]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/cadence/macb.c
spi: dw: Use SPI_TMOD_TR rather than magic const 0 to set tmode
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / cadence / macb.c
1 /*
2 * Cadence MACB/GEM Ethernet Controller driver
3 *
4 * Copyright (C) 2004-2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/circ_buf.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_data/macb.h>
27 #include <linux/platform_device.h>
28 #include <linux/phy.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33
34 #include "macb.h"
35
36 #define MACB_RX_BUFFER_SIZE 128
37 #define RX_BUFFER_MULTIPLE 64 /* bytes */
38 #define RX_RING_SIZE 512 /* must be power of 2 */
39 #define RX_RING_BYTES (sizeof(struct macb_dma_desc) * RX_RING_SIZE)
40
41 #define TX_RING_SIZE 128 /* must be power of 2 */
42 #define TX_RING_BYTES (sizeof(struct macb_dma_desc) * TX_RING_SIZE)
43
44 /* level of occupied TX descriptors under which we wake up TX process */
45 #define MACB_TX_WAKEUP_THRESH (3 * TX_RING_SIZE / 4)
46
47 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \
48 | MACB_BIT(ISR_ROVR))
49 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \
50 | MACB_BIT(ISR_RLE) \
51 | MACB_BIT(TXERR))
52 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP))
53
54 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1))
55 #define GEM_MAX_TX_LEN ((unsigned int)((1 << GEM_TX_FRMLEN_SIZE) - 1))
56
57 #define GEM_MTU_MIN_SIZE 68
58
59 /*
60 * Graceful stop timeouts in us. We should allow up to
61 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
62 */
63 #define MACB_HALT_TIMEOUT 1230
64
65 /* Ring buffer accessors */
66 static unsigned int macb_tx_ring_wrap(unsigned int index)
67 {
68 return index & (TX_RING_SIZE - 1);
69 }
70
71 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
72 unsigned int index)
73 {
74 return &queue->tx_ring[macb_tx_ring_wrap(index)];
75 }
76
77 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
78 unsigned int index)
79 {
80 return &queue->tx_skb[macb_tx_ring_wrap(index)];
81 }
82
83 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
84 {
85 dma_addr_t offset;
86
87 offset = macb_tx_ring_wrap(index) * sizeof(struct macb_dma_desc);
88
89 return queue->tx_ring_dma + offset;
90 }
91
92 static unsigned int macb_rx_ring_wrap(unsigned int index)
93 {
94 return index & (RX_RING_SIZE - 1);
95 }
96
97 static struct macb_dma_desc *macb_rx_desc(struct macb *bp, unsigned int index)
98 {
99 return &bp->rx_ring[macb_rx_ring_wrap(index)];
100 }
101
102 static void *macb_rx_buffer(struct macb *bp, unsigned int index)
103 {
104 return bp->rx_buffers + bp->rx_buffer_size * macb_rx_ring_wrap(index);
105 }
106
107 /* I/O accessors */
108 static u32 hw_readl_native(struct macb *bp, int offset)
109 {
110 return __raw_readl(bp->regs + offset);
111 }
112
113 static void hw_writel_native(struct macb *bp, int offset, u32 value)
114 {
115 __raw_writel(value, bp->regs + offset);
116 }
117
118 static u32 hw_readl(struct macb *bp, int offset)
119 {
120 return readl_relaxed(bp->regs + offset);
121 }
122
123 static void hw_writel(struct macb *bp, int offset, u32 value)
124 {
125 writel_relaxed(value, bp->regs + offset);
126 }
127
128 /*
129 * Find the CPU endianness by using the loopback bit of NCR register. When the
130 * CPU is in big endian we need to program swaped mode for management
131 * descriptor access.
132 */
133 static bool hw_is_native_io(void __iomem *addr)
134 {
135 u32 value = MACB_BIT(LLB);
136
137 __raw_writel(value, addr + MACB_NCR);
138 value = __raw_readl(addr + MACB_NCR);
139
140 /* Write 0 back to disable everything */
141 __raw_writel(0, addr + MACB_NCR);
142
143 return value == MACB_BIT(LLB);
144 }
145
146 static bool hw_is_gem(void __iomem *addr, bool native_io)
147 {
148 u32 id;
149
150 if (native_io)
151 id = __raw_readl(addr + MACB_MID);
152 else
153 id = readl_relaxed(addr + MACB_MID);
154
155 return MACB_BFEXT(IDNUM, id) >= 0x2;
156 }
157
158 static void macb_set_hwaddr(struct macb *bp)
159 {
160 u32 bottom;
161 u16 top;
162
163 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
164 macb_or_gem_writel(bp, SA1B, bottom);
165 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
166 macb_or_gem_writel(bp, SA1T, top);
167
168 /* Clear unused address register sets */
169 macb_or_gem_writel(bp, SA2B, 0);
170 macb_or_gem_writel(bp, SA2T, 0);
171 macb_or_gem_writel(bp, SA3B, 0);
172 macb_or_gem_writel(bp, SA3T, 0);
173 macb_or_gem_writel(bp, SA4B, 0);
174 macb_or_gem_writel(bp, SA4T, 0);
175 }
176
177 static void macb_get_hwaddr(struct macb *bp)
178 {
179 struct macb_platform_data *pdata;
180 u32 bottom;
181 u16 top;
182 u8 addr[6];
183 int i;
184
185 pdata = dev_get_platdata(&bp->pdev->dev);
186
187 /* Check all 4 address register for vaild address */
188 for (i = 0; i < 4; i++) {
189 bottom = macb_or_gem_readl(bp, SA1B + i * 8);
190 top = macb_or_gem_readl(bp, SA1T + i * 8);
191
192 if (pdata && pdata->rev_eth_addr) {
193 addr[5] = bottom & 0xff;
194 addr[4] = (bottom >> 8) & 0xff;
195 addr[3] = (bottom >> 16) & 0xff;
196 addr[2] = (bottom >> 24) & 0xff;
197 addr[1] = top & 0xff;
198 addr[0] = (top & 0xff00) >> 8;
199 } else {
200 addr[0] = bottom & 0xff;
201 addr[1] = (bottom >> 8) & 0xff;
202 addr[2] = (bottom >> 16) & 0xff;
203 addr[3] = (bottom >> 24) & 0xff;
204 addr[4] = top & 0xff;
205 addr[5] = (top >> 8) & 0xff;
206 }
207
208 if (is_valid_ether_addr(addr)) {
209 memcpy(bp->dev->dev_addr, addr, sizeof(addr));
210 return;
211 }
212 }
213
214 dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
215 eth_hw_addr_random(bp->dev);
216 }
217
218 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
219 {
220 struct macb *bp = bus->priv;
221 int value;
222
223 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
224 | MACB_BF(RW, MACB_MAN_READ)
225 | MACB_BF(PHYA, mii_id)
226 | MACB_BF(REGA, regnum)
227 | MACB_BF(CODE, MACB_MAN_CODE)));
228
229 /* wait for end of transfer */
230 while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
231 cpu_relax();
232
233 value = MACB_BFEXT(DATA, macb_readl(bp, MAN));
234
235 return value;
236 }
237
238 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
239 u16 value)
240 {
241 struct macb *bp = bus->priv;
242
243 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
244 | MACB_BF(RW, MACB_MAN_WRITE)
245 | MACB_BF(PHYA, mii_id)
246 | MACB_BF(REGA, regnum)
247 | MACB_BF(CODE, MACB_MAN_CODE)
248 | MACB_BF(DATA, value)));
249
250 /* wait for end of transfer */
251 while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
252 cpu_relax();
253
254 return 0;
255 }
256
257 /**
258 * macb_set_tx_clk() - Set a clock to a new frequency
259 * @clk Pointer to the clock to change
260 * @rate New frequency in Hz
261 * @dev Pointer to the struct net_device
262 */
263 static void macb_set_tx_clk(struct clk *clk, int speed, struct net_device *dev)
264 {
265 long ferr, rate, rate_rounded;
266
267 if (!clk)
268 return;
269
270 switch (speed) {
271 case SPEED_10:
272 rate = 2500000;
273 break;
274 case SPEED_100:
275 rate = 25000000;
276 break;
277 case SPEED_1000:
278 rate = 125000000;
279 break;
280 default:
281 return;
282 }
283
284 rate_rounded = clk_round_rate(clk, rate);
285 if (rate_rounded < 0)
286 return;
287
288 /* RGMII allows 50 ppm frequency error. Test and warn if this limit
289 * is not satisfied.
290 */
291 ferr = abs(rate_rounded - rate);
292 ferr = DIV_ROUND_UP(ferr, rate / 100000);
293 if (ferr > 5)
294 netdev_warn(dev, "unable to generate target frequency: %ld Hz\n",
295 rate);
296
297 if (clk_set_rate(clk, rate_rounded))
298 netdev_err(dev, "adjusting tx_clk failed.\n");
299 }
300
301 static void macb_handle_link_change(struct net_device *dev)
302 {
303 struct macb *bp = netdev_priv(dev);
304 struct phy_device *phydev = bp->phy_dev;
305 unsigned long flags;
306 int status_change = 0;
307
308 spin_lock_irqsave(&bp->lock, flags);
309
310 if (phydev->link) {
311 if ((bp->speed != phydev->speed) ||
312 (bp->duplex != phydev->duplex)) {
313 u32 reg;
314
315 reg = macb_readl(bp, NCFGR);
316 reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
317 if (macb_is_gem(bp))
318 reg &= ~GEM_BIT(GBE);
319
320 if (phydev->duplex)
321 reg |= MACB_BIT(FD);
322 if (phydev->speed == SPEED_100)
323 reg |= MACB_BIT(SPD);
324 if (phydev->speed == SPEED_1000 &&
325 bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
326 reg |= GEM_BIT(GBE);
327
328 macb_or_gem_writel(bp, NCFGR, reg);
329
330 bp->speed = phydev->speed;
331 bp->duplex = phydev->duplex;
332 status_change = 1;
333 }
334 }
335
336 if (phydev->link != bp->link) {
337 if (!phydev->link) {
338 bp->speed = 0;
339 bp->duplex = -1;
340 }
341 bp->link = phydev->link;
342
343 status_change = 1;
344 }
345
346 spin_unlock_irqrestore(&bp->lock, flags);
347
348 if (status_change) {
349 if (phydev->link) {
350 /* Update the TX clock rate if and only if the link is
351 * up and there has been a link change.
352 */
353 macb_set_tx_clk(bp->tx_clk, phydev->speed, dev);
354
355 netif_carrier_on(dev);
356 netdev_info(dev, "link up (%d/%s)\n",
357 phydev->speed,
358 phydev->duplex == DUPLEX_FULL ?
