]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/cadence/macb.c
ASoC: max98504: Add missing MAX98504 on SND_SOC_ALL_CODECS
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / cadence / macb.c
1 /*
2 * Cadence MACB/GEM Ethernet Controller driver
3 *
4 * Copyright (C) 2004-2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/circ_buf.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/platform_data/macb.h>
28 #include <linux/platform_device.h>
29 #include <linux/phy.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mdio.h>
34 #include <linux/of_net.h>
35
36 #include "macb.h"
37
38 #define MACB_RX_BUFFER_SIZE 128
39 #define RX_BUFFER_MULTIPLE 64 /* bytes */
40 #define RX_RING_SIZE 512 /* must be power of 2 */
41 #define RX_RING_BYTES (sizeof(struct macb_dma_desc) * RX_RING_SIZE)
42
43 #define TX_RING_SIZE 128 /* must be power of 2 */
44 #define TX_RING_BYTES (sizeof(struct macb_dma_desc) * TX_RING_SIZE)
45
46 /* level of occupied TX descriptors under which we wake up TX process */
47 #define MACB_TX_WAKEUP_THRESH (3 * TX_RING_SIZE / 4)
48
49 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \
50 | MACB_BIT(ISR_ROVR))
51 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \
52 | MACB_BIT(ISR_RLE) \
53 | MACB_BIT(TXERR))
54 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP))
55
56 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1))
57 #define GEM_MAX_TX_LEN ((unsigned int)((1 << GEM_TX_FRMLEN_SIZE) - 1))
58
59 #define GEM_MTU_MIN_SIZE 68
60
61 #define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0)
62 #define MACB_WOL_ENABLED (0x1 << 1)
63
64 /* Graceful stop timeouts in us. We should allow up to
65 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
66 */
67 #define MACB_HALT_TIMEOUT 1230
68
69 /* Ring buffer accessors */
70 static unsigned int macb_tx_ring_wrap(unsigned int index)
71 {
72 return index & (TX_RING_SIZE - 1);
73 }
74
75 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
76 unsigned int index)
77 {
78 return &queue->tx_ring[macb_tx_ring_wrap(index)];
79 }
80
81 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
82 unsigned int index)
83 {
84 return &queue->tx_skb[macb_tx_ring_wrap(index)];
85 }
86
87 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
88 {
89 dma_addr_t offset;
90
91 offset = macb_tx_ring_wrap(index) * sizeof(struct macb_dma_desc);
92
93 return queue->tx_ring_dma + offset;
94 }
95
96 static unsigned int macb_rx_ring_wrap(unsigned int index)
97 {
98 return index & (RX_RING_SIZE - 1);
99 }
100
101 static struct macb_dma_desc *macb_rx_desc(struct macb *bp, unsigned int index)
102 {
103 return &bp->rx_ring[macb_rx_ring_wrap(index)];
104 }
105
106 static void *macb_rx_buffer(struct macb *bp, unsigned int index)
107 {
108 return bp->rx_buffers + bp->rx_buffer_size * macb_rx_ring_wrap(index);
109 }
110
111 /* I/O accessors */
112 static u32 hw_readl_native(struct macb *bp, int offset)
113 {
114 return __raw_readl(bp->regs + offset);
115 }
116
117 static void hw_writel_native(struct macb *bp, int offset, u32 value)
118 {
119 __raw_writel(value, bp->regs + offset);
120 }
121
122 static u32 hw_readl(struct macb *bp, int offset)
123 {
124 return readl_relaxed(bp->regs + offset);
125 }
126
127 static void hw_writel(struct macb *bp, int offset, u32 value)
128 {
129 writel_relaxed(value, bp->regs + offset);
130 }
131
132 /* Find the CPU endianness by using the loopback bit of NCR register. When the
133 * CPU is in big endian we need to program swapped mode for management
134 * descriptor access.
135 */
136 static bool hw_is_native_io(void __iomem *addr)
137 {
138 u32 value = MACB_BIT(LLB);
139
140 __raw_writel(value, addr + MACB_NCR);
141 value = __raw_readl(addr + MACB_NCR);
142
143 /* Write 0 back to disable everything */
144 __raw_writel(0, addr + MACB_NCR);
145
146 return value == MACB_BIT(LLB);
147 }
148
149 static bool hw_is_gem(void __iomem *addr, bool native_io)
150 {
151 u32 id;
152
153 if (native_io)
154 id = __raw_readl(addr + MACB_MID);
155 else
156 id = readl_relaxed(addr + MACB_MID);
157
158 return MACB_BFEXT(IDNUM, id) >= 0x2;
159 }
160
161 static void macb_set_hwaddr(struct macb *bp)
162 {
163 u32 bottom;
164 u16 top;
165
166 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
167 macb_or_gem_writel(bp, SA1B, bottom);
168 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
169 macb_or_gem_writel(bp, SA1T, top);
170
171 /* Clear unused address register sets */
172 macb_or_gem_writel(bp, SA2B, 0);
173 macb_or_gem_writel(bp, SA2T, 0);
174 macb_or_gem_writel(bp, SA3B, 0);
175 macb_or_gem_writel(bp, SA3T, 0);
176 macb_or_gem_writel(bp, SA4B, 0);
177 macb_or_gem_writel(bp, SA4T, 0);
178 }
179
180 static void macb_get_hwaddr(struct macb *bp)
181 {
182 struct macb_platform_data *pdata;
183 u32 bottom;
184 u16 top;
185 u8 addr[6];
186 int i;
187
188 pdata = dev_get_platdata(&bp->pdev->dev);
189
190 /* Check all 4 address register for valid address */
191 for (i = 0; i < 4; i++) {
192 bottom = macb_or_gem_readl(bp, SA1B + i * 8);
193 top = macb_or_gem_readl(bp, SA1T + i * 8);
194
195 if (pdata && pdata->rev_eth_addr) {
196 addr[5] = bottom & 0xff;
197 addr[4] = (bottom >> 8) & 0xff;
198 addr[3] = (bottom >> 16) & 0xff;
199 addr[2] = (bottom >> 24) & 0xff;
200 addr[1] = top & 0xff;
201 addr[0] = (top & 0xff00) >> 8;
202 } else {
203 addr[0] = bottom & 0xff;
204 addr[1] = (bottom >> 8) & 0xff;
205 addr[2] = (bottom >> 16) & 0xff;
206 addr[3] = (bottom >> 24) & 0xff;
207 addr[4] = top & 0xff;
208 addr[5] = (top >> 8) & 0xff;
209 }
210
211 if (is_valid_ether_addr(addr)) {
212 memcpy(bp->dev->dev_addr, addr, sizeof(addr));
213 return;
214 }
215 }
216
217 dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
218 eth_hw_addr_random(bp->dev);
219 }
220
221 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
222 {
223 struct macb *bp = bus->priv;
224 int value;
225
226 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
227 | MACB_BF(RW, MACB_MAN_READ)
228 | MACB_BF(PHYA, mii_id)
229 | MACB_BF(REGA, regnum)
230 | MACB_BF(CODE, MACB_MAN_CODE)));
231
232 /* wait for end of transfer */
233 while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
234 cpu_relax();
235
236 value = MACB_BFEXT(DATA, macb_readl(bp, MAN));
237
238 return value;
239 }
240
241 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
242 u16 value)
243 {
244 struct macb *bp = bus->priv;
245
246 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
247 | MACB_BF(RW, MACB_MAN_WRITE)
248 | MACB_BF(PHYA, mii_id)
249 | MACB_BF(REGA, regnum)
250 | MACB_BF(CODE, MACB_MAN_CODE)
251 | MACB_BF(DATA, value)));
252
253 /* wait for end of transfer */
254 while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
255 cpu_relax();
256
257 return 0;
258 }
259
260 /**
261 * macb_set_tx_clk() - Set a clock to a new frequency
262 * @clk Pointer to the clock to change
263 * @rate New frequency in Hz
264 * @dev Pointer to the struct net_device
265 */
266 static void macb_set_tx_clk(struct clk *clk, int speed, struct net_device *dev)
267 {
268 long ferr, rate, rate_rounded;
269
270 if (!clk)
271 return;
272
273 switch (speed) {
274 case SPEED_10:
275 rate = 2500000;
276 break;
277 case SPEED_100:
278 rate = 25000000;
279 break;
280 case SPEED_1000:
281 rate = 125000000;
282 break;
283 default:
284 return;
285 }
286
287 rate_rounded = clk_round_rate(clk, rate);
288 if (rate_rounded < 0)
289 return;
290
291 /* RGMII allows 50 ppm frequency error. Test and warn if this limit
292 * is not satisfied.
293 */
294 ferr = abs(rate_rounded - rate);
295 ferr = DIV_ROUND_UP(ferr, rate / 100000);
296 if (ferr > 5)
297 netdev_warn(dev, "unable to generate target frequency: %ld Hz\n",
298 rate);
299
300 if (clk_set_rate(clk, rate_rounded))
301 netdev_err(dev, "adjusting tx_clk failed.\n");
302 }
303
304 static void macb_handle_link_change(struct net_device *dev)
305 {
306 struct macb *bp = netdev_priv(dev);
307 struct phy_device *phydev = dev->phydev;
308 unsigned long flags;
309 int status_change = 0;
310
311 spin_lock_irqsave(&bp->lock, flags);
312
313 if (phydev->link) {
314 if ((bp->speed != phydev->speed) ||
315 (bp->duplex != phydev->duplex)) {
316 u32 reg;
317
318 reg = macb_readl(bp, NCFGR);
319 reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
320 if (macb_is_gem(bp))
321 reg &= ~GEM_BIT(GBE);
322
323 if (phydev->duplex)
324 reg |= MACB_BIT(FD);
325 if (phydev->speed == SPEED_100)
326 reg |= MACB_BIT(SPD);
327 if (phydev->speed == SPEED_1000 &&
328 bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
329 reg |= GEM_BIT(GBE);
330
331 macb_or_gem_writel(bp, NCFGR, reg);
332
333 bp->speed = phydev->speed;
334 bp->duplex = phydev->duplex;
335 status_change = 1;
336 }
337 }
338
339 if (phydev->link != bp->link) {
340 if (!phydev->link) {
341 bp->speed = 0;
342 bp->duplex = -1;
343 }
344 bp->link = phydev->link;
345
346 status_change = 1;
347 }
348
349 spin_unlock_irqrestore(&bp->lock, flags);
350
351 if (status_change) {
352 if (phydev->link) {
353 /* Update the TX clock rate if and only if the link is
354 * up and there has been a link change.
355 */
356 macb_set_tx_clk(bp->tx_clk, phydev->speed, dev);
357
358 netif_carrier_on(dev);
359 netdev_info(dev, "link up (%d/%s)\n",
360 phydev->speed,
361 phydev->duplex == DUPLEX_FULL ?
