]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/cavium/liquidio/lio_main.c
liquidio: CN23XX register setup
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/firmware.h>
25 #include <linux/ptp_clock_kernel.h>
26 #include <net/vxlan.h>
27 #include "liquidio_common.h"
28 #include "octeon_droq.h"
29 #include "octeon_iq.h"
30 #include "response_manager.h"
31 #include "octeon_device.h"
32 #include "octeon_nic.h"
33 #include "octeon_main.h"
34 #include "octeon_network.h"
35 #include "cn66xx_regs.h"
36 #include "cn66xx_device.h"
37 #include "cn68xx_device.h"
38 #include "cn23xx_pf_device.h"
39 #include "liquidio_image.h"
40
41 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
42 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
43 MODULE_LICENSE("GPL");
44 MODULE_VERSION(LIQUIDIO_VERSION);
45 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
47 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
48
49 static int ddr_timeout = 10000;
50 module_param(ddr_timeout, int, 0644);
51 MODULE_PARM_DESC(ddr_timeout,
52 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
53
54 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
55
56 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \
57 (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
58
59 static int debug = -1;
60 module_param(debug, int, 0644);
61 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
62
63 static char fw_type[LIO_MAX_FW_TYPE_LEN];
64 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
65 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
66
67 static int conf_type;
68 module_param(conf_type, int, 0);
69 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
70
71 static int ptp_enable = 1;
72
73 /* Bit mask values for lio->ifstate */
74 #define LIO_IFSTATE_DROQ_OPS 0x01
75 #define LIO_IFSTATE_REGISTERED 0x02
76 #define LIO_IFSTATE_RUNNING 0x04
77 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
78
79 /* Polling interval for determining when NIC application is alive */
80 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
81
82 /* runtime link query interval */
83 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
84
85 struct liquidio_if_cfg_context {
86 int octeon_id;
87
88 wait_queue_head_t wc;
89
90 int cond;
91 };
92
93 struct liquidio_if_cfg_resp {
94 u64 rh;
95 struct liquidio_if_cfg_info cfg_info;
96 u64 status;
97 };
98
99 struct oct_link_status_resp {
100 u64 rh;
101 struct oct_link_info link_info;
102 u64 status;
103 };
104
105 struct oct_timestamp_resp {
106 u64 rh;
107 u64 timestamp;
108 u64 status;
109 };
110
111 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
112
113 union tx_info {
114 u64 u64;
115 struct {
116 #ifdef __BIG_ENDIAN_BITFIELD
117 u16 gso_size;
118 u16 gso_segs;
119 u32 reserved;
120 #else
121 u32 reserved;
122 u16 gso_segs;
123 u16 gso_size;
124 #endif
125 } s;
126 };
127
128 /** Octeon device properties to be used by the NIC module.
129 * Each octeon device in the system will be represented
130 * by this structure in the NIC module.
131 */
132
133 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
134
135 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
136 #define OCTNIC_GSO_MAX_SIZE \
137 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
138
139 /** Structure of a node in list of gather components maintained by
140 * NIC driver for each network device.
141 */
142 struct octnic_gather {
143 /** List manipulation. Next and prev pointers. */
144 struct list_head list;
145
146 /** Size of the gather component at sg in bytes. */
147 int sg_size;
148
149 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
150 int adjust;
151
152 /** Gather component that can accommodate max sized fragment list
153 * received from the IP layer.
154 */
155 struct octeon_sg_entry *sg;
156
157 u64 sg_dma_ptr;
158 };
159
160 struct handshake {
161 struct completion init;
162 struct completion started;
163 struct pci_dev *pci_dev;
164 int init_ok;
165 int started_ok;
166 };
167
168 struct octeon_device_priv {
169 /** Tasklet structures for this device. */
170 struct tasklet_struct droq_tasklet;
171 unsigned long napi_mask;
172 };
173
174 static int octeon_device_init(struct octeon_device *);
175 static int liquidio_stop(struct net_device *netdev);
176 static void liquidio_remove(struct pci_dev *pdev);
177 static int liquidio_probe(struct pci_dev *pdev,
178 const struct pci_device_id *ent);
179
180 static struct handshake handshake[MAX_OCTEON_DEVICES];
181 static struct completion first_stage;
182
183 static void octeon_droq_bh(unsigned long pdev)
184 {
185 int q_no;
186 int reschedule = 0;
187 struct octeon_device *oct = (struct octeon_device *)pdev;
188 struct octeon_device_priv *oct_priv =
189 (struct octeon_device_priv *)oct->priv;
190
191 /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
192 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
193 if (!(oct->io_qmask.oq & (1ULL << q_no)))
194 continue;
195 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
196 MAX_PACKET_BUDGET);
197 lio_enable_irq(oct->droq[q_no], NULL);
198 }
199
200 if (reschedule)
201 tasklet_schedule(&oct_priv->droq_tasklet);
202 }
203
204 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
205 {
206 struct octeon_device_priv *oct_priv =
207 (struct octeon_device_priv *)oct->priv;
208 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
209 int i;
210
211 do {
212 pending_pkts = 0;
213
214 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
215 if (!(oct->io_qmask.oq & (1ULL << i)))
216 continue;
217 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
218 }
219 if (pkt_cnt > 0) {
220 pending_pkts += pkt_cnt;
221 tasklet_schedule(&oct_priv->droq_tasklet);
222 }
223 pkt_cnt = 0;
224 schedule_timeout_uninterruptible(1);
225
226 } while (retry-- && pending_pkts);
227
228 return pkt_cnt;
229 }
230
231 /**
232 * \brief Forces all IO queues off on a given device
233 * @param oct Pointer to Octeon device
234 */
235 static void force_io_queues_off(struct octeon_device *oct)
236 {
237 if ((oct->chip_id == OCTEON_CN66XX) ||
238 (oct->chip_id == OCTEON_CN68XX)) {
239 /* Reset the Enable bits for Input Queues. */
240 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
241
242 /* Reset the Enable bits for Output Queues. */
243 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
244 }
245 }
246
247 /**
248 * \brief wait for all pending requests to complete
249 * @param oct Pointer to Octeon device
250 *
251 * Called during shutdown sequence
252 */
253 static int wait_for_pending_requests(struct octeon_device *oct)
254 {
255 int i, pcount = 0;
256
257 for (i = 0; i < 100; i++) {
258 pcount =
259 atomic_read(&oct->response_list
260 [OCTEON_ORDERED_SC_LIST].pending_req_count);
261 if (pcount)
262 schedule_timeout_uninterruptible(HZ / 10);
263 else
264 break;
265 }
266
267 if (pcount)
268 return 1;
269
270 return 0;
271 }
272
273 /**
274 * \brief Cause device to go quiet so it can be safely removed/reset/etc
275 * @param oct Pointer to Octeon device
276 */
277 static inline void pcierror_quiesce_device(struct octeon_device *oct)
278 {
279 int i;
280
281 /* Disable the input and output queues now. No more packets will
282 * arrive from Octeon, but we should wait for all packet processing
283 * to finish.
284 */
285 force_io_queues_off(oct);
286
287 /* To allow for in-flight requests */
288 schedule_timeout_uninterruptible(100);
289
290 if (wait_for_pending_requests(oct))
291 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
292
293 /* Force all requests waiting to be fetched by OCTEON to complete. */
294 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
295 struct octeon_instr_queue *iq;
296
297 if (!(oct->io_qmask.iq & (1ULL << i)))
298 continue;
299 iq = oct->instr_queue[i];
300
301 if (atomic_read(&iq->instr_pending)) {
302 spin_lock_bh(&iq->lock);
303 iq->fill_cnt = 0;
304 iq->octeon_read_index = iq->host_write_index;
305 iq->stats.instr_processed +=
306 atomic_read(&iq->instr_pending);
307 lio_process_iq_request_list(oct, iq, 0);
308 spin_unlock_bh(&iq->lock);
309 }
310 }
311
312 /* Force all pending ordered list requests to time out. */
313 lio_process_ordered_list(oct, 1);
314
315 /* We do not need to wait for output queue packets to be processed. */
316 }
317
318 /**
319 * \brief Cleanup PCI AER uncorrectable error status
320 * @param dev Pointer to PCI device
321 */
322 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
323 {
324 int pos = 0x100;
325 u32 status, mask;
326
327 pr_info("%s :\n", __func__);
328
329 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
330 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
331 if (dev->error_state == pci_channel_io_normal)
332 status &= ~mask; /* Clear corresponding nonfatal bits */
333 else
334 status &= mask; /* Clear corresponding fatal bits */
335 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
336 }
337
338 /**
339 * \brief Stop all PCI IO to a given device
340 * @param dev Pointer to Octeon device
341 */
342 static void stop_pci_io(struct octeon_device *oct)
343 {
344 /* No more instructions will be forwarded. */
345 atomic_set(&oct->status, OCT_DEV_IN_RESET);
346
347 pci_disable_device(oct->pci_dev);
348
349 /* Disable interrupts */
350 oct->fn_list.disable_interrupt(oct->chip);
351
352 pcierror_quiesce_device(oct);
353
354 /* Release the interrupt line */
355 free_irq(oct->pci_dev->irq, oct);
356
357 if (oct->flags & LIO_FLAG_MSI_ENABLED)
358 pci_disable_msi(oct->pci_dev);
359
360 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
361 lio_get_state_string(&oct->status));
362
363 /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
364 /* making it a common function for all OCTEON models */
365 cleanup_aer_uncorrect_error_status(oct->pci_dev);
366 }
367
368 /**
369 * \brief called when PCI error is detected
370 * @param pdev Pointer to PCI device
371 * @param state The current pci connection state
372 *
373 * This function is called after a PCI bus error affecting
374 * this device has been detected.
375 */
376 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
377 pci_channel_state_t state)
378 {
379 struct octeon_device *oct = pci_get_drvdata(pdev);
380
381 /* Non-correctable Non-fatal errors */
382 if (state == pci_channel_io_normal) {
383 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
384 cleanup_aer_uncorrect_error_status(oct->pci_dev);
385 return PCI_ERS_RESULT_CAN_RECOVER;
386 }
387
388 /* Non-correctable Fatal errors */
389 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
390 stop_pci_io(oct);
391
392 /* Always return a DISCONNECT. There is no support for recovery but only
393 * for a clean shutdown.
394 */
395 return PCI_ERS_RESULT_DISCONNECT;
396 }
397
398 /**
399 * \brief mmio handler
400 * @param pdev Pointer to PCI device
401 */
402 static pci_ers_result_t liquidio_pcie_mmio_enabled(
403 struct pci_dev *pdev __attribute__((unused)))
404 {
405 /* We should never hit this since we never ask for a reset for a Fatal
406 * Error. We always return DISCONNECT in io_error above.
407 * But play safe and return RECOVERED for now.
408 */
409 return PCI_ERS_RESULT_RECOVERED;
410 }
411
412 /**
413 * \brief called after the pci bus has been reset.
414 * @param pdev Pointer to PCI device
415 *
416 * Restart the card from scratch, as if from a cold-boot. Implementation
417 * resembles the first-half of the octeon_resume routine.
418 */
419 static pci_ers_result_t liquidio_pcie_slot_reset(
420 struct pci_dev *pdev __attribute__((unused)))
421 {
422 /* We should never hit this since we never ask for a reset for a Fatal
423 * Error. We always return DISCONNECT in io_error above.
424 * But play safe and return RECOVERED for now.
425 */
426 return PCI_ERS_RESULT_RECOVERED;
427 }
428
429 /**
430 * \brief called when traffic can start flowing again.
431 * @param pdev Pointer to PCI device
432 *
433 * This callback is called when the error recovery driver tells us that
434 * its OK to resume normal operation. Implementation resembles the
435 * second-half of the octeon_resume routine.