359 "Full" : "Half");
360 } else {
361 netif_carrier_off(dev);
362 netdev_info(dev, "link down\n");
363 }
364 }
365 }
366
367 /* based on au1000_eth. c*/
368 static int macb_mii_probe(struct net_device *dev)
369 {
370 struct macb *bp = netdev_priv(dev);
371 struct macb_platform_data *pdata;
372 struct phy_device *phydev;
373 int phy_irq;
374 int ret;
375
376 phydev = phy_find_first(bp->mii_bus);
377 if (!phydev) {
378 netdev_err(dev, "no PHY found\n");
379 return -ENXIO;
380 }
381
382 pdata = dev_get_platdata(&bp->pdev->dev);
383 if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
384 ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin, "phy int");
385 if (!ret) {
386 phy_irq = gpio_to_irq(pdata->phy_irq_pin);
387 phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
388 }
389 }
390
391 /* attach the mac to the phy */
392 ret = phy_connect_direct(dev, phydev, &macb_handle_link_change,
393 bp->phy_interface);
394 if (ret) {
395 netdev_err(dev, "Could not attach to PHY\n");
396 return ret;
397 }
398
399 /* mask with MAC supported features */
400 if (macb_is_gem(bp) && bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
401 phydev->supported &= PHY_GBIT_FEATURES;
402 else
403 phydev->supported &= PHY_BASIC_FEATURES;
404
405 if (bp->caps & MACB_CAPS_NO_GIGABIT_HALF)
406 phydev->supported &= ~SUPPORTED_1000baseT_Half;
407
408 phydev->advertising = phydev->supported;
409
410 bp->link = 0;
411 bp->speed = 0;
412 bp->duplex = -1;
413 bp->phy_dev = phydev;
414
415 return 0;
416 }
417
418 static int macb_mii_init(struct macb *bp)
419 {
420 struct macb_platform_data *pdata;
421 struct device_node *np;
422 int err = -ENXIO, i;
423
424 /* Enable management port */
425 macb_writel(bp, NCR, MACB_BIT(MPE));
426
427 bp->mii_bus = mdiobus_alloc();
428 if (bp->mii_bus == NULL) {
429 err = -ENOMEM;
430 goto err_out;
431 }
432
433 bp->mii_bus->name = "MACB_mii_bus";
434 bp->mii_bus->read = &macb_mdio_read;
435 bp->mii_bus->write = &macb_mdio_write;
436 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
437 bp->pdev->name, bp->pdev->id);
438 bp->mii_bus->priv = bp;
439 bp->mii_bus->parent = &bp->dev->dev;
440 pdata = dev_get_platdata(&bp->pdev->dev);
441
442 bp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
443 if (!bp->mii_bus->irq) {
444 err = -ENOMEM;
445 goto err_out_free_mdiobus;
446 }
447
448 dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
449
450 np = bp->pdev->dev.of_node;
451 if (np) {
452 /* try dt phy registration */
453 err = of_mdiobus_register(bp->mii_bus, np);
454
455 /* fallback to standard phy registration if no phy were
456 found during dt phy registration */
457 if (!err && !phy_find_first(bp->mii_bus)) {
458 for (i = 0; i < PHY_MAX_ADDR; i++) {
459 struct phy_device *phydev;
460
461 phydev = mdiobus_scan(bp->mii_bus, i);
462 if (IS_ERR(phydev)) {
463 err = PTR_ERR(phydev);
464 break;
465 }
466 }
467
468 if (err)
469 goto err_out_unregister_bus;
470 }
471 } else {
472 for (i = 0; i < PHY_MAX_ADDR; i++)
473 bp->mii_bus->irq[i] = PHY_POLL;
474
475 if (pdata)
476 bp->mii_bus->phy_mask = pdata->phy_mask;
477
478 err = mdiobus_register(bp->mii_bus);
479 }
480
481 if (err)
482 goto err_out_free_mdio_irq;
483
484 err = macb_mii_probe(bp->dev);
485 if (err)
486 goto err_out_unregister_bus;
487
488 return 0;
489
490 err_out_unregister_bus:
491 mdiobus_unregister(bp->mii_bus);
492 err_out_free_mdio_irq:
493 kfree(bp->mii_bus->irq);
494 err_out_free_mdiobus:
495 mdiobus_free(bp->mii_bus);
496 err_out:
497 return err;
498 }
499
500 static void macb_update_stats(struct macb *bp)
501 {
502 u32 *p = &bp->hw_stats.macb.rx_pause_frames;
503 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
504 int offset = MACB_PFR;
505
506 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
507
508 for(; p < end; p++, offset += 4)
509 *p += bp->macb_reg_readl(bp, offset);
510 }
511
512 static int macb_halt_tx(struct macb *bp)
513 {
514 unsigned long halt_time, timeout;
515 u32 status;
516
517 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
518
519 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
520 do {
521 halt_time = jiffies;
522 status = macb_readl(bp, TSR);
523 if (!(status & MACB_BIT(TGO)))
524 return 0;
525
526 usleep_range(10, 250);
527 } while (time_before(halt_time, timeout));
528
529 return -ETIMEDOUT;
530 }
531
532 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb)
533 {
534 if (tx_skb->mapping) {
535 if (tx_skb->mapped_as_page)
536 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
537 tx_skb->size, DMA_TO_DEVICE);
538 else
539 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
540 tx_skb->size, DMA_TO_DEVICE);
541 tx_skb->mapping = 0;
542 }
543
544 if (tx_skb->skb) {
545 dev_kfree_skb_any(tx_skb->skb);
546 tx_skb->skb = NULL;
547 }
548 }
549
550 static void macb_tx_error_task(struct work_struct *work)
551 {
552 struct macb_queue *queue = container_of(work, struct macb_queue,
553 tx_error_task);
554 struct macb *bp = queue->bp;
555 struct macb_tx_skb *tx_skb;
556 struct macb_dma_desc *desc;
557 struct sk_buff *skb;
558 unsigned int tail;
559 unsigned long flags;
560
561 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
562 (unsigned int)(queue - bp->queues),
563 queue->tx_tail, queue->tx_head);
564
565 /* Prevent the queue IRQ handlers from running: each of them may call
566 * macb_tx_interrupt(), which in turn may call netif_wake_subqueue().
567 * As explained below, we have to halt the transmission before updating
568 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
569 * network engine about the macb/gem being halted.
570 */
571 spin_lock_irqsave(&bp->lock, flags);
572
573 /* Make sure nobody is trying to queue up new packets */
574 netif_tx_stop_all_queues(bp->dev);
575
576 /*
577 * Stop transmission now
578 * (in case we have just queued new packets)
579 * macb/gem must be halted to write TBQP register
580 */
581 if (macb_halt_tx(bp))
582 /* Just complain for now, reinitializing TX path can be good */
583 netdev_err(bp->dev, "BUG: halt tx timed out\n");
584
585 /*
586 * Treat frames in TX queue including the ones that caused the error.
587 * Free transmit buffers in upper layer.
588 */
589 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
590 u32 ctrl;
591
592 desc = macb_tx_desc(queue, tail);
593 ctrl = desc->ctrl;
594 tx_skb = macb_tx_skb(queue, tail);
595 skb = tx_skb->skb;
596
597 if (ctrl & MACB_BIT(TX_USED)) {
598 /* skb is set for the last buffer of the frame */
599 while (!skb) {
600 macb_tx_unmap(bp, tx_skb);
601 tail++;
602 tx_skb = macb_tx_skb(queue, tail);
603 skb = tx_skb->skb;
604 }
605
606 /* ctrl still refers to the first buffer descriptor
607 * since it's the only one written back by the hardware
608 */
609 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
610 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
611 macb_tx_ring_wrap(tail), skb->data);
612 bp->stats.tx_packets++;
613 bp->stats.tx_bytes += skb->len;
614 }
615 } else {
616 /*
617 * "Buffers exhausted mid-frame" errors may only happen
618 * if the driver is buggy, so complain loudly about those.
619 * Statistics are updated by hardware.
620 */
621 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
622 netdev_err(bp->dev,
623 "BUG: TX buffers exhausted mid-frame\n");
624
625 desc->ctrl = ctrl | MACB_BIT(TX_USED);
626 }
627
628 macb_tx_unmap(bp, tx_skb);
629 }
630
631 /* Set end of TX queue */
632 desc = macb_tx_desc(queue, 0);
633 desc->addr = 0;
634 desc->ctrl = MACB_BIT(TX_USED);
635
636 /* Make descriptor updates visible to hardware */
637 wmb();
638
639 /* Reinitialize the TX desc queue */
640 queue_writel(queue, TBQP, queue->tx_ring_dma);
641 /* Make TX ring reflect state of hardware */
642 queue->tx_head = 0;
643 queue->tx_tail = 0;
644
645 /* Housework before enabling TX IRQ */
646 macb_writel(bp, TSR, macb_readl(bp, TSR));
647 queue_writel(queue, IER, MACB_TX_INT_FLAGS);
648
649 /* Now we are ready to start transmission again */
650 netif_tx_start_all_queues(bp->dev);
651 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
652
653 spin_unlock_irqrestore(&bp->lock, flags);
654 }
655
656 static void macb_tx_interrupt(struct macb_queue *queue)
657 {
658 unsigned int tail;
659 unsigned int head;
660 u32 status;
661 struct macb *bp = queue->bp;
662 u16 queue_index = queue - bp->queues;
663
664 status = macb_readl(bp, TSR);
665 macb_writel(bp, TSR, status);
666
667 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
668 queue_writel(queue, ISR, MACB_BIT(TCOMP));
669
670 netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n",
671 (unsigned long)status);
672
673 head = queue->tx_head;
674 for (tail = queue->tx_tail; tail != head; tail++) {
675 struct macb_tx_skb *tx_skb;
676 struct sk_buff *skb;
677 struct macb_dma_desc *desc;
678 u32 ctrl;
679
680 desc = macb_tx_desc(queue, tail);
681
682 /* Make hw descriptor updates visible to CPU */
683 rmb();
684
685 ctrl = desc->ctrl;
686
687 /* TX_USED bit is only set by hardware on the very first buffer
688 * descriptor of the transmitted frame.
689 */
690 if (!(ctrl & MACB_BIT(TX_USED)))
691 break;
692
693 /* Process all buffers of the current transmitted frame */
694 for (;; tail++) {
695 tx_skb = macb_tx_skb(queue, tail);
696 skb = tx_skb->skb;
697
698 /* First, update TX stats if needed */
699 if (skb) {
700 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
701 macb_tx_ring_wrap(tail), skb->data);
702 bp->stats.tx_packets++;
703 bp->stats.tx_bytes += skb->len;
704 }
705
706 /* Now we can safely release resources */
707 macb_tx_unmap(bp, tx_skb);
708
709 /* skb is set only for the last buffer of the frame.
710 * WARNING: at this point skb has been freed by
711 * macb_tx_unmap().
712 */
713 if (skb)
714 break;
715 }
716 }
717
718 queue->tx_tail = tail;
719 if (__netif_subqueue_stopped(bp->dev, queue_index) &&
720 CIRC_CNT(queue->tx_head, queue->tx_tail,
721 TX_RING_SIZE) <= MACB_TX_WAKEUP_THRESH)
722 netif_wake_subqueue(bp->dev, queue_index);
723 }
724
725 static void gem_rx_refill(struct macb *bp)
726 {
727 unsigned int entry;
728 struct sk_buff *skb;
729 dma_addr_t paddr;
730
731 while (CIRC_SPACE(bp->rx_prepared_head, bp->rx_tail, RX_RING_SIZE) > 0) {
732 entry = macb_rx_ring_wrap(bp->rx_prepared_head);
733
734 /* Make hw descriptor updates visible to CPU */
735 rmb();
736
737 bp->rx_prepared_head++;
738
739 if (bp->rx_skbuff[entry] == NULL) {
740 /* allocate sk_buff for this free entry in ring */
741 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
742 if (unlikely(skb == NULL)) {
743 netdev_err(bp->dev,
744 "Unable to allocate sk_buff\n");
745 break;
746 }
747
748 /* now fill corresponding descriptor entry */
749 paddr = dma_map_single(&bp->pdev->dev, skb->data,
750 bp->rx_buffer_size, DMA_FROM_DEVICE);
751 if (dma_mapping_error(&bp->pdev->dev, paddr)) {
752 dev_kfree_skb(skb);
753 break;
754 }
755
756 bp->rx_skbuff[entry] = skb;
757
758 if (entry == RX_RING_SIZE - 1)
759 paddr |= MACB_BIT(RX_WRAP);
760 bp->rx_ring[entry].addr = paddr;
761 bp->rx_ring[entry].ctrl = 0;
762
763 /* properly align Ethernet header */
764 skb_reserve(skb, NET_IP_ALIGN);
765 } else {
766 bp->rx_ring[entry].addr &= ~MACB_BIT(RX_USED);
767 bp->rx_ring[entry].ctrl = 0;
768 }
769 }
770
771 /* Make descriptor updates visible to hardware */
772 wmb();
773
774 netdev_vdbg(bp->dev, "rx ring: prepared head %d, tail %d\n",
775 bp->rx_prepared_head, bp->rx_tail);
776 }
777
778 /* Mark DMA descriptors from begin up to and not including end as unused */
779 static void discard_partial_frame(struct macb *bp, unsigned int begin,
780 unsigned int end)
781 {
782 unsigned int frag;
783
784 for (frag = begin; frag != end; frag++) {
785 struct macb_dma_desc *desc = macb_rx_desc(bp, frag);
786 desc->addr &= ~MACB_BIT(RX_USED);
787 }
788
789 /* Make descriptor updates visible to hardware */
790 wmb();
791
792 /*
793 * When this happens, the hardware stats registers for
794 * whatever caused this is updated, so we don't have to record
795 * anything.