362 "Full" : "Half");
363 } else {
364 netif_carrier_off(dev);
365 netdev_info(dev, "link down\n");
366 }
367 }
368 }
369
370 /* based on au1000_eth. c*/
371 static int macb_mii_probe(struct net_device *dev)
372 {
373 struct macb *bp = netdev_priv(dev);
374 struct macb_platform_data *pdata;
375 struct phy_device *phydev;
376 int phy_irq;
377 int ret;
378
379 phydev = phy_find_first(bp->mii_bus);
380 if (!phydev) {
381 netdev_err(dev, "no PHY found\n");
382 return -ENXIO;
383 }
384
385 pdata = dev_get_platdata(&bp->pdev->dev);
386 if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
387 ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin,
388 "phy int");
389 if (!ret) {
390 phy_irq = gpio_to_irq(pdata->phy_irq_pin);
391 phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
392 }
393 }
394
395 /* attach the mac to the phy */
396 ret = phy_connect_direct(dev, phydev, &macb_handle_link_change,
397 bp->phy_interface);
398 if (ret) {
399 netdev_err(dev, "Could not attach to PHY\n");
400 return ret;
401 }
402
403 /* mask with MAC supported features */
404 if (macb_is_gem(bp) && bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
405 phydev->supported &= PHY_GBIT_FEATURES;
406 else
407 phydev->supported &= PHY_BASIC_FEATURES;
408
409 if (bp->caps & MACB_CAPS_NO_GIGABIT_HALF)
410 phydev->supported &= ~SUPPORTED_1000baseT_Half;
411
412 phydev->advertising = phydev->supported;
413
414 bp->link = 0;
415 bp->speed = 0;
416 bp->duplex = -1;
417
418 return 0;
419 }
420
421 static int macb_mii_init(struct macb *bp)
422 {
423 struct macb_platform_data *pdata;
424 struct device_node *np;
425 int err = -ENXIO, i;
426
427 /* Enable management port */
428 macb_writel(bp, NCR, MACB_BIT(MPE));
429
430 bp->mii_bus = mdiobus_alloc();
431 if (!bp->mii_bus) {
432 err = -ENOMEM;
433 goto err_out;
434 }
435
436 bp->mii_bus->name = "MACB_mii_bus";
437 bp->mii_bus->read = &macb_mdio_read;
438 bp->mii_bus->write = &macb_mdio_write;
439 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
440 bp->pdev->name, bp->pdev->id);
441 bp->mii_bus->priv = bp;
442 bp->mii_bus->parent = &bp->pdev->dev;
443 pdata = dev_get_platdata(&bp->pdev->dev);
444
445 dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
446
447 np = bp->pdev->dev.of_node;
448 if (np) {
449 /* try dt phy registration */
450 err = of_mdiobus_register(bp->mii_bus, np);
451
452 /* fallback to standard phy registration if no phy were
453 * found during dt phy registration
454 */
455 if (!err && !phy_find_first(bp->mii_bus)) {
456 for (i = 0; i < PHY_MAX_ADDR; i++) {
457 struct phy_device *phydev;
458
459 phydev = mdiobus_scan(bp->mii_bus, i);
460 if (IS_ERR(phydev) &&
461 PTR_ERR(phydev) != -ENODEV) {
462 err = PTR_ERR(phydev);
463 break;
464 }
465 }
466
467 if (err)
468 goto err_out_unregister_bus;
469 }
470 } else {
471 if (pdata)
472 bp->mii_bus->phy_mask = pdata->phy_mask;
473
474 err = mdiobus_register(bp->mii_bus);
475 }
476
477 if (err)
478 goto err_out_free_mdiobus;
479
480 err = macb_mii_probe(bp->dev);
481 if (err)
482 goto err_out_unregister_bus;
483
484 return 0;
485
486 err_out_unregister_bus:
487 mdiobus_unregister(bp->mii_bus);
488 err_out_free_mdiobus:
489 mdiobus_free(bp->mii_bus);
490 err_out:
491 return err;
492 }
493
494 static void macb_update_stats(struct macb *bp)
495 {
496 u32 *p = &bp->hw_stats.macb.rx_pause_frames;
497 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
498 int offset = MACB_PFR;
499
500 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
501
502 for (; p < end; p++, offset += 4)
503 *p += bp->macb_reg_readl(bp, offset);
504 }
505
506 static int macb_halt_tx(struct macb *bp)
507 {
508 unsigned long halt_time, timeout;
509 u32 status;
510
511 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
512
513 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
514 do {
515 halt_time = jiffies;
516 status = macb_readl(bp, TSR);
517 if (!(status & MACB_BIT(TGO)))
518 return 0;
519
520 usleep_range(10, 250);
521 } while (time_before(halt_time, timeout));
522
523 return -ETIMEDOUT;
524 }
525
526 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb)
527 {
528 if (tx_skb->mapping) {
529 if (tx_skb->mapped_as_page)
530 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
531 tx_skb->size, DMA_TO_DEVICE);
532 else
533 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
534 tx_skb->size, DMA_TO_DEVICE);
535 tx_skb->mapping = 0;
536 }
537
538 if (tx_skb->skb) {
539 dev_kfree_skb_any(tx_skb->skb);
540 tx_skb->skb = NULL;
541 }
542 }
543
544 static inline void macb_set_addr(struct macb_dma_desc *desc, dma_addr_t addr)
545 {
546 desc->addr = (u32)addr;
547 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
548 desc->addrh = (u32)(addr >> 32);
549 #endif
550 }
551
552 static void macb_tx_error_task(struct work_struct *work)
553 {
554 struct macb_queue *queue = container_of(work, struct macb_queue,
555 tx_error_task);
556 struct macb *bp = queue->bp;
557 struct macb_tx_skb *tx_skb;
558 struct macb_dma_desc *desc;
559 struct sk_buff *skb;
560 unsigned int tail;
561 unsigned long flags;
562
563 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
564 (unsigned int)(queue - bp->queues),
565 queue->tx_tail, queue->tx_head);
566
567 /* Prevent the queue IRQ handlers from running: each of them may call
568 * macb_tx_interrupt(), which in turn may call netif_wake_subqueue().
569 * As explained below, we have to halt the transmission before updating
570 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
571 * network engine about the macb/gem being halted.
572 */
573 spin_lock_irqsave(&bp->lock, flags);
574
575 /* Make sure nobody is trying to queue up new packets */
576 netif_tx_stop_all_queues(bp->dev);
577
578 /* Stop transmission now
579 * (in case we have just queued new packets)
580 * macb/gem must be halted to write TBQP register
581 */
582 if (macb_halt_tx(bp))
583 /* Just complain for now, reinitializing TX path can be good */
584 netdev_err(bp->dev, "BUG: halt tx timed out\n");
585
586 /* Treat frames in TX queue including the ones that caused the error.
587 * Free transmit buffers in upper layer.
588 */
589 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
590 u32 ctrl;
591
592 desc = macb_tx_desc(queue, tail);
593 ctrl = desc->ctrl;
594 tx_skb = macb_tx_skb(queue, tail);
595 skb = tx_skb->skb;
596
597 if (ctrl & MACB_BIT(TX_USED)) {
598 /* skb is set for the last buffer of the frame */
599 while (!skb) {
600 macb_tx_unmap(bp, tx_skb);
601 tail++;
602 tx_skb = macb_tx_skb(queue, tail);
603 skb = tx_skb->skb;
604 }
605
606 /* ctrl still refers to the first buffer descriptor
607 * since it's the only one written back by the hardware
608 */
609 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
610 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
611 macb_tx_ring_wrap(tail), skb->data);
612 bp->stats.tx_packets++;
613 bp->stats.tx_bytes += skb->len;
614 }
615 } else {
616 /* "Buffers exhausted mid-frame" errors may only happen
617 * if the driver is buggy, so complain loudly about
618 * those. Statistics are updated by hardware.
619 */
620 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
621 netdev_err(bp->dev,
622 "BUG: TX buffers exhausted mid-frame\n");
623
624 desc->ctrl = ctrl | MACB_BIT(TX_USED);
625 }
626
627 macb_tx_unmap(bp, tx_skb);
628 }
629
630 /* Set end of TX queue */
631 desc = macb_tx_desc(queue, 0);
632 macb_set_addr(desc, 0);
633 desc->ctrl = MACB_BIT(TX_USED);
634
635 /* Make descriptor updates visible to hardware */
636 wmb();
637
638 /* Reinitialize the TX desc queue */
639 queue_writel(queue, TBQP, (u32)(queue->tx_ring_dma));
640 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
641 queue_writel(queue, TBQPH, (u32)(queue->tx_ring_dma >> 32));
642 #endif
643 /* Make TX ring reflect state of hardware */
644 queue->tx_head = 0;
645 queue->tx_tail = 0;
646
647 /* Housework before enabling TX IRQ */
648 macb_writel(bp, TSR, macb_readl(bp, TSR));
649 queue_writel(queue, IER, MACB_TX_INT_FLAGS);
650
651 /* Now we are ready to start transmission again */
652 netif_tx_start_all_queues(bp->dev);
653 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
654
655 spin_unlock_irqrestore(&bp->lock, flags);
656 }
657
658 static void macb_tx_interrupt(struct macb_queue *queue)
659 {
660 unsigned int tail;
661 unsigned int head;
662 u32 status;
663 struct macb *bp = queue->bp;
664 u16 queue_index = queue - bp->queues;
665
666 status = macb_readl(bp, TSR);
667 macb_writel(bp, TSR, status);
668
669 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
670 queue_writel(queue, ISR, MACB_BIT(TCOMP));
671
672 netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n",
673 (unsigned long)status);
674
675 head = queue->tx_head;
676 for (tail = queue->tx_tail; tail != head; tail++) {
677 struct macb_tx_skb *tx_skb;
678 struct sk_buff *skb;
679 struct macb_dma_desc *desc;
680 u32 ctrl;
681
682 desc = macb_tx_desc(queue, tail);
683
684 /* Make hw descriptor updates visible to CPU */
685 rmb();
686
687 ctrl = desc->ctrl;
688
689 /* TX_USED bit is only set by hardware on the very first buffer
690 * descriptor of the transmitted frame.
691 */
692 if (!(ctrl & MACB_BIT(TX_USED)))
693 break;
694
695 /* Process all buffers of the current transmitted frame */
696 for (;; tail++) {
697 tx_skb = macb_tx_skb(queue, tail);
698 skb = tx_skb->skb;
699
700 /* First, update TX stats if needed */
701 if (skb) {
702 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
703 macb_tx_ring_wrap(tail), skb->data);
704 bp->stats.tx_packets++;
705 bp->stats.tx_bytes += skb->len;
706 }
707
708 /* Now we can safely release resources */
709 macb_tx_unmap(bp, tx_skb);
710
711 /* skb is set only for the last buffer of the frame.
712 * WARNING: at this point skb has been freed by
713 * macb_tx_unmap().
714 */
715 if (skb)
716 break;
717 }
718 }
719
720 queue->tx_tail = tail;
721 if (__netif_subqueue_stopped(bp->dev, queue_index) &&
722 CIRC_CNT(queue->tx_head, queue->tx_tail,
723 TX_RING_SIZE) <= MACB_TX_WAKEUP_THRESH)
724 netif_wake_subqueue(bp->dev, queue_index);
725 }
726
727 static void gem_rx_refill(struct macb *bp)
728 {
729 unsigned int entry;
730 struct sk_buff *skb;
731 dma_addr_t paddr;
732
733 while (CIRC_SPACE(bp->rx_prepared_head, bp->rx_tail,
734 RX_RING_SIZE) > 0) {
735 entry = macb_rx_ring_wrap(bp->rx_prepared_head);
736
737 /* Make hw descriptor updates visible to CPU */
738 rmb();
739
740 bp->rx_prepared_head++;
741
742 if (!bp->rx_skbuff[entry]) {
743 /* allocate sk_buff for this free entry in ring */
744 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
745 if (unlikely(!skb)) {
746 netdev_err(bp->dev,
747 "Unable to allocate sk_buff\n");
748 break;
749 }
750
751 /* now fill corresponding descriptor entry */
752 paddr = dma_map_single(&bp->pdev->dev, skb->data,
753 bp->rx_buffer_size,
754 DMA_FROM_DEVICE);
755 if (dma_mapping_error(&bp->pdev->dev, paddr)) {
756 dev_kfree_skb(skb);
757 break;
758 }
759
760 bp->rx_skbuff[entry] = skb;
761
762 if (entry == RX_RING_SIZE - 1)
763 paddr |= MACB_BIT(RX_WRAP);
764 macb_set_addr(&(bp->rx_ring[entry]), paddr);
765 bp->rx_ring[entry].ctrl = 0;
766
767 /* properly align Ethernet header */
768 skb_reserve(skb, NET_IP_ALIGN);
769 } else {
770 bp->rx_ring[entry].addr &= ~MACB_BIT(RX_USED);
771 bp->rx_ring[entry].ctrl = 0;
772 }
773 }
774
775 /* Make descriptor updates visible to hardware */
776 wmb();
777
778 netdev_vdbg(bp->dev, "rx ring: prepared head %d, tail %d\n",
779 bp->rx_prepared_head, bp->rx_tail);
780 }
781
782 /* Mark DMA descriptors from begin up to and not including end as unused */
783 static void discard_partial_frame(struct macb *bp, unsigned int begin,
784 unsigned int end)
785 {
786 unsigned int frag;
787
788 for (frag = begin; frag != end; frag++) {
789 struct macb_dma_desc *desc = macb_rx_desc(bp, frag);
790
791 desc->addr &= ~MACB_BIT(RX_USED);
792 }
793
794 /* Make descriptor updates visible to hardware */
795 wmb();
796
797 /* When this happens, the hardware stats registers for
798 * whatever caused this is updated, so we don't have to record
799 * anything.
800 */
801 }
802
803 static int gem_rx(struct macb *bp, int budget)
804 {
805 unsigned int len;
806 unsigned int entry;
807 struct sk_buff *skb;
808 struct macb_dma_desc *desc;
809 int count = 0;
810
811 while (count < budget) {
812 u32 ctrl;
813 dma_addr_t addr;
814 bool rxused;
815
816 entry = macb_rx_ring_wrap(bp->rx_tail);
817 desc = &bp->rx_ring[entry];
818
819 /* Make hw descriptor updates visible to CPU */
820 rmb();
821
822 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
823 addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
824 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
825 addr |= ((u64)(desc->addrh) << 32);
826 #endif
827 ctrl = desc->ctrl;
828
829 if (!rxused)
830 break;
831
832 bp->rx_tail++;
833 count++;
834
835 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
836 netdev_err(bp->dev,
837 "not whole frame pointed by descriptor\n");
838 bp->stats.rx_dropped++;
839 break;
840 }
841 skb = bp->rx_skbuff[entry];
842 if (unlikely(!skb)) {
843 netdev_err(bp->dev,
844 "inconsistent Rx descriptor chain\n");
845 bp->stats.rx_dropped++;
846 break;
847 }
848 /* now everything is ready for receiving packet */
849 bp->rx_skbuff[entry] = NULL;
850 len = ctrl & bp->rx_frm_len_mask;
851
852 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
853
854 skb_put(skb, len);
855 dma_unmap_single(&bp->pdev->dev, addr,
856 bp->rx_buffer_size, DMA_FROM_DEVICE);
857
858 skb->protocol = eth_type_trans(skb, bp->dev);
859 skb_checksum_none_assert(skb);
860 if (bp->dev->features & NETIF_F_RXCSUM &&
861 !(bp->dev->flags & IFF_PROMISC) &&
862 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
863 skb->ip_summed = CHECKSUM_UNNECESSARY;
864
865 bp->stats.rx_packets++;
866 bp->stats.rx_bytes += skb->len;
867
868 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
869 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
870 skb->len, skb->csum);
871 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
872 skb_mac_header(skb), 16, true);
873 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
874 skb->data, 32, true);
875 #endif
876
877 netif_receive_skb(skb);
878 }
879
880 gem_rx_refill(bp);
881
882 return count;
883 }
884
885 static int macb_rx_frame(struct macb *bp, unsigned int first_frag,
886 unsigned int last_frag)
887 {
888 unsigned int len;
889 unsigned int frag;
890 unsigned int offset;
891 struct sk_buff *skb;
892 struct macb_dma_desc *desc;
893
894 desc = macb_rx_desc(bp, last_frag);
895 len = desc->ctrl & bp->rx_frm_len_mask;
896
897 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
898 macb_rx_ring_wrap(first_frag),
899 macb_rx_ring_wrap(last_frag), len);
900
901 /* The ethernet header starts NET_IP_ALIGN bytes into the
902 * first buffer. Since the header is 14 bytes, this makes the
903 * payload word-aligned.
