]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/cavium/liquidio/lio_main.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more details.
17 ***********************************************************************/
18 #include <linux/module.h>
19 #include <linux/pci.h>
20 #include <linux/firmware.h>
21 #include <net/vxlan.h>
22 #include <linux/kthread.h>
23 #include "liquidio_common.h"
24 #include "octeon_droq.h"
25 #include "octeon_iq.h"
26 #include "response_manager.h"
27 #include "octeon_device.h"
28 #include "octeon_nic.h"
29 #include "octeon_main.h"
30 #include "octeon_network.h"
31 #include "cn66xx_regs.h"
32 #include "cn66xx_device.h"
33 #include "cn68xx_device.h"
34 #include "cn23xx_pf_device.h"
35 #include "liquidio_image.h"
36
37 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
38 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
39 MODULE_LICENSE("GPL");
40 MODULE_VERSION(LIQUIDIO_VERSION);
41 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX);
45
46 static int ddr_timeout = 10000;
47 module_param(ddr_timeout, int, 0644);
48 MODULE_PARM_DESC(ddr_timeout,
49 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
50
51 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
52
53 static int debug = -1;
54 module_param(debug, int, 0644);
55 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
56
57 static char fw_type[LIO_MAX_FW_TYPE_LEN];
58 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
59 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
60
61 static int ptp_enable = 1;
62
63 /* Bit mask values for lio->ifstate */
64 #define LIO_IFSTATE_DROQ_OPS 0x01
65 #define LIO_IFSTATE_REGISTERED 0x02
66 #define LIO_IFSTATE_RUNNING 0x04
67 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
68
69 /* Polling interval for determining when NIC application is alive */
70 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
71
72 /* runtime link query interval */
73 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
74
75 struct liquidio_if_cfg_context {
76 int octeon_id;
77
78 wait_queue_head_t wc;
79
80 int cond;
81 };
82
83 struct liquidio_if_cfg_resp {
84 u64 rh;
85 struct liquidio_if_cfg_info cfg_info;
86 u64 status;
87 };
88
89 struct liquidio_rx_ctl_context {
90 int octeon_id;
91
92 wait_queue_head_t wc;
93
94 int cond;
95 };
96
97 struct oct_link_status_resp {
98 u64 rh;
99 struct oct_link_info link_info;
100 u64 status;
101 };
102
103 struct oct_timestamp_resp {
104 u64 rh;
105 u64 timestamp;
106 u64 status;
107 };
108
109 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
110
111 union tx_info {
112 u64 u64;
113 struct {
114 #ifdef __BIG_ENDIAN_BITFIELD
115 u16 gso_size;
116 u16 gso_segs;
117 u32 reserved;
118 #else
119 u32 reserved;
120 u16 gso_segs;
121 u16 gso_size;
122 #endif
123 } s;
124 };
125
126 /** Octeon device properties to be used by the NIC module.
127 * Each octeon device in the system will be represented
128 * by this structure in the NIC module.
129 */
130
131 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
132
133 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
134 #define OCTNIC_GSO_MAX_SIZE \
135 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
136
137 /** Structure of a node in list of gather components maintained by
138 * NIC driver for each network device.
139 */
140 struct octnic_gather {
141 /** List manipulation. Next and prev pointers. */
142 struct list_head list;
143
144 /** Size of the gather component at sg in bytes. */
145 int sg_size;
146
147 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
148 int adjust;
149
150 /** Gather component that can accommodate max sized fragment list
151 * received from the IP layer.
152 */
153 struct octeon_sg_entry *sg;
154
155 u64 sg_dma_ptr;
156 };
157
158 struct handshake {
159 struct completion init;
160 struct completion started;
161 struct pci_dev *pci_dev;
162 int init_ok;
163 int started_ok;
164 };
165
166 struct octeon_device_priv {
167 /** Tasklet structures for this device. */
168 struct tasklet_struct droq_tasklet;
169 unsigned long napi_mask;
170 };
171
172 #ifdef CONFIG_PCI_IOV
173 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs);
174 #endif
175
176 static int octeon_device_init(struct octeon_device *);
177 static int liquidio_stop(struct net_device *netdev);
178 static void liquidio_remove(struct pci_dev *pdev);
179 static int liquidio_probe(struct pci_dev *pdev,
180 const struct pci_device_id *ent);
181
182 static struct handshake handshake[MAX_OCTEON_DEVICES];
183 static struct completion first_stage;
184
185 static void octeon_droq_bh(unsigned long pdev)
186 {
187 int q_no;
188 int reschedule = 0;
189 struct octeon_device *oct = (struct octeon_device *)pdev;
190 struct octeon_device_priv *oct_priv =
191 (struct octeon_device_priv *)oct->priv;
192
193 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
194 if (!(oct->io_qmask.oq & BIT_ULL(q_no)))
195 continue;
196 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
197 MAX_PACKET_BUDGET);
198 lio_enable_irq(oct->droq[q_no], NULL);
199
200 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
201 /* set time and cnt interrupt thresholds for this DROQ
202 * for NAPI
203 */
204 int adjusted_q_no = q_no + oct->sriov_info.pf_srn;
205
206 octeon_write_csr64(
207 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no),
208 0x5700000040ULL);
209 octeon_write_csr64(
210 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0);
211 }
212 }
213
214 if (reschedule)
215 tasklet_schedule(&oct_priv->droq_tasklet);
216 }
217
218 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
219 {
220 struct octeon_device_priv *oct_priv =
221 (struct octeon_device_priv *)oct->priv;
222 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
223 int i;
224
225 do {
226 pending_pkts = 0;
227
228 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
229 if (!(oct->io_qmask.oq & BIT_ULL(i)))
230 continue;
231 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
232 }
233 if (pkt_cnt > 0) {
234 pending_pkts += pkt_cnt;
235 tasklet_schedule(&oct_priv->droq_tasklet);
236 }
237 pkt_cnt = 0;
238 schedule_timeout_uninterruptible(1);
239
240 } while (retry-- && pending_pkts);
241
242 return pkt_cnt;
243 }
244
245 /**
246 * \brief Forces all IO queues off on a given device
247 * @param oct Pointer to Octeon device
248 */
249 static void force_io_queues_off(struct octeon_device *oct)
250 {
251 if ((oct->chip_id == OCTEON_CN66XX) ||
252 (oct->chip_id == OCTEON_CN68XX)) {
253 /* Reset the Enable bits for Input Queues. */
254 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
255
256 /* Reset the Enable bits for Output Queues. */
257 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
258 }
259 }
260
261 /**
262 * \brief wait for all pending requests to complete
263 * @param oct Pointer to Octeon device
264 *
265 * Called during shutdown sequence
266 */
267 static int wait_for_pending_requests(struct octeon_device *oct)
268 {
269 int i, pcount = 0;
270
271 for (i = 0; i < 100; i++) {
272 pcount =
273 atomic_read(&oct->response_list
274 [OCTEON_ORDERED_SC_LIST].pending_req_count);
275 if (pcount)
276 schedule_timeout_uninterruptible(HZ / 10);
277 else
278 break;
279 }
280
281 if (pcount)
282 return 1;
283
284 return 0;
285 }
286
287 /**
288 * \brief Cause device to go quiet so it can be safely removed/reset/etc
289 * @param oct Pointer to Octeon device
290 */
291 static inline void pcierror_quiesce_device(struct octeon_device *oct)
292 {
293 int i;
294
295 /* Disable the input and output queues now. No more packets will
296 * arrive from Octeon, but we should wait for all packet processing
297 * to finish.
