]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/cadence/macb.c
iommu/vt-d: Don't over-free page table directories
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / cadence / macb.c
1 /*
2 * Cadence MACB/GEM Ethernet Controller driver
3 *
4 * Copyright (C) 2004-2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/circ_buf.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/interrupt.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/platform_data/macb.h>
28 #include <linux/platform_device.h>
29 #include <linux/phy.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mdio.h>
34 #include <linux/of_net.h>
35 #include <linux/ip.h>
36 #include <linux/udp.h>
37 #include <linux/tcp.h>
38 #include "macb.h"
39
40 #define MACB_RX_BUFFER_SIZE 128
41 #define RX_BUFFER_MULTIPLE 64 /* bytes */
42
43 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */
44 #define MIN_RX_RING_SIZE 64
45 #define MAX_RX_RING_SIZE 8192
46 #define RX_RING_BYTES(bp) (sizeof(struct macb_dma_desc) \
47 * (bp)->rx_ring_size)
48
49 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */
50 #define MIN_TX_RING_SIZE 64
51 #define MAX_TX_RING_SIZE 4096
52 #define TX_RING_BYTES(bp) (sizeof(struct macb_dma_desc) \
53 * (bp)->tx_ring_size)
54
55 /* level of occupied TX descriptors under which we wake up TX process */
56 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4)
57
58 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \
59 | MACB_BIT(ISR_ROVR))
60 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \
61 | MACB_BIT(ISR_RLE) \
62 | MACB_BIT(TXERR))
63 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP))
64
65 /* Max length of transmit frame must be a multiple of 8 bytes */
66 #define MACB_TX_LEN_ALIGN 8
67 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
68 #define GEM_MAX_TX_LEN ((unsigned int)((1 << GEM_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
69
70 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU
71 #define MACB_NETIF_LSO (NETIF_F_TSO | NETIF_F_UFO)
72
73 #define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0)
74 #define MACB_WOL_ENABLED (0x1 << 1)
75
76 /* Graceful stop timeouts in us. We should allow up to
77 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
78 */
79 #define MACB_HALT_TIMEOUT 1230
80
81 /* Ring buffer accessors */
82 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
83 {
84 return index & (bp->tx_ring_size - 1);
85 }
86
87 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
88 unsigned int index)
89 {
90 return &queue->tx_ring[macb_tx_ring_wrap(queue->bp, index)];
91 }
92
93 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
94 unsigned int index)
95 {
96 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
97 }
98
99 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
100 {
101 dma_addr_t offset;
102
103 offset = macb_tx_ring_wrap(queue->bp, index) *
104 sizeof(struct macb_dma_desc);
105
106 return queue->tx_ring_dma + offset;
107 }
108
109 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
110 {
111 return index & (bp->rx_ring_size - 1);
112 }
113
114 static struct macb_dma_desc *macb_rx_desc(struct macb *bp, unsigned int index)
115 {
116 return &bp->rx_ring[macb_rx_ring_wrap(bp, index)];
117 }
118
119 static void *macb_rx_buffer(struct macb *bp, unsigned int index)
120 {
121 return bp->rx_buffers + bp->rx_buffer_size *
122 macb_rx_ring_wrap(bp, index);
123 }
124
125 /* I/O accessors */
126 static u32 hw_readl_native(struct macb *bp, int offset)
127 {
128 return __raw_readl(bp->regs + offset);
129 }
130
131 static void hw_writel_native(struct macb *bp, int offset, u32 value)
132 {
133 __raw_writel(value, bp->regs + offset);
134 }
135
136 static u32 hw_readl(struct macb *bp, int offset)
137 {
138 return readl_relaxed(bp->regs + offset);
139 }
140
141 static void hw_writel(struct macb *bp, int offset, u32 value)
142 {
143 writel_relaxed(value, bp->regs + offset);
144 }
145
146 /* Find the CPU endianness by using the loopback bit of NCR register. When the
147 * CPU is in big endian we need to program swapped mode for management
148 * descriptor access.
149 */
150 static bool hw_is_native_io(void __iomem *addr)
151 {
152 u32 value = MACB_BIT(LLB);
153
154 __raw_writel(value, addr + MACB_NCR);
155 value = __raw_readl(addr + MACB_NCR);
156
157 /* Write 0 back to disable everything */
158 __raw_writel(0, addr + MACB_NCR);
159
160 return value == MACB_BIT(LLB);
161 }
162
163 static bool hw_is_gem(void __iomem *addr, bool native_io)
164 {
165 u32 id;
166
167 if (native_io)
168 id = __raw_readl(addr + MACB_MID);
169 else
170 id = readl_relaxed(addr + MACB_MID);
171
172 return MACB_BFEXT(IDNUM, id) >= 0x2;
173 }
174
175 static void macb_set_hwaddr(struct macb *bp)
176 {
177 u32 bottom;
178 u16 top;
179
180 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
181 macb_or_gem_writel(bp, SA1B, bottom);
182 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
183 macb_or_gem_writel(bp, SA1T, top);
184
185 /* Clear unused address register sets */
186 macb_or_gem_writel(bp, SA2B, 0);
187 macb_or_gem_writel(bp, SA2T, 0);
188 macb_or_gem_writel(bp, SA3B, 0);
189 macb_or_gem_writel(bp, SA3T, 0);
190 macb_or_gem_writel(bp, SA4B, 0);
191 macb_or_gem_writel(bp, SA4T, 0);
192 }
193
194 static void macb_get_hwaddr(struct macb *bp)
195 {
196 struct macb_platform_data *pdata;
197 u32 bottom;
198 u16 top;
199 u8 addr[6];
200 int i;
201
202 pdata = dev_get_platdata(&bp->pdev->dev);
203
204 /* Check all 4 address register for valid address */
205 for (i = 0; i < 4; i++) {
206 bottom = macb_or_gem_readl(bp, SA1B + i * 8);
207 top = macb_or_gem_readl(bp, SA1T + i * 8);
208
209 if (pdata && pdata->rev_eth_addr) {
210 addr[5] = bottom & 0xff;
211 addr[4] = (bottom >> 8) & 0xff;
212 addr[3] = (bottom >> 16) & 0xff;
213 addr[2] = (bottom >> 24) & 0xff;
214 addr[1] = top & 0xff;
215 addr[0] = (top & 0xff00) >> 8;
216 } else {
217 addr[0] = bottom & 0xff;
218 addr[1] = (bottom >> 8) & 0xff;
219 addr[2] = (bottom >> 16) & 0xff;
220 addr[3] = (bottom >> 24) & 0xff;
221 addr[4] = top & 0xff;
222 addr[5] = (top >> 8) & 0xff;
223 }
224
225 if (is_valid_ether_addr(addr)) {
226 memcpy(bp->dev->dev_addr, addr, sizeof(addr));
227 return;
228 }
229 }
230
231 dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
232 eth_hw_addr_random(bp->dev);
233 }
234
235 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
236 {
237 struct macb *bp = bus->priv;
238 int value;
239
240 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
241 | MACB_BF(RW, MACB_MAN_READ)
242 | MACB_BF(PHYA, mii_id)
243 | MACB_BF(REGA, regnum)
244 | MACB_BF(CODE, MACB_MAN_CODE)));
245
246 /* wait for end of transfer */
247 while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
248 cpu_relax();
249
250 value = MACB_BFEXT(DATA, macb_readl(bp, MAN));
251
252 return value;
253 }
254
255 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
256 u16 value)
257 {
258 struct macb *bp = bus->priv;
259
260 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
261 | MACB_BF(RW, MACB_MAN_WRITE)
262 | MACB_BF(PHYA, mii_id)
263 | MACB_BF(REGA, regnum)
264 | MACB_BF(CODE, MACB_MAN_CODE)
265 | MACB_BF(DATA, value)));
266
267 /* wait for end of transfer */
268 while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
269 cpu_relax();
270
271 return 0;
272 }
273
274 /**
275 * macb_set_tx_clk() - Set a clock to a new frequency
276 * @clk Pointer to the clock to change
277 * @rate New frequency in Hz
278 * @dev Pointer to the struct net_device
279 */
280 static void macb_set_tx_clk(struct clk *clk, int speed, struct net_device *dev)
281 {
282 long ferr, rate, rate_rounded;
283
284 if (!clk)
285 return;
286
287 switch (speed) {
288 case SPEED_10:
289 rate = 2500000;
290 break;
291 case SPEED_100:
292 rate = 25000000;
293 break;
294 case SPEED_1000:
295 rate = 125000000;
296 break;
297 default:
298 return;
299 }
300
301 rate_rounded = clk_round_rate(clk, rate);
302 if (rate_rounded < 0)
303 return;
304
305 /* RGMII allows 50 ppm frequency error. Test and warn if this limit
306 * is not satisfied.
307 */
308 ferr = abs(rate_rounded - rate);
309 ferr = DIV_ROUND_UP(ferr, rate / 100000);
310 if (ferr > 5)
311 netdev_warn(dev, "unable to generate target frequency: %ld Hz\n",
312 rate);
313
314 if (clk_set_rate(clk, rate_rounded))
315 netdev_err(dev, "adjusting tx_clk failed.\n");
316 }
317
318 static void macb_handle_link_change(struct net_device *dev)
319 {
320 struct macb *bp = netdev_priv(dev);
321 struct phy_device *phydev = dev->phydev;
322 unsigned long flags;
323 int status_change = 0;
324
325 spin_lock_irqsave(&bp->lock, flags);
326
327 if (phydev->link) {
328 if ((bp->speed != phydev->speed) ||
329 (bp->duplex != phydev->duplex)) {
330 u32 reg;
331
332 reg = macb_readl(bp, NCFGR);
333 reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
334 if (macb_is_gem(bp))
335 reg &= ~GEM_BIT(GBE);
336
337 if (phydev->duplex)
338 reg |= MACB_BIT(FD);
339 if (phydev->speed == SPEED_100)
340 reg |= MACB_BIT(SPD);
341 if (phydev->speed == SPEED_1000 &&
342 bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
343 reg |= GEM_BIT(GBE);
344
345 macb_or_gem_writel(bp, NCFGR, reg);
346
347 bp->speed = phydev->speed;
348 bp->duplex = phydev->duplex;
349 status_change = 1;
350 }
351 }
352
353 if (phydev->link != bp->link) {
354 if (!phydev->link) {
355 bp->speed = 0;
356 bp->duplex = -1;
357 }
358 bp->link = phydev->link;
359
360 status_change = 1;
361 }
362
363 spin_unlock_irqrestore(&bp->lock, flags);
364
365 if (status_change) {
366 if (phydev->link) {
367 /* Update the TX clock rate if and only if the link is
368 * up and there has been a link change.
369 */
370 macb_set_tx_clk(bp->tx_clk, phydev->speed, dev);
371
372 netif_carrier_on(dev);
373 netdev_info(dev, "link up (%d/%s)\n",
374 phydev->speed,
375 phydev->duplex == DUPLEX_FULL ?
