]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/brocade/bna/bnad.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/egtvedt...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35
36 /*
37 * Module params
38 */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 " Range[false:0|true:1]");
51
52 /*
53 * Global variables
54 */
55 u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60
61 /*
62 * Local MACROS
63 */
64 #define BNAD_GET_MBOX_IRQ(_bnad) \
65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 ((_bnad)->pcidev->irq))
68
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
70 do { \
71 (_res_info)->res_type = BNA_RES_T_MEM; \
72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
73 (_res_info)->res_u.mem_info.num = (_num); \
74 (_res_info)->res_u.mem_info.len = (_size); \
75 } while (0)
76
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 mutex_lock(&bnad_list_mutex);
81 list_add_tail(&bnad->list_entry, &bnad_list);
82 bnad->id = bna_id++;
83 mutex_unlock(&bnad_list_mutex);
84 }
85
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 mutex_lock(&bnad_list_mutex);
90 list_del(&bnad->list_entry);
91 mutex_unlock(&bnad_list_mutex);
92 }
93
94 /*
95 * Reinitialize completions in CQ, once Rx is taken down
96 */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 struct bna_cq_entry *cmpl;
101 int i;
102
103 for (i = 0; i < ccb->q_depth; i++) {
104 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 cmpl->valid = 0;
106 }
107 }
108
109 /* Tx Datapath functions */
110
111
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 struct bnad_tx_unmap *unmap_q,
116 u32 q_depth, u32 index)
117 {
118 struct bnad_tx_unmap *unmap;
119 struct sk_buff *skb;
120 int vector, nvecs;
121
122 unmap = &unmap_q[index];
123 nvecs = unmap->nvecs;
124
125 skb = unmap->skb;
126 unmap->skb = NULL;
127 unmap->nvecs = 0;
128 dma_unmap_single(&bnad->pcidev->dev,
129 dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 skb_headlen(skb), DMA_TO_DEVICE);
131 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 nvecs--;
133
134 vector = 0;
135 while (nvecs) {
136 vector++;
137 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 vector = 0;
139 BNA_QE_INDX_INC(index, q_depth);
140 unmap = &unmap_q[index];
141 }
142
143 dma_unmap_page(&bnad->pcidev->dev,
144 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 skb_shinfo(skb)->frags[nvecs].size, DMA_TO_DEVICE);
146 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
147 nvecs--;
148 }
149
150 BNA_QE_INDX_INC(index, q_depth);
151
152 return index;
153 }
154
155 /*
156 * Frees all pending Tx Bufs
157 * At this point no activity is expected on the Q,
158 * so DMA unmap & freeing is fine.
159 */
160 static void
161 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
162 {
163 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 struct sk_buff *skb;
165 int i;
166
167 for (i = 0; i < tcb->q_depth; i++) {
168 skb = unmap_q[i].skb;
169 if (!skb)
170 continue;
171 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
172
173 dev_kfree_skb_any(skb);
174 }
175 }
176
177 /*
178 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
179 * Can be called in a) Interrupt context
180 * b) Sending context
181 */
182 static u32
183 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
184 {
185 u32 sent_packets = 0, sent_bytes = 0;
186 u32 wis, unmap_wis, hw_cons, cons, q_depth;
187 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
188 struct bnad_tx_unmap *unmap;
189 struct sk_buff *skb;
190
191 /* Just return if TX is stopped */
192 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
193 return 0;
194
195 hw_cons = *(tcb->hw_consumer_index);
196 cons = tcb->consumer_index;
197 q_depth = tcb->q_depth;
198
199 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
200 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
201
202 while (wis) {
203 unmap = &unmap_q[cons];
204
205 skb = unmap->skb;
206
207 sent_packets++;
208 sent_bytes += skb->len;
209
210 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
211 wis -= unmap_wis;
212
213 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
214 dev_kfree_skb_any(skb);
215 }
216
217 /* Update consumer pointers. */
218 tcb->consumer_index = hw_cons;
219
220 tcb->txq->tx_packets += sent_packets;
221 tcb->txq->tx_bytes += sent_bytes;
222
223 return sent_packets;
224 }
225
226 static u32
227 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
228 {
229 struct net_device *netdev = bnad->netdev;
230 u32 sent = 0;
231
232 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
233 return 0;
234
235 sent = bnad_txcmpl_process(bnad, tcb);
236 if (sent) {
237 if (netif_queue_stopped(netdev) &&
238 netif_carrier_ok(netdev) &&
239 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
240 BNAD_NETIF_WAKE_THRESHOLD) {
241 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
242 netif_wake_queue(netdev);
243 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
244 }
245 }
246 }
247
248 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
249 bna_ib_ack(tcb->i_dbell, sent);
250
251 smp_mb__before_clear_bit();
252 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
253
254 return sent;
255 }
256
257 /* MSIX Tx Completion Handler */
258 static irqreturn_t
259 bnad_msix_tx(int irq, void *data)
260 {
261 struct bna_tcb *tcb = (struct bna_tcb *)data;
262 struct bnad *bnad = tcb->bnad;
263
264 bnad_tx_complete(bnad, tcb);
265
266 return IRQ_HANDLED;
267 }
268
269 static inline void
270 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
271 {
272 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
273
274 unmap_q->reuse_pi = -1;
275 unmap_q->alloc_order = -1;
276 unmap_q->map_size = 0;
277 unmap_q->type = BNAD_RXBUF_NONE;
278 }
279
280 /* Default is page-based allocation. Multi-buffer support - TBD */
281 static int
282 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
283 {
284 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
285 int mtu, order;
286
287 bnad_rxq_alloc_uninit(bnad, rcb);
288
289 mtu = bna_enet_mtu_get(&bnad->bna.enet);
290 order = get_order(mtu);
291
292 if (bna_is_small_rxq(rcb->id)) {
293 unmap_q->alloc_order = 0;
294 unmap_q->map_size = rcb->rxq->buffer_size;
295 } else {
296 unmap_q->alloc_order = order;
297 unmap_q->map_size =
298 (rcb->rxq->buffer_size > 2048) ?
299 PAGE_SIZE << order : 2048;
300 }
301
302 BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
303
304 unmap_q->type = BNAD_RXBUF_PAGE;
305
306 return 0;
307 }
308
309 static inline void
310 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
311 {
312 if (!unmap->page)
313 return;
314
315 dma_unmap_page(&bnad->pcidev->dev,
316 dma_unmap_addr(&unmap->vector, dma_addr),
317 unmap->vector.len, DMA_FROM_DEVICE);
318 put_page(unmap->page);
319 unmap->page = NULL;
320 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
321 unmap->vector.len = 0;
322 }
323
324 static inline void
325 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
326 {
327 if (!unmap->skb)
328 return;
329
330 dma_unmap_single(&bnad->pcidev->dev,
331 dma_unmap_addr(&unmap->vector, dma_addr),
332 unmap->vector.len, DMA_FROM_DEVICE);
333 dev_kfree_skb_any(unmap->skb);
334 unmap->skb = NULL;
335 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
336 unmap->vector.len = 0;
337 }
338
339 static void
340 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
341 {
342 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 int i;
344
345 for (i = 0; i < rcb->q_depth; i++) {
346 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
347
348 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
349 bnad_rxq_cleanup_page(bnad, unmap);
350 else
351 bnad_rxq_cleanup_skb(bnad, unmap);
352 }
353 bnad_rxq_alloc_uninit(bnad, rcb);
354 }
355
356 static u32
357 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
358 {
359 u32 alloced, prod, q_depth;
360 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
361 struct bnad_rx_unmap *unmap, *prev;
362 struct bna_rxq_entry *rxent;
363 struct page *page;
364 u32 page_offset, alloc_size;
365 dma_addr_t dma_addr;
366
367 prod = rcb->producer_index;
368 q_depth = rcb->q_depth;
369
370 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
371 alloced = 0;
372
373 while (nalloc--) {
374 unmap = &unmap_q->unmap[prod];
375
376 if (unmap_q->reuse_pi < 0) {
377 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
378 unmap_q->alloc_order);
379 page_offset = 0;
380 } else {
381 prev = &unmap_q->unmap[unmap_q->reuse_pi];
382 page = prev->page;
383 page_offset = prev->page_offset + unmap_q->map_size;
384 get_page(page);
385 }
386
387 if (unlikely(!page)) {
388 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
389 rcb->rxq->rxbuf_alloc_failed++;
390 goto finishing;
391 }
392
393 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
394 unmap_q->map_size, DMA_FROM_DEVICE);
395
396 unmap->page = page;
397 unmap->page_offset = page_offset;
398 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
399 unmap->vector.len = unmap_q->map_size;
400 page_offset += unmap_q->map_size;
401
402 if (page_offset < alloc_size)
403 unmap_q->reuse_pi = prod;
404 else
405 unmap_q->reuse_pi = -1;
406
407 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
408 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
409 BNA_QE_INDX_INC(prod, q_depth);
410 alloced++;
411 }
412
413 finishing:
414 if (likely(alloced)) {
415 rcb->producer_index = prod;
416 smp_mb();
417 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
418 bna_rxq_prod_indx_doorbell(rcb);
419 }
420
421 return alloced;
422 }
423
424 static u32
425 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
426 {
427 u32 alloced, prod, q_depth, buff_sz;
428 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
429 struct bnad_rx_unmap *unmap;
430 struct bna_rxq_entry *rxent;
431 struct sk_buff *skb;
432 dma_addr_t dma_addr;
433
434 buff_sz = rcb->rxq->buffer_size;
435 prod = rcb->producer_index;
436 q_depth = rcb->q_depth;
437
438 alloced = 0;
439 while (nalloc--) {
440 unmap = &unmap_q->unmap[prod];
441
442 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
443
444 if (unlikely(!skb)) {
445 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
446 rcb->rxq->rxbuf_alloc_failed++;
447 goto finishing;
448 }
449 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
450 buff_sz, DMA_FROM_DEVICE);
451
452 unmap->skb = skb;
453 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
454 unmap->vector.len = buff_sz;
455
456 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
457 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
458 BNA_QE_INDX_INC(prod, q_depth);
459 alloced++;
460 }
461
462 finishing:
463 if (likely(alloced)) {
464 rcb->producer_index = prod;
465 smp_mb();
466 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
467 bna_rxq_prod_indx_doorbell(rcb);
468 }
469
470 return alloced;
471 }
472
473 static inline void
474 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
475 {
476 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
477 u32 to_alloc;
478
479 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
480 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
481 return;
482
483 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
484 bnad_rxq_refill_page(bnad, rcb, to_alloc);
485 else
486 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
487 }
488
489 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 BNA_CQ_EF_IPV6 | \
491 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
492 BNA_CQ_EF_L4_CKSUM_OK)
493
494 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
495 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
496 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
497 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
498 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
499 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
500 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
501 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
502
503 static inline struct sk_buff *
504 bnad_cq_prepare_skb(struct bnad_rx_ctrl *rx_ctrl,
505 struct bnad_rx_unmap_q *unmap_q,
506 struct bnad_rx_unmap *unmap,
507 u32 length, u32 flags)
508 {
509 struct bnad *bnad = rx_ctrl->bnad;
510 struct sk_buff *skb;
511
512 if (BNAD_RXBUF_IS_PAGE(unmap_q->type)) {
513 skb = napi_get_frags(&rx_ctrl->napi);
514 if (unlikely(!skb))