298 */
299 force_io_queues_off(oct);
300
301 /* To allow for in-flight requests */
302 schedule_timeout_uninterruptible(100);
303
304 if (wait_for_pending_requests(oct))
305 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
306
307 /* Force all requests waiting to be fetched by OCTEON to complete. */
308 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
309 struct octeon_instr_queue *iq;
310
311 if (!(oct->io_qmask.iq & BIT_ULL(i)))
312 continue;
313 iq = oct->instr_queue[i];
314
315 if (atomic_read(&iq->instr_pending)) {
316 spin_lock_bh(&iq->lock);
317 iq->fill_cnt = 0;
318 iq->octeon_read_index = iq->host_write_index;
319 iq->stats.instr_processed +=
320 atomic_read(&iq->instr_pending);
321 lio_process_iq_request_list(oct, iq, 0);
322 spin_unlock_bh(&iq->lock);
323 }
324 }
325
326 /* Force all pending ordered list requests to time out. */
327 lio_process_ordered_list(oct, 1);
328
329 /* We do not need to wait for output queue packets to be processed. */
330 }
331
332 /**
333 * \brief Cleanup PCI AER uncorrectable error status
334 * @param dev Pointer to PCI device
335 */
336 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
337 {
338 int pos = 0x100;
339 u32 status, mask;
340
341 pr_info("%s :\n", __func__);
342
343 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
344 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
345 if (dev->error_state == pci_channel_io_normal)
346 status &= ~mask; /* Clear corresponding nonfatal bits */
347 else
348 status &= mask; /* Clear corresponding fatal bits */
349 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
350 }
351
352 /**
353 * \brief Stop all PCI IO to a given device
354 * @param dev Pointer to Octeon device
355 */
356 static void stop_pci_io(struct octeon_device *oct)
357 {
358 /* No more instructions will be forwarded. */
359 atomic_set(&oct->status, OCT_DEV_IN_RESET);
360
361 pci_disable_device(oct->pci_dev);
362
363 /* Disable interrupts */
364 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
365
366 pcierror_quiesce_device(oct);
367
368 /* Release the interrupt line */
369 free_irq(oct->pci_dev->irq, oct);
370
371 if (oct->flags & LIO_FLAG_MSI_ENABLED)
372 pci_disable_msi(oct->pci_dev);
373
374 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
375 lio_get_state_string(&oct->status));
376
377 /* making it a common function for all OCTEON models */
378 cleanup_aer_uncorrect_error_status(oct->pci_dev);
379 }
380
381 /**
382 * \brief called when PCI error is detected
383 * @param pdev Pointer to PCI device
384 * @param state The current pci connection state
385 *
386 * This function is called after a PCI bus error affecting
387 * this device has been detected.
388 */
389 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
390 pci_channel_state_t state)
391 {
392 struct octeon_device *oct = pci_get_drvdata(pdev);
393
394 /* Non-correctable Non-fatal errors */
395 if (state == pci_channel_io_normal) {
396 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
397 cleanup_aer_uncorrect_error_status(oct->pci_dev);
398 return PCI_ERS_RESULT_CAN_RECOVER;
399 }
400
401 /* Non-correctable Fatal errors */
402 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
403 stop_pci_io(oct);
404
405 /* Always return a DISCONNECT. There is no support for recovery but only
406 * for a clean shutdown.
407 */
408 return PCI_ERS_RESULT_DISCONNECT;
409 }
410
411 /**
412 * \brief mmio handler
413 * @param pdev Pointer to PCI device
414 */
415 static pci_ers_result_t liquidio_pcie_mmio_enabled(
416 struct pci_dev *pdev __attribute__((unused)))
417 {
418 /* We should never hit this since we never ask for a reset for a Fatal
419 * Error. We always return DISCONNECT in io_error above.
420 * But play safe and return RECOVERED for now.
421 */
422 return PCI_ERS_RESULT_RECOVERED;
423 }
424
425 /**
426 * \brief called after the pci bus has been reset.
427 * @param pdev Pointer to PCI device
428 *
429 * Restart the card from scratch, as if from a cold-boot. Implementation
430 * resembles the first-half of the octeon_resume routine.
431 */
432 static pci_ers_result_t liquidio_pcie_slot_reset(
433 struct pci_dev *pdev __attribute__((unused)))
434 {
435 /* We should never hit this since we never ask for a reset for a Fatal
436 * Error. We always return DISCONNECT in io_error above.
437 * But play safe and return RECOVERED for now.
438 */
439 return PCI_ERS_RESULT_RECOVERED;
440 }
441
442 /**
443 * \brief called when traffic can start flowing again.
444 * @param pdev Pointer to PCI device
445 *
446 * This callback is called when the error recovery driver tells us that
447 * its OK to resume normal operation. Implementation resembles the
448 * second-half of the octeon_resume routine.
449 */
450 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
451 {
452 /* Nothing to be done here. */
453 }
454
455 #ifdef CONFIG_PM
456 /**
457 * \brief called when suspending
458 * @param pdev Pointer to PCI device
459 * @param state state to suspend to
460 */
461 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
462 pm_message_t state __attribute__((unused)))
463 {
464 return 0;
465 }
466
467 /**
468 * \brief called when resuming
469 * @param pdev Pointer to PCI device
470 */
471 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
472 {
473 return 0;
474 }
475 #endif
476
477 /* For PCI-E Advanced Error Recovery (AER) Interface */
478 static const struct pci_error_handlers liquidio_err_handler = {
479 .error_detected = liquidio_pcie_error_detected,
480 .mmio_enabled = liquidio_pcie_mmio_enabled,
481 .slot_reset = liquidio_pcie_slot_reset,
482 .resume = liquidio_pcie_resume,
483 };
484
485 static const struct pci_device_id liquidio_pci_tbl[] = {
486 { /* 68xx */
487 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
488 },
489 { /* 66xx */
490 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
491 },
492 { /* 23xx pf */
493 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
494 },
495 {
496 0, 0, 0, 0, 0, 0, 0
497 }
498 };
499 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
500
501 static struct pci_driver liquidio_pci_driver = {
502 .name = "LiquidIO",
503 .id_table = liquidio_pci_tbl,
504 .probe = liquidio_probe,
505 .remove = liquidio_remove,
506 .err_handler = &liquidio_err_handler, /* For AER */
507
508 #ifdef CONFIG_PM
509 .suspend = liquidio_suspend,
510 .resume = liquidio_resume,
511 #endif
512 #ifdef CONFIG_PCI_IOV
513 .sriov_configure = liquidio_enable_sriov,
514 #endif
515 };
516
517 /**
518 * \brief register PCI driver
519 */
520 static int liquidio_init_pci(void)
521 {
522 return pci_register_driver(&liquidio_pci_driver);
523 }
524
525 /**
526 * \brief unregister PCI driver
527 */
528 static void liquidio_deinit_pci(void)
529 {
530 pci_unregister_driver(&liquidio_pci_driver);
531 }
532
533 /**
534 * \brief check interface state
535 * @param lio per-network private data
536 * @param state_flag flag state to check
537 */
538 static inline int ifstate_check(struct lio *lio, int state_flag)
539 {
540 return atomic_read(&lio->ifstate) & state_flag;
541 }
542
543 /**
544 * \brief set interface state
545 * @param lio per-network private data
546 * @param state_flag flag state to set
547 */
548 static inline void ifstate_set(struct lio *lio, int state_flag)
549 {
550 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
551 }
552
553 /**
554 * \brief clear interface state
555 * @param lio per-network private data
556 * @param state_flag flag state to clear
557 */
558 static inline void ifstate_reset(struct lio *lio, int state_flag)
559 {
560 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
561 }
562
563 /**
564 * \brief Stop Tx queues
565 * @param netdev network device
566 */
567 static inline void txqs_stop(struct net_device *netdev)
568 {
569 if (netif_is_multiqueue(netdev)) {
570 int i;
571
572 for (i = 0; i < netdev->num_tx_queues; i++)
573 netif_stop_subqueue(netdev, i);
574 } else {
575 netif_stop_queue(netdev);
576 }
577 }
578
579 /**
580 * \brief Start Tx queues
581 * @param netdev network device
582 */