904 *
905 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
906 * the two padding bytes into the skb so that we avoid hitting
907 * the slowpath in memcpy(), and pull them off afterwards.
908 */
909 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
910 if (!skb) {
911 bp->stats.rx_dropped++;
912 for (frag = first_frag; ; frag++) {
913 desc = macb_rx_desc(bp, frag);
914 desc->addr &= ~MACB_BIT(RX_USED);
915 if (frag == last_frag)
916 break;
917 }
918
919 /* Make descriptor updates visible to hardware */
920 wmb();
921
922 return 1;
923 }
924
925 offset = 0;
926 len += NET_IP_ALIGN;
927 skb_checksum_none_assert(skb);
928 skb_put(skb, len);
929
930 for (frag = first_frag; ; frag++) {
931 unsigned int frag_len = bp->rx_buffer_size;
932
933 if (offset + frag_len > len) {
934 if (unlikely(frag != last_frag)) {
935 dev_kfree_skb_any(skb);
936 return -1;
937 }
938 frag_len = len - offset;
939 }
940 skb_copy_to_linear_data_offset(skb, offset,
941 macb_rx_buffer(bp, frag),
942 frag_len);
943 offset += bp->rx_buffer_size;
944 desc = macb_rx_desc(bp, frag);
945 desc->addr &= ~MACB_BIT(RX_USED);
946
947 if (frag == last_frag)
948 break;
949 }
950
951 /* Make descriptor updates visible to hardware */
952 wmb();
953
954 __skb_pull(skb, NET_IP_ALIGN);
955 skb->protocol = eth_type_trans(skb, bp->dev);
956
957 bp->stats.rx_packets++;
958 bp->stats.rx_bytes += skb->len;
959 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
960 skb->len, skb->csum);
961 netif_receive_skb(skb);
962
963 return 0;
964 }
965
966 static inline void macb_init_rx_ring(struct macb *bp)
967 {
968 dma_addr_t addr;
969 int i;
970
971 addr = bp->rx_buffers_dma;
972 for (i = 0; i < RX_RING_SIZE; i++) {
973 bp->rx_ring[i].addr = addr;
974 bp->rx_ring[i].ctrl = 0;
975 addr += bp->rx_buffer_size;
976 }
977 bp->rx_ring[RX_RING_SIZE - 1].addr |= MACB_BIT(RX_WRAP);
978 }
979
980 static int macb_rx(struct macb *bp, int budget)
981 {
982 bool reset_rx_queue = false;
983 int received = 0;
984 unsigned int tail;
985 int first_frag = -1;
986
987 for (tail = bp->rx_tail; budget > 0; tail++) {
988 struct macb_dma_desc *desc = macb_rx_desc(bp, tail);
989 u32 addr, ctrl;
990
991 /* Make hw descriptor updates visible to CPU */
992 rmb();
993
994 addr = desc->addr;
995 ctrl = desc->ctrl;
996
997 if (!(addr & MACB_BIT(RX_USED)))
998 break;
999
1000 if (ctrl & MACB_BIT(RX_SOF)) {
1001 if (first_frag != -1)
1002 discard_partial_frame(bp, first_frag, tail);
1003 first_frag = tail;
1004 }
1005
1006 if (ctrl & MACB_BIT(RX_EOF)) {
1007 int dropped;
1008
1009 if (unlikely(first_frag == -1)) {
1010 reset_rx_queue = true;
1011 continue;
1012 }
1013
1014 dropped = macb_rx_frame(bp, first_frag, tail);
1015 first_frag = -1;
1016 if (unlikely(dropped < 0)) {
1017 reset_rx_queue = true;
1018 continue;
1019 }
1020 if (!dropped) {
1021 received++;
1022 budget--;
1023 }
1024 }
1025 }
1026
1027 if (unlikely(reset_rx_queue)) {
1028 unsigned long flags;
1029 u32 ctrl;
1030
1031 netdev_err(bp->dev, "RX queue corruption: reset it\n");
1032
1033 spin_lock_irqsave(&bp->lock, flags);
1034
1035 ctrl = macb_readl(bp, NCR);
1036 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1037
1038 macb_init_rx_ring(bp);
1039 macb_writel(bp, RBQP, bp->rx_ring_dma);
1040
1041 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1042
1043 spin_unlock_irqrestore(&bp->lock, flags);
1044 return received;
1045 }
1046
1047 if (first_frag != -1)
1048 bp->rx_tail = first_frag;
1049 else
1050 bp->rx_tail = tail;
1051
1052 return received;
1053 }
1054
1055 static int macb_poll(struct napi_struct *napi, int budget)
1056 {
1057 struct macb *bp = container_of(napi, struct macb, napi);
1058 int work_done;
1059 u32 status;
1060
1061 status = macb_readl(bp, RSR);
1062 macb_writel(bp, RSR, status);
1063
1064 work_done = 0;
1065
1066 netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n",
1067 (unsigned long)status, budget);
1068
1069 work_done = bp->macbgem_ops.mog_rx(bp, budget);
1070 if (work_done < budget) {
1071 napi_complete(napi);
1072
1073 /* Packets received while interrupts were disabled */
1074 status = macb_readl(bp, RSR);
1075 if (status) {
1076 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1077 macb_writel(bp, ISR, MACB_BIT(RCOMP));
1078 napi_reschedule(napi);
1079 } else {
1080 macb_writel(bp, IER, MACB_RX_INT_FLAGS);
1081 }
1082 }
1083
1084 /* TODO: Handle errors */
1085
1086 return work_done;
1087 }
1088
1089 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1090 {
1091 struct macb_queue *queue = dev_id;
1092 struct macb *bp = queue->bp;
1093 struct net_device *dev = bp->dev;
1094 u32 status, ctrl;
1095
1096 status = queue_readl(queue, ISR);
1097
1098 if (unlikely(!status))
1099 return IRQ_NONE;
1100
1101 spin_lock(&bp->lock);
1102
1103 while (status) {
1104 /* close possible race with dev_close */
1105 if (unlikely(!netif_running(dev))) {
1106 queue_writel(queue, IDR, -1);
1107 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1108 queue_writel(queue, ISR, -1);
1109 break;
1110 }
1111
1112 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1113 (unsigned int)(queue - bp->queues),
1114 (unsigned long)status);
1115
1116 if (status & MACB_RX_INT_FLAGS) {
1117 /* There's no point taking any more interrupts
1118 * until we have processed the buffers. The
1119 * scheduling call may fail if the poll routine
1120 * is already scheduled, so disable interrupts
1121 * now.
1122 */
1123 queue_writel(queue, IDR, MACB_RX_INT_FLAGS);
1124 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1125 queue_writel(queue, ISR, MACB_BIT(RCOMP));
1126
1127 if (napi_schedule_prep(&bp->napi)) {
1128 netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1129 __napi_schedule(&bp->napi);
1130 }
1131 }
1132
1133 if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1134 queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1135 schedule_work(&queue->tx_error_task);
1136
1137 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1138 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1139
1140 break;
1141 }
1142
1143 if (status & MACB_BIT(TCOMP))
1144 macb_tx_interrupt(queue);
1145
1146 /* Link change detection isn't possible with RMII, so we'll
1147 * add that if/when we get our hands on a full-blown MII PHY.
1148 */
1149
1150 /* There is a hardware issue under heavy load where DMA can
1151 * stop, this causes endless "used buffer descriptor read"
1152 * interrupts but it can be cleared by re-enabling RX. See
1153 * the at91 manual, section 41.3.1 or the Zynq manual
1154 * section 16.7.4 for details.
1155 */
1156 if (status & MACB_BIT(RXUBR)) {
1157 ctrl = macb_readl(bp, NCR);
1158 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1159 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1160
1161 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1162 queue_writel(queue, ISR, MACB_BIT(RXUBR));
1163 }
1164
1165 if (status & MACB_BIT(ISR_ROVR)) {
1166 /* We missed at least one packet */
1167 if (macb_is_gem(bp))
1168 bp->hw_stats.gem.rx_overruns++;
1169 else
1170 bp->hw_stats.macb.rx_overruns++;
1171
1172 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1173 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1174 }
1175
1176 if (status & MACB_BIT(HRESP)) {
1177 /* TODO: Reset the hardware, and maybe move the
1178 * netdev_err to a lower-priority context as well
1179 * (work queue?)
1180 */
1181 netdev_err(dev, "DMA bus error: HRESP not OK\n");
1182
1183 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1184 queue_writel(queue, ISR, MACB_BIT(HRESP));
1185 }
1186
1187 status = queue_readl(queue, ISR);
1188 }
1189
1190 spin_unlock(&bp->lock);
1191
1192 return IRQ_HANDLED;
1193 }
1194
1195 #ifdef CONFIG_NET_POLL_CONTROLLER
1196 /* Polling receive - used by netconsole and other diagnostic tools
1197 * to allow network i/o with interrupts disabled.
1198 */
1199 static void macb_poll_controller(struct net_device *dev)
1200 {
1201 struct macb *bp = netdev_priv(dev);
1202 struct macb_queue *queue;
1203 unsigned long flags;
1204 unsigned int q;
1205
1206 local_irq_save(flags);
1207 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1208 macb_interrupt(dev->irq, queue);
1209 local_irq_restore(flags);
1210 }
1211 #endif
1212
1213 static unsigned int macb_tx_map(struct macb *bp,
1214 struct macb_queue *queue,
1215 struct sk_buff *skb)
1216 {
1217 dma_addr_t mapping;
1218 unsigned int len, entry, i, tx_head = queue->tx_head;
1219 struct macb_tx_skb *tx_skb = NULL;
1220 struct macb_dma_desc *desc;
1221 unsigned int offset, size, count = 0;
1222 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1223 unsigned int eof = 1;
1224 u32 ctrl;
1225
1226 /* First, map non-paged data */
1227 len = skb_headlen(skb);
1228 offset = 0;
1229 while (len) {
1230 size = min(len, bp->max_tx_length);
1231 entry = macb_tx_ring_wrap(tx_head);
1232 tx_skb = &queue->tx_skb[entry];
1233
1234 mapping = dma_map_single(&bp->pdev->dev,
1235 skb->data + offset,
1236 size, DMA_TO_DEVICE);
1237 if (dma_mapping_error(&bp->pdev->dev, mapping))
1238 goto dma_error;
1239
1240 /* Save info to properly release resources */
1241 tx_skb->skb = NULL;
1242 tx_skb->mapping = mapping;
1243 tx_skb->size = size;
1244 tx_skb->mapped_as_page = false;
1245
1246 len -= size;
1247 offset += size;
1248 count++;
1249 tx_head++;
1250 }
1251
1252 /* Then, map paged data from fragments */
1253 for (f = 0; f < nr_frags; f++) {
1254 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1255
1256 len = skb_frag_size(frag);
1257 offset = 0;
1258 while (len) {
1259 size = min(len, bp->max_tx_length);
1260 entry = macb_tx_ring_wrap(tx_head);
1261 tx_skb = &queue->tx_skb[entry];
1262
1263 mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
1264 offset, size, DMA_TO_DEVICE);
1265 if (dma_mapping_error(&bp->pdev->dev, mapping))
1266 goto dma_error;
1267
1268 /* Save info to properly release resources */
1269 tx_skb->skb = NULL;
1270 tx_skb->mapping = mapping;
1271 tx_skb->size = size;
1272 tx_skb->mapped_as_page = true;
1273
1274 len -= size;
1275 offset += size;
1276 count++;
1277 tx_head++;
1278 }
1279 }
1280
1281 /* Should never happen */
1282 if (unlikely(!tx_skb)) {
1283 netdev_err(bp->dev, "BUG! empty skb!\n");
1284 return 0;
1285 }
1286
1287 /* This is the last buffer of the frame: save socket buffer */
1288 tx_skb->skb = skb;
1289
1290 /* Update TX ring: update buffer descriptors in reverse order
1291 * to avoid race condition
1292 */
1293
1294 /* Set 'TX_USED' bit in buffer descriptor at tx_head position
1295 * to set the end of TX queue
1296 */
1297 i = tx_head;
1298 entry = macb_tx_ring_wrap(i);
1299 ctrl = MACB_BIT(TX_USED);
1300 desc = &queue->tx_ring[entry];
1301 desc->ctrl = ctrl;
1302
1303 do {
1304 i--;
1305 entry = macb_tx_ring_wrap(i);
1306 tx_skb = &queue->tx_skb[entry];
1307 desc = &queue->tx_ring[entry];
1308
1309 ctrl = (u32)tx_skb->size;
1310 if (eof) {
1311 ctrl |= MACB_BIT(TX_LAST);
1312 eof = 0;
1313 }
1314 if (unlikely(entry == (TX_RING_SIZE - 1)))
1315 ctrl |= MACB_BIT(TX_WRAP);
1316
1317 /* Set TX buffer descriptor */
1318 macb_set_addr(desc, tx_skb->mapping);
1319 /* desc->addr must be visible to hardware before clearing
1320 * 'TX_USED' bit in desc->ctrl.