515 return NULL;
516
517 dma_unmap_page(&bnad->pcidev->dev,
518 dma_unmap_addr(&unmap->vector, dma_addr),
519 unmap->vector.len, DMA_FROM_DEVICE);
520 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
521 unmap->page, unmap->page_offset, length);
522 skb->len += length;
523 skb->data_len += length;
524 skb->truesize += length;
525
526 unmap->page = NULL;
527 unmap->vector.len = 0;
528
529 return skb;
530 }
531
532 skb = unmap->skb;
533 BUG_ON(!skb);
534
535 dma_unmap_single(&bnad->pcidev->dev,
536 dma_unmap_addr(&unmap->vector, dma_addr),
537 unmap->vector.len, DMA_FROM_DEVICE);
538
539 skb_put(skb, length);
540
541 skb->protocol = eth_type_trans(skb, bnad->netdev);
542
543 unmap->skb = NULL;
544 unmap->vector.len = 0;
545 return skb;
546 }
547
548 static u32
549 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
550 {
551 struct bna_cq_entry *cq, *cmpl;
552 struct bna_rcb *rcb = NULL;
553 struct bnad_rx_unmap_q *unmap_q;
554 struct bnad_rx_unmap *unmap;
555 struct sk_buff *skb;
556 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
557 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
558 u32 packets = 0, length = 0, flags, masked_flags;
559
560 prefetch(bnad->netdev);
561
562 cq = ccb->sw_q;
563 cmpl = &cq[ccb->producer_index];
564
565 while (cmpl->valid && (packets < budget)) {
566 packets++;
567 flags = ntohl(cmpl->flags);
568 length = ntohs(cmpl->length);
569 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
570
571 if (bna_is_small_rxq(cmpl->rxq_id))
572 rcb = ccb->rcb[1];
573 else
574 rcb = ccb->rcb[0];
575
576 unmap_q = rcb->unmap_q;
577 unmap = &unmap_q->unmap[rcb->consumer_index];
578
579 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
580 BNA_CQ_EF_FCS_ERROR |
581 BNA_CQ_EF_TOO_LONG))) {
582 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
583 bnad_rxq_cleanup_page(bnad, unmap);
584 else
585 bnad_rxq_cleanup_skb(bnad, unmap);
586
587 rcb->rxq->rx_packets_with_error++;
588 goto next;
589 }
590
591 skb = bnad_cq_prepare_skb(ccb->ctrl, unmap_q, unmap,
592 length, flags);
593
594 if (unlikely(!skb))
595 break;
596
597 masked_flags = flags & flags_cksum_prot_mask;
598
599 if (likely
600 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
601 ((masked_flags == flags_tcp4) ||
602 (masked_flags == flags_udp4) ||
603 (masked_flags == flags_tcp6) ||
604 (masked_flags == flags_udp6))))
605 skb->ip_summed = CHECKSUM_UNNECESSARY;
606 else
607 skb_checksum_none_assert(skb);
608
609 rcb->rxq->rx_packets++;
610 rcb->rxq->rx_bytes += length;
611
612 if (flags & BNA_CQ_EF_VLAN)
613 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
614
615 if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
616 napi_gro_frags(&rx_ctrl->napi);
617 else
618 netif_receive_skb(skb);
619
620 next:
621 cmpl->valid = 0;
622 BNA_QE_INDX_INC(rcb->consumer_index, rcb->q_depth);
623 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
624 cmpl = &cq[ccb->producer_index];
625 }
626
627 napi_gro_flush(&rx_ctrl->napi, false);
628 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
629 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
630
631 bnad_rxq_post(bnad, ccb->rcb[0]);
632 if (ccb->rcb[1])
633 bnad_rxq_post(bnad, ccb->rcb[1]);
634
635 return packets;
636 }
637
638 static void
639 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
640 {
641 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
642 struct napi_struct *napi = &rx_ctrl->napi;
643
644 if (likely(napi_schedule_prep(napi))) {
645 __napi_schedule(napi);
646 rx_ctrl->rx_schedule++;
647 }
648 }
649
650 /* MSIX Rx Path Handler */
651 static irqreturn_t
652 bnad_msix_rx(int irq, void *data)
653 {
654 struct bna_ccb *ccb = (struct bna_ccb *)data;
655
656 if (ccb) {
657 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
658 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
659 }
660
661 return IRQ_HANDLED;
662 }
663
664 /* Interrupt handlers */
665
666 /* Mbox Interrupt Handlers */
667 static irqreturn_t
668 bnad_msix_mbox_handler(int irq, void *data)
669 {
670 u32 intr_status;
671 unsigned long flags;
672 struct bnad *bnad = (struct bnad *)data;
673
674 spin_lock_irqsave(&bnad->bna_lock, flags);
675 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
676 spin_unlock_irqrestore(&bnad->bna_lock, flags);
677 return IRQ_HANDLED;
678 }
679
680 bna_intr_status_get(&bnad->bna, intr_status);
681
682 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
683 bna_mbox_handler(&bnad->bna, intr_status);
684
685 spin_unlock_irqrestore(&bnad->bna_lock, flags);
686
687 return IRQ_HANDLED;
688 }
689
690 static irqreturn_t
691 bnad_isr(int irq, void *data)
692 {
693 int i, j;
694 u32 intr_status;
695 unsigned long flags;
696 struct bnad *bnad = (struct bnad *)data;
697 struct bnad_rx_info *rx_info;
698 struct bnad_rx_ctrl *rx_ctrl;
699 struct bna_tcb *tcb = NULL;
700
701 spin_lock_irqsave(&bnad->bna_lock, flags);
702 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
703 spin_unlock_irqrestore(&bnad->bna_lock, flags);
704 return IRQ_NONE;
705 }
706
707 bna_intr_status_get(&bnad->bna, intr_status);
708
709 if (unlikely(!intr_status)) {
710 spin_unlock_irqrestore(&bnad->bna_lock, flags);
711 return IRQ_NONE;
712 }
713
714 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
715 bna_mbox_handler(&bnad->bna, intr_status);
716
717 spin_unlock_irqrestore(&bnad->bna_lock, flags);
718
719 if (!BNA_IS_INTX_DATA_INTR(intr_status))
720 return IRQ_HANDLED;
721
722 /* Process data interrupts */
723 /* Tx processing */
724 for (i = 0; i < bnad->num_tx; i++) {
725 for (j = 0; j < bnad->num_txq_per_tx; j++) {
726 tcb = bnad->tx_info[i].tcb[j];
727 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
728 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
729 }
730 }
731 /* Rx processing */
732 for (i = 0; i < bnad->num_rx; i++) {
733 rx_info = &bnad->rx_info[i];
734 if (!rx_info->rx)
735 continue;
736 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
737 rx_ctrl = &rx_info->rx_ctrl[j];
738 if (rx_ctrl->ccb)
739 bnad_netif_rx_schedule_poll(bnad,
740 rx_ctrl->ccb);
741 }
742 }
743 return IRQ_HANDLED;
744 }
745
746 /*
747 * Called in interrupt / callback context
748 * with bna_lock held, so cfg_flags access is OK
749 */
750 static void
751 bnad_enable_mbox_irq(struct bnad *bnad)
752 {
753 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
754
755 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
756 }
757
758 /*
759 * Called with bnad->bna_lock held b'cos of
760 * bnad->cfg_flags access.
761 */
762 static void
763 bnad_disable_mbox_irq(struct bnad *bnad)
764 {
765 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
766
767 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
768 }
769
770 static void
771 bnad_set_netdev_perm_addr(struct bnad *bnad)
772 {
773 struct net_device *netdev = bnad->netdev;
774
775 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
776 if (is_zero_ether_addr(netdev->dev_addr))
777 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
778 }
779
780 /* Control Path Handlers */
781
782 /* Callbacks */
783 void
784 bnad_cb_mbox_intr_enable(struct bnad *bnad)
785 {
786 bnad_enable_mbox_irq(bnad);
787 }
788
789 void
790 bnad_cb_mbox_intr_disable(struct bnad *bnad)
791 {
792 bnad_disable_mbox_irq(bnad);
793 }
794
795 void
796 bnad_cb_ioceth_ready(struct bnad *bnad)
797 {
798 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
799 complete(&bnad->bnad_completions.ioc_comp);
800 }
801
802 void
803 bnad_cb_ioceth_failed(struct bnad *bnad)
804 {
805 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
806 complete(&bnad->bnad_completions.ioc_comp);
807 }
808
809 void
810 bnad_cb_ioceth_disabled(struct bnad *bnad)
811 {
812 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
813 complete(&bnad->bnad_completions.ioc_comp);
814 }
815
816 static void
817 bnad_cb_enet_disabled(void *arg)
818 {
819 struct bnad *bnad = (struct bnad *)arg;
820
821 netif_carrier_off(bnad->netdev);
822 complete(&bnad->bnad_completions.enet_comp);
823 }
824
825 void
826 bnad_cb_ethport_link_status(struct bnad *bnad,
827 enum bna_link_status link_status)
828 {
829 bool link_up = false;
830
831 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
832
833 if (link_status == BNA_CEE_UP) {
834 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
835 BNAD_UPDATE_CTR(bnad, cee_toggle);
836 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
837 } else {
838 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
839 BNAD_UPDATE_CTR(bnad, cee_toggle);
840 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
841 }
842
843 if (link_up) {
844 if (!netif_carrier_ok(bnad->netdev)) {
845 uint tx_id, tcb_id;
846 printk(KERN_WARNING "bna: %s link up\n",
847 bnad->netdev->name);
848 netif_carrier_on(bnad->netdev);
849 BNAD_UPDATE_CTR(bnad, link_toggle);
850 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
851 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
852 tcb_id++) {
853 struct bna_tcb *tcb =
854 bnad->tx_info[tx_id].tcb[tcb_id];
855 u32 txq_id;
856 if (!tcb)
857 continue;
858
859 txq_id = tcb->id;
860
861 if (test_bit(BNAD_TXQ_TX_STARTED,
862 &tcb->flags)) {
863 /*
864 * Force an immediate
865 * Transmit Schedule */
866 printk(KERN_INFO "bna: %s %d "
867 "TXQ_STARTED\n",
868 bnad->netdev->name,
869 txq_id);
870 netif_wake_subqueue(
871 bnad->netdev,
872 txq_id);
873 BNAD_UPDATE_CTR(bnad,
874 netif_queue_wakeup);
875 } else {
876 netif_stop_subqueue(
877 bnad->netdev,
878 txq_id);
879 BNAD_UPDATE_CTR(bnad,
880 netif_queue_stop);
881 }
882 }
883 }
884 }
885 } else {
886 if (netif_carrier_ok(bnad->netdev)) {
887 printk(KERN_WARNING "bna: %s link down\n",
888 bnad->netdev->name);
889 netif_carrier_off(bnad->netdev);
890 BNAD_UPDATE_CTR(bnad, link_toggle);
891 }
892 }
893 }
894
895 static void
896 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
897 {
898 struct bnad *bnad = (struct bnad *)arg;
899
900 complete(&bnad->bnad_completions.tx_comp);
901 }
902
903 static void
904 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
905 {
906 struct bnad_tx_info *tx_info =
907 (struct bnad_tx_info *)tcb->txq->tx->priv;
908
909 tcb->priv = tcb;
910 tx_info->tcb[tcb->id] = tcb;
911 }
912
913 static void
914 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
915 {
916 struct bnad_tx_info *tx_info =
917 (struct bnad_tx_info *)tcb->txq->tx->priv;
918
919 tx_info->tcb[tcb->id] = NULL;
920 tcb->priv = NULL;
921 }
922
923 static void
924 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
925 {
926 struct bnad_rx_info *rx_info =
927 (struct bnad_rx_info *)ccb->cq->rx->priv;
928
929 rx_info->rx_ctrl[ccb->id].ccb = ccb;
930 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
931 }
932
933 static void
934 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
935 {
936 struct bnad_rx_info *rx_info =
937 (struct bnad_rx_info *)ccb->cq->rx->priv;
938
939 rx_info->rx_ctrl[ccb->id].ccb = NULL;
940 }
941
942 static void
943 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
944 {
945 struct bnad_tx_info *tx_info =
946 (struct bnad_tx_info *)tx->priv;
947 struct bna_tcb *tcb;
948 u32 txq_id;
949 int i;
950
951 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
952 tcb = tx_info->tcb[i];
953 if (!tcb)
954 continue;
955 txq_id = tcb->id;
956 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
957 netif_stop_subqueue(bnad->netdev, txq_id);
958 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
959 bnad->netdev->name, txq_id);
960 }
961 }
962
963 static void
964 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
965 {
966 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
967 struct bna_tcb *tcb;
968 u32 txq_id;
969 int i;
970
971 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
972 tcb = tx_info->tcb[i];
973 if (!tcb)
974 continue;
975 txq_id = tcb->id;
976
977 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
978 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
979 BUG_ON(*(tcb->hw_consumer_index) != 0);
980
981 if (netif_carrier_ok(bnad->netdev)) {
982 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
983 bnad->netdev->name, txq_id);
984 netif_wake_subqueue(bnad->netdev, txq_id);
985 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
986 }
987 }
988
989 /*
990 * Workaround for first ioceth enable failure & we
991 * get a 0 MAC address. We try to get the MAC address
992 * again here.