583 static inline void txqs_start(struct net_device *netdev)
584 {
585 if (netif_is_multiqueue(netdev)) {
586 int i;
587
588 for (i = 0; i < netdev->num_tx_queues; i++)
589 netif_start_subqueue(netdev, i);
590 } else {
591 netif_start_queue(netdev);
592 }
593 }
594
595 /**
596 * \brief Wake Tx queues
597 * @param netdev network device
598 */
599 static inline void txqs_wake(struct net_device *netdev)
600 {
601 struct lio *lio = GET_LIO(netdev);
602
603 if (netif_is_multiqueue(netdev)) {
604 int i;
605
606 for (i = 0; i < netdev->num_tx_queues; i++) {
607 int qno = lio->linfo.txpciq[i %
608 (lio->linfo.num_txpciq)].s.q_no;
609
610 if (__netif_subqueue_stopped(netdev, i)) {
611 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
612 tx_restart, 1);
613 netif_wake_subqueue(netdev, i);
614 }
615 }
616 } else {
617 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
618 tx_restart, 1);
619 netif_wake_queue(netdev);
620 }
621 }
622
623 /**
624 * \brief Stop Tx queue
625 * @param netdev network device
626 */
627 static void stop_txq(struct net_device *netdev)
628 {
629 txqs_stop(netdev);
630 }
631
632 /**
633 * \brief Start Tx queue
634 * @param netdev network device
635 */
636 static void start_txq(struct net_device *netdev)
637 {
638 struct lio *lio = GET_LIO(netdev);
639
640 if (lio->linfo.link.s.link_up) {
641 txqs_start(netdev);
642 return;
643 }
644 }
645
646 /**
647 * \brief Wake a queue
648 * @param netdev network device
649 * @param q which queue to wake
650 */
651 static inline void wake_q(struct net_device *netdev, int q)
652 {
653 if (netif_is_multiqueue(netdev))
654 netif_wake_subqueue(netdev, q);
655 else
656 netif_wake_queue(netdev);
657 }
658
659 /**
660 * \brief Stop a queue
661 * @param netdev network device
662 * @param q which queue to stop
663 */
664 static inline void stop_q(struct net_device *netdev, int q)
665 {
666 if (netif_is_multiqueue(netdev))
667 netif_stop_subqueue(netdev, q);
668 else
669 netif_stop_queue(netdev);
670 }
671
672 /**
673 * \brief Check Tx queue status, and take appropriate action
674 * @param lio per-network private data
675 * @returns 0 if full, number of queues woken up otherwise
676 */
677 static inline int check_txq_status(struct lio *lio)
678 {
679 int ret_val = 0;
680
681 if (netif_is_multiqueue(lio->netdev)) {
682 int numqs = lio->netdev->num_tx_queues;
683 int q, iq = 0;
684
685 /* check each sub-queue state */
686 for (q = 0; q < numqs; q++) {
687 iq = lio->linfo.txpciq[q %
688 (lio->linfo.num_txpciq)].s.q_no;
689 if (octnet_iq_is_full(lio->oct_dev, iq))
690 continue;
691 if (__netif_subqueue_stopped(lio->netdev, q)) {
692 wake_q(lio->netdev, q);
693 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
694 tx_restart, 1);
695 ret_val++;
696 }
697 }
698 } else {
699 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
700 return 0;
701 wake_q(lio->netdev, lio->txq);
702 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
703 tx_restart, 1);
704 ret_val = 1;
705 }
706 return ret_val;
707 }
708
709 /**
710 * Remove the node at the head of the list. The list would be empty at
711 * the end of this call if there are no more nodes in the list.
712 */
713 static inline struct list_head *list_delete_head(struct list_head *root)
714 {
715 struct list_head *node;
716
717 if ((root->prev == root) && (root->next == root))
718 node = NULL;
719 else
720 node = root->next;
721
722 if (node)
723 list_del(node);
724
725 return node;
726 }
727
728 /**
729 * \brief Delete gather lists
730 * @param lio per-network private data
731 */
732 static void delete_glists(struct lio *lio)
733 {
734 struct octnic_gather *g;
735 int i;
736
737 if (!lio->glist)
738 return;
739
740 for (i = 0; i < lio->linfo.num_txpciq; i++) {
741 do {
742 g = (struct octnic_gather *)
743 list_delete_head(&lio->glist[i]);
744 if (g) {
745 if (g->sg) {
746 dma_unmap_single(&lio->oct_dev->
747 pci_dev->dev,
748 g->sg_dma_ptr,
749 g->sg_size,
750 DMA_TO_DEVICE);
751 kfree((void *)((unsigned long)g->sg -
752 g->adjust));
753 }
754 kfree(g);
755 }
756 } while (g);
757 }
758
759 kfree((void *)lio->glist);
760 kfree((void *)lio->glist_lock);
761 }
762
763 /**
764 * \brief Setup gather lists
765 * @param lio per-network private data
766 */
767 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
768 {
769 int i, j;
770 struct octnic_gather *g;
771
772 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
773 GFP_KERNEL);
774 if (!lio->glist_lock)
775 return 1;
776
777 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
778 GFP_KERNEL);
779 if (!lio->glist) {
780 kfree((void *)lio->glist_lock);
781 return 1;
782 }
783
784 for (i = 0; i < num_iqs; i++) {
785 int numa_node = cpu_to_node(i % num_online_cpus());
786
787 spin_lock_init(&lio->glist_lock[i]);
788
789 INIT_LIST_HEAD(&lio->glist[i]);
790
791 for (j = 0; j < lio->tx_qsize; j++) {
792 g = kzalloc_node(sizeof(*g), GFP_KERNEL,
793 numa_node);
794 if (!g)
795 g = kzalloc(sizeof(*g), GFP_KERNEL);
796 if (!g)
797 break;
798
799 g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
800 OCT_SG_ENTRY_SIZE);
801
802 g->sg = kmalloc_node(g->sg_size + 8,
803 GFP_KERNEL, numa_node);
804 if (!g->sg)
805 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
806 if (!g->sg) {
807 kfree(g);
808 break;
809 }
810
811 /* The gather component should be aligned on 64-bit
812 * boundary
813 */
814 if (((unsigned long)g->sg) & 7) {
815 g->adjust = 8 - (((unsigned long)g->sg) & 7);
816 g->sg = (struct octeon_sg_entry *)
817 ((unsigned long)g->sg + g->adjust);
818 }
819 g->sg_dma_ptr = dma_map_single(&oct->pci_dev->dev,
820 g->sg, g->sg_size,
821 DMA_TO_DEVICE);
822 if (dma_mapping_error(&oct->pci_dev->dev,
823 g->sg_dma_ptr)) {
824 kfree((void *)((unsigned long)g->sg -
825 g->adjust));
826 kfree(g);
827 break;
828 }
829
830 list_add_tail(&g->list, &lio->glist[i]);
831 }
832
833 if (j != lio->tx_qsize) {
834 delete_glists(lio);
835 return 1;
836 }
837 }
838
839 return 0;
840 }
841
842 /**
843 * \brief Print link information
844 * @param netdev network device
845 */
846 static void print_link_info(struct net_device *netdev)
847 {
848 struct lio *lio = GET_LIO(netdev);
849
850 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
851 struct oct_link_info *linfo = &lio->linfo;
852
853 if (linfo->link.s.link_up) {
854 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
855 linfo->link.s.speed,
856 (linfo->link.s.duplex) ? "Full" : "Half");
857 } else {
858 netif_info(lio, link, lio->netdev, "Link Down\n");
859 }
860 }
861 }
862
863 /**
864 * \brief Routine to notify MTU change
865 * @param work work_struct data structure
866 */
867 static void octnet_link_status_change(struct work_struct *work)
868 {
869 struct cavium_wk *wk = (struct cavium_wk *)work;
870 struct lio *lio = (struct lio *)wk->ctxptr;
871
872 rtnl_lock();
873 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
874 rtnl_unlock();
875 }
876
877 /**
878 * \brief Sets up the mtu status change work
879 * @param netdev network device
880 */
881 static inline int setup_link_status_change_wq(struct net_device *netdev)
882 {
883 struct lio *lio = GET_LIO(netdev);
884 struct octeon_device *oct = lio->oct_dev;
885
886 lio->link_status_wq.wq = alloc_workqueue("link-status",
887 WQ_MEM_RECLAIM, 0);
888 if (!lio->link_status_wq.wq) {
889 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
890 return -1;
891 }
892 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
893 octnet_link_status_change);
894 lio->link_status_wq.wk.ctxptr = lio;
895
896 return 0;
897 }
898
899 static inline void cleanup_link_status_change_wq(struct net_device *netdev)
900 {
901 struct lio *lio = GET_LIO(netdev);
902
903 if (lio->link_status_wq.wq) {
904 cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
905 destroy_workqueue(lio->link_status_wq.wq);
906 }
907 }
908
909 /**
910 * \brief Update link status
911 * @param netdev network device
912 * @param ls link status structure
913 *
914 * Called on receipt of a link status response from the core application to
915 * update each interface's link status.