376 "Full" : "Half");
377 } else {
378 netif_carrier_off(dev);
379 netdev_info(dev, "link down\n");
380 }
381 }
382 }
383
384 /* based on au1000_eth. c*/
385 static int macb_mii_probe(struct net_device *dev)
386 {
387 struct macb *bp = netdev_priv(dev);
388 struct macb_platform_data *pdata;
389 struct phy_device *phydev;
390 int phy_irq;
391 int ret;
392
393 phydev = phy_find_first(bp->mii_bus);
394 if (!phydev) {
395 netdev_err(dev, "no PHY found\n");
396 return -ENXIO;
397 }
398
399 pdata = dev_get_platdata(&bp->pdev->dev);
400 if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
401 ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin,
402 "phy int");
403 if (!ret) {
404 phy_irq = gpio_to_irq(pdata->phy_irq_pin);
405 phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
406 }
407 } else {
408 phydev->irq = PHY_POLL;
409 }
410
411 /* attach the mac to the phy */
412 ret = phy_connect_direct(dev, phydev, &macb_handle_link_change,
413 bp->phy_interface);
414 if (ret) {
415 netdev_err(dev, "Could not attach to PHY\n");
416 return ret;
417 }
418
419 /* mask with MAC supported features */
420 if (macb_is_gem(bp) && bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
421 phydev->supported &= PHY_GBIT_FEATURES;
422 else
423 phydev->supported &= PHY_BASIC_FEATURES;
424
425 if (bp->caps & MACB_CAPS_NO_GIGABIT_HALF)
426 phydev->supported &= ~SUPPORTED_1000baseT_Half;
427
428 phydev->advertising = phydev->supported;
429
430 bp->link = 0;
431 bp->speed = 0;
432 bp->duplex = -1;
433
434 return 0;
435 }
436
437 static int macb_mii_init(struct macb *bp)
438 {
439 struct macb_platform_data *pdata;
440 struct device_node *np;
441 int err = -ENXIO, i;
442
443 /* Enable management port */
444 macb_writel(bp, NCR, MACB_BIT(MPE));
445
446 bp->mii_bus = mdiobus_alloc();
447 if (!bp->mii_bus) {
448 err = -ENOMEM;
449 goto err_out;
450 }
451
452 bp->mii_bus->name = "MACB_mii_bus";
453 bp->mii_bus->read = &macb_mdio_read;
454 bp->mii_bus->write = &macb_mdio_write;
455 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
456 bp->pdev->name, bp->pdev->id);
457 bp->mii_bus->priv = bp;
458 bp->mii_bus->parent = &bp->pdev->dev;
459 pdata = dev_get_platdata(&bp->pdev->dev);
460
461 dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
462
463 np = bp->pdev->dev.of_node;
464 if (np) {
465 /* try dt phy registration */
466 err = of_mdiobus_register(bp->mii_bus, np);
467
468 /* fallback to standard phy registration if no phy were
469 * found during dt phy registration
470 */
471 if (!err && !phy_find_first(bp->mii_bus)) {
472 for (i = 0; i < PHY_MAX_ADDR; i++) {
473 struct phy_device *phydev;
474
475 phydev = mdiobus_scan(bp->mii_bus, i);
476 if (IS_ERR(phydev) &&
477 PTR_ERR(phydev) != -ENODEV) {
478 err = PTR_ERR(phydev);
479 break;
480 }
481 }
482
483 if (err)
484 goto err_out_unregister_bus;
485 }
486 } else {
487 for (i = 0; i < PHY_MAX_ADDR; i++)
488 bp->mii_bus->irq[i] = PHY_POLL;
489
490 if (pdata)
491 bp->mii_bus->phy_mask = pdata->phy_mask;
492
493 err = mdiobus_register(bp->mii_bus);
494 }
495
496 if (err)
497 goto err_out_free_mdiobus;
498
499 err = macb_mii_probe(bp->dev);
500 if (err)
501 goto err_out_unregister_bus;
502
503 return 0;
504
505 err_out_unregister_bus:
506 mdiobus_unregister(bp->mii_bus);
507 err_out_free_mdiobus:
508 mdiobus_free(bp->mii_bus);
509 err_out:
510 return err;
511 }
512
513 static void macb_update_stats(struct macb *bp)
514 {
515 u32 *p = &bp->hw_stats.macb.rx_pause_frames;
516 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
517 int offset = MACB_PFR;
518
519 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
520
521 for (; p < end; p++, offset += 4)
522 *p += bp->macb_reg_readl(bp, offset);
523 }
524
525 static int macb_halt_tx(struct macb *bp)
526 {
527 unsigned long halt_time, timeout;
528 u32 status;
529
530 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
531
532 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
533 do {
534 halt_time = jiffies;
535 status = macb_readl(bp, TSR);
536 if (!(status & MACB_BIT(TGO)))
537 return 0;
538
539 usleep_range(10, 250);
540 } while (time_before(halt_time, timeout));
541
542 return -ETIMEDOUT;
543 }
544
545 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb)
546 {
547 if (tx_skb->mapping) {
548 if (tx_skb->mapped_as_page)
549 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
550 tx_skb->size, DMA_TO_DEVICE);
551 else
552 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
553 tx_skb->size, DMA_TO_DEVICE);
554 tx_skb->mapping = 0;
555 }
556
557 if (tx_skb->skb) {
558 dev_kfree_skb_any(tx_skb->skb);
559 tx_skb->skb = NULL;
560 }
561 }
562
563 static inline void macb_set_addr(struct macb_dma_desc *desc, dma_addr_t addr)
564 {
565 desc->addr = (u32)addr;
566 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
567 desc->addrh = (u32)(addr >> 32);
568 #endif
569 }
570
571 static void macb_tx_error_task(struct work_struct *work)
572 {
573 struct macb_queue *queue = container_of(work, struct macb_queue,
574 tx_error_task);
575 struct macb *bp = queue->bp;
576 struct macb_tx_skb *tx_skb;
577 struct macb_dma_desc *desc;
578 struct sk_buff *skb;
579 unsigned int tail;
580 unsigned long flags;
581
582 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
583 (unsigned int)(queue - bp->queues),
584 queue->tx_tail, queue->tx_head);
585
586 /* Prevent the queue IRQ handlers from running: each of them may call
587 * macb_tx_interrupt(), which in turn may call netif_wake_subqueue().
588 * As explained below, we have to halt the transmission before updating
589 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
590 * network engine about the macb/gem being halted.
591 */
592 spin_lock_irqsave(&bp->lock, flags);
593
594 /* Make sure nobody is trying to queue up new packets */
595 netif_tx_stop_all_queues(bp->dev);
596
597 /* Stop transmission now
598 * (in case we have just queued new packets)
599 * macb/gem must be halted to write TBQP register
600 */
601 if (macb_halt_tx(bp))
602 /* Just complain for now, reinitializing TX path can be good */
603 netdev_err(bp->dev, "BUG: halt tx timed out\n");
604
605 /* Treat frames in TX queue including the ones that caused the error.
606 * Free transmit buffers in upper layer.
607 */
608 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
609 u32 ctrl;
610
611 desc = macb_tx_desc(queue, tail);
612 ctrl = desc->ctrl;
613 tx_skb = macb_tx_skb(queue, tail);
614 skb = tx_skb->skb;
615
616 if (ctrl & MACB_BIT(TX_USED)) {
617 /* skb is set for the last buffer of the frame */
618 while (!skb) {
619 macb_tx_unmap(bp, tx_skb);
620 tail++;
621 tx_skb = macb_tx_skb(queue, tail);
622 skb = tx_skb->skb;
623 }
624
625 /* ctrl still refers to the first buffer descriptor
626 * since it's the only one written back by the hardware
627 */
628 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
629 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
630 macb_tx_ring_wrap(bp, tail),
631 skb->data);
632 bp->stats.tx_packets++;
633 bp->stats.tx_bytes += skb->len;
634 }
635 } else {
636 /* "Buffers exhausted mid-frame" errors may only happen
637 * if the driver is buggy, so complain loudly about
638 * those. Statistics are updated by hardware.
639 */
640 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
641 netdev_err(bp->dev,
642 "BUG: TX buffers exhausted mid-frame\n");
643
644 desc->ctrl = ctrl | MACB_BIT(TX_USED);
645 }
646
647 macb_tx_unmap(bp, tx_skb);
648 }
649
650 /* Set end of TX queue */
651 desc = macb_tx_desc(queue, 0);
652 macb_set_addr(desc, 0);
653 desc->ctrl = MACB_BIT(TX_USED);
654
655 /* Make descriptor updates visible to hardware */
656 wmb();
657
658 /* Reinitialize the TX desc queue */
659 queue_writel(queue, TBQP, (u32)(queue->tx_ring_dma));
660 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
661 queue_writel(queue, TBQPH, (u32)(queue->tx_ring_dma >> 32));
662 #endif
663 /* Make TX ring reflect state of hardware */
664 queue->tx_head = 0;
665 queue->tx_tail = 0;
666
667 /* Housework before enabling TX IRQ */
668 macb_writel(bp, TSR, macb_readl(bp, TSR));
669 queue_writel(queue, IER, MACB_TX_INT_FLAGS);
670
671 /* Now we are ready to start transmission again */
672 netif_tx_start_all_queues(bp->dev);
673 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
674
675 spin_unlock_irqrestore(&bp->lock, flags);
676 }
677
678 static void macb_tx_interrupt(struct macb_queue *queue)
679 {
680 unsigned int tail;
681 unsigned int head;
682 u32 status;
683 struct macb *bp = queue->bp;
684 u16 queue_index = queue - bp->queues;
685
686 status = macb_readl(bp, TSR);
687 macb_writel(bp, TSR, status);
688
689 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
690 queue_writel(queue, ISR, MACB_BIT(TCOMP));
691
692 netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n",
693 (unsigned long)status);
694
695 head = queue->tx_head;
696 for (tail = queue->tx_tail; tail != head; tail++) {
697 struct macb_tx_skb *tx_skb;
698 struct sk_buff *skb;
699 struct macb_dma_desc *desc;
700 u32 ctrl;
701
702 desc = macb_tx_desc(queue, tail);
703
704 /* Make hw descriptor updates visible to CPU */
705 rmb();
706
707 ctrl = desc->ctrl;
708
709 /* TX_USED bit is only set by hardware on the very first buffer
710 * descriptor of the transmitted frame.
711 */
712 if (!(ctrl & MACB_BIT(TX_USED)))
713 break;
714
715 /* Process all buffers of the current transmitted frame */
716 for (;; tail++) {
717 tx_skb = macb_tx_skb(queue, tail);
718 skb = tx_skb->skb;
719
720 /* First, update TX stats if needed */
721 if (skb) {
722 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
723 macb_tx_ring_wrap(bp, tail),
724 skb->data);
725 bp->stats.tx_packets++;
726 bp->stats.tx_bytes += skb->len;
727 }
728
729 /* Now we can safely release resources */
730 macb_tx_unmap(bp, tx_skb);
731
732 /* skb is set only for the last buffer of the frame.
733 * WARNING: at this point skb has been freed by
734 * macb_tx_unmap().
735 */
736 if (skb)
737 break;
738 }
739 }
740
741 queue->tx_tail = tail;
742 if (__netif_subqueue_stopped(bp->dev, queue_index) &&
743 CIRC_CNT(queue->tx_head, queue->tx_tail,
744 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
745 netif_wake_subqueue(bp->dev, queue_index);
746 }
747
748 static void gem_rx_refill(struct macb *bp)
749 {
750 unsigned int entry;
751 struct sk_buff *skb;
752 dma_addr_t paddr;
753
754 while (CIRC_SPACE(bp->rx_prepared_head, bp->rx_tail,
755 bp->rx_ring_size) > 0) {
756 entry = macb_rx_ring_wrap(bp, bp->rx_prepared_head);
757
758 /* Make hw descriptor updates visible to CPU */
759 rmb();
760
761 bp->rx_prepared_head++;
762
763 if (!bp->rx_skbuff[entry]) {
764 /* allocate sk_buff for this free entry in ring */
765 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
766 if (unlikely(!skb)) {
767 netdev_err(bp->dev,
768 "Unable to allocate sk_buff\n");
769 break;
770 }
771
772 /* now fill corresponding descriptor entry */
773 paddr = dma_map_single(&bp->pdev->dev, skb->data,
774 bp->rx_buffer_size,
775 DMA_FROM_DEVICE);
776 if (dma_mapping_error(&bp->pdev->dev, paddr)) {
777 dev_kfree_skb(skb);
778 break;
779 }
780
781 bp->rx_skbuff[entry] = skb;
782
783 if (entry == bp->rx_ring_size - 1)
784 paddr |= MACB_BIT(RX_WRAP);
785 macb_set_addr(&(bp->rx_ring[entry]), paddr);
786 bp->rx_ring[entry].ctrl = 0;
787
788 /* properly align Ethernet header */
789 skb_reserve(skb, NET_IP_ALIGN);
790 } else {
791 bp->rx_ring[entry].addr &= ~MACB_BIT(RX_USED);
792 bp->rx_ring[entry].ctrl = 0;
793 }
794 }
795
796 /* Make descriptor updates visible to hardware */
797 wmb();
798
799 netdev_vdbg(bp->dev, "rx ring: prepared head %d, tail %d\n",
800 bp->rx_prepared_head, bp->rx_tail);
801 }
802
803 /* Mark DMA descriptors from begin up to and not including end as unused */
804 static void discard_partial_frame(struct macb *bp, unsigned int begin,
805 unsigned int end)
806 {
807 unsigned int frag;
808
809 for (frag = begin; frag != end; frag++) {
810 struct macb_dma_desc *desc = macb_rx_desc(bp, frag);
811
812 desc->addr &= ~MACB_BIT(RX_USED);
813 }
814
815 /* Make descriptor updates visible to hardware */
816 wmb();
817
818 /* When this happens, the hardware stats registers for
819 * whatever caused this is updated, so we don't have to record
820 * anything.
821 */
822 }
823
824 static int gem_rx(struct macb *bp, int budget)
825 {
826 unsigned int len;
827 unsigned int entry;
828 struct sk_buff *skb;
829 struct macb_dma_desc *desc;
830 int count = 0;
831
832 while (count < budget) {
833 u32 ctrl;
834 dma_addr_t addr;
835 bool rxused;
836
837 entry = macb_rx_ring_wrap(bp, bp->rx_tail);
838 desc = &bp->rx_ring[entry];
839
840 /* Make hw descriptor updates visible to CPU */
841 rmb();
842
843 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
844 addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
845 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
846 addr |= ((u64)(desc->addrh) << 32);
847 #endif
848 ctrl = desc->ctrl;
849
850 if (!rxused)
851 break;
852
853 bp->rx_tail++;
854 count++;
855
856 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
857 netdev_err(bp->dev,
858 "not whole frame pointed by descriptor\n");
859 bp->stats.rx_dropped++;
860 break;
861 }
862 skb = bp->rx_skbuff[entry];
863 if (unlikely(!skb)) {
864 netdev_err(bp->dev,
865 "inconsistent Rx descriptor chain\n");
866 bp->stats.rx_dropped++;
867 break;
868 }
869 /* now everything is ready for receiving packet */
870 bp->rx_skbuff[entry] = NULL;
871 len = ctrl & bp->rx_frm_len_mask;
872
873 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
874
875 skb_put(skb, len);
876 dma_unmap_single(&bp->pdev->dev, addr,
877 bp->rx_buffer_size, DMA_FROM_DEVICE);
878
879 skb->protocol = eth_type_trans(skb, bp->dev);
880 skb_checksum_none_assert(skb);
881 if (bp->dev->features & NETIF_F_RXCSUM &&
882 !(bp->dev->flags & IFF_PROMISC) &&
883 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
884 skb->ip_summed = CHECKSUM_UNNECESSARY;
885
886 bp->stats.rx_packets++;
887 bp->stats.rx_bytes += skb->len;
888
889 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
890 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
891 skb->len, skb->csum);
892 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
893 skb_mac_header(skb), 16, true);
894 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
895 skb->data, 32, true);
896 #endif
897
898 netif_receive_skb(skb);
899 }
900
901 gem_rx_refill(bp);
902
903 return count;
904 }
905
906 static int macb_rx_frame(struct macb *bp, unsigned int first_frag,
907 unsigned int last_frag)
908 {
909 unsigned int len;
910 unsigned int frag;
911 unsigned int offset;
912 struct sk_buff *skb;
913 struct macb_dma_desc *desc;
914
915 desc = macb_rx_desc(bp, last_frag);
916 len = desc->ctrl & bp->rx_frm_len_mask;
917
918 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
919 macb_rx_ring_wrap(bp, first_frag),
920 macb_rx_ring_wrap(bp, last_frag), len);
921
922 /* The ethernet header starts NET_IP_ALIGN bytes into the
923 * first buffer. Since the header is 14 bytes, this makes the
924 * payload word-aligned.
925 *
926 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
927 * the two padding bytes into the skb so that we avoid hitting
928 * the slowpath in memcpy(), and pull them off afterwards.