1321 */
1322 wmb();
1323 desc->ctrl = ctrl;
1324 } while (i != queue->tx_head);
1325
1326 queue->tx_head = tx_head;
1327
1328 return count;
1329
1330 dma_error:
1331 netdev_err(bp->dev, "TX DMA map failed\n");
1332
1333 for (i = queue->tx_head; i != tx_head; i++) {
1334 tx_skb = macb_tx_skb(queue, i);
1335
1336 macb_tx_unmap(bp, tx_skb);
1337 }
1338
1339 return 0;
1340 }
1341
1342 static inline int macb_clear_csum(struct sk_buff *skb)
1343 {
1344 /* no change for packets without checksum offloading */
1345 if (skb->ip_summed != CHECKSUM_PARTIAL)
1346 return 0;
1347
1348 /* make sure we can modify the header */
1349 if (unlikely(skb_cow_head(skb, 0)))
1350 return -1;
1351
1352 /* initialize checksum field
1353 * This is required - at least for Zynq, which otherwise calculates
1354 * wrong UDP header checksums for UDP packets with UDP data len <=2
1355 */
1356 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
1357 return 0;
1358 }
1359
1360 static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
1361 {
1362 u16 queue_index = skb_get_queue_mapping(skb);
1363 struct macb *bp = netdev_priv(dev);
1364 struct macb_queue *queue = &bp->queues[queue_index];
1365 unsigned long flags;
1366 unsigned int count, nr_frags, frag_size, f;
1367
1368 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1369 netdev_vdbg(bp->dev,
1370 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
1371 queue_index, skb->len, skb->head, skb->data,
1372 skb_tail_pointer(skb), skb_end_pointer(skb));
1373 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
1374 skb->data, 16, true);
1375 #endif
1376
1377 /* Count how many TX buffer descriptors are needed to send this
1378 * socket buffer: skb fragments of jumbo frames may need to be
1379 * split into many buffer descriptors.
1380 */
1381 count = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
1382 nr_frags = skb_shinfo(skb)->nr_frags;
1383 for (f = 0; f < nr_frags; f++) {
1384 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
1385 count += DIV_ROUND_UP(frag_size, bp->max_tx_length);
1386 }
1387
1388 spin_lock_irqsave(&bp->lock, flags);
1389
1390 /* This is a hard error, log it. */
1391 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < count) {
1392 netif_stop_subqueue(dev, queue_index);
1393 spin_unlock_irqrestore(&bp->lock, flags);
1394 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
1395 queue->tx_head, queue->tx_tail);
1396 return NETDEV_TX_BUSY;
1397 }
1398
1399 if (macb_clear_csum(skb)) {
1400 dev_kfree_skb_any(skb);
1401 goto unlock;
1402 }
1403
1404 /* Map socket buffer for DMA transfer */
1405 if (!macb_tx_map(bp, queue, skb)) {
1406 dev_kfree_skb_any(skb);
1407 goto unlock;
1408 }
1409
1410 /* Make newly initialized descriptor visible to hardware */
1411 wmb();
1412
1413 skb_tx_timestamp(skb);
1414
1415 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1416
1417 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < 1)
1418 netif_stop_subqueue(dev, queue_index);
1419
1420 unlock:
1421 spin_unlock_irqrestore(&bp->lock, flags);
1422
1423 return NETDEV_TX_OK;
1424 }
1425
1426 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
1427 {
1428 if (!macb_is_gem(bp)) {
1429 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
1430 } else {
1431 bp->rx_buffer_size = size;
1432
1433 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
1434 netdev_dbg(bp->dev,
1435 "RX buffer must be multiple of %d bytes, expanding\n",
1436 RX_BUFFER_MULTIPLE);
1437 bp->rx_buffer_size =
1438 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
1439 }
1440 }
1441
1442 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%Zu]\n",
1443 bp->dev->mtu, bp->rx_buffer_size);
1444 }
1445
1446 static void gem_free_rx_buffers(struct macb *bp)
1447 {
1448 struct sk_buff *skb;
1449 struct macb_dma_desc *desc;
1450 dma_addr_t addr;
1451 int i;
1452
1453 if (!bp->rx_skbuff)
1454 return;
1455
1456 for (i = 0; i < RX_RING_SIZE; i++) {
1457 skb = bp->rx_skbuff[i];
1458
1459 if (!skb)
1460 continue;
1461
1462 desc = &bp->rx_ring[i];
1463 addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1464 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1465 addr |= ((u64)(desc->addrh) << 32);
1466 #endif
1467 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
1468 DMA_FROM_DEVICE);
1469 dev_kfree_skb_any(skb);
1470 skb = NULL;
1471 }
1472
1473 kfree(bp->rx_skbuff);
1474 bp->rx_skbuff = NULL;
1475 }
1476
1477 static void macb_free_rx_buffers(struct macb *bp)
1478 {
1479 if (bp->rx_buffers) {
1480 dma_free_coherent(&bp->pdev->dev,
1481 RX_RING_SIZE * bp->rx_buffer_size,
1482 bp->rx_buffers, bp->rx_buffers_dma);
1483 bp->rx_buffers = NULL;
1484 }
1485 }
1486
1487 static void macb_free_consistent(struct macb *bp)
1488 {
1489 struct macb_queue *queue;
1490 unsigned int q;
1491
1492 bp->macbgem_ops.mog_free_rx_buffers(bp);
1493 if (bp->rx_ring) {
1494 dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES,
1495 bp->rx_ring, bp->rx_ring_dma);
1496 bp->rx_ring = NULL;
1497 }
1498
1499 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1500 kfree(queue->tx_skb);
1501 queue->tx_skb = NULL;
1502 if (queue->tx_ring) {
1503 dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES,
1504 queue->tx_ring, queue->tx_ring_dma);
1505 queue->tx_ring = NULL;
1506 }
1507 }
1508 }
1509
1510 static int gem_alloc_rx_buffers(struct macb *bp)
1511 {
1512 int size;
1513
1514 size = RX_RING_SIZE * sizeof(struct sk_buff *);
1515 bp->rx_skbuff = kzalloc(size, GFP_KERNEL);
1516 if (!bp->rx_skbuff)
1517 return -ENOMEM;
1518
1519 netdev_dbg(bp->dev,
1520 "Allocated %d RX struct sk_buff entries at %p\n",
1521 RX_RING_SIZE, bp->rx_skbuff);
1522 return 0;
1523 }
1524
1525 static int macb_alloc_rx_buffers(struct macb *bp)
1526 {
1527 int size;
1528
1529 size = RX_RING_SIZE * bp->rx_buffer_size;
1530 bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
1531 &bp->rx_buffers_dma, GFP_KERNEL);
1532 if (!bp->rx_buffers)
1533 return -ENOMEM;
1534
1535 netdev_dbg(bp->dev,
1536 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
1537 size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers);
1538 return 0;
1539 }
1540
1541 static int macb_alloc_consistent(struct macb *bp)
1542 {
1543 struct macb_queue *queue;
1544 unsigned int q;
1545 int size;
1546
1547 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1548 size = TX_RING_BYTES;
1549 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1550 &queue->tx_ring_dma,
1551 GFP_KERNEL);
1552 if (!queue->tx_ring)
1553 goto out_err;
1554 netdev_dbg(bp->dev,
1555 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
1556 q, size, (unsigned long)queue->tx_ring_dma,
1557 queue->tx_ring);
1558
1559 size = TX_RING_SIZE * sizeof(struct macb_tx_skb);
1560 queue->tx_skb = kmalloc(size, GFP_KERNEL);
1561 if (!queue->tx_skb)
1562 goto out_err;
1563 }
1564
1565 size = RX_RING_BYTES;
1566 bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1567 &bp->rx_ring_dma, GFP_KERNEL);
1568 if (!bp->rx_ring)
1569 goto out_err;
1570 netdev_dbg(bp->dev,
1571 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
1572 size, (unsigned long)bp->rx_ring_dma, bp->rx_ring);
1573
1574 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
1575 goto out_err;
1576
1577 return 0;
1578
1579 out_err:
1580 macb_free_consistent(bp);
1581 return -ENOMEM;
1582 }
1583
1584 static void gem_init_rings(struct macb *bp)
1585 {
1586 struct macb_queue *queue;
1587 unsigned int q;
1588 int i;
1589
1590 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1591 for (i = 0; i < TX_RING_SIZE; i++) {
1592 macb_set_addr(&(queue->tx_ring[i]), 0);
1593 queue->tx_ring[i].ctrl = MACB_BIT(TX_USED);
1594 }
1595 queue->tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1596 queue->tx_head = 0;
1597 queue->tx_tail = 0;
1598 }
1599
1600 bp->rx_tail = 0;
1601 bp->rx_prepared_head = 0;
1602
1603 gem_rx_refill(bp);
1604 }
1605
1606 static void macb_init_rings(struct macb *bp)
1607 {
1608 int i;
1609
1610 macb_init_rx_ring(bp);
1611
1612 for (i = 0; i < TX_RING_SIZE; i++) {
1613 bp->queues[0].tx_ring[i].addr = 0;
1614 bp->queues[0].tx_ring[i].ctrl = MACB_BIT(TX_USED);
1615 }
1616 bp->queues[0].tx_head = 0;
1617 bp->queues[0].tx_tail = 0;
1618 bp->queues[0].tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1619
1620 bp->rx_tail = 0;
1621 }
1622
1623 static void macb_reset_hw(struct macb *bp)
1624 {
1625 struct macb_queue *queue;
1626 unsigned int q;
1627
1628 /* Disable RX and TX (XXX: Should we halt the transmission
1629 * more gracefully?)
1630 */
1631 macb_writel(bp, NCR, 0);
1632
1633 /* Clear the stats registers (XXX: Update stats first?) */
1634 macb_writel(bp, NCR, MACB_BIT(CLRSTAT));
1635
1636 /* Clear all status flags */
1637 macb_writel(bp, TSR, -1);
1638 macb_writel(bp, RSR, -1);
1639
1640 /* Disable all interrupts */
1641 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1642 queue_writel(queue, IDR, -1);
1643 queue_readl(queue, ISR);
1644 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1645 queue_writel(queue, ISR, -1);
1646 }
1647 }
1648
1649 static u32 gem_mdc_clk_div(struct macb *bp)
1650 {
1651 u32 config;
1652 unsigned long pclk_hz = clk_get_rate(bp->pclk);
1653
1654 if (pclk_hz <= 20000000)
1655 config = GEM_BF(CLK, GEM_CLK_DIV8);
1656 else if (pclk_hz <= 40000000)
1657 config = GEM_BF(CLK, GEM_CLK_DIV16);
1658 else if (pclk_hz <= 80000000)
1659 config = GEM_BF(CLK, GEM_CLK_DIV32);
1660 else if (pclk_hz <= 120000000)
1661 config = GEM_BF(CLK, GEM_CLK_DIV48);
1662 else if (pclk_hz <= 160000000)
1663 config = GEM_BF(CLK, GEM_CLK_DIV64);
1664 else
1665 config = GEM_BF(CLK, GEM_CLK_DIV96);
1666
1667 return config;
1668 }
1669
1670 static u32 macb_mdc_clk_div(struct macb *bp)
1671 {
1672 u32 config;
1673 unsigned long pclk_hz;
1674
1675 if (macb_is_gem(bp))
1676 return gem_mdc_clk_div(bp);
1677
1678 pclk_hz = clk_get_rate(bp->pclk);
1679 if (pclk_hz <= 20000000)
1680 config = MACB_BF(CLK, MACB_CLK_DIV8);
1681 else if (pclk_hz <= 40000000)
1682 config = MACB_BF(CLK, MACB_CLK_DIV16);
1683 else if (pclk_hz <= 80000000)
1684 config = MACB_BF(CLK, MACB_CLK_DIV32);
1685 else
1686 config = MACB_BF(CLK, MACB_CLK_DIV64);
1687
1688 return config;
1689 }
1690
1691 /* Get the DMA bus width field of the network configuration register that we
1692 * should program. We find the width from decoding the design configuration
1693 * register to find the maximum supported data bus width.