916 */
917 static inline void update_link_status(struct net_device *netdev,
918 union oct_link_status *ls)
919 {
920 struct lio *lio = GET_LIO(netdev);
921 int changed = (lio->linfo.link.u64 != ls->u64);
922
923 lio->linfo.link.u64 = ls->u64;
924
925 if ((lio->intf_open) && (changed)) {
926 print_link_info(netdev);
927 lio->link_changes++;
928
929 if (lio->linfo.link.s.link_up) {
930 netif_carrier_on(netdev);
931 txqs_wake(netdev);
932 } else {
933 netif_carrier_off(netdev);
934 stop_txq(netdev);
935 }
936 }
937 }
938
939 /* Runs in interrupt context. */
940 static void update_txq_status(struct octeon_device *oct, int iq_num)
941 {
942 struct net_device *netdev;
943 struct lio *lio;
944 struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
945
946 netdev = oct->props[iq->ifidx].netdev;
947
948 /* This is needed because the first IQ does not have
949 * a netdev associated with it.
950 */
951 if (!netdev)
952 return;
953
954 lio = GET_LIO(netdev);
955 if (netif_is_multiqueue(netdev)) {
956 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
957 lio->linfo.link.s.link_up &&
958 (!octnet_iq_is_full(oct, iq_num))) {
959 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
960 tx_restart, 1);
961 netif_wake_subqueue(netdev, iq->q_index);
962 } else {
963 if (!octnet_iq_is_full(oct, lio->txq)) {
964 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
965 lio->txq,
966 tx_restart, 1);
967 wake_q(netdev, lio->txq);
968 }
969 }
970 }
971 }
972
973 static
974 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
975 {
976 struct octeon_device *oct = droq->oct_dev;
977 struct octeon_device_priv *oct_priv =
978 (struct octeon_device_priv *)oct->priv;
979
980 if (droq->ops.poll_mode) {
981 droq->ops.napi_fn(droq);
982 } else {
983 if (ret & MSIX_PO_INT) {
984 tasklet_schedule(&oct_priv->droq_tasklet);
985 return 1;
986 }
987 /* this will be flushed periodically by check iq db */
988 if (ret & MSIX_PI_INT)
989 return 0;
990 }
991 return 0;
992 }
993
994 /**
995 * \brief Droq packet processor sceduler
996 * @param oct octeon device
997 */
998 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
999 {
1000 struct octeon_device_priv *oct_priv =
1001 (struct octeon_device_priv *)oct->priv;
1002 u64 oq_no;
1003 struct octeon_droq *droq;
1004
1005 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1006 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1007 oq_no++) {
1008 if (!(oct->droq_intr & BIT_ULL(oq_no)))
1009 continue;
1010
1011 droq = oct->droq[oq_no];
1012
1013 if (droq->ops.poll_mode) {
1014 droq->ops.napi_fn(droq);
1015 oct_priv->napi_mask |= (1 << oq_no);
1016 } else {
1017 tasklet_schedule(&oct_priv->droq_tasklet);
1018 }
1019 }
1020 }
1021 }
1022
1023 static irqreturn_t
1024 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
1025 {
1026 u64 ret;
1027 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
1028 struct octeon_device *oct = ioq_vector->oct_dev;
1029 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
1030
1031 ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
1032
1033 if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
1034 liquidio_schedule_msix_droq_pkt_handler(droq, ret);
1035
1036 return IRQ_HANDLED;
1037 }
1038
1039 /**
1040 * \brief Interrupt handler for octeon
1041 * @param irq unused
1042 * @param dev octeon device
1043 */
1044 static
1045 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)),
1046 void *dev)
1047 {
1048 struct octeon_device *oct = (struct octeon_device *)dev;
1049 irqreturn_t ret;
1050
1051 /* Disable our interrupts for the duration of ISR */
1052 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1053
1054 ret = oct->fn_list.process_interrupt_regs(oct);
1055
1056 if (ret == IRQ_HANDLED)
1057 liquidio_schedule_droq_pkt_handlers(oct);
1058
1059 /* Re-enable our interrupts */
1060 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1061 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * \brief Setup interrupt for octeon device
1068 * @param oct octeon device
1069 *
1070 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
1071 */
1072 static int octeon_setup_interrupt(struct octeon_device *oct)
1073 {
1074 int irqret, err;
1075 struct msix_entry *msix_entries;
1076 int i;
1077 int num_ioq_vectors;
1078 int num_alloc_ioq_vectors;
1079
1080 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
1081 oct->num_msix_irqs = oct->sriov_info.num_pf_rings;
1082 /* one non ioq interrupt for handling sli_mac_pf_int_sum */
1083 oct->num_msix_irqs += 1;
1084
1085 oct->msix_entries = kcalloc(
1086 oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
1087 if (!oct->msix_entries)
1088 return 1;
1089
1090 msix_entries = (struct msix_entry *)oct->msix_entries;
1091 /*Assumption is that pf msix vectors start from pf srn to pf to
1092 * trs and not from 0. if not change this code
1093 */
1094 for (i = 0; i < oct->num_msix_irqs - 1; i++)
1095 msix_entries[i].entry = oct->sriov_info.pf_srn + i;
1096 msix_entries[oct->num_msix_irqs - 1].entry =
1097 oct->sriov_info.trs;
1098 num_alloc_ioq_vectors = pci_enable_msix_range(
1099 oct->pci_dev, msix_entries,
1100 oct->num_msix_irqs,
1101 oct->num_msix_irqs);
1102 if (num_alloc_ioq_vectors < 0) {
1103 dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1104 kfree(oct->msix_entries);
1105 oct->msix_entries = NULL;
1106 return 1;
1107 }
1108 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1109
1110 num_ioq_vectors = oct->num_msix_irqs;
1111
1112 /** For PF, there is one non-ioq interrupt handler */
1113 num_ioq_vectors -= 1;
1114 irqret = request_irq(msix_entries[num_ioq_vectors].vector,
1115 liquidio_legacy_intr_handler, 0, "octeon",
1116 oct);
1117 if (irqret) {
1118 dev_err(&oct->pci_dev->dev,
1119 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1120 irqret);
1121 pci_disable_msix(oct->pci_dev);
1122 kfree(oct->msix_entries);
1123 oct->msix_entries = NULL;
1124 return 1;
1125 }
1126
1127 for (i = 0; i < num_ioq_vectors; i++) {
1128 irqret = request_irq(msix_entries[i].vector,
1129 liquidio_msix_intr_handler, 0,
1130 "octeon", &oct->ioq_vector[i]);
1131 if (irqret) {
1132 dev_err(&oct->pci_dev->dev,
1133 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1134 irqret);
1135 /** Freeing the non-ioq irq vector here . */
1136 free_irq(msix_entries[num_ioq_vectors].vector,
1137 oct);
1138
1139 while (i) {
1140 i--;
1141 /** clearing affinity mask. */
1142 irq_set_affinity_hint(
1143 msix_entries[i].vector, NULL);
1144 free_irq(msix_entries[i].vector,
1145 &oct->ioq_vector[i]);
1146 }
1147 pci_disable_msix(oct->pci_dev);
1148 kfree(oct->msix_entries);
1149 oct->msix_entries = NULL;
1150 return 1;
1151 }
1152 oct->ioq_vector[i].vector = msix_entries[i].vector;
1153 /* assign the cpu mask for this msix interrupt vector */
1154 irq_set_affinity_hint(
1155 msix_entries[i].vector,
1156 (&oct->ioq_vector[i].affinity_mask));
1157 }
1158 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1159 oct->octeon_id);
1160 } else {
1161 err = pci_enable_msi(oct->pci_dev);
1162 if (err)
