers.
1289 */
1290
1291 dev_kfree_skb_irq(sb);
1292
1293 /*
1294 * .. and advance to the next buffer.
1295 */
1296
1297 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1298
1299 packets_handled++;
1300
1301 }
1302
1303 /*
1304 * Decide if we should wake up the protocol or not.
1305 * Other drivers seem to do this when we reach a low
1306 * watermark on the transmit queue.
1307 */
1308
1309 if (packets_handled)
1310 netif_wake_queue(d->sbdma_eth->sbm_dev);
1311
1312 end_unlock:
1313 spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1314
1315 }
1316
1317
1318
1319 /**********************************************************************
1320 * SBMAC_INITCTX(s)
1321 *
1322 * Initialize an Ethernet context structure - this is called
1323 * once per MAC on the 1250. Memory is allocated here, so don't
1324 * call it again from inside the ioctl routines that bring the
1325 * interface up/down
1326 *
1327 * Input parameters:
1328 * s - sbmac context structure
1329 *
1330 * Return value:
1331 * 0
1332 ********************************************************************* */
1333
1334 static int sbmac_initctx(struct sbmac_softc *s)
1335 {
1336
1337 /*
1338 * figure out the addresses of some ports
1339 */
1340
1341 s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1342 s->sbm_maccfg = s->sbm_base + R_MAC_CFG;
1343 s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG;
1344 s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG;
1345 s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG;
1346 s->sbm_isr = s->sbm_base + R_MAC_STATUS;
1347 s->sbm_imr = s->sbm_base + R_MAC_INT_MASK;
1348 s->sbm_mdio = s->sbm_base + R_MAC_MDIO;
1349
1350 /*
1351 * Initialize the DMA channels. Right now, only one per MAC is used
1352 * Note: Only do this _once_, as it allocates memory from the kernel!
1353 */
1354
1355 sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1356 sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1357
1358 /*
1359 * initial state is OFF
1360 */
1361
1362 s->sbm_state = sbmac_state_off;
1363
1364 return 0;
1365 }
1366
1367
1368 static void sbdma_uninitctx(struct sbmacdma *d)
1369 {
1370 if (d->sbdma_dscrtable_unaligned) {
1371 kfree(d->sbdma_dscrtable_unaligned);
1372 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1373 }
1374
1375 if (d->sbdma_ctxtable) {
1376 kfree(d->sbdma_ctxtable);
1377 d->sbdma_ctxtable = NULL;
1378 }
1379 }
1380
1381
1382 static void sbmac_uninitctx(struct sbmac_softc *sc)
1383 {
1384 sbdma_uninitctx(&(sc->sbm_txdma));
1385 sbdma_uninitctx(&(sc->sbm_rxdma));
1386 }
1387
1388
1389 /**********************************************************************
1390 * SBMAC_CHANNEL_START(s)
1391 *
1392 * Start packet processing on this MAC.
1393 *
1394 * Input parameters:
1395 * s - sbmac structure
1396 *
1397 * Return value:
1398 * nothing
1399 ********************************************************************* */
1400
1401 static void sbmac_channel_start(struct sbmac_softc *s)
1402 {
1403 uint64_t reg;
1404 void __iomem *port;
1405 uint64_t cfg,fifo,framecfg;
1406 int idx, th_value;
1407
1408 /*
1409 * Don't do this if running
1410 */
1411
1412 if (s->sbm_state == sbmac_state_on)
1413 return;
1414
1415 /*
1416 * Bring the controller out of reset, but leave it off.
1417 */
1418
1419 __raw_writeq(0, s->sbm_macenable);
1420
1421 /*
1422 * Ignore all received packets
1423 */
1424
1425 __raw_writeq(0, s->sbm_rxfilter);
1426
1427 /*
1428 * Calculate values for various control registers.
1429 */
1430
1431 cfg = M_MAC_RETRY_EN |
1432 M_MAC_TX_HOLD_SOP_EN |
1433 V_MAC_TX_PAUSE_CNT_16K |
1434 M_MAC_AP_STAT_EN |
1435 M_MAC_FAST_SYNC |
1436 M_MAC_SS_EN |
1437 0;
1438
1439 /*
1440 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1441 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1442 * Use a larger RD_THRSH for gigabit
1443 */
1444 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1445 th_value = 28;
1446 else
1447 th_value = 64;
1448
1449 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1450 ((s->sbm_speed == sbmac_speed_1000)
1451 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1452 V_MAC_TX_RL_THRSH(4) |
1453 V_MAC_RX_PL_THRSH(4) |
1454 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1455 V_MAC_RX_RL_THRSH(8) |
1456 0;
1457
1458 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1459 V_MAC_MAX_FRAMESZ_DEFAULT |
1460 V_MAC_BACKOFF_SEL(1);
1461
1462 /*
1463 * Clear out the hash address map
1464 */
1465
1466 port = s->sbm_base + R_MAC_HASH_BASE;
1467 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1468 __raw_writeq(0, port);
1469 port += sizeof(uint64_t);
1470 }
1471
1472 /*
1473 * Clear out the exact-match table
1474 */
1475
1476 port = s->sbm_base + R_MAC_ADDR_BASE;
1477 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1478 __raw_writeq(0, port);
1479 port += sizeof(uint64_t);
1480 }
1481
1482 /*
1483 * Clear out the DMA Channel mapping table registers
1484 */
1485
1486 port = s->sbm_base + R_MAC_CHUP0_BASE;
1487 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1488 __raw_writeq(0, port);
1489 port += sizeof(uint64_t);
1490 }
1491
1492
1493 port = s->sbm_base + R_MAC_CHLO0_BASE;
1494 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495 __raw_writeq(0, port);
1496 port += sizeof(uint64_t);
1497 }
1498
1499 /*
1500 * Program the hardware address. It goes into the hardware-address
1501 * register as well as the first filter register.