929 */
930 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
931 if (!skb) {
932 bp->stats.rx_dropped++;
933 for (frag = first_frag; ; frag++) {
934 desc = macb_rx_desc(bp, frag);
935 desc->addr &= ~MACB_BIT(RX_USED);
936 if (frag == last_frag)
937 break;
938 }
939
940 /* Make descriptor updates visible to hardware */
941 wmb();
942
943 return 1;
944 }
945
946 offset = 0;
947 len += NET_IP_ALIGN;
948 skb_checksum_none_assert(skb);
949 skb_put(skb, len);
950
951 for (frag = first_frag; ; frag++) {
952 unsigned int frag_len = bp->rx_buffer_size;
953
954 if (offset + frag_len > len) {
955 if (unlikely(frag != last_frag)) {
956 dev_kfree_skb_any(skb);
957 return -1;
958 }
959 frag_len = len - offset;
960 }
961 skb_copy_to_linear_data_offset(skb, offset,
962 macb_rx_buffer(bp, frag),
963 frag_len);
964 offset += bp->rx_buffer_size;
965 desc = macb_rx_desc(bp, frag);
966 desc->addr &= ~MACB_BIT(RX_USED);
967
968 if (frag == last_frag)
969 break;
970 }
971
972 /* Make descriptor updates visible to hardware */
973 wmb();
974
975 __skb_pull(skb, NET_IP_ALIGN);
976 skb->protocol = eth_type_trans(skb, bp->dev);
977
978 bp->stats.rx_packets++;
979 bp->stats.rx_bytes += skb->len;
980 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
981 skb->len, skb->csum);
982 netif_receive_skb(skb);
983
984 return 0;
985 }
986
987 static inline void macb_init_rx_ring(struct macb *bp)
988 {
989 dma_addr_t addr;
990 int i;
991
992 addr = bp->rx_buffers_dma;
993 for (i = 0; i < bp->rx_ring_size; i++) {
994 bp->rx_ring[i].addr = addr;
995 bp->rx_ring[i].ctrl = 0;
996 addr += bp->rx_buffer_size;
997 }
998 bp->rx_ring[bp->rx_ring_size - 1].addr |= MACB_BIT(RX_WRAP);
999 bp->rx_tail = 0;
1000 }
1001
1002 static int macb_rx(struct macb *bp, int budget)
1003 {
1004 bool reset_rx_queue = false;
1005 int received = 0;
1006 unsigned int tail;
1007 int first_frag = -1;
1008
1009 for (tail = bp->rx_tail; budget > 0; tail++) {
1010 struct macb_dma_desc *desc = macb_rx_desc(bp, tail);
1011 u32 addr, ctrl;
1012
1013 /* Make hw descriptor updates visible to CPU */
1014 rmb();
1015
1016 addr = desc->addr;
1017 ctrl = desc->ctrl;
1018
1019 if (!(addr & MACB_BIT(RX_USED)))
1020 break;
1021
1022 if (ctrl & MACB_BIT(RX_SOF)) {
1023 if (first_frag != -1)
1024 discard_partial_frame(bp, first_frag, tail);
1025 first_frag = tail;
1026 }
1027
1028 if (ctrl & MACB_BIT(RX_EOF)) {
1029 int dropped;
1030
1031 if (unlikely(first_frag == -1)) {
1032 reset_rx_queue = true;
1033 continue;
1034 }
1035
1036 dropped = macb_rx_frame(bp, first_frag, tail);
1037 first_frag = -1;
1038 if (unlikely(dropped < 0)) {
1039 reset_rx_queue = true;
1040 continue;
1041 }
1042 if (!dropped) {
1043 received++;
1044 budget--;
1045 }
1046 }
1047 }
1048
1049 if (unlikely(reset_rx_queue)) {
1050 unsigned long flags;
1051 u32 ctrl;
1052
1053 netdev_err(bp->dev, "RX queue corruption: reset it\n");
1054
1055 spin_lock_irqsave(&bp->lock, flags);
1056
1057 ctrl = macb_readl(bp, NCR);
1058 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1059
1060 macb_init_rx_ring(bp);
1061 macb_writel(bp, RBQP, bp->rx_ring_dma);
1062
1063 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1064
1065 spin_unlock_irqrestore(&bp->lock, flags);
1066 return received;
1067 }
1068
1069 if (first_frag != -1)
1070 bp->rx_tail = first_frag;
1071 else
1072 bp->rx_tail = tail;
1073
1074 return received;
1075 }
1076
1077 static int macb_poll(struct napi_struct *napi, int budget)
1078 {
1079 struct macb *bp = container_of(napi, struct macb, napi);
1080 int work_done;
1081 u32 status;
1082
1083 status = macb_readl(bp, RSR);
1084 macb_writel(bp, RSR, status);
1085
1086 work_done = 0;
1087
1088 netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n",
1089 (unsigned long)status, budget);
1090
1091 work_done = bp->macbgem_ops.mog_rx(bp, budget);
1092 if (work_done < budget) {
1093 napi_complete(napi);
1094
1095 /* Packets received while interrupts were disabled */
1096 status = macb_readl(bp, RSR);
1097 if (status) {
1098 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1099 macb_writel(bp, ISR, MACB_BIT(RCOMP));
1100 napi_reschedule(napi);
1101 } else {
1102 macb_writel(bp, IER, MACB_RX_INT_FLAGS);
1103 }
1104 }
1105
1106 /* TODO: Handle errors */
1107
1108 return work_done;
1109 }
1110
1111 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1112 {
1113 struct macb_queue *queue = dev_id;
1114 struct macb *bp = queue->bp;
1115 struct net_device *dev = bp->dev;
1116 u32 status, ctrl;
1117
1118 status = queue_readl(queue, ISR);
1119
1120 if (unlikely(!status))
1121 return IRQ_NONE;
1122
1123 spin_lock(&bp->lock);
1124
1125 while (status) {
1126 /* close possible race with dev_close */
1127 if (unlikely(!netif_running(dev))) {
1128 queue_writel(queue, IDR, -1);
1129 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1130 queue_writel(queue, ISR, -1);
1131 break;
1132 }
1133
1134 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1135 (unsigned int)(queue - bp->queues),
1136 (unsigned long)status);
1137
1138 if (status & MACB_RX_INT_FLAGS) {
1139 /* There's no point taking any more interrupts
1140 * until we have processed the buffers. The
1141 * scheduling call may fail if the poll routine
1142 * is already scheduled, so disable interrupts
1143 * now.
1144 */
1145 queue_writel(queue, IDR, MACB_RX_INT_FLAGS);
1146 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1147 queue_writel(queue, ISR, MACB_BIT(RCOMP));
1148
1149 if (napi_schedule_prep(&bp->napi)) {
1150 netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1151 __napi_schedule(&bp->napi);
1152 }
1153 }
1154
1155 if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1156 queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1157 schedule_work(&queue->tx_error_task);
1158
1159 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1160 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1161
1162 break;
1163 }
1164
1165 if (status & MACB_BIT(TCOMP))
1166 macb_tx_interrupt(queue);
1167
1168 /* Link change detection isn't possible with RMII, so we'll
1169 * add that if/when we get our hands on a full-blown MII PHY.
1170 */
1171
1172 /* There is a hardware issue under heavy load where DMA can
1173 * stop, this causes endless "used buffer descriptor read"
1174 * interrupts but it can be cleared by re-enabling RX. See
1175 * the at91 manual, section 41.3.1 or the Zynq manual
1176 * section 16.7.4 for details.
1177 */
1178 if (status & MACB_BIT(RXUBR)) {
1179 ctrl = macb_readl(bp, NCR);
1180 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1181 wmb();
1182 macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1183
1184 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1185 queue_writel(queue, ISR, MACB_BIT(RXUBR));
1186 }
1187
1188 if (status & MACB_BIT(ISR_ROVR)) {
1189 /* We missed at least one packet */
1190 if (macb_is_gem(bp))
1191 bp->hw_stats.gem.rx_overruns++;
1192 else
1193 bp->hw_stats.macb.rx_overruns++;
1194
1195 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1196 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1197 }
1198
1199 if (status & MACB_BIT(HRESP)) {
1200 /* TODO: Reset the hardware, and maybe move the
1201 * netdev_err to a lower-priority context as well
1202 * (work queue?)
1203 */
1204 netdev_err(dev, "DMA bus error: HRESP not OK\n");
1205
1206 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1207 queue_writel(queue, ISR, MACB_BIT(HRESP));
1208 }
1209
1210 status = queue_readl(queue, ISR);
1211 }
1212
1213 spin_unlock(&bp->lock);
1214
1215 return IRQ_HANDLED;
1216 }
1217
1218 #ifdef CONFIG_NET_POLL_CONTROLLER
1219 /* Polling receive - used by netconsole and other diagnostic tools
1220 * to allow network i/o with interrupts disabled.
1221 */
1222 static void macb_poll_controller(struct net_device *dev)
1223 {
1224 struct macb *bp = netdev_priv(dev);
1225 struct macb_queue *queue;
1226 unsigned long flags;
1227 unsigned int q;
1228
1229 local_irq_save(flags);
1230 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1231 macb_interrupt(dev->irq, queue);
1232 local_irq_restore(flags);
1233 }
1234 #endif
1235
1236 static unsigned int macb_tx_map(struct macb *bp,
1237 struct macb_queue *queue,
1238 struct sk_buff *skb,
1239 unsigned int hdrlen)
1240 {
1241 dma_addr_t mapping;
1242 unsigned int len, entry, i, tx_head = queue->tx_head;
1243 struct macb_tx_skb *tx_skb = NULL;
1244 struct macb_dma_desc *desc;
1245 unsigned int offset, size, count = 0;
1246 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1247 unsigned int eof = 1, mss_mfs = 0;
1248 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
1249
1250 /* LSO */
1251 if (skb_shinfo(skb)->gso_size != 0) {
1252 if (ip_hdr(skb)->protocol == IPPROTO_UDP)
1253 /* UDP - UFO */
1254 lso_ctrl = MACB_LSO_UFO_ENABLE;
1255 else
1256 /* TCP - TSO */
1257 lso_ctrl = MACB_LSO_TSO_ENABLE;
1258 }
1259
1260 /* First, map non-paged data */
1261 len = skb_headlen(skb);
1262
1263 /* first buffer length */
1264 size = hdrlen;
1265
1266 offset = 0;
1267 while (len) {
1268 entry = macb_tx_ring_wrap(bp, tx_head);
1269 tx_skb = &queue->tx_skb[entry];
1270
1271 mapping = dma_map_single(&bp->pdev->dev,
1272 skb->data + offset,
1273 size, DMA_TO_DEVICE);
1274 if (dma_mapping_error(&bp->pdev->dev, mapping))
1275 goto dma_error;
1276
1277 /* Save info to properly release resources */
1278 tx_skb->skb = NULL;
1279 tx_skb->mapping = mapping;
1280 tx_skb->size = size;
1281 tx_skb->mapped_as_page = false;
1282
1283 len -= size;
1284 offset += size;
1285 count++;
1286 tx_head++;
1287
1288 size = min(len, bp->max_tx_length);
1289 }
1290
1291 /* Then, map paged data from fragments */
1292 for (f = 0; f < nr_frags; f++) {
1293 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1294
1295 len = skb_frag_size(frag);
1296 offset = 0;
1297 while (len) {
1298 size = min(len, bp->max_tx_length);
1299 entry = macb_tx_ring_wrap(bp, tx_head);
1300 tx_skb = &queue->tx_skb[entry];
1301
1302 mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
1303 offset, size, DMA_TO_DEVICE);
1304 if (dma_mapping_error(&bp->pdev->dev, mapping))
1305 goto dma_error;
1306
1307 /* Save info to properly release resources */
1308 tx_skb->skb = NULL;
1309 tx_skb->mapping = mapping;
1310 tx_skb->size = size;
1311 tx_skb->mapped_as_page = true;
1312
1313 len -= size;
1314 offset += size;
1315 count++;
1316 tx_head++;
1317 }
1318 }
1319
1320 /* Should never happen */
1321 if (unlikely(!tx_skb)) {
1322 netdev_err(bp->dev, "BUG! empty skb!\n");
1323 return 0;
1324 }
1325
1326 /* This is the last buffer of the frame: save socket buffer */
1327 tx_skb->skb = skb;
1328
1329 /* Update TX ring: update buffer descriptors in reverse order
1330 * to avoid race condition
1331 */
1332
1333 /* Set 'TX_USED' bit in buffer descriptor at tx_head position
1334 * to set the end of TX queue
1335 */
1336 i = tx_head;
1337 entry = macb_tx_ring_wrap(bp, i);
1338 ctrl = MACB_BIT(TX_USED);
1339 desc = &queue->tx_ring[entry];
1340 desc->ctrl = ctrl;
1341
1342 if (lso_ctrl) {
1343 if (lso_ctrl == MACB_LSO_UFO_ENABLE)
1344 /* include header and FCS in value given to h/w */
1345 mss_mfs = skb_shinfo(skb)->gso_size +
1346 skb_transport_offset(skb) +
1347 ETH_FCS_LEN;
1348 else /* TSO */ {
1349 mss_mfs = skb_shinfo(skb)->gso_size;
1350 /* TCP Sequence Number Source Select
1351 * can be set only for TSO
1352 */
1353 seq_ctrl = 0;
1354 }
1355 }
1356
1357 do {
1358 i--;
1359 entry = macb_tx_ring_wrap(bp, i);
1360 tx_skb = &queue->tx_skb[entry];
1361 desc = &queue->tx_ring[entry];
1362
1363 ctrl = (u32)tx_skb->size;
1364 if (eof) {
1365 ctrl |= MACB_BIT(TX_LAST);
1366 eof = 0;
1367 }
1368 if (unlikely(entry == (bp->tx_ring_size - 1)))
1369 ctrl |= MACB_BIT(TX_WRAP);
1370
1371 /* First descriptor is header descriptor */
1372 if (i == queue->tx_head) {
1373 ctrl |= MACB_BF(TX_LSO, lso_ctrl);
1374 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
1375 } else
1376 /* Only set MSS/MFS on payload descriptors
1377 * (second or later descriptor)
1378 */
1379 ctrl |= MACB_BF(MSS_MFS, mss_mfs);
1380
1381 /* Set TX buffer descriptor */
1382 macb_set_addr(desc, tx_skb->mapping);
1383 /* desc->addr must be visible to hardware before clearing
1384 * 'TX_USED' bit in desc->ctrl.