796 */
797 }
798
799 static int gem_rx(struct macb *bp, int budget)
800 {
801 unsigned int len;
802 unsigned int entry;
803 struct sk_buff *skb;
804 struct macb_dma_desc *desc;
805 int count = 0;
806
807 while (count < budget) {
808 u32 addr, ctrl;
809
810 entry = macb_rx_ring_wrap(bp->rx_tail);
811 desc = &bp->rx_ring[entry];
812
813 /* Make hw descriptor updates visible to CPU */
814 rmb();
815
816 addr = desc->addr;
817 ctrl = desc->ctrl;
818
819 if (!(addr & MACB_BIT(RX_USED)))
820 break;
821
822 bp->rx_tail++;
823 count++;
824
825 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
826 netdev_err(bp->dev,
827 "not whole frame pointed by descriptor\n");
828 bp->stats.rx_dropped++;
829 break;
830 }
831 skb = bp->rx_skbuff[entry];
832 if (unlikely(!skb)) {
833 netdev_err(bp->dev,
834 "inconsistent Rx descriptor chain\n");
835 bp->stats.rx_dropped++;
836 break;
837 }
838 /* now everything is ready for receiving packet */
839 bp->rx_skbuff[entry] = NULL;
840 len = ctrl & bp->rx_frm_len_mask;
841
842 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
843
844 skb_put(skb, len);
845 addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, addr));
846 dma_unmap_single(&bp->pdev->dev, addr,
847 bp->rx_buffer_size, DMA_FROM_DEVICE);
848
849 skb->protocol = eth_type_trans(skb, bp->dev);
850 skb_checksum_none_assert(skb);
851 if (bp->dev->features & NETIF_F_RXCSUM &&
852 !(bp->dev->flags & IFF_PROMISC) &&
853 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
854 skb->ip_summed = CHECKSUM_UNNECESSARY;
855
856 bp->stats.rx_packets++;
857 bp->stats.rx_bytes += skb->len;
858
859 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
860 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
861 skb->len, skb->csum);
862 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
863 skb_mac_header(skb), 16, true);
864 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
865 skb->data, 32, true);
866 #endif
867
868 netif_receive_skb(skb);
869 }
870
871 gem_rx_refill(bp);
872
873 return count;
874 }
875
876 static int macb_rx_frame(struct macb *bp, unsigned int first_frag,
877 unsigned int last_frag)
878 {
879 unsigned int len;
880 unsigned int frag;
881 unsigned int offset;
882 struct sk_buff *skb;
883 struct macb_dma_desc *desc;
884
885 desc = macb_rx_desc(bp, last_frag);
886 len = desc->ctrl & bp->rx_frm_len_mask;
887
888 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
889 macb_rx_ring_wrap(first_frag),
890 macb_rx_ring_wrap(last_frag), len);
891
892 /*
893 * The ethernet header starts NET_IP_ALIGN bytes into the
894 * first buffer. Since the header is 14 bytes, this makes the
895 * payload word-aligned.
896 *
897 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
898 * the two padding bytes into the skb so that we avoid hitting
899 * the slowpath in memcpy(), and pull them off afterwards.
900 */
901 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
902 if (!skb) {
903 bp->stats.rx_dropped++;
904 for (frag = first_frag; ; frag++) {
905 desc = macb_rx_desc(bp, frag);
906 desc->addr &= ~MACB_BIT(RX_USED);
907 if (frag == last_frag)
908 break;
909 }
910
911 /* Make descriptor updates visible to hardware */
912 wmb();
913
914 return 1;
915 }
916
917 offset = 0;
918 len += NET_IP_ALIGN;
919 skb_checksum_none_assert(skb);
920 skb_put(skb, len);
921
922 for (frag = first_frag; ; frag++) {
923 unsigned int frag_len = bp->rx_buffer_size;
924
925 if (offset + frag_len > len) {
926 BUG_ON(frag != last_frag);
927 frag_len = len - offset;
928 }
929 skb_copy_to_linear_data_offset(skb, offset,
930 macb_rx_buffer(bp, frag), frag_len);
931 offset += bp->rx_buffer_size;
932 desc = macb_rx_desc(bp, frag);
933 desc->addr &= ~MACB_BIT(RX_USED);
934
935 if (frag == last_frag)
936 break;
937 }
938
939 /* Make descriptor updates visible to hardware */
940 wmb();
941
942 __skb_pull(skb, NET_IP_ALIGN);
943 skb->protocol = eth_type_trans(skb, bp->dev);
944
945 bp->stats.rx_packets++;
946 bp->stats.rx_bytes += skb->len;
947 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
948 skb->len, skb->csum);
949 netif_receive_skb(skb);
950
951 return 0;
952 }
953
954 static int macb_rx(struct macb *bp, int budget)
955 {
956 int received = 0;
957 unsigned int tail;
958 int first_frag = -1;
959
960 for (tail = bp->rx_tail; budget > 0; tail++) {
961 struct macb_dma_desc *desc = macb_rx_desc(bp, tail);
962 u32 addr, ctrl;
963
964 /* Make hw descriptor updates visible to CPU */
965 rmb();
966
967 addr = desc->addr;
968 ctrl = desc->ctrl;
969
970 if (!(addr & MACB_BIT(RX_USED)))
971 break;
972
973 if (ctrl & MACB_BIT(RX_SOF)) {
974 if (first_frag != -1)
975 discard_partial_frame(bp, first_frag, tail);
976 first_frag = tail;
977 }
978
979 if (ctrl & MACB_BIT(RX_EOF)) {
980 int dropped;
981 BUG_ON(first_frag == -1);
982
983 dropped = macb_rx_frame(bp, first_frag, tail);
984 first_frag = -1;
985 if (!dropped) {
986 received++;
987 budget--;
988 }
989 }
990 }
991
992 if (first_frag != -1)
993 bp->rx_tail = first_frag;
994 else
995 bp->rx_tail = tail;
996
997 return received;
998 }
999
1000 static int macb_poll(struct napi_struct *napi, int budget)
1001 {
1002 struct macb *bp = container_of(napi, struct macb, napi);
1003 int work_done;
1004 u32 status;
1005
1006 status = macb_readl(bp, RSR);
1007 macb_writel(bp, RSR, status);
1008
1009 work_done = 0;
1010
1011 netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n",
1012 (unsigned long)status, budget);
1013
1014 work_done = bp->macbgem_ops.mog_rx(bp, budget);
1015 if (work_done < budget) {
1016 napi_complete(napi);
1017
1018 /* Packets received while interrupts were disabled */
1019 status = macb_readl(bp, RSR);
1020 if (status) {
1021 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1022 macb_writel(bp, ISR, MACB_BIT(RCOMP));
1023 napi_reschedule(napi);
1024 } else {
1025 macb_writel(bp, IER, MACB_RX_INT_FLAGS);
1026 }
1027 }
1028
1029 /* TODO: Handle errors */
1030
1031 return work_done;
1032 }
1033
1034 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1035 {
1036 struct macb_queue *queue = dev_id;
1037 struct macb *bp = queue->bp;
1038 struct net_device *dev = bp->dev;
1039 u32 status, ctrl;
1040
1041 status = queue_readl(queue, ISR);
1042
1043 if (unlikely(!status))
1044 return IRQ_NONE;
1045
1046 spin_lock(&bp->lock);
1047
1048 while (status) {
1049 /* close possible race with dev_close */
1050 if (unlikely(!netif_running(dev))) {
1051 queue_writel(queue, IDR, -1);
1052 break;
1053 }
1054
1055 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1056 (unsigned int)(queue - bp->queues),
1057 (unsigned long)status);
1058
1059 if (status & MACB_RX_INT_FLAGS) {
1060 /*
1061 * There's no point taking any more interrupts
1062 * until we have processed the buffers. The
1063 * scheduling call may fail if the poll routine
1064 * is already scheduled, so disable interrupts
1065 * now.
1066 */
1067 queue_writel(queue, IDR, MACB_RX_INT_FLAGS);
1068 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1069 queue_writel(queue, ISR, MACB_BIT(RCOMP));
1070
1071 if (napi_schedule_prep(&bp->napi)) {
1072 netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1073 __napi_schedule(&bp->napi);
1074 }
1075 }
1076
1077 if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1078 queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1079 schedule_work(&queue->tx_error_task);
1080
1081 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1082 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1083
1084 break;
1085 }
1086
1087 if (status & MACB_BIT(TCOMP))
1088 macb_tx_interrupt(queue);
1089
1090 /*
1091 * Link change detection isn't possible with RMII, so we'll
1092 * add that if/when we get our hands on a full-blown MII PHY.
1093 */
1094
1095 /* There is a hardware issue under heavy load where DMA can
1096 * stop, this causes endless "used buffer descriptor read"
1097 * interrupts but it can be cleared by re-enabling RX. See
1098 * the at91 manual, section 41.3.1 or the Zynq manual
1099 * section 16.7.4 for details.
1100 */
1101 if (status & MACB_BIT(RXUBR)) {
1102 ctrl = macb_readl(bp, NCR);
1103 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1104 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1105
1106 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1107 macb_writel(bp, ISR, MACB_BIT(RXUBR));
1108 }
1109
1110 if (status & MACB_BIT(ISR_ROVR)) {
1111 /* We missed at least one packet */
1112 if (macb_is_gem(bp))
1113 bp->hw_stats.gem.rx_overruns++;
1114 else
1115 bp->hw_stats.macb.rx_overruns++;
1116
1117 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1118 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1119 }
1120
1121 if (status & MACB_BIT(HRESP)) {
1122 /*
1123 * TODO: Reset the hardware, and maybe move the
1124 * netdev_err to a lower-priority context as well
1125 * (work queue?)
1126 */
1127 netdev_err(dev, "DMA bus error: HRESP not OK\n");
1128
1129 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1130 queue_writel(queue, ISR, MACB_BIT(HRESP));
1131 }
1132
1133 status = queue_readl(queue, ISR);
1134 }
1135
1136 spin_unlock(&bp->lock);
1137
1138 return IRQ_HANDLED;
1139 }
1140
1141 #ifdef CONFIG_NET_POLL_CONTROLLER
1142 /*
1143 * Polling receive - used by netconsole and other diagnostic tools
1144 * to allow network i/o with interrupts disabled.
1145 */
1146 static void macb_poll_controller(struct net_device *dev)
1147 {
1148 struct macb *bp = netdev_priv(dev);
1149 struct macb_queue *queue;
1150 unsigned long flags;
1151 unsigned int q;
1152
1153 local_irq_save(flags);
1154 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1155 macb_interrupt(dev->irq, queue);
1156 local_irq_restore(flags);
1157 }
1158 #endif
1159
1160 static unsigned int macb_tx_map(struct macb *bp,
1161 struct macb_queue *queue,
1162 struct sk_buff *skb)
1163 {
1164 dma_addr_t mapping;
1165 unsigned int len, entry, i, tx_head = queue->tx_head;
1166 struct macb_tx_skb *tx_skb = NULL;
1167 struct macb_dma_desc *desc;
1168 unsigned int offset, size, count = 0;
1169 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1170 unsigned int eof = 1;
1171 u32 ctrl;
1172
1173 /* First, map non-paged data */
1174 len = skb_headlen(skb);
1175 offset = 0;
1176 while (len) {
1177 size = min(len, bp->max_tx_length);
1178 entry = macb_tx_ring_wrap(tx_head);
1179 tx_skb = &queue->tx_skb[entry];
1180
1181 mapping = dma_map_single(&bp->pdev->dev,
1182 skb->data + offset,
1183 size, DMA_TO_DEVICE);
1184 if (dma_mapping_error(&bp->pdev->dev, mapping))
1185 goto dma_error;
1186
1187 /* Save info to properly release resources */
1188 tx_skb->skb = NULL;
1189 tx_skb->mapping = mapping;
1190 tx_skb->size = size;
1191 tx_skb->mapped_as_page = false;
1192
1193 len -= size;
1194 offset += size;
1195 count++;
1196 tx_head++;
1197 }
1198
1199 /* Then, map paged data from fragments */
1200 for (f = 0; f < nr_frags; f++) {
1201 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1202
1203 len = skb_frag_size(frag);
1204 offset = 0;
1205 while (len) {
1206 size = min(len, bp->max_tx_length);
1207 entry = macb_tx_ring_wrap(tx_head);
1208 tx_skb = &queue->tx_skb[entry];
1209
1210 mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
1211 offset, size, DMA_TO_DEVICE);
1212 if (dma_mapping_error(&bp->pdev->dev, mapping))
1213 goto dma_error;
1214
1215 /* Save info to properly release resources */
1216 tx_skb->skb = NULL;
1217 tx_skb->mapping = mapping;
1218 tx_skb->size = size;
1219 tx_skb->mapped_as_page = true;
1220
1221 len -= size;
1222 offset += size;
1223 count++;
1224 tx_head++;
1225 }
1226 }
1227
1228 /* Should never happen */
1229 if (unlikely(tx_skb == NULL)) {
1230 netdev_err(bp->dev, "BUG! empty skb!\n");
1231 return 0;
1232 }
1233
1234 /* This is the last buffer of the frame: save socket buffer */
1235 tx_skb->skb = skb;
1236
1237 /* Update TX ring: update buffer descriptors in reverse order
1238 * to avoid race condition
1239 */
1240
1241 /* Set 'TX_USED' bit in buffer descriptor at tx_head position
1242 * to set the end of TX queue
1243 */
1244 i = tx_head;
1245 entry = macb_tx_ring_wrap(i);
1246 ctrl = MACB_BIT(TX_USED);
1247 desc = &queue->tx_ring[entry];
1248 desc->ctrl = ctrl;
1249
1250 do {
1251 i--;
1252 entry = macb_tx_ring_wrap(i);
1253 tx_skb = &queue->tx_skb[entry];
1254 desc = &queue->tx_ring[entry];
1255
1256 ctrl = (u32)tx_skb->size;
1257 if (eof) {
1258 ctrl |= MACB_BIT(TX_LAST);
1259 eof = 0;
1260 }
1261 if (unlikely(entry == (TX_RING_SIZE - 1)))
1262 ctrl |= MACB_BIT(TX_WRAP);
1263
1264 /* Set TX buffer descriptor */
1265 desc->addr = tx_skb->mapping;
1266 /* desc->addr must be visible to hardware before clearing
1267 * 'TX_USED' bit in desc->ctrl.