1502 */
1503
1504 reg = sbmac_addr2reg(s->sbm_hwaddr);
1505
1506 port = s->sbm_base + R_MAC_ADDR_BASE;
1507 __raw_writeq(reg, port);
1508 port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1509
1510 __raw_writeq(reg, port);
1511
1512 /*
1513 * Set the receive filter for no packets, and write values
1514 * to the various config registers
1515 */
1516
1517 __raw_writeq(0, s->sbm_rxfilter);
1518 __raw_writeq(0, s->sbm_imr);
1519 __raw_writeq(framecfg, s->sbm_framecfg);
1520 __raw_writeq(fifo, s->sbm_fifocfg);
1521 __raw_writeq(cfg, s->sbm_maccfg);
1522
1523 /*
1524 * Initialize DMA channels (rings should be ok now)
1525 */
1526
1527 sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1528 sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1529
1530 /*
1531 * Configure the speed, duplex, and flow control
1532 */
1533
1534 sbmac_set_speed(s,s->sbm_speed);
1535 sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1536
1537 /*
1538 * Fill the receive ring
1539 */
1540
1541 sbdma_fillring(s, &(s->sbm_rxdma));
1542
1543 /*
1544 * Turn on the rest of the bits in the enable register
1545 */
1546
1547 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1548 __raw_writeq(M_MAC_RXDMA_EN0 |
1549 M_MAC_TXDMA_EN0, s->sbm_macenable);
1550 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1551 __raw_writeq(M_MAC_RXDMA_EN0 |
1552 M_MAC_TXDMA_EN0 |
1553 M_MAC_RX_ENABLE |
1554 M_MAC_TX_ENABLE, s->sbm_macenable);
1555 #else
1556 #error invalid SiByte MAC configuration
1557 #endif
1558
1559 #ifdef CONFIG_SBMAC_COALESCE
1560 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1561 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1562 #else
1563 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1564 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1565 #endif
1566
1567 /*
1568 * Enable receiving unicasts and broadcasts
1569 */
1570
1571 __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1572
1573 /*
1574 * we're running now.
1575 */
1576
1577 s->sbm_state = sbmac_state_on;
1578
1579 /*
1580 * Program multicast addresses
1581 */
1582
1583 sbmac_setmulti(s);
1584
1585 /*
1586 * If channel was in promiscuous mode before, turn that on
1587 */
1588
1589 if (s->sbm_devflags & IFF_PROMISC) {
1590 sbmac_promiscuous_mode(s,1);
1591 }
1592
1593 }
1594
1595
1596 /**********************************************************************
1597 * SBMAC_CHANNEL_STOP(s)
1598 *
1599 * Stop packet processing on this MAC.