436 */
437 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
438 {
439 /* Nothing to be done here. */
440 }
441
442 #ifdef CONFIG_PM
443 /**
444 * \brief called when suspending
445 * @param pdev Pointer to PCI device
446 * @param state state to suspend to
447 */
448 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
449 pm_message_t state __attribute__((unused)))
450 {
451 return 0;
452 }
453
454 /**
455 * \brief called when resuming
456 * @param pdev Pointer to PCI device
457 */
458 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
459 {
460 return 0;
461 }
462 #endif
463
464 /* For PCI-E Advanced Error Recovery (AER) Interface */
465 static const struct pci_error_handlers liquidio_err_handler = {
466 .error_detected = liquidio_pcie_error_detected,
467 .mmio_enabled = liquidio_pcie_mmio_enabled,
468 .slot_reset = liquidio_pcie_slot_reset,
469 .resume = liquidio_pcie_resume,
470 };
471
472 static const struct pci_device_id liquidio_pci_tbl[] = {
473 { /* 68xx */
474 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
475 },
476 { /* 66xx */
477 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
478 },
479 { /* 23xx pf */
480 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
481 },
482 {
483 0, 0, 0, 0, 0, 0, 0
484 }
485 };
486 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
487
488 static struct pci_driver liquidio_pci_driver = {
489 .name = "LiquidIO",
490 .id_table = liquidio_pci_tbl,
491 .probe = liquidio_probe,
492 .remove = liquidio_remove,
493 .err_handler = &liquidio_err_handler, /* For AER */
494
495 #ifdef CONFIG_PM
496 .suspend = liquidio_suspend,
497 .resume = liquidio_resume,
498 #endif
499 };
500
501 /**
502 * \brief register PCI driver
503 */
504 static int liquidio_init_pci(void)
505 {
506 return pci_register_driver(&liquidio_pci_driver);
507 }
508
509 /**
510 * \brief unregister PCI driver
511 */
512 static void liquidio_deinit_pci(void)
513 {
514 pci_unregister_driver(&liquidio_pci_driver);
515 }
516
517 /**
518 * \brief check interface state
519 * @param lio per-network private data
520 * @param state_flag flag state to check
521 */
522 static inline int ifstate_check(struct lio *lio, int state_flag)
523 {
524 return atomic_read(&lio->ifstate) & state_flag;
525 }
526
527 /**
528 * \brief set interface state
529 * @param lio per-network private data
530 * @param state_flag flag state to set
531 */
532 static inline void ifstate_set(struct lio *lio, int state_flag)
533 {
534 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
535 }
536
537 /**
538 * \brief clear interface state
539 * @param lio per-network private data
540 * @param state_flag flag state to clear
541 */
542 static inline void ifstate_reset(struct lio *lio, int state_flag)
543 {
544 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
545 }
546
547 /**
548 * \brief Stop Tx queues
549 * @param netdev network device
550 */
551 static inline void txqs_stop(struct net_device *netdev)
552 {
553 if (netif_is_multiqueue(netdev)) {
554 int i;
555
556 for (i = 0; i < netdev->num_tx_queues; i++)
557 netif_stop_subqueue(netdev, i);
558 } else {
559 netif_stop_queue(netdev);
560 }
561 }
562
563 /**
564 * \brief Start Tx queues
565 * @param netdev network device
566 */
567 static inline void txqs_start(struct net_device *netdev)
568 {
569 if (netif_is_multiqueue(netdev)) {
570 int i;
571
572 for (i = 0; i < netdev->num_tx_queues; i++)
573 netif_start_subqueue(netdev, i);
574 } else {
575 netif_start_queue(netdev);
576 }
577 }
578
579 /**
580 * \brief Wake Tx queues
581 * @param netdev network device
582 */
583 static inline void txqs_wake(struct net_device *netdev)
584 {
585 struct lio *lio = GET_LIO(netdev);
586
587 if (netif_is_multiqueue(netdev)) {
588 int i;
589
590 for (i = 0; i < netdev->num_tx_queues; i++) {
591 int qno = lio->linfo.txpciq[i %
592 (lio->linfo.num_txpciq)].s.q_no;
593
594 if (__netif_subqueue_stopped(netdev, i)) {
595 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
596 tx_restart, 1);
597 netif_wake_subqueue(netdev, i);
598 }
599 }
600 } else {
601 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
602 tx_restart, 1);
603 netif_wake_queue(netdev);
604 }
605 }
606
607 /**
608 * \brief Stop Tx queue
609 * @param netdev network device
610 */
611 static void stop_txq(struct net_device *netdev)
612 {
613 txqs_stop(netdev);
614 }
615
616 /**
617 * \brief Start Tx queue
618 * @param netdev network device
619 */
620 static void start_txq(struct net_device *netdev)
621 {
622 struct lio *lio = GET_LIO(netdev);
623
624 if (lio->linfo.link.s.link_up) {
625 txqs_start(netdev);
626 return;
627 }
628 }
629
630 /**
631 * \brief Wake a queue
632 * @param netdev network device
633 * @param q which queue to wake
634 */
635 static inline void wake_q(struct net_device *netdev, int q)
636 {
637 if (netif_is_multiqueue(netdev))
638 netif_wake_subqueue(netdev, q);
639 else
640 netif_wake_queue(netdev);
641 }
642
643 /**
644 * \brief Stop a queue
645 * @param netdev network device
646 * @param q which queue to stop
647 */
648 static inline void stop_q(struct net_device *netdev, int q)
649 {
650 if (netif_is_multiqueue(netdev))
651 netif_stop_subqueue(netdev, q);
652 else
653 netif_stop_queue(netdev);
654 }
655
656 /**
657 * \brief Check Tx queue status, and take appropriate action
658 * @param lio per-network private data
659 * @returns 0 if full, number of queues woken up otherwise
660 */
661 static inline int check_txq_status(struct lio *lio)
662 {
663 int ret_val = 0;
664
665 if (netif_is_multiqueue(lio->netdev)) {
666 int numqs = lio->netdev->num_tx_queues;
667 int q, iq = 0;
668
669 /* check each sub-queue state */
670 for (q = 0; q < numqs; q++) {
671 iq = lio->linfo.txpciq[q %
672 (lio->linfo.num_txpciq)].s.q_no;
673 if (octnet_iq_is_full(lio->oct_dev, iq))
674 continue;
675 if (__netif_subqueue_stopped(lio->netdev, q)) {
676 wake_q(lio->netdev, q);
677 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
678 tx_restart, 1);
679 ret_val++;
680 }
681 }
682 } else {
683 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
684 return 0;
685 wake_q(lio->netdev, lio->txq);
686 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
687 tx_restart, 1);
688 ret_val = 1;
689 }
690 return ret_val;
691 }
692
693 /**
694 * Remove the node at the head of the list. The list would be empty at
695 * the end of this call if there are no more nodes in the list.
696 */
697 static inline struct list_head *list_delete_head(struct list_head *root)
698 {
699 struct list_head *node;
700
701 if ((root->prev == root) && (root->next == root))
702 node = NULL;
703 else
704 node = root->next;
705
706 if (node)
707 list_del(node);
708
709 return node;
710 }
711
712 /**
713 * \brief Delete gather lists
714 * @param lio per-network private data
715 */
716 static void delete_glists(struct lio *lio)
717 {
718 struct octnic_gather *g;
719 int i;
720
721 if (!lio->glist)
722 return;
723
724 for (i = 0; i < lio->linfo.num_txpciq; i++) {
725 do {
726 g = (struct octnic_gather *)
727 list_delete_head(&lio->glist[i]);
728 if (g) {
729 if (g->sg) {
730 dma_unmap_single(&lio->oct_dev->
731 pci_dev->dev,
732 g->sg_dma_ptr,
733 g->sg_size,
734 DMA_TO_DEVICE);
735 kfree((void *)((unsigned long)g->sg -
736 g->adjust));
737 }
738 kfree(g);
739 }
740 } while (g);
741 }
742
743 kfree((void *)lio->glist);
744 }
745
746 /**
747 * \brief Setup gather lists
748 * @param lio per-network private data
749 */
750 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
751 {
752 int i, j;
753 struct octnic_gather *g;
754
755 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
756 GFP_KERNEL);
757 if (!lio->glist_lock)
758 return 1;
759
760 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
761 GFP_KERNEL);
762 if (!lio->glist) {
763 kfree((void *)lio->glist_lock);
764 return 1;
765 }
766
767 for (i = 0; i < num_iqs; i++) {
768 int numa_node = cpu_to_node(i % num_online_cpus());
769
770 spin_lock_init(&lio->glist_lock[i]);
771
772 INIT_LIST_HEAD(&lio->glist[i]);
773
774 for (j = 0; j < lio->tx_qsize; j++) {
775 g = kzalloc_node(sizeof(*g), GFP_KERNEL,
776 numa_node);
777 if (!g)
778 g = kzalloc(sizeof(*g), GFP_KERNEL);
779 if (!g)
780 break;
781
782 g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
783 OCT_SG_ENTRY_SIZE);
784
785 g->sg = kmalloc_node(g->sg_size + 8,
786 GFP_KERNEL, numa_node);
787 if (!g->sg)
788 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
789 if (!g->sg) {
790 kfree(g);
791 break;
792 }
793
794 /* The gather component should be aligned on 64-bit
795 * boundary
796 */
797 if (((unsigned long)g->sg) & 7) {
798 g->adjust = 8 - (((unsigned long)g->sg) & 7);
799 g->sg = (struct octeon_sg_entry *)
800 ((unsigned long)g->sg + g->adjust);
801 }
802 g->sg_dma_ptr = dma_map_single(&oct->pci_dev->dev,
803 g->sg, g->sg_size,
804 DMA_TO_DEVICE);
805 if (dma_mapping_error(&oct->pci_dev->dev,
806 g->sg_dma_ptr)) {
807 kfree((void *)((unsigned long)g->sg -
808 g->adjust));
809 kfree(g);
810 break;
811 }
812
813 list_add_tail(&g->list, &lio->glist[i]);
814 }
815
816 if (j != lio->tx_qsize) {
817 delete_glists(lio);
818 return 1;
819 }
820 }
821
822 return 0;
823 }
824
825 /**
826 * \brief Print link information
827 * @param netdev network device
828 */
829 static void print_link_info(struct net_device *netdev)
830 {
831 struct lio *lio = GET_LIO(netdev);
832
833 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
834 struct oct_link_info *linfo = &lio->linfo;
835
836 if (linfo->link.s.link_up) {
837 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
838 linfo->link.s.speed,
839 (linfo->link.s.duplex) ? "Full" : "Half");
840 } else {
841 netif_info(lio, link, lio->netdev, "Link Down\n");
842 }
843 }
844 }
845
846 /**
847 * \brief Update link status
848 * @param netdev network device
849 * @param ls link status structure
850 *
851 * Called on receipt of a link status response from the core application to
852 * update each interface's link status.
853 */
854 static inline void update_link_status(struct net_device *netdev,
855 union oct_link_status *ls)
856 {
857 struct lio *lio = GET_LIO(netdev);
858 int changed = (lio->linfo.link.u64 != ls->u64);
859
860 lio->linfo.link.u64 = ls->u64;
861
862 if ((lio->intf_open) && (changed)) {
863 print_link_info(netdev);
864 lio->link_changes++;
865
866 if (lio->linfo.link.s.link_up) {
867 netif_carrier_on(netdev);
868 /* start_txq(netdev); */
869 txqs_wake(netdev);
870 } else {
871 netif_carrier_off(netdev);
872 stop_txq(netdev);
873 }
874 }
875 }
876
877 /* Runs in interrupt context. */
878 static void update_txq_status(struct octeon_device *oct, int iq_num)
879 {
880 struct net_device *netdev;
881 struct lio *lio;
882 struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
883
884 /*octeon_update_iq_read_idx(oct, iq);*/
885
886 netdev = oct->props[iq->ifidx].netdev;
887
888 /* This is needed because the first IQ does not have
889 * a netdev associated with it.
890 */
891 if (!netdev)
892 return;
893
894 lio = GET_LIO(netdev);
895 if (netif_is_multiqueue(netdev)) {
896 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
897 lio->linfo.link.s.link_up &&
898 (!octnet_iq_is_full(oct, iq_num))) {
899 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
900 tx_restart, 1);
901 netif_wake_subqueue(netdev, iq->q_index);
902 } else {
903 if (!octnet_iq_is_full(oct, lio->txq)) {
904 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
905 lio->txq,
906 tx_restart, 1);
907 wake_q(netdev, lio->txq);
908 }
909 }
910 }
911 }
912
913 /**
914 * \brief Droq packet processor sceduler
915 * @param oct octeon device
916 */
917 static
918 void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
919 {
920 struct octeon_device_priv *oct_priv =
921 (struct octeon_device_priv *)oct->priv;
922 u64 oq_no;
923 struct octeon_droq *droq;
924
925 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
926 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
927 oq_no++) {
928 if (!(oct->droq_intr & (1ULL << oq_no)))
929 continue;
930
931 droq = oct->droq[oq_no];
932
933 if (droq->ops.poll_mode) {
934 droq->ops.napi_fn(droq);
935 oct_priv->napi_mask |= (1 << oq_no);
936 } else {
937 tasklet_schedule(&oct_priv->droq_tasklet);
938 }
939 }
940 }
941 }
942
943 /**
944 * \brief Interrupt handler for octeon
945 * @param irq unused
946 * @param dev octeon device
947 */
948 static
949 irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
950 {
951 struct octeon_device *oct = (struct octeon_device *)dev;
952 irqreturn_t ret;
953
954 /* Disable our interrupts for the duration of ISR */
955 oct->fn_list.disable_interrupt(oct->chip);
956
957 ret = oct->fn_list.process_interrupt_regs(oct);
958
959 if (ret == IRQ_HANDLED)
960 liquidio_schedule_droq_pkt_handlers(oct);
961
962 /* Re-enable our interrupts */
963 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
964 oct->fn_list.enable_interrupt(oct->chip);
965
966 return ret;
967 }
968
969 /**
970 * \brief Setup interrupt for octeon device
971 * @param oct octeon device
972 *
973 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
974 */
975 static int octeon_setup_interrupt(struct octeon_device *oct)
976 {
977 int irqret, err;
978
979 err = pci_enable_msi(oct->pci_dev);
980 if (err)
981 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
982 err);
983 else
984 oct->flags |= LIO_FLAG_MSI_ENABLED;
985
986 irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
987 IRQF_SHARED, "octeon", oct);
988 if (irqret) {
989 if (oct->flags & LIO_FLAG_MSI_ENABLED)
990 pci_disable_msi(oct->pci_dev);
991 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
992 irqret);
993 return 1;
994 }
995
996 return 0;
997 }
998
999 /**
1000 * \brief PCI probe handler
1001 * @param pdev PCI device structure
1002 * @param ent unused
1003 */
1004 static int
1005 liquidio_probe(struct pci_dev *pdev,
1006 const struct pci_device_id *ent __attribute__((unused)))
1007 {
1008 struct octeon_device *oct_dev = NULL;
1009 struct handshake *hs;
1010
1011 oct_dev = octeon_allocate_device(pdev->device,
1012 sizeof(struct octeon_device_priv));
1013 if (!oct_dev) {
1014 dev_err(&pdev->dev, "Unable to allocate device\n");
1015 return -ENOMEM;
1016 }
1017
1018 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1019 (u32)pdev->vendor, (u32)pdev->device);
1020
1021 /* Assign octeon_device for this device to the private data area. */
1022 pci_set_drvdata(pdev, oct_dev);
1023
1024 /* set linux specific device pointer */
1025 oct_dev->pci_dev = (void *)pdev;
1026
1027 hs = &handshake[oct_dev->octeon_id];
1028 init_completion(&hs->init);
1029 init_completion(&hs->started);
1030 hs->pci_dev = pdev;
1031
1032 if (oct_dev->octeon_id == 0)
1033 /* first LiquidIO NIC is detected */
1034 complete(&first_stage);
1035
1036 if (octeon_device_init(oct_dev)) {
1037 liquidio_remove(pdev);
1038 return -ENOMEM;
1039 }
1040
1041 oct_dev->rx_pause = 1;
1042 oct_dev->tx_pause = 1;
1043
1044 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1045
1046 return 0;
1047 }
1048
1049 /**
1050 *\brief Destroy resources associated with octeon device
1051 * @param pdev PCI device structure
1052 * @param ent unused
1053 */
1054 static void octeon_destroy_resources(struct octeon_device *oct)
1055 {
1056 int i;
1057 struct octeon_device_priv *oct_priv =
1058 (struct octeon_device_priv *)oct->priv;
1059
1060 struct handshake *hs;
1061
1062 switch (atomic_read(&oct->status)) {
1063 case OCT_DEV_RUNNING:
1064 case OCT_DEV_CORE_OK:
1065
1066 /* No more instructions will be forwarded. */
1067 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1068
1069 oct->app_mode = CVM_DRV_INVALID_APP;
1070 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1071 lio_get_state_string(&oct->status));
1072
1073 schedule_timeout_uninterruptible(HZ / 10);
1074
1075 /* fallthrough */
1076 case OCT_DEV_HOST_OK:
1077
1078 /* fallthrough */
1079 case OCT_DEV_CONSOLE_INIT_DONE:
1080 /* Remove any consoles */
1081 octeon_remove_consoles(oct);
1082
1083 /* fallthrough */
1084 case OCT_DEV_IO_QUEUES_DONE:
1085 if (wait_for_pending_requests(oct))
1086 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1087
1088 if (lio_wait_for_instr_fetch(oct))
1089 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1090
1091 /* Disable the input and output queues now. No more packets will
1092 * arrive from Octeon, but we should wait for all packet
1093 * processing to finish.