1268 */
1269 wmb();
1270 desc->ctrl = ctrl;
1271 } while (i != queue->tx_head);
1272
1273 queue->tx_head = tx_head;
1274
1275 return count;
1276
1277 dma_error:
1278 netdev_err(bp->dev, "TX DMA map failed\n");
1279
1280 for (i = queue->tx_head; i != tx_head; i++) {
1281 tx_skb = macb_tx_skb(queue, i);
1282
1283 macb_tx_unmap(bp, tx_skb);
1284 }
1285
1286 return 0;
1287 }
1288
1289 static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
1290 {
1291 u16 queue_index = skb_get_queue_mapping(skb);
1292 struct macb *bp = netdev_priv(dev);
1293 struct macb_queue *queue = &bp->queues[queue_index];
1294 unsigned long flags;
1295 unsigned int count, nr_frags, frag_size, f;
1296
1297 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1298 netdev_vdbg(bp->dev,
1299 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
1300 queue_index, skb->len, skb->head, skb->data,
1301 skb_tail_pointer(skb), skb_end_pointer(skb));
1302 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
1303 skb->data, 16, true);
1304 #endif
1305
1306 /* Count how many TX buffer descriptors are needed to send this
1307 * socket buffer: skb fragments of jumbo frames may need to be
1308 * splitted into many buffer descriptors.
1309 */
1310 count = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
1311 nr_frags = skb_shinfo(skb)->nr_frags;
1312 for (f = 0; f < nr_frags; f++) {
1313 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
1314 count += DIV_ROUND_UP(frag_size, bp->max_tx_length);
1315 }
1316
1317 spin_lock_irqsave(&bp->lock, flags);
1318
1319 /* This is a hard error, log it. */
1320 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < count) {
1321 netif_stop_subqueue(dev, queue_index);
1322 spin_unlock_irqrestore(&bp->lock, flags);
1323 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
1324 queue->tx_head, queue->tx_tail);
1325 return NETDEV_TX_BUSY;
1326 }
1327
1328 /* Map socket buffer for DMA transfer */
1329 if (!macb_tx_map(bp, queue, skb)) {
1330 dev_kfree_skb_any(skb);
1331 goto unlock;
1332 }
1333
1334 /* Make newly initialized descriptor visible to hardware */
1335 wmb();
1336
1337 skb_tx_timestamp(skb);
1338
1339 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1340
1341 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < 1)
1342 netif_stop_subqueue(dev, queue_index);
1343
1344 unlock:
1345 spin_unlock_irqrestore(&bp->lock, flags);
1346
1347 return NETDEV_TX_OK;
1348 }
1349
1350 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
1351 {
1352 if (!macb_is_gem(bp)) {
1353 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
1354 } else {
1355 bp->rx_buffer_size = size;
1356
1357 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
1358 netdev_dbg(bp->dev,
1359 "RX buffer must be multiple of %d bytes, expanding\n",
1360 RX_BUFFER_MULTIPLE);
1361 bp->rx_buffer_size =
1362 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
1363 }
1364 }
1365
1366 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%Zu]\n",
1367 bp->dev->mtu, bp->rx_buffer_size);
1368 }
1369
1370 static void gem_free_rx_buffers(struct macb *bp)
1371 {
1372 struct sk_buff *skb;
1373 struct macb_dma_desc *desc;
1374 dma_addr_t addr;
1375 int i;
1376
1377 if (!bp->rx_skbuff)
1378 return;
1379
1380 for (i = 0; i < RX_RING_SIZE; i++) {
1381 skb = bp->rx_skbuff[i];
1382
1383 if (skb == NULL)
1384 continue;
1385
1386 desc = &bp->rx_ring[i];
1387 addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1388 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
1389 DMA_FROM_DEVICE);
1390 dev_kfree_skb_any(skb);
1391 skb = NULL;
1392 }
1393
1394 kfree(bp->rx_skbuff);
1395 bp->rx_skbuff = NULL;
1396 }
1397
1398 static void macb_free_rx_buffers(struct macb *bp)
1399 {
1400 if (bp->rx_buffers) {
1401 dma_free_coherent(&bp->pdev->dev,
1402 RX_RING_SIZE * bp->rx_buffer_size,
1403 bp->rx_buffers, bp->rx_buffers_dma);
1404 bp->rx_buffers = NULL;
1405 }
1406 }
1407
1408 static void macb_free_consistent(struct macb *bp)
1409 {
1410 struct macb_queue *queue;
1411 unsigned int q;
1412
1413 bp->macbgem_ops.mog_free_rx_buffers(bp);
1414 if (bp->rx_ring) {
1415 dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES,
1416 bp->rx_ring, bp->rx_ring_dma);
1417 bp->rx_ring = NULL;
1418 }
1419
1420 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1421 kfree(queue->tx_skb);
1422 queue->tx_skb = NULL;
1423 if (queue->tx_ring) {
1424 dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES,
1425 queue->tx_ring, queue->tx_ring_dma);
1426 queue->tx_ring = NULL;
1427 }
1428 }
1429 }
1430
1431 static int gem_alloc_rx_buffers(struct macb *bp)
1432 {
1433 int size;
1434
1435 size = RX_RING_SIZE * sizeof(struct sk_buff *);
1436 bp->rx_skbuff = kzalloc(size, GFP_KERNEL);
1437 if (!bp->rx_skbuff)
1438 return -ENOMEM;
1439 else
1440 netdev_dbg(bp->dev,
1441 "Allocated %d RX struct sk_buff entries at %p\n",
1442 RX_RING_SIZE, bp->rx_skbuff);
1443 return 0;
1444 }
1445
1446 static int macb_alloc_rx_buffers(struct macb *bp)
1447 {
1448 int size;
1449
1450 size = RX_RING_SIZE * bp->rx_buffer_size;
1451 bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
1452 &bp->rx_buffers_dma, GFP_KERNEL);
1453 if (!bp->rx_buffers)
1454 return -ENOMEM;
1455 else
1456 netdev_dbg(bp->dev,
1457 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
1458 size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers);
1459 return 0;
1460 }
1461
1462 static int macb_alloc_consistent(struct macb *bp)
1463 {
1464 struct macb_queue *queue;
1465 unsigned int q;
1466 int size;
1467
1468 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1469 size = TX_RING_BYTES;
1470 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1471 &queue->tx_ring_dma,
1472 GFP_KERNEL);
1473 if (!queue->tx_ring)
1474 goto out_err;
1475 netdev_dbg(bp->dev,
1476 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
1477 q, size, (unsigned long)queue->tx_ring_dma,
1478 queue->tx_ring);
1479
1480 size = TX_RING_SIZE * sizeof(struct macb_tx_skb);
1481 queue->tx_skb = kmalloc(size, GFP_KERNEL);
1482 if (!queue->tx_skb)
1483 goto out_err;
1484 }
1485
1486 size = RX_RING_BYTES;
1487 bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1488 &bp->rx_ring_dma, GFP_KERNEL);
1489 if (!bp->rx_ring)
1490 goto out_err;
1491 netdev_dbg(bp->dev,
1492 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
1493 size, (unsigned long)bp->rx_ring_dma, bp->rx_ring);
1494
1495 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
1496 goto out_err;
1497
1498 return 0;
1499
1500 out_err:
1501 macb_free_consistent(bp);
1502 return -ENOMEM;
1503 }
1504
1505 static void gem_init_rings(struct macb *bp)
1506 {
1507 struct macb_queue *queue;
1508 unsigned int q;
1509 int i;
1510
1511 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1512 for (i = 0; i < TX_RING_SIZE; i++) {
1513 queue->tx_ring[i].addr = 0;
1514 queue->tx_ring[i].ctrl = MACB_BIT(TX_USED);
1515 }
1516 queue->tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1517 queue->tx_head = 0;
1518 queue->tx_tail = 0;
1519 }
1520
1521 bp->rx_tail = 0;
1522 bp->rx_prepared_head = 0;
1523
1524 gem_rx_refill(bp);
1525 }
1526
1527 static void macb_init_rings(struct macb *bp)
1528 {
1529 int i;
1530 dma_addr_t addr;
1531
1532 addr = bp->rx_buffers_dma;
1533 for (i = 0; i < RX_RING_SIZE; i++) {
1534 bp->rx_ring[i].addr = addr;
1535 bp->rx_ring[i].ctrl = 0;
1536 addr += bp->rx_buffer_size;
1537 }
1538 bp->rx_ring[RX_RING_SIZE - 1].addr |= MACB_BIT(RX_WRAP);
1539
1540 for (i = 0; i < TX_RING_SIZE; i++) {
1541 bp->queues[0].tx_ring[i].addr = 0;
1542 bp->queues[0].tx_ring[i].ctrl = MACB_BIT(TX_USED);
1543 }
1544 bp->queues[0].tx_head = 0;
1545 bp->queues[0].tx_tail = 0;
1546 bp->queues[0].tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1547
1548 bp->rx_tail = 0;
1549 }
1550
1551 static void macb_reset_hw(struct macb *bp)
1552 {
1553 struct macb_queue *queue;
1554 unsigned int q;
1555
1556 /*
1557 * Disable RX and TX (XXX: Should we halt the transmission
1558 * more gracefully?)
1559 */
1560 macb_writel(bp, NCR, 0);
1561
1562 /* Clear the stats registers (XXX: Update stats first?) */
1563 macb_writel(bp, NCR, MACB_BIT(CLRSTAT));
1564
1565 /* Clear all status flags */
1566 macb_writel(bp, TSR, -1);
1567 macb_writel(bp, RSR, -1);
1568
1569 /* Disable all interrupts */
1570 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1571 queue_writel(queue, IDR, -1);
1572 queue_readl(queue, ISR);
1573 }
1574 }
1575
1576 static u32 gem_mdc_clk_div(struct macb *bp)
1577 {
1578 u32 config;
1579 unsigned long pclk_hz = clk_get_rate(bp->pclk);
1580
1581 if (pclk_hz <= 20000000)
1582 config = GEM_BF(CLK, GEM_CLK_DIV8);
1583 else if (pclk_hz <= 40000000)
1584 config = GEM_BF(CLK, GEM_CLK_DIV16);
1585 else if (pclk_hz <= 80000000)
1586 config = GEM_BF(CLK, GEM_CLK_DIV32);
1587 else if (pclk_hz <= 120000000)
1588 config = GEM_BF(CLK, GEM_CLK_DIV48);
1589 else if (pclk_hz <= 160000000)
1590 config = GEM_BF(CLK, GEM_CLK_DIV64);
1591 else
1592 config = GEM_BF(CLK, GEM_CLK_DIV96);
1593
1594 return config;
1595 }
1596
1597 static u32 macb_mdc_clk_div(struct macb *bp)
1598 {
1599 u32 config;
1600 unsigned long pclk_hz;
1601
1602 if (macb_is_gem(bp))
1603 return gem_mdc_clk_div(bp);
1604
1605 pclk_hz = clk_get_rate(bp->pclk);
1606 if (pclk_hz <= 20000000)
1607 config = MACB_BF(CLK, MACB_CLK_DIV8);
1608 else if (pclk_hz <= 40000000)
1609 config = MACB_BF(CLK, MACB_CLK_DIV16);
1610 else if (pclk_hz <= 80000000)
1611 config = MACB_BF(CLK, MACB_CLK_DIV32);
1612 else
1613 config = MACB_BF(CLK, MACB_CLK_DIV64);
1614
1615 return config;
1616 }
1617
1618 /*
1619 * Get the DMA bus width field of the network configuration register that we
1620 * should program. We find the width from decoding the design configuration
1621 * register to find the maximum supported data bus width.