993 */
994 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
995 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
996 bnad_set_netdev_perm_addr(bnad);
997 }
998 }
999
1000 /*
1001 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1002 */
1003 static void
1004 bnad_tx_cleanup(struct delayed_work *work)
1005 {
1006 struct bnad_tx_info *tx_info =
1007 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1008 struct bnad *bnad = NULL;
1009 struct bna_tcb *tcb;
1010 unsigned long flags;
1011 u32 i, pending = 0;
1012
1013 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1014 tcb = tx_info->tcb[i];
1015 if (!tcb)
1016 continue;
1017
1018 bnad = tcb->bnad;
1019
1020 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1021 pending++;
1022 continue;
1023 }
1024
1025 bnad_txq_cleanup(bnad, tcb);
1026
1027 smp_mb__before_clear_bit();
1028 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1029 }
1030
1031 if (pending) {
1032 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1033 msecs_to_jiffies(1));
1034 return;
1035 }
1036
1037 spin_lock_irqsave(&bnad->bna_lock, flags);
1038 bna_tx_cleanup_complete(tx_info->tx);
1039 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1040 }
1041
1042 static void
1043 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1044 {
1045 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1046 struct bna_tcb *tcb;
1047 int i;
1048
1049 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1050 tcb = tx_info->tcb[i];
1051 if (!tcb)
1052 continue;
1053 }
1054
1055 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1056 }
1057
1058 static void
1059 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1060 {
1061 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1062 struct bna_ccb *ccb;
1063 struct bnad_rx_ctrl *rx_ctrl;
1064 int i;
1065
1066 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1067 rx_ctrl = &rx_info->rx_ctrl[i];
1068 ccb = rx_ctrl->ccb;
1069 if (!ccb)
1070 continue;
1071
1072 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1073
1074 if (ccb->rcb[1])
1075 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1076 }
1077 }
1078
1079 /*
1080 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1081 */
1082 static void
1083 bnad_rx_cleanup(void *work)
1084 {
1085 struct bnad_rx_info *rx_info =
1086 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1087 struct bnad_rx_ctrl *rx_ctrl;
1088 struct bnad *bnad = NULL;
1089 unsigned long flags;
1090 u32 i;
1091
1092 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1093 rx_ctrl = &rx_info->rx_ctrl[i];
1094
1095 if (!rx_ctrl->ccb)
1096 continue;
1097
1098 bnad = rx_ctrl->ccb->bnad;
1099
1100 /*
1101 * Wait till the poll handler has exited
1102 * and nothing can be scheduled anymore
1103 */
1104 napi_disable(&rx_ctrl->napi);
1105
1106 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1107 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1108 if (rx_ctrl->ccb->rcb[1])
1109 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1110 }
1111
1112 spin_lock_irqsave(&bnad->bna_lock, flags);
1113 bna_rx_cleanup_complete(rx_info->rx);
1114 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1115 }
1116
1117 static void
1118 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1119 {
1120 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1121 struct bna_ccb *ccb;
1122 struct bnad_rx_ctrl *rx_ctrl;
1123 int i;
1124
1125 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1126 rx_ctrl = &rx_info->rx_ctrl[i];
1127 ccb = rx_ctrl->ccb;
1128 if (!ccb)
1129 continue;
1130
1131 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1132
1133 if (ccb->rcb[1])
1134 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1135 }
1136
1137 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1138 }
1139
1140 static void
1141 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1142 {
1143 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1144 struct bna_ccb *ccb;
1145 struct bna_rcb *rcb;
1146 struct bnad_rx_ctrl *rx_ctrl;
1147 int i, j;
1148
1149 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1150 rx_ctrl = &rx_info->rx_ctrl[i];
1151 ccb = rx_ctrl->ccb;
1152 if (!ccb)
1153 continue;
1154
1155 napi_enable(&rx_ctrl->napi);
1156
1157 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1158 rcb = ccb->rcb[j];
1159 if (!rcb)
1160 continue;
1161
1162 bnad_rxq_alloc_init(bnad, rcb);
1163 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1164 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1165 bnad_rxq_post(bnad, rcb);
1166 }
1167 }
1168 }
1169
1170 static void
1171 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1172 {
1173 struct bnad *bnad = (struct bnad *)arg;
1174
1175 complete(&bnad->bnad_completions.rx_comp);
1176 }
1177
1178 static void
1179 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1180 {
1181 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1182 complete(&bnad->bnad_completions.mcast_comp);
1183 }
1184
1185 void
1186 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1187 struct bna_stats *stats)
1188 {
1189 if (status == BNA_CB_SUCCESS)
1190 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1191
1192 if (!netif_running(bnad->netdev) ||
1193 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1194 return;
1195
1196 mod_timer(&bnad->stats_timer,
1197 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1198 }
1199
1200 static void
1201 bnad_cb_enet_mtu_set(struct bnad *bnad)
1202 {
1203 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1204 complete(&bnad->bnad_completions.mtu_comp);
1205 }
1206
1207 void
1208 bnad_cb_completion(void *arg, enum bfa_status status)
1209 {
1210 struct bnad_iocmd_comp *iocmd_comp =
1211 (struct bnad_iocmd_comp *)arg;
1212
1213 iocmd_comp->comp_status = (u32) status;
1214 complete(&iocmd_comp->comp);
1215 }
1216
1217 /* Resource allocation, free functions */
1218
1219 static void
1220 bnad_mem_free(struct bnad *bnad,
1221 struct bna_mem_info *mem_info)
1222 {
1223 int i;
1224 dma_addr_t dma_pa;
1225
1226 if (mem_info->mdl == NULL)
1227 return;
1228
1229 for (i = 0; i < mem_info->num; i++) {
1230 if (mem_info->mdl[i].kva != NULL) {
1231 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1232 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1233 dma_pa);
1234 dma_free_coherent(&bnad->pcidev->dev,
1235 mem_info->mdl[i].len,
1236 mem_info->mdl[i].kva, dma_pa);
1237 } else
1238 kfree(mem_info->mdl[i].kva);
1239 }
1240 }
1241 kfree(mem_info->mdl);
1242 mem_info->mdl = NULL;
1243 }
1244
1245 static int
1246 bnad_mem_alloc(struct bnad *bnad,
1247 struct bna_mem_info *mem_info)
1248 {
1249 int i;
1250 dma_addr_t dma_pa;
1251
1252 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1253 mem_info->mdl = NULL;
1254 return 0;
1255 }
1256
1257 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1258 GFP_KERNEL);
1259 if (mem_info->mdl == NULL)
1260 return -ENOMEM;
1261
1262 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1263 for (i = 0; i < mem_info->num; i++) {
1264 mem_info->mdl[i].len = mem_info->len;
1265 mem_info->mdl[i].kva =
1266 dma_alloc_coherent(&bnad->pcidev->dev,
1267 mem_info->len, &dma_pa,
1268 GFP_KERNEL);
1269 if (mem_info->mdl[i].kva == NULL)
1270 goto err_return;
1271
1272 BNA_SET_DMA_ADDR(dma_pa,
1273 &(mem_info->mdl[i].dma));
1274 }
1275 } else {
1276 for (i = 0; i < mem_info->num; i++) {
1277 mem_info->mdl[i].len = mem_info->len;
1278 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1279 GFP_KERNEL);
1280 if (mem_info->mdl[i].kva == NULL)
1281 goto err_return;
1282 }
1283 }
1284
1285 return 0;
1286
1287 err_return:
1288 bnad_mem_free(bnad, mem_info);
1289 return -ENOMEM;
1290 }
1291
1292 /* Free IRQ for Mailbox */
1293 static void
1294 bnad_mbox_irq_free(struct bnad *bnad)
1295 {
1296 int irq;
1297 unsigned long flags;
1298
1299 spin_lock_irqsave(&bnad->bna_lock, flags);
1300 bnad_disable_mbox_irq(bnad);
1301 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1302
1303 irq = BNAD_GET_MBOX_IRQ(bnad);
1304 free_irq(irq, bnad);
1305 }
1306
1307 /*
1308 * Allocates IRQ for Mailbox, but keep it disabled
1309 * This will be enabled once we get the mbox enable callback
1310 * from bna
1311 */
1312 static int
1313 bnad_mbox_irq_alloc(struct bnad *bnad)
1314 {
1315 int err = 0;
1316 unsigned long irq_flags, flags;
1317 u32 irq;
1318 irq_handler_t irq_handler;
1319
1320 spin_lock_irqsave(&bnad->bna_lock, flags);
1321 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1322 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1323 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1324 irq_flags = 0;
1325 } else {
1326 irq_handler = (irq_handler_t)bnad_isr;
1327 irq = bnad->pcidev->irq;
1328 irq_flags = IRQF_SHARED;
1329 }
1330
1331 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1332 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1333
1334 /*
1335 * Set the Mbox IRQ disable flag, so that the IRQ handler
1336 * called from request_irq() for SHARED IRQs do not execute
1337 */
1338 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1339
1340 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1341
1342 err = request_irq(irq, irq_handler, irq_flags,
1343 bnad->mbox_irq_name, bnad);
1344
1345 return err;
1346 }
1347
1348 static void
1349 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1350 {
1351 kfree(intr_info->idl);
1352 intr_info->idl = NULL;
1353 }
1354
1355 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1356 static int
1357 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1358 u32 txrx_id, struct bna_intr_info *intr_info)
1359 {
1360 int i, vector_start = 0;
1361 u32 cfg_flags;
1362 unsigned long flags;
1363
1364 spin_lock_irqsave(&bnad->bna_lock, flags);
1365 cfg_flags = bnad->cfg_flags;
1366 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1367
1368 if (cfg_flags & BNAD_CF_MSIX) {
1369 intr_info->intr_type = BNA_INTR_T_MSIX;
1370 intr_info->idl = kcalloc(intr_info->num,
1371 sizeof(struct bna_intr_descr),
1372 GFP_KERNEL);
1373 if (!intr_info->idl)
1374 return -ENOMEM;
1375
1376 switch (src) {
1377 case BNAD_INTR_TX:
1378 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1379 break;
1380
1381 case BNAD_INTR_RX:
1382 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1383 (bnad->num_tx * bnad->num_txq_per_tx) +
1384 txrx_id;
1385 break;
1386
1387 default:
1388 BUG();
1389 }
1390
1391 for (i = 0; i < intr_info->num; i++)
1392 intr_info->idl[i].vector = vector_start + i;
1393 } else {
1394 intr_info->intr_type = BNA_INTR_T_INTX;
1395 intr_info->num = 1;
1396 intr_info->idl = kcalloc(intr_info->num,
1397 sizeof(struct bna_intr_descr),
1398 GFP_KERNEL);
1399 if (!intr_info->idl)
1400 return -ENOMEM;
1401
1402 switch (src) {
1403 case BNAD_INTR_TX:
1404 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1405 break;
1406
1407 case BNAD_INTR_RX:
1408 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1409 break;
1410 }
1411 }
1412 return 0;
1413 }
1414
1415 /* NOTE: Should be called for MSIX only
1416 * Unregisters Tx MSIX vector(s) from the kernel
1417 */
1418 static void
1419 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1420 int num_txqs)
1421 {
1422 int i;
1423 int vector_num;
1424
1425 for (i = 0; i < num_txqs; i++) {
1426 if (tx_info->tcb[i] == NULL)
1427 continue;
1428
1429 vector_num = tx_info->tcb[i]->intr_vector;
1430 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1431 }
1432 }
1433
1434 /* NOTE: Should be called for MSIX only
1435 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1436 */
1437 static int
1438 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1439 u32 tx_id, int num_txqs)
1440 {
1441 int i;
1442 int err;
1443 int vector_num;
1444
1445 for (i = 0; i < num_txqs; i++) {
1446 vector_num = tx_info->tcb[i]->intr_vector;
1447 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1448 tx_id + tx_info->tcb[i]->id);
1449 err = request_irq(bnad->msix_table[vector_num].vector,
1450 (irq_handler_t)bnad_msix_tx, 0,
1451 tx_info->tcb[i]->name,
1452 tx_info->tcb[i]);
1453 if (err)
1454 goto err_return;
1455 }
1456
1457 return 0;
1458
1459 err_return:
1460 if (i > 0)
1461 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1462 return -1;
1463 }
1464
1465 /* NOTE: Should be called for MSIX only
1466 * Unregisters Rx MSIX vector(s) from the kernel
1467 */
1468 static void
1469 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1470 int num_rxps)
1471 {
1472 int i;
1473 int vector_num;
1474
1475 for (i = 0; i < num_rxps; i++) {
1476 if (rx_info->rx_ctrl[i].ccb == NULL)
1477 continue;
1478
1479 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1480 free_irq(bnad->msix_table[vector_num].vector,
1481 rx_info->rx_ctrl[i].ccb);