1600 *
1601 * Input parameters:
1602 * s - sbmac structure
1603 *
1604 * Return value:
1605 * nothing
1606 ********************************************************************* */
1607
1608 static void sbmac_channel_stop(struct sbmac_softc *s)
1609 {
1610 /* don't do this if already stopped */
1611
1612 if (s->sbm_state == sbmac_state_off)
1613 return;
1614
1615 /* don't accept any packets, disable all interrupts */
1616
1617 __raw_writeq(0, s->sbm_rxfilter);
1618 __raw_writeq(0, s->sbm_imr);
1619
1620 /* Turn off ticker */
1621
1622 /* XXX */
1623
1624 /* turn off receiver and transmitter */
1625
1626 __raw_writeq(0, s->sbm_macenable);
1627
1628 /* We're stopped now. */
1629
1630 s->sbm_state = sbmac_state_off;
1631
1632 /*
1633 * Stop DMA channels (rings should be ok now)
1634 */
1635
1636 sbdma_channel_stop(&(s->sbm_rxdma));
1637 sbdma_channel_stop(&(s->sbm_txdma));
1638
1639 /* Empty the receive and transmit rings */
1640
1641 sbdma_emptyring(&(s->sbm_rxdma));
1642 sbdma_emptyring(&(s->sbm_txdma));
1643
1644 }
1645
1646 /**********************************************************************
1647 * SBMAC_SET_CHANNEL_STATE(state)
1648 *
1649 * Set the channel's state ON or OFF
1650 *
1651 * Input parameters:
1652 * state - new state
1653 *
1654 * Return value:
1655 * old state
1656 ********************************************************************* */
1657 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1658 enum sbmac_state state)
1659 {
1660 enum sbmac_state oldstate = sc->sbm_state;
1661
1662 /*
1663 * If same as previous state, return
1664 */
1665
1666 if (state == oldstate) {
1667 return oldstate;
1668 }
1669
1670 /*
1671 * If new state is ON, turn channel on
1672 */
1673
1674 if (state == sbmac_state_on) {
1675 sbmac_channel_start(sc);
1676 }
1677 else {
1678 sbmac_channel_stop(sc);
1679 }
1680
1681 /*
1682 * Return previous state
1683 */
1684
1685 return oldstate;
1686 }
1687
1688
1689 /**********************************************************************
1690 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1691 *
1692 * Turn on or off promiscuous mode
1693 *
1694 * Input parameters:
1695 * sc - softc
1696 * onoff - 1 to turn on, 0 to turn off
1697 *
1698 * Return value:
1699 * nothing
1700 ********************************************************************* */
1701
1702 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1703 {
1704 uint64_t reg;
1705
1706 if (sc->sbm_state != sbmac_state_on)
1707 return;
1708
1709 if (onoff) {
1710 reg = __raw_readq(sc->sbm_rxfilter);
1711 reg |= M_MAC_ALLPKT_EN;
1712 __raw_writeq(reg, sc->sbm_rxfilter);
1713 }
1714 else {
1715 reg = __raw_readq(sc->sbm_rxfilter);
1716 reg &= ~M_MAC_ALLPKT_EN;
1717 __raw_writeq(reg, sc->sbm_rxfilter);
1718 }
1719 }
1720
1721 /**********************************************************************
1722 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1723 *
1724 * Set the iphdr offset as 15 assuming ethernet encapsulation
1725 *
1726 * Input parameters:
1727 * sc - softc
1728 *
1729 * Return value:
1730 * nothing
1731 ********************************************************************* */
1732
1733 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1734 {
1735 uint64_t reg;
1736
1737 /* Hard code the off set to 15 for now */
1738 reg = __raw_readq(sc->sbm_rxfilter);
1739 reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1740 __raw_writeq(reg, sc->sbm_rxfilter);
1741
1742 /* BCM1250 pass1 didn't have hardware checksum. Everything
1743 later does. */
1744 if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1745 sc->rx_hw_checksum = DISABLE;
1746 } else {
1747 sc->rx_hw_checksum = ENABLE;
1748 }
1749 }
1750
1751
1752 /**********************************************************************
1753 * SBMAC_ADDR2REG(ptr)
1754 *
1755 * Convert six bytes into the 64-bit register value that
1756 * we typically write into the SBMAC's address/mcast registers
1757 *
1758 * Input parameters:
1759 * ptr - pointer to 6 bytes
1760 *
1761 * Return value:
1762 * register value
1763 ********************************************************************* */
1764
1765 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1766 {
1767 uint64_t reg = 0;
1768
1769 ptr += 6;
1770
1771 reg |= (uint64_t) *(--ptr);
1772 reg <<= 8;
1773 reg |= (uint64_t) *(--ptr);
1774 reg <<= 8;
1775 reg |= (uint64_t) *(--ptr);
1776 reg <<= 8;
1777 reg |= (uint64_t) *(--ptr);
1778 reg <<= 8;
1779 reg |= (uint64_t) *(--ptr);
1780 reg <<= 8;
1781 reg |= (uint64_t) *(--ptr);
1782
1783 return reg;
1784 }
1785
1786
1787 /**********************************************************************
1788 * SBMAC_SET_SPEED(s,speed)
1789 *
1790 * Configure LAN speed for the specified MAC.
1791 * Warning: must be called when MAC is off!