1622 */
1623 static u32 macb_dbw(struct macb *bp)
1624 {
1625 if (!macb_is_gem(bp))
1626 return 0;
1627
1628 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
1629 case 4:
1630 return GEM_BF(DBW, GEM_DBW128);
1631 case 2:
1632 return GEM_BF(DBW, GEM_DBW64);
1633 case 1:
1634 default:
1635 return GEM_BF(DBW, GEM_DBW32);
1636 }
1637 }
1638
1639 /*
1640 * Configure the receive DMA engine
1641 * - use the correct receive buffer size
1642 * - set best burst length for DMA operations
1643 * (if not supported by FIFO, it will fallback to default)
1644 * - set both rx/tx packet buffers to full memory size
1645 * These are configurable parameters for GEM.
1646 */
1647 static void macb_configure_dma(struct macb *bp)
1648 {
1649 u32 dmacfg;
1650
1651 if (macb_is_gem(bp)) {
1652 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
1653 dmacfg |= GEM_BF(RXBS, bp->rx_buffer_size / RX_BUFFER_MULTIPLE);
1654 if (bp->dma_burst_length)
1655 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
1656 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
1657 dmacfg &= ~GEM_BIT(ENDIA_PKT);
1658
1659 if (bp->native_io)
1660 dmacfg &= ~GEM_BIT(ENDIA_DESC);
1661 else
1662 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
1663
1664 if (bp->dev->features & NETIF_F_HW_CSUM)
1665 dmacfg |= GEM_BIT(TXCOEN);
1666 else
1667 dmacfg &= ~GEM_BIT(TXCOEN);
1668 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
1669 dmacfg);
1670 gem_writel(bp, DMACFG, dmacfg);
1671 }
1672 }
1673
1674 static void macb_init_hw(struct macb *bp)
1675 {
1676 struct macb_queue *queue;
1677 unsigned int q;
1678
1679 u32 config;
1680
1681 macb_reset_hw(bp);
1682 macb_set_hwaddr(bp);
1683
1684 config = macb_mdc_clk_div(bp);
1685 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */
1686 config |= MACB_BIT(PAE); /* PAuse Enable */
1687 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */
1688 if (bp->caps & MACB_CAPS_JUMBO)
1689 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */
1690 else
1691 config |= MACB_BIT(BIG); /* Receive oversized frames */
1692 if (bp->dev->flags & IFF_PROMISC)
1693 config |= MACB_BIT(CAF); /* Copy All Frames */
1694 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
1695 config |= GEM_BIT(RXCOEN);
1696 if (!(bp->dev->flags & IFF_BROADCAST))
1697 config |= MACB_BIT(NBC); /* No BroadCast */
1698 config |= macb_dbw(bp);
1699 macb_writel(bp, NCFGR, config);
1700 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
1701 gem_writel(bp, JML, bp->jumbo_max_len);
1702 bp->speed = SPEED_10;
1703 bp->duplex = DUPLEX_HALF;
1704 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
1705 if (bp->caps & MACB_CAPS_JUMBO)
1706 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
1707
1708 macb_configure_dma(bp);
1709
1710 /* Initialize TX and RX buffers */
1711 macb_writel(bp, RBQP, bp->rx_ring_dma);
1712 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1713 queue_writel(queue, TBQP, queue->tx_ring_dma);
1714
1715 /* Enable interrupts */
1716 queue_writel(queue, IER,
1717 MACB_RX_INT_FLAGS |
1718 MACB_TX_INT_FLAGS |
1719 MACB_BIT(HRESP));
1720 }
1721
1722 /* Enable TX and RX */
1723 macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE));
1724 }
1725
1726 /*
1727 * The hash address register is 64 bits long and takes up two
1728 * locations in the memory map. The least significant bits are stored
1729 * in EMAC_HSL and the most significant bits in EMAC_HSH.
1730 *
1731 * The unicast hash enable and the multicast hash enable bits in the
1732 * network configuration register enable the reception of hash matched
1733 * frames. The destination address is reduced to a 6 bit index into
1734 * the 64 bit hash register using the following hash function. The
1735 * hash function is an exclusive or of every sixth bit of the
1736 * destination address.
1737 *
1738 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
1739 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
1740 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
1741 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
1742 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
1743 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
1744 *
1745 * da[0] represents the least significant bit of the first byte
1746 * received, that is, the multicast/unicast indicator, and da[47]
1747 * represents the most significant bit of the last byte received. If
1748 * the hash index, hi[n], points to a bit that is set in the hash
1749 * register then the frame will be matched according to whether the
1750 * frame is multicast or unicast. A multicast match will be signalled
1751 * if the multicast hash enable bit is set, da[0] is 1 and the hash
1752 * index points to a bit set in the hash register. A unicast match
1753 * will be signalled if the unicast hash enable bit is set, da[0] is 0
1754 * and the hash index points to a bit set in the hash register. To
1755 * receive all multicast frames, the hash register should be set with
1756 * all ones and the multicast hash enable bit should be set in the
1757 * network configuration register.
1758 */
1759
1760 static inline int hash_bit_value(int bitnr, __u8 *addr)
1761 {
1762 if (addr[bitnr / 8] & (1 << (bitnr % 8)))
1763 return 1;
1764 return 0;
1765 }
1766
1767 /*
1768 * Return the hash index value for the specified address.
1769 */
1770 static int hash_get_index(__u8 *addr)
1771 {
1772 int i, j, bitval;
1773 int hash_index = 0;
1774
1775 for (j = 0; j < 6; j++) {
1776 for (i = 0, bitval = 0; i < 8; i++)
1777 bitval ^= hash_bit_value(i * 6 + j, addr);
1778
1779 hash_index |= (bitval << j);
1780 }
1781
1782 return hash_index;
1783 }
1784
1785 /*
1786 * Add multicast addresses to the internal multicast-hash table.
1787 */
1788 static void macb_sethashtable(struct net_device *dev)
1789 {
1790 struct netdev_hw_addr *ha;
1791 unsigned long mc_filter[2];
1792 unsigned int bitnr;
1793 struct macb *bp = netdev_priv(dev);
1794
1795 mc_filter[0] = mc_filter[1] = 0;
1796
1797 netdev_for_each_mc_addr(ha, dev) {
1798 bitnr = hash_get_index(ha->addr);
1799 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1800 }
1801
1802 macb_or_gem_writel(bp, HRB, mc_filter[0]);
1803 macb_or_gem_writel(bp, HRT, mc_filter[1]);
1804 }
1805
1806 /*
1807 * Enable/Disable promiscuous and multicast modes.
1808 */
1809 static void macb_set_rx_mode(struct net_device *dev)
1810 {
1811 unsigned long cfg;
1812 struct macb *bp = netdev_priv(dev);
1813
1814 cfg = macb_readl(bp, NCFGR);
1815
1816 if (dev->flags & IFF_PROMISC) {
1817 /* Enable promiscuous mode */
1818 cfg |= MACB_BIT(CAF);
1819
1820 /* Disable RX checksum offload */
1821 if (macb_is_gem(bp))
1822 cfg &= ~GEM_BIT(RXCOEN);
1823 } else {
1824 /* Disable promiscuous mode */
1825 cfg &= ~MACB_BIT(CAF);
1826
1827 /* Enable RX checksum offload only if requested */
1828 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
1829 cfg |= GEM_BIT(RXCOEN);
1830 }
1831
1832 if (dev->flags & IFF_ALLMULTI) {
1833 /* Enable all multicast mode */
1834 macb_or_gem_writel(bp, HRB, -1);
1835 macb_or_gem_writel(bp, HRT, -1);
1836 cfg |= MACB_BIT(NCFGR_MTI);
1837 } else if (!netdev_mc_empty(dev)) {
1838 /* Enable specific multicasts */
1839 macb_sethashtable(dev);
1840 cfg |= MACB_BIT(NCFGR_MTI);
1841 } else if (dev->flags & (~IFF_ALLMULTI)) {
1842 /* Disable all multicast mode */
1843 macb_or_gem_writel(bp, HRB, 0);
1844 macb_or_gem_writel(bp, HRT, 0);
1845 cfg &= ~MACB_BIT(NCFGR_MTI);
1846 }
1847
1848 macb_writel(bp, NCFGR, cfg);
1849 }
1850
1851 static int macb_open(struct net_device *dev)
1852 {
1853 struct macb *bp = netdev_priv(dev);
1854 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
1855 int err;
1856
1857 netdev_dbg(bp->dev, "open\n");
1858
1859 /* carrier starts down */
1860 netif_carrier_off(dev);
1861
1862 /* if the phy is not yet register, retry later*/
1863 if (!bp->phy_dev)
1864 return -EAGAIN;
1865
1866 /* RX buffers initialization */
1867 macb_init_rx_buffer_size(bp, bufsz);
1868
1869 err = macb_alloc_consistent(bp);
1870 if (err) {
1871 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
1872 err);
1873 return err;
1874 }
1875
1876 napi_enable(&bp->napi);
1877
1878 bp->macbgem_ops.mog_init_rings(bp);
1879 macb_init_hw(bp);
1880
1881 /* schedule a link state check */
1882 phy_start(bp->phy_dev);
1883
1884 netif_tx_start_all_queues(dev);
1885
1886 return 0;
1887 }
1888
1889 static int macb_close(struct net_device *dev)
1890 {
1891 struct macb *bp = netdev_priv(dev);
1892 unsigned long flags;
1893
1894 netif_tx_stop_all_queues(dev);
1895 napi_disable(&bp->napi);
1896
1897 if (bp->phy_dev)
1898 phy_stop(bp->phy_dev);
1899
1900 spin_lock_irqsave(&bp->lock, flags);
1901 macb_reset_hw(bp);
1902 netif_carrier_off(dev);
1903 spin_unlock_irqrestore(&bp->lock, flags);
1904
1905 macb_free_consistent(bp);
1906
1907 return 0;
1908 }
1909
1910 static int macb_change_mtu(struct net_device *dev, int new_mtu)
1911 {
1912 struct macb *bp = netdev_priv(dev);
1913 u32 max_mtu;
1914
1915 if (netif_running(dev))
1916 return -EBUSY;
1917
1918 max_mtu = ETH_DATA_LEN;
1919 if (bp->caps & MACB_CAPS_JUMBO)
1920 max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN;
1921
1922 if ((new_mtu > max_mtu) || (new_mtu < GEM_MTU_MIN_SIZE))
1923 return -EINVAL;
1924
1925 dev->mtu = new_mtu;
1926
1927 return 0;
1928 }
1929
1930 static void gem_update_stats(struct macb *bp)
1931 {
1932 unsigned int i;
1933 u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
1934
1935 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
1936 u32 offset = gem_statistics[i].offset;
1937 u64 val = bp->macb_reg_readl(bp, offset);
1938
1939 bp->ethtool_stats[i] += val;
1940 *p += val;
1941
1942 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
1943 /* Add GEM_OCTTXH, GEM_OCTRXH */
1944 val = bp->macb_reg_readl(bp, offset + 4);
1945 bp->ethtool_stats[i] += ((u64)val) << 32;
1946 *(++p) += val;
1947 }
1948 }
1949 }
1950
1951 static struct net_device_stats *gem_get_stats(struct macb *bp)
1952 {
1953 struct gem_stats *hwstat = &bp->hw_stats.gem;
1954 struct net_device_stats *nstat = &bp->stats;
1955
1956 gem_update_stats(bp);
1957
1958 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
1959 hwstat->rx_alignment_errors +
1960 hwstat->rx_resource_errors +
1961 hwstat->rx_overruns +
1962 hwstat->rx_oversize_frames +
1963 hwstat->rx_jabbers +
1964 hwstat->rx_undersized_frames +
1965 hwstat->rx_length_field_frame_errors);
1966 nstat->tx_errors = (hwstat->tx_late_collisions +
1967 hwstat->tx_excessive_collisions +
1968 hwstat->tx_underrun +
1969 hwstat->tx_carrier_sense_errors);
1970 nstat->multicast = hwstat->rx_multicast_frames;