1385 */
1386 wmb();
1387 desc->ctrl = ctrl;
1388 } while (i != queue->tx_head);
1389
1390 queue->tx_head = tx_head;
1391
1392 return count;
1393
1394 dma_error:
1395 netdev_err(bp->dev, "TX DMA map failed\n");
1396
1397 for (i = queue->tx_head; i != tx_head; i++) {
1398 tx_skb = macb_tx_skb(queue, i);
1399
1400 macb_tx_unmap(bp, tx_skb);
1401 }
1402
1403 return 0;
1404 }
1405
1406 static netdev_features_t macb_features_check(struct sk_buff *skb,
1407 struct net_device *dev,
1408 netdev_features_t features)
1409 {
1410 unsigned int nr_frags, f;
1411 unsigned int hdrlen;
1412
1413 /* Validate LSO compatibility */
1414
1415 /* there is only one buffer */
1416 if (!skb_is_nonlinear(skb))
1417 return features;
1418
1419 /* length of header */
1420 hdrlen = skb_transport_offset(skb);
1421 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1422 hdrlen += tcp_hdrlen(skb);
1423
1424 /* For LSO:
1425 * When software supplies two or more payload buffers all payload buffers
1426 * apart from the last must be a multiple of 8 bytes in size.
1427 */
1428 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
1429 return features & ~MACB_NETIF_LSO;
1430
1431 nr_frags = skb_shinfo(skb)->nr_frags;
1432 /* No need to check last fragment */
1433 nr_frags--;
1434 for (f = 0; f < nr_frags; f++) {
1435 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1436
1437 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
1438 return features & ~MACB_NETIF_LSO;
1439 }
1440 return features;
1441 }
1442
1443 static inline int macb_clear_csum(struct sk_buff *skb)
1444 {
1445 /* no change for packets without checksum offloading */
1446 if (skb->ip_summed != CHECKSUM_PARTIAL)
1447 return 0;
1448
1449 /* make sure we can modify the header */
1450 if (unlikely(skb_cow_head(skb, 0)))
1451 return -1;
1452
1453 /* initialize checksum field
1454 * This is required - at least for Zynq, which otherwise calculates
1455 * wrong UDP header checksums for UDP packets with UDP data len <=2
1456 */
1457 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
1458 return 0;
1459 }
1460
1461 static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
1462 {
1463 u16 queue_index = skb_get_queue_mapping(skb);
1464 struct macb *bp = netdev_priv(dev);
1465 struct macb_queue *queue = &bp->queues[queue_index];
1466 unsigned long flags;
1467 unsigned int desc_cnt, nr_frags, frag_size, f;
1468 unsigned int hdrlen;
1469 bool is_lso, is_udp = 0;
1470
1471 is_lso = (skb_shinfo(skb)->gso_size != 0);
1472
1473 if (is_lso) {
1474 is_udp = !!(ip_hdr(skb)->protocol == IPPROTO_UDP);
1475
1476 /* length of headers */
1477 if (is_udp)
1478 /* only queue eth + ip headers separately for UDP */
1479 hdrlen = skb_transport_offset(skb);
1480 else
1481 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
1482 if (skb_headlen(skb) < hdrlen) {
1483 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
1484 /* if this is required, would need to copy to single buffer */
1485 return NETDEV_TX_BUSY;
1486 }
1487 } else
1488 hdrlen = min(skb_headlen(skb), bp->max_tx_length);
1489
1490 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1491 netdev_vdbg(bp->dev,
1492 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
1493 queue_index, skb->len, skb->head, skb->data,
1494 skb_tail_pointer(skb), skb_end_pointer(skb));
1495 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
1496 skb->data, 16, true);
1497 #endif
1498
1499 /* Count how many TX buffer descriptors are needed to send this
1500 * socket buffer: skb fragments of jumbo frames may need to be
1501 * split into many buffer descriptors.
1502 */
1503 if (is_lso && (skb_headlen(skb) > hdrlen))
1504 /* extra header descriptor if also payload in first buffer */
1505 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
1506 else
1507 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
1508 nr_frags = skb_shinfo(skb)->nr_frags;
1509 for (f = 0; f < nr_frags; f++) {
1510 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
1511 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
1512 }
1513
1514 spin_lock_irqsave(&bp->lock, flags);
1515
1516 /* This is a hard error, log it. */
1517 if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
1518 bp->tx_ring_size) < desc_cnt) {
1519 netif_stop_subqueue(dev, queue_index);
1520 spin_unlock_irqrestore(&bp->lock, flags);
1521 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
1522 queue->tx_head, queue->tx_tail);
1523 return NETDEV_TX_BUSY;
1524 }
1525
1526 if (macb_clear_csum(skb)) {
1527 dev_kfree_skb_any(skb);
1528 goto unlock;
1529 }
1530
1531 /* Map socket buffer for DMA transfer */
1532 if (!macb_tx_map(bp, queue, skb, hdrlen)) {
1533 dev_kfree_skb_any(skb);
1534 goto unlock;
1535 }
1536
1537 /* Make newly initialized descriptor visible to hardware */
1538 wmb();
1539
1540 skb_tx_timestamp(skb);
1541
1542 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1543
1544 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
1545 netif_stop_subqueue(dev, queue_index);
1546
1547 unlock:
1548 spin_unlock_irqrestore(&bp->lock, flags);
1549
1550 return NETDEV_TX_OK;
1551 }
1552
1553 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
1554 {
1555 if (!macb_is_gem(bp)) {
1556 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
1557 } else {
1558 bp->rx_buffer_size = size;
1559
1560 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
1561 netdev_dbg(bp->dev,
1562 "RX buffer must be multiple of %d bytes, expanding\n",
1563 RX_BUFFER_MULTIPLE);
1564 bp->rx_buffer_size =
1565 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
1566 }
1567 }
1568
1569 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%Zu]\n",
1570 bp->dev->mtu, bp->rx_buffer_size);
1571 }
1572
1573 static void gem_free_rx_buffers(struct macb *bp)
1574 {
1575 struct sk_buff *skb;
1576 struct macb_dma_desc *desc;
1577 dma_addr_t addr;
1578 int i;
1579
1580 if (!bp->rx_skbuff)
1581 return;
1582
1583 for (i = 0; i < bp->rx_ring_size; i++) {
1584 skb = bp->rx_skbuff[i];
1585
1586 if (!skb)
1587 continue;
1588
1589 desc = &bp->rx_ring[i];
1590 addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1591 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1592 addr |= ((u64)(desc->addrh) << 32);
1593 #endif
1594 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
1595 DMA_FROM_DEVICE);
1596 dev_kfree_skb_any(skb);
1597 skb = NULL;
1598 }
1599
1600 kfree(bp->rx_skbuff);
1601 bp->rx_skbuff = NULL;
1602 }
1603
1604 static void macb_free_rx_buffers(struct macb *bp)
1605 {
1606 if (bp->rx_buffers) {
1607 dma_free_coherent(&bp->pdev->dev,
1608 bp->rx_ring_size * bp->rx_buffer_size,
1609 bp->rx_buffers, bp->rx_buffers_dma);
1610 bp->rx_buffers = NULL;
1611 }
1612 }
1613
1614 static void macb_free_consistent(struct macb *bp)
1615 {
1616 struct macb_queue *queue;
1617 unsigned int q;
1618
1619 bp->macbgem_ops.mog_free_rx_buffers(bp);
1620 if (bp->rx_ring) {
1621 dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES(bp),
1622 bp->rx_ring, bp->rx_ring_dma);
1623 bp->rx_ring = NULL;
1624 }
1625
1626 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1627 kfree(queue->tx_skb);
1628 queue->tx_skb = NULL;
1629 if (queue->tx_ring) {
1630 dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES(bp),
1631 queue->tx_ring, queue->tx_ring_dma);
1632 queue->tx_ring = NULL;
1633 }
1634 }
1635 }
1636
1637 static int gem_alloc_rx_buffers(struct macb *bp)
1638 {
1639 int size;
1640
1641 size = bp->rx_ring_size * sizeof(struct sk_buff *);
1642 bp->rx_skbuff = kzalloc(size, GFP_KERNEL);
1643 if (!bp->rx_skbuff)
1644 return -ENOMEM;
1645 else
1646 netdev_dbg(bp->dev,
1647 "Allocated %d RX struct sk_buff entries at %p\n",
1648 bp->rx_ring_size, bp->rx_skbuff);
1649 return 0;
1650 }
1651
1652 static int macb_alloc_rx_buffers(struct macb *bp)
1653 {
1654 int size;
1655
1656 size = bp->rx_ring_size * bp->rx_buffer_size;
1657 bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
1658 &bp->rx_buffers_dma, GFP_KERNEL);
1659 if (!bp->rx_buffers)
1660 return -ENOMEM;
1661
1662 netdev_dbg(bp->dev,
1663 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
1664 size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers);
1665 return 0;
1666 }
1667
1668 static int macb_alloc_consistent(struct macb *bp)
1669 {
1670 struct macb_queue *queue;
1671 unsigned int q;
1672 int size;
1673
1674 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1675 size = TX_RING_BYTES(bp);
1676 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1677 &queue->tx_ring_dma,
1678 GFP_KERNEL);
1679 if (!queue->tx_ring)
1680 goto out_err;
1681 netdev_dbg(bp->dev,
1682 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
1683 q, size, (unsigned long)queue->tx_ring_dma,
1684 queue->tx_ring);
1685
1686 size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
1687 queue->tx_skb = kmalloc(size, GFP_KERNEL);
1688 if (!queue->tx_skb)
1689 goto out_err;
1690 }
1691
1692 size = RX_RING_BYTES(bp);
1693 bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1694 &bp->rx_ring_dma, GFP_KERNEL);
1695 if (!bp->rx_ring)
1696 goto out_err;
1697 netdev_dbg(bp->dev,
1698 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
1699 size, (unsigned long)bp->rx_ring_dma, bp->rx_ring);
1700
1701 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
1702 goto out_err;
1703
1704 return 0;
1705
1706 out_err:
1707 macb_free_consistent(bp);
1708 return -ENOMEM;
1709 }
1710
1711 static void gem_init_rings(struct macb *bp)
1712 {
1713 struct macb_queue *queue;
1714 unsigned int q;
1715 int i;
1716
1717 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1718 for (i = 0; i < bp->tx_ring_size; i++) {
1719 queue->tx_ring[i].addr = 0;
1720 queue->tx_ring[i].ctrl = MACB_BIT(TX_USED);
1721 }
1722 queue->tx_ring[bp->tx_ring_size - 1].ctrl |= MACB_BIT(TX_WRAP);
1723 queue->tx_head = 0;
1724 queue->tx_tail = 0;
1725 }
1726
1727 bp->rx_tail = 0;
1728 bp->rx_prepared_head = 0;
1729
1730 gem_rx_refill(bp);
1731 }
1732
1733 static void macb_init_rings(struct macb *bp)
1734 {
1735 int i;
1736
1737 macb_init_rx_ring(bp);
1738
1739 for (i = 0; i < bp->tx_ring_size; i++) {
1740 bp->queues[0].tx_ring[i].addr = 0;
1741 bp->queues[0].tx_ring[i].ctrl = MACB_BIT(TX_USED);
1742 }
1743 bp->queues[0].tx_head = 0;
1744 bp->queues[0].tx_tail = 0;
1745 bp->queues[0].tx_ring[bp->tx_ring_size - 1].ctrl |= MACB_BIT(TX_WRAP);
1746 }
1747
1748 static void macb_reset_hw(struct macb *bp)
1749 {
1750 struct macb_queue *queue;
1751 unsigned int q;
1752
1753 /* Disable RX and TX (XXX: Should we halt the transmission
1754 * more gracefully?)
1755 */
1756 macb_writel(bp, NCR, 0);
1757
1758 /* Clear the stats registers (XXX: Update stats first?) */
1759 macb_writel(bp, NCR, MACB_BIT(CLRSTAT));
1760
1761 /* Clear all status flags */
1762 macb_writel(bp, TSR, -1);
1763 macb_writel(bp, RSR, -1);
1764
1765 /* Disable all interrupts */
1766 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1767 queue_writel(queue, IDR, -1);
1768 queue_readl(queue, ISR);
1769 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1770 queue_writel(queue, ISR, -1);
1771 }
1772 }
1773
1774 static u32 gem_mdc_clk_div(struct macb *bp)
1775 {
1776 u32 config;
1777 unsigned long pclk_hz = clk_get_rate(bp->pclk);
1778
1779 if (pclk_hz <= 20000000)
1780 config = GEM_BF(CLK, GEM_CLK_DIV8);
1781 else if (pclk_hz <= 40000000)
1782 config = GEM_BF(CLK, GEM_CLK_DIV16);
1783 else if (pclk_hz <= 80000000)
1784 config = GEM_BF(CLK, GEM_CLK_DIV32);
1785 else if (pclk_hz <= 120000000)
1786 config = GEM_BF(CLK, GEM_CLK_DIV48);
1787 else if (pclk_hz <= 160000000)
1788 config = GEM_BF(CLK, GEM_CLK_DIV64);
1789 else
1790 config = GEM_BF(CLK, GEM_CLK_DIV96);
1791
1792 return config;
1793 }
1794
1795 static u32 macb_mdc_clk_div(struct macb *bp)
1796 {
1797 u32 config;
1798 unsigned long pclk_hz;
1799
1800 if (macb_is_gem(bp))
1801 return gem_mdc_clk_div(bp);
1802
1803 pclk_hz = clk_get_rate(bp->pclk);
1804 if (pclk_hz <= 20000000)
1805 config = MACB_BF(CLK, MACB_CLK_DIV8);
1806 else if (pclk_hz <= 40000000)
1807 config = MACB_BF(CLK, MACB_CLK_DIV16);
1808 else if (pclk_hz <= 80000000)
1809 config = MACB_BF(CLK, MACB_CLK_DIV32);
1810 else
1811 config = MACB_BF(CLK, MACB_CLK_DIV64);
1812
1813 return config;
1814 }
1815
1816 /* Get the DMA bus width field of the network configuration register that we
1817 * should program. We find the width from decoding the design configuration
1818 * register to find the maximum supported data bus width.