1163 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1164 err);
1165 else
1166 oct->flags |= LIO_FLAG_MSI_ENABLED;
1167
1168 irqret = request_irq(oct->pci_dev->irq,
1169 liquidio_legacy_intr_handler, IRQF_SHARED,
1170 "octeon", oct);
1171 if (irqret) {
1172 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1173 pci_disable_msi(oct->pci_dev);
1174 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1175 irqret);
1176 return 1;
1177 }
1178 }
1179 return 0;
1180 }
1181
1182 static int liquidio_watchdog(void *param)
1183 {
1184 u64 wdog;
1185 u16 mask_of_stuck_cores = 0;
1186 u16 mask_of_crashed_cores = 0;
1187 int core_num;
1188 u8 core_is_stuck[LIO_MAX_CORES];
1189 u8 core_crashed[LIO_MAX_CORES];
1190 struct octeon_device *oct = param;
1191
1192 memset(core_is_stuck, 0, sizeof(core_is_stuck));
1193 memset(core_crashed, 0, sizeof(core_crashed));
1194
1195 while (!kthread_should_stop()) {
1196 mask_of_crashed_cores =
1197 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1198
1199 for (core_num = 0; core_num < LIO_MAX_CORES; core_num++) {
1200 if (!core_is_stuck[core_num]) {
1201 wdog = lio_pci_readq(oct, CIU3_WDOG(core_num));
1202
1203 /* look at watchdog state field */
1204 wdog &= CIU3_WDOG_MASK;
1205 if (wdog) {
1206 /* this watchdog timer has expired */
1207 core_is_stuck[core_num] =
1208 LIO_MONITOR_WDOG_EXPIRE;
1209 mask_of_stuck_cores |= (1 << core_num);
1210 }
1211 }
1212
1213 if (!core_crashed[core_num])
1214 core_crashed[core_num] =
1215 (mask_of_crashed_cores >> core_num) & 1;
1216 }
1217
1218 if (mask_of_stuck_cores) {
1219 for (core_num = 0; core_num < LIO_MAX_CORES;
1220 core_num++) {
1221 if (core_is_stuck[core_num] == 1) {
1222 dev_err(&oct->pci_dev->dev,
1223 "ERROR: Octeon core %d is stuck!\n",
1224 core_num);
1225 /* 2 means we have printk'd an error
1226 * so no need to repeat the same printk
1227 */
1228 core_is_stuck[core_num] =
1229 LIO_MONITOR_CORE_STUCK_MSGD;
1230 }
1231 }
1232 }
1233
1234 if (mask_of_crashed_cores) {
1235 for (core_num = 0; core_num < LIO_MAX_CORES;
1236 core_num++) {
1237 if (core_crashed[core_num] == 1) {
1238 dev_err(&oct->pci_dev->dev,
1239 "ERROR: Octeon core %d crashed! See oct-fwdump for details.\n",
1240 core_num);
1241 /* 2 means we have printk'd an error
1242 * so no need to repeat the same printk
1243 */
1244 core_crashed[core_num] =
1245 LIO_MONITOR_CORE_STUCK_MSGD;
1246 }
1247 }
1248 }
1249 #ifdef CONFIG_MODULE_UNLOAD
1250 if (mask_of_stuck_cores || mask_of_crashed_cores) {
1251 /* make module refcount=0 so that rmmod will work */
1252 long refcount;
1253
1254 refcount = module_refcount(THIS_MODULE);
1255
1256 while (refcount > 0) {
1257 module_put(THIS_MODULE);
1258 refcount = module_refcount(THIS_MODULE);
1259 }
1260
1261 /* compensate for and withstand an unlikely (but still
1262 * possible) race condition
1263 */
1264 while (refcount < 0) {
1265 try_module_get(THIS_MODULE);
1266 refcount = module_refcount(THIS_MODULE);
1267 }
1268 }
1269 #endif
1270 /* sleep for two seconds */
1271 set_current_state(TASK_INTERRUPTIBLE);
1272 schedule_timeout(2 * HZ);
1273 }
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * \brief PCI probe handler
1280 * @param pdev PCI device structure
1281 * @param ent unused
1282 */
1283 static int
1284 liquidio_probe(struct pci_dev *pdev,
1285 const struct pci_device_id *ent __attribute__((unused)))
1286 {
1287 struct octeon_device *oct_dev = NULL;
1288 struct handshake *hs;
1289
1290 oct_dev = octeon_allocate_device(pdev->device,
1291 sizeof(struct octeon_device_priv));
1292 if (!oct_dev) {
1293 dev_err(&pdev->dev, "Unable to allocate device\n");
1294 return -ENOMEM;
1295 }
1296
1297 if (pdev->device == OCTEON_CN23XX_PF_VID)
1298 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
1299
1300 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1301 (u32)pdev->vendor, (u32)pdev->device);
1302
1303 /* Assign octeon_device for this device to the private data area. */
1304 pci_set_drvdata(pdev, oct_dev);
1305
1306 /* set linux specific device pointer */
1307 oct_dev->pci_dev = (void *)pdev;
1308
1309 hs = &handshake[oct_dev->octeon_id];
1310 init_completion(&hs->init);
1311 init_completion(&hs->started);
1312 hs->pci_dev = pdev;
1313
1314 if (oct_dev->octeon_id == 0)
1315 /* first LiquidIO NIC is detected */
1316 complete(&first_stage);
1317
1318 if (octeon_device_init(oct_dev)) {
1319 complete(&hs->init);
1320 liquidio_remove(pdev);
1321 return -ENOMEM;
1322 }
1323
1324 if (OCTEON_CN23XX_PF(oct_dev)) {
1325 u64 scratch1;
1326 u8 bus, device, function;
1327
1328 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1);
1329 if (!(scratch1 & 4ULL)) {
1330 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that
1331 * the lio watchdog kernel thread is running for this
1332 * NIC. Each NIC gets one watchdog kernel thread.
1333 */
1334 scratch1 |= 4ULL;
1335 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1,
1336 scratch1);
1337
1338 bus = pdev->bus->number;
1339 device = PCI_SLOT(pdev->devfn);
1340 function = PCI_FUNC(pdev->devfn);
1341 oct_dev->watchdog_task = kthread_create(
1342 liquidio_watchdog, oct_dev,
1343 "liowd/%02hhx:%02hhx.%hhx", bus, device, function);
1344 if (!IS_ERR(oct_dev->watchdog_task)) {
1345 wake_up_process(oct_dev->watchdog_task);
1346 } else {
1347 oct_dev->watchdog_task = NULL;
1348 dev_err(&oct_dev->pci_dev->dev,
1349 "failed to create kernel_thread\n");
1350 liquidio_remove(pdev);
1351 return -1;
1352 }
1353 }
1354 }
1355
1356 oct_dev->rx_pause = 1;
1357 oct_dev->tx_pause = 1;
1358
1359 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1360
1361 return 0;
1362 }
1363
1364 /**
1365 *\brief Destroy resources associated with octeon device
1366 * @param pdev PCI device structure
1367 * @param ent unused
1368 */
1369 static void octeon_destroy_resources(struct octeon_device *oct)
1370 {
1371 int i;
1372 struct msix_entry *msix_entries;
1373 struct octeon_device_priv *oct_priv =
1374 (struct octeon_device_priv *)oct->priv;
1375
1376 struct handshake *hs;
1377
1378 switch (atomic_read(&oct->status)) {
1379 case OCT_DEV_RUNNING:
1380 case OCT_DEV_CORE_OK:
1381
1382 /* No more instructions will be forwarded. */
1383 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1384
1385 oct->app_mode = CVM_DRV_INVALID_APP;
1386 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1387 lio_get_state_string(&oct->status));
1388
1389 schedule_timeout_uninterruptible(HZ / 10);
1390
1391 /* fallthrough */
1392 case OCT_DEV_HOST_OK:
1393
1394 /* fallthrough */
1395 case OCT_DEV_CONSOLE_INIT_DONE:
1396 /* Remove any consoles */
1397 octeon_remove_consoles(oct);
1398
1399 /* fallthrough */
1400 case OCT_DEV_IO_QUEUES_DONE:
1401 if (wait_for_pending_requests(oct))
1402 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1403
1404 if (lio_wait_for_instr_fetch(oct))
1405 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1406
1407 /* Disable the input and output queues now. No more packets will
1408 * arrive from Octeon, but we should wait for all packet
1409 * processing to finish.