1094 */
1095 oct->fn_list.disable_io_queues(oct);
1096
1097 if (lio_wait_for_oq_pkts(oct))
1098 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1099
1100 /* Disable interrupts */
1101 oct->fn_list.disable_interrupt(oct->chip);
1102
1103 /* Release the interrupt line */
1104 free_irq(oct->pci_dev->irq, oct);
1105
1106 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1107 pci_disable_msi(oct->pci_dev);
1108
1109 /* fallthrough */
1110 case OCT_DEV_IN_RESET:
1111 case OCT_DEV_DROQ_INIT_DONE:
1112 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1113 mdelay(100);
1114 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1115 if (!(oct->io_qmask.oq & (1ULL << i)))
1116 continue;
1117 octeon_delete_droq(oct, i);
1118 }
1119
1120 /* Force any pending handshakes to complete */
1121 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1122 hs = &handshake[i];
1123
1124 if (hs->pci_dev) {
1125 handshake[oct->octeon_id].init_ok = 0;
1126 complete(&handshake[oct->octeon_id].init);
1127 handshake[oct->octeon_id].started_ok = 0;
1128 complete(&handshake[oct->octeon_id].started);
1129 }
1130 }
1131
1132 /* fallthrough */
1133 case OCT_DEV_RESP_LIST_INIT_DONE:
1134 octeon_delete_response_list(oct);
1135
1136 /* fallthrough */
1137 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1138 octeon_free_sc_buffer_pool(oct);
1139
1140 /* fallthrough */
1141 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1142 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1143 if (!(oct->io_qmask.iq & (1ULL << i)))
1144 continue;
1145 octeon_delete_instr_queue(oct, i);
1146 }
1147
1148 /* fallthrough */
1149 case OCT_DEV_DISPATCH_INIT_DONE:
1150 octeon_delete_dispatch_list(oct);
1151 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1152
1153 /* fallthrough */
1154 case OCT_DEV_PCI_MAP_DONE:
1155
1156 /* Soft reset the octeon device before exiting */
1157 oct->fn_list.soft_reset(oct);
1158
1159 octeon_unmap_pci_barx(oct, 0);
1160 octeon_unmap_pci_barx(oct, 1);
1161
1162 /* fallthrough */
1163 case OCT_DEV_BEGIN_STATE:
1164 /* Disable the device, releasing the PCI INT */
1165 pci_disable_device(oct->pci_dev);
1166
1167 /* Nothing to be done here either */
1168 break;
1169 } /* end switch (oct->status) */
1170
1171 tasklet_kill(&oct_priv->droq_tasklet);
1172 }
1173
1174 /**
1175 * \brief Send Rx control command
1176 * @param lio per-network private data
1177 * @param start_stop whether to start or stop
1178 */
1179 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1180 {
1181 struct octnic_ctrl_pkt nctrl;
1182
1183 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1184
1185 nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1186 nctrl.ncmd.s.param1 = start_stop;
1187 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1188 nctrl.netpndev = (u64)lio->netdev;
1189
1190 if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl) < 0)
1191 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1192 }
1193
1194 /**
1195 * \brief Destroy NIC device interface
1196 * @param oct octeon device
1197 * @param ifidx which interface to destroy
1198 *
1199 * Cleanup associated with each interface for an Octeon device when NIC
1200 * module is being unloaded or if initialization fails during load.
1201 */
1202 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1203 {
1204 struct net_device *netdev = oct->props[ifidx].netdev;
1205 struct lio *lio;
1206 struct napi_struct *napi, *n;
1207
1208 if (!netdev) {
1209 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1210 __func__, ifidx);
1211 return;
1212 }
1213
1214 lio = GET_LIO(netdev);
1215
1216 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1217
1218 send_rx_ctrl_cmd(lio, 0);
1219
1220 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1221 txqs_stop(netdev);
1222
1223 if (oct->props[lio->ifidx].napi_enabled == 1) {
1224 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1225 napi_disable(napi);
1226
1227 oct->props[lio->ifidx].napi_enabled = 0;
1228 }
1229
1230 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1231 unregister_netdev(netdev);
1232
1233 delete_glists(lio);
1234
1235 free_netdev(netdev);
1236
1237 oct->props[ifidx].gmxport = -1;
1238
1239 oct->props[ifidx].netdev = NULL;
1240 }
1241
1242 /**
1243 * \brief Stop complete NIC functionality
1244 * @param oct octeon device
1245 */
1246 static int liquidio_stop_nic_module(struct octeon_device *oct)
1247 {
1248 int i, j;
1249 struct lio *lio;
1250
1251 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1252 if (!oct->ifcount) {
1253 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1254 return 1;
1255 }
1256
1257 spin_lock_bh(&oct->cmd_resp_wqlock);
1258 oct->cmd_resp_state = OCT_DRV_OFFLINE;
1259 spin_unlock_bh(&oct->cmd_resp_wqlock);
1260
1261 for (i = 0; i < oct->ifcount; i++) {
1262 lio = GET_LIO(oct->props[i].netdev);
1263 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1264 octeon_unregister_droq_ops(oct,
1265 lio->linfo.rxpciq[j].s.q_no);
1266 }
1267
1268 for (i = 0; i < oct->ifcount; i++)
1269 liquidio_destroy_nic_device(oct, i);
1270
1271 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1272 return 0;
1273 }
1274
1275 /**
1276 * \brief Cleans up resources at unload time
1277 * @param pdev PCI device structure
1278 */
1279 static void liquidio_remove(struct pci_dev *pdev)
1280 {
1281 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1282
1283 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1284
1285 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1286 liquidio_stop_nic_module(oct_dev);
1287
1288 /* Reset the octeon device and cleanup all memory allocated for
1289 * the octeon device by driver.
1290 */
1291 octeon_destroy_resources(oct_dev);
1292
1293 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1294
1295 /* This octeon device has been removed. Update the global
1296 * data structure to reflect this. Free the device structure.
1297 */
1298 octeon_free_device_mem(oct_dev);
1299 }
1300
1301 /**
1302 * \brief Identify the Octeon device and to map the BAR address space
1303 * @param oct octeon device
1304 */
1305 static int octeon_chip_specific_setup(struct octeon_device *oct)
1306 {
1307 u32 dev_id, rev_id;
1308 int ret = 1;
1309 char *s;
1310
1311 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1312 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1313 oct->rev_id = rev_id & 0xff;
1314
1315 switch (dev_id) {
1316 case OCTEON_CN68XX_PCIID:
1317 oct->chip_id = OCTEON_CN68XX;
1318 ret = lio_setup_cn68xx_octeon_device(oct);
1319 s = "CN68XX";
1320 break;
1321
1322 case OCTEON_CN66XX_PCIID:
1323 oct->chip_id = OCTEON_CN66XX;
1324 ret = lio_setup_cn66xx_octeon_device(oct);
1325 s = "CN66XX";
1326 break;
1327
1328 case OCTEON_CN23XX_PCIID_PF:
1329 oct->chip_id = OCTEON_CN23XX_PF_VID;
1330 ret = setup_cn23xx_octeon_pf_device(oct);
1331 s = "CN23XX";
1332 break;
1333
1334 default:
1335 s = "?";
1336 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1337 dev_id);
1338 }
1339
1340 if (!ret)
1341 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1342 OCTEON_MAJOR_REV(oct),
1343 OCTEON_MINOR_REV(oct),
1344 octeon_get_conf(oct)->card_name,
1345 LIQUIDIO_VERSION);
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * \brief PCI initialization for each Octeon device.
1352 * @param oct octeon device
1353 */
1354 static int octeon_pci_os_setup(struct octeon_device *oct)
1355 {
1356 /* setup PCI stuff first */
1357 if (pci_enable_device(oct->pci_dev)) {
1358 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1359 return 1;
1360 }
1361
1362 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1363 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1364 return 1;
1365 }
1366
1367 /* Enable PCI DMA Master. */
1368 pci_set_master(oct->pci_dev);
1369
1370 return 0;
1371 }
1372
1373 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1374 {
1375 int q = 0;
1376
1377 if (netif_is_multiqueue(lio->netdev))
1378 q = skb->queue_mapping % lio->linfo.num_txpciq;
1379
1380 return q;
1381 }
1382
1383 /**
1384 * \brief Check Tx queue state for a given network buffer
1385 * @param lio per-network private data
1386 * @param skb network buffer
1387 */
1388 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1389 {
1390 int q = 0, iq = 0;
1391
1392 if (netif_is_multiqueue(lio->netdev)) {
1393 q = skb->queue_mapping;
1394 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1395 } else {
1396 iq = lio->txq;
1397 q = iq;
1398 }
1399
1400 if (octnet_iq_is_full(lio->oct_dev, iq))
1401 return 0;
1402
1403 if (__netif_subqueue_stopped(lio->netdev, q)) {
1404 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1405 wake_q(lio->netdev, q);
1406 }
1407 return 1;
1408 }
1409
1410 /**
1411 * \brief Unmap and free network buffer
1412 * @param buf buffer
1413 */
1414 static void free_netbuf(void *buf)
1415 {
1416 struct sk_buff *skb;
1417 struct octnet_buf_free_info *finfo;
1418 struct lio *lio;
1419
1420 finfo = (struct octnet_buf_free_info *)buf;
1421 skb = finfo->skb;
1422 lio = finfo->lio;
1423
1424 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1425 DMA_TO_DEVICE);
1426
1427 check_txq_state(lio, skb);
1428
1429 tx_buffer_free(skb);
1430 }
1431
1432 /**
1433 * \brief Unmap and free gather buffer
1434 * @param buf buffer
1435 */
1436 static void free_netsgbuf(void *buf)
1437 {
1438 struct octnet_buf_free_info *finfo;
1439 struct sk_buff *skb;
1440 struct lio *lio;
1441 struct octnic_gather *g;
1442 int i, frags, iq;
1443
1444 finfo = (struct octnet_buf_free_info *)buf;
1445 skb = finfo->skb;
1446 lio = finfo->lio;
1447 g = finfo->g;
1448 frags = skb_shinfo(skb)->nr_frags;
1449
1450 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1451 g->sg[0].ptr[0], (skb->len - skb->data_len),
1452 DMA_TO_DEVICE);
1453
1454 i = 1;
1455 while (frags--) {
1456 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1457
1458 pci_unmap_page((lio->oct_dev)->pci_dev,
1459 g->sg[(i >> 2)].ptr[(i & 3)],
1460 frag->size, DMA_TO_DEVICE);
1461 i++;
1462 }
1463
1464 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1465 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1466
1467 iq = skb_iq(lio, skb);
1468 spin_lock(&lio->glist_lock[iq]);
1469 list_add_tail(&g->list, &lio->glist[iq]);
1470 spin_unlock(&lio->glist_lock[iq]);
1471
1472 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1473
1474 tx_buffer_free(skb);
1475 }
1476
1477 /**
1478 * \brief Unmap and free gather buffer with response
1479 * @param buf buffer
1480 */
1481 static void free_netsgbuf_with_resp(void *buf)
1482 {
1483 struct octeon_soft_command *sc;
1484 struct octnet_buf_free_info *finfo;
1485 struct sk_buff *skb;
1486 struct lio *lio;
1487 struct octnic_gather *g;
1488 int i, frags, iq;
1489
1490 sc = (struct octeon_soft_command *)buf;
1491 skb = (struct sk_buff *)sc->callback_arg;
1492 finfo = (struct octnet_buf_free_info *)&skb->cb;
1493
1494 lio = finfo->lio;
1495 g = finfo->g;
1496 frags = skb_shinfo(skb)->nr_frags;
1497
1498 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1499 g->sg[0].ptr[0], (skb->len - skb->data_len),
1500 DMA_TO_DEVICE);
1501
1502 i = 1;
1503 while (frags--) {
1504 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1505
1506 pci_unmap_page((lio->oct_dev)->pci_dev,
1507 g->sg[(i >> 2)].ptr[(i & 3)],
1508 frag->size, DMA_TO_DEVICE);
1509 i++;
1510 }
1511
1512 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1513 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1514
1515 iq = skb_iq(lio, skb);
1516
1517 spin_lock(&lio->glist_lock[iq]);
1518 list_add_tail(&g->list, &lio->glist[iq]);
1519 spin_unlock(&lio->glist_lock[iq]);
1520
1521 /* Don't free the skb yet */
1522
1523 check_txq_state(lio, skb);
1524 }
1525
1526 /**
1527 * \brief Adjust ptp frequency
1528 * @param ptp PTP clock info
1529 * @param ppb how much to adjust by, in parts-per-billion
1530 */
1531 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1532 {
1533 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1534 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1535 u64 comp, delta;
1536 unsigned long flags;
1537 bool neg_adj = false;
1538
1539 if (ppb < 0) {
1540 neg_adj = true;
1541 ppb = -ppb;
1542 }
1543
1544 /* The hardware adds the clock compensation value to the
1545 * PTP clock on every coprocessor clock cycle, so we
1546 * compute the delta in terms of coprocessor clocks.