1482 }
1483 }
1484
1485 /* NOTE: Should be called for MSIX only
1486 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1487 */
1488 static int
1489 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1490 u32 rx_id, int num_rxps)
1491 {
1492 int i;
1493 int err;
1494 int vector_num;
1495
1496 for (i = 0; i < num_rxps; i++) {
1497 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1498 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1499 bnad->netdev->name,
1500 rx_id + rx_info->rx_ctrl[i].ccb->id);
1501 err = request_irq(bnad->msix_table[vector_num].vector,
1502 (irq_handler_t)bnad_msix_rx, 0,
1503 rx_info->rx_ctrl[i].ccb->name,
1504 rx_info->rx_ctrl[i].ccb);
1505 if (err)
1506 goto err_return;
1507 }
1508
1509 return 0;
1510
1511 err_return:
1512 if (i > 0)
1513 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1514 return -1;
1515 }
1516
1517 /* Free Tx object Resources */
1518 static void
1519 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1520 {
1521 int i;
1522
1523 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1524 if (res_info[i].res_type == BNA_RES_T_MEM)
1525 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1526 else if (res_info[i].res_type == BNA_RES_T_INTR)
1527 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1528 }
1529 }
1530
1531 /* Allocates memory and interrupt resources for Tx object */
1532 static int
1533 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1534 u32 tx_id)
1535 {
1536 int i, err = 0;
1537
1538 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1539 if (res_info[i].res_type == BNA_RES_T_MEM)
1540 err = bnad_mem_alloc(bnad,
1541 &res_info[i].res_u.mem_info);
1542 else if (res_info[i].res_type == BNA_RES_T_INTR)
1543 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1544 &res_info[i].res_u.intr_info);
1545 if (err)
1546 goto err_return;
1547 }
1548 return 0;
1549
1550 err_return:
1551 bnad_tx_res_free(bnad, res_info);
1552 return err;
1553 }
1554
1555 /* Free Rx object Resources */
1556 static void
1557 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1558 {
1559 int i;
1560
1561 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1562 if (res_info[i].res_type == BNA_RES_T_MEM)
1563 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1564 else if (res_info[i].res_type == BNA_RES_T_INTR)
1565 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1566 }
1567 }
1568
1569 /* Allocates memory and interrupt resources for Rx object */
1570 static int
1571 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1572 uint rx_id)
1573 {
1574 int i, err = 0;
1575
1576 /* All memory needs to be allocated before setup_ccbs */
1577 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1578 if (res_info[i].res_type == BNA_RES_T_MEM)
1579 err = bnad_mem_alloc(bnad,
1580 &res_info[i].res_u.mem_info);
1581 else if (res_info[i].res_type == BNA_RES_T_INTR)
1582 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1583 &res_info[i].res_u.intr_info);
1584 if (err)
1585 goto err_return;
1586 }
1587 return 0;
1588
1589 err_return:
1590 bnad_rx_res_free(bnad, res_info);
1591 return err;
1592 }
1593
1594 /* Timer callbacks */
1595 /* a) IOC timer */
1596 static void
1597 bnad_ioc_timeout(unsigned long data)
1598 {
1599 struct bnad *bnad = (struct bnad *)data;
1600 unsigned long flags;
1601
1602 spin_lock_irqsave(&bnad->bna_lock, flags);
1603 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1604 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1605 }
1606
1607 static void
1608 bnad_ioc_hb_check(unsigned long data)
1609 {
1610 struct bnad *bnad = (struct bnad *)data;
1611 unsigned long flags;
1612
1613 spin_lock_irqsave(&bnad->bna_lock, flags);
1614 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1615 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1616 }
1617
1618 static void
1619 bnad_iocpf_timeout(unsigned long data)
1620 {
1621 struct bnad *bnad = (struct bnad *)data;
1622 unsigned long flags;
1623
1624 spin_lock_irqsave(&bnad->bna_lock, flags);
1625 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1626 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1627 }
1628
1629 static void
1630 bnad_iocpf_sem_timeout(unsigned long data)
1631 {
1632 struct bnad *bnad = (struct bnad *)data;
1633 unsigned long flags;
1634
1635 spin_lock_irqsave(&bnad->bna_lock, flags);
1636 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1637 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1638 }
1639
1640 /*
1641 * All timer routines use bnad->bna_lock to protect against
1642 * the following race, which may occur in case of no locking:
1643 * Time CPU m CPU n
1644 * 0 1 = test_bit
1645 * 1 clear_bit
1646 * 2 del_timer_sync
1647 * 3 mod_timer
1648 */
1649
1650 /* b) Dynamic Interrupt Moderation Timer */
1651 static void
1652 bnad_dim_timeout(unsigned long data)
1653 {
1654 struct bnad *bnad = (struct bnad *)data;
1655 struct bnad_rx_info *rx_info;
1656 struct bnad_rx_ctrl *rx_ctrl;
1657 int i, j;
1658 unsigned long flags;
1659
1660 if (!netif_carrier_ok(bnad->netdev))
1661 return;
1662
1663 spin_lock_irqsave(&bnad->bna_lock, flags);
1664 for (i = 0; i < bnad->num_rx; i++) {
1665 rx_info = &bnad->rx_info[i];
1666 if (!rx_info->rx)
1667 continue;
1668 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1669 rx_ctrl = &rx_info->rx_ctrl[j];
1670 if (!rx_ctrl->ccb)
1671 continue;
1672 bna_rx_dim_update(rx_ctrl->ccb);
1673 }
1674 }
1675
1676 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1677 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1678 mod_timer(&bnad->dim_timer,
1679 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1680 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1681 }
1682
1683 /* c) Statistics Timer */
1684 static void
1685 bnad_stats_timeout(unsigned long data)
1686 {
1687 struct bnad *bnad = (struct bnad *)data;
1688 unsigned long flags;
1689
1690 if (!netif_running(bnad->netdev) ||
1691 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1692 return;
1693
1694 spin_lock_irqsave(&bnad->bna_lock, flags);
1695 bna_hw_stats_get(&bnad->bna);
1696 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1697 }
1698
1699 /*
1700 * Set up timer for DIM
1701 * Called with bnad->bna_lock held
1702 */
1703 void
1704 bnad_dim_timer_start(struct bnad *bnad)
1705 {
1706 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1707 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1708 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1709 (unsigned long)bnad);
1710 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1711 mod_timer(&bnad->dim_timer,
1712 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1713 }
1714 }
1715
1716 /*
1717 * Set up timer for statistics
1718 * Called with mutex_lock(&bnad->conf_mutex) held
1719 */
1720 static void
1721 bnad_stats_timer_start(struct bnad *bnad)
1722 {
1723 unsigned long flags;
1724
1725 spin_lock_irqsave(&bnad->bna_lock, flags);
1726 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1727 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1728 (unsigned long)bnad);
1729 mod_timer(&bnad->stats_timer,
1730 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1731 }
1732 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1733 }
1734
1735 /*
1736 * Stops the stats timer
1737 * Called with mutex_lock(&bnad->conf_mutex) held
1738 */
1739 static void
1740 bnad_stats_timer_stop(struct bnad *bnad)
1741 {
1742 int to_del = 0;
1743 unsigned long flags;
1744
1745 spin_lock_irqsave(&bnad->bna_lock, flags);
1746 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1747 to_del = 1;
1748 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1749 if (to_del)
1750 del_timer_sync(&bnad->stats_timer);
1751 }
1752
1753 /* Utilities */
1754
1755 static void
1756 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1757 {
1758 int i = 1; /* Index 0 has broadcast address */
1759 struct netdev_hw_addr *mc_addr;
1760
1761 netdev_for_each_mc_addr(mc_addr, netdev) {
1762 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1763 ETH_ALEN);
1764 i++;
1765 }
1766 }
1767
1768 static int
1769 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1770 {
1771 struct bnad_rx_ctrl *rx_ctrl =
1772 container_of(napi, struct bnad_rx_ctrl, napi);
1773 struct bnad *bnad = rx_ctrl->bnad;
1774 int rcvd = 0;
1775
1776 rx_ctrl->rx_poll_ctr++;
1777
1778 if (!netif_carrier_ok(bnad->netdev))
1779 goto poll_exit;
1780
1781 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1782 if (rcvd >= budget)
1783 return rcvd;
1784
1785 poll_exit:
1786 napi_complete(napi);
1787
1788 rx_ctrl->rx_complete++;
1789
1790 if (rx_ctrl->ccb)
1791 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1792
1793 return rcvd;
1794 }
1795
1796 #define BNAD_NAPI_POLL_QUOTA 64
1797 static void
1798 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1799 {
1800 struct bnad_rx_ctrl *rx_ctrl;
1801 int i;
1802
1803 /* Initialize & enable NAPI */
1804 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1805 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1806 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1807 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1808 }
1809 }
1810
1811 static void
1812 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1813 {
1814 int i;
1815
1816 /* First disable and then clean up */
1817 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1818 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1819 }
1820
1821 /* Should be held with conf_lock held */
1822 void
1823 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1824 {
1825 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1826 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1827 unsigned long flags;
1828
1829 if (!tx_info->tx)
1830 return;
1831
1832 init_completion(&bnad->bnad_completions.tx_comp);
1833 spin_lock_irqsave(&bnad->bna_lock, flags);
1834 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1835 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1836 wait_for_completion(&bnad->bnad_completions.tx_comp);
1837
1838 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1839 bnad_tx_msix_unregister(bnad, tx_info,
1840 bnad->num_txq_per_tx);
1841
1842 spin_lock_irqsave(&bnad->bna_lock, flags);
1843 bna_tx_destroy(tx_info->tx);
1844 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1845
1846 tx_info->tx = NULL;
1847 tx_info->tx_id = 0;
1848
1849 bnad_tx_res_free(bnad, res_info);
1850 }
1851
1852 /* Should be held with conf_lock held */
1853 int
1854 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1855 {
1856 int err;
1857 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1858 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1859 struct bna_intr_info *intr_info =
1860 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1861 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1862 static const struct bna_tx_event_cbfn tx_cbfn = {
1863 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1864 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1865 .tx_stall_cbfn = bnad_cb_tx_stall,
1866 .tx_resume_cbfn = bnad_cb_tx_resume,
1867 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1868 };
1869
1870 struct bna_tx *tx;
1871 unsigned long flags;
1872
1873 tx_info->tx_id = tx_id;
1874
1875 /* Initialize the Tx object configuration */
1876 tx_config->num_txq = bnad->num_txq_per_tx;
1877 tx_config->txq_depth = bnad->txq_depth;
1878 tx_config->tx_type = BNA_TX_T_REGULAR;
1879 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1880
1881 /* Get BNA's resource requirement for one tx object */
1882 spin_lock_irqsave(&bnad->bna_lock, flags);
1883 bna_tx_res_req(bnad->num_txq_per_tx,
1884 bnad->txq_depth, res_info);
1885 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1886
1887 /* Fill Unmap Q memory requirements */
1888 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1889 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1890 bnad->txq_depth));
1891
1892 /* Allocate resources */
1893 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1894 if (err)
1895 return err;
1896
1897 /* Ask BNA to create one Tx object, supplying required resources */
1898 spin_lock_irqsave(&bnad->bna_lock, flags);
1899 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1900 tx_info);
1901 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1902 if (!tx)
1903 goto err_return;
1904 tx_info->tx = tx;
1905
1906 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1907 (work_func_t)bnad_tx_cleanup);
1908
1909 /* Register ISR for the Tx object */
1910 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1911 err = bnad_tx_msix_register(bnad, tx_info,
1912 tx_id, bnad->num_txq_per_tx);
1913 if (err)