1410 */
1411 oct->fn_list.disable_io_queues(oct);
1412
1413 if (lio_wait_for_oq_pkts(oct))
1414 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1415
1416 /* fallthrough */
1417 case OCT_DEV_INTR_SET_DONE:
1418 /* Disable interrupts */
1419 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1420
1421 if (oct->msix_on) {
1422 msix_entries = (struct msix_entry *)oct->msix_entries;
1423 for (i = 0; i < oct->num_msix_irqs - 1; i++) {
1424 /* clear the affinity_cpumask */
1425 irq_set_affinity_hint(msix_entries[i].vector,
1426 NULL);
1427 free_irq(msix_entries[i].vector,
1428 &oct->ioq_vector[i]);
1429 }
1430 /* non-iov vector's argument is oct struct */
1431 free_irq(msix_entries[i].vector, oct);
1432
1433 pci_disable_msix(oct->pci_dev);
1434 kfree(oct->msix_entries);
1435 oct->msix_entries = NULL;
1436 } else {
1437 /* Release the interrupt line */
1438 free_irq(oct->pci_dev->irq, oct);
1439
1440 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1441 pci_disable_msi(oct->pci_dev);
1442 }
1443
1444 /* fallthrough */
1445 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE:
1446 if (OCTEON_CN23XX_PF(oct))
1447 octeon_free_ioq_vector(oct);
1448
1449 /* fallthrough */
1450 case OCT_DEV_MBOX_SETUP_DONE:
1451 if (OCTEON_CN23XX_PF(oct))
1452 oct->fn_list.free_mbox(oct);
1453
1454 /* fallthrough */
1455 case OCT_DEV_IN_RESET:
1456 case OCT_DEV_DROQ_INIT_DONE:
1457 /* Wait for any pending operations */
1458 mdelay(100);
1459 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1460 if (!(oct->io_qmask.oq & BIT_ULL(i)))
1461 continue;
1462 octeon_delete_droq(oct, i);
1463 }
1464
1465 /* Force any pending handshakes to complete */
1466 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1467 hs = &handshake[i];
1468
1469 if (hs->pci_dev) {
1470 handshake[oct->octeon_id].init_ok = 0;
1471 complete(&handshake[oct->octeon_id].init);
1472 handshake[oct->octeon_id].started_ok = 0;
1473 complete(&handshake[oct->octeon_id].started);
1474 }
1475 }
1476
1477 /* fallthrough */
1478 case OCT_DEV_RESP_LIST_INIT_DONE:
1479 octeon_delete_response_list(oct);
1480
1481 /* fallthrough */
1482 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1483 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1484 if (!(oct->io_qmask.iq & BIT_ULL(i)))
1485 continue;
1486 octeon_delete_instr_queue(oct, i);
1487 }
1488 #ifdef CONFIG_PCI_IOV
1489 if (oct->sriov_info.sriov_enabled)
1490 pci_disable_sriov(oct->pci_dev);
1491 #endif
1492 /* fallthrough */
1493 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1494 octeon_free_sc_buffer_pool(oct);
1495
1496 /* fallthrough */
1497 case OCT_DEV_DISPATCH_INIT_DONE:
1498 octeon_delete_dispatch_list(oct);
1499 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1500
1501 /* fallthrough */
1502 case OCT_DEV_PCI_MAP_DONE:
1503 /* Soft reset the octeon device before exiting */
1504 if ((!OCTEON_CN23XX_PF(oct)) || !oct->octeon_id)
1505 oct->fn_list.soft_reset(oct);
1506
1507 octeon_unmap_pci_barx(oct, 0);
1508 octeon_unmap_pci_barx(oct, 1);
1509
1510 /* fallthrough */
1511 case OCT_DEV_PCI_ENABLE_DONE:
1512 pci_clear_master(oct->pci_dev);
1513 /* Disable the device, releasing the PCI INT */
1514 pci_disable_device(oct->pci_dev);
1515
1516 /* fallthrough */
1517 case OCT_DEV_BEGIN_STATE:
1518 /* Nothing to be done here either */
1519 break;
1520 } /* end switch (oct->status) */
1521
1522 tasklet_kill(&oct_priv->droq_tasklet);
1523 }
1524
1525 /**
1526 * \brief Callback for rx ctrl
1527 * @param status status of request
1528 * @param buf pointer to resp structure
1529 */
1530 static void rx_ctl_callback(struct octeon_device *oct,
1531 u32 status,
1532 void *buf)
1533 {
1534 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1535 struct liquidio_rx_ctl_context *ctx;
1536
1537 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1538
1539 oct = lio_get_device(ctx->octeon_id);
1540 if (status)
1541 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1542 CVM_CAST64(status));
1543 WRITE_ONCE(ctx->cond, 1);
1544
1545 /* This barrier is required to be sure that the response has been
1546 * written fully before waking up the handler
1547 */
1548 wmb();
1549
1550 wake_up_interruptible(&ctx->wc);
1551 }
1552
1553 /**
1554 * \brief Send Rx control command
1555 * @param lio per-network private data
1556 * @param start_stop whether to start or stop
1557 */
1558 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1559 {
1560 struct octeon_soft_command *sc;
1561 struct liquidio_rx_ctl_context *ctx;
1562 union octnet_cmd *ncmd;
1563 int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1564 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1565 int retval;
1566
1567 if (oct->props[lio->ifidx].rx_on == start_stop)
1568 return;
1569
1570 sc = (struct octeon_soft_command *)
1571 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1572 16, ctx_size);
1573
1574 ncmd = (union octnet_cmd *)sc->virtdptr;
1575 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1576
1577 WRITE_ONCE(ctx->cond, 0);
1578 ctx->octeon_id = lio_get_device_id(oct);
1579 init_waitqueue_head(&ctx->wc);
1580
1581 ncmd->u64 = 0;
1582 ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1583 ncmd->s.param1 = start_stop;
1584
1585 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1586
1587 sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1588
1589 octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1590 OPCODE_NIC_CMD, 0, 0, 0);
1591
1592 sc->callback = rx_ctl_callback;
1593 sc->callback_arg = sc;
1594 sc->wait_time = 5000;
1595
1596 retval = octeon_send_soft_command(oct, sc);
1597 if (retval == IQ_SEND_FAILED) {
1598 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1599 } else {
1600 /* Sleep on a wait queue till the cond flag indicates that the
1601 * response arrived or timed-out.
1602 */
1603 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1604 return;
1605 oct->props[lio->ifidx].rx_on = start_stop;
1606 }
1607
1608 octeon_free_soft_command(oct, sc);
1609 }
1610
1611 /**
1612 * \brief Destroy NIC device interface
1613 * @param oct octeon device
1614 * @param ifidx which interface to destroy
1615 *
1616 * Cleanup associated with each interface for an Octeon device when NIC
1617 * module is being unloaded or if initialization fails during load.
1618 */
1619 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1620 {
1621 struct net_device *netdev = oct->props[ifidx].netdev;
1622 struct lio *lio;
1623 struct napi_struct *napi, *n;
1624
1625 if (!netdev) {
1626 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1627 __func__, ifidx);
1628 return;
1629 }
1630
1631 lio = GET_LIO(netdev);
1632
1633 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1634
1635 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1636 liquidio_stop(netdev);
1637
1638 if (oct->props[lio->ifidx].napi_enabled == 1) {
1639 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1640 napi_disable(napi);
1641
1642 oct->props[lio->ifidx].napi_enabled = 0;
1643
1644 if (OCTEON_CN23XX_PF(oct))
1645 oct->droq[0]->ops.poll_mode = 0;
1646 }
1647
1648 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1649 unregister_netdev(netdev);
1650
1651 cleanup_link_status_change_wq(netdev);
1652
1653 delete_glists(lio);
1654
1655 free_netdev(netdev);
1656
1657 oct->props[ifidx].gmxport = -1;
1658
1659 oct->props[ifidx].netdev = NULL;
1660 }
1661
1662 /**
1663 * \brief Stop complete NIC functionality
1664 * @param oct octeon device
1665 */
1666 static int liquidio_stop_nic_module(struct octeon_device *oct)
1667 {
1668 int i, j;
1669 struct lio *lio;
1670
1671 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1672 if (!oct->ifcount) {
1673 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1674 return 1;
1675 }
1676
1677 spin_lock_bh(&oct->cmd_resp_wqlock);
1678 oct->cmd_resp_state = OCT_DRV_OFFLINE;
1679 spin_unlock_bh(&oct->cmd_resp_wqlock);
1680
1681 for (i = 0; i < oct->ifcount; i++) {
1682 lio = GET_LIO(oct->props[i].netdev);
1683 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1684 octeon_unregister_droq_ops(oct,
1685 lio->linfo.rxpciq[j].s.q_no);
1686 }
1687
1688 for (i = 0; i < oct->ifcount; i++)
1689 liquidio_destroy_nic_device(oct, i);
1690
1691 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1692 return 0;
1693 }
1694
1695 /**
1696 * \brief Cleans up resources at unload time
1697 * @param pdev PCI device structure
1698 */
1699 static void liquidio_remove(struct pci_dev *pdev)
1700 {
1701 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1702
1703 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1704
1705 if (oct_dev->watchdog_task)
1706 kthread_stop(oct_dev->watchdog_task);
1707
1708 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1709 liquidio_stop_nic_module(oct_dev);
1710
1711 /* Reset the octeon device and cleanup all memory allocated for
1712 * the octeon device by driver.