1547 */
1548 delta = (u64)ppb << 32;
1549 do_div(delta, oct->coproc_clock_rate);
1550
1551 spin_lock_irqsave(&lio->ptp_lock, flags);
1552 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1553 if (neg_adj)
1554 comp -= delta;
1555 else
1556 comp += delta;
1557 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1558 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1559
1560 return 0;
1561 }
1562
1563 /**
1564 * \brief Adjust ptp time
1565 * @param ptp PTP clock info
1566 * @param delta how much to adjust by, in nanosecs
1567 */
1568 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1569 {
1570 unsigned long flags;
1571 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1572
1573 spin_lock_irqsave(&lio->ptp_lock, flags);
1574 lio->ptp_adjust += delta;
1575 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1576
1577 return 0;
1578 }
1579
1580 /**
1581 * \brief Get hardware clock time, including any adjustment
1582 * @param ptp PTP clock info
1583 * @param ts timespec
1584 */
1585 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1586 struct timespec64 *ts)
1587 {
1588 u64 ns;
1589 unsigned long flags;
1590 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1591 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1592
1593 spin_lock_irqsave(&lio->ptp_lock, flags);
1594 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1595 ns += lio->ptp_adjust;
1596 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1597
1598 *ts = ns_to_timespec64(ns);
1599
1600 return 0;
1601 }
1602
1603 /**
1604 * \brief Set hardware clock time. Reset adjustment
1605 * @param ptp PTP clock info
1606 * @param ts timespec
1607 */
1608 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1609 const struct timespec64 *ts)
1610 {
1611 u64 ns;
1612 unsigned long flags;
1613 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1614 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1615
1616 ns = timespec_to_ns(ts);
1617
1618 spin_lock_irqsave(&lio->ptp_lock, flags);
1619 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1620 lio->ptp_adjust = 0;
1621 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1622
1623 return 0;
1624 }
1625
1626 /**
1627 * \brief Check if PTP is enabled
1628 * @param ptp PTP clock info
1629 * @param rq request
1630 * @param on is it on
1631 */
1632 static int
1633 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
1634 struct ptp_clock_request *rq __attribute__((unused)),
1635 int on __attribute__((unused)))
1636 {
1637 return -EOPNOTSUPP;
1638 }
1639
1640 /**
1641 * \brief Open PTP clock source
1642 * @param netdev network device
1643 */
1644 static void oct_ptp_open(struct net_device *netdev)
1645 {
1646 struct lio *lio = GET_LIO(netdev);
1647 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1648
1649 spin_lock_init(&lio->ptp_lock);
1650
1651 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1652 lio->ptp_info.owner = THIS_MODULE;
1653 lio->ptp_info.max_adj = 250000000;
1654 lio->ptp_info.n_alarm = 0;
1655 lio->ptp_info.n_ext_ts = 0;
1656 lio->ptp_info.n_per_out = 0;
1657 lio->ptp_info.pps = 0;
1658 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1659 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1660 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1661 lio->ptp_info.settime64 = liquidio_ptp_settime;
1662 lio->ptp_info.enable = liquidio_ptp_enable;
1663
1664 lio->ptp_adjust = 0;
1665
1666 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1667 &oct->pci_dev->dev);
1668
1669 if (IS_ERR(lio->ptp_clock))
1670 lio->ptp_clock = NULL;
1671 }
1672
1673 /**
1674 * \brief Init PTP clock
1675 * @param oct octeon device
1676 */
1677 static void liquidio_ptp_init(struct octeon_device *oct)
1678 {
1679 u64 clock_comp, cfg;
1680
1681 clock_comp = (u64)NSEC_PER_SEC << 32;
1682 do_div(clock_comp, oct->coproc_clock_rate);
1683 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1684
1685 /* Enable */
1686 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1687 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1688 }
1689
1690 /**
1691 * \brief Load firmware to device
1692 * @param oct octeon device
1693 *
1694 * Maps device to firmware filename, requests firmware, and downloads it
1695 */
1696 static int load_firmware(struct octeon_device *oct)
1697 {
1698 int ret = 0;
1699 const struct firmware *fw;
1700 char fw_name[LIO_MAX_FW_FILENAME_LEN];
1701 char *tmp_fw_type;
1702
1703 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1704 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1705 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1706 return ret;
1707 }
1708
1709 if (fw_type[0] == '\0')
1710 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1711 else
1712 tmp_fw_type = fw_type;
1713
1714 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1715 octeon_get_conf(oct)->card_name, tmp_fw_type,
1716 LIO_FW_NAME_SUFFIX);
1717
1718 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1719 if (ret) {
1720 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1721 fw_name);
1722 release_firmware(fw);
1723 return ret;
1724 }
1725
1726 ret = octeon_download_firmware(oct, fw->data, fw->size);
1727
1728 release_firmware(fw);
1729
1730 return ret;
1731 }
1732
1733 /**
1734 * \brief Setup output queue
1735 * @param oct octeon device
1736 * @param q_no which queue
1737 * @param num_descs how many descriptors
1738 * @param desc_size size of each descriptor
1739 * @param app_ctx application context
1740 */
1741 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1742 int desc_size, void *app_ctx)
1743 {
1744 int ret_val = 0;
1745
1746 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1747 /* droq creation and local register settings. */
1748 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1749 if (ret_val < 0)
1750 return ret_val;
1751
1752 if (ret_val == 1) {
1753 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1754 return 0;
1755 }
1756 /* tasklet creation for the droq */
1757
1758 /* Enable the droq queues */
1759 octeon_set_droq_pkt_op(oct, q_no, 1);
1760
1761 /* Send Credit for Octeon Output queues. Credits are always
1762 * sent after the output queue is enabled.
1763 */
1764 writel(oct->droq[q_no]->max_count,
1765 oct->droq[q_no]->pkts_credit_reg);
1766
1767 return ret_val;
1768 }
1769
1770 /**
1771 * \brief Callback for getting interface configuration
1772 * @param status status of request
1773 * @param buf pointer to resp structure
1774 */
1775 static void if_cfg_callback(struct octeon_device *oct,
1776 u32 status __attribute__((unused)),
1777 void *buf)
1778 {
1779 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1780 struct liquidio_if_cfg_resp *resp;
1781 struct liquidio_if_cfg_context *ctx;
1782
1783 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1784 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
1785
1786 oct = lio_get_device(ctx->octeon_id);
1787 if (resp->status)
1788 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1789 CVM_CAST64(resp->status));
1790 WRITE_ONCE(ctx->cond, 1);
1791
1792 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
1793 resp->cfg_info.liquidio_firmware_version);
1794
1795 /* This barrier is required to be sure that the response has been
1796 * written fully before waking up the handler
1797 */
1798 wmb();
1799
1800 wake_up_interruptible(&ctx->wc);
1801 }
1802
1803 /**
1804 * \brief Select queue based on hash
1805 * @param dev Net device
1806 * @param skb sk_buff structure
1807 * @returns selected queue number
1808 */
1809 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1810 void *accel_priv __attribute__((unused)),
1811 select_queue_fallback_t fallback __attribute__((unused)))
1812 {
1813 u32 qindex = 0;
1814 struct lio *lio;
1815
1816 lio = GET_LIO(dev);
1817 qindex = skb_tx_hash(dev, skb);
1818
1819 return (u16)(qindex % (lio->linfo.num_txpciq));
1820 }
1821
1822 /** Routine to push packets arriving on Octeon interface upto network layer.
1823 * @param oct_id - octeon device id.
1824 * @param skbuff - skbuff struct to be passed to network layer.
1825 * @param len - size of total data received.
1826 * @param rh - Control header associated with the packet
1827 * @param param - additional control data with the packet
1828 * @param arg - farg registered in droq_ops
1829 */
1830 static void
1831 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
1832 void *skbuff,
1833 u32 len,
1834 union octeon_rh *rh,
1835 void *param,
1836 void *arg)
1837 {
1838 struct napi_struct *napi = param;
1839 struct sk_buff *skb = (struct sk_buff *)skbuff;
1840 struct skb_shared_hwtstamps *shhwtstamps;
1841 u64 ns;
1842 u16 vtag = 0;
1843 struct net_device *netdev = (struct net_device *)arg;
1844 struct octeon_droq *droq = container_of(param, struct octeon_droq,
1845 napi);
1846 if (netdev) {
1847 int packet_was_received;
1848 struct lio *lio = GET_LIO(netdev);
1849 struct octeon_device *oct = lio->oct_dev;
1850
1851 /* Do not proceed if the interface is not in RUNNING state. */
1852 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1853 recv_buffer_free(skb);
1854 droq->stats.rx_dropped++;
1855 return;
1856 }
1857
1858 skb->dev = netdev;
1859
1860 skb_record_rx_queue(skb, droq->q_no);
1861 if (likely(len > MIN_SKB_SIZE)) {
1862 struct octeon_skb_page_info *pg_info;
1863 unsigned char *va;
1864
1865 pg_info = ((struct octeon_skb_page_info *)(skb->cb));
1866 if (pg_info->page) {
1867 /* For Paged allocation use the frags */
1868 va = page_address(pg_info->page) +
1869 pg_info->page_offset;
1870 memcpy(skb->data, va, MIN_SKB_SIZE);
1871 skb_put(skb, MIN_SKB_SIZE);
1872 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1873 pg_info->page,
1874 pg_info->page_offset +
1875 MIN_SKB_SIZE,
1876 len - MIN_SKB_SIZE,
1877 LIO_RXBUFFER_SZ);
1878 }
1879 } else {
1880 struct octeon_skb_page_info *pg_info =
1881 ((struct octeon_skb_page_info *)(skb->cb));
1882 skb_copy_to_linear_data(skb, page_address(pg_info->page)
1883 + pg_info->page_offset, len);
1884 skb_put(skb, len);
1885 put_page(pg_info->page);
1886 }
1887
1888 if (((oct->chip_id == OCTEON_CN66XX) ||
1889 (oct->chip_id == OCTEON_CN68XX)) &&
1890 ptp_enable) {
1891 if (rh->r_dh.has_hwtstamp) {
1892 /* timestamp is included from the hardware at
1893 * the beginning of the packet.
1894 */
1895 if (ifstate_check
1896 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1897 /* Nanoseconds are in the first 64-bits
1898 * of the packet.
1899 */
1900 memcpy(&ns, (skb->data), sizeof(ns));
1901 shhwtstamps = skb_hwtstamps(skb);
1902 shhwtstamps->hwtstamp =
1903 ns_to_ktime(ns +
1904 lio->ptp_adjust);
1905 }
1906 skb_pull(skb, sizeof(ns));
1907 }
1908 }
1909
1910 skb->protocol = eth_type_trans(skb, skb->dev);
1911 if ((netdev->features & NETIF_F_RXCSUM) &&
1912 (((rh->r_dh.encap_on) &&
1913 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
1914 (!(rh->r_dh.encap_on) &&
1915 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
1916 /* checksum has already been verified */
1917 skb->ip_summed = CHECKSUM_UNNECESSARY;
1918 else
1919 skb->ip_summed = CHECKSUM_NONE;
1920
1921 /* Setting Encapsulation field on basis of status received
1922 * from the firmware
1923 */
1924 if (rh->r_dh.encap_on) {
1925 skb->encapsulation = 1;
1926 skb->csum_level = 1;
1927 droq->stats.rx_vxlan++;
1928 }
1929
1930 /* inbound VLAN tag */
1931 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1932 (rh->r_dh.vlan != 0)) {
1933 u16 vid = rh->r_dh.vlan;
1934 u16 priority = rh->r_dh.priority;
1935
1936 vtag = priority << 13 | vid;
1937 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
1938 }
1939
1940 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
1941
1942 if (packet_was_received) {
1943 droq->stats.rx_bytes_received += len;
1944 droq->stats.rx_pkts_received++;
1945 netdev->last_rx = jiffies;
1946 } else {
1947 droq->stats.rx_dropped++;
1948 netif_info(lio, rx_err, lio->netdev,
1949 "droq:%d error rx_dropped:%llu\n",
1950 droq->q_no, droq->stats.rx_dropped);
1951 }
1952
1953 } else {
1954 recv_buffer_free(skb);
1955 }
1956 }
1957
1958 /**
1959 * \brief wrapper for calling napi_schedule
1960 * @param param parameters to pass to napi_schedule
1961 *
1962 * Used when scheduling on different CPUs
1963 */
1964 static void napi_schedule_wrapper(void *param)
1965 {
1966 struct napi_struct *napi = param;
1967
1968 napi_schedule(napi);
1969 }
1970
1971 /**
1972 * \brief callback when receive interrupt occurs and we are in NAPI mode
1973 * @param arg pointer to octeon output queue
1974 */
1975 static void liquidio_napi_drv_callback(void *arg)
1976 {
1977 struct octeon_droq *droq = arg;
1978 int this_cpu = smp_processor_id();
1979
1980 if (droq->cpu_id == this_cpu) {
1981 napi_schedule(&droq->napi);
1982 } else {
1983 struct call_single_data *csd = &droq->csd;
1984
1985 csd->func = napi_schedule_wrapper;
1986 csd->info = &droq->napi;
1987 csd->flags = 0;
1988
1989 smp_call_function_single_async(droq->cpu_id, csd);
1990 }
1991 }
1992
1993 /**
1994 * \brief Entry point for NAPI polling
1995 * @param napi NAPI structure
1996 * @param budget maximum number of items to process
1997 */
1998 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1999 {
2000 struct octeon_droq *droq;
2001 int work_done;
2002 int tx_done = 0, iq_no;
2003 struct octeon_instr_queue *iq;
2004 struct octeon_device *oct;
2005
2006 droq = container_of(napi, struct octeon_droq, napi);
2007 oct = droq->oct_dev;
2008 iq_no = droq->q_no;
2009 /* Handle Droq descriptors */
2010 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2011 POLL_EVENT_PROCESS_PKTS,
2012 budget);
2013
2014 /* Flush the instruction queue */
2015 iq = oct->instr_queue[iq_no];
2016 if (iq) {
2017 /* Process iq buffers with in the budget limits */
2018 tx_done = octeon_flush_iq(oct, iq, 1, budget);
2019 /* Update iq read-index rather than waiting for next interrupt.