1914 goto err_return;
1915 }
1916
1917 spin_lock_irqsave(&bnad->bna_lock, flags);
1918 bna_tx_enable(tx);
1919 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1920
1921 return 0;
1922
1923 err_return:
1924 bnad_tx_res_free(bnad, res_info);
1925 return err;
1926 }
1927
1928 /* Setup the rx config for bna_rx_create */
1929 /* bnad decides the configuration */
1930 static void
1931 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1932 {
1933 rx_config->rx_type = BNA_RX_T_REGULAR;
1934 rx_config->num_paths = bnad->num_rxp_per_rx;
1935 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1936
1937 if (bnad->num_rxp_per_rx > 1) {
1938 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1939 rx_config->rss_config.hash_type =
1940 (BFI_ENET_RSS_IPV6 |
1941 BFI_ENET_RSS_IPV6_TCP |
1942 BFI_ENET_RSS_IPV4 |
1943 BFI_ENET_RSS_IPV4_TCP);
1944 rx_config->rss_config.hash_mask =
1945 bnad->num_rxp_per_rx - 1;
1946 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1947 sizeof(rx_config->rss_config.toeplitz_hash_key));
1948 } else {
1949 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1950 memset(&rx_config->rss_config, 0,
1951 sizeof(rx_config->rss_config));
1952 }
1953 rx_config->rxp_type = BNA_RXP_SLR;
1954 rx_config->q_depth = bnad->rxq_depth;
1955
1956 rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1957
1958 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1959 }
1960
1961 static void
1962 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1963 {
1964 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1965 int i;
1966
1967 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1968 rx_info->rx_ctrl[i].bnad = bnad;
1969 }
1970
1971 /* Called with mutex_lock(&bnad->conf_mutex) held */
1972 void
1973 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
1974 {
1975 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1976 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1977 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1978 unsigned long flags;
1979 int to_del = 0;
1980
1981 if (!rx_info->rx)
1982 return;
1983
1984 if (0 == rx_id) {
1985 spin_lock_irqsave(&bnad->bna_lock, flags);
1986 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1987 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1988 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1989 to_del = 1;
1990 }
1991 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1992 if (to_del)
1993 del_timer_sync(&bnad->dim_timer);
1994 }
1995
1996 init_completion(&bnad->bnad_completions.rx_comp);
1997 spin_lock_irqsave(&bnad->bna_lock, flags);
1998 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1999 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 wait_for_completion(&bnad->bnad_completions.rx_comp);
2001
2002 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2003 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2004
2005 bnad_napi_delete(bnad, rx_id);
2006
2007 spin_lock_irqsave(&bnad->bna_lock, flags);
2008 bna_rx_destroy(rx_info->rx);
2009
2010 rx_info->rx = NULL;
2011 rx_info->rx_id = 0;
2012 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2013
2014 bnad_rx_res_free(bnad, res_info);
2015 }
2016
2017 /* Called with mutex_lock(&bnad->conf_mutex) held */
2018 int
2019 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2020 {
2021 int err;
2022 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2023 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2024 struct bna_intr_info *intr_info =
2025 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2026 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2027 static const struct bna_rx_event_cbfn rx_cbfn = {
2028 .rcb_setup_cbfn = NULL,
2029 .rcb_destroy_cbfn = NULL,
2030 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2031 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2032 .rx_stall_cbfn = bnad_cb_rx_stall,
2033 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2034 .rx_post_cbfn = bnad_cb_rx_post,
2035 };
2036 struct bna_rx *rx;
2037 unsigned long flags;
2038
2039 rx_info->rx_id = rx_id;
2040
2041 /* Initialize the Rx object configuration */
2042 bnad_init_rx_config(bnad, rx_config);
2043
2044 /* Get BNA's resource requirement for one Rx object */
2045 spin_lock_irqsave(&bnad->bna_lock, flags);
2046 bna_rx_res_req(rx_config, res_info);
2047 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2048
2049 /* Fill Unmap Q memory requirements */
2050 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPQ],
2051 rx_config->num_paths +
2052 ((rx_config->rxp_type == BNA_RXP_SINGLE) ?
2053 0 : rx_config->num_paths),
2054 ((bnad->rxq_depth * sizeof(struct bnad_rx_unmap)) +
2055 sizeof(struct bnad_rx_unmap_q)));
2056
2057 /* Allocate resource */
2058 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2059 if (err)
2060 return err;
2061
2062 bnad_rx_ctrl_init(bnad, rx_id);
2063
2064 /* Ask BNA to create one Rx object, supplying required resources */
2065 spin_lock_irqsave(&bnad->bna_lock, flags);
2066 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2067 rx_info);
2068 if (!rx) {
2069 err = -ENOMEM;
2070 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2071 goto err_return;
2072 }
2073 rx_info->rx = rx;
2074 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2075
2076 INIT_WORK(&rx_info->rx_cleanup_work,
2077 (work_func_t)(bnad_rx_cleanup));
2078
2079 /*
2080 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2081 * so that IRQ handler cannot schedule NAPI at this point.
2082 */
2083 bnad_napi_add(bnad, rx_id);
2084
2085 /* Register ISR for the Rx object */
2086 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2087 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2088 rx_config->num_paths);
2089 if (err)
2090 goto err_return;
2091 }
2092
2093 spin_lock_irqsave(&bnad->bna_lock, flags);
2094 if (0 == rx_id) {
2095 /* Set up Dynamic Interrupt Moderation Vector */
2096 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2097 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2098
2099 /* Enable VLAN filtering only on the default Rx */
2100 bna_rx_vlanfilter_enable(rx);
2101
2102 /* Start the DIM timer */
2103 bnad_dim_timer_start(bnad);
2104 }
2105
2106 bna_rx_enable(rx);
2107 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2108
2109 return 0;
2110
2111 err_return:
2112 bnad_destroy_rx(bnad, rx_id);
2113 return err;
2114 }
2115
2116 /* Called with conf_lock & bnad->bna_lock held */
2117 void
2118 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2119 {
2120 struct bnad_tx_info *tx_info;
2121
2122 tx_info = &bnad->tx_info[0];
2123 if (!tx_info->tx)
2124 return;
2125
2126 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2127 }
2128
2129 /* Called with conf_lock & bnad->bna_lock held */
2130 void
2131 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2132 {
2133 struct bnad_rx_info *rx_info;
2134 int i;
2135
2136 for (i = 0; i < bnad->num_rx; i++) {
2137 rx_info = &bnad->rx_info[i];
2138 if (!rx_info->rx)
2139 continue;
2140 bna_rx_coalescing_timeo_set(rx_info->rx,
2141 bnad->rx_coalescing_timeo);
2142 }
2143 }
2144
2145 /*
2146 * Called with bnad->bna_lock held
2147 */
2148 int
2149 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2150 {
2151 int ret;
2152
2153 if (!is_valid_ether_addr(mac_addr))
2154 return -EADDRNOTAVAIL;
2155
2156 /* If datapath is down, pretend everything went through */
2157 if (!bnad->rx_info[0].rx)
2158 return 0;
2159
2160 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2161 if (ret != BNA_CB_SUCCESS)
2162 return -EADDRNOTAVAIL;
2163
2164 return 0;
2165 }
2166
2167 /* Should be called with conf_lock held */
2168 int
2169 bnad_enable_default_bcast(struct bnad *bnad)
2170 {
2171 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2172 int ret;
2173 unsigned long flags;
2174
2175 init_completion(&bnad->bnad_completions.mcast_comp);
2176
2177 spin_lock_irqsave(&bnad->bna_lock, flags);
2178 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2179 bnad_cb_rx_mcast_add);
2180 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2181
2182 if (ret == BNA_CB_SUCCESS)
2183 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2184 else
2185 return -ENODEV;
2186
2187 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2188 return -ENODEV;
2189
2190 return 0;
2191 }
2192
2193 /* Called with mutex_lock(&bnad->conf_mutex) held */
2194 void
2195 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2196 {
2197 u16 vid;
2198 unsigned long flags;
2199
2200 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2201 spin_lock_irqsave(&bnad->bna_lock, flags);
2202 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2203 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2204 }
2205 }
2206
2207 /* Statistics utilities */
2208 void
2209 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2210 {
2211 int i, j;
2212
2213 for (i = 0; i < bnad->num_rx; i++) {
2214 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2215 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2216 stats->rx_packets += bnad->rx_info[i].
2217 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2218 stats->rx_bytes += bnad->rx_info[i].
2219 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2220 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2221 bnad->rx_info[i].rx_ctrl[j].ccb->
2222 rcb[1]->rxq) {
2223 stats->rx_packets +=
2224 bnad->rx_info[i].rx_ctrl[j].
2225 ccb->rcb[1]->rxq->rx_packets;
2226 stats->rx_bytes +=
2227 bnad->rx_info[i].rx_ctrl[j].
2228 ccb->rcb[1]->rxq->rx_bytes;
2229 }
2230 }
2231 }
2232 }
2233 for (i = 0; i < bnad->num_tx; i++) {
2234 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2235 if (bnad->tx_info[i].tcb[j]) {
2236 stats->tx_packets +=
2237 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2238 stats->tx_bytes +=
2239 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2240 }
2241 }
2242 }
2243 }
2244
2245 /*
2246 * Must be called with the bna_lock held.
2247 */
2248 void
2249 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2250 {
2251 struct bfi_enet_stats_mac *mac_stats;
2252 u32 bmap;
2253 int i;
2254
2255 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2256 stats->rx_errors =
2257 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2258 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2259 mac_stats->rx_undersize;
2260 stats->tx_errors = mac_stats->tx_fcs_error +
2261 mac_stats->tx_undersize;
2262 stats->rx_dropped = mac_stats->rx_drop;
2263 stats->tx_dropped = mac_stats->tx_drop;
2264 stats->multicast = mac_stats->rx_multicast;
2265 stats->collisions = mac_stats->tx_total_collision;
2266
2267 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2268
2269 /* receive ring buffer overflow ?? */
2270
2271 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2272 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2273 /* recv'r fifo overrun */
2274 bmap = bna_rx_rid_mask(&bnad->bna);
2275 for (i = 0; bmap; i++) {
2276 if (bmap & 1) {
2277 stats->rx_fifo_errors +=
2278 bnad->stats.bna_stats->
2279 hw_stats.rxf_stats[i].frame_drops;
2280 break;
2281 }
2282 bmap >>= 1;
2283 }
2284 }
2285
2286 static void
2287 bnad_mbox_irq_sync(struct bnad *bnad)
2288 {
2289 u32 irq;
2290 unsigned long flags;
2291
2292 spin_lock_irqsave(&bnad->bna_lock, flags);
2293 if (bnad->cfg_flags & BNAD_CF_MSIX)
2294 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2295 else
2296 irq = bnad->pcidev->irq;
2297 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2298
2299 synchronize_irq(irq);
2300 }
2301
2302 /* Utility used by bnad_start_xmit, for doing TSO */
2303 static int
2304 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2305 {
2306 int err;
2307
2308 if (skb_header_cloned(skb)) {
2309 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2310 if (err) {
2311 BNAD_UPDATE_CTR(bnad, tso_err);
2312 return err;
2313 }
2314 }
2315
2316 /*
2317 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2318 * excluding the length field.
2319 */
2320 if (skb->protocol == htons(ETH_P_IP)) {
2321 struct iphdr *iph = ip_hdr(skb);
2322
2323 /* Do we really need these? */
2324 iph->tot_len = 0;
2325 iph->check = 0;
2326
2327 tcp_hdr(skb)->check =
2328 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2329 IPPROTO_TCP, 0);
2330 BNAD_UPDATE_CTR(bnad, tso4);
2331 } else {
2332 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2333
2334 ipv6h->payload_len = 0;
2335 tcp_hdr(skb)->check =
2336 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2337 IPPROTO_TCP, 0);
2338 BNAD_UPDATE_CTR(bnad, tso6);
2339 }
2340
2341 return 0;
2342 }
2343
2344 /*
2345 * Initialize Q numbers depending on Rx Paths
2346 * Called with bnad->bna_lock held, because of cfg_flags
2347 * access.