1971 nstat->collisions = (hwstat->tx_single_collision_frames +
1972 hwstat->tx_multiple_collision_frames +
1973 hwstat->tx_excessive_collisions);
1974 nstat->rx_length_errors = (hwstat->rx_oversize_frames +
1975 hwstat->rx_jabbers +
1976 hwstat->rx_undersized_frames +
1977 hwstat->rx_length_field_frame_errors);
1978 nstat->rx_over_errors = hwstat->rx_resource_errors;
1979 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
1980 nstat->rx_frame_errors = hwstat->rx_alignment_errors;
1981 nstat->rx_fifo_errors = hwstat->rx_overruns;
1982 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
1983 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
1984 nstat->tx_fifo_errors = hwstat->tx_underrun;
1985
1986 return nstat;
1987 }
1988
1989 static void gem_get_ethtool_stats(struct net_device *dev,
1990 struct ethtool_stats *stats, u64 *data)
1991 {
1992 struct macb *bp;
1993
1994 bp = netdev_priv(dev);
1995 gem_update_stats(bp);
1996 memcpy(data, &bp->ethtool_stats, sizeof(u64) * GEM_STATS_LEN);
1997 }
1998
1999 static int gem_get_sset_count(struct net_device *dev, int sset)
2000 {
2001 switch (sset) {
2002 case ETH_SS_STATS:
2003 return GEM_STATS_LEN;
2004 default:
2005 return -EOPNOTSUPP;
2006 }
2007 }
2008
2009 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
2010 {
2011 unsigned int i;
2012
2013 switch (sset) {
2014 case ETH_SS_STATS:
2015 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
2016 memcpy(p, gem_statistics[i].stat_string,
2017 ETH_GSTRING_LEN);
2018 break;
2019 }
2020 }
2021
2022 static struct net_device_stats *macb_get_stats(struct net_device *dev)
2023 {
2024 struct macb *bp = netdev_priv(dev);
2025 struct net_device_stats *nstat = &bp->stats;
2026 struct macb_stats *hwstat = &bp->hw_stats.macb;
2027
2028 if (macb_is_gem(bp))
2029 return gem_get_stats(bp);
2030
2031 /* read stats from hardware */
2032 macb_update_stats(bp);
2033
2034 /* Convert HW stats into netdevice stats */
2035 nstat->rx_errors = (hwstat->rx_fcs_errors +
2036 hwstat->rx_align_errors +
2037 hwstat->rx_resource_errors +
2038 hwstat->rx_overruns +
2039 hwstat->rx_oversize_pkts +
2040 hwstat->rx_jabbers +
2041 hwstat->rx_undersize_pkts +
2042 hwstat->rx_length_mismatch);
2043 nstat->tx_errors = (hwstat->tx_late_cols +
2044 hwstat->tx_excessive_cols +
2045 hwstat->tx_underruns +
2046 hwstat->tx_carrier_errors +
2047 hwstat->sqe_test_errors);
2048 nstat->collisions = (hwstat->tx_single_cols +
2049 hwstat->tx_multiple_cols +
2050 hwstat->tx_excessive_cols);
2051 nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
2052 hwstat->rx_jabbers +
2053 hwstat->rx_undersize_pkts +
2054 hwstat->rx_length_mismatch);
2055 nstat->rx_over_errors = hwstat->rx_resource_errors +
2056 hwstat->rx_overruns;
2057 nstat->rx_crc_errors = hwstat->rx_fcs_errors;
2058 nstat->rx_frame_errors = hwstat->rx_align_errors;
2059 nstat->rx_fifo_errors = hwstat->rx_overruns;
2060 /* XXX: What does "missed" mean? */
2061 nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
2062 nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
2063 nstat->tx_fifo_errors = hwstat->tx_underruns;
2064 /* Don't know about heartbeat or window errors... */
2065
2066 return nstat;
2067 }
2068
2069 static int macb_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2070 {
2071 struct macb *bp = netdev_priv(dev);
2072 struct phy_device *phydev = bp->phy_dev;
2073
2074 if (!phydev)
2075 return -ENODEV;
2076
2077 return phy_ethtool_gset(phydev, cmd);
2078 }
2079
2080 static int macb_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2081 {
2082 struct macb *bp = netdev_priv(dev);
2083 struct phy_device *phydev = bp->phy_dev;
2084
2085 if (!phydev)
2086 return -ENODEV;
2087
2088 return phy_ethtool_sset(phydev, cmd);
2089 }
2090
2091 static int macb_get_regs_len(struct net_device *netdev)
2092 {
2093 return MACB_GREGS_NBR * sizeof(u32);
2094 }
2095
2096 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
2097 void *p)
2098 {
2099 struct macb *bp = netdev_priv(dev);
2100 unsigned int tail, head;
2101 u32 *regs_buff = p;
2102
2103 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
2104 | MACB_GREGS_VERSION;
2105
2106 tail = macb_tx_ring_wrap(bp->queues[0].tx_tail);
2107 head = macb_tx_ring_wrap(bp->queues[0].tx_head);
2108
2109 regs_buff[0] = macb_readl(bp, NCR);
2110 regs_buff[1] = macb_or_gem_readl(bp, NCFGR);
2111 regs_buff[2] = macb_readl(bp, NSR);
2112 regs_buff[3] = macb_readl(bp, TSR);
2113 regs_buff[4] = macb_readl(bp, RBQP);
2114 regs_buff[5] = macb_readl(bp, TBQP);
2115 regs_buff[6] = macb_readl(bp, RSR);
2116 regs_buff[7] = macb_readl(bp, IMR);
2117
2118 regs_buff[8] = tail;
2119 regs_buff[9] = head;
2120 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
2121 regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
2122
2123 regs_buff[12] = macb_or_gem_readl(bp, USRIO);
2124 if (macb_is_gem(bp)) {
2125 regs_buff[13] = gem_readl(bp, DMACFG);
2126 }
2127 }
2128
2129 static const struct ethtool_ops macb_ethtool_ops = {
2130 .get_settings = macb_get_settings,
2131 .set_settings = macb_set_settings,
2132 .get_regs_len = macb_get_regs_len,
2133 .get_regs = macb_get_regs,
2134 .get_link = ethtool_op_get_link,
2135 .get_ts_info = ethtool_op_get_ts_info,
2136 };
2137
2138 static const struct ethtool_ops gem_ethtool_ops = {
2139 .get_settings = macb_get_settings,
2140 .set_settings = macb_set_settings,
2141 .get_regs_len = macb_get_regs_len,
2142 .get_regs = macb_get_regs,
2143 .get_link = ethtool_op_get_link,
2144 .get_ts_info = ethtool_op_get_ts_info,
2145 .get_ethtool_stats = gem_get_ethtool_stats,
2146 .get_strings = gem_get_ethtool_strings,
2147 .get_sset_count = gem_get_sset_count,
2148 };
2149
2150 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2151 {
2152 struct macb *bp = netdev_priv(dev);
2153 struct phy_device *phydev = bp->phy_dev;
2154
2155 if (!netif_running(dev))
2156 return -EINVAL;
2157
2158 if (!phydev)
2159 return -ENODEV;
2160
2161 return phy_mii_ioctl(phydev, rq, cmd);
2162 }
2163
2164 static int macb_set_features(struct net_device *netdev,
2165 netdev_features_t features)
2166 {
2167 struct macb *bp = netdev_priv(netdev);
2168 netdev_features_t changed = features ^ netdev->features;
2169
2170 /* TX checksum offload */
2171 if ((changed & NETIF_F_HW_CSUM) && macb_is_gem(bp)) {
2172 u32 dmacfg;
2173
2174 dmacfg = gem_readl(bp, DMACFG);
2175 if (features & NETIF_F_HW_CSUM)
2176 dmacfg |= GEM_BIT(TXCOEN);
2177 else
2178 dmacfg &= ~GEM_BIT(TXCOEN);
2179 gem_writel(bp, DMACFG, dmacfg);
2180 }
2181
2182 /* RX checksum offload */
2183 if ((changed & NETIF_F_RXCSUM) && macb_is_gem(bp)) {
2184 u32 netcfg;
2185
2186 netcfg = gem_readl(bp, NCFGR);
2187 if (features & NETIF_F_RXCSUM &&
2188 !(netdev->flags & IFF_PROMISC))
2189 netcfg |= GEM_BIT(RXCOEN);
2190 else
2191 netcfg &= ~GEM_BIT(RXCOEN);
2192 gem_writel(bp, NCFGR, netcfg);
2193 }
2194
2195 return 0;
2196 }
2197
2198 static const struct net_device_ops macb_netdev_ops = {
2199 .ndo_open = macb_open,
2200 .ndo_stop = macb_close,
2201 .ndo_start_xmit = macb_start_xmit,
2202 .ndo_set_rx_mode = macb_set_rx_mode,
2203 .ndo_get_stats = macb_get_stats,
2204 .ndo_do_ioctl = macb_ioctl,
2205 .ndo_validate_addr = eth_validate_addr,
2206 .ndo_change_mtu = macb_change_mtu,
2207 .ndo_set_mac_address = eth_mac_addr,
2208 #ifdef CONFIG_NET_POLL_CONTROLLER
2209 .ndo_poll_controller = macb_poll_controller,
2210 #endif
2211 .ndo_set_features = macb_set_features,
2212 };
2213
2214 /*
2215 * Configure peripheral capabilities according to device tree
2216 * and integration options used
2217 */
2218 static void macb_configure_caps(struct macb *bp, const struct macb_config *dt_conf)
2219 {
2220 u32 dcfg;
2221
2222 if (dt_conf)
2223 bp->caps = dt_conf->caps;
2224
2225 if (hw_is_gem(bp->regs, bp->native_io)) {
2226 bp->caps |= MACB_CAPS_MACB_IS_GEM;
2227
2228 dcfg = gem_readl(bp, DCFG1);
2229 if (GEM_BFEXT(IRQCOR, dcfg) == 0)
2230 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
2231 dcfg = gem_readl(bp, DCFG2);
2232 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
2233 bp->caps |= MACB_CAPS_FIFO_MODE;
2234 }
2235
2236 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
2237 }
2238
2239 static void macb_probe_queues(void __iomem *mem,
2240 bool native_io,
2241 unsigned int *queue_mask,
2242 unsigned int *num_queues)
2243 {
2244 unsigned int hw_q;
2245
2246 *queue_mask = 0x1;
2247 *num_queues = 1;
2248
2249 /* is it macb or gem ?
2250 *
2251 * We need to read directly from the hardware here because
2252 * we are early in the probe process and don't have the
2253 * MACB_CAPS_MACB_IS_GEM flag positioned
2254 */
2255 if (!hw_is_gem(mem, native_io))
2256 return;
2257
2258 /* bit 0 is never set but queue 0 always exists */
2259 *queue_mask = readl_relaxed(mem + GEM_DCFG6) & 0xff;
2260
2261 *queue_mask |= 0x1;
2262
2263 for (hw_q = 1; hw_q < MACB_MAX_QUEUES; ++hw_q)
2264 if (*queue_mask & (1 << hw_q))
2265 (*num_queues)++;
2266 }
2267
2268 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
2269 struct clk **hclk, struct clk **tx_clk)
2270 {
2271 int err;
2272
2273 *pclk = devm_clk_get(&pdev->dev, "pclk");
2274 if (IS_ERR(*pclk)) {
2275 err = PTR_ERR(*pclk);
2276 dev_err(&pdev->dev, "failed to get macb_clk (%u)\n", err);
2277 return err;
2278 }
2279
2280 *hclk = devm_clk_get(&pdev->dev, "hclk");
2281 if (IS_ERR(*hclk)) {
2282 err = PTR_ERR(*hclk);
2283 dev_err(&pdev->dev, "failed to get hclk (%u)\n", err);
2284 return err;
2285 }
2286
2287 *tx_clk = devm_clk_get(&pdev->dev, "tx_clk");
2288 if (IS_ERR(*tx_clk))
2289 *tx_clk = NULL;
2290
2291 err = clk_prepare_enable(*pclk);
2292 if (err) {
2293 dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2294 return err;
2295 }
2296
2297 err = clk_prepare_enable(*hclk);
2298 if (err) {
2299 dev_err(&pdev->dev, "failed to enable hclk (%u)\n", err);
2300 goto err_disable_pclk;
2301 }
2302
2303 err = clk_prepare_enable(*tx_clk);
2304 if (err) {
2305 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
2306 goto err_disable_hclk;
2307 }
2308
2309 return 0;
2310
2311 err_disable_hclk:
2312 clk_disable_unprepare(*hclk);
2313
2314 err_disable_pclk:
2315 clk_disable_unprepare(*pclk);
2316
2317 return err;
2318 }
2319
2320 static int macb_init(struct platform_device *pdev)
2321 {
2322 struct net_device *dev = platform_get_drvdata(pdev);
2323 unsigned int hw_q, q;
2324 struct macb *bp = netdev_priv(dev);
2325 struct macb_queue *queue;
2326 int err;
2327 u32 val;
2328
2329 /* set the queue register mapping once for all: queue0 has a special
2330 * register mapping but we don't want to test the queue index then
2331 * compute the corresponding register offset at run time.