2020 * Return back if tx_done is false.
2021 */
2022 update_txq_status(oct, iq_no);
2023 /*tx_done = (iq->flush_index == iq->octeon_read_index);*/
2024 } else {
2025 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
2026 __func__, iq_no);
2027 }
2028
2029 if ((work_done < budget) && (tx_done)) {
2030 napi_complete(napi);
2031 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2032 POLL_EVENT_ENABLE_INTR, 0);
2033 return 0;
2034 }
2035
2036 return (!tx_done) ? (budget) : (work_done);
2037 }
2038
2039 /**
2040 * \brief Setup input and output queues
2041 * @param octeon_dev octeon device
2042 * @param ifidx Interface Index
2043 *
2044 * Note: Queues are with respect to the octeon device. Thus
2045 * an input queue is for egress packets, and output queues
2046 * are for ingress packets.
2047 */
2048 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2049 int ifidx)
2050 {
2051 struct octeon_droq_ops droq_ops;
2052 struct net_device *netdev;
2053 static int cpu_id;
2054 static int cpu_id_modulus;
2055 struct octeon_droq *droq;
2056 struct napi_struct *napi;
2057 int q, q_no, retval = 0;
2058 struct lio *lio;
2059 int num_tx_descs;
2060
2061 netdev = octeon_dev->props[ifidx].netdev;
2062
2063 lio = GET_LIO(netdev);
2064
2065 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2066
2067 droq_ops.fptr = liquidio_push_packet;
2068 droq_ops.farg = (void *)netdev;
2069
2070 droq_ops.poll_mode = 1;
2071 droq_ops.napi_fn = liquidio_napi_drv_callback;
2072 cpu_id = 0;
2073 cpu_id_modulus = num_present_cpus();
2074
2075 /* set up DROQs. */
2076 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2077 q_no = lio->linfo.rxpciq[q].s.q_no;
2078 dev_dbg(&octeon_dev->pci_dev->dev,
2079 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2080 q, q_no);
2081 retval = octeon_setup_droq(octeon_dev, q_no,
2082 CFG_GET_NUM_RX_DESCS_NIC_IF
2083 (octeon_get_conf(octeon_dev),
2084 lio->ifidx),
2085 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2086 (octeon_get_conf(octeon_dev),
2087 lio->ifidx), NULL);
2088 if (retval) {
2089 dev_err(&octeon_dev->pci_dev->dev,
2090 "%s : Runtime DROQ(RxQ) creation failed.\n",
2091 __func__);
2092 return 1;
2093 }
2094
2095 droq = octeon_dev->droq[q_no];
2096 napi = &droq->napi;
2097 dev_dbg(&octeon_dev->pci_dev->dev,
2098 "netif_napi_add netdev:%llx oct:%llx\n",
2099 (u64)netdev,
2100 (u64)octeon_dev);
2101 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2102
2103 /* designate a CPU for this droq */
2104 droq->cpu_id = cpu_id;
2105 cpu_id++;
2106 if (cpu_id >= cpu_id_modulus)
2107 cpu_id = 0;
2108
2109 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2110 }
2111
2112 /* set up IQs. */
2113 for (q = 0; q < lio->linfo.num_txpciq; q++) {
2114 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2115 (octeon_dev),
2116 lio->ifidx);
2117 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2118 lio->linfo.txpciq[q], num_tx_descs,
2119 netdev_get_tx_queue(netdev, q));
2120 if (retval) {
2121 dev_err(&octeon_dev->pci_dev->dev,
2122 " %s : Runtime IQ(TxQ) creation failed.\n",
2123 __func__);
2124 return 1;
2125 }
2126 }
2127
2128 return 0;
2129 }
2130
2131 /**
2132 * \brief Poll routine for checking transmit queue status
2133 * @param work work_struct data structure
2134 */
2135 static void octnet_poll_check_txq_status(struct work_struct *work)
2136 {
2137 struct cavium_wk *wk = (struct cavium_wk *)work;
2138 struct lio *lio = (struct lio *)wk->ctxptr;
2139
2140 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2141 return;
2142
2143 check_txq_status(lio);
2144 queue_delayed_work(lio->txq_status_wq.wq,
2145 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2146 }
2147
2148 /**
2149 * \brief Sets up the txq poll check
2150 * @param netdev network device
2151 */
2152 static inline void setup_tx_poll_fn(struct net_device *netdev)
2153 {
2154 struct lio *lio = GET_LIO(netdev);
2155 struct octeon_device *oct = lio->oct_dev;
2156
2157 lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2158 WQ_MEM_RECLAIM, 0);
2159 if (!lio->txq_status_wq.wq) {
2160 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2161 return;
2162 }
2163 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2164 octnet_poll_check_txq_status);
2165 lio->txq_status_wq.wk.ctxptr = lio;
2166 queue_delayed_work(lio->txq_status_wq.wq,
2167 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2168 }
2169
2170 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2171 {
2172 struct lio *lio = GET_LIO(netdev);
2173
2174 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2175 destroy_workqueue(lio->txq_status_wq.wq);
2176 }
2177
2178 /**
2179 * \brief Net device open for LiquidIO
2180 * @param netdev network device
2181 */
2182 static int liquidio_open(struct net_device *netdev)
2183 {
2184 struct lio *lio = GET_LIO(netdev);
2185 struct octeon_device *oct = lio->oct_dev;
2186 struct napi_struct *napi, *n;
2187
2188 if (oct->props[lio->ifidx].napi_enabled == 0) {
2189 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2190 napi_enable(napi);
2191
2192 oct->props[lio->ifidx].napi_enabled = 1;
2193 }
2194
2195 oct_ptp_open(netdev);
2196
2197 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2198
2199 setup_tx_poll_fn(netdev);
2200
2201 start_txq(netdev);
2202
2203 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2204
2205 /* tell Octeon to start forwarding packets to host */
2206 send_rx_ctrl_cmd(lio, 1);
2207
2208 /* Ready for link status updates */
2209 lio->intf_open = 1;
2210
2211 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2212 netdev->name);
2213
2214 return 0;
2215 }
2216
2217 /**
2218 * \brief Net device stop for LiquidIO
2219 * @param netdev network device
2220 */
2221 static int liquidio_stop(struct net_device *netdev)
2222 {
2223 struct lio *lio = GET_LIO(netdev);
2224 struct octeon_device *oct = lio->oct_dev;
2225
2226 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2227
2228 netif_tx_disable(netdev);
2229
2230 /* Inform that netif carrier is down */
2231 netif_carrier_off(netdev);
2232 lio->intf_open = 0;
2233 lio->linfo.link.s.link_up = 0;
2234 lio->link_changes++;
2235
2236 /* Pause for a moment and wait for Octeon to flush out (to the wire) any
2237 * egress packets that are in-flight.
2238 */
2239 set_current_state(TASK_INTERRUPTIBLE);
2240 schedule_timeout(msecs_to_jiffies(100));
2241
2242 /* Now it should be safe to tell Octeon that nic interface is down. */
2243 send_rx_ctrl_cmd(lio, 0);
2244
2245 cleanup_tx_poll_fn(netdev);
2246
2247 if (lio->ptp_clock) {
2248 ptp_clock_unregister(lio->ptp_clock);
2249 lio->ptp_clock = NULL;
2250 }
2251
2252 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2253
2254 return 0;
2255 }
2256
2257 /**
2258 * \brief Converts a mask based on net device flags
2259 * @param netdev network device
2260 *
2261 * This routine generates a octnet_ifflags mask from the net device flags
2262 * received from the OS.
2263 */
2264 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2265 {
2266 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2267
2268 if (netdev->flags & IFF_PROMISC)
2269 f |= OCTNET_IFFLAG_PROMISC;
2270
2271 if (netdev->flags & IFF_ALLMULTI)
2272 f |= OCTNET_IFFLAG_ALLMULTI;
2273
2274 if (netdev->flags & IFF_MULTICAST) {
2275 f |= OCTNET_IFFLAG_MULTICAST;
2276
2277 /* Accept all multicast addresses if there are more than we
2278 * can handle
2279 */
2280 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2281 f |= OCTNET_IFFLAG_ALLMULTI;
2282 }
2283
2284 if (netdev->flags & IFF_BROADCAST)
2285 f |= OCTNET_IFFLAG_BROADCAST;
2286
2287 return f;
2288 }
2289
2290 /**
2291 * \brief Net device set_multicast_list
2292 * @param netdev network device
2293 */
2294 static void liquidio_set_mcast_list(struct net_device *netdev)
2295 {
2296 struct lio *lio = GET_LIO(netdev);
2297 struct octeon_device *oct = lio->oct_dev;
2298 struct octnic_ctrl_pkt nctrl;
2299 struct netdev_hw_addr *ha;
2300 u64 *mc;
2301 int ret;
2302 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2303
2304 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2305
2306 /* Create a ctrl pkt command to be sent to core app. */
2307 nctrl.ncmd.u64 = 0;
2308 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2309 nctrl.ncmd.s.param1 = get_new_flags(netdev);
2310 nctrl.ncmd.s.param2 = mc_count;
2311 nctrl.ncmd.s.more = mc_count;
2312 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2313 nctrl.netpndev = (u64)netdev;
2314 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2315
2316 /* copy all the addresses into the udd */
2317 mc = &nctrl.udd[0];
2318 netdev_for_each_mc_addr(ha, netdev) {
2319 *mc = 0;
2320 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2321 /* no need to swap bytes */
2322
2323 if (++mc > &nctrl.udd[mc_count])
2324 break;
2325 }
2326
2327 /* Apparently, any activity in this call from the kernel has to
2328 * be atomic. So we won't wait for response.
2329 */
2330 nctrl.wait_time = 0;
2331
2332 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2333 if (ret < 0) {
2334 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2335 ret);
2336 }
2337 }
2338
2339 /**
2340 * \brief Net device set_mac_address
2341 * @param netdev network device
2342 */
2343 static int liquidio_set_mac(struct net_device *netdev, void *p)
2344 {
2345 int ret = 0;
2346 struct lio *lio = GET_LIO(netdev);
2347 struct octeon_device *oct = lio->oct_dev;
2348 struct sockaddr *addr = (struct sockaddr *)p;
2349 struct octnic_ctrl_pkt nctrl;
2350
2351 if (!is_valid_ether_addr(addr->sa_data))
2352 return -EADDRNOTAVAIL;
2353
2354 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2355
2356 nctrl.ncmd.u64 = 0;
2357 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2358 nctrl.ncmd.s.param1 = 0;
2359 nctrl.ncmd.s.more = 1;
2360 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2361 nctrl.netpndev = (u64)netdev;
2362 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2363 nctrl.wait_time = 100;
2364
2365 nctrl.udd[0] = 0;
2366 /* The MAC Address is presented in network byte order. */
2367 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2368
2369 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2370 if (ret < 0) {
2371 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2372 return -ENOMEM;
2373 }
2374 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2375 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2376
2377 return 0;
2378 }
2379
2380 /**
2381 * \brief Net device get_stats
2382 * @param netdev network device
2383 */
2384 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2385 {
2386 struct lio *lio = GET_LIO(netdev);
2387 struct net_device_stats *stats = &netdev->stats;
2388 struct octeon_device *oct;
2389 u64 pkts = 0, drop = 0, bytes = 0;
2390 struct oct_droq_stats *oq_stats;
2391 struct oct_iq_stats *iq_stats;
2392 int i, iq_no, oq_no;
2393
2394 oct = lio->oct_dev;
2395
2396 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2397 iq_no = lio->linfo.txpciq[i].s.q_no;
2398 iq_stats = &oct->instr_queue[iq_no]->stats;
2399 pkts += iq_stats->tx_done;
2400 drop += iq_stats->tx_dropped;
2401 bytes += iq_stats->tx_tot_bytes;
2402 }
2403
2404 stats->tx_packets = pkts;
2405 stats->tx_bytes = bytes;
2406 stats->tx_dropped = drop;
2407
2408 pkts = 0;
2409 drop = 0;
2410 bytes = 0;
2411
2412 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2413 oq_no = lio->linfo.rxpciq[i].s.q_no;
2414 oq_stats = &oct->droq[oq_no]->stats;
2415 pkts += oq_stats->rx_pkts_received;
2416 drop += (oq_stats->rx_dropped +
2417 oq_stats->dropped_nodispatch +
2418 oq_stats->dropped_toomany +
2419 oq_stats->dropped_nomem);
2420 bytes += oq_stats->rx_bytes_received;
2421 }
2422
2423 stats->rx_bytes = bytes;
2424 stats->rx_packets = pkts;
2425 stats->rx_dropped = drop;
2426
2427 return stats;
2428 }
2429
2430 /**
2431 * \brief Net device change_mtu
2432 * @param netdev network device
2433 */
2434 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2435 {
2436 struct lio *lio = GET_LIO(netdev);
2437 struct octeon_device *oct = lio->oct_dev;
2438 struct octnic_ctrl_pkt nctrl;
2439 int ret = 0;
2440
2441 /* Limit the MTU to make sure the ethernet packets are between 68 bytes
2442 * and 16000 bytes
2443 */
2444 if ((new_mtu < LIO_MIN_MTU_SIZE) ||
2445 (new_mtu > LIO_MAX_MTU_SIZE)) {
2446 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2447 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2448 LIO_MIN_MTU_SIZE, LIO_MAX_MTU_SIZE);
2449 return -EINVAL;
2450 }
2451
2452 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2453
2454 nctrl.ncmd.u64 = 0;
2455 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2456 nctrl.ncmd.s.param1 = new_mtu;
2457 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2458 nctrl.wait_time = 100;
2459 nctrl.netpndev = (u64)netdev;
2460 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2461
2462 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2463 if (ret < 0) {
2464 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2465 return -1;
2466 }
2467
2468 lio->mtu = new_mtu;
2469
2470 return 0;
2471 }
2472
2473 /**
2474 * \brief Handler for SIOCSHWTSTAMP ioctl
2475 * @param netdev network device
2476 * @param ifr interface request
2477 * @param cmd command
2478 */
2479 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2480 {
2481 struct hwtstamp_config conf;
2482 struct lio *lio = GET_LIO(netdev);
2483
2484 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2485 return -EFAULT;
2486
2487 if (conf.flags)
2488 return -EINVAL;