2348 */
2349 static void
2350 bnad_q_num_init(struct bnad *bnad)
2351 {
2352 int rxps;
2353
2354 rxps = min((uint)num_online_cpus(),
2355 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2356
2357 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2358 rxps = 1; /* INTx */
2359
2360 bnad->num_rx = 1;
2361 bnad->num_tx = 1;
2362 bnad->num_rxp_per_rx = rxps;
2363 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2364 }
2365
2366 /*
2367 * Adjusts the Q numbers, given a number of msix vectors
2368 * Give preference to RSS as opposed to Tx priority Queues,
2369 * in such a case, just use 1 Tx Q
2370 * Called with bnad->bna_lock held b'cos of cfg_flags access
2371 */
2372 static void
2373 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2374 {
2375 bnad->num_txq_per_tx = 1;
2376 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2377 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2378 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2379 bnad->num_rxp_per_rx = msix_vectors -
2380 (bnad->num_tx * bnad->num_txq_per_tx) -
2381 BNAD_MAILBOX_MSIX_VECTORS;
2382 } else
2383 bnad->num_rxp_per_rx = 1;
2384 }
2385
2386 /* Enable / disable ioceth */
2387 static int
2388 bnad_ioceth_disable(struct bnad *bnad)
2389 {
2390 unsigned long flags;
2391 int err = 0;
2392
2393 spin_lock_irqsave(&bnad->bna_lock, flags);
2394 init_completion(&bnad->bnad_completions.ioc_comp);
2395 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2396 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2397
2398 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2399 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2400
2401 err = bnad->bnad_completions.ioc_comp_status;
2402 return err;
2403 }
2404
2405 static int
2406 bnad_ioceth_enable(struct bnad *bnad)
2407 {
2408 int err = 0;
2409 unsigned long flags;
2410
2411 spin_lock_irqsave(&bnad->bna_lock, flags);
2412 init_completion(&bnad->bnad_completions.ioc_comp);
2413 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2414 bna_ioceth_enable(&bnad->bna.ioceth);
2415 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2416
2417 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2418 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2419
2420 err = bnad->bnad_completions.ioc_comp_status;
2421
2422 return err;
2423 }
2424
2425 /* Free BNA resources */
2426 static void
2427 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2428 u32 res_val_max)
2429 {
2430 int i;
2431
2432 for (i = 0; i < res_val_max; i++)
2433 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2434 }
2435
2436 /* Allocates memory and interrupt resources for BNA */
2437 static int
2438 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2439 u32 res_val_max)
2440 {
2441 int i, err;
2442
2443 for (i = 0; i < res_val_max; i++) {
2444 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2445 if (err)
2446 goto err_return;
2447 }
2448 return 0;
2449
2450 err_return:
2451 bnad_res_free(bnad, res_info, res_val_max);
2452 return err;
2453 }
2454
2455 /* Interrupt enable / disable */
2456 static void
2457 bnad_enable_msix(struct bnad *bnad)
2458 {
2459 int i, ret;
2460 unsigned long flags;
2461
2462 spin_lock_irqsave(&bnad->bna_lock, flags);
2463 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2464 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2465 return;
2466 }
2467 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2468
2469 if (bnad->msix_table)
2470 return;
2471
2472 bnad->msix_table =
2473 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2474
2475 if (!bnad->msix_table)
2476 goto intx_mode;
2477
2478 for (i = 0; i < bnad->msix_num; i++)
2479 bnad->msix_table[i].entry = i;
2480
2481 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2482 if (ret > 0) {
2483 /* Not enough MSI-X vectors. */
2484 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2485 ret, bnad->msix_num);
2486
2487 spin_lock_irqsave(&bnad->bna_lock, flags);
2488 /* ret = #of vectors that we got */
2489 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2490 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2491 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2492
2493 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2494 BNAD_MAILBOX_MSIX_VECTORS;
2495
2496 if (bnad->msix_num > ret)
2497 goto intx_mode;
2498
2499 /* Try once more with adjusted numbers */
2500 /* If this fails, fall back to INTx */
2501 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2502 bnad->msix_num);
2503 if (ret)
2504 goto intx_mode;
2505
2506 } else if (ret < 0)
2507 goto intx_mode;
2508
2509 pci_intx(bnad->pcidev, 0);
2510
2511 return;
2512
2513 intx_mode:
2514 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2515
2516 kfree(bnad->msix_table);
2517 bnad->msix_table = NULL;
2518 bnad->msix_num = 0;
2519 spin_lock_irqsave(&bnad->bna_lock, flags);
2520 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2521 bnad_q_num_init(bnad);
2522 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2523 }
2524
2525 static void
2526 bnad_disable_msix(struct bnad *bnad)
2527 {
2528 u32 cfg_flags;
2529 unsigned long flags;
2530
2531 spin_lock_irqsave(&bnad->bna_lock, flags);
2532 cfg_flags = bnad->cfg_flags;
2533 if (bnad->cfg_flags & BNAD_CF_MSIX)
2534 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2535 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2536
2537 if (cfg_flags & BNAD_CF_MSIX) {
2538 pci_disable_msix(bnad->pcidev);
2539 kfree(bnad->msix_table);
2540 bnad->msix_table = NULL;
2541 }
2542 }
2543
2544 /* Netdev entry points */
2545 static int
2546 bnad_open(struct net_device *netdev)
2547 {
2548 int err;
2549 struct bnad *bnad = netdev_priv(netdev);
2550 struct bna_pause_config pause_config;
2551 int mtu;
2552 unsigned long flags;
2553
2554 mutex_lock(&bnad->conf_mutex);
2555
2556 /* Tx */
2557 err = bnad_setup_tx(bnad, 0);
2558 if (err)
2559 goto err_return;
2560
2561 /* Rx */
2562 err = bnad_setup_rx(bnad, 0);
2563 if (err)
2564 goto cleanup_tx;
2565
2566 /* Port */
2567 pause_config.tx_pause = 0;
2568 pause_config.rx_pause = 0;
2569
2570 mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2571
2572 spin_lock_irqsave(&bnad->bna_lock, flags);
2573 bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2574 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2575 bna_enet_enable(&bnad->bna.enet);
2576 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2577
2578 /* Enable broadcast */
2579 bnad_enable_default_bcast(bnad);
2580
2581 /* Restore VLANs, if any */
2582 bnad_restore_vlans(bnad, 0);
2583
2584 /* Set the UCAST address */
2585 spin_lock_irqsave(&bnad->bna_lock, flags);
2586 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2587 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2588
2589 /* Start the stats timer */
2590 bnad_stats_timer_start(bnad);
2591
2592 mutex_unlock(&bnad->conf_mutex);
2593
2594 return 0;
2595
2596 cleanup_tx:
2597 bnad_destroy_tx(bnad, 0);
2598
2599 err_return:
2600 mutex_unlock(&bnad->conf_mutex);
2601 return err;
2602 }
2603
2604 static int
2605 bnad_stop(struct net_device *netdev)
2606 {
2607 struct bnad *bnad = netdev_priv(netdev);
2608 unsigned long flags;
2609
2610 mutex_lock(&bnad->conf_mutex);
2611
2612 /* Stop the stats timer */
2613 bnad_stats_timer_stop(bnad);
2614
2615 init_completion(&bnad->bnad_completions.enet_comp);
2616
2617 spin_lock_irqsave(&bnad->bna_lock, flags);
2618 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2619 bnad_cb_enet_disabled);
2620 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2621
2622 wait_for_completion(&bnad->bnad_completions.enet_comp);
2623
2624 bnad_destroy_tx(bnad, 0);
2625 bnad_destroy_rx(bnad, 0);
2626
2627 /* Synchronize mailbox IRQ */
2628 bnad_mbox_irq_sync(bnad);
2629
2630 mutex_unlock(&bnad->conf_mutex);
2631
2632 return 0;
2633 }
2634
2635 /* TX */
2636 /* Returns 0 for success */
2637 static int
2638 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2639 struct sk_buff *skb, struct bna_txq_entry *txqent)
2640 {
2641 u16 flags = 0;
2642 u32 gso_size;
2643 u16 vlan_tag = 0;
2644
2645 if (vlan_tx_tag_present(skb)) {
2646 vlan_tag = (u16)vlan_tx_tag_get(skb);
2647 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2648 }
2649 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2650 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2651 | (vlan_tag & 0x1fff);
2652 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2653 }
2654 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2655
2656 if (skb_is_gso(skb)) {
2657 gso_size = skb_shinfo(skb)->gso_size;
2658 if (unlikely(gso_size > bnad->netdev->mtu)) {
2659 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2660 return -EINVAL;
2661 }
2662 if (unlikely((gso_size + skb_transport_offset(skb) +
2663 tcp_hdrlen(skb)) >= skb->len)) {
2664 txqent->hdr.wi.opcode =
2665 __constant_htons(BNA_TXQ_WI_SEND);
2666 txqent->hdr.wi.lso_mss = 0;
2667 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2668 } else {
2669 txqent->hdr.wi.opcode =
2670 __constant_htons(BNA_TXQ_WI_SEND_LSO);
2671 txqent->hdr.wi.lso_mss = htons(gso_size);
2672 }
2673
2674 if (bnad_tso_prepare(bnad, skb)) {
2675 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2676 return -EINVAL;
2677 }
2678
2679 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2680 txqent->hdr.wi.l4_hdr_size_n_offset =
2681 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2682 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2683 } else {
2684 txqent->hdr.wi.opcode = __constant_htons(BNA_TXQ_WI_SEND);
2685 txqent->hdr.wi.lso_mss = 0;
2686
2687 if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2688 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2689 return -EINVAL;
2690 }
2691
2692 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2693 u8 proto = 0;
2694
2695 if (skb->protocol == __constant_htons(ETH_P_IP))
2696 proto = ip_hdr(skb)->protocol;
2697 #ifdef NETIF_F_IPV6_CSUM
2698 else if (skb->protocol ==
2699 __constant_htons(ETH_P_IPV6)) {
2700 /* nexthdr may not be TCP immediately. */
2701 proto = ipv6_hdr(skb)->nexthdr;
2702 }
2703 #endif
2704 if (proto == IPPROTO_TCP) {
2705 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2706 txqent->hdr.wi.l4_hdr_size_n_offset =
2707 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2708 (0, skb_transport_offset(skb)));
2709
2710 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2711
2712 if (unlikely(skb_headlen(skb) <
2713 skb_transport_offset(skb) +
2714 tcp_hdrlen(skb))) {
2715 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2716 return -EINVAL;
2717 }
2718 } else if (proto == IPPROTO_UDP) {
2719 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2720 txqent->hdr.wi.l4_hdr_size_n_offset =
2721 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2722 (0, skb_transport_offset(skb)));
2723
2724 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2725 if (unlikely(skb_headlen(skb) <
2726 skb_transport_offset(skb) +
2727 sizeof(struct udphdr))) {
2728 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2729 return -EINVAL;
2730 }
2731 } else {
2732
2733 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2734 return -EINVAL;
2735 }
2736 } else
2737 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2738 }
2739
2740 txqent->hdr.wi.flags = htons(flags);
2741 txqent->hdr.wi.frame_length = htonl(skb->len);
2742
2743 return 0;
2744 }
2745
2746 /*
2747 * bnad_start_xmit : Netdev entry point for Transmit
2748 * Called under lock held by net_device
2749 */
2750 static netdev_tx_t
2751 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2752 {
2753 struct bnad *bnad = netdev_priv(netdev);
2754 u32 txq_id = 0;
2755 struct bna_tcb *tcb = NULL;
2756 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2757 u32 prod, q_depth, vect_id;
2758 u32 wis, vectors, len;
2759 int i;
2760 dma_addr_t dma_addr;
2761 struct bna_txq_entry *txqent;
2762
2763 len = skb_headlen(skb);
2764
2765 /* Sanity checks for the skb */
2766
2767 if (unlikely(skb->len <= ETH_HLEN)) {
2768 dev_kfree_skb(skb);
2769 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2770 return NETDEV_TX_OK;
2771 }
2772 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2773 dev_kfree_skb(skb);
2774 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2775 return NETDEV_TX_OK;
2776 }
2777 if (unlikely(len == 0)) {
2778 dev_kfree_skb(skb);
2779 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2780 return NETDEV_TX_OK;
2781 }
2782
2783 tcb = bnad->tx_info[0].tcb[txq_id];
2784 q_depth = tcb->q_depth;
2785 prod = tcb->producer_index;
2786
2787 unmap_q = tcb->unmap_q;
2788
2789 /*
2790 * Takes care of the Tx that is scheduled between clearing the flag
2791 * and the netif_tx_stop_all_queues() call.