1819 */
1820 static u32 macb_dbw(struct macb *bp)
1821 {
1822 if (!macb_is_gem(bp))
1823 return 0;
1824
1825 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
1826 case 4:
1827 return GEM_BF(DBW, GEM_DBW128);
1828 case 2:
1829 return GEM_BF(DBW, GEM_DBW64);
1830 case 1:
1831 default:
1832 return GEM_BF(DBW, GEM_DBW32);
1833 }
1834 }
1835
1836 /* Configure the receive DMA engine
1837 * - use the correct receive buffer size
1838 * - set best burst length for DMA operations
1839 * (if not supported by FIFO, it will fallback to default)
1840 * - set both rx/tx packet buffers to full memory size
1841 * These are configurable parameters for GEM.
1842 */
1843 static void macb_configure_dma(struct macb *bp)
1844 {
1845 u32 dmacfg;
1846
1847 if (macb_is_gem(bp)) {
1848 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
1849 dmacfg |= GEM_BF(RXBS, bp->rx_buffer_size / RX_BUFFER_MULTIPLE);
1850 if (bp->dma_burst_length)
1851 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
1852 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
1853 dmacfg &= ~GEM_BIT(ENDIA_PKT);
1854
1855 if (bp->native_io)
1856 dmacfg &= ~GEM_BIT(ENDIA_DESC);
1857 else
1858 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
1859
1860 if (bp->dev->features & NETIF_F_HW_CSUM)
1861 dmacfg |= GEM_BIT(TXCOEN);
1862 else
1863 dmacfg &= ~GEM_BIT(TXCOEN);
1864
1865 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1866 dmacfg |= GEM_BIT(ADDR64);
1867 #endif
1868 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
1869 dmacfg);
1870 gem_writel(bp, DMACFG, dmacfg);
1871 }
1872 }
1873
1874 static void macb_init_hw(struct macb *bp)
1875 {
1876 struct macb_queue *queue;
1877 unsigned int q;
1878
1879 u32 config;
1880
1881 macb_reset_hw(bp);
1882 macb_set_hwaddr(bp);
1883
1884 config = macb_mdc_clk_div(bp);
1885 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
1886 config |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
1887 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */
1888 config |= MACB_BIT(PAE); /* PAuse Enable */
1889 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */
1890 if (bp->caps & MACB_CAPS_JUMBO)
1891 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */
1892 else
1893 config |= MACB_BIT(BIG); /* Receive oversized frames */
1894 if (bp->dev->flags & IFF_PROMISC)
1895 config |= MACB_BIT(CAF); /* Copy All Frames */
1896 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
1897 config |= GEM_BIT(RXCOEN);
1898 if (!(bp->dev->flags & IFF_BROADCAST))
1899 config |= MACB_BIT(NBC); /* No BroadCast */
1900 config |= macb_dbw(bp);
1901 macb_writel(bp, NCFGR, config);
1902 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
1903 gem_writel(bp, JML, bp->jumbo_max_len);
1904 bp->speed = SPEED_10;
1905 bp->duplex = DUPLEX_HALF;
1906 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
1907 if (bp->caps & MACB_CAPS_JUMBO)
1908 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
1909
1910 macb_configure_dma(bp);
1911
1912 /* Initialize TX and RX buffers */
1913 macb_writel(bp, RBQP, (u32)(bp->rx_ring_dma));
1914 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1915 macb_writel(bp, RBQPH, (u32)(bp->rx_ring_dma >> 32));
1916 #endif
1917 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1918 queue_writel(queue, TBQP, (u32)(queue->tx_ring_dma));
1919 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1920 queue_writel(queue, TBQPH, (u32)(queue->tx_ring_dma >> 32));
1921 #endif
1922
1923 /* Enable interrupts */
1924 queue_writel(queue, IER,
1925 MACB_RX_INT_FLAGS |
1926 MACB_TX_INT_FLAGS |
1927 MACB_BIT(HRESP));
1928 }
1929
1930 /* Enable TX and RX */
1931 macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE));
1932 }
1933
1934 /* The hash address register is 64 bits long and takes up two
1935 * locations in the memory map. The least significant bits are stored
1936 * in EMAC_HSL and the most significant bits in EMAC_HSH.
1937 *
1938 * The unicast hash enable and the multicast hash enable bits in the
1939 * network configuration register enable the reception of hash matched
1940 * frames. The destination address is reduced to a 6 bit index into
1941 * the 64 bit hash register using the following hash function. The
1942 * hash function is an exclusive or of every sixth bit of the
1943 * destination address.
1944 *
1945 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
1946 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
1947 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
1948 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
1949 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
1950 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
1951 *
1952 * da[0] represents the least significant bit of the first byte
1953 * received, that is, the multicast/unicast indicator, and da[47]
1954 * represents the most significant bit of the last byte received. If
1955 * the hash index, hi[n], points to a bit that is set in the hash
1956 * register then the frame will be matched according to whether the
1957 * frame is multicast or unicast. A multicast match will be signalled
1958 * if the multicast hash enable bit is set, da[0] is 1 and the hash
1959 * index points to a bit set in the hash register. A unicast match
1960 * will be signalled if the unicast hash enable bit is set, da[0] is 0
1961 * and the hash index points to a bit set in the hash register. To
1962 * receive all multicast frames, the hash register should be set with
1963 * all ones and the multicast hash enable bit should be set in the
1964 * network configuration register.
1965 */
1966
1967 static inline int hash_bit_value(int bitnr, __u8 *addr)
1968 {
1969 if (addr[bitnr / 8] & (1 << (bitnr % 8)))
1970 return 1;
1971 return 0;
1972 }
1973
1974 /* Return the hash index value for the specified address. */
1975 static int hash_get_index(__u8 *addr)
1976 {
1977 int i, j, bitval;
1978 int hash_index = 0;
1979
1980 for (j = 0; j < 6; j++) {
1981 for (i = 0, bitval = 0; i < 8; i++)
1982 bitval ^= hash_bit_value(i * 6 + j, addr);
1983
1984 hash_index |= (bitval << j);
1985 }
1986
1987 return hash_index;
1988 }
1989
1990 /* Add multicast addresses to the internal multicast-hash table. */
1991 static void macb_sethashtable(struct net_device *dev)
1992 {
1993 struct netdev_hw_addr *ha;
1994 unsigned long mc_filter[2];
1995 unsigned int bitnr;
1996 struct macb *bp = netdev_priv(dev);
1997
1998 mc_filter[0] = 0;
1999 mc_filter[1] = 0;
2000
2001 netdev_for_each_mc_addr(ha, dev) {
2002 bitnr = hash_get_index(ha->addr);
2003 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2004 }
2005
2006 macb_or_gem_writel(bp, HRB, mc_filter[0]);
2007 macb_or_gem_writel(bp, HRT, mc_filter[1]);
2008 }
2009
2010 /* Enable/Disable promiscuous and multicast modes. */
2011 static void macb_set_rx_mode(struct net_device *dev)
2012 {
2013 unsigned long cfg;
2014 struct macb *bp = netdev_priv(dev);
2015
2016 cfg = macb_readl(bp, NCFGR);
2017
2018 if (dev->flags & IFF_PROMISC) {
2019 /* Enable promiscuous mode */
2020 cfg |= MACB_BIT(CAF);
2021
2022 /* Disable RX checksum offload */
2023 if (macb_is_gem(bp))
2024 cfg &= ~GEM_BIT(RXCOEN);
2025 } else {
2026 /* Disable promiscuous mode */
2027 cfg &= ~MACB_BIT(CAF);
2028
2029 /* Enable RX checksum offload only if requested */
2030 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2031 cfg |= GEM_BIT(RXCOEN);
2032 }
2033
2034 if (dev->flags & IFF_ALLMULTI) {
2035 /* Enable all multicast mode */
2036 macb_or_gem_writel(bp, HRB, -1);
2037 macb_or_gem_writel(bp, HRT, -1);
2038 cfg |= MACB_BIT(NCFGR_MTI);
2039 } else if (!netdev_mc_empty(dev)) {
2040 /* Enable specific multicasts */
2041 macb_sethashtable(dev);
2042 cfg |= MACB_BIT(NCFGR_MTI);
2043 } else if (dev->flags & (~IFF_ALLMULTI)) {
2044 /* Disable all multicast mode */
2045 macb_or_gem_writel(bp, HRB, 0);
2046 macb_or_gem_writel(bp, HRT, 0);
2047 cfg &= ~MACB_BIT(NCFGR_MTI);
2048 }
2049
2050 macb_writel(bp, NCFGR, cfg);
2051 }
2052
2053 static int macb_open(struct net_device *dev)
2054 {
2055 struct macb *bp = netdev_priv(dev);
2056 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2057 int err;
2058
2059 netdev_dbg(bp->dev, "open\n");
2060
2061 /* carrier starts down */
2062 netif_carrier_off(dev);
2063
2064 /* if the phy is not yet register, retry later*/
2065 if (!dev->phydev)
2066 return -EAGAIN;
2067
2068 /* RX buffers initialization */
2069 macb_init_rx_buffer_size(bp, bufsz);
2070
2071 err = macb_alloc_consistent(bp);
2072 if (err) {
2073 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2074 err);
2075 return err;
2076 }
2077
2078 napi_enable(&bp->napi);
2079
2080 bp->macbgem_ops.mog_init_rings(bp);
2081 macb_init_hw(bp);
2082
2083 /* schedule a link state check */
2084 phy_start(dev->phydev);
2085
2086 netif_tx_start_all_queues(dev);
2087
2088 return 0;
2089 }
2090
2091 static int macb_close(struct net_device *dev)
2092 {
2093 struct macb *bp = netdev_priv(dev);
2094 unsigned long flags;
2095
2096 netif_tx_stop_all_queues(dev);
2097 napi_disable(&bp->napi);
2098
2099 if (dev->phydev)
2100 phy_stop(dev->phydev);
2101
2102 spin_lock_irqsave(&bp->lock, flags);
2103 macb_reset_hw(bp);
2104 netif_carrier_off(dev);
2105 spin_unlock_irqrestore(&bp->lock, flags);
2106
2107 macb_free_consistent(bp);
2108
2109 return 0;
2110 }
2111
2112 static int macb_change_mtu(struct net_device *dev, int new_mtu)
2113 {
2114 if (netif_running(dev))
2115 return -EBUSY;
2116
2117 dev->mtu = new_mtu;
2118
2119 return 0;
2120 }
2121
2122 static void gem_update_stats(struct macb *bp)
2123 {
2124 unsigned int i;
2125 u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2126
2127 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2128 u32 offset = gem_statistics[i].offset;
2129 u64 val = bp->macb_reg_readl(bp, offset);
2130
2131 bp->ethtool_stats[i] += val;
2132 *p += val;
2133
2134 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2135 /* Add GEM_OCTTXH, GEM_OCTRXH */
2136 val = bp->macb_reg_readl(bp, offset + 4);
2137 bp->ethtool_stats[i] += ((u64)val) << 32;
2138 *(++p) += val;
2139 }
2140 }
2141 }
2142
2143 static struct net_device_stats *gem_get_stats(struct macb *bp)
2144 {
2145 struct gem_stats *hwstat = &bp->hw_stats.gem;
2146 struct net_device_stats *nstat = &bp->stats;
2147
2148 gem_update_stats(bp);
2149
2150 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2151 hwstat->rx_alignment_errors +
2152 hwstat->rx_resource_errors +
2153 hwstat->rx_overruns +
2154 hwstat->rx_oversize_frames +
2155 hwstat->rx_jabbers +
2156 hwstat->rx_undersized_frames +
2157 hwstat->rx_length_field_frame_errors);
2158 nstat->tx_errors = (hwstat->tx_late_collisions +
2159 hwstat->tx_excessive_collisions +
2160 hwstat->tx_underrun +
2161 hwstat->tx_carrier_sense_errors);
2162 nstat->multicast = hwstat->rx_multicast_frames;
2163 nstat->collisions = (hwstat->tx_single_collision_frames +
2164 hwstat->tx_multiple_collision_frames +
2165 hwstat->tx_excessive_collisions);
2166 nstat->rx_length_errors = (hwstat->rx_oversize_frames +
2167 hwstat->rx_jabbers +
2168 hwstat->rx_undersized_frames +
2169 hwstat->rx_length_field_frame_errors);
2170 nstat->rx_over_errors = hwstat->rx_resource_errors;
2171 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
2172 nstat->rx_frame_errors = hwstat->rx_alignment_errors;
2173 nstat->rx_fifo_errors = hwstat->rx_overruns;
2174 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
2175 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
2176 nstat->tx_fifo_errors = hwstat->tx_underrun;
2177
2178 return nstat;
2179 }
2180
2181 static void gem_get_ethtool_stats(struct net_device *dev,
2182 struct ethtool_stats *stats, u64 *data)
2183 {
2184 struct macb *bp;
2185
2186 bp = netdev_priv(dev);
2187 gem_update_stats(bp);
2188 memcpy(data, &bp->ethtool_stats, sizeof(u64) * GEM_STATS_LEN);
2189 }
2190
2191 static int gem_get_sset_count(struct net_device *dev, int sset)
2192 {
2193 switch (sset) {
2194 case ETH_SS_STATS:
2195 return GEM_STATS_LEN;
2196 default:
2197 return -EOPNOTSUPP;
2198 }
2199 }
2200