2332 */
2333 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
2334 if (!(bp->queue_mask & (1 << hw_q)))
2335 continue;
2336
2337 queue = &bp->queues[q];
2338 queue->bp = bp;
2339 if (hw_q) {
2340 queue->ISR = GEM_ISR(hw_q - 1);
2341 queue->IER = GEM_IER(hw_q - 1);
2342 queue->IDR = GEM_IDR(hw_q - 1);
2343 queue->IMR = GEM_IMR(hw_q - 1);
2344 queue->TBQP = GEM_TBQP(hw_q - 1);
2345 } else {
2346 /* queue0 uses legacy registers */
2347 queue->ISR = MACB_ISR;
2348 queue->IER = MACB_IER;
2349 queue->IDR = MACB_IDR;
2350 queue->IMR = MACB_IMR;
2351 queue->TBQP = MACB_TBQP;
2352 }
2353
2354 /* get irq: here we use the linux queue index, not the hardware
2355 * queue index. the queue irq definitions in the device tree
2356 * must remove the optional gaps that could exist in the
2357 * hardware queue mask.
2358 */
2359 queue->irq = platform_get_irq(pdev, q);
2360 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
2361 IRQF_SHARED, dev->name, queue);
2362 if (err) {
2363 dev_err(&pdev->dev,
2364 "Unable to request IRQ %d (error %d)\n",
2365 queue->irq, err);
2366 return err;
2367 }
2368
2369 INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
2370 q++;
2371 }
2372
2373 dev->netdev_ops = &macb_netdev_ops;
2374 netif_napi_add(dev, &bp->napi, macb_poll, 64);
2375
2376 /* setup appropriated routines according to adapter type */
2377 if (macb_is_gem(bp)) {
2378 bp->max_tx_length = GEM_MAX_TX_LEN;
2379 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
2380 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
2381 bp->macbgem_ops.mog_init_rings = gem_init_rings;
2382 bp->macbgem_ops.mog_rx = gem_rx;
2383 dev->ethtool_ops = &gem_ethtool_ops;
2384 } else {
2385 bp->max_tx_length = MACB_MAX_TX_LEN;
2386 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
2387 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
2388 bp->macbgem_ops.mog_init_rings = macb_init_rings;
2389 bp->macbgem_ops.mog_rx = macb_rx;
2390 dev->ethtool_ops = &macb_ethtool_ops;
2391 }
2392
2393 /* Set features */
2394 dev->hw_features = NETIF_F_SG;
2395 /* Checksum offload is only available on gem with packet buffer */
2396 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
2397 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2398 if (bp->caps & MACB_CAPS_SG_DISABLED)
2399 dev->hw_features &= ~NETIF_F_SG;
2400 dev->features = dev->hw_features;
2401
2402 val = 0;
2403 if (bp->phy_interface == PHY_INTERFACE_MODE_RGMII)
2404 val = GEM_BIT(RGMII);
2405 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
2406 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII))
2407 val = MACB_BIT(RMII);
2408 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII))
2409 val = MACB_BIT(MII);
2410
2411 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
2412 val |= MACB_BIT(CLKEN);
2413
2414 macb_or_gem_writel(bp, USRIO, val);
2415
2416 /* Set MII management clock divider */
2417 val = macb_mdc_clk_div(bp);
2418 val |= macb_dbw(bp);
2419 macb_writel(bp, NCFGR, val);
2420
2421 return 0;
2422 }
2423
2424 #if defined(CONFIG_OF)
2425 /* 1518 rounded up */
2426 #define AT91ETHER_MAX_RBUFF_SZ 0x600
2427 /* max number of receive buffers */
2428 #define AT91ETHER_MAX_RX_DESCR 9
2429
2430 /* Initialize and start the Receiver and Transmit subsystems */
2431 static int at91ether_start(struct net_device *dev)
2432 {
2433 struct macb *lp = netdev_priv(dev);
2434 dma_addr_t addr;
2435 u32 ctl;
2436 int i;
2437
2438 lp->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
2439 (AT91ETHER_MAX_RX_DESCR *
2440 sizeof(struct macb_dma_desc)),
2441 &lp->rx_ring_dma, GFP_KERNEL);
2442 if (!lp->rx_ring)
2443 return -ENOMEM;
2444
2445 lp->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
2446 AT91ETHER_MAX_RX_DESCR *
2447 AT91ETHER_MAX_RBUFF_SZ,
2448 &lp->rx_buffers_dma, GFP_KERNEL);
2449 if (!lp->rx_buffers) {
2450 dma_free_coherent(&lp->pdev->dev,
2451 AT91ETHER_MAX_RX_DESCR *
2452 sizeof(struct macb_dma_desc),
2453 lp->rx_ring, lp->rx_ring_dma);
2454 lp->rx_ring = NULL;
2455 return -ENOMEM;
2456 }
2457
2458 addr = lp->rx_buffers_dma;
2459 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
2460 lp->rx_ring[i].addr = addr;
2461 lp->rx_ring[i].ctrl = 0;
2462 addr += AT91ETHER_MAX_RBUFF_SZ;
2463 }
2464
2465 /* Set the Wrap bit on the last descriptor */
2466 lp->rx_ring[AT91ETHER_MAX_RX_DESCR - 1].addr |= MACB_BIT(RX_WRAP);
2467
2468 /* Reset buffer index */
2469 lp->rx_tail = 0;
2470
2471 /* Program address of descriptor list in Rx Buffer Queue register */
2472 macb_writel(lp, RBQP, lp->rx_ring_dma);
2473
2474 /* Enable Receive and Transmit */
2475 ctl = macb_readl(lp, NCR);
2476 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
2477
2478 return 0;
2479 }
2480
2481 /* Open the ethernet interface */
2482 static int at91ether_open(struct net_device *dev)
2483 {
2484 struct macb *lp = netdev_priv(dev);
2485 u32 ctl;
2486 int ret;
2487
2488 /* Clear internal statistics */
2489 ctl = macb_readl(lp, NCR);
2490 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
2491
2492 macb_set_hwaddr(lp);
2493
2494 ret = at91ether_start(dev);
2495 if (ret)
2496 return ret;
2497
2498 /* Enable MAC interrupts */
2499 macb_writel(lp, IER, MACB_BIT(RCOMP) |
2500 MACB_BIT(RXUBR) |
2501 MACB_BIT(ISR_TUND) |
2502 MACB_BIT(ISR_RLE) |
2503 MACB_BIT(TCOMP) |
2504 MACB_BIT(ISR_ROVR) |
2505 MACB_BIT(HRESP));
2506
2507 /* schedule a link state check */
2508 phy_start(lp->phy_dev);
2509
2510 netif_start_queue(dev);
2511
2512 return 0;
2513 }
2514
2515 /* Close the interface */
2516 static int at91ether_close(struct net_device *dev)
2517 {
2518 struct macb *lp = netdev_priv(dev);
2519 u32 ctl;
2520
2521 /* Disable Receiver and Transmitter */
2522 ctl = macb_readl(lp, NCR);
2523 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
2524
2525 /* Disable MAC interrupts */
2526 macb_writel(lp, IDR, MACB_BIT(RCOMP) |
2527 MACB_BIT(RXUBR) |
2528 MACB_BIT(ISR_TUND) |
2529 MACB_BIT(ISR_RLE) |
2530 MACB_BIT(TCOMP) |
2531 MACB_BIT(ISR_ROVR) |
2532 MACB_BIT(HRESP));
2533
2534 netif_stop_queue(dev);
2535
2536 dma_free_coherent(&lp->pdev->dev,
2537 AT91ETHER_MAX_RX_DESCR *
2538 sizeof(struct macb_dma_desc),
2539 lp->rx_ring, lp->rx_ring_dma);
2540 lp->rx_ring = NULL;
2541
2542 dma_free_coherent(&lp->pdev->dev,
2543 AT91ETHER_MAX_RX_DESCR * AT91ETHER_MAX_RBUFF_SZ,
2544 lp->rx_buffers, lp->rx_buffers_dma);
2545 lp->rx_buffers = NULL;
2546
2547 return 0;
2548 }
2549
2550 /* Transmit packet */
2551 static int at91ether_start_xmit(struct sk_buff *skb, struct net_device *dev)
2552 {
2553 struct macb *lp = netdev_priv(dev);
2554
2555 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
2556 netif_stop_queue(dev);
2557
2558 /* Store packet information (to free when Tx completed) */
2559 lp->skb = skb;
2560 lp->skb_length = skb->len;
2561 lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len,
2562 DMA_TO_DEVICE);
2563
2564 /* Set address of the data in the Transmit Address register */
2565 macb_writel(lp, TAR, lp->skb_physaddr);
2566 /* Set length of the packet in the Transmit Control register */
2567 macb_writel(lp, TCR, skb->len);
2568
2569 } else {
2570 netdev_err(dev, "%s called, but device is busy!\n", __func__);
2571 return NETDEV_TX_BUSY;
2572 }
2573
2574 return NETDEV_TX_OK;
2575 }
2576
2577 /* Extract received frame from buffer descriptors and sent to upper layers.
2578 * (Called from interrupt context)
2579 */
2580 static void at91ether_rx(struct net_device *dev)
2581 {
2582 struct macb *lp = netdev_priv(dev);
2583 unsigned char *p_recv;
2584 struct sk_buff *skb;
2585 unsigned int pktlen;
2586
2587 while (lp->rx_ring[lp->rx_tail].addr & MACB_BIT(RX_USED)) {
2588 p_recv = lp->rx_buffers + lp->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
2589 pktlen = MACB_BF(RX_FRMLEN, lp->rx_ring[lp->rx_tail].ctrl);
2590 skb = netdev_alloc_skb(dev, pktlen + 2);
2591 if (skb) {
2592 skb_reserve(skb, 2);
2593 memcpy(skb_put(skb, pktlen), p_recv, pktlen);
2594
2595 skb->protocol = eth_type_trans(skb, dev);
2596 lp->stats.rx_packets++;
2597 lp->stats.rx_bytes += pktlen;
2598 netif_rx(skb);
2599 } else {
2600 lp->stats.rx_dropped++;
2601 }
2602
2603 if (lp->rx_ring[lp->rx_tail].ctrl & MACB_BIT(RX_MHASH_MATCH))
2604 lp->stats.multicast++;
2605
2606 /* reset ownership bit */
2607 lp->rx_ring[lp->rx_tail].addr &= ~MACB_BIT(RX_USED);
2608
2609 /* wrap after last buffer */
2610 if (lp->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
2611 lp->rx_tail = 0;
2612 else
2613 lp->rx_tail++;
2614 }
2615 }
2616
2617 /* MAC interrupt handler */
2618 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
2619 {
2620 struct net_device *dev = dev_id;
2621 struct macb *lp = netdev_priv(dev);
2622 u32 intstatus, ctl;
2623
2624 /* MAC Interrupt Status register indicates what interrupts are pending.
2625 * It is automatically cleared once read.