1694 */
1695 static u32 macb_dbw(struct macb *bp)
1696 {
1697 if (!macb_is_gem(bp))
1698 return 0;
1699
1700 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
1701 case 4:
1702 return GEM_BF(DBW, GEM_DBW128);
1703 case 2:
1704 return GEM_BF(DBW, GEM_DBW64);
1705 case 1:
1706 default:
1707 return GEM_BF(DBW, GEM_DBW32);
1708 }
1709 }
1710
1711 /* Configure the receive DMA engine
1712 * - use the correct receive buffer size
1713 * - set best burst length for DMA operations
1714 * (if not supported by FIFO, it will fallback to default)
1715 * - set both rx/tx packet buffers to full memory size
1716 * These are configurable parameters for GEM.
1717 */
1718 static void macb_configure_dma(struct macb *bp)
1719 {
1720 u32 dmacfg;
1721
1722 if (macb_is_gem(bp)) {
1723 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
1724 dmacfg |= GEM_BF(RXBS, bp->rx_buffer_size / RX_BUFFER_MULTIPLE);
1725 if (bp->dma_burst_length)
1726 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
1727 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
1728 dmacfg &= ~GEM_BIT(ENDIA_PKT);
1729
1730 if (bp->native_io)
1731 dmacfg &= ~GEM_BIT(ENDIA_DESC);
1732 else
1733 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
1734
1735 if (bp->dev->features & NETIF_F_HW_CSUM)
1736 dmacfg |= GEM_BIT(TXCOEN);
1737 else
1738 dmacfg &= ~GEM_BIT(TXCOEN);
1739
1740 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1741 dmacfg |= GEM_BIT(ADDR64);
1742 #endif
1743 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
1744 dmacfg);
1745 gem_writel(bp, DMACFG, dmacfg);
1746 }
1747 }
1748
1749 static void macb_init_hw(struct macb *bp)
1750 {
1751 struct macb_queue *queue;
1752 unsigned int q;
1753
1754 u32 config;
1755
1756 macb_reset_hw(bp);
1757 macb_set_hwaddr(bp);
1758
1759 config = macb_mdc_clk_div(bp);
1760 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
1761 config |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
1762 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */
1763 config |= MACB_BIT(PAE); /* PAuse Enable */
1764 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */
1765 if (bp->caps & MACB_CAPS_JUMBO)
1766 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */
1767 else
1768 config |= MACB_BIT(BIG); /* Receive oversized frames */
1769 if (bp->dev->flags & IFF_PROMISC)
1770 config |= MACB_BIT(CAF); /* Copy All Frames */
1771 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
1772 config |= GEM_BIT(RXCOEN);
1773 if (!(bp->dev->flags & IFF_BROADCAST))
1774 config |= MACB_BIT(NBC); /* No BroadCast */
1775 config |= macb_dbw(bp);
1776 macb_writel(bp, NCFGR, config);
1777 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
1778 gem_writel(bp, JML, bp->jumbo_max_len);
1779 bp->speed = SPEED_10;
1780 bp->duplex = DUPLEX_HALF;
1781 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
1782 if (bp->caps & MACB_CAPS_JUMBO)
1783 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
1784
1785 macb_configure_dma(bp);
1786
1787 /* Initialize TX and RX buffers */
1788 macb_writel(bp, RBQP, (u32)(bp->rx_ring_dma));
1789 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1790 macb_writel(bp, RBQPH, (u32)(bp->rx_ring_dma >> 32));
1791 #endif
1792 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1793 queue_writel(queue, TBQP, (u32)(queue->tx_ring_dma));
1794 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1795 queue_writel(queue, TBQPH, (u32)(queue->tx_ring_dma >> 32));
1796 #endif
1797
1798 /* Enable interrupts */
1799 queue_writel(queue, IER,
1800 MACB_RX_INT_FLAGS |
1801 MACB_TX_INT_FLAGS |
1802 MACB_BIT(HRESP));
1803 }
1804
1805 /* Enable TX and RX */
1806 macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE));
1807 }
1808
1809 /* The hash address register is 64 bits long and takes up two
1810 * locations in the memory map. The least significant bits are stored
1811 * in EMAC_HSL and the most significant bits in EMAC_HSH.
1812 *
1813 * The unicast hash enable and the multicast hash enable bits in the
1814 * network configuration register enable the reception of hash matched
1815 * frames. The destination address is reduced to a 6 bit index into
1816 * the 64 bit hash register using the following hash function. The
1817 * hash function is an exclusive or of every sixth bit of the
1818 * destination address.
1819 *
1820 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
1821 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
1822 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
1823 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
1824 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
1825 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
1826 *
1827 * da[0] represents the least significant bit of the first byte
1828 * received, that is, the multicast/unicast indicator, and da[47]
1829 * represents the most significant bit of the last byte received. If
1830 * the hash index, hi[n], points to a bit that is set in the hash
1831 * register then the frame will be matched according to whether the
1832 * frame is multicast or unicast. A multicast match will be signalled
1833 * if the multicast hash enable bit is set, da[0] is 1 and the hash
1834 * index points to a bit set in the hash register. A unicast match
1835 * will be signalled if the unicast hash enable bit is set, da[0] is 0
1836 * and the hash index points to a bit set in the hash register. To
1837 * receive all multicast frames, the hash register should be set with
1838 * all ones and the multicast hash enable bit should be set in the
1839 * network configuration register.
1840 */
1841
1842 static inline int hash_bit_value(int bitnr, __u8 *addr)
1843 {
1844 if (addr[bitnr / 8] & (1 << (bitnr % 8)))
1845 return 1;
1846 return 0;
1847 }
1848
1849 /* Return the hash index value for the specified address. */
1850 static int hash_get_index(__u8 *addr)
1851 {
1852 int i, j, bitval;
1853 int hash_index = 0;
1854
1855 for (j = 0; j < 6; j++) {
1856 for (i = 0, bitval = 0; i < 8; i++)
1857 bitval ^= hash_bit_value(i * 6 + j, addr);
1858
1859 hash_index |= (bitval << j);
1860 }
1861
1862 return hash_index;
1863 }
1864
1865 /* Add multicast addresses to the internal multicast-hash table. */
1866 static void macb_sethashtable(struct net_device *dev)
1867 {
1868 struct netdev_hw_addr *ha;
1869 unsigned long mc_filter[2];
1870 unsigned int bitnr;
1871 struct macb *bp = netdev_priv(dev);
1872
1873 mc_filter[0] = 0;
1874 mc_filter[1] = 0;
1875
1876 netdev_for_each_mc_addr(ha, dev) {
1877 bitnr = hash_get_index(ha->addr);
1878 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1879 }
1880
1881 macb_or_gem_writel(bp, HRB, mc_filter[0]);
1882 macb_or_gem_writel(bp, HRT, mc_filter[1]);
1883 }
1884
1885 /* Enable/Disable promiscuous and multicast modes. */
1886 static void macb_set_rx_mode(struct net_device *dev)
1887 {
1888 unsigned long cfg;
1889 struct macb *bp = netdev_priv(dev);
1890
1891 cfg = macb_readl(bp, NCFGR);
1892
1893 if (dev->flags & IFF_PROMISC) {
1894 /* Enable promiscuous mode */
1895 cfg |= MACB_BIT(CAF);
1896
1897 /* Disable RX checksum offload */
1898 if (macb_is_gem(bp))
1899 cfg &= ~GEM_BIT(RXCOEN);
1900 } else {
1901 /* Disable promiscuous mode */
1902 cfg &= ~MACB_BIT(CAF);
1903
1904 /* Enable RX checksum offload only if requested */
1905 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
1906 cfg |= GEM_BIT(RXCOEN);
1907 }
1908
1909 if (dev->flags & IFF_ALLMULTI) {
1910 /* Enable all multicast mode */
1911 macb_or_gem_writel(bp, HRB, -1);
1912 macb_or_gem_writel(bp, HRT, -1);
1913 cfg |= MACB_BIT(NCFGR_MTI);
1914 } else if (!netdev_mc_empty(dev)) {
1915 /* Enable specific multicasts */
1916 macb_sethashtable(dev);
1917 cfg |= MACB_BIT(NCFGR_MTI);
1918 } else if (dev->flags & (~IFF_ALLMULTI)) {
1919 /* Disable all multicast mode */
1920 macb_or_gem_writel(bp, HRB, 0);
1921 macb_or_gem_writel(bp, HRT, 0);
1922 cfg &= ~MACB_BIT(NCFGR_MTI);
1923 }
1924
1925 macb_writel(bp, NCFGR, cfg);
1926 }
1927
1928 static int macb_open(struct net_device *dev)
1929 {
1930 struct macb *bp = netdev_priv(dev);
1931 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
1932 int err;
1933
1934 netdev_dbg(bp->dev, "open\n");
1935
1936 /* carrier starts down */
1937 netif_carrier_off(dev);
1938
1939 /* if the phy is not yet register, retry later*/
1940 if (!dev->phydev)
1941 return -EAGAIN;
1942
1943 /* RX buffers initialization */
1944 macb_init_rx_buffer_size(bp, bufsz);
1945
1946 err = macb_alloc_consistent(bp);
1947 if (err) {
1948 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
1949 err);
1950 return err;
1951 }
1952
1953 napi_enable(&bp->napi);
1954
1955 bp->macbgem_ops.mog_init_rings(bp);
1956 macb_init_hw(bp);
1957
1958 /* schedule a link state check */
1959 phy_start(dev->phydev);
1960
1961 netif_tx_start_all_queues(dev);
1962
1963 return 0;
1964 }
1965
1966 static int macb_close(struct net_device *dev)
1967 {
1968 struct macb *bp = netdev_priv(dev);
1969 unsigned long flags;
1970
1971 netif_tx_stop_all_queues(dev);
1972 napi_disable(&bp->napi);
1973
1974 if (dev->phydev)
1975 phy_stop(dev->phydev);
1976
1977 spin_lock_irqsave(&bp->lock, flags);
1978 macb_reset_hw(bp);
1979 netif_carrier_off(dev);
1980 spin_unlock_irqrestore(&bp->lock, flags);
1981
1982 macb_free_consistent(bp);
1983
1984 return 0;
1985 }
1986
1987 static int macb_change_mtu(struct net_device *dev, int new_mtu)
1988 {
1989 struct macb *bp = netdev_priv(dev);
1990 u32 max_mtu;
1991
1992 if (netif_running(dev))
1993 return -EBUSY;
1994
1995 max_mtu = ETH_DATA_LEN;
1996 if (bp->caps & MACB_CAPS_JUMBO)
1997 max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN;
1998
1999 if ((new_mtu > max_mtu) || (new_mtu < GEM_MTU_MIN_SIZE))
2000 return -EINVAL;
2001
2002 dev->mtu = new_mtu;
2003
2004 return 0;
2005 }
2006
2007 static void gem_update_stats(struct macb *bp)
2008 {
2009 unsigned int i;
2010 u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2011
2012 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2013 u32 offset = gem_statistics[i].offset;
2014 u64 val = bp->macb_reg_readl(bp, offset);
2015
2016 bp->ethtool_stats[i] += val;
2017 *p += val;
2018
2019 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2020 /* Add GEM_OCTTXH, GEM_OCTRXH */
2021 val = bp->macb_reg_readl(bp, offset + 4);
2022 bp->ethtool_stats[i] += ((u64)val) << 32;
2023 *(++p) += val;
2024 }
2025 }
2026 }
2027
2028 static struct net_device_stats *gem_get_stats(struct macb *bp)
2029 {
2030 struct gem_stats *hwstat = &bp->hw_stats.gem;
2031 struct net_device_stats *nstat = &bp->stats;
2032
2033 gem_update_stats(bp);
2034
2035 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2036 hwstat->rx_alignment_errors +
2037 hwstat->rx_resource_errors +
2038 hwstat->rx_overruns +
2039 hwstat->rx_oversize_frames +
2040 hwstat->rx_jabbers +
2041 hwstat->rx_undersized_frames +
2042 hwstat->rx_length_field_frame_errors);
2043 nstat->tx_errors = (hwstat->tx_late_collisions +
2044 hwstat->tx_excessive_collisions +
2045 hwstat->tx_underrun +
2046 hwstat->tx_carrier_sense_errors);
2047 nstat->multicast = hwstat->rx_multicast_frames;
2048 nstat->collisions = (hwstat->tx_single_collision_frames +
2049 hwstat->tx_multiple_collision_frames +
2050 hwstat->tx_excessive_collisions);