2201 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
2202 {
2203 unsigned int i;
2204
2205 switch (sset) {
2206 case ETH_SS_STATS:
2207 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
2208 memcpy(p, gem_statistics[i].stat_string,
2209 ETH_GSTRING_LEN);
2210 break;
2211 }
2212 }
2213
2214 static struct net_device_stats *macb_get_stats(struct net_device *dev)
2215 {
2216 struct macb *bp = netdev_priv(dev);
2217 struct net_device_stats *nstat = &bp->stats;
2218 struct macb_stats *hwstat = &bp->hw_stats.macb;
2219
2220 if (macb_is_gem(bp))
2221 return gem_get_stats(bp);
2222
2223 /* read stats from hardware */
2224 macb_update_stats(bp);
2225
2226 /* Convert HW stats into netdevice stats */
2227 nstat->rx_errors = (hwstat->rx_fcs_errors +
2228 hwstat->rx_align_errors +
2229 hwstat->rx_resource_errors +
2230 hwstat->rx_overruns +
2231 hwstat->rx_oversize_pkts +
2232 hwstat->rx_jabbers +
2233 hwstat->rx_undersize_pkts +
2234 hwstat->rx_length_mismatch);
2235 nstat->tx_errors = (hwstat->tx_late_cols +
2236 hwstat->tx_excessive_cols +
2237 hwstat->tx_underruns +
2238 hwstat->tx_carrier_errors +
2239 hwstat->sqe_test_errors);
2240 nstat->collisions = (hwstat->tx_single_cols +
2241 hwstat->tx_multiple_cols +
2242 hwstat->tx_excessive_cols);
2243 nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
2244 hwstat->rx_jabbers +
2245 hwstat->rx_undersize_pkts +
2246 hwstat->rx_length_mismatch);
2247 nstat->rx_over_errors = hwstat->rx_resource_errors +
2248 hwstat->rx_overruns;
2249 nstat->rx_crc_errors = hwstat->rx_fcs_errors;
2250 nstat->rx_frame_errors = hwstat->rx_align_errors;
2251 nstat->rx_fifo_errors = hwstat->rx_overruns;
2252 /* XXX: What does "missed" mean? */
2253 nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
2254 nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
2255 nstat->tx_fifo_errors = hwstat->tx_underruns;
2256 /* Don't know about heartbeat or window errors... */
2257
2258 return nstat;
2259 }
2260
2261 static int macb_get_regs_len(struct net_device *netdev)
2262 {
2263 return MACB_GREGS_NBR * sizeof(u32);
2264 }
2265
2266 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
2267 void *p)
2268 {
2269 struct macb *bp = netdev_priv(dev);
2270 unsigned int tail, head;
2271 u32 *regs_buff = p;
2272
2273 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
2274 | MACB_GREGS_VERSION;
2275
2276 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
2277 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
2278
2279 regs_buff[0] = macb_readl(bp, NCR);
2280 regs_buff[1] = macb_or_gem_readl(bp, NCFGR);
2281 regs_buff[2] = macb_readl(bp, NSR);
2282 regs_buff[3] = macb_readl(bp, TSR);
2283 regs_buff[4] = macb_readl(bp, RBQP);
2284 regs_buff[5] = macb_readl(bp, TBQP);
2285 regs_buff[6] = macb_readl(bp, RSR);
2286 regs_buff[7] = macb_readl(bp, IMR);
2287
2288 regs_buff[8] = tail;
2289 regs_buff[9] = head;
2290 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
2291 regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
2292
2293 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
2294 regs_buff[12] = macb_or_gem_readl(bp, USRIO);
2295 if (macb_is_gem(bp))
2296 regs_buff[13] = gem_readl(bp, DMACFG);
2297 }
2298
2299 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2300 {
2301 struct macb *bp = netdev_priv(netdev);
2302
2303 wol->supported = 0;
2304 wol->wolopts = 0;
2305
2306 if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
2307 wol->supported = WAKE_MAGIC;
2308
2309 if (bp->wol & MACB_WOL_ENABLED)
2310 wol->wolopts |= WAKE_MAGIC;
2311 }
2312 }
2313
2314 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2315 {
2316 struct macb *bp = netdev_priv(netdev);
2317
2318 if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
2319 (wol->wolopts & ~WAKE_MAGIC))
2320 return -EOPNOTSUPP;
2321
2322 if (wol->wolopts & WAKE_MAGIC)
2323 bp->wol |= MACB_WOL_ENABLED;
2324 else
2325 bp->wol &= ~MACB_WOL_ENABLED;
2326
2327 device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
2328
2329 return 0;
2330 }
2331
2332 static void macb_get_ringparam(struct net_device *netdev,
2333 struct ethtool_ringparam *ring)
2334 {
2335 struct macb *bp = netdev_priv(netdev);
2336
2337 ring->rx_max_pending = MAX_RX_RING_SIZE;
2338 ring->tx_max_pending = MAX_TX_RING_SIZE;
2339
2340 ring->rx_pending = bp->rx_ring_size;
2341 ring->tx_pending = bp->tx_ring_size;
2342 }
2343
2344 static int macb_set_ringparam(struct net_device *netdev,
2345 struct ethtool_ringparam *ring)
2346 {
2347 struct macb *bp = netdev_priv(netdev);
2348 u32 new_rx_size, new_tx_size;
2349 unsigned int reset = 0;
2350
2351 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2352 return -EINVAL;
2353
2354 new_rx_size = clamp_t(u32, ring->rx_pending,
2355 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
2356 new_rx_size = roundup_pow_of_two(new_rx_size);
2357
2358 new_tx_size = clamp_t(u32, ring->tx_pending,
2359 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
2360 new_tx_size = roundup_pow_of_two(new_tx_size);
2361
2362 if ((new_tx_size == bp->tx_ring_size) &&
2363 (new_rx_size == bp->rx_ring_size)) {
2364 /* nothing to do */
2365 return 0;
2366 }
2367
2368 if (netif_running(bp->dev)) {
2369 reset = 1;
2370 macb_close(bp->dev);
2371 }
2372
2373 bp->rx_ring_size = new_rx_size;
2374 bp->tx_ring_size = new_tx_size;
2375
2376 if (reset)
2377 macb_open(bp->dev);
2378
2379 return 0;
2380 }
2381
2382 static const struct ethtool_ops macb_ethtool_ops = {
2383 .get_regs_len = macb_get_regs_len,
2384 .get_regs = macb_get_regs,
2385 .get_link = ethtool_op_get_link,
2386 .get_ts_info = ethtool_op_get_ts_info,
2387 .get_wol = macb_get_wol,
2388 .set_wol = macb_set_wol,
2389 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2390 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2391 .get_ringparam = macb_get_ringparam,
2392 .set_ringparam = macb_set_ringparam,
2393 };
2394
2395 static const struct ethtool_ops gem_ethtool_ops = {
2396 .get_regs_len = macb_get_regs_len,
2397 .get_regs = macb_get_regs,
2398 .get_link = ethtool_op_get_link,
2399 .get_ts_info = ethtool_op_get_ts_info,
2400 .get_ethtool_stats = gem_get_ethtool_stats,
2401 .get_strings = gem_get_ethtool_strings,
2402 .get_sset_count = gem_get_sset_count,
2403 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2404 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2405 .get_ringparam = macb_get_ringparam,
2406 .set_ringparam = macb_set_ringparam,
2407 };
2408
2409 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2410 {
2411 struct phy_device *phydev = dev->phydev;
2412
2413 if (!netif_running(dev))
2414 return -EINVAL;
2415
2416 if (!phydev)
2417 return -ENODEV;
2418
2419 return phy_mii_ioctl(phydev, rq, cmd);
2420 }
2421
2422 static int macb_set_features(struct net_device *netdev,
2423 netdev_features_t features)
2424 {
2425 struct macb *bp = netdev_priv(netdev);
2426 netdev_features_t changed = features ^ netdev->features;
2427
2428 /* TX checksum offload */
2429 if ((changed & NETIF_F_HW_CSUM) && macb_is_gem(bp)) {
2430 u32 dmacfg;
2431
2432 dmacfg = gem_readl(bp, DMACFG);
2433 if (features & NETIF_F_HW_CSUM)
2434 dmacfg |= GEM_BIT(TXCOEN);
2435 else
2436 dmacfg &= ~GEM_BIT(TXCOEN);
2437 gem_writel(bp, DMACFG, dmacfg);
2438 }
2439
2440 /* RX checksum offload */
2441 if ((changed & NETIF_F_RXCSUM) && macb_is_gem(bp)) {
2442 u32 netcfg;
2443
2444 netcfg = gem_readl(bp, NCFGR);
2445 if (features & NETIF_F_RXCSUM &&
2446 !(netdev->flags & IFF_PROMISC))
2447 netcfg |= GEM_BIT(RXCOEN);
2448 else
2449 netcfg &= ~GEM_BIT(RXCOEN);
2450 gem_writel(bp, NCFGR, netcfg);
2451 }
2452
2453 return 0;
2454 }
2455
2456 static const struct net_device_ops macb_netdev_ops = {
2457 .ndo_open = macb_open,
2458 .ndo_stop = macb_close,
2459 .ndo_start_xmit = macb_start_xmit,
2460 .ndo_set_rx_mode = macb_set_rx_mode,
2461 .ndo_get_stats = macb_get_stats,
2462 .ndo_do_ioctl = macb_ioctl,
2463 .ndo_validate_addr = eth_validate_addr,
2464 .ndo_change_mtu = macb_change_mtu,
2465 .ndo_set_mac_address = eth_mac_addr,
2466 #ifdef CONFIG_NET_POLL_CONTROLLER
2467 .ndo_poll_controller = macb_poll_controller,
2468 #endif
2469 .ndo_set_features = macb_set_features,
2470 .ndo_features_check = macb_features_check,
2471 };
2472
2473 /* Configure peripheral capabilities according to device tree
2474 * and integration options used
2475 */
2476 static void macb_configure_caps(struct macb *bp,
2477 const struct macb_config *dt_conf)
2478 {
2479 u32 dcfg;
2480
2481 if (dt_conf)
2482 bp->caps = dt_conf->caps;
2483
2484 if (hw_is_gem(bp->regs, bp->native_io)) {
2485 bp->caps |= MACB_CAPS_MACB_IS_GEM;
2486
2487 dcfg = gem_readl(bp, DCFG1);
2488 if (GEM_BFEXT(IRQCOR, dcfg) == 0)
2489 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
2490 dcfg = gem_readl(bp, DCFG2);
2491 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
2492 bp->caps |= MACB_CAPS_FIFO_MODE;
2493 }
2494
2495 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
2496 }
2497
2498 static void macb_probe_queues(void __iomem *mem,
2499 bool native_io,
2500 unsigned int *queue_mask,
2501 unsigned int *num_queues)
2502 {
2503 unsigned int hw_q;
2504
2505 *queue_mask = 0x1;
2506 *num_queues = 1;
2507
2508 /* is it macb or gem ?
2509 *
2510 * We need to read directly from the hardware here because
2511 * we are early in the probe process and don't have the
2512 * MACB_CAPS_MACB_IS_GEM flag positioned
2513 */
2514 if (!hw_is_gem(mem, native_io))
2515 return;
2516
2517 /* bit 0 is never set but queue 0 always exists */
2518 *queue_mask = readl_relaxed(mem + GEM_DCFG6) & 0xff;
2519
2520 *queue_mask |= 0x1;
2521
2522 for (hw_q = 1; hw_q < MACB_MAX_QUEUES; ++hw_q)
2523 if (*queue_mask & (1 << hw_q))
2524 (*num_queues)++;
2525 }
2526
2527 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
2528 struct clk **hclk, struct clk **tx_clk,
2529 struct clk **rx_clk)
2530 {
2531 struct macb_platform_data *pdata;
2532 int err;
2533
2534 pdata = dev_get_platdata(&pdev->dev);
2535 if (pdata) {
2536 *pclk = pdata->pclk;
2537 *hclk = pdata->hclk;
2538 } else {
2539 *pclk = devm_clk_get(&pdev->dev, "pclk");
2540 *hclk = devm_clk_get(&pdev->dev, "hclk");
2541 }
2542
2543 if (IS_ERR(*pclk)) {
2544 err = PTR_ERR(*pclk);
2545 dev_err(&pdev->dev, "failed to get macb_clk (%u)\n", err);
2546 return err;
2547 }
2548
2549 if (IS_ERR(*hclk)) {
2550 err = PTR_ERR(*hclk);
2551 dev_err(&pdev->dev, "failed to get hclk (%u)\n", err);
2552 return err;
2553 }
2554
2555 *tx_clk = devm_clk_get(&pdev->dev, "tx_clk");
2556 if (IS_ERR(*tx_clk))
2557 *tx_clk = NULL;
2558
2559 *rx_clk = devm_clk_get(&pdev->dev, "rx_clk");
2560 if (IS_ERR(*rx_clk))
2561 *rx_clk = NULL;
2562
2563 err = clk_prepare_enable(*pclk);
2564 if (err) {
2565 dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2566 return err;
2567 }
2568
2569 err = clk_prepare_enable(*hclk);
2570 if (err) {
2571 dev_err(&pdev->dev, "failed to enable hclk (%u)\n", err);
2572 goto err_disable_pclk;
2573 }
2574
2575 err = clk_prepare_enable(*tx_clk);
2576 if (err) {
2577 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
2578 goto err_disable_hclk;
2579 }
2580
2581 err = clk_prepare_enable(*rx_clk);
2582 if (err) {
2583 dev_err(&pdev->dev, "failed to enable rx_clk (%u)\n", err);
2584 goto err_disable_txclk;
2585 }
2586
2587 return 0;
2588
2589 err_disable_txclk:
2590 clk_disable_unprepare(*tx_clk);
2591
2592 err_disable_hclk:
2593 clk_disable_unprepare(*hclk);
2594
2595 err_disable_pclk:
2596 clk_disable_unprepare(*pclk);
2597
2598 return err;
2599 }
2600
2601 static int macb_init(struct platform_device *pdev)
2602 {
2603 struct net_device *dev = platform_get_drvdata(pdev);
2604 unsigned int hw_q, q;
2605 struct macb *bp = netdev_priv(dev);
2606 struct macb_queue *queue;
2607 int err;
2608 u32 val;
2609
2610 bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
2611 bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
2612
2613 /* set the queue register mapping once for all: queue0 has a special
2614 * register mapping but we don't want to test the queue index then
2615 * compute the corresponding register offset at run time.