1792 *
1793 * Input parameters:
1794 * s - sbmac structure
1795 * speed - speed to set MAC to (see enum sbmac_speed)
1796 *
1797 * Return value:
1798 * 1 if successful
1799 * 0 indicates invalid parameters
1800 ********************************************************************* */
1801
1802 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1803 {
1804 uint64_t cfg;
1805 uint64_t framecfg;
1806
1807 /*
1808 * Save new current values
1809 */
1810
1811 s->sbm_speed = speed;
1812
1813 if (s->sbm_state == sbmac_state_on)
1814 return 0; /* save for next restart */
1815
1816 /*
1817 * Read current register values
1818 */
1819
1820 cfg = __raw_readq(s->sbm_maccfg);
1821 framecfg = __raw_readq(s->sbm_framecfg);
1822
1823 /*
1824 * Mask out the stuff we want to change
1825 */
1826
1827 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1828 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1829 M_MAC_SLOT_SIZE);
1830
1831 /*
1832 * Now add in the new bits
1833 */
1834
1835 switch (speed) {
1836 case sbmac_speed_10:
1837 framecfg |= V_MAC_IFG_RX_10 |
1838 V_MAC_IFG_TX_10 |
1839 K_MAC_IFG_THRSH_10 |
1840 V_MAC_SLOT_SIZE_10;
1841 cfg |= V_MAC_SPEED_SEL_10MBPS;
1842 break;
1843
1844 case sbmac_speed_100:
1845 framecfg |= V_MAC_IFG_RX_100 |
1846 V_MAC_IFG_TX_100 |
1847 V_MAC_IFG_THRSH_100 |
1848 V_MAC_SLOT_SIZE_100;
1849 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1850 break;
1851
1852 case sbmac_speed_1000:
1853 framecfg |= V_MAC_IFG_RX_1000 |
1854 V_MAC_IFG_TX_1000 |
1855 V_MAC_IFG_THRSH_1000 |
1856 V_MAC_SLOT_SIZE_1000;
1857 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1858 break;
1859
1860 default:
1861 return 0;
1862 }
1863
1864 /*
1865 * Send the bits back to the hardware
1866 */
1867
1868 __raw_writeq(framecfg, s->sbm_framecfg);
1869 __raw_writeq(cfg, s->sbm_maccfg);
1870
1871 return 1;
1872 }
1873
1874 /**********************************************************************
1875 * SBMAC_SET_DUPLEX(s,duplex,fc)
1876 *
1877 * Set Ethernet duplex and flow control options for this MAC
1878 * Warning: must be called when MAC is off!
1879 *
1880 * Input parameters:
1881 * s - sbmac structure
1882 * duplex - duplex setting (see enum sbmac_duplex)
1883 * fc - flow control setting (see enum sbmac_fc)
1884 *
1885 * Return value:
1886 * 1 if ok
1887 * 0 if an invalid parameter combination was specified
1888 ********************************************************************* */
1889
1890 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1891 enum sbmac_fc fc)
1892 {
1893 uint64_t cfg;
1894
1895 /*
1896 * Save new current values
1897 */
1898
1899 s->sbm_duplex = duplex;
1900 s->sbm_fc = fc;
1901
1902 if (s->sbm_state == sbmac_state_on)
1903 return 0; /* save for next restart */
1904
1905 /*
1906 * Read current register values
1907 */
1908
1909 cfg = __raw_readq(s->sbm_maccfg);
1910
1911 /*
1912 * Mask off the stuff we're about to change
1913 */
1914
1915 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1916
1917
1918 switch (duplex) {
1919 case sbmac_duplex_half:
1920 switch (fc) {
1921 case sbmac_fc_disabled:
1922 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1923 break;
1924
1925 case sbmac_fc_collision:
1926 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1927 break;
1928
1929 case sbmac_fc_carrier:
1930 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1931 break;
1932
1933 case sbmac_fc_frame: /* not valid in half duplex */
1934 default: /* invalid selection */
1935 return 0;
1936 }
1937 break;
1938
1939 case sbmac_duplex_full:
1940 switch (fc) {
1941 case sbmac_fc_disabled:
1942 cfg |= V_MAC_FC_CMD_DISABLED;
1943 break;
1944
1945 case sbmac_fc_frame:
1946 cfg |= V_MAC_FC_CMD_ENABLED;
1947 break;
1948
1949 case sbmac_fc_collision: /* not valid in full duplex */
1950 case sbmac_fc_carrier: /* not valid in full duplex */
1951 default:
1952 return 0;
1953 }
1954 break;
1955 default:
1956 return 0;
1957 }
1958
1959 /*
1960 * Send the bits back to the hardware
1961 */
1962
1963 __raw_writeq(cfg, s->sbm_maccfg);
1964
1965 return 1;
1966 }
1967
1968
1969
1970
1971 /**********************************************************************
1972 * SBMAC_INTR()
1973 *
1974 * Interrupt handler for MAC interrupts
1975 *
1976 * Input parameters:
1977 * MAC structure
1978 *
1979 * Return value:
1980 * nothing
1981 ********************************************************************* */
1982 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1983 {
1984 struct net_device *dev = (struct net_device *) dev_instance;
1985 struct sbmac_softc *sc = netdev_priv(dev);
1986 uint64_t isr;
1987 int handled = 0;
1988
1989 /*
1990 * Read the ISR (this clears the bits in the real
1991 * register, except for counter addr)
1992 */
1993
1994 isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1995
1996 if (isr == 0)
1997 return IRQ_RETVAL(0);
1998 handled = 1;
1999
2000 /*
2001 * Transmits on channel 0
2002 */
2003
2004 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2005 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2006
2007 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2008 if (napi_schedule_prep(&sc->napi)) {
2009 __raw_writeq(0, sc->sbm_imr);
2010 __napi_schedule(&sc->napi);
2011 /* Depend on the exit from poll to reenable intr */
2012 }
2013 else {
2014 /* may leave some packets behind */
2015 sbdma_rx_process(sc,&(sc->sbm_rxdma),
2016 SBMAC_MAX_RXDESCR * 2, 0);
2017 }
2018 }
2019 return IRQ_RETVAL(handled);
2020 }
2021
2022 /**********************************************************************
2023 * SBMAC_START_TX(skb,dev)
2024 *
2025 * Start output on the specified interface. Basically, we
2026 * queue as many buffers as we can until the ring fills up, or
2027 * we run off the end of the queue, whichever comes first.