2489
2490 switch (conf.tx_type) {
2491 case HWTSTAMP_TX_ON:
2492 case HWTSTAMP_TX_OFF:
2493 break;
2494 default:
2495 return -ERANGE;
2496 }
2497
2498 switch (conf.rx_filter) {
2499 case HWTSTAMP_FILTER_NONE:
2500 break;
2501 case HWTSTAMP_FILTER_ALL:
2502 case HWTSTAMP_FILTER_SOME:
2503 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2504 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2505 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2506 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2507 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2508 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2509 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2510 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2511 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2512 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2513 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2514 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2515 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2516 break;
2517 default:
2518 return -ERANGE;
2519 }
2520
2521 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2522 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2523
2524 else
2525 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2526
2527 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2528 }
2529
2530 /**
2531 * \brief ioctl handler
2532 * @param netdev network device
2533 * @param ifr interface request
2534 * @param cmd command
2535 */
2536 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2537 {
2538 switch (cmd) {
2539 case SIOCSHWTSTAMP:
2540 return hwtstamp_ioctl(netdev, ifr);
2541 default:
2542 return -EOPNOTSUPP;
2543 }
2544 }
2545
2546 /**
2547 * \brief handle a Tx timestamp response
2548 * @param status response status
2549 * @param buf pointer to skb
2550 */
2551 static void handle_timestamp(struct octeon_device *oct,
2552 u32 status,
2553 void *buf)
2554 {
2555 struct octnet_buf_free_info *finfo;
2556 struct octeon_soft_command *sc;
2557 struct oct_timestamp_resp *resp;
2558 struct lio *lio;
2559 struct sk_buff *skb = (struct sk_buff *)buf;
2560
2561 finfo = (struct octnet_buf_free_info *)skb->cb;
2562 lio = finfo->lio;
2563 sc = finfo->sc;
2564 oct = lio->oct_dev;
2565 resp = (struct oct_timestamp_resp *)sc->virtrptr;
2566
2567 if (status != OCTEON_REQUEST_DONE) {
2568 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2569 CVM_CAST64(status));
2570 resp->timestamp = 0;
2571 }
2572
2573 octeon_swap_8B_data(&resp->timestamp, 1);
2574
2575 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
2576 struct skb_shared_hwtstamps ts;
2577 u64 ns = resp->timestamp;
2578
2579 netif_info(lio, tx_done, lio->netdev,
2580 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2581 skb, (unsigned long long)ns);
2582 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2583 skb_tstamp_tx(skb, &ts);
2584 }
2585
2586 octeon_free_soft_command(oct, sc);
2587 tx_buffer_free(skb);
2588 }
2589
2590 /* \brief Send a data packet that will be timestamped
2591 * @param oct octeon device
2592 * @param ndata pointer to network data
2593 * @param finfo pointer to private network data
2594 */
2595 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2596 struct octnic_data_pkt *ndata,
2597 struct octnet_buf_free_info *finfo)
2598 {
2599 int retval;
2600 struct octeon_soft_command *sc;
2601 struct lio *lio;
2602 int ring_doorbell;
2603 u32 len;
2604
2605 lio = finfo->lio;
2606
2607 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2608 sizeof(struct oct_timestamp_resp));
2609 finfo->sc = sc;
2610
2611 if (!sc) {
2612 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2613 return IQ_SEND_FAILED;
2614 }
2615
2616 if (ndata->reqtype == REQTYPE_NORESP_NET)
2617 ndata->reqtype = REQTYPE_RESP_NET;
2618 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2619 ndata->reqtype = REQTYPE_RESP_NET_SG;
2620
2621 sc->callback = handle_timestamp;
2622 sc->callback_arg = finfo->skb;
2623 sc->iq_no = ndata->q_no;
2624
2625 len = (u32)((struct octeon_instr_ih2 *)(&sc->cmd.cmd2.ih2))->dlengsz;
2626
2627 ring_doorbell = 1;
2628 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2629 sc, len, ndata->reqtype);
2630
2631 if (retval == IQ_SEND_FAILED) {
2632 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2633 retval);
2634 octeon_free_soft_command(oct, sc);
2635 } else {
2636 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2637 }
2638
2639 return retval;
2640 }
2641
2642 /** \brief Transmit networks packets to the Octeon interface
2643 * @param skbuff skbuff struct to be passed to network layer.
2644 * @param netdev pointer to network device
2645 * @returns whether the packet was transmitted to the device okay or not
2646 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
2647 */
2648 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2649 {
2650 struct lio *lio;
2651 struct octnet_buf_free_info *finfo;
2652 union octnic_cmd_setup cmdsetup;
2653 struct octnic_data_pkt ndata;
2654 struct octeon_device *oct;
2655 struct oct_iq_stats *stats;
2656 struct octeon_instr_irh *irh;
2657 union tx_info *tx_info;
2658 int status = 0;
2659 int q_idx = 0, iq_no = 0;
2660 int j;
2661 u64 dptr = 0;
2662 u32 tag = 0;
2663
2664 lio = GET_LIO(netdev);
2665 oct = lio->oct_dev;
2666
2667 if (netif_is_multiqueue(netdev)) {
2668 q_idx = skb->queue_mapping;
2669 q_idx = (q_idx % (lio->linfo.num_txpciq));
2670 tag = q_idx;
2671 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
2672 } else {
2673 iq_no = lio->txq;
2674 }
2675
2676 stats = &oct->instr_queue[iq_no]->stats;
2677
2678 /* Check for all conditions in which the current packet cannot be
2679 * transmitted.
2680 */
2681 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2682 (!lio->linfo.link.s.link_up) ||
2683 (skb->len <= 0)) {
2684 netif_info(lio, tx_err, lio->netdev,
2685 "Transmit failed link_status : %d\n",
2686 lio->linfo.link.s.link_up);
2687 goto lio_xmit_failed;
2688 }
2689
2690 /* Use space in skb->cb to store info used to unmap and
2691 * free the buffers.
2692 */
2693 finfo = (struct octnet_buf_free_info *)skb->cb;
2694 finfo->lio = lio;
2695 finfo->skb = skb;
2696 finfo->sc = NULL;
2697
2698 /* Prepare the attributes for the data to be passed to OSI. */
2699 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2700
2701 ndata.buf = (void *)finfo;
2702
2703 ndata.q_no = iq_no;
2704
2705 if (netif_is_multiqueue(netdev)) {
2706 if (octnet_iq_is_full(oct, ndata.q_no)) {
2707 /* defer sending if queue is full */
2708 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2709 ndata.q_no);
2710 stats->tx_iq_busy++;
2711 return NETDEV_TX_BUSY;
2712 }
2713 } else {
2714 if (octnet_iq_is_full(oct, lio->txq)) {
2715 /* defer sending if queue is full */
2716 stats->tx_iq_busy++;
2717 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2718 lio->txq);
2719 return NETDEV_TX_BUSY;
2720 }
2721 }
2722 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
2723 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
2724 */
2725
2726 ndata.datasize = skb->len;
2727
2728 cmdsetup.u64 = 0;
2729 cmdsetup.s.iq_no = iq_no;
2730
2731 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2732 if (skb->encapsulation) {
2733 cmdsetup.s.tnl_csum = 1;
2734 stats->tx_vxlan++;
2735 } else {
2736 cmdsetup.s.transport_csum = 1;
2737 }
2738 }
2739 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2740 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2741 cmdsetup.s.timestamp = 1;
2742 }
2743
2744 if (skb_shinfo(skb)->nr_frags == 0) {
2745 cmdsetup.s.u.datasize = skb->len;
2746 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2747
2748 /* Offload checksum calculation for TCP/UDP packets */
2749 dptr = dma_map_single(&oct->pci_dev->dev,
2750 skb->data,
2751 skb->len,
2752 DMA_TO_DEVICE);
2753 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2754 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2755 __func__);
2756 return NETDEV_TX_BUSY;
2757 }
2758
2759 ndata.cmd.cmd2.dptr = dptr;
2760 finfo->dptr = dptr;
2761 ndata.reqtype = REQTYPE_NORESP_NET;
2762
2763 } else {
2764 int i, frags;
2765 struct skb_frag_struct *frag;
2766 struct octnic_gather *g;
2767
2768 spin_lock(&lio->glist_lock[q_idx]);
2769 g = (struct octnic_gather *)
2770 list_delete_head(&lio->glist[q_idx]);
2771 spin_unlock(&lio->glist_lock[q_idx]);
2772
2773 if (!g) {
2774 netif_info(lio, tx_err, lio->netdev,
2775 "Transmit scatter gather: glist null!\n");
2776 goto lio_xmit_failed;
2777 }
2778
2779 cmdsetup.s.gather = 1;
2780 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2781 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2782
2783 memset(g->sg, 0, g->sg_size);
2784
2785 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2786 skb->data,
2787 (skb->len - skb->data_len),
2788 DMA_TO_DEVICE);
2789 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2790 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2791 __func__);
2792 return NETDEV_TX_BUSY;
2793 }
2794 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2795
2796 frags = skb_shinfo(skb)->nr_frags;
2797 i = 1;
2798 while (frags--) {
2799 frag = &skb_shinfo(skb)->frags[i - 1];
2800
2801 g->sg[(i >> 2)].ptr[(i & 3)] =
2802 dma_map_page(&oct->pci_dev->dev,
2803 frag->page.p,
2804 frag->page_offset,
2805 frag->size,
2806 DMA_TO_DEVICE);
2807
2808 if (dma_mapping_error(&oct->pci_dev->dev,
2809 g->sg[i >> 2].ptr[i & 3])) {
2810 dma_unmap_single(&oct->pci_dev->dev,
2811 g->sg[0].ptr[0],
2812 skb->len - skb->data_len,
2813 DMA_TO_DEVICE);
2814 for (j = 1; j < i; j++) {
2815 frag = &skb_shinfo(skb)->frags[j - 1];
2816 dma_unmap_page(&oct->pci_dev->dev,
2817 g->sg[j >> 2].ptr[j & 3],
2818 frag->size,
2819 DMA_TO_DEVICE);
2820 }
2821 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2822 __func__);
2823 return NETDEV_TX_BUSY;
2824 }
2825
2826 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2827 i++;
2828 }
2829
2830 dma_sync_single_for_device(&oct->pci_dev->dev, g->sg_dma_ptr,
2831 g->sg_size, DMA_TO_DEVICE);
2832 dptr = g->sg_dma_ptr;
2833
2834 ndata.cmd.cmd2.dptr = dptr;
2835 finfo->dptr = dptr;
2836 finfo->g = g;
2837
2838 ndata.reqtype = REQTYPE_NORESP_NET_SG;
2839 }
2840
2841 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
2842 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
2843
2844 if (skb_shinfo(skb)->gso_size) {
2845 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2846 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2847 stats->tx_gso++;
2848 }
2849
2850 /* HW insert VLAN tag */
2851 if (skb_vlan_tag_present(skb)) {
2852 irh->priority = skb_vlan_tag_get(skb) >> 13;
2853 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
2854 }
2855
2856 if (unlikely(cmdsetup.s.timestamp))
2857 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
2858 else
2859 status = octnet_send_nic_data_pkt(oct, &ndata);
2860 if (status == IQ_SEND_FAILED)
2861 goto lio_xmit_failed;
2862
2863 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2864
2865 if (status == IQ_SEND_STOP)
2866 stop_q(lio->netdev, q_idx);
2867
2868 netif_trans_update(netdev);
2869
2870 if (skb_shinfo(skb)->gso_size)
2871 stats->tx_done += skb_shinfo(skb)->gso_segs;
2872 else
2873 stats->tx_done++;
2874 stats->tx_tot_bytes += skb->len;
2875
2876 return NETDEV_TX_OK;
2877
2878 lio_xmit_failed:
2879 stats->tx_dropped++;
2880 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2881 iq_no, stats->tx_dropped);
2882 if (dptr)
2883 dma_unmap_single(&oct->pci_dev->dev, dptr,
2884 ndata.datasize, DMA_TO_DEVICE);
2885 tx_buffer_free(skb);
2886 return NETDEV_TX_OK;
2887 }
2888
2889 /** \brief Network device Tx timeout
2890 * @param netdev pointer to network device
2891 */
2892 static void liquidio_tx_timeout(struct net_device *netdev)
2893 {
2894 struct lio *lio;
2895
2896 lio = GET_LIO(netdev);
2897
2898 netif_info(lio, tx_err, lio->netdev,
2899 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2900 netdev->stats.tx_dropped);
2901 netif_trans_update(netdev);
2902 txqs_wake(netdev);
2903 }
2904
2905 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
2906 __be16 proto __attribute__((unused)),
2907 u16 vid)
2908 {
2909 struct lio *lio = GET_LIO(netdev);
2910 struct octeon_device *oct = lio->oct_dev;
2911 struct octnic_ctrl_pkt nctrl;
2912 int ret = 0;
2913
2914 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2915
2916 nctrl.ncmd.u64 = 0;
2917 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
2918 nctrl.ncmd.s.param1 = vid;
2919 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2920 nctrl.wait_time = 100;
2921 nctrl.netpndev = (u64)netdev;
2922 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2923
2924 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2925 if (ret < 0) {
2926 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
2927 ret);
2928 }
2929
2930 return ret;
2931 }
2932
2933 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
2934 __be16 proto __attribute__((unused)),
2935 u16 vid)
2936 {
2937 struct lio *lio = GET_LIO(netdev);
2938 struct octeon_device *oct = lio->oct_dev;
2939 struct octnic_ctrl_pkt nctrl;
2940 int ret = 0;
2941
2942 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2943
2944 nctrl.ncmd.u64 = 0;
2945 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
2946 nctrl.ncmd.s.param1 = vid;
2947 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2948 nctrl.wait_time = 100;
2949 nctrl.netpndev = (u64)netdev;
2950 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2951