2792 */
2793 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2794 dev_kfree_skb(skb);
2795 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2796 return NETDEV_TX_OK;
2797 }
2798
2799 vectors = 1 + skb_shinfo(skb)->nr_frags;
2800 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2801
2802 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2803 dev_kfree_skb(skb);
2804 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2805 return NETDEV_TX_OK;
2806 }
2807
2808 /* Check for available TxQ resources */
2809 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2810 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2811 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2812 u32 sent;
2813 sent = bnad_txcmpl_process(bnad, tcb);
2814 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2815 bna_ib_ack(tcb->i_dbell, sent);
2816 smp_mb__before_clear_bit();
2817 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2818 } else {
2819 netif_stop_queue(netdev);
2820 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2821 }
2822
2823 smp_mb();
2824 /*
2825 * Check again to deal with race condition between
2826 * netif_stop_queue here, and netif_wake_queue in
2827 * interrupt handler which is not inside netif tx lock.
2828 */
2829 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2830 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2831 return NETDEV_TX_BUSY;
2832 } else {
2833 netif_wake_queue(netdev);
2834 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2835 }
2836 }
2837
2838 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2839 head_unmap = &unmap_q[prod];
2840
2841 /* Program the opcode, flags, frame_len, num_vectors in WI */
2842 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
2843 dev_kfree_skb(skb);
2844 return NETDEV_TX_OK;
2845 }
2846 txqent->hdr.wi.reserved = 0;
2847 txqent->hdr.wi.num_vectors = vectors;
2848
2849 head_unmap->skb = skb;
2850 head_unmap->nvecs = 0;
2851
2852 /* Program the vectors */
2853 unmap = head_unmap;
2854 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2855 len, DMA_TO_DEVICE);
2856 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2857 txqent->vector[0].length = htons(len);
2858 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
2859 head_unmap->nvecs++;
2860
2861 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
2862 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2863 u16 size = skb_frag_size(frag);
2864
2865 if (unlikely(size == 0)) {
2866 /* Undo the changes starting at tcb->producer_index */
2867 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
2868 tcb->producer_index);
2869 dev_kfree_skb(skb);
2870 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2871 return NETDEV_TX_OK;
2872 }
2873
2874 len += size;
2875
2876 vect_id++;
2877 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2878 vect_id = 0;
2879 BNA_QE_INDX_INC(prod, q_depth);
2880 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2881 txqent->hdr.wi_ext.opcode =
2882 __constant_htons(BNA_TXQ_WI_EXTENSION);
2883 unmap = &unmap_q[prod];
2884 }
2885
2886 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2887 0, size, DMA_TO_DEVICE);
2888 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2889 txqent->vector[vect_id].length = htons(size);
2890 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
2891 dma_addr);
2892 head_unmap->nvecs++;
2893 }
2894
2895 if (unlikely(len != skb->len)) {
2896 /* Undo the changes starting at tcb->producer_index */
2897 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
2898 dev_kfree_skb(skb);
2899 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2900 return NETDEV_TX_OK;
2901 }
2902
2903 BNA_QE_INDX_INC(prod, q_depth);
2904 tcb->producer_index = prod;
2905
2906 smp_mb();
2907
2908 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2909 return NETDEV_TX_OK;
2910
2911 bna_txq_prod_indx_doorbell(tcb);
2912 smp_mb();
2913
2914 return NETDEV_TX_OK;
2915 }
2916
2917 /*
2918 * Used spin_lock to synchronize reading of stats structures, which
2919 * is written by BNA under the same lock.
2920 */
2921 static struct rtnl_link_stats64 *
2922 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2923 {
2924 struct bnad *bnad = netdev_priv(netdev);
2925 unsigned long flags;
2926
2927 spin_lock_irqsave(&bnad->bna_lock, flags);
2928
2929 bnad_netdev_qstats_fill(bnad, stats);
2930 bnad_netdev_hwstats_fill(bnad, stats);
2931
2932 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2933
2934 return stats;
2935 }
2936
2937 void
2938 bnad_set_rx_mode(struct net_device *netdev)
2939 {
2940 struct bnad *bnad = netdev_priv(netdev);
2941 u32 new_mask, valid_mask;
2942 unsigned long flags;
2943
2944 spin_lock_irqsave(&bnad->bna_lock, flags);
2945
2946 new_mask = valid_mask = 0;
2947
2948 if (netdev->flags & IFF_PROMISC) {
2949 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2950 new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2951 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2952 bnad->cfg_flags |= BNAD_CF_PROMISC;
2953 }
2954 } else {
2955 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2956 new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2957 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2958 bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2959 }
2960 }
2961
2962 if (netdev->flags & IFF_ALLMULTI) {
2963 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2964 new_mask |= BNA_RXMODE_ALLMULTI;
2965 valid_mask |= BNA_RXMODE_ALLMULTI;
2966 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2967 }
2968 } else {
2969 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2970 new_mask &= ~BNA_RXMODE_ALLMULTI;
2971 valid_mask |= BNA_RXMODE_ALLMULTI;
2972 bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2973 }
2974 }
2975
2976 if (bnad->rx_info[0].rx == NULL)
2977 goto unlock;
2978
2979 bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2980
2981 if (!netdev_mc_empty(netdev)) {
2982 u8 *mcaddr_list;
2983 int mc_count = netdev_mc_count(netdev);
2984
2985 /* Index 0 holds the broadcast address */
2986 mcaddr_list =
2987 kzalloc((mc_count + 1) * ETH_ALEN,
2988 GFP_ATOMIC);
2989 if (!mcaddr_list)
2990 goto unlock;
2991
2992 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2993
2994 /* Copy rest of the MC addresses */
2995 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2996
2997 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2998 mcaddr_list, NULL);
2999
3000 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
3001 kfree(mcaddr_list);
3002 }
3003 unlock:
3004 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3005 }
3006
3007 /*
3008 * bna_lock is used to sync writes to netdev->addr
3009 * conf_lock cannot be used since this call may be made
3010 * in a non-blocking context.
3011 */
3012 static int
3013 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3014 {
3015 int err;
3016 struct bnad *bnad = netdev_priv(netdev);
3017 struct sockaddr *sa = (struct sockaddr *)mac_addr;
3018 unsigned long flags;
3019
3020 spin_lock_irqsave(&bnad->bna_lock, flags);
3021
3022 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3023
3024 if (!err)
3025 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3026
3027 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3028
3029 return err;
3030 }
3031
3032 static int
3033 bnad_mtu_set(struct bnad *bnad, int mtu)
3034 {
3035 unsigned long flags;
3036
3037 init_completion(&bnad->bnad_completions.mtu_comp);
3038
3039 spin_lock_irqsave(&bnad->bna_lock, flags);
3040 bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
3041 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3042
3043 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3044
3045 return bnad->bnad_completions.mtu_comp_status;
3046 }
3047
3048 static int
3049 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3050 {
3051 int err, mtu = netdev->mtu;
3052 struct bnad *bnad = netdev_priv(netdev);
3053
3054 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3055 return -EINVAL;
3056
3057 mutex_lock(&bnad->conf_mutex);
3058
3059 netdev->mtu = new_mtu;
3060
3061 mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
3062 err = bnad_mtu_set(bnad, mtu);
3063 if (err)
3064 err = -EBUSY;
3065
3066 mutex_unlock(&bnad->conf_mutex);
3067 return err;
3068 }
3069
3070 static int
3071 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3072 {
3073 struct bnad *bnad = netdev_priv(netdev);
3074 unsigned long flags;
3075
3076 if (!bnad->rx_info[0].rx)
3077 return 0;
3078
3079 mutex_lock(&bnad->conf_mutex);
3080
3081 spin_lock_irqsave(&bnad->bna_lock, flags);
3082 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3083 set_bit(vid, bnad->active_vlans);
3084 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3085
3086 mutex_unlock(&bnad->conf_mutex);
3087
3088 return 0;
3089 }
3090
3091 static int
3092 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3093 {
3094 struct bnad *bnad = netdev_priv(netdev);
3095 unsigned long flags;
3096
3097 if (!bnad->rx_info[0].rx)
3098 return 0;
3099
3100 mutex_lock(&bnad->conf_mutex);
3101
3102 spin_lock_irqsave(&bnad->bna_lock, flags);
3103 clear_bit(vid, bnad->active_vlans);
3104 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3105 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3106
3107 mutex_unlock(&bnad->conf_mutex);
3108
3109 return 0;
3110 }
3111
3112 #ifdef CONFIG_NET_POLL_CONTROLLER
3113 static void
3114 bnad_netpoll(struct net_device *netdev)
3115 {
3116 struct bnad *bnad = netdev_priv(netdev);
3117 struct bnad_rx_info *rx_info;
3118 struct bnad_rx_ctrl *rx_ctrl;
3119 u32 curr_mask;
3120 int i, j;
3121
3122 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3123 bna_intx_disable(&bnad->bna, curr_mask);
3124 bnad_isr(bnad->pcidev->irq, netdev);
3125 bna_intx_enable(&bnad->bna, curr_mask);
3126 } else {
3127 /*
3128 * Tx processing may happen in sending context, so no need
3129 * to explicitly process completions here
3130 */
3131
3132 /* Rx processing */
3133 for (i = 0; i < bnad->num_rx; i++) {
3134 rx_info = &bnad->rx_info[i];
3135 if (!rx_info->rx)
3136 continue;
3137 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3138 rx_ctrl = &rx_info->rx_ctrl[j];
3139 if (rx_ctrl->ccb)
3140 bnad_netif_rx_schedule_poll(bnad,
3141 rx_ctrl->ccb);
3142 }
3143 }
3144 }
3145 }
3146 #endif
3147
3148 static const struct net_device_ops bnad_netdev_ops = {
3149 .ndo_open = bnad_open,
3150 .ndo_stop = bnad_stop,
3151 .ndo_start_xmit = bnad_start_xmit,
3152 .ndo_get_stats64 = bnad_get_stats64,
3153 .ndo_set_rx_mode = bnad_set_rx_mode,
3154 .ndo_validate_addr = eth_validate_addr,
3155 .ndo_set_mac_address = bnad_set_mac_address,
3156 .ndo_change_mtu = bnad_change_mtu,
3157 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3158 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3159 #ifdef CONFIG_NET_POLL_CONTROLLER
3160 .ndo_poll_controller = bnad_netpoll
3161 #endif
3162 };
3163
3164 static void
3165 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3166 {
3167 struct net_device *netdev = bnad->netdev;
3168
3169 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3170 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3171 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX;
3172
3173 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3174 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3175 NETIF_F_TSO | NETIF_F_TSO6;
3176
3177 netdev->features |= netdev->hw_features |
3178 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
3179
3180 if (using_dac)
3181 netdev->features |= NETIF_F_HIGHDMA;
3182
3183 netdev->mem_start = bnad->mmio_start;
3184 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3185
3186 netdev->netdev_ops = &bnad_netdev_ops;
3187 bnad_set_ethtool_ops(netdev);
3188 }
3189
3190 /*
3191 * 1. Initialize the bnad structure
3192 * 2. Setup netdev pointer in pci_dev
3193 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3194 * 4. Initialize work queue.