1713 */
1714 octeon_destroy_resources(oct_dev);
1715
1716 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1717
1718 /* This octeon device has been removed. Update the global
1719 * data structure to reflect this. Free the device structure.
1720 */
1721 octeon_free_device_mem(oct_dev);
1722 }
1723
1724 /**
1725 * \brief Identify the Octeon device and to map the BAR address space
1726 * @param oct octeon device
1727 */
1728 static int octeon_chip_specific_setup(struct octeon_device *oct)
1729 {
1730 u32 dev_id, rev_id;
1731 int ret = 1;
1732 char *s;
1733
1734 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1735 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1736 oct->rev_id = rev_id & 0xff;
1737
1738 switch (dev_id) {
1739 case OCTEON_CN68XX_PCIID:
1740 oct->chip_id = OCTEON_CN68XX;
1741 ret = lio_setup_cn68xx_octeon_device(oct);
1742 s = "CN68XX";
1743 break;
1744
1745 case OCTEON_CN66XX_PCIID:
1746 oct->chip_id = OCTEON_CN66XX;
1747 ret = lio_setup_cn66xx_octeon_device(oct);
1748 s = "CN66XX";
1749 break;
1750
1751 case OCTEON_CN23XX_PCIID_PF:
1752 oct->chip_id = OCTEON_CN23XX_PF_VID;
1753 ret = setup_cn23xx_octeon_pf_device(oct);
1754 s = "CN23XX";
1755 break;
1756
1757 default:
1758 s = "?";
1759 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1760 dev_id);
1761 }
1762
1763 if (!ret)
1764 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1765 OCTEON_MAJOR_REV(oct),
1766 OCTEON_MINOR_REV(oct),
1767 octeon_get_conf(oct)->card_name,
1768 LIQUIDIO_VERSION);
1769
1770 return ret;
1771 }
1772
1773 /**
1774 * \brief PCI initialization for each Octeon device.
1775 * @param oct octeon device
1776 */
1777 static int octeon_pci_os_setup(struct octeon_device *oct)
1778 {
1779 /* setup PCI stuff first */
1780 if (pci_enable_device(oct->pci_dev)) {
1781 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1782 return 1;
1783 }
1784
1785 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1786 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1787 pci_disable_device(oct->pci_dev);
1788 return 1;
1789 }
1790
1791 /* Enable PCI DMA Master. */
1792 pci_set_master(oct->pci_dev);
1793
1794 return 0;
1795 }
1796
1797 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1798 {
1799 int q = 0;
1800
1801 if (netif_is_multiqueue(lio->netdev))
1802 q = skb->queue_mapping % lio->linfo.num_txpciq;
1803
1804 return q;
1805 }
1806
1807 /**
1808 * \brief Check Tx queue state for a given network buffer
1809 * @param lio per-network private data
1810 * @param skb network buffer
1811 */
1812 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1813 {
1814 int q = 0, iq = 0;
1815
1816 if (netif_is_multiqueue(lio->netdev)) {
1817 q = skb->queue_mapping;
1818 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1819 } else {
1820 iq = lio->txq;
1821 q = iq;
1822 }
1823
1824 if (octnet_iq_is_full(lio->oct_dev, iq))
1825 return 0;
1826
1827 if (__netif_subqueue_stopped(lio->netdev, q)) {
1828 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1829 wake_q(lio->netdev, q);
1830 }
1831 return 1;
1832 }
1833
1834 /**
1835 * \brief Unmap and free network buffer
1836 * @param buf buffer
1837 */
1838 static void free_netbuf(void *buf)
1839 {
1840 struct sk_buff *skb;
1841 struct octnet_buf_free_info *finfo;
1842 struct lio *lio;
1843
1844 finfo = (struct octnet_buf_free_info *)buf;
1845 skb = finfo->skb;
1846 lio = finfo->lio;
1847
1848 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1849 DMA_TO_DEVICE);
1850
1851 check_txq_state(lio, skb);
1852
1853 tx_buffer_free(skb);
1854 }
1855
1856 /**
1857 * \brief Unmap and free gather buffer
1858 * @param buf buffer
1859 */
1860 static void free_netsgbuf(void *buf)
1861 {
1862 struct octnet_buf_free_info *finfo;
1863 struct sk_buff *skb;
1864 struct lio *lio;
1865 struct octnic_gather *g;
1866 int i, frags, iq;
1867
1868 finfo = (struct octnet_buf_free_info *)buf;
1869 skb = finfo->skb;
1870 lio = finfo->lio;
1871 g = finfo->g;
1872 frags = skb_shinfo(skb)->nr_frags;
1873
1874 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1875 g->sg[0].ptr[0], (skb->len - skb->data_len),
1876 DMA_TO_DEVICE);
1877
1878 i = 1;
1879 while (frags--) {
1880 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1881
1882 pci_unmap_page((lio->oct_dev)->pci_dev,
1883 g->sg[(i >> 2)].ptr[(i & 3)],
1884 frag->size, DMA_TO_DEVICE);
1885 i++;
1886 }
1887
1888 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1889 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1890
1891 iq = skb_iq(lio, skb);
1892 spin_lock(&lio->glist_lock[iq]);
1893 list_add_tail(&g->list, &lio->glist[iq]);
1894 spin_unlock(&lio->glist_lock[iq]);
1895
1896 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1897
1898 tx_buffer_free(skb);
1899 }
1900
1901 /**
1902 * \brief Unmap and free gather buffer with response
1903 * @param buf buffer
1904 */
1905 static void free_netsgbuf_with_resp(void *buf)
1906 {
1907 struct octeon_soft_command *sc;
1908 struct octnet_buf_free_info *finfo;
1909 struct sk_buff *skb;
1910 struct lio *lio;
1911 struct octnic_gather *g;
1912 int i, frags, iq;
1913
1914 sc = (struct octeon_soft_command *)buf;
1915 skb = (struct sk_buff *)sc->callback_arg;
1916 finfo = (struct octnet_buf_free_info *)&skb->cb;
1917
1918 lio = finfo->lio;
1919 g = finfo->g;
1920 frags = skb_shinfo(skb)->nr_frags;
1921
1922 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1923 g->sg[0].ptr[0], (skb->len - skb->data_len),
1924 DMA_TO_DEVICE);
1925
1926 i = 1;
1927 while (frags--) {
1928 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1929
1930 pci_unmap_page((lio->oct_dev)->pci_dev,
1931 g->sg[(i >> 2)].ptr[(i & 3)],
1932 frag->size, DMA_TO_DEVICE);
1933 i++;
1934 }
1935
1936 dma_sync_single_for_cpu(&lio->oct_dev->pci_dev->dev,
1937 g->sg_dma_ptr, g->sg_size, DMA_TO_DEVICE);
1938
1939 iq = skb_iq(lio, skb);
1940
1941 spin_lock(&lio->glist_lock[iq]);
1942 list_add_tail(&g->list, &lio->glist[iq]);
1943 spin_unlock(&lio->glist_lock[iq]);
1944
1945 /* Don't free the skb yet */
1946
1947 check_txq_state(lio, skb);
1948 }
1949
1950 /**
1951 * \brief Adjust ptp frequency
1952 * @param ptp PTP clock info
1953 * @param ppb how much to adjust by, in parts-per-billion
1954 */
1955 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1956 {
1957 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1958 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1959 u64 comp, delta;
1960 unsigned long flags;
1961 bool neg_adj = false;
1962
1963 if (ppb < 0) {
1964 neg_adj = true;
1965 ppb = -ppb;
1966 }
1967
1968 /* The hardware adds the clock compensation value to the
1969 * PTP clock on every coprocessor clock cycle, so we
1970 * compute the delta in terms of coprocessor clocks.