2952 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2953 if (ret < 0) {
2954 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
2955 ret);
2956 }
2957 return ret;
2958 }
2959
2960 /** Sending command to enable/disable RX checksum offload
2961 * @param netdev pointer to network device
2962 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL
2963 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/
2964 * OCTNET_CMD_RXCSUM_DISABLE
2965 * @returns SUCCESS or FAILURE
2966 */
2967 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
2968 u8 rx_cmd)
2969 {
2970 struct lio *lio = GET_LIO(netdev);
2971 struct octeon_device *oct = lio->oct_dev;
2972 struct octnic_ctrl_pkt nctrl;
2973 int ret = 0;
2974
2975 nctrl.ncmd.u64 = 0;
2976 nctrl.ncmd.s.cmd = command;
2977 nctrl.ncmd.s.param1 = rx_cmd;
2978 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2979 nctrl.wait_time = 100;
2980 nctrl.netpndev = (u64)netdev;
2981 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2982
2983 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2984 if (ret < 0) {
2985 dev_err(&oct->pci_dev->dev,
2986 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
2987 ret);
2988 }
2989 return ret;
2990 }
2991
2992 /** Sending command to add/delete VxLAN UDP port to firmware
2993 * @param netdev pointer to network device
2994 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG
2995 * @param vxlan_port VxLAN port to be added or deleted
2996 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD,
2997 * OCTNET_CMD_VXLAN_PORT_DEL
2998 * @returns SUCCESS or FAILURE
2999 */
3000 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3001 u16 vxlan_port, u8 vxlan_cmd_bit)
3002 {
3003 struct lio *lio = GET_LIO(netdev);
3004 struct octeon_device *oct = lio->oct_dev;
3005 struct octnic_ctrl_pkt nctrl;
3006 int ret = 0;
3007
3008 nctrl.ncmd.u64 = 0;
3009 nctrl.ncmd.s.cmd = command;
3010 nctrl.ncmd.s.more = vxlan_cmd_bit;
3011 nctrl.ncmd.s.param1 = vxlan_port;
3012 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3013 nctrl.wait_time = 100;
3014 nctrl.netpndev = (u64)netdev;
3015 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3016
3017 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3018 if (ret < 0) {
3019 dev_err(&oct->pci_dev->dev,
3020 "VxLAN port add/delete failed in core (ret:0x%x)\n",
3021 ret);
3022 }
3023 return ret;
3024 }
3025
3026 /** \brief Net device fix features
3027 * @param netdev pointer to network device
3028 * @param request features requested
3029 * @returns updated features list
3030 */
3031 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3032 netdev_features_t request)
3033 {
3034 struct lio *lio = netdev_priv(netdev);
3035
3036 if ((request & NETIF_F_RXCSUM) &&
3037 !(lio->dev_capability & NETIF_F_RXCSUM))
3038 request &= ~NETIF_F_RXCSUM;
3039
3040 if ((request & NETIF_F_HW_CSUM) &&
3041 !(lio->dev_capability & NETIF_F_HW_CSUM))
3042 request &= ~NETIF_F_HW_CSUM;
3043
3044 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3045 request &= ~NETIF_F_TSO;
3046
3047 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3048 request &= ~NETIF_F_TSO6;
3049
3050 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3051 request &= ~NETIF_F_LRO;
3052
3053 /*Disable LRO if RXCSUM is off */
3054 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3055 (lio->dev_capability & NETIF_F_LRO))
3056 request &= ~NETIF_F_LRO;
3057
3058 return request;
3059 }
3060
3061 /** \brief Net device set features
3062 * @param netdev pointer to network device
3063 * @param features features to enable/disable
3064 */
3065 static int liquidio_set_features(struct net_device *netdev,
3066 netdev_features_t features)
3067 {
3068 struct lio *lio = netdev_priv(netdev);
3069
3070 if (!((netdev->features ^ features) & NETIF_F_LRO))
3071 return 0;
3072
3073 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3074 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3075 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3076 else if (!(features & NETIF_F_LRO) &&
3077 (lio->dev_capability & NETIF_F_LRO))
3078 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3079 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3080
3081 /* Sending command to firmware to enable/disable RX checksum
3082 * offload settings using ethtool
3083 */
3084 if (!(netdev->features & NETIF_F_RXCSUM) &&
3085 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3086 (features & NETIF_F_RXCSUM))
3087 liquidio_set_rxcsum_command(netdev,
3088 OCTNET_CMD_TNL_RX_CSUM_CTL,
3089 OCTNET_CMD_RXCSUM_ENABLE);
3090 else if ((netdev->features & NETIF_F_RXCSUM) &&
3091 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3092 !(features & NETIF_F_RXCSUM))
3093 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3094 OCTNET_CMD_RXCSUM_DISABLE);
3095
3096 return 0;
3097 }
3098
3099 static void liquidio_add_vxlan_port(struct net_device *netdev,
3100 struct udp_tunnel_info *ti)
3101 {
3102 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3103 return;
3104
3105 liquidio_vxlan_port_command(netdev,
3106 OCTNET_CMD_VXLAN_PORT_CONFIG,
3107 htons(ti->port),
3108 OCTNET_CMD_VXLAN_PORT_ADD);
3109 }
3110
3111 static void liquidio_del_vxlan_port(struct net_device *netdev,
3112 struct udp_tunnel_info *ti)
3113 {
3114 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3115 return;
3116
3117 liquidio_vxlan_port_command(netdev,
3118 OCTNET_CMD_VXLAN_PORT_CONFIG,
3119 htons(ti->port),
3120 OCTNET_CMD_VXLAN_PORT_DEL);
3121 }
3122
3123 static struct net_device_ops lionetdevops = {
3124 .ndo_open = liquidio_open,
3125 .ndo_stop = liquidio_stop,
3126 .ndo_start_xmit = liquidio_xmit,
3127 .ndo_get_stats = liquidio_get_stats,
3128 .ndo_set_mac_address = liquidio_set_mac,
3129 .ndo_set_rx_mode = liquidio_set_mcast_list,
3130 .ndo_tx_timeout = liquidio_tx_timeout,
3131
3132 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid,
3133 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid,
3134 .ndo_change_mtu = liquidio_change_mtu,
3135 .ndo_do_ioctl = liquidio_ioctl,
3136 .ndo_fix_features = liquidio_fix_features,
3137 .ndo_set_features = liquidio_set_features,
3138 .ndo_udp_tunnel_add = liquidio_add_vxlan_port,
3139 .ndo_udp_tunnel_del = liquidio_del_vxlan_port,
3140 };
3141
3142 /** \brief Entry point for the liquidio module
3143 */
3144 static int __init liquidio_init(void)
3145 {
3146 int i;
3147 struct handshake *hs;
3148
3149 init_completion(&first_stage);
3150
3151 octeon_init_device_list(conf_type);
3152
3153 if (liquidio_init_pci())
3154 return -EINVAL;
3155
3156 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3157
3158 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3159 hs = &handshake[i];
3160 if (hs->pci_dev) {
3161 wait_for_completion(&hs->init);
3162 if (!hs->init_ok) {
3163 /* init handshake failed */
3164 dev_err(&hs->pci_dev->dev,
3165 "Failed to init device\n");
3166 liquidio_deinit_pci();
3167 return -EIO;
3168 }
3169 }
3170 }
3171
3172 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3173 hs = &handshake[i];
3174 if (hs->pci_dev) {
3175 wait_for_completion_timeout(&hs->started,
3176 msecs_to_jiffies(30000));
3177 if (!hs->started_ok) {
3178 /* starter handshake failed */
3179 dev_err(&hs->pci_dev->dev,
3180 "Firmware failed to start\n");
3181 liquidio_deinit_pci();
3182 return -EIO;
3183 }
3184 }
3185 }
3186
3187 return 0;
3188 }
3189
3190 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3191 {
3192 struct octeon_device *oct = (struct octeon_device *)buf;
3193 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3194 int gmxport = 0;
3195 union oct_link_status *ls;
3196 int i;
3197
3198 if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3199 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3200 recv_pkt->buffer_size[0],
3201 recv_pkt->rh.r_nic_info.gmxport);
3202 goto nic_info_err;
3203 }
3204
3205 gmxport = recv_pkt->rh.r_nic_info.gmxport;
3206 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3207
3208 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3209 for (i = 0; i < oct->ifcount; i++) {
3210 if (oct->props[i].gmxport == gmxport) {
3211 update_link_status(oct->props[i].netdev, ls);
3212 break;
3213 }
3214 }
3215
3216 nic_info_err:
3217 for (i = 0; i < recv_pkt->buffer_count; i++)
3218 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3219 octeon_free_recv_info(recv_info);
3220 return 0;
3221 }
3222
3223 /**
3224 * \brief Setup network interfaces
3225 * @param octeon_dev octeon device
3226 *
3227 * Called during init time for each device. It assumes the NIC
3228 * is already up and running. The link information for each
3229 * interface is passed in link_info.
3230 */
3231 static int setup_nic_devices(struct octeon_device *octeon_dev)
3232 {
3233 struct lio *lio = NULL;
3234 struct net_device *netdev;
3235 u8 mac[6], i, j;
3236 struct octeon_soft_command *sc;
3237 struct liquidio_if_cfg_context *ctx;
3238 struct liquidio_if_cfg_resp *resp;
3239 struct octdev_props *props;
3240 int retval, num_iqueues, num_oqueues;
3241 union oct_nic_if_cfg if_cfg;
3242 unsigned int base_queue;
3243 unsigned int gmx_port_id;
3244 u32 resp_size, ctx_size, data_size;
3245 u32 ifidx_or_pfnum;
3246 struct lio_version *vdata;
3247
3248 /* This is to handle link status changes */
3249 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3250 OPCODE_NIC_INFO,
3251 lio_nic_info, octeon_dev);
3252
3253 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3254 * They are handled directly.
3255 */
3256 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3257 free_netbuf);
3258
3259 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3260 free_netsgbuf);
3261
3262 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3263 free_netsgbuf_with_resp);
3264
3265 for (i = 0; i < octeon_dev->ifcount; i++) {
3266 resp_size = sizeof(struct liquidio_if_cfg_resp);
3267 ctx_size = sizeof(struct liquidio_if_cfg_context);
3268 data_size = sizeof(struct lio_version);
3269 sc = (struct octeon_soft_command *)
3270 octeon_alloc_soft_command(octeon_dev, data_size,
3271 resp_size, ctx_size);
3272 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3273 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3274 vdata = (struct lio_version *)sc->virtdptr;
3275
3276 *((u64 *)vdata) = 0;
3277 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3278 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3279 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3280
3281 if (OCTEON_CN23XX_PF(octeon_dev)) {
3282 num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3283 num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3284 base_queue = octeon_dev->sriov_info.pf_srn;
3285
3286 gmx_port_id = octeon_dev->pf_num;
3287 ifidx_or_pfnum = octeon_dev->pf_num;
3288 } else {
3289 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3290 octeon_get_conf(octeon_dev), i);
3291 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3292 octeon_get_conf(octeon_dev), i);
3293 base_queue = CFG_GET_BASE_QUE_NIC_IF(
3294 octeon_get_conf(octeon_dev), i);
3295 gmx_port_id = CFG_GET_GMXID_NIC_IF(
3296 octeon_get_conf(octeon_dev), i);
3297 ifidx_or_pfnum = i;
3298 }
3299
3300 dev_dbg(&octeon_dev->pci_dev->dev,
3301 "requesting config for interface %d, iqs %d, oqs %d\n",
3302 ifidx_or_pfnum, num_iqueues, num_oqueues);
3303 WRITE_ONCE(ctx->cond, 0);
3304 ctx->octeon_id = lio_get_device_id(octeon_dev);
3305 init_waitqueue_head(&ctx->wc);
3306
3307 if_cfg.u64 = 0;
3308 if_cfg.s.num_iqueues = num_iqueues;
3309 if_cfg.s.num_oqueues = num_oqueues;
3310 if_cfg.s.base_queue = base_queue;
3311 if_cfg.s.gmx_port_id = gmx_port_id;
3312
3313 sc->iq_no = 0;
3314
3315 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3316 OPCODE_NIC_IF_CFG, 0,
3317 if_cfg.u64, 0);
3318
3319 sc->callback = if_cfg_callback;
3320 sc->callback_arg = sc;
3321 sc->wait_time = 3000;
3322
3323 retval = octeon_send_soft_command(octeon_dev, sc);
3324 if (retval == IQ_SEND_FAILED) {
3325 dev_err(&octeon_dev->pci_dev->dev,
3326 "iq/oq config failed status: %x\n",
3327 retval);
3328 /* Soft instr is freed by driver in case of failure. */
3329 goto setup_nic_dev_fail;
3330 }
3331
3332 /* Sleep on a wait queue till the cond flag indicates that the
3333 * response arrived or timed-out.
3334 */
3335 sleep_cond(&ctx->wc, &ctx->cond);
3336 retval = resp->status;
3337 if (retval) {
3338 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3339 goto setup_nic_dev_fail;
3340 }
3341
3342 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3343 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3344
3345 num_iqueues = hweight64(resp->cfg_info.iqmask);
3346 num_oqueues = hweight64(resp->cfg_info.oqmask);
3347
3348 if (!(num_iqueues) || !(num_oqueues)) {
3349 dev_err(&octeon_dev->pci_dev->dev,
3350 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3351 resp->cfg_info.iqmask,
3352 resp->cfg_info.oqmask);
3353 goto setup_nic_dev_fail;
3354 }
3355 dev_dbg(&octeon_dev->pci_dev->dev,
3356 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3357 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3358 num_iqueues, num_oqueues);
3359 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3360
3361 if (!netdev) {
3362 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3363 goto setup_nic_dev_fail;
3364 }
3365
3366 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3367
3368 if (num_iqueues > 1)
3369 lionetdevops.ndo_select_queue = select_q;
3370
3371 /* Associate the routines that will handle different
3372 * netdev tasks.
