]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/brocade/bna/bna_hw_defs.h
Merge tag 'efi-urgent' into x86/urgent
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / brocade / bna / bna_hw_defs.h
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2011 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18
19 /* File for interrupt macros and functions */
20
21 #ifndef __BNA_HW_DEFS_H__
22 #define __BNA_HW_DEFS_H__
23
24 #include "bfi_reg.h"
25
26 /* SW imposed limits */
27
28 #define BFI_ENET_DEF_TXQ 1
29 #define BFI_ENET_DEF_RXP 1
30 #define BFI_ENET_DEF_UCAM 1
31 #define BFI_ENET_DEF_RITSZ 1
32
33 #define BFI_ENET_MAX_MCAM 256
34
35 #define BFI_INVALID_RID -1
36
37 #define BFI_IBIDX_SIZE 4
38
39 #define BFI_VLAN_WORD_SHIFT 5 /* 32 bits */
40 #define BFI_VLAN_WORD_MASK 0x1F
41 #define BFI_VLAN_BLOCK_SHIFT 9 /* 512 bits */
42 #define BFI_VLAN_BMASK_ALL 0xFF
43
44 #define BFI_COALESCING_TIMER_UNIT 5 /* 5us */
45 #define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */
46 #define BFI_MAX_INTERPKT_COUNT 0xFF
47 #define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */
48 #define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */
49 #define BFI_TX_INTERPKT_COUNT 12 /* Pkt Cnt = 12 */
50 #define BFI_TX_INTERPKT_TIMEO 15 /* 15 * 0.5 = 7.5us */
51 #define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */
52 #define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */
53 #define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */
54
55 #define BFI_TXQ_WI_SIZE 64 /* bytes */
56 #define BFI_RXQ_WI_SIZE 8 /* bytes */
57 #define BFI_CQ_WI_SIZE 16 /* bytes */
58 #define BFI_TX_MAX_WRR_QUOTA 0xFFF
59
60 #define BFI_TX_MAX_VECTORS_PER_WI 4
61 #define BFI_TX_MAX_VECTORS_PER_PKT 0xFF
62 #define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF
63 #define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF
64
65 /* Small Q buffer size */
66 #define BFI_SMALL_RXBUF_SIZE 128
67
68 #define BFI_TX_MAX_PRIO 8
69 #define BFI_TX_PRIO_MAP_ALL 0xFF
70
71 /*
72 *
73 * Register definitions and macros
74 *
75 */
76
77 #define BNA_PCI_REG_CT_ADDRSZ (0x40000)
78
79 #define ct_reg_addr_init(_bna, _pcidev) \
80 { \
81 struct bna_reg_offset reg_offset[] = \
82 {{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK}, \
83 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK}, \
84 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK}, \
85 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} }; \
86 \
87 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
88 reg_offset[(_pcidev)->pci_func].fn_int_status;\
89 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
90 reg_offset[(_pcidev)->pci_func].fn_int_mask;\
91 }
92
93 #define ct_bit_defn_init(_bna, _pcidev) \
94 { \
95 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 | \
96 __HFN_INT_MBOX_LPU1); \
97 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 | \
98 __HFN_INT_MBOX_LPU1); \
99 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK); \
100 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK); \
101 (_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT; \
102 (_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT; \
103 }
104
105 #define ct2_reg_addr_init(_bna, _pcidev) \
106 { \
107 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
108 CT2_HOSTFN_INT_STATUS; \
109 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
110 CT2_HOSTFN_INTR_MASK; \
111 }
112
113 #define ct2_bit_defn_init(_bna, _pcidev) \
114 { \
115 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
116 __HFN_INT_MBOX_LPU1_CT2); \
117 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
118 __HFN_INT_MBOX_LPU1_CT2); \
119 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2); \
120 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2); \
121 (_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2; \
122 (_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2; \
123 }
124
125 #define bna_reg_addr_init(_bna, _pcidev) \
126 { \
127 switch ((_pcidev)->device_id) { \
128 case PCI_DEVICE_ID_BROCADE_CT: \
129 ct_reg_addr_init((_bna), (_pcidev)); \
130 ct_bit_defn_init((_bna), (_pcidev)); \
131 break; \
132 case BFA_PCI_DEVICE_ID_CT2: \
133 ct2_reg_addr_init((_bna), (_pcidev)); \
134 ct2_bit_defn_init((_bna), (_pcidev)); \