2051 nstat->rx_length_errors = (hwstat->rx_oversize_frames +
2052 hwstat->rx_jabbers +
2053 hwstat->rx_undersized_frames +
2054 hwstat->rx_length_field_frame_errors);
2055 nstat->rx_over_errors = hwstat->rx_resource_errors;
2056 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
2057 nstat->rx_frame_errors = hwstat->rx_alignment_errors;
2058 nstat->rx_fifo_errors = hwstat->rx_overruns;
2059 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
2060 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
2061 nstat->tx_fifo_errors = hwstat->tx_underrun;
2062
2063 return nstat;
2064 }
2065
2066 static void gem_get_ethtool_stats(struct net_device *dev,
2067 struct ethtool_stats *stats, u64 *data)
2068 {
2069 struct macb *bp;
2070
2071 bp = netdev_priv(dev);
2072 gem_update_stats(bp);
2073 memcpy(data, &bp->ethtool_stats, sizeof(u64) * GEM_STATS_LEN);
2074 }
2075
2076 static int gem_get_sset_count(struct net_device *dev, int sset)
2077 {
2078 switch (sset) {
2079 case ETH_SS_STATS:
2080 return GEM_STATS_LEN;
2081 default:
2082 return -EOPNOTSUPP;
2083 }
2084 }
2085
2086 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
2087 {
2088 unsigned int i;
2089
2090 switch (sset) {
2091 case ETH_SS_STATS:
2092 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
2093 memcpy(p, gem_statistics[i].stat_string,
2094 ETH_GSTRING_LEN);
2095 break;
2096 }
2097 }
2098
2099 static struct net_device_stats *macb_get_stats(struct net_device *dev)
2100 {
2101 struct macb *bp = netdev_priv(dev);
2102 struct net_device_stats *nstat = &bp->stats;
2103 struct macb_stats *hwstat = &bp->hw_stats.macb;
2104
2105 if (macb_is_gem(bp))
2106 return gem_get_stats(bp);
2107
2108 /* read stats from hardware */
2109 macb_update_stats(bp);
2110
2111 /* Convert HW stats into netdevice stats */
2112 nstat->rx_errors = (hwstat->rx_fcs_errors +
2113 hwstat->rx_align_errors +
2114 hwstat->rx_resource_errors +
2115 hwstat->rx_overruns +
2116 hwstat->rx_oversize_pkts +
2117 hwstat->rx_jabbers +
2118 hwstat->rx_undersize_pkts +
2119 hwstat->rx_length_mismatch);
2120 nstat->tx_errors = (hwstat->tx_late_cols +
2121 hwstat->tx_excessive_cols +
2122 hwstat->tx_underruns +
2123 hwstat->tx_carrier_errors +
2124 hwstat->sqe_test_errors);
2125 nstat->collisions = (hwstat->tx_single_cols +
2126 hwstat->tx_multiple_cols +
2127 hwstat->tx_excessive_cols);
2128 nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
2129 hwstat->rx_jabbers +
2130 hwstat->rx_undersize_pkts +
2131 hwstat->rx_length_mismatch);
2132 nstat->rx_over_errors = hwstat->rx_resource_errors +
2133 hwstat->rx_overruns;
2134 nstat->rx_crc_errors = hwstat->rx_fcs_errors;
2135 nstat->rx_frame_errors = hwstat->rx_align_errors;
2136 nstat->rx_fifo_errors = hwstat->rx_overruns;
2137 /* XXX: What does "missed" mean? */
2138 nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
2139 nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
2140 nstat->tx_fifo_errors = hwstat->tx_underruns;
2141 /* Don't know about heartbeat or window errors... */
2142
2143 return nstat;
2144 }
2145
2146 static int macb_get_regs_len(struct net_device *netdev)
2147 {
2148 return MACB_GREGS_NBR * sizeof(u32);
2149 }
2150
2151 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
2152 void *p)
2153 {
2154 struct macb *bp = netdev_priv(dev);
2155 unsigned int tail, head;
2156 u32 *regs_buff = p;
2157
2158 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
2159 | MACB_GREGS_VERSION;
2160
2161 tail = macb_tx_ring_wrap(bp->queues[0].tx_tail);
2162 head = macb_tx_ring_wrap(bp->queues[0].tx_head);
2163
2164 regs_buff[0] = macb_readl(bp, NCR);
2165 regs_buff[1] = macb_or_gem_readl(bp, NCFGR);
2166 regs_buff[2] = macb_readl(bp, NSR);
2167 regs_buff[3] = macb_readl(bp, TSR);
2168 regs_buff[4] = macb_readl(bp, RBQP);
2169 regs_buff[5] = macb_readl(bp, TBQP);
2170 regs_buff[6] = macb_readl(bp, RSR);
2171 regs_buff[7] = macb_readl(bp, IMR);
2172
2173 regs_buff[8] = tail;
2174 regs_buff[9] = head;
2175 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
2176 regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
2177
2178 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
2179 regs_buff[12] = macb_or_gem_readl(bp, USRIO);
2180 if (macb_is_gem(bp))
2181 regs_buff[13] = gem_readl(bp, DMACFG);
2182 }
2183
2184 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2185 {
2186 struct macb *bp = netdev_priv(netdev);
2187
2188 wol->supported = 0;
2189 wol->wolopts = 0;
2190
2191 if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
2192 wol->supported = WAKE_MAGIC;
2193
2194 if (bp->wol & MACB_WOL_ENABLED)
2195 wol->wolopts |= WAKE_MAGIC;
2196 }
2197 }
2198
2199 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2200 {
2201 struct macb *bp = netdev_priv(netdev);
2202
2203 if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
2204 (wol->wolopts & ~WAKE_MAGIC))
2205 return -EOPNOTSUPP;
2206
2207 if (wol->wolopts & WAKE_MAGIC)
2208 bp->wol |= MACB_WOL_ENABLED;
2209 else
2210 bp->wol &= ~MACB_WOL_ENABLED;
2211
2212 device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
2213
2214 return 0;
2215 }
2216
2217 static const struct ethtool_ops macb_ethtool_ops = {
2218 .get_regs_len = macb_get_regs_len,
2219 .get_regs = macb_get_regs,
2220 .get_link = ethtool_op_get_link,
2221 .get_ts_info = ethtool_op_get_ts_info,
2222 .get_wol = macb_get_wol,
2223 .set_wol = macb_set_wol,
2224 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2225 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2226 };
2227
2228 static const struct ethtool_ops gem_ethtool_ops = {
2229 .get_regs_len = macb_get_regs_len,
2230 .get_regs = macb_get_regs,
2231 .get_link = ethtool_op_get_link,
2232 .get_ts_info = ethtool_op_get_ts_info,
2233 .get_ethtool_stats = gem_get_ethtool_stats,
2234 .get_strings = gem_get_ethtool_strings,
2235 .get_sset_count = gem_get_sset_count,
2236 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2237 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2238 };
2239
2240 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2241 {
2242 struct phy_device *phydev = dev->phydev;
2243
2244 if (!netif_running(dev))
2245 return -EINVAL;
2246
2247 if (!phydev)
2248 return -ENODEV;
2249
2250 return phy_mii_ioctl(phydev, rq, cmd);
2251 }
2252
2253 static int macb_set_features(struct net_device *netdev,
2254 netdev_features_t features)
2255 {
2256 struct macb *bp = netdev_priv(netdev);
2257 netdev_features_t changed = features ^ netdev->features;
2258
2259 /* TX checksum offload */
2260 if ((changed & NETIF_F_HW_CSUM) && macb_is_gem(bp)) {
2261 u32 dmacfg;
2262
2263 dmacfg = gem_readl(bp, DMACFG);
2264 if (features & NETIF_F_HW_CSUM)
2265 dmacfg |= GEM_BIT(TXCOEN);
2266 else
2267 dmacfg &= ~GEM_BIT(TXCOEN);
2268 gem_writel(bp, DMACFG, dmacfg);
2269 }
2270
2271 /* RX checksum offload */
2272 if ((changed & NETIF_F_RXCSUM) && macb_is_gem(bp)) {
2273 u32 netcfg;
2274
2275 netcfg = gem_readl(bp, NCFGR);
2276 if (features & NETIF_F_RXCSUM &&
2277 !(netdev->flags & IFF_PROMISC))
2278 netcfg |= GEM_BIT(RXCOEN);
2279 else
2280 netcfg &= ~GEM_BIT(RXCOEN);
2281 gem_writel(bp, NCFGR, netcfg);
2282 }
2283
2284 return 0;
2285 }
2286
2287 static const struct net_device_ops macb_netdev_ops = {
2288 .ndo_open = macb_open,
2289 .ndo_stop = macb_close,
2290 .ndo_start_xmit = macb_start_xmit,
2291 .ndo_set_rx_mode = macb_set_rx_mode,
2292 .ndo_get_stats = macb_get_stats,
2293 .ndo_do_ioctl = macb_ioctl,
2294 .ndo_validate_addr = eth_validate_addr,
2295 .ndo_change_mtu = macb_change_mtu,
2296 .ndo_set_mac_address = eth_mac_addr,
2297 #ifdef CONFIG_NET_POLL_CONTROLLER
2298 .ndo_poll_controller = macb_poll_controller,
2299 #endif
2300 .ndo_set_features = macb_set_features,
2301 };
2302
2303 /* Configure peripheral capabilities according to device tree
2304 * and integration options used
2305 */
2306 static void macb_configure_caps(struct macb *bp,
2307 const struct macb_config *dt_conf)
2308 {
2309 u32 dcfg;
2310
2311 if (dt_conf)
2312 bp->caps = dt_conf->caps;
2313
2314 if (hw_is_gem(bp->regs, bp->native_io)) {
2315 bp->caps |= MACB_CAPS_MACB_IS_GEM;
2316
2317 dcfg = gem_readl(bp, DCFG1);
2318 if (GEM_BFEXT(IRQCOR, dcfg) == 0)
2319 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
2320 dcfg = gem_readl(bp, DCFG2);
2321 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
2322 bp->caps |= MACB_CAPS_FIFO_MODE;
2323 }
2324
2325 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
2326 }
2327
2328 static void macb_probe_queues(void __iomem *mem,
2329 bool native_io,
2330 unsigned int *queue_mask,
2331 unsigned int *num_queues)
2332 {
2333 unsigned int hw_q;
2334
2335 *queue_mask = 0x1;
2336 *num_queues = 1;
2337
2338 /* is it macb or gem ?
2339 *
2340 * We need to read directly from the hardware here because
2341 * we are early in the probe process and don't have the
2342 * MACB_CAPS_MACB_IS_GEM flag positioned
2343 */
2344 if (!hw_is_gem(mem, native_io))
2345 return;
2346
2347 /* bit 0 is never set but queue 0 always exists */
2348 *queue_mask = readl_relaxed(mem + GEM_DCFG6) & 0xff;
2349
2350 *queue_mask |= 0x1;
2351
2352 for (hw_q = 1; hw_q < MACB_MAX_QUEUES; ++hw_q)
2353 if (*queue_mask & (1 << hw_q))
2354 (*num_queues)++;
2355 }
2356
2357 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
2358 struct clk **hclk, struct clk **tx_clk,
2359 struct clk **rx_clk)
2360 {
2361 int err;
2362
2363 *pclk = devm_clk_get(&pdev->dev, "pclk");
2364 if (IS_ERR(*pclk)) {
2365 err = PTR_ERR(*pclk);
2366 dev_err(&pdev->dev, "failed to get macb_clk (%u)\n", err);
2367 return err;
2368 }
2369
2370 *hclk = devm_clk_get(&pdev->dev, "hclk");
2371 if (IS_ERR(*hclk)) {
2372 err = PTR_ERR(*hclk);
2373 dev_err(&pdev->dev, "failed to get hclk (%u)\n", err);
2374 return err;
2375 }
2376
2377 *tx_clk = devm_clk_get(&pdev->dev, "tx_clk");
2378 if (IS_ERR(*tx_clk))
2379 *tx_clk = NULL;
2380
2381 *rx_clk = devm_clk_get(&pdev->dev, "rx_clk");
2382 if (IS_ERR(*rx_clk))
2383 *rx_clk = NULL;
2384
2385 err = clk_prepare_enable(*pclk);
2386 if (err) {
2387 dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2388 return err;
2389 }
2390
2391 err = clk_prepare_enable(*hclk);
2392 if (err) {
2393 dev_err(&pdev->dev, "failed to enable hclk (%u)\n", err);
2394 goto err_disable_pclk;
2395 }
2396
2397 err = clk_prepare_enable(*tx_clk);
2398 if (err) {
2399 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
2400 goto err_disable_hclk;
2401 }
2402
2403 err = clk_prepare_enable(*rx_clk);
2404 if (err) {
2405 dev_err(&pdev->dev, "failed to enable rx_clk (%u)\n", err);
2406 goto err_disable_txclk;
2407 }
2408
2409 return 0;
2410
2411 err_disable_txclk:
2412 clk_disable_unprepare(*tx_clk);
2413
2414 err_disable_hclk:
2415 clk_disable_unprepare(*hclk);
2416
2417 err_disable_pclk:
2418 clk_disable_unprepare(*pclk);
2419
2420 return err;
2421 }
2422
2423 static int macb_init(struct platform_device *pdev)
2424 {
2425 struct net_device *dev = platform_get_drvdata(pdev);
2426 unsigned int hw_q, q;
2427 struct macb *bp = netdev_priv(dev);
2428 struct macb_queue *queue;
2429 int err;
2430 u32 val;
2431
2432 /* set the queue register mapping once for all: queue0 has a special
2433 * register mapping but we don't want to test the queue index then
2434 * compute the corresponding register offset at run time.