2616 */
2617 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
2618 if (!(bp->queue_mask & (1 << hw_q)))
2619 continue;
2620
2621 queue = &bp->queues[q];
2622 queue->bp = bp;
2623 if (hw_q) {
2624 queue->ISR = GEM_ISR(hw_q - 1);
2625 queue->IER = GEM_IER(hw_q - 1);
2626 queue->IDR = GEM_IDR(hw_q - 1);
2627 queue->IMR = GEM_IMR(hw_q - 1);
2628 queue->TBQP = GEM_TBQP(hw_q - 1);
2629 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2630 queue->TBQPH = GEM_TBQPH(hw_q -1);
2631 #endif
2632 } else {
2633 /* queue0 uses legacy registers */
2634 queue->ISR = MACB_ISR;
2635 queue->IER = MACB_IER;
2636 queue->IDR = MACB_IDR;
2637 queue->IMR = MACB_IMR;
2638 queue->TBQP = MACB_TBQP;
2639 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2640 queue->TBQPH = MACB_TBQPH;
2641 #endif
2642 }
2643
2644 /* get irq: here we use the linux queue index, not the hardware
2645 * queue index. the queue irq definitions in the device tree
2646 * must remove the optional gaps that could exist in the
2647 * hardware queue mask.
2648 */
2649 queue->irq = platform_get_irq(pdev, q);
2650 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
2651 IRQF_SHARED, dev->name, queue);
2652 if (err) {
2653 dev_err(&pdev->dev,
2654 "Unable to request IRQ %d (error %d)\n",
2655 queue->irq, err);
2656 return err;
2657 }
2658
2659 INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
2660 q++;
2661 }
2662
2663 dev->netdev_ops = &macb_netdev_ops;
2664 netif_napi_add(dev, &bp->napi, macb_poll, 64);
2665
2666 /* setup appropriated routines according to adapter type */
2667 if (macb_is_gem(bp)) {
2668 bp->max_tx_length = GEM_MAX_TX_LEN;
2669 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
2670 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
2671 bp->macbgem_ops.mog_init_rings = gem_init_rings;
2672 bp->macbgem_ops.mog_rx = gem_rx;
2673 dev->ethtool_ops = &gem_ethtool_ops;
2674 } else {
2675 bp->max_tx_length = MACB_MAX_TX_LEN;
2676 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
2677 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
2678 bp->macbgem_ops.mog_init_rings = macb_init_rings;
2679 bp->macbgem_ops.mog_rx = macb_rx;
2680 dev->ethtool_ops = &macb_ethtool_ops;
2681 }
2682
2683 /* Set features */
2684 dev->hw_features = NETIF_F_SG;
2685
2686 /* Check LSO capability */
2687 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
2688 dev->hw_features |= MACB_NETIF_LSO;
2689
2690 /* Checksum offload is only available on gem with packet buffer */
2691 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
2692 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2693 if (bp->caps & MACB_CAPS_SG_DISABLED)
2694 dev->hw_features &= ~NETIF_F_SG;
2695 dev->features = dev->hw_features;
2696
2697 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
2698 val = 0;
2699 if (bp->phy_interface == PHY_INTERFACE_MODE_RGMII)
2700 val = GEM_BIT(RGMII);
2701 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
2702 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
2703 val = MACB_BIT(RMII);
2704 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
2705 val = MACB_BIT(MII);
2706
2707 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
2708 val |= MACB_BIT(CLKEN);
2709
2710 macb_or_gem_writel(bp, USRIO, val);
2711 }
2712
2713 /* Set MII management clock divider */
2714 val = macb_mdc_clk_div(bp);
2715 val |= macb_dbw(bp);
2716 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
2717 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
2718 macb_writel(bp, NCFGR, val);
2719
2720 return 0;
2721 }
2722
2723 #if defined(CONFIG_OF)
2724 /* 1518 rounded up */
2725 #define AT91ETHER_MAX_RBUFF_SZ 0x600
2726 /* max number of receive buffers */
2727 #define AT91ETHER_MAX_RX_DESCR 9
2728
2729 /* Initialize and start the Receiver and Transmit subsystems */
2730 static int at91ether_start(struct net_device *dev)
2731 {
2732 struct macb *lp = netdev_priv(dev);
2733 dma_addr_t addr;
2734 u32 ctl;
2735 int i;
2736
2737 lp->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
2738 (AT91ETHER_MAX_RX_DESCR *
2739 sizeof(struct macb_dma_desc)),
2740 &lp->rx_ring_dma, GFP_KERNEL);
2741 if (!lp->rx_ring)
2742 return -ENOMEM;
2743
2744 lp->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
2745 AT91ETHER_MAX_RX_DESCR *
2746 AT91ETHER_MAX_RBUFF_SZ,
2747 &lp->rx_buffers_dma, GFP_KERNEL);
2748 if (!lp->rx_buffers) {
2749 dma_free_coherent(&lp->pdev->dev,
2750 AT91ETHER_MAX_RX_DESCR *
2751 sizeof(struct macb_dma_desc),
2752 lp->rx_ring, lp->rx_ring_dma);
2753 lp->rx_ring = NULL;
2754 return -ENOMEM;
2755 }
2756
2757 addr = lp->rx_buffers_dma;
2758 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
2759 lp->rx_ring[i].addr = addr;
2760 lp->rx_ring[i].ctrl = 0;
2761 addr += AT91ETHER_MAX_RBUFF_SZ;
2762 }
2763
2764 /* Set the Wrap bit on the last descriptor */
2765 lp->rx_ring[AT91ETHER_MAX_RX_DESCR - 1].addr |= MACB_BIT(RX_WRAP);
2766
2767 /* Reset buffer index */
2768 lp->rx_tail = 0;
2769
2770 /* Program address of descriptor list in Rx Buffer Queue register */
2771 macb_writel(lp, RBQP, lp->rx_ring_dma);
2772
2773 /* Enable Receive and Transmit */
2774 ctl = macb_readl(lp, NCR);
2775 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
2776
2777 return 0;
2778 }
2779
2780 /* Open the ethernet interface */
2781 static int at91ether_open(struct net_device *dev)
2782 {
2783 struct macb *lp = netdev_priv(dev);
2784 u32 ctl;
2785 int ret;
2786
2787 /* Clear internal statistics */
2788 ctl = macb_readl(lp, NCR);
2789 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
2790
2791 macb_set_hwaddr(lp);
2792
2793 ret = at91ether_start(dev);
2794 if (ret)
2795 return ret;
2796
2797 /* Enable MAC interrupts */
2798 macb_writel(lp, IER, MACB_BIT(RCOMP) |
2799 MACB_BIT(RXUBR) |
2800 MACB_BIT(ISR_TUND) |
2801 MACB_BIT(ISR_RLE) |
2802 MACB_BIT(TCOMP) |
2803 MACB_BIT(ISR_ROVR) |
2804 MACB_BIT(HRESP));
2805
2806 /* schedule a link state check */
2807 phy_start(dev->phydev);
2808
2809 netif_start_queue(dev);
2810
2811 return 0;
2812 }
2813
2814 /* Close the interface */
2815 static int at91ether_close(struct net_device *dev)
2816 {
2817 struct macb *lp = netdev_priv(dev);
2818 u32 ctl;
2819
2820 /* Disable Receiver and Transmitter */
2821 ctl = macb_readl(lp, NCR);
2822 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
2823
2824 /* Disable MAC interrupts */
2825 macb_writel(lp, IDR, MACB_BIT(RCOMP) |
2826 MACB_BIT(RXUBR) |
2827 MACB_BIT(ISR_TUND) |
2828 MACB_BIT(ISR_RLE) |
2829 MACB_BIT(TCOMP) |
2830 MACB_BIT(ISR_ROVR) |
2831 MACB_BIT(HRESP));
2832
2833 netif_stop_queue(dev);
2834
2835 dma_free_coherent(&lp->pdev->dev,
2836 AT91ETHER_MAX_RX_DESCR *
2837 sizeof(struct macb_dma_desc),
2838 lp->rx_ring, lp->rx_ring_dma);
2839 lp->rx_ring = NULL;
2840
2841 dma_free_coherent(&lp->pdev->dev,
2842 AT91ETHER_MAX_RX_DESCR * AT91ETHER_MAX_RBUFF_SZ,
2843 lp->rx_buffers, lp->rx_buffers_dma);
2844 lp->rx_buffers = NULL;
2845
2846 return 0;
2847 }
2848
2849 /* Transmit packet */
2850 static int at91ether_start_xmit(struct sk_buff *skb, struct net_device *dev)
2851 {
2852 struct macb *lp = netdev_priv(dev);
2853
2854 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
2855 netif_stop_queue(dev);
2856
2857 /* Store packet information (to free when Tx completed) */
2858 lp->skb = skb;
2859 lp->skb_length = skb->len;
2860 lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len,
2861 DMA_TO_DEVICE);
2862 if (dma_mapping_error(NULL, lp->skb_physaddr)) {
2863 dev_kfree_skb_any(skb);
2864 dev->stats.tx_dropped++;
2865 netdev_err(dev, "%s: DMA mapping error\n", __func__);
2866 return NETDEV_TX_OK;
2867 }
2868
2869 /* Set address of the data in the Transmit Address register */
2870 macb_writel(lp, TAR, lp->skb_physaddr);
2871 /* Set length of the packet in the Transmit Control register */
2872 macb_writel(lp, TCR, skb->len);
2873
2874 } else {
2875 netdev_err(dev, "%s called, but device is busy!\n", __func__);
2876 return NETDEV_TX_BUSY;
2877 }
2878
2879 return NETDEV_TX_OK;
2880 }
2881
2882 /* Extract received frame from buffer descriptors and sent to upper layers.
2883 * (Called from interrupt context)
2884 */
2885 static void at91ether_rx(struct net_device *dev)
2886 {
2887 struct macb *lp = netdev_priv(dev);
2888 unsigned char *p_recv;
2889 struct sk_buff *skb;
2890 unsigned int pktlen;
2891
2892 while (lp->rx_ring[lp->rx_tail].addr & MACB_BIT(RX_USED)) {
2893 p_recv = lp->rx_buffers + lp->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
2894 pktlen = MACB_BF(RX_FRMLEN, lp->rx_ring[lp->rx_tail].ctrl);
2895 skb = netdev_alloc_skb(dev, pktlen + 2);
2896 if (skb) {
2897 skb_reserve(skb, 2);
2898 memcpy(skb_put(skb, pktlen), p_recv, pktlen);
2899
2900 skb->protocol = eth_type_trans(skb, dev);
2901 lp->stats.rx_packets++;
2902 lp->stats.rx_bytes += pktlen;
2903 netif_rx(skb);
2904 } else {
2905 lp->stats.rx_dropped++;
2906 }
2907
2908 if (lp->rx_ring[lp->rx_tail].ctrl & MACB_BIT(RX_MHASH_MATCH))
2909 lp->stats.multicast++;
2910
2911 /* reset ownership bit */
2912 lp->rx_ring[lp->rx_tail].addr &= ~MACB_BIT(RX_USED);
2913
2914 /* wrap after last buffer */
2915 if (lp->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
2916 lp->rx_tail = 0;
2917 else
2918 lp->rx_tail++;
2919 }
2920 }
2921
2922 /* MAC interrupt handler */
2923 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
2924 {
2925 struct net_device *dev = dev_id;
2926 struct macb *lp = netdev_priv(dev);
2927 u32 intstatus, ctl;
2928
2929 /* MAC Interrupt Status register indicates what interrupts are pending.
2930 * It is automatically cleared once read.