135 break; \
136 } \
137 }
138
139 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
140
141 /* Interrupt related bits, flags and macros */
142
143 #define IB_STATUS_BITS 0x0000ffff
144
145 #define BNA_IS_MBOX_INTR(_bna, _intr_status) \
146 ((_intr_status) & (_bna)->bits.mbox_status_bits)
147
148 #define BNA_IS_HALT_INTR(_bna, _intr_status) \
149 ((_intr_status) & (_bna)->bits.halt_status_bits)
150
151 #define BNA_IS_ERR_INTR(_bna, _intr_status) \
152 ((_intr_status) & (_bna)->bits.error_status_bits)
153
154 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status) \
155 (BNA_IS_MBOX_INTR(_bna, _intr_status) | \
156 BNA_IS_ERR_INTR(_bna, _intr_status))
157
158 #define BNA_IS_INTX_DATA_INTR(_intr_status) \
159 ((_intr_status) & IB_STATUS_BITS)
160
161 #define bna_halt_clear(_bna) \
162 do { \
163 u32 init_halt; \
164 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
165 init_halt &= ~__FW_INIT_HALT_P; \
166 writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt); \
167 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
168 } while (0)
169
170 #define bna_intx_disable(_bna, _cur_mask) \
171 { \
172 (_cur_mask) = readl((_bna)->regs.fn_int_mask); \
173 writel(0xffffffff, (_bna)->regs.fn_int_mask); \
174 }
175
176 #define bna_intx_enable(bna, new_mask) \
177 writel((new_mask), (bna)->regs.fn_int_mask)
178 #define bna_mbox_intr_disable(bna) \
179 do { \
180 u32 mask; \
181 mask = readl((bna)->regs.fn_int_mask); \
182 writel((mask | (bna)->bits.mbox_mask_bits | \
183 (bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
184 mask = readl((bna)->regs.fn_int_mask); \
185 } while (0)
186
187 #define bna_mbox_intr_enable(bna) \
188 do { \
189 u32 mask; \
190 mask = readl((bna)->regs.fn_int_mask); \
191 writel((mask & ~((bna)->bits.mbox_mask_bits | \
192 (bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
193 mask = readl((bna)->regs.fn_int_mask); \
194 } while (0)
195
196 #define bna_intr_status_get(_bna, _status) \
197 { \
198 (_status) = readl((_bna)->regs.fn_int_status); \
199 if (_status) { \
200 writel(((_status) & ~(_bna)->bits.mbox_status_bits), \
201 (_bna)->regs.fn_int_status); \
202 } \
203 }
204
205 /*
206 * MAX ACK EVENTS : No. of acks that can be accumulated in driver,
207 * before acking to h/w. The no. of bits is 16 in the doorbell register,
208 * however we keep this limited to 15 bits.
209 * This is because around the edge of 64K boundary (16 bits), one
210 * single poll can make the accumulated ACK counter cross the 64K boundary,
211 * causing problems, when we try to ack with a value greater than 64K.
212 * 15 bits (32K) should be large enough to accumulate, anyways, and the max.
213 * acked events to h/w can be (32K + max poll weight) (currently 64).
214 */
215 #define BNA_IB_MAX_ACK_EVENTS (1 << 15)
216
217 /* These macros build the data portion of the TxQ/RxQ doorbell */
218 #define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi))
219 #define BNA_DOORBELL_Q_STOP (0x40000000)
220
221 /* These macros build the data portion of the IB doorbell */
222 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
223 (0x80000000 | ((_timeout) << 16) | (_events))
224 #define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
225
226 /* Set the coalescing timer for the given ib */
227 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \
228 ((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
229
230 /* Acks 'events' # of events for a given ib while disabling interrupts */
231 #define bna_ib_ack_disable_irq(_i_dbell, _events) \
232 (writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
233 (_i_dbell)->doorbell_addr));
234
235 /* Acks 'events' # of events for a given ib */
236 #define bna_ib_ack(_i_dbell, _events) \
237 (writel(((_i_dbell)->doorbell_ack | (_events)), \
238 (_i_dbell)->doorbell_addr));
239
240 #define bna_ib_start(_bna, _ib, _is_regular) \
241 { \
242 u32 intx_mask; \
243 struct bna_ib *ib = _ib; \
244 if ((ib->intr_type == BNA_INTR_T_INTX)) { \
245 bna_intx_disable((_bna), intx_mask); \
246 intx_mask &= ~(ib->intr_vector); \
247 bna_intx_enable((_bna), intx_mask); \
248 } \
249 bna_ib_coalescing_timer_set(&ib->door_bell, \
250 ib->coalescing_timeo); \
251 if (_is_regular) \
252 bna_ib_ack(&ib->door_bell, 0); \
253 }
254