3373 */
3374 netdev->netdev_ops = &lionetdevops;
3375
3376 lio = GET_LIO(netdev);
3377
3378 memset(lio, 0, sizeof(struct lio));
3379
3380 lio->ifidx = ifidx_or_pfnum;
3381
3382 props = &octeon_dev->props[i];
3383 props->gmxport = resp->cfg_info.linfo.gmxport;
3384 props->netdev = netdev;
3385
3386 lio->linfo.num_rxpciq = num_oqueues;
3387 lio->linfo.num_txpciq = num_iqueues;
3388 for (j = 0; j < num_oqueues; j++) {
3389 lio->linfo.rxpciq[j].u64 =
3390 resp->cfg_info.linfo.rxpciq[j].u64;
3391 }
3392 for (j = 0; j < num_iqueues; j++) {
3393 lio->linfo.txpciq[j].u64 =
3394 resp->cfg_info.linfo.txpciq[j].u64;
3395 }
3396 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3397 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3398 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3399
3400 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3401
3402 if (OCTEON_CN23XX_PF(octeon_dev) ||
3403 OCTEON_CN6XXX(octeon_dev)) {
3404 lio->dev_capability = NETIF_F_HIGHDMA
3405 | NETIF_F_IP_CSUM
3406 | NETIF_F_IPV6_CSUM
3407 | NETIF_F_SG | NETIF_F_RXCSUM
3408 | NETIF_F_GRO
3409 | NETIF_F_TSO | NETIF_F_TSO6
3410 | NETIF_F_LRO;
3411 }
3412 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3413
3414 /* Copy of transmit encapsulation capabilities:
3415 * TSO, TSO6, Checksums for this device
3416 */
3417 lio->enc_dev_capability = NETIF_F_IP_CSUM
3418 | NETIF_F_IPV6_CSUM
3419 | NETIF_F_GSO_UDP_TUNNEL
3420 | NETIF_F_HW_CSUM | NETIF_F_SG
3421 | NETIF_F_RXCSUM
3422 | NETIF_F_TSO | NETIF_F_TSO6
3423 | NETIF_F_LRO;
3424
3425 netdev->hw_enc_features = (lio->enc_dev_capability &
3426 ~NETIF_F_LRO);
3427
3428 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
3429
3430 netdev->vlan_features = lio->dev_capability;
3431 /* Add any unchangeable hw features */
3432 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
3433 NETIF_F_HW_VLAN_CTAG_RX |
3434 NETIF_F_HW_VLAN_CTAG_TX;
3435
3436 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
3437
3438 netdev->hw_features = lio->dev_capability;
3439 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
3440 netdev->hw_features = netdev->hw_features &
3441 ~NETIF_F_HW_VLAN_CTAG_RX;
3442
3443 /* Point to the properties for octeon device to which this
3444 * interface belongs.
3445 */
3446 lio->oct_dev = octeon_dev;
3447 lio->octprops = props;
3448 lio->netdev = netdev;
3449
3450 dev_dbg(&octeon_dev->pci_dev->dev,
3451 "if%d gmx: %d hw_addr: 0x%llx\n", i,
3452 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3453
3454 /* 64-bit swap required on LE machines */
3455 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3456 for (j = 0; j < 6; j++)
3457 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3458
3459 /* Copy MAC Address to OS network device structure */
3460
3461 ether_addr_copy(netdev->dev_addr, mac);
3462
3463 /* By default all interfaces on a single Octeon uses the same
3464 * tx and rx queues
3465 */
3466 lio->txq = lio->linfo.txpciq[0].s.q_no;
3467 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
3468 if (setup_io_queues(octeon_dev, i)) {
3469 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3470 goto setup_nic_dev_fail;
3471 }
3472
3473 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3474
3475 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3476 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3477
3478 if (setup_glists(octeon_dev, lio, num_iqueues)) {
3479 dev_err(&octeon_dev->pci_dev->dev,
3480 "Gather list allocation failed\n");
3481 goto setup_nic_dev_fail;
3482 }
3483
3484 /* Register ethtool support */
3485 liquidio_set_ethtool_ops(netdev);
3486 octeon_dev->priv_flags = 0x0;
3487
3488 if (netdev->features & NETIF_F_LRO)
3489 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3490 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3491
3492 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
3493
3494 if ((debug != -1) && (debug & NETIF_MSG_HW))
3495 liquidio_set_feature(netdev,
3496 OCTNET_CMD_VERBOSE_ENABLE, 0);
3497
3498 /* Register the network device with the OS */
3499 if (register_netdev(netdev)) {
3500 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3501 goto setup_nic_dev_fail;
3502 }
3503
3504 dev_dbg(&octeon_dev->pci_dev->dev,
3505 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3506 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3507 netif_carrier_off(netdev);
3508 lio->link_changes++;
3509
3510 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3511
3512 /* Sending command to firmware to enable Rx checksum offload
3513 * by default at the time of setup of Liquidio driver for
3514 * this device
3515 */
3516 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3517 OCTNET_CMD_RXCSUM_ENABLE);
3518 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3519 OCTNET_CMD_TXCSUM_ENABLE);
3520
3521 dev_dbg(&octeon_dev->pci_dev->dev,
3522 "NIC ifidx:%d Setup successful\n", i);
3523
3524 octeon_free_soft_command(octeon_dev, sc);
3525 }
3526
3527 return 0;
3528
3529 setup_nic_dev_fail:
3530
3531 octeon_free_soft_command(octeon_dev, sc);
3532
3533 while (i--) {
3534 dev_err(&octeon_dev->pci_dev->dev,
3535 "NIC ifidx:%d Setup failed\n", i);
3536 liquidio_destroy_nic_device(octeon_dev, i);
3537 }
3538 return -ENODEV;
3539 }
3540
3541 /**
3542 * \brief initialize the NIC
3543 * @param oct octeon device
3544 *
3545 * This initialization routine is called once the Octeon device application is
3546 * up and running
3547 */
3548 static int liquidio_init_nic_module(struct octeon_device *oct)
3549 {
3550 struct oct_intrmod_cfg *intrmod_cfg;
3551 int i, retval = 0;
3552 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3553
3554 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3555
3556 /* only default iq and oq were initialized
3557 * initialize the rest as well
3558 */
3559 /* run port_config command for each port */
3560 oct->ifcount = num_nic_ports;
3561
3562 memset(oct->props, 0,
3563 sizeof(struct octdev_props) * num_nic_ports);
3564
3565 for (i = 0; i < MAX_OCTEON_LINKS; i++)
3566 oct->props[i].gmxport = -1;
3567
3568 retval = setup_nic_devices(oct);
3569 if (retval) {
3570 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3571 goto octnet_init_failure;
3572 }
3573
3574 liquidio_ptp_init(oct);
3575
3576 /* Initialize interrupt moderation params */
3577 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3578 intrmod_cfg->rx_enable = 1;
3579 intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3580 intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3581 intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3582 intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
3583 intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
3584 intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
3585 intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
3586 intrmod_cfg->tx_enable = 1;
3587 intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
3588 intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
3589 intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
3590 intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
3591 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3592
3593 return retval;
3594
3595 octnet_init_failure:
3596
3597 oct->ifcount = 0;
3598
3599 return retval;
3600 }
3601
3602 /**
3603 * \brief starter callback that invokes the remaining initialization work after
3604 * the NIC is up and running.
3605 * @param octptr work struct work_struct
3606 */
3607 static void nic_starter(struct work_struct *work)
3608 {
3609 struct octeon_device *oct;
3610 struct cavium_wk *wk = (struct cavium_wk *)work;
3611
3612 oct = (struct octeon_device *)wk->ctxptr;
3613
3614 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3615 return;
3616
3617 /* If the status of the device is CORE_OK, the core
3618 * application has reported its application type. Call
3619 * any registered handlers now and move to the RUNNING
3620 * state.
3621 */
3622 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3623 schedule_delayed_work(&oct->nic_poll_work.work,
3624 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3625 return;
3626 }
3627
3628 atomic_set(&oct->status, OCT_DEV_RUNNING);
3629
3630 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3631 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3632
3633 if (liquidio_init_nic_module(oct))
3634 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3635 else
3636 handshake[oct->octeon_id].started_ok = 1;
3637 } else {
3638 dev_err(&oct->pci_dev->dev,
3639 "Unexpected application running on NIC (%d). Check firmware.\n",
3640 oct->app_mode);
3641 }
3642
3643 complete(&handshake[oct->octeon_id].started);
3644 }
3645
3646 /**
3647 * \brief Device initialization for each Octeon device that is probed
3648 * @param octeon_dev octeon device
3649 */
3650 static int octeon_device_init(struct octeon_device *octeon_dev)
3651 {
3652 int j, ret;
3653 char bootcmd[] = "\n";
3654 struct octeon_device_priv *oct_priv =
3655 (struct octeon_device_priv *)octeon_dev->priv;
3656 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3657
3658 /* Enable access to the octeon device and make its DMA capability
3659 * known to the OS.
3660 */
3661 if (octeon_pci_os_setup(octeon_dev))
3662 return 1;
3663
3664 /* Identify the Octeon type and map the BAR address space. */
3665 if (octeon_chip_specific_setup(octeon_dev)) {
3666 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3667 return 1;
3668 }
3669
3670 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3671
3672 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3673
3674 /* Do a soft reset of the Octeon device. */
3675 if (octeon_dev->fn_list.soft_reset(octeon_dev))
3676 return 1;
3677
3678 /* Initialize the dispatch mechanism used to push packets arriving on
3679 * Octeon Output queues.
3680 */
3681 if (octeon_init_dispatch_list(octeon_dev))
3682 return 1;
3683
3684 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3685 OPCODE_NIC_CORE_DRV_ACTIVE,
3686 octeon_core_drv_init,
3687 octeon_dev);
3688
3689 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3690 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3691 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3692 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3693
3694 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3695
3696 octeon_set_io_queues_off(octeon_dev);
3697
3698 if (OCTEON_CN23XX_PF(octeon_dev)) {
3699 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3700 if (ret) {
3701 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
3702 return ret;
3703 }
3704 }
3705
3706 /* Initialize soft command buffer pool
3707 */
3708 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3709 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3710 return 1;
3711 }
3712 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3713
3714 /* Setup the data structures that manage this Octeon's Input queues. */
3715 if (octeon_setup_instr_queues(octeon_dev)) {
3716 dev_err(&octeon_dev->pci_dev->dev,
3717 "instruction queue initialization failed\n");
3718 /* On error, release any previously allocated queues */
3719 for (j = 0; j < octeon_dev->num_iqs; j++)
3720 octeon_delete_instr_queue(octeon_dev, j);
3721 return 1;
3722 }
3723 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3724
3725 /* Initialize lists to manage the requests of different types that
3726 * arrive from user & kernel applications for this octeon device.
3727 */
3728 if (octeon_setup_response_list(octeon_dev)) {
3729 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3730 return 1;
3731 }
3732 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3733
3734 if (octeon_setup_output_queues(octeon_dev)) {
3735 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3736 /* Release any previously allocated queues */
3737 for (j = 0; j < octeon_dev->num_oqs; j++)
3738 octeon_delete_droq(octeon_dev, j);
3739 return 1;
3740 }
3741
3742 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3743
3744 /* The input and output queue registers were setup earlier (the queues
3745 * were not enabled). Any additional registers that need to be
3746 * programmed should be done now.
3747 */
3748 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3749 if (ret) {
3750 dev_err(&octeon_dev->pci_dev->dev,
3751 "Failed to configure device registers\n");
3752 return ret;
3753 }
3754
3755 /* Initialize the tasklet that handles output queue packet processing.*/
3756 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3757 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3758 (unsigned long)octeon_dev);
3759
3760 /* Setup the interrupt handler and record the INT SUM register address
3761 */
3762 if (octeon_setup_interrupt(octeon_dev))
3763 return 1;
3764
3765 /* Enable Octeon device interrupts */
3766 octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3767
3768 /* Enable the input and output queues for this Octeon device */
3769 octeon_dev->fn_list.enable_io_queues(octeon_dev);
3770
3771 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3772
3773 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3774
3775 if (ddr_timeout == 0)
3776 dev_info(&octeon_dev->pci_dev->dev, "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3777
3778 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
3779
3780 /* Wait for the octeon to initialize DDR after the soft-reset. */
3781 while (ddr_timeout == 0) {
3782 set_current_state(TASK_INTERRUPTIBLE);
3783 if (schedule_timeout(HZ / 10)) {
3784 /* user probably pressed Control-C */
3785 return 1;
3786 }
3787 }
3788 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
3789 if (ret) {
3790 dev_err(&octeon_dev->pci_dev->dev,
3791 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
3792 ret);
3793 return 1;
3794 }
3795
3796 if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
3797 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
3798 return 1;
3799 }
3800
3801 /* Divert uboot to take commands from host instead. */
3802 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
3803
3804 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
3805 ret = octeon_init_consoles(octeon_dev);
3806 if (ret) {
3807 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
3808 return 1;
3809 }
3810 ret = octeon_add_console(octeon_dev, 0);
3811 if (ret) {
3812 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
3813 return 1;
3814 }
3815
3816 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
3817
3818 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
3819 ret = load_firmware(octeon_dev);
3820 if (ret) {
3821 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
3822 return 1;
3823 }
3824
3825 handshake[octeon_dev->octeon_id].init_ok = 1;
3826 complete(&handshake[octeon_dev->octeon_id].init);
3827
3828 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
3829
3830 /* Send Credit for Octeon Output queues. Credits are always sent after
3831 * the output queue is enabled.
3832 */
3833 for (j = 0; j < octeon_dev->num_oqs; j++)
3834 writel(octeon_dev->droq[j]->max_count,
3835 octeon_dev->droq[j]->pkts_credit_reg);
3836
3837 /* Packets can start arriving on the output queues from this point. */
3838
3839 return 0;
3840 }
3841
3842 /**
3843 * \brief Exits the module
3844 */
3845 static void __exit liquidio_exit(void)
3846 {
3847 liquidio_deinit_pci();
3848
3849 pr_info("LiquidIO network module is now unloaded\n");
3850 }
3851
3852 module_init(liquidio_init);
3853 module_exit(liquidio_exit);