2028 *
2029 * Input parameters:
2030 *
2031 *
2032 * Return value:
2033 * nothing
2034 ********************************************************************* */
2035 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2036 {
2037 struct sbmac_softc *sc = netdev_priv(dev);
2038 unsigned long flags;
2039
2040 /* lock eth irq */
2041 spin_lock_irqsave(&sc->sbm_lock, flags);
2042
2043 /*
2044 * Put the buffer on the transmit ring. If we
2045 * don't have room, stop the queue.
2046 */
2047
2048 if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2049 /* XXX save skb that we could not send */
2050 netif_stop_queue(dev);
2051 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2052
2053 return NETDEV_TX_BUSY;
2054 }
2055
2056 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2057
2058 return NETDEV_TX_OK;
2059 }
2060
2061 /**********************************************************************
2062 * SBMAC_SETMULTI(sc)
2063 *
2064 * Reprogram the multicast table into the hardware, given
2065 * the list of multicasts associated with the interface
2066 * structure.
2067 *
2068 * Input parameters:
2069 * sc - softc
2070 *
2071 * Return value:
2072 * nothing
2073 ********************************************************************* */
2074
2075 static void sbmac_setmulti(struct sbmac_softc *sc)
2076 {
2077 uint64_t reg;
2078 void __iomem *port;
2079 int idx;
2080 struct netdev_hw_addr *ha;
2081 struct net_device *dev = sc->sbm_dev;
2082
2083 /*
2084 * Clear out entire multicast table. We do this by nuking
2085 * the entire hash table and all the direct matches except
2086 * the first one, which is used for our station address
2087 */
2088
2089 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2090 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2091 __raw_writeq(0, port);
2092 }
2093
2094 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2095 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2096 __raw_writeq(0, port);
2097 }
2098
2099 /*
2100 * Clear the filter to say we don't want any multicasts.
2101 */
2102
2103 reg = __raw_readq(sc->sbm_rxfilter);
2104 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2105 __raw_writeq(reg, sc->sbm_rxfilter);
2106
2107 if (dev->flags & IFF_ALLMULTI) {
2108 /*
2109 * Enable ALL multicasts. Do this by inverting the
2110 * multicast enable bit.
2111 */
2112 reg = __raw_readq(sc->sbm_rxfilter);
2113 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2114 __raw_writeq(reg, sc->sbm_rxfilter);
2115 return;
2116 }
2117
2118
2119 /*
2120 * Progam new multicast entries. For now, only use the
2121 * perfect filter. In the future we'll need to use the
2122 * hash filter if the perfect filter overflows
2123 */
2124
2125 /* XXX only using perfect filter for now, need to use hash
2126 * XXX if the table overflows */
2127
2128 idx = 1; /* skip station address */
2129 netdev_for_each_mc_addr(ha, dev) {
2130 if (idx == MAC_ADDR_COUNT)
2131 break;
2132 reg = sbmac_addr2reg(ha->addr);
2133 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2134 __raw_writeq(reg, port);
2135 idx++;
2136 }
2137
2138 /*
2139 * Enable the "accept multicast bits" if we programmed at least one
2140 * multicast.