255 #define bna_ib_stop(_bna, _ib) \
256 { \
257 u32 intx_mask; \
258 struct bna_ib *ib = _ib; \
259 writel(BNA_DOORBELL_IB_INT_DISABLE, \
260 ib->door_bell.doorbell_addr); \
261 if (ib->intr_type == BNA_INTR_T_INTX) { \
262 bna_intx_disable((_bna), intx_mask); \
263 intx_mask |= ib->intr_vector; \
264 bna_intx_enable((_bna), intx_mask); \
265 } \
266 }
267
268 #define bna_txq_prod_indx_doorbell(_tcb) \
269 (writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
270 (_tcb)->q_dbell));
271
272 #define bna_rxq_prod_indx_doorbell(_rcb) \
273 (writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
274 (_rcb)->q_dbell));
275
276 /* TxQ, RxQ, CQ related bits, offsets, macros */
277
278 /* TxQ Entry Opcodes */
279 #define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */
280 #define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */
281 #define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */
282
283 /* TxQ Entry Control Flags */
284 #define BNA_TXQ_WI_CF_FCOE_CRC (1 << 8)
285 #define BNA_TXQ_WI_CF_IPID_MODE (1 << 5)
286 #define BNA_TXQ_WI_CF_INS_PRIO (1 << 4)
287 #define BNA_TXQ_WI_CF_INS_VLAN (1 << 3)
288 #define BNA_TXQ_WI_CF_UDP_CKSUM (1 << 2)
289 #define BNA_TXQ_WI_CF_TCP_CKSUM (1 << 1)
290 #define BNA_TXQ_WI_CF_IP_CKSUM (1 << 0)
291
292 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
293 (((_hdr_size) << 10) | ((_offset) & 0x3FF))
294
295 /*
296 * Completion Q defines
297 */
298 /* CQ Entry Flags */
299 #define BNA_CQ_EF_MAC_ERROR (1 << 0)
300 #define BNA_CQ_EF_FCS_ERROR (1 << 1)
301 #define BNA_CQ_EF_TOO_LONG (1 << 2)
302 #define BNA_CQ_EF_FC_CRC_OK (1 << 3)
303
304 #define BNA_CQ_EF_RSVD1 (1 << 4)
305 #define BNA_CQ_EF_L4_CKSUM_OK (1 << 5)
306 #define BNA_CQ_EF_L3_CKSUM_OK (1 << 6)
307 #define BNA_CQ_EF_HDS_HEADER (1 << 7)
308
309 #define BNA_CQ_EF_UDP (1 << 8)
310 #define BNA_CQ_EF_TCP (1 << 9)
311 #define BNA_CQ_EF_IP_OPTIONS (1 << 10)
312 #define BNA_CQ_EF_IPV6 (1 << 11)
313
314 #define BNA_CQ_EF_IPV4 (1 << 12)
315 #define BNA_CQ_EF_VLAN (1 << 13)
316 #define BNA_CQ_EF_RSS (1 << 14)
317 #define BNA_CQ_EF_RSVD2 (1 << 15)
318
319 #define BNA_CQ_EF_MCAST_MATCH (1 << 16)
320 #define BNA_CQ_EF_MCAST (1 << 17)
321 #define BNA_CQ_EF_BCAST (1 << 18)
322 #define BNA_CQ_EF_REMOTE (1 << 19)
323
324 #define BNA_CQ_EF_LOCAL (1 << 20)
325 /* CAT2 ASIC does not use bit 21 as per the SPEC.
326 * Bit 31 is set in every end of frame completion
327 */
328 #define BNA_CQ_EF_EOP (1 << 31)
329
330 /* Data structures */
331
332 struct bna_reg_offset {
333 u32 fn_int_status;
334 u32 fn_int_mask;
335 };
336
337 struct bna_bit_defn {
338 u32 mbox_status_bits;
339 u32 mbox_mask_bits;
340 u32 error_status_bits;
341 u32 error_mask_bits;
342 u32 halt_status_bits;
343 u32 halt_mask_bits;
344 };
345
346 struct bna_reg {
347 void __iomem *fn_int_status;
348 void __iomem *fn_int_mask;
349 };
350
351 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
352 struct bna_dma_addr {
353 u32 msb;
354 u32 lsb;
355 };
356
357 struct bna_txq_wi_vector {
358 u16 reserved;
359 u16 length; /* Only 14 LSB are valid */
360 struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
361 };
362
363 /* TxQ Entry Structure
364 *
365 * BEWARE: Load values into this structure with correct endianess.
366 */
367 struct bna_txq_entry {
368 union {
369 struct {
370 u8 reserved;
371 u8 num_vectors; /* number of vectors present */
372 u16 opcode; /* Either */
373 /* BNA_TXQ_WI_SEND or */
374 /* BNA_TXQ_WI_SEND_LSO */
375 u16 flags; /* OR of all the flags */
376 u16 l4_hdr_size_n_offset;
377 u16 vlan_tag;
378 u16 lso_mss; /* Only 14 LSB are valid */
379 u32 frame_length; /* Only 24 LSB are valid */
380 } wi;
381
382 struct {
383 u16 reserved;
384 u16 opcode; /* Must be */
385 /* BNA_TXQ_WI_EXTENSION */
386 u32 reserved2[3]; /* Place holder for */
387 /* removed vector (12 bytes) */
388 } wi_ext;
389 } hdr;
390 struct bna_txq_wi_vector vector[4];
391 };
392
393 /* RxQ Entry Structure */
394 struct bna_rxq_entry { /* Rx-Buffer */
395 struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
396 };
397
398 /* CQ Entry Structure */
399 struct bna_cq_entry {
400 u32 flags;
401 u16 vlan_tag;
402 u16 length;
403 u32 rss_hash;
404 u8 valid;
405 u8 reserved1;
406 u8 reserved2;
407 u8 rxq_id;
408 };
409
410 #endif /* __BNA_HW_DEFS_H__ */