3195 */
3196 static int
3197 bnad_init(struct bnad *bnad,
3198 struct pci_dev *pdev, struct net_device *netdev)
3199 {
3200 unsigned long flags;
3201
3202 SET_NETDEV_DEV(netdev, &pdev->dev);
3203 pci_set_drvdata(pdev, netdev);
3204
3205 bnad->netdev = netdev;
3206 bnad->pcidev = pdev;
3207 bnad->mmio_start = pci_resource_start(pdev, 0);
3208 bnad->mmio_len = pci_resource_len(pdev, 0);
3209 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3210 if (!bnad->bar0) {
3211 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3212 pci_set_drvdata(pdev, NULL);
3213 return -ENOMEM;
3214 }
3215 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3216 (unsigned long long) bnad->mmio_len);
3217
3218 spin_lock_irqsave(&bnad->bna_lock, flags);
3219 if (!bnad_msix_disable)
3220 bnad->cfg_flags = BNAD_CF_MSIX;
3221
3222 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3223
3224 bnad_q_num_init(bnad);
3225 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3226
3227 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3228 (bnad->num_rx * bnad->num_rxp_per_rx) +
3229 BNAD_MAILBOX_MSIX_VECTORS;
3230
3231 bnad->txq_depth = BNAD_TXQ_DEPTH;
3232 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3233
3234 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3235 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3236
3237 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3238 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3239 if (!bnad->work_q) {
3240 iounmap(bnad->bar0);
3241 return -ENOMEM;
3242 }
3243
3244 return 0;
3245 }
3246
3247 /*
3248 * Must be called after bnad_pci_uninit()
3249 * so that iounmap() and pci_set_drvdata(NULL)
3250 * happens only after PCI uninitialization.
3251 */
3252 static void
3253 bnad_uninit(struct bnad *bnad)
3254 {
3255 if (bnad->work_q) {
3256 flush_workqueue(bnad->work_q);
3257 destroy_workqueue(bnad->work_q);
3258 bnad->work_q = NULL;
3259 }
3260
3261 if (bnad->bar0)
3262 iounmap(bnad->bar0);
3263 pci_set_drvdata(bnad->pcidev, NULL);
3264 }
3265
3266 /*
3267 * Initialize locks
3268 a) Per ioceth mutes used for serializing configuration
3269 changes from OS interface
3270 b) spin lock used to protect bna state machine
3271 */
3272 static void
3273 bnad_lock_init(struct bnad *bnad)
3274 {
3275 spin_lock_init(&bnad->bna_lock);
3276 mutex_init(&bnad->conf_mutex);
3277 mutex_init(&bnad_list_mutex);
3278 }
3279
3280 static void
3281 bnad_lock_uninit(struct bnad *bnad)
3282 {
3283 mutex_destroy(&bnad->conf_mutex);
3284 mutex_destroy(&bnad_list_mutex);
3285 }
3286
3287 /* PCI Initialization */
3288 static int
3289 bnad_pci_init(struct bnad *bnad,
3290 struct pci_dev *pdev, bool *using_dac)
3291 {
3292 int err;
3293
3294 err = pci_enable_device(pdev);
3295 if (err)
3296 return err;
3297 err = pci_request_regions(pdev, BNAD_NAME);
3298 if (err)
3299 goto disable_device;
3300 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3301 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3302 *using_dac = true;
3303 } else {
3304 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3305 if (err) {
3306 err = dma_set_coherent_mask(&pdev->dev,
3307 DMA_BIT_MASK(32));
3308 if (err)
3309 goto release_regions;
3310 }
3311 *using_dac = false;
3312 }
3313 pci_set_master(pdev);
3314 return 0;
3315
3316 release_regions:
3317 pci_release_regions(pdev);
3318 disable_device:
3319 pci_disable_device(pdev);
3320
3321 return err;
3322 }
3323
3324 static void
3325 bnad_pci_uninit(struct pci_dev *pdev)
3326 {
3327 pci_release_regions(pdev);
3328 pci_disable_device(pdev);
3329 }
3330
3331 static int
3332 bnad_pci_probe(struct pci_dev *pdev,
3333 const struct pci_device_id *pcidev_id)
3334 {
3335 bool using_dac;
3336 int err;
3337 struct bnad *bnad;
3338 struct bna *bna;
3339 struct net_device *netdev;
3340 struct bfa_pcidev pcidev_info;
3341 unsigned long flags;
3342
3343 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3344 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3345
3346 mutex_lock(&bnad_fwimg_mutex);
3347 if (!cna_get_firmware_buf(pdev)) {
3348 mutex_unlock(&bnad_fwimg_mutex);
3349 pr_warn("Failed to load Firmware Image!\n");
3350 return -ENODEV;
3351 }
3352 mutex_unlock(&bnad_fwimg_mutex);
3353
3354 /*
3355 * Allocates sizeof(struct net_device + struct bnad)
3356 * bnad = netdev->priv
3357 */
3358 netdev = alloc_etherdev(sizeof(struct bnad));
3359 if (!netdev) {
3360 err = -ENOMEM;
3361 return err;
3362 }
3363 bnad = netdev_priv(netdev);
3364 bnad_lock_init(bnad);
3365 bnad_add_to_list(bnad);
3366
3367 mutex_lock(&bnad->conf_mutex);
3368 /*
3369 * PCI initialization
3370 * Output : using_dac = 1 for 64 bit DMA
3371 * = 0 for 32 bit DMA
3372 */
3373 using_dac = false;
3374 err = bnad_pci_init(bnad, pdev, &using_dac);
3375 if (err)
3376 goto unlock_mutex;
3377
3378 /*
3379 * Initialize bnad structure
3380 * Setup relation between pci_dev & netdev
3381 */
3382 err = bnad_init(bnad, pdev, netdev);
3383 if (err)
3384 goto pci_uninit;
3385
3386 /* Initialize netdev structure, set up ethtool ops */
3387 bnad_netdev_init(bnad, using_dac);
3388
3389 /* Set link to down state */
3390 netif_carrier_off(netdev);
3391
3392 /* Setup the debugfs node for this bfad */
3393 if (bna_debugfs_enable)
3394 bnad_debugfs_init(bnad);
3395
3396 /* Get resource requirement form bna */
3397 spin_lock_irqsave(&bnad->bna_lock, flags);
3398 bna_res_req(&bnad->res_info[0]);
3399 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3400
3401 /* Allocate resources from bna */
3402 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3403 if (err)
3404 goto drv_uninit;
3405
3406 bna = &bnad->bna;
3407
3408 /* Setup pcidev_info for bna_init() */
3409 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3410 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3411 pcidev_info.device_id = bnad->pcidev->device;
3412 pcidev_info.pci_bar_kva = bnad->bar0;
3413
3414 spin_lock_irqsave(&bnad->bna_lock, flags);
3415 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3416 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3417
3418 bnad->stats.bna_stats = &bna->stats;
3419
3420 bnad_enable_msix(bnad);
3421 err = bnad_mbox_irq_alloc(bnad);
3422 if (err)
3423 goto res_free;
3424
3425 /* Set up timers */
3426 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3427 ((unsigned long)bnad));
3428 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3429 ((unsigned long)bnad));
3430 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3431 ((unsigned long)bnad));
3432 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3433 ((unsigned long)bnad));
3434
3435 /* Now start the timer before calling IOC */
3436 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3437 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3438
3439 /*
3440 * Start the chip
3441 * If the call back comes with error, we bail out.
3442 * This is a catastrophic error.
3443 */
3444 err = bnad_ioceth_enable(bnad);
3445 if (err) {
3446 pr_err("BNA: Initialization failed err=%d\n",
3447 err);
3448 goto probe_success;
3449 }
3450
3451 spin_lock_irqsave(&bnad->bna_lock, flags);
3452 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3453 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3454 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3455 bna_attr(bna)->num_rxp - 1);
3456 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3457 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3458 err = -EIO;
3459 }
3460 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3461 if (err)
3462 goto disable_ioceth;
3463
3464 spin_lock_irqsave(&bnad->bna_lock, flags);
3465 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3466 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3467
3468 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3469 if (err) {
3470 err = -EIO;
3471 goto disable_ioceth;
3472 }
3473
3474 spin_lock_irqsave(&bnad->bna_lock, flags);
3475 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3476 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3477
3478 /* Get the burnt-in mac */
3479 spin_lock_irqsave(&bnad->bna_lock, flags);
3480 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3481 bnad_set_netdev_perm_addr(bnad);
3482 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3483
3484 mutex_unlock(&bnad->conf_mutex);
3485
3486 /* Finally, reguister with net_device layer */
3487 err = register_netdev(netdev);
3488 if (err) {
3489 pr_err("BNA : Registering with netdev failed\n");
3490 goto probe_uninit;
3491 }
3492 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3493
3494 return 0;
3495
3496 probe_success:
3497 mutex_unlock(&bnad->conf_mutex);
3498 return 0;
3499
3500 probe_uninit:
3501 mutex_lock(&bnad->conf_mutex);
3502 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3503 disable_ioceth:
3504 bnad_ioceth_disable(bnad);
3505 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3506 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3507 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3508 spin_lock_irqsave(&bnad->bna_lock, flags);
3509 bna_uninit(bna);
3510 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3511 bnad_mbox_irq_free(bnad);
3512 bnad_disable_msix(bnad);
3513 res_free:
3514 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3515 drv_uninit:
3516 /* Remove the debugfs node for this bnad */
3517 kfree(bnad->regdata);
3518 bnad_debugfs_uninit(bnad);
3519 bnad_uninit(bnad);
3520 pci_uninit:
3521 bnad_pci_uninit(pdev);
3522 unlock_mutex:
3523 mutex_unlock(&bnad->conf_mutex);
3524 bnad_remove_from_list(bnad);
3525 bnad_lock_uninit(bnad);
3526 free_netdev(netdev);
3527 return err;
3528 }
3529
3530 static void
3531 bnad_pci_remove(struct pci_dev *pdev)
3532 {
3533 struct net_device *netdev = pci_get_drvdata(pdev);
3534 struct bnad *bnad;
3535 struct bna *bna;
3536 unsigned long flags;
3537
3538 if (!netdev)
3539 return;
3540
3541 pr_info("%s bnad_pci_remove\n", netdev->name);
3542 bnad = netdev_priv(netdev);
3543 bna = &bnad->bna;
3544
3545 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3546 unregister_netdev(netdev);
3547
3548 mutex_lock(&bnad->conf_mutex);
3549 bnad_ioceth_disable(bnad);
3550 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3551 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3552 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3553 spin_lock_irqsave(&bnad->bna_lock, flags);
3554 bna_uninit(bna);
3555 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3556
3557 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3558 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3559 bnad_mbox_irq_free(bnad);
3560 bnad_disable_msix(bnad);
3561 bnad_pci_uninit(pdev);
3562 mutex_unlock(&bnad->conf_mutex);
3563 bnad_remove_from_list(bnad);
3564 bnad_lock_uninit(bnad);
3565 /* Remove the debugfs node for this bnad */
3566 kfree(bnad->regdata);
3567 bnad_debugfs_uninit(bnad);
3568 bnad_uninit(bnad);
3569 free_netdev(netdev);
3570 }
3571
3572 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3573 {
3574 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3575 PCI_DEVICE_ID_BROCADE_CT),
3576 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3577 .class_mask = 0xffff00
3578 },
3579 {
3580 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3581 BFA_PCI_DEVICE_ID_CT2),
3582 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3583 .class_mask = 0xffff00
3584 },
3585 {0, },
3586 };
3587
3588 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3589
3590 static struct pci_driver bnad_pci_driver = {
3591 .name = BNAD_NAME,
3592 .id_table = bnad_pci_id_table,
3593 .probe = bnad_pci_probe,
3594 .remove = bnad_pci_remove,
3595 };
3596
3597 static int __init
3598 bnad_module_init(void)
3599 {
3600 int err;
3601
3602 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3603 BNAD_VERSION);
3604
3605 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3606
3607 err = pci_register_driver(&bnad_pci_driver);
3608 if (err < 0) {
3609 pr_err("bna : PCI registration failed in module init "
3610 "(%d)\n", err);
3611 return err;
3612 }
3613
3614 return 0;
3615 }
3616
3617 static void __exit
3618 bnad_module_exit(void)
3619 {
3620 pci_unregister_driver(&bnad_pci_driver);
3621 release_firmware(bfi_fw);
3622 }
3623
3624 module_init(bnad_module_init);
3625 module_exit(bnad_module_exit);
3626
3627 MODULE_AUTHOR("Brocade");
3628 MODULE_LICENSE("GPL");
3629 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3630 MODULE_VERSION(BNAD_VERSION);
3631 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3632 MODULE_FIRMWARE(CNA_FW_FILE_CT2);