2435 */
2436 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
2437 if (!(bp->queue_mask & (1 << hw_q)))
2438 continue;
2439
2440 queue = &bp->queues[q];
2441 queue->bp = bp;
2442 if (hw_q) {
2443 queue->ISR = GEM_ISR(hw_q - 1);
2444 queue->IER = GEM_IER(hw_q - 1);
2445 queue->IDR = GEM_IDR(hw_q - 1);
2446 queue->IMR = GEM_IMR(hw_q - 1);
2447 queue->TBQP = GEM_TBQP(hw_q - 1);
2448 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2449 queue->TBQPH = GEM_TBQPH(hw_q -1);
2450 #endif
2451 } else {
2452 /* queue0 uses legacy registers */
2453 queue->ISR = MACB_ISR;
2454 queue->IER = MACB_IER;
2455 queue->IDR = MACB_IDR;
2456 queue->IMR = MACB_IMR;
2457 queue->TBQP = MACB_TBQP;
2458 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2459 queue->TBQPH = MACB_TBQPH;
2460 #endif
2461 }
2462
2463 /* get irq: here we use the linux queue index, not the hardware
2464 * queue index. the queue irq definitions in the device tree
2465 * must remove the optional gaps that could exist in the
2466 * hardware queue mask.
2467 */
2468 queue->irq = platform_get_irq(pdev, q);
2469 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
2470 IRQF_SHARED, dev->name, queue);
2471 if (err) {
2472 dev_err(&pdev->dev,
2473 "Unable to request IRQ %d (error %d)\n",
2474 queue->irq, err);
2475 return err;
2476 }
2477
2478 INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
2479 q++;
2480 }
2481
2482 dev->netdev_ops = &macb_netdev_ops;
2483 netif_napi_add(dev, &bp->napi, macb_poll, 64);
2484
2485 /* setup appropriated routines according to adapter type */
2486 if (macb_is_gem(bp)) {
2487 bp->max_tx_length = GEM_MAX_TX_LEN;
2488 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
2489 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
2490 bp->macbgem_ops.mog_init_rings = gem_init_rings;
2491 bp->macbgem_ops.mog_rx = gem_rx;
2492 dev->ethtool_ops = &gem_ethtool_ops;
2493 } else {
2494 bp->max_tx_length = MACB_MAX_TX_LEN;
2495 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
2496 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
2497 bp->macbgem_ops.mog_init_rings = macb_init_rings;
2498 bp->macbgem_ops.mog_rx = macb_rx;
2499 dev->ethtool_ops = &macb_ethtool_ops;
2500 }
2501
2502 /* Set features */
2503 dev->hw_features = NETIF_F_SG;
2504 /* Checksum offload is only available on gem with packet buffer */
2505 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
2506 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2507 if (bp->caps & MACB_CAPS_SG_DISABLED)
2508 dev->hw_features &= ~NETIF_F_SG;
2509 dev->features = dev->hw_features;
2510
2511 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
2512 val = 0;
2513 if (bp->phy_interface == PHY_INTERFACE_MODE_RGMII)
2514 val = GEM_BIT(RGMII);
2515 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
2516 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
2517 val = MACB_BIT(RMII);
2518 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
2519 val = MACB_BIT(MII);
2520
2521 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
2522 val |= MACB_BIT(CLKEN);
2523
2524 macb_or_gem_writel(bp, USRIO, val);
2525 }
2526
2527 /* Set MII management clock divider */
2528 val = macb_mdc_clk_div(bp);
2529 val |= macb_dbw(bp);
2530 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
2531 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
2532 macb_writel(bp, NCFGR, val);
2533
2534 return 0;
2535 }
2536
2537 #if defined(CONFIG_OF)
2538 /* 1518 rounded up */
2539 #define AT91ETHER_MAX_RBUFF_SZ 0x600
2540 /* max number of receive buffers */
2541 #define AT91ETHER_MAX_RX_DESCR 9
2542
2543 /* Initialize and start the Receiver and Transmit subsystems */
2544 static int at91ether_start(struct net_device *dev)
2545 {
2546 struct macb *lp = netdev_priv(dev);
2547 dma_addr_t addr;
2548 u32 ctl;
2549 int i;
2550
2551 lp->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
2552 (AT91ETHER_MAX_RX_DESCR *
2553 sizeof(struct macb_dma_desc)),
2554 &lp->rx_ring_dma, GFP_KERNEL);
2555 if (!lp->rx_ring)
2556 return -ENOMEM;
2557
2558 lp->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
2559 AT91ETHER_MAX_RX_DESCR *
2560 AT91ETHER_MAX_RBUFF_SZ,
2561 &lp->rx_buffers_dma, GFP_KERNEL);
2562 if (!lp->rx_buffers) {
2563 dma_free_coherent(&lp->pdev->dev,
2564 AT91ETHER_MAX_RX_DESCR *
2565 sizeof(struct macb_dma_desc),
2566 lp->rx_ring, lp->rx_ring_dma);
2567 lp->rx_ring = NULL;
2568 return -ENOMEM;
2569 }
2570
2571 addr = lp->rx_buffers_dma;
2572 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
2573 lp->rx_ring[i].addr = addr;
2574 lp->rx_ring[i].ctrl = 0;
2575 addr += AT91ETHER_MAX_RBUFF_SZ;
2576 }
2577
2578 /* Set the Wrap bit on the last descriptor */
2579 lp->rx_ring[AT91ETHER_MAX_RX_DESCR - 1].addr |= MACB_BIT(RX_WRAP);
2580
2581 /* Reset buffer index */
2582 lp->rx_tail = 0;
2583
2584 /* Program address of descriptor list in Rx Buffer Queue register */
2585 macb_writel(lp, RBQP, lp->rx_ring_dma);
2586
2587 /* Enable Receive and Transmit */
2588 ctl = macb_readl(lp, NCR);
2589 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
2590
2591 return 0;
2592 }
2593
2594 /* Open the ethernet interface */
2595 static int at91ether_open(struct net_device *dev)
2596 {
2597 struct macb *lp = netdev_priv(dev);
2598 u32 ctl;
2599 int ret;
2600
2601 /* Clear internal statistics */
2602 ctl = macb_readl(lp, NCR);
2603 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
2604
2605 macb_set_hwaddr(lp);
2606
2607 ret = at91ether_start(dev);
2608 if (ret)
2609 return ret;
2610
2611 /* Enable MAC interrupts */
2612 macb_writel(lp, IER, MACB_BIT(RCOMP) |
2613 MACB_BIT(RXUBR) |
2614 MACB_BIT(ISR_TUND) |
2615 MACB_BIT(ISR_RLE) |
2616 MACB_BIT(TCOMP) |
2617 MACB_BIT(ISR_ROVR) |
2618 MACB_BIT(HRESP));
2619
2620 /* schedule a link state check */
2621 phy_start(dev->phydev);
2622
2623 netif_start_queue(dev);
2624
2625 return 0;
2626 }
2627
2628 /* Close the interface */
2629 static int at91ether_close(struct net_device *dev)
2630 {
2631 struct macb *lp = netdev_priv(dev);
2632 u32 ctl;
2633
2634 /* Disable Receiver and Transmitter */
2635 ctl = macb_readl(lp, NCR);
2636 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
2637
2638 /* Disable MAC interrupts */
2639 macb_writel(lp, IDR, MACB_BIT(RCOMP) |
2640 MACB_BIT(RXUBR) |
2641 MACB_BIT(ISR_TUND) |
2642 MACB_BIT(ISR_RLE) |
2643 MACB_BIT(TCOMP) |
2644 MACB_BIT(ISR_ROVR) |
2645 MACB_BIT(HRESP));
2646
2647 netif_stop_queue(dev);
2648
2649 dma_free_coherent(&lp->pdev->dev,
2650 AT91ETHER_MAX_RX_DESCR *
2651 sizeof(struct macb_dma_desc),
2652 lp->rx_ring, lp->rx_ring_dma);
2653 lp->rx_ring = NULL;
2654
2655 dma_free_coherent(&lp->pdev->dev,
2656 AT91ETHER_MAX_RX_DESCR * AT91ETHER_MAX_RBUFF_SZ,
2657 lp->rx_buffers, lp->rx_buffers_dma);
2658 lp->rx_buffers = NULL;
2659
2660 return 0;
2661 }
2662
2663 /* Transmit packet */
2664 static int at91ether_start_xmit(struct sk_buff *skb, struct net_device *dev)
2665 {
2666 struct macb *lp = netdev_priv(dev);
2667
2668 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
2669 netif_stop_queue(dev);
2670
2671 /* Store packet information (to free when Tx completed) */
2672 lp->skb = skb;
2673 lp->skb_length = skb->len;
2674 lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len,
2675 DMA_TO_DEVICE);
2676
2677 /* Set address of the data in the Transmit Address register */
2678 macb_writel(lp, TAR, lp->skb_physaddr);
2679 /* Set length of the packet in the Transmit Control register */
2680 macb_writel(lp, TCR, skb->len);
2681
2682 } else {
2683 netdev_err(dev, "%s called, but device is busy!\n", __func__);
2684 return NETDEV_TX_BUSY;
2685 }
2686
2687 return NETDEV_TX_OK;
2688 }
2689
2690 /* Extract received frame from buffer descriptors and sent to upper layers.
2691 * (Called from interrupt context)
2692 */
2693 static void at91ether_rx(struct net_device *dev)
2694 {
2695 struct macb *lp = netdev_priv(dev);
2696 unsigned char *p_recv;
2697 struct sk_buff *skb;
2698 unsigned int pktlen;
2699
2700 while (lp->rx_ring[lp->rx_tail].addr & MACB_BIT(RX_USED)) {
2701 p_recv = lp->rx_buffers + lp->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
2702 pktlen = MACB_BF(RX_FRMLEN, lp->rx_ring[lp->rx_tail].ctrl);
2703 skb = netdev_alloc_skb(dev, pktlen + 2);
2704 if (skb) {
2705 skb_reserve(skb, 2);
2706 memcpy(skb_put(skb, pktlen), p_recv, pktlen);
2707
2708 skb->protocol = eth_type_trans(skb, dev);
2709 lp->stats.rx_packets++;
2710 lp->stats.rx_bytes += pktlen;
2711 netif_rx(skb);
2712 } else {
2713 lp->stats.rx_dropped++;
2714 }
2715
2716 if (lp->rx_ring[lp->rx_tail].ctrl & MACB_BIT(RX_MHASH_MATCH))
2717 lp->stats.multicast++;
2718
2719 /* reset ownership bit */
2720 lp->rx_ring[lp->rx_tail].addr &= ~MACB_BIT(RX_USED);
2721
2722 /* wrap after last buffer */
2723 if (lp->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
2724 lp->rx_tail = 0;
2725 else
2726 lp->rx_tail++;
2727 }
2728 }
2729
2730 /* MAC interrupt handler */
2731 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
2732 {
2733 struct net_device *dev = dev_id;
2734 struct macb *lp = netdev_priv(dev);
2735 u32 intstatus, ctl;
2736
2737 /* MAC Interrupt Status register indicates what interrupts are pending.
2738 * It is automatically cleared once read.