2626 */
2627 intstatus = macb_readl(lp, ISR);
2628
2629 /* Receive complete */
2630 if (intstatus & MACB_BIT(RCOMP))
2631 at91ether_rx(dev);
2632
2633 /* Transmit complete */
2634 if (intstatus & MACB_BIT(TCOMP)) {
2635 /* The TCOM bit is set even if the transmission failed */
2636 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
2637 lp->stats.tx_errors++;
2638
2639 if (lp->skb) {
2640 dev_kfree_skb_irq(lp->skb);
2641 lp->skb = NULL;
2642 dma_unmap_single(NULL, lp->skb_physaddr,
2643 lp->skb_length, DMA_TO_DEVICE);
2644 lp->stats.tx_packets++;
2645 lp->stats.tx_bytes += lp->skb_length;
2646 }
2647 netif_wake_queue(dev);
2648 }
2649
2650 /* Work-around for EMAC Errata section 41.3.1 */
2651 if (intstatus & MACB_BIT(RXUBR)) {
2652 ctl = macb_readl(lp, NCR);
2653 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
2654 macb_writel(lp, NCR, ctl | MACB_BIT(RE));
2655 }
2656
2657 if (intstatus & MACB_BIT(ISR_ROVR))
2658 netdev_err(dev, "ROVR error\n");
2659
2660 return IRQ_HANDLED;
2661 }
2662
2663 #ifdef CONFIG_NET_POLL_CONTROLLER
2664 static void at91ether_poll_controller(struct net_device *dev)
2665 {
2666 unsigned long flags;
2667
2668 local_irq_save(flags);
2669 at91ether_interrupt(dev->irq, dev);
2670 local_irq_restore(flags);
2671 }
2672 #endif
2673
2674 static const struct net_device_ops at91ether_netdev_ops = {
2675 .ndo_open = at91ether_open,
2676 .ndo_stop = at91ether_close,
2677 .ndo_start_xmit = at91ether_start_xmit,
2678 .ndo_get_stats = macb_get_stats,
2679 .ndo_set_rx_mode = macb_set_rx_mode,
2680 .ndo_set_mac_address = eth_mac_addr,
2681 .ndo_do_ioctl = macb_ioctl,
2682 .ndo_validate_addr = eth_validate_addr,
2683 .ndo_change_mtu = eth_change_mtu,
2684 #ifdef CONFIG_NET_POLL_CONTROLLER
2685 .ndo_poll_controller = at91ether_poll_controller,
2686 #endif
2687 };
2688
2689 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
2690 struct clk **hclk, struct clk **tx_clk)
2691 {
2692 int err;
2693
2694 *hclk = NULL;
2695 *tx_clk = NULL;
2696
2697 *pclk = devm_clk_get(&pdev->dev, "ether_clk");
2698 if (IS_ERR(*pclk))
2699 return PTR_ERR(*pclk);
2700
2701 err = clk_prepare_enable(*pclk);
2702 if (err) {
2703 dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2704 return err;
2705 }
2706
2707 return 0;
2708 }
2709
2710 static int at91ether_init(struct platform_device *pdev)
2711 {
2712 struct net_device *dev = platform_get_drvdata(pdev);
2713 struct macb *bp = netdev_priv(dev);
2714 int err;
2715 u32 reg;
2716
2717 dev->netdev_ops = &at91ether_netdev_ops;
2718 dev->ethtool_ops = &macb_ethtool_ops;
2719
2720 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
2721 0, dev->name, dev);
2722 if (err)
2723 return err;
2724
2725 macb_writel(bp, NCR, 0);
2726
2727 reg = MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG);
2728 if (bp->phy_interface == PHY_INTERFACE_MODE_RMII)
2729 reg |= MACB_BIT(RM9200_RMII);
2730
2731 macb_writel(bp, NCFGR, reg);
2732
2733 return 0;
2734 }
2735
2736 static const struct macb_config at91sam9260_config = {
2737 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII,
2738 .clk_init = macb_clk_init,
2739 .init = macb_init,
2740 };
2741
2742 static const struct macb_config pc302gem_config = {
2743 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2744 .dma_burst_length = 16,
2745 .clk_init = macb_clk_init,
2746 .init = macb_init,
2747 };
2748
2749 static const struct macb_config sama5d2_config = {
2750 .caps = 0,
2751 .dma_burst_length = 16,
2752 .clk_init = macb_clk_init,
2753 .init = macb_init,
2754 };
2755
2756 static const struct macb_config sama5d3_config = {
2757 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2758 .dma_burst_length = 16,
2759 .clk_init = macb_clk_init,
2760 .init = macb_init,
2761 };
2762
2763 static const struct macb_config sama5d4_config = {
2764 .caps = 0,
2765 .dma_burst_length = 4,
2766 .clk_init = macb_clk_init,
2767 .init = macb_init,
2768 };
2769
2770 static const struct macb_config emac_config = {
2771 .clk_init = at91ether_clk_init,
2772 .init = at91ether_init,
2773 };
2774
2775
2776 static const struct macb_config zynqmp_config = {
2777 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO,
2778 .dma_burst_length = 16,
2779 .clk_init = macb_clk_init,
2780 .init = macb_init,
2781 .jumbo_max_len = 10240,
2782 };
2783
2784 static const struct macb_config zynq_config = {
2785 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF,
2786 .dma_burst_length = 16,
2787 .clk_init = macb_clk_init,
2788 .init = macb_init,
2789 };
2790
2791 static const struct of_device_id macb_dt_ids[] = {
2792 { .compatible = "cdns,at32ap7000-macb" },
2793 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
2794 { .compatible = "cdns,macb" },
2795 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
2796 { .compatible = "cdns,gem", .data = &pc302gem_config },
2797 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
2798 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
2799 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
2800 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
2801 { .compatible = "cdns,emac", .data = &emac_config },
2802 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
2803 { .compatible = "cdns,zynq-gem", .data = &zynq_config },
2804 { /* sentinel */ }
2805 };
2806 MODULE_DEVICE_TABLE(of, macb_dt_ids);
2807 #endif /* CONFIG_OF */
2808
2809 static int macb_probe(struct platform_device *pdev)
2810 {
2811 int (*clk_init)(struct platform_device *, struct clk **,
2812 struct clk **, struct clk **)
2813 = macb_clk_init;
2814 int (*init)(struct platform_device *) = macb_init;
2815 struct device_node *np = pdev->dev.of_node;
2816 const struct macb_config *macb_config = NULL;
2817 struct clk *pclk, *hclk, *tx_clk;
2818 unsigned int queue_mask, num_queues;
2819 struct macb_platform_data *pdata;
2820 bool native_io;
2821 struct phy_device *phydev;
2822 struct net_device *dev;
2823 struct resource *regs;
2824 void __iomem *mem;
2825 const char *mac;
2826 struct macb *bp;
2827 int err;
2828
2829 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2830 mem = devm_ioremap_resource(&pdev->dev, regs);
2831 if (IS_ERR(mem))
2832 return PTR_ERR(mem);
2833
2834 if (np) {
2835 const struct of_device_id *match;
2836
2837 match = of_match_node(macb_dt_ids, np);
2838 if (match && match->data) {
2839 macb_config = match->data;
2840 clk_init = macb_config->clk_init;
2841 init = macb_config->init;
2842 }
2843 }
2844
2845 err = clk_init(pdev, &pclk, &hclk, &tx_clk);
2846 if (err)
2847 return err;
2848
2849 native_io = hw_is_native_io(mem);
2850
2851 macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
2852 dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
2853 if (!dev) {
2854 err = -ENOMEM;
2855 goto err_disable_clocks;
2856 }
2857
2858 dev->base_addr = regs->start;
2859
2860 SET_NETDEV_DEV(dev, &pdev->dev);
2861
2862 bp = netdev_priv(dev);
2863 bp->pdev = pdev;
2864 bp->dev = dev;
2865 bp->regs = mem;
2866 bp->native_io = native_io;
2867 if (native_io) {
2868 bp->macb_reg_readl = hw_readl_native;
2869 bp->macb_reg_writel = hw_writel_native;
2870 } else {
2871 bp->macb_reg_readl = hw_readl;
2872 bp->macb_reg_writel = hw_writel;
2873 }
2874 bp->num_queues = num_queues;
2875 bp->queue_mask = queue_mask;
2876 if (macb_config)
2877 bp->dma_burst_length = macb_config->dma_burst_length;
2878 bp->pclk = pclk;
2879 bp->hclk = hclk;
2880 bp->tx_clk = tx_clk;
2881 if (macb_config)
2882 bp->jumbo_max_len = macb_config->jumbo_max_len;
2883
2884 spin_lock_init(&bp->lock);
2885
2886 /* setup capabilities */
2887 macb_configure_caps(bp, macb_config);
2888
2889 platform_set_drvdata(pdev, dev);
2890
2891 dev->irq = platform_get_irq(pdev, 0);
2892 if (dev->irq < 0) {
2893 err = dev->irq;
2894 goto err_disable_clocks;
2895 }
2896
2897 mac = of_get_mac_address(np);
2898 if (mac)
2899 memcpy(bp->dev->dev_addr, mac, ETH_ALEN);
2900 else
2901 macb_get_hwaddr(bp);
2902
2903 err = of_get_phy_mode(np);
2904 if (err < 0) {
2905 pdata = dev_get_platdata(&pdev->dev);
2906 if (pdata && pdata->is_rmii)
2907 bp->phy_interface = PHY_INTERFACE_MODE_RMII;
2908 else
2909 bp->phy_interface = PHY_INTERFACE_MODE_MII;
2910 } else {
2911 bp->phy_interface = err;
2912 }
2913
2914 /* IP specific init */
2915 err = init(pdev);
2916 if (err)
2917 goto err_out_free_netdev;
2918
2919 err = register_netdev(dev);
2920 if (err) {
2921 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
2922 goto err_out_unregister_netdev;
2923 }
2924
2925 err = macb_mii_init(bp);
2926 if (err)
2927 goto err_out_unregister_netdev;
2928
2929 netif_carrier_off(dev);
2930
2931 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
2932 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
2933 dev->base_addr, dev->irq, dev->dev_addr);
2934
2935 phydev = bp->phy_dev;
2936 netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2937 phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
2938
2939 return 0;
2940
2941 err_out_unregister_netdev:
2942 unregister_netdev(dev);
2943
2944 err_out_free_netdev:
2945 free_netdev(dev);
2946
2947 err_disable_clocks:
2948 clk_disable_unprepare(tx_clk);
2949 clk_disable_unprepare(hclk);
2950 clk_disable_unprepare(pclk);
2951
2952 return err;
2953 }
2954
2955 static int macb_remove(struct platform_device *pdev)
2956 {
2957 struct net_device *dev;
2958 struct macb *bp;
2959
2960 dev = platform_get_drvdata(pdev);
2961
2962 if (dev) {
2963 bp = netdev_priv(dev);
2964 if (bp->phy_dev)
2965 phy_disconnect(bp->phy_dev);
2966 mdiobus_unregister(bp->mii_bus);
2967 kfree(bp->mii_bus->irq);
2968 mdiobus_free(bp->mii_bus);
2969 unregister_netdev(dev);
2970 clk_disable_unprepare(bp->tx_clk);
2971 clk_disable_unprepare(bp->hclk);
2972 clk_disable_unprepare(bp->pclk);
2973 free_netdev(dev);
2974 }
2975
2976 return 0;
2977 }
2978
2979 static int __maybe_unused macb_suspend(struct device *dev)
2980 {
2981 struct platform_device *pdev = to_platform_device(dev);
2982 struct net_device *netdev = platform_get_drvdata(pdev);
2983 struct macb *bp = netdev_priv(netdev);
2984
2985 netif_carrier_off(netdev);
2986 netif_device_detach(netdev);
2987
2988 clk_disable_unprepare(bp->tx_clk);
2989 clk_disable_unprepare(bp->hclk);
2990 clk_disable_unprepare(bp->pclk);
2991
2992 return 0;
2993 }
2994
2995 static int __maybe_unused macb_resume(struct device *dev)
2996 {
2997 struct platform_device *pdev = to_platform_device(dev);
2998 struct net_device *netdev = platform_get_drvdata(pdev);
2999 struct macb *bp = netdev_priv(netdev);
3000
3001 clk_prepare_enable(bp->pclk);
3002 clk_prepare_enable(bp->hclk);
3003 clk_prepare_enable(bp->tx_clk);
3004
3005 netif_device_attach(netdev);
3006
3007 return 0;
3008 }
3009
3010 static SIMPLE_DEV_PM_OPS(macb_pm_ops, macb_suspend, macb_resume);
3011
3012 static struct platform_driver macb_driver = {
3013 .probe = macb_probe,
3014 .remove = macb_remove,
3015 .driver = {
3016 .name = "macb",
3017 .of_match_table = of_match_ptr(macb_dt_ids),
3018 .pm = &macb_pm_ops,
3019 },
3020 };
3021
3022 module_platform_driver(macb_driver);
3023
3024 MODULE_LICENSE("GPL");
3025 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
3026 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
3027 MODULE_ALIAS("platform:macb");