2141 */
2142
2143 if (idx > 1) {
2144 reg = __raw_readq(sc->sbm_rxfilter);
2145 reg |= M_MAC_MCAST_EN;
2146 __raw_writeq(reg, sc->sbm_rxfilter);
2147 }
2148 }
2149
2150 static const struct net_device_ops sbmac_netdev_ops = {
2151 .ndo_open = sbmac_open,
2152 .ndo_stop = sbmac_close,
2153 .ndo_start_xmit = sbmac_start_tx,
2154 .ndo_set_rx_mode = sbmac_set_rx_mode,
2155 .ndo_tx_timeout = sbmac_tx_timeout,
2156 .ndo_do_ioctl = sbmac_mii_ioctl,
2157 .ndo_validate_addr = eth_validate_addr,
2158 .ndo_set_mac_address = eth_mac_addr,
2159 #ifdef CONFIG_NET_POLL_CONTROLLER
2160 .ndo_poll_controller = sbmac_netpoll,
2161 #endif
2162 };
2163
2164 /**********************************************************************
2165 * SBMAC_INIT(dev)
2166 *
2167 * Attach routine - init hardware and hook ourselves into linux
2168 *
2169 * Input parameters:
2170 * dev - net_device structure
2171 *
2172 * Return value:
2173 * status
2174 ********************************************************************* */
2175
2176 static int sbmac_init(struct platform_device *pldev, long long base)
2177 {
2178 struct net_device *dev = platform_get_drvdata(pldev);
2179 int idx = pldev->id;
2180 struct sbmac_softc *sc = netdev_priv(dev);
2181 unsigned char *eaddr;
2182 uint64_t ea_reg;
2183 int i;
2184 int err;
2185
2186 sc->sbm_dev = dev;
2187 sc->sbe_idx = idx;
2188
2189 eaddr = sc->sbm_hwaddr;
2190
2191 /*
2192 * Read the ethernet address. The firmware left this programmed
2193 * for us in the ethernet address register for each mac.
2194 */
2195
2196 ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2197 __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2198 for (i = 0; i < 6; i++) {
2199 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2200 ea_reg >>= 8;
2201 }
2202
2203 for (i = 0; i < 6; i++) {
2204 dev->dev_addr[i] = eaddr[i];
2205 }
2206
2207 /*
2208 * Initialize context (get pointers to registers and stuff), then
2209 * allocate the memory for the descriptor tables.
2210 */
2211
2212 sbmac_initctx(sc);
2213
2214 /*
2215 * Set up Linux device callins
2216 */
2217
2218 spin_lock_init(&(sc->sbm_lock));
2219
2220 dev->netdev_ops = &sbmac_netdev_ops;
2221 dev->watchdog_timeo = TX_TIMEOUT;
2222 dev->min_mtu = 0;
2223 dev->max_mtu = ENET_PACKET_SIZE;
2224
2225 netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2226
2227 dev->irq = UNIT_INT(idx);
2228
2229 /* This is needed for PASS2 for Rx H/W checksum feature */
2230 sbmac_set_iphdr_offset(sc);
2231
2232 sc->mii_bus = mdiobus_alloc();
2233 if (sc->mii_bus == NULL) {
2234 err = -ENOMEM;
2235 goto uninit_ctx;
2236 }
2237
2238 sc->mii_bus->name = sbmac_mdio_string;
2239 snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2240 pldev->name, idx);
2241 sc->mii_bus->priv = sc;
2242 sc->mii_bus->read = sbmac_mii_read;
2243 sc->mii_bus->write = sbmac_mii_write;
2244
2245 sc->mii_bus->parent = &pldev->dev;
2246 /*
2247 * Probe PHY address
2248 */
2249 err = mdiobus_register(sc->mii_bus);
2250 if (err) {
2251 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2252 dev->name);
2253 goto free_mdio;
2254 }
2255 platform_set_drvdata(pldev, sc->mii_bus);
2256
2257 err = register_netdev(dev);
2258 if (err) {
2259 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2260 sbmac_string, idx);
2261 goto unreg_mdio;
2262 }
2263
2264 pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2265
2266 if (sc->rx_hw_checksum == ENABLE)
2267 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2268
2269 /*
2270 * Display Ethernet address (this is called during the config
2271 * process so we need to finish off the config message that
2272 * was being displayed)
2273 */
2274 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2275 dev->name, base, eaddr);
2276
2277 return 0;
2278 unreg_mdio:
2279 mdiobus_unregister(sc->mii_bus);
2280 free_mdio:
2281 mdiobus_free(sc->mii_bus);
2282 uninit_ctx:
2283 sbmac_uninitctx(sc);
2284 return err;
2285 }
2286
2287
2288 static int sbmac_open(struct net_device *dev)
2289 {
2290 struct sbmac_softc *sc = netdev_priv(dev);
2291 int err;
2292
2293 if (debug > 1)
2294 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2295
2296 /*
2297 * map/route interrupt (clear status first, in case something
2298 * weird is pending; we haven't initialized the mac registers
2299 * yet)
2300 */
2301
2302 __raw_readq(sc->sbm_isr);
2303 err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2304 if (err) {