2739 */
2740 intstatus = macb_readl(lp, ISR);
2741
2742 /* Receive complete */
2743 if (intstatus & MACB_BIT(RCOMP))
2744 at91ether_rx(dev);
2745
2746 /* Transmit complete */
2747 if (intstatus & MACB_BIT(TCOMP)) {
2748 /* The TCOM bit is set even if the transmission failed */
2749 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
2750 lp->stats.tx_errors++;
2751
2752 if (lp->skb) {
2753 dev_kfree_skb_irq(lp->skb);
2754 lp->skb = NULL;
2755 dma_unmap_single(NULL, lp->skb_physaddr,
2756 lp->skb_length, DMA_TO_DEVICE);
2757 lp->stats.tx_packets++;
2758 lp->stats.tx_bytes += lp->skb_length;
2759 }
2760 netif_wake_queue(dev);
2761 }
2762
2763 /* Work-around for EMAC Errata section 41.3.1 */
2764 if (intstatus & MACB_BIT(RXUBR)) {
2765 ctl = macb_readl(lp, NCR);
2766 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
2767 macb_writel(lp, NCR, ctl | MACB_BIT(RE));
2768 }
2769
2770 if (intstatus & MACB_BIT(ISR_ROVR))
2771 netdev_err(dev, "ROVR error\n");
2772
2773 return IRQ_HANDLED;
2774 }
2775
2776 #ifdef CONFIG_NET_POLL_CONTROLLER
2777 static void at91ether_poll_controller(struct net_device *dev)
2778 {
2779 unsigned long flags;
2780
2781 local_irq_save(flags);
2782 at91ether_interrupt(dev->irq, dev);
2783 local_irq_restore(flags);
2784 }
2785 #endif
2786
2787 static const struct net_device_ops at91ether_netdev_ops = {
2788 .ndo_open = at91ether_open,
2789 .ndo_stop = at91ether_close,
2790 .ndo_start_xmit = at91ether_start_xmit,
2791 .ndo_get_stats = macb_get_stats,
2792 .ndo_set_rx_mode = macb_set_rx_mode,
2793 .ndo_set_mac_address = eth_mac_addr,
2794 .ndo_do_ioctl = macb_ioctl,
2795 .ndo_validate_addr = eth_validate_addr,
2796 .ndo_change_mtu = eth_change_mtu,
2797 #ifdef CONFIG_NET_POLL_CONTROLLER
2798 .ndo_poll_controller = at91ether_poll_controller,
2799 #endif
2800 };
2801
2802 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
2803 struct clk **hclk, struct clk **tx_clk,
2804 struct clk **rx_clk)
2805 {
2806 int err;
2807
2808 *hclk = NULL;
2809 *tx_clk = NULL;
2810 *rx_clk = NULL;
2811
2812 *pclk = devm_clk_get(&pdev->dev, "ether_clk");
2813 if (IS_ERR(*pclk))
2814 return PTR_ERR(*pclk);
2815
2816 err = clk_prepare_enable(*pclk);
2817 if (err) {
2818 dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2819 return err;
2820 }
2821
2822 return 0;
2823 }
2824
2825 static int at91ether_init(struct platform_device *pdev)
2826 {
2827 struct net_device *dev = platform_get_drvdata(pdev);
2828 struct macb *bp = netdev_priv(dev);
2829 int err;
2830 u32 reg;
2831
2832 dev->netdev_ops = &at91ether_netdev_ops;
2833 dev->ethtool_ops = &macb_ethtool_ops;
2834
2835 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
2836 0, dev->name, dev);
2837 if (err)
2838 return err;
2839
2840 macb_writel(bp, NCR, 0);
2841
2842 reg = MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG);
2843 if (bp->phy_interface == PHY_INTERFACE_MODE_RMII)
2844 reg |= MACB_BIT(RM9200_RMII);
2845
2846 macb_writel(bp, NCFGR, reg);
2847
2848 return 0;
2849 }
2850
2851 static const struct macb_config at91sam9260_config = {
2852 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
2853 .clk_init = macb_clk_init,
2854 .init = macb_init,
2855 };
2856
2857 static const struct macb_config pc302gem_config = {
2858 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2859 .dma_burst_length = 16,
2860 .clk_init = macb_clk_init,
2861 .init = macb_init,
2862 };
2863
2864 static const struct macb_config sama5d2_config = {
2865 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
2866 .dma_burst_length = 16,
2867 .clk_init = macb_clk_init,
2868 .init = macb_init,
2869 };
2870
2871 static const struct macb_config sama5d3_config = {
2872 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE
2873 | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
2874 .dma_burst_length = 16,
2875 .clk_init = macb_clk_init,
2876 .init = macb_init,
2877 };
2878
2879 static const struct macb_config sama5d4_config = {
2880 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
2881 .dma_burst_length = 4,
2882 .clk_init = macb_clk_init,
2883 .init = macb_init,
2884 };
2885
2886 static const struct macb_config emac_config = {
2887 .clk_init = at91ether_clk_init,
2888 .init = at91ether_init,
2889 };
2890
2891 static const struct macb_config np4_config = {
2892 .caps = MACB_CAPS_USRIO_DISABLED,
2893 .clk_init = macb_clk_init,
2894 .init = macb_init,
2895 };
2896
2897 static const struct macb_config zynqmp_config = {
2898 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO,
2899 .dma_burst_length = 16,
2900 .clk_init = macb_clk_init,
2901 .init = macb_init,
2902 .jumbo_max_len = 10240,
2903 };
2904
2905 static const struct macb_config zynq_config = {
2906 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF,
2907 .dma_burst_length = 16,
2908 .clk_init = macb_clk_init,
2909 .init = macb_init,
2910 };
2911
2912 static const struct of_device_id macb_dt_ids[] = {
2913 { .compatible = "cdns,at32ap7000-macb" },
2914 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
2915 { .compatible = "cdns,macb" },
2916 { .compatible = "cdns,np4-macb", .data = &np4_config },
2917 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
2918 { .compatible = "cdns,gem", .data = &pc302gem_config },
2919 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
2920 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
2921 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
2922 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
2923 { .compatible = "cdns,emac", .data = &emac_config },
2924 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
2925 { .compatible = "cdns,zynq-gem", .data = &zynq_config },
2926 { /* sentinel */ }
2927 };
2928 MODULE_DEVICE_TABLE(of, macb_dt_ids);
2929 #endif /* CONFIG_OF */
2930
2931 static int macb_probe(struct platform_device *pdev)
2932 {
2933 int (*clk_init)(struct platform_device *, struct clk **,
2934 struct clk **, struct clk **, struct clk **)
2935 = macb_clk_init;
2936 int (*init)(struct platform_device *) = macb_init;
2937 struct device_node *np = pdev->dev.of_node;
2938 struct device_node *phy_node;
2939 const struct macb_config *macb_config = NULL;
2940 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
2941 unsigned int queue_mask, num_queues;
2942 struct macb_platform_data *pdata;
2943 bool native_io;
2944 struct phy_device *phydev;
2945 struct net_device *dev;
2946 struct resource *regs;
2947 void __iomem *mem;
2948 const char *mac;
2949 struct macb *bp;
2950 int err;
2951
2952 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2953 mem = devm_ioremap_resource(&pdev->dev, regs);
2954 if (IS_ERR(mem))
2955 return PTR_ERR(mem);
2956
2957 if (np) {
2958 const struct of_device_id *match;
2959
2960 match = of_match_node(macb_dt_ids, np);
2961 if (match && match->data) {
2962 macb_config = match->data;
2963 clk_init = macb_config->clk_init;
2964 init = macb_config->init;
2965 }
2966 }
2967
2968 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk);
2969 if (err)
2970 return err;
2971
2972 native_io = hw_is_native_io(mem);
2973
2974 macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
2975 dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
2976 if (!dev) {
2977 err = -ENOMEM;
2978 goto err_disable_clocks;
2979 }
2980
2981 dev->base_addr = regs->start;
2982
2983 SET_NETDEV_DEV(dev, &pdev->dev);
2984
2985 bp = netdev_priv(dev);
2986 bp->pdev = pdev;
2987 bp->dev = dev;
2988 bp->regs = mem;
2989 bp->native_io = native_io;
2990 if (native_io) {
2991 bp->macb_reg_readl = hw_readl_native;
2992 bp->macb_reg_writel = hw_writel_native;
2993 } else {
2994 bp->macb_reg_readl = hw_readl;
2995 bp->macb_reg_writel = hw_writel;
2996 }
2997 bp->num_queues = num_queues;
2998 bp->queue_mask = queue_mask;
2999 if (macb_config)
3000 bp->dma_burst_length = macb_config->dma_burst_length;
3001 bp->pclk = pclk;
3002 bp->hclk = hclk;
3003 bp->tx_clk = tx_clk;
3004 bp->rx_clk = rx_clk;
3005 if (macb_config)
3006 bp->jumbo_max_len = macb_config->jumbo_max_len;
3007
3008 bp->wol = 0;
3009 if (of_get_property(np, "magic-packet", NULL))
3010 bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
3011 device_init_wakeup(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
3012
3013 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3014 if (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1)) > GEM_DBW32)
3015 dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
3016 #endif
3017
3018 spin_lock_init(&bp->lock);
3019
3020 /* setup capabilities */
3021 macb_configure_caps(bp, macb_config);
3022
3023 platform_set_drvdata(pdev, dev);
3024
3025 dev->irq = platform_get_irq(pdev, 0);
3026 if (dev->irq < 0) {
3027 err = dev->irq;
3028 goto err_out_free_netdev;
3029 }
3030
3031 mac = of_get_mac_address(np);
3032 if (mac)
3033 ether_addr_copy(bp->dev->dev_addr, mac);
3034 else
3035 macb_get_hwaddr(bp);
3036
3037 /* Power up the PHY if there is a GPIO reset */
3038 phy_node = of_get_next_available_child(np, NULL);
3039 if (phy_node) {
3040 int gpio = of_get_named_gpio(phy_node, "reset-gpios", 0);
3041
3042 if (gpio_is_valid(gpio)) {
3043 bp->reset_gpio = gpio_to_desc(gpio);
3044 gpiod_direction_output(bp->reset_gpio, 1);
3045 }
3046 }
3047 of_node_put(phy_node);
3048
3049 err = of_get_phy_mode(np);
3050 if (err < 0) {
3051 pdata = dev_get_platdata(&pdev->dev);
3052 if (pdata && pdata->is_rmii)
3053 bp->phy_interface = PHY_INTERFACE_MODE_RMII;
3054 else
3055 bp->phy_interface = PHY_INTERFACE_MODE_MII;
3056 } else {
3057 bp->phy_interface = err;
3058 }
3059
3060 /* IP specific init */
3061 err = init(pdev);
3062 if (err)
3063 goto err_out_free_netdev;
3064
3065 err = macb_mii_init(bp);
3066 if (err)
3067 goto err_out_free_netdev;
3068
3069 phydev = dev->phydev;
3070
3071 netif_carrier_off(dev);
3072
3073 err = register_netdev(dev);
3074 if (err) {
3075 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
3076 goto err_out_unregister_mdio;
3077 }
3078
3079 phy_attached_info(phydev);
3080
3081 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
3082 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
3083 dev->base_addr, dev->irq, dev->dev_addr);
3084
3085 return 0;
3086
3087 err_out_unregister_mdio:
3088 phy_disconnect(dev->phydev);
3089 mdiobus_unregister(bp->mii_bus);
3090 mdiobus_free(bp->mii_bus);
3091
3092 /* Shutdown the PHY if there is a GPIO reset */
3093 if (bp->reset_gpio)
3094 gpiod_set_value(bp->reset_gpio, 0);
3095
3096 err_out_free_netdev:
3097 free_netdev(dev);
3098
3099 err_disable_clocks:
3100 clk_disable_unprepare(tx_clk);
3101 clk_disable_unprepare(hclk);
3102 clk_disable_unprepare(pclk);
3103 clk_disable_unprepare(rx_clk);
3104
3105 return err;
3106 }
3107
3108 static int macb_remove(struct platform_device *pdev)
3109 {
3110 struct net_device *dev;
3111 struct macb *bp;
3112
3113 dev = platform_get_drvdata(pdev);
3114
3115 if (dev) {
3116 bp = netdev_priv(dev);
3117 if (dev->phydev)
3118 phy_disconnect(dev->phydev);
3119 mdiobus_unregister(bp->mii_bus);
3120 dev->phydev = NULL;
3121 mdiobus_free(bp->mii_bus);
3122
3123 /* Shutdown the PHY if there is a GPIO reset */
3124 if (bp->reset_gpio)
3125 gpiod_set_value(bp->reset_gpio, 0);
3126
3127 unregister_netdev(dev);
3128 clk_disable_unprepare(bp->tx_clk);
3129 clk_disable_unprepare(bp->hclk);
3130 clk_disable_unprepare(bp->pclk);
3131 clk_disable_unprepare(bp->rx_clk);
3132 free_netdev(dev);
3133 }
3134
3135 return 0;
3136 }
3137
3138 static int __maybe_unused macb_suspend(struct device *dev)
3139 {
3140 struct platform_device *pdev = to_platform_device(dev);
3141 struct net_device *netdev = platform_get_drvdata(pdev);
3142 struct macb *bp = netdev_priv(netdev);
3143
3144 netif_carrier_off(netdev);
3145 netif_device_detach(netdev);
3146
3147 if (bp->wol & MACB_WOL_ENABLED) {
3148 macb_writel(bp, IER, MACB_BIT(WOL));
3149 macb_writel(bp, WOL, MACB_BIT(MAG));
3150 enable_irq_wake(bp->queues[0].irq);
3151 } else {
3152 clk_disable_unprepare(bp->tx_clk);
3153 clk_disable_unprepare(bp->hclk);
3154 clk_disable_unprepare(bp->pclk);
3155 clk_disable_unprepare(bp->rx_clk);
3156 }
3157
3158 return 0;
3159 }
3160
3161 static int __maybe_unused macb_resume(struct device *dev)
3162 {
3163 struct platform_device *pdev = to_platform_device(dev);
3164 struct net_device *netdev = platform_get_drvdata(pdev);
3165 struct macb *bp = netdev_priv(netdev);
3166
3167 if (bp->wol & MACB_WOL_ENABLED) {
3168 macb_writel(bp, IDR, MACB_BIT(WOL));
3169 macb_writel(bp, WOL, 0);
3170 disable_irq_wake(bp->queues[0].irq);
3171 } else {
3172 clk_prepare_enable(bp->pclk);
3173 clk_prepare_enable(bp->hclk);
3174 clk_prepare_enable(bp->tx_clk);
3175 clk_prepare_enable(bp->rx_clk);
3176 }
3177
3178 netif_device_attach(netdev);
3179
3180 return 0;
3181 }
3182
3183 static SIMPLE_DEV_PM_OPS(macb_pm_ops, macb_suspend, macb_resume);
3184
3185 static struct platform_driver macb_driver = {
3186 .probe = macb_probe,
3187 .remove = macb_remove,
3188 .driver = {
3189 .name = "macb",
3190 .of_match_table = of_match_ptr(macb_dt_ids),
3191 .pm = &macb_pm_ops,
3192 },
3193 };
3194
3195 module_platform_driver(macb_driver);
3196
3197 MODULE_LICENSE("GPL");
3198 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
3199 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
3200 MODULE_ALIAS("platform:macb");