2931 */
2932 intstatus = macb_readl(lp, ISR);
2933
2934 /* Receive complete */
2935 if (intstatus & MACB_BIT(RCOMP))
2936 at91ether_rx(dev);
2937
2938 /* Transmit complete */
2939 if (intstatus & MACB_BIT(TCOMP)) {
2940 /* The TCOM bit is set even if the transmission failed */
2941 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
2942 lp->stats.tx_errors++;
2943
2944 if (lp->skb) {
2945 dev_kfree_skb_irq(lp->skb);
2946 lp->skb = NULL;
2947 dma_unmap_single(NULL, lp->skb_physaddr,
2948 lp->skb_length, DMA_TO_DEVICE);
2949 lp->stats.tx_packets++;
2950 lp->stats.tx_bytes += lp->skb_length;
2951 }
2952 netif_wake_queue(dev);
2953 }
2954
2955 /* Work-around for EMAC Errata section 41.3.1 */
2956 if (intstatus & MACB_BIT(RXUBR)) {
2957 ctl = macb_readl(lp, NCR);
2958 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
2959 wmb();
2960 macb_writel(lp, NCR, ctl | MACB_BIT(RE));
2961 }
2962
2963 if (intstatus & MACB_BIT(ISR_ROVR))
2964 netdev_err(dev, "ROVR error\n");
2965
2966 return IRQ_HANDLED;
2967 }
2968
2969 #ifdef CONFIG_NET_POLL_CONTROLLER
2970 static void at91ether_poll_controller(struct net_device *dev)
2971 {
2972 unsigned long flags;
2973
2974 local_irq_save(flags);
2975 at91ether_interrupt(dev->irq, dev);
2976 local_irq_restore(flags);
2977 }
2978 #endif
2979
2980 static const struct net_device_ops at91ether_netdev_ops = {
2981 .ndo_open = at91ether_open,
2982 .ndo_stop = at91ether_close,
2983 .ndo_start_xmit = at91ether_start_xmit,
2984 .ndo_get_stats = macb_get_stats,
2985 .ndo_set_rx_mode = macb_set_rx_mode,
2986 .ndo_set_mac_address = eth_mac_addr,
2987 .ndo_do_ioctl = macb_ioctl,
2988 .ndo_validate_addr = eth_validate_addr,
2989 #ifdef CONFIG_NET_POLL_CONTROLLER
2990 .ndo_poll_controller = at91ether_poll_controller,
2991 #endif
2992 };
2993
2994 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
2995 struct clk **hclk, struct clk **tx_clk,
2996 struct clk **rx_clk)
2997 {
2998 int err;
2999
3000 *hclk = NULL;
3001 *tx_clk = NULL;
3002 *rx_clk = NULL;
3003
3004 *pclk = devm_clk_get(&pdev->dev, "ether_clk");
3005 if (IS_ERR(*pclk))
3006 return PTR_ERR(*pclk);
3007
3008 err = clk_prepare_enable(*pclk);
3009 if (err) {
3010 dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
3011 return err;
3012 }
3013
3014 return 0;
3015 }
3016
3017 static int at91ether_init(struct platform_device *pdev)
3018 {
3019 struct net_device *dev = platform_get_drvdata(pdev);
3020 struct macb *bp = netdev_priv(dev);
3021 int err;
3022 u32 reg;
3023
3024 dev->netdev_ops = &at91ether_netdev_ops;
3025 dev->ethtool_ops = &macb_ethtool_ops;
3026
3027 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
3028 0, dev->name, dev);
3029 if (err)
3030 return err;
3031
3032 macb_writel(bp, NCR, 0);
3033
3034 reg = MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG);
3035 if (bp->phy_interface == PHY_INTERFACE_MODE_RMII)
3036 reg |= MACB_BIT(RM9200_RMII);
3037
3038 macb_writel(bp, NCFGR, reg);
3039
3040 return 0;
3041 }
3042
3043 static const struct macb_config at91sam9260_config = {
3044 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
3045 .clk_init = macb_clk_init,
3046 .init = macb_init,
3047 };
3048
3049 static const struct macb_config pc302gem_config = {
3050 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
3051 .dma_burst_length = 16,
3052 .clk_init = macb_clk_init,
3053 .init = macb_init,
3054 };
3055
3056 static const struct macb_config sama5d2_config = {
3057 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
3058 .dma_burst_length = 16,
3059 .clk_init = macb_clk_init,
3060 .init = macb_init,
3061 };
3062
3063 static const struct macb_config sama5d3_config = {
3064 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE
3065 | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
3066 .dma_burst_length = 16,
3067 .clk_init = macb_clk_init,
3068 .init = macb_init,
3069 };
3070
3071 static const struct macb_config sama5d4_config = {
3072 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
3073 .dma_burst_length = 4,
3074 .clk_init = macb_clk_init,
3075 .init = macb_init,
3076 };
3077
3078 static const struct macb_config emac_config = {
3079 .clk_init = at91ether_clk_init,
3080 .init = at91ether_init,
3081 };
3082
3083 static const struct macb_config np4_config = {
3084 .caps = MACB_CAPS_USRIO_DISABLED,
3085 .clk_init = macb_clk_init,
3086 .init = macb_init,
3087 };
3088
3089 static const struct macb_config zynqmp_config = {
3090 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO,
3091 .dma_burst_length = 16,
3092 .clk_init = macb_clk_init,
3093 .init = macb_init,
3094 .jumbo_max_len = 10240,
3095 };
3096
3097 static const struct macb_config zynq_config = {
3098 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF,
3099 .dma_burst_length = 16,
3100 .clk_init = macb_clk_init,
3101 .init = macb_init,
3102 };
3103
3104 static const struct of_device_id macb_dt_ids[] = {
3105 { .compatible = "cdns,at32ap7000-macb" },
3106 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
3107 { .compatible = "cdns,macb" },
3108 { .compatible = "cdns,np4-macb", .data = &np4_config },
3109 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
3110 { .compatible = "cdns,gem", .data = &pc302gem_config },
3111 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
3112 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
3113 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
3114 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
3115 { .compatible = "cdns,emac", .data = &emac_config },
3116 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
3117 { .compatible = "cdns,zynq-gem", .data = &zynq_config },
3118 { /* sentinel */ }
3119 };
3120 MODULE_DEVICE_TABLE(of, macb_dt_ids);
3121 #endif /* CONFIG_OF */
3122
3123 static const struct macb_config default_gem_config = {
3124 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO,
3125 .dma_burst_length = 16,
3126 .clk_init = macb_clk_init,
3127 .init = macb_init,
3128 .jumbo_max_len = 10240,
3129 };
3130
3131 static int macb_probe(struct platform_device *pdev)
3132 {
3133 const struct macb_config *macb_config = &default_gem_config;
3134 int (*clk_init)(struct platform_device *, struct clk **,
3135 struct clk **, struct clk **, struct clk **)
3136 = macb_config->clk_init;
3137 int (*init)(struct platform_device *) = macb_config->init;
3138 struct device_node *np = pdev->dev.of_node;
3139 struct device_node *phy_node;
3140 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
3141 unsigned int queue_mask, num_queues;
3142 struct macb_platform_data *pdata;
3143 bool native_io;
3144 struct phy_device *phydev;
3145 struct net_device *dev;
3146 struct resource *regs;
3147 void __iomem *mem;
3148 const char *mac;
3149 struct macb *bp;
3150 int err;
3151
3152 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3153 mem = devm_ioremap_resource(&pdev->dev, regs);
3154 if (IS_ERR(mem))
3155 return PTR_ERR(mem);
3156
3157 if (np) {
3158 const struct of_device_id *match;
3159
3160 match = of_match_node(macb_dt_ids, np);
3161 if (match && match->data) {
3162 macb_config = match->data;
3163 clk_init = macb_config->clk_init;
3164 init = macb_config->init;
3165 }
3166 }
3167
3168 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk);
3169 if (err)
3170 return err;
3171
3172 native_io = hw_is_native_io(mem);
3173
3174 macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
3175 dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
3176 if (!dev) {
3177 err = -ENOMEM;
3178 goto err_disable_clocks;
3179 }
3180
3181 dev->base_addr = regs->start;
3182
3183 SET_NETDEV_DEV(dev, &pdev->dev);
3184
3185 bp = netdev_priv(dev);
3186 bp->pdev = pdev;
3187 bp->dev = dev;
3188 bp->regs = mem;
3189 bp->native_io = native_io;
3190 if (native_io) {
3191 bp->macb_reg_readl = hw_readl_native;
3192 bp->macb_reg_writel = hw_writel_native;
3193 } else {
3194 bp->macb_reg_readl = hw_readl;
3195 bp->macb_reg_writel = hw_writel;
3196 }
3197 bp->num_queues = num_queues;
3198 bp->queue_mask = queue_mask;
3199 if (macb_config)
3200 bp->dma_burst_length = macb_config->dma_burst_length;
3201 bp->pclk = pclk;
3202 bp->hclk = hclk;
3203 bp->tx_clk = tx_clk;
3204 bp->rx_clk = rx_clk;
3205 if (macb_config)
3206 bp->jumbo_max_len = macb_config->jumbo_max_len;
3207
3208 bp->wol = 0;
3209 if (of_get_property(np, "magic-packet", NULL))
3210 bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
3211 device_init_wakeup(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
3212
3213 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3214 if (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1)) > GEM_DBW32)
3215 dma_set_mask(&pdev->dev, DMA_BIT_MASK(44));
3216 #endif
3217
3218 spin_lock_init(&bp->lock);
3219
3220 /* setup capabilities */
3221 macb_configure_caps(bp, macb_config);
3222
3223 platform_set_drvdata(pdev, dev);
3224
3225 dev->irq = platform_get_irq(pdev, 0);
3226 if (dev->irq < 0) {
3227 err = dev->irq;
3228 goto err_out_free_netdev;
3229 }
3230
3231 /* MTU range: 68 - 1500 or 10240 */
3232 dev->min_mtu = GEM_MTU_MIN_SIZE;
3233 if (bp->caps & MACB_CAPS_JUMBO)
3234 dev->max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN;
3235 else
3236 dev->max_mtu = ETH_DATA_LEN;
3237
3238 mac = of_get_mac_address(np);
3239 if (mac)
3240 ether_addr_copy(bp->dev->dev_addr, mac);
3241 else
3242 macb_get_hwaddr(bp);
3243
3244 /* Power up the PHY if there is a GPIO reset */
3245 phy_node = of_get_next_available_child(np, NULL);
3246 if (phy_node) {
3247 int gpio = of_get_named_gpio(phy_node, "reset-gpios", 0);
3248
3249 if (gpio_is_valid(gpio)) {
3250 bp->reset_gpio = gpio_to_desc(gpio);
3251 gpiod_direction_output(bp->reset_gpio, 1);
3252 }
3253 }
3254 of_node_put(phy_node);
3255
3256 err = of_get_phy_mode(np);
3257 if (err < 0) {
3258 pdata = dev_get_platdata(&pdev->dev);
3259 if (pdata && pdata->is_rmii)
3260 bp->phy_interface = PHY_INTERFACE_MODE_RMII;
3261 else
3262 bp->phy_interface = PHY_INTERFACE_MODE_MII;
3263 } else {
3264 bp->phy_interface = err;
3265 }
3266
3267 /* IP specific init */
3268 err = init(pdev);
3269 if (err)
3270 goto err_out_free_netdev;
3271
3272 err = macb_mii_init(bp);
3273 if (err)
3274 goto err_out_free_netdev;
3275
3276 phydev = dev->phydev;
3277
3278 netif_carrier_off(dev);
3279
3280 err = register_netdev(dev);
3281 if (err) {
3282 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
3283 goto err_out_unregister_mdio;
3284 }
3285
3286 phy_attached_info(phydev);
3287
3288 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
3289 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
3290 dev->base_addr, dev->irq, dev->dev_addr);
3291
3292 return 0;
3293
3294 err_out_unregister_mdio:
3295 phy_disconnect(dev->phydev);
3296 mdiobus_unregister(bp->mii_bus);
3297 mdiobus_free(bp->mii_bus);
3298
3299 /* Shutdown the PHY if there is a GPIO reset */
3300 if (bp->reset_gpio)
3301 gpiod_set_value(bp->reset_gpio, 0);
3302
3303 err_out_free_netdev:
3304 free_netdev(dev);
3305
3306 err_disable_clocks:
3307 clk_disable_unprepare(tx_clk);
3308 clk_disable_unprepare(hclk);
3309 clk_disable_unprepare(pclk);
3310 clk_disable_unprepare(rx_clk);
3311
3312 return err;
3313 }
3314
3315 static int macb_remove(struct platform_device *pdev)
3316 {
3317 struct net_device *dev;
3318 struct macb *bp;
3319
3320 dev = platform_get_drvdata(pdev);
3321
3322 if (dev) {
3323 bp = netdev_priv(dev);
3324 if (dev->phydev)
3325 phy_disconnect(dev->phydev);
3326 mdiobus_unregister(bp->mii_bus);
3327 dev->phydev = NULL;
3328 mdiobus_free(bp->mii_bus);
3329
3330 /* Shutdown the PHY if there is a GPIO reset */
3331 if (bp->reset_gpio)
3332 gpiod_set_value(bp->reset_gpio, 0);
3333
3334 unregister_netdev(dev);
3335 clk_disable_unprepare(bp->tx_clk);
3336 clk_disable_unprepare(bp->hclk);
3337 clk_disable_unprepare(bp->pclk);
3338 clk_disable_unprepare(bp->rx_clk);
3339 free_netdev(dev);
3340 }
3341
3342 return 0;
3343 }
3344
3345 static int __maybe_unused macb_suspend(struct device *dev)
3346 {
3347 struct platform_device *pdev = to_platform_device(dev);
3348 struct net_device *netdev = platform_get_drvdata(pdev);
3349 struct macb *bp = netdev_priv(netdev);
3350
3351 netif_carrier_off(netdev);
3352 netif_device_detach(netdev);
3353
3354 if (bp->wol & MACB_WOL_ENABLED) {
3355 macb_writel(bp, IER, MACB_BIT(WOL));
3356 macb_writel(bp, WOL, MACB_BIT(MAG));
3357 enable_irq_wake(bp->queues[0].irq);
3358 } else {
3359 clk_disable_unprepare(bp->tx_clk);
3360 clk_disable_unprepare(bp->hclk);
3361 clk_disable_unprepare(bp->pclk);
3362 clk_disable_unprepare(bp->rx_clk);
3363 }
3364
3365 return 0;
3366 }
3367
3368 static int __maybe_unused macb_resume(struct device *dev)
3369 {
3370 struct platform_device *pdev = to_platform_device(dev);
3371 struct net_device *netdev = platform_get_drvdata(pdev);
3372 struct macb *bp = netdev_priv(netdev);
3373
3374 if (bp->wol & MACB_WOL_ENABLED) {
3375 macb_writel(bp, IDR, MACB_BIT(WOL));
3376 macb_writel(bp, WOL, 0);
3377 disable_irq_wake(bp->queues[0].irq);
3378 } else {
3379 clk_prepare_enable(bp->pclk);
3380 clk_prepare_enable(bp->hclk);
3381 clk_prepare_enable(bp->tx_clk);
3382 clk_prepare_enable(bp->rx_clk);
3383 }
3384
3385 netif_device_attach(netdev);
3386
3387 return 0;
3388 }
3389
3390 static SIMPLE_DEV_PM_OPS(macb_pm_ops, macb_suspend, macb_resume);
3391
3392 static struct platform_driver macb_driver = {
3393 .probe = macb_probe,
3394 .remove = macb_remove,
3395 .driver = {
3396 .name = "macb",
3397 .of_match_table = of_match_ptr(macb_dt_ids),
3398 .pm = &macb_pm_ops,
3399 },
3400 };
3401
3402 module_platform_driver(macb_driver);
3403
3404 MODULE_LICENSE("GPL");
3405 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
3406 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
3407 MODULE_ALIAS("platform:macb");