2305 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2306 dev->irq);
2307 goto out_err;
2308 }
2309
2310 sc->sbm_speed = sbmac_speed_none;
2311 sc->sbm_duplex = sbmac_duplex_none;
2312 sc->sbm_fc = sbmac_fc_none;
2313 sc->sbm_pause = -1;
2314 sc->sbm_link = 0;
2315
2316 /*
2317 * Attach to the PHY
2318 */
2319 err = sbmac_mii_probe(dev);
2320 if (err)
2321 goto out_unregister;
2322
2323 /*
2324 * Turn on the channel
2325 */
2326
2327 sbmac_set_channel_state(sc,sbmac_state_on);
2328
2329 netif_start_queue(dev);
2330
2331 sbmac_set_rx_mode(dev);
2332
2333 phy_start(sc->phy_dev);
2334
2335 napi_enable(&sc->napi);
2336
2337 return 0;
2338
2339 out_unregister:
2340 free_irq(dev->irq, dev);
2341 out_err:
2342 return err;
2343 }
2344
2345 static int sbmac_mii_probe(struct net_device *dev)
2346 {
2347 struct sbmac_softc *sc = netdev_priv(dev);
2348 struct phy_device *phy_dev;
2349
2350 phy_dev = phy_find_first(sc->mii_bus);
2351 if (!phy_dev) {
2352 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2353 return -ENXIO;
2354 }
2355
2356 phy_dev = phy_connect(dev, dev_name(&phy_dev->mdio.dev),
2357 &sbmac_mii_poll, PHY_INTERFACE_MODE_GMII);
2358 if (IS_ERR(phy_dev)) {
2359 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2360 return PTR_ERR(phy_dev);
2361 }
2362
2363 /* Remove any features not supported by the controller */
2364 phy_dev->supported &= SUPPORTED_10baseT_Half |
2365 SUPPORTED_10baseT_Full |
2366 SUPPORTED_100baseT_Half |
2367 SUPPORTED_100baseT_Full |
2368 SUPPORTED_1000baseT_Half |
2369 SUPPORTED_1000baseT_Full |
2370 SUPPORTED_Autoneg |
2371 SUPPORTED_MII |
2372 SUPPORTED_Pause |
2373 SUPPORTED_Asym_Pause;
2374
2375 phy_attached_info(phy_dev);
2376
2377 phy_dev->advertising = phy_dev->supported;
2378
2379 sc->phy_dev = phy_dev;
2380
2381 return 0;
2382 }
2383
2384
2385 static void sbmac_mii_poll(struct net_device *dev)
2386 {
2387 struct sbmac_softc *sc = netdev_priv(dev);
2388 struct phy_device *phy_dev = sc->phy_dev;
2389 unsigned long flags;
2390 enum sbmac_fc fc;
2391 int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2392
2393 link_chg = (sc->sbm_link != phy_dev->link);
2394 speed_chg = (sc->sbm_speed != phy_dev->speed);
2395 duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2396 pause_chg = (sc->sbm_pause != phy_dev->pause);
2397
2398 if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2399 return; /* Hmmm... */
2400
2401 if (!phy_dev->link) {
2402 if (link_chg) {
2403 sc->sbm_link = phy_dev->link;
2404 sc->sbm_speed = sbmac_speed_none;
2405 sc->sbm_duplex = sbmac_duplex_none;
2406 sc->sbm_fc = sbmac_fc_disabled;
2407 sc->sbm_pause = -1;
2408 pr_info("%s: link unavailable\n", dev->name);
2409 }
2410 return;
2411 }
2412
2413 if (phy_dev->duplex == DUPLEX_FULL) {
2414 if (phy_dev->pause)
2415 fc = sbmac_fc_frame;
2416 else
2417 fc = sbmac_fc_disabled;
2418 } else
2419 fc = sbmac_fc_collision;
2420 fc_chg = (sc->sbm_fc != fc);
2421
2422 pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2423 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2424
2425 spin_lock_irqsave(&sc->sbm_lock, flags);
2426
2427 sc->sbm_speed = phy_dev->speed;
2428 sc->sbm_duplex = phy_dev->duplex;
2429 sc->sbm_fc = fc;
2430 sc->sbm_pause = phy_dev->pause;
2431 sc->sbm_link = phy_dev->link;
2432
2433 if ((speed_chg || duplex_chg || fc_chg) &&
2434 sc->sbm_state != sbmac_state_off) {
2435 /*
2436 * something changed, restart the channel
2437 */
2438 if (debug > 1)
2439 pr_debug("%s: restarting channel "
2440 "because PHY state changed\n", dev->name);
2441 sbmac_channel_stop(sc);
2442 sbmac_channel_start(sc);
2443 }
2444
2445 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2446 }
2447
2448
2449 static void sbmac_tx_timeout (struct net_device *dev)
2450 {
2451 struct sbmac_softc *sc = netdev_priv(dev);
2452 unsigned long flags;
2453
2454 spin_lock_irqsave(&sc->sbm_lock, flags);
2455
2456
2457 netif_trans_update(dev); /* prevent tx timeout */
2458 dev->stats.tx_errors++;
2459
2460 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2461
2462 printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2463 }
2464
2465
2466
2467
2468 static void sbmac_set_rx_mode(struct net_device *dev)
2469 {
2470 unsigned long flags;
2471 struct sbmac_softc *sc = netdev_priv(dev);
2472
2473 spin_lock_irqsave(&sc->sbm_lock, flags);
2474 if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2475 /*
2476 * Promiscuous changed.
2477 */
2478
2479 if (dev->flags & IFF_PROMISC) {
2480 sbmac_promiscuous_mode(sc,1);
2481 }
2482 else {
2483 sbmac_promiscuous_mode(sc,0);
2484 }
2485 }
2486 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2487
2488 /*
2489 * Program the multicasts. Do this every time.
2490 */
2491
2492 sbmac_setmulti(sc);
2493
2494 }
2495
2496 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2497 {
2498 struct sbmac_softc *sc = netdev_priv(dev);
2499
2500 if (!netif_running(dev) || !sc->phy_dev)
2501 return -EINVAL;
2502
2503 return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2504 }
2505
2506 static int sbmac_close(struct net_device *dev)
2507 {
2508 struct sbmac_softc *sc = netdev_priv(dev);
2509
2510 napi_disable(&sc->napi);
2511
2512 phy_stop(sc->phy_dev);
2513
2514 sbmac_set_channel_state(sc, sbmac_state_off);
2515
2516 netif_stop_queue(dev);
2517
2518 if (debug > 1)
2519 pr_debug("%s: Shutting down ethercard\n", dev->name);
2520
2521 phy_disconnect(sc->phy_dev);
2522 sc->phy_dev = NULL;
2523 free_irq(dev->irq, dev);
2524
2525 sbdma_emptyring(&(sc->sbm_txdma));
2526 sbdma_emptyring(&(sc->sbm_rxdma));
2527
2528 return 0;
2529 }
2530
2531 static int sbmac_poll(struct napi_struct *napi, int budget)
2532 {
2533 struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2534 int work_done;
2535
2536 work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2537 sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2538
2539 if (work_done < budget) {
2540 napi_complete_done(napi, work_done);
2541
2542 #ifdef CONFIG_SBMAC_COALESCE
2543 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2544 ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2545 sc->sbm_imr);
2546 #else
2547 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2548 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2549 #endif
2550 }
2551
2552 return work_done;
2553 }
2554
2555
2556 static int sbmac_probe(struct platform_device *pldev)
2557 {
2558 struct net_device *dev;
2559 struct sbmac_softc *sc;
2560 void __iomem *sbm_base;
2561 struct resource *res;
2562 u64 sbmac_orig_hwaddr;
2563 int err;
2564
2565 res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2566 BUG_ON(!res);
2567 sbm_base = ioremap_nocache(res->start, resource_size(res));
2568 if (!sbm_base) {
2569 printk(KERN_ERR "%s: unable to map device registers\n",
2570 dev_name(&pldev->dev));
2571 err = -ENOMEM;
2572 goto out_out;
2573 }
2574
2575 /*
2576 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2577 * value for us by the firmware if we're going to use this MAC.
2578 * If we find a zero, skip this MAC.
2579 */
2580 sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2581 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2582 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2583 if (sbmac_orig_hwaddr == 0) {
2584 err = 0;
2585 goto out_unmap;
2586 }
2587
2588 /*
2589 * Okay, cool. Initialize this MAC.
2590 */
2591 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2592 if (!dev) {
2593 err = -ENOMEM;
2594 goto out_unmap;
2595 }
2596
2597 platform_set_drvdata(pldev, dev);
2598 SET_NETDEV_DEV(dev, &pldev->dev);
2599
2600 sc = netdev_priv(dev);
2601 sc->sbm_base = sbm_base;
2602
2603 err = sbmac_init(pldev, res->start);
2604 if (err)
2605 goto out_kfree;
2606
2607 return 0;
2608
2609 out_kfree:
2610 free_netdev(dev);
2611 __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2612
2613 out_unmap:
2614 iounmap(sbm_base);
2615
2616 out_out:
2617 return err;
2618 }
2619
2620 static int __exit sbmac_remove(struct platform_device *pldev)
2621 {
2622 struct net_device *dev = platform_get_drvdata(pldev);
2623 struct sbmac_softc *sc = netdev_priv(dev);
2624
2625 unregister_netdev(dev);
2626 sbmac_uninitctx(sc);
2627 mdiobus_unregister(sc->mii_bus);
2628 mdiobus_free(sc->mii_bus);
2629 iounmap(sc->sbm_base);
2630 free_netdev(dev);
2631
2632 return 0;
2633 }
2634
2635 static struct platform_driver sbmac_driver = {
2636 .probe = sbmac_probe,
2637 .remove = __exit_p(sbmac_remove),
2638 .driver = {
2639 .name = sbmac_string,
2640 },
2641 };
2642
2643 module_platform_driver(sbmac_driver);