1971 */
1972 delta = (u64)ppb << 32;
1973 do_div(delta, oct->coproc_clock_rate);
1974
1975 spin_lock_irqsave(&lio->ptp_lock, flags);
1976 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1977 if (neg_adj)
1978 comp -= delta;
1979 else
1980 comp += delta;
1981 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1982 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1983
1984 return 0;
1985 }
1986
1987 /**
1988 * \brief Adjust ptp time
1989 * @param ptp PTP clock info
1990 * @param delta how much to adjust by, in nanosecs
1991 */
1992 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1993 {
1994 unsigned long flags;
1995 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1996
1997 spin_lock_irqsave(&lio->ptp_lock, flags);
1998 lio->ptp_adjust += delta;
1999 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2000
2001 return 0;
2002 }
2003
2004 /**
2005 * \brief Get hardware clock time, including any adjustment
2006 * @param ptp PTP clock info
2007 * @param ts timespec
2008 */
2009 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
2010 struct timespec64 *ts)
2011 {
2012 u64 ns;
2013 unsigned long flags;
2014 struct lio *lio = container_of(ptp, struct lio, ptp_info);
2015 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2016
2017 spin_lock_irqsave(&lio->ptp_lock, flags);
2018 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
2019 ns += lio->ptp_adjust;
2020 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2021
2022 *ts = ns_to_timespec64(ns);
2023
2024 return 0;
2025 }
2026
2027 /**
2028 * \brief Set hardware clock time. Reset adjustment
2029 * @param ptp PTP clock info
2030 * @param ts timespec
2031 */
2032 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
2033 const struct timespec64 *ts)
2034 {
2035 u64 ns;
2036 unsigned long flags;
2037 struct lio *lio = container_of(ptp, struct lio, ptp_info);
2038 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2039
2040 ns = timespec_to_ns(ts);
2041
2042 spin_lock_irqsave(&lio->ptp_lock, flags);
2043 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
2044 lio->ptp_adjust = 0;
2045 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2046
2047 return 0;
2048 }
2049
2050 /**
2051 * \brief Check if PTP is enabled
2052 * @param ptp PTP clock info
2053 * @param rq request
2054 * @param on is it on
2055 */
2056 static int
2057 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
2058 struct ptp_clock_request *rq __attribute__((unused)),
2059 int on __attribute__((unused)))
2060 {
2061 return -EOPNOTSUPP;
2062 }
2063
2064 /**
2065 * \brief Open PTP clock source
2066 * @param netdev network device
2067 */
2068 static void oct_ptp_open(struct net_device *netdev)
2069 {
2070 struct lio *lio = GET_LIO(netdev);
2071 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2072
2073 spin_lock_init(&lio->ptp_lock);
2074
2075 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
2076 lio->ptp_info.owner = THIS_MODULE;
2077 lio->ptp_info.max_adj = 250000000;
2078 lio->ptp_info.n_alarm = 0;
2079 lio->ptp_info.n_ext_ts = 0;
2080 lio->ptp_info.n_per_out = 0;
2081 lio->ptp_info.pps = 0;
2082 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
2083 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
2084 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
2085 lio->ptp_info.settime64 = liquidio_ptp_settime;
2086 lio->ptp_info.enable = liquidio_ptp_enable;
2087
2088 lio->ptp_adjust = 0;
2089
2090 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
2091 &oct->pci_dev->dev);
2092
2093 if (IS_ERR(lio->ptp_clock))
2094 lio->ptp_clock = NULL;
2095 }
2096
2097 /**
2098 * \brief Init PTP clock
2099 * @param oct octeon device
2100 */
2101 static void liquidio_ptp_init(struct octeon_device *oct)
2102 {
2103 u64 clock_comp, cfg;
2104
2105 clock_comp = (u64)NSEC_PER_SEC << 32;
2106 do_div(clock_comp, oct->coproc_clock_rate);
2107 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2108
2109 /* Enable */
2110 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
2111 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
2112 }
2113
2114 /**
2115 * \brief Load firmware to device
2116 * @param oct octeon device
2117 *
2118 * Maps device to firmware filename, requests firmware, and downloads it
2119 */
2120 static int load_firmware(struct octeon_device *oct)
2121 {
2122 int ret = 0;
2123 const struct firmware *fw;
2124 char fw_name[LIO_MAX_FW_FILENAME_LEN];
2125 char *tmp_fw_type;
2126
2127 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
2128 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
2129 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
2130 return ret;
2131 }
2132
2133 if (fw_type[0] == '\0')
2134 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
2135 else
2136 tmp_fw_type = fw_type;
2137
2138 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
2139 octeon_get_conf(oct)->card_name, tmp_fw_type,
2140 LIO_FW_NAME_SUFFIX);
2141
2142 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
2143 if (ret) {
2144 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
2145 fw_name);
2146 release_firmware(fw);
2147 return ret;
2148 }
2149
2150 ret = octeon_download_firmware(oct, fw->data, fw->size);
2151
2152 release_firmware(fw);
2153
2154 return ret;
2155 }
2156
2157 /**
2158 * \brief Setup output queue
2159 * @param oct octeon device
2160 * @param q_no which queue
2161 * @param num_descs how many descriptors
2162 * @param desc_size size of each descriptor
2163 * @param app_ctx application context
2164 */
2165 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
2166 int desc_size, void *app_ctx)
2167 {
2168 int ret_val = 0;
2169
2170 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
2171 /* droq creation and local register settings. */
2172 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
2173 if (ret_val < 0)
2174 return ret_val;
2175
2176 if (ret_val == 1) {
2177 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
2178 return 0;
2179 }
2180 /* tasklet creation for the droq */
2181
2182 /* Enable the droq queues */
2183 octeon_set_droq_pkt_op(oct, q_no, 1);
2184
2185 /* Send Credit for Octeon Output queues. Credits are always
2186 * sent after the output queue is enabled.
2187 */
2188 writel(oct->droq[q_no]->max_count,
2189 oct->droq[q_no]->pkts_credit_reg);
2190
2191 return ret_val;
2192 }
2193
2194 /**
2195 * \brief Callback for getting interface configuration
2196 * @param status status of request
2197 * @param buf pointer to resp structure
2198 */
2199 static void if_cfg_callback(struct octeon_device *oct,
2200 u32 status __attribute__((unused)),
2201 void *buf)
2202 {
2203 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
2204 struct liquidio_if_cfg_resp *resp;
2205 struct liquidio_if_cfg_context *ctx;
2206
2207 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2208 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
2209
2210 oct = lio_get_device(ctx->octeon_id);
2211 if (resp->status)
2212 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
2213 CVM_CAST64(resp->status));
2214 WRITE_ONCE(ctx->cond, 1);
2215
2216 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
2217 resp->cfg_info.liquidio_firmware_version);
2218
2219 /* This barrier is required to be sure that the response has been
2220 * written fully before waking up the handler
2221 */
2222 wmb();
2223
2224 wake_up_interruptible(&ctx->wc);
2225 }
2226
2227 /** Routine to push packets arriving on Octeon interface upto network layer.
2228 * @param oct_id - octeon device id.
2229 * @param skbuff - skbuff struct to be passed to network layer.
2230 * @param len - size of total data received.
2231 * @param rh - Control header associated with the packet
2232 * @param param - additional control data with the packet
2233 * @param arg - farg registered in droq_ops
2234 */
2235 static void
2236 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
2237 void *skbuff,
2238 u32 len,
2239 union octeon_rh *rh,
2240 void *param,
2241 void *arg)
2242 {
2243 struct napi_struct *napi = param;
2244 struct sk_buff *skb = (struct sk_buff *)skbuff;
2245 struct skb_shared_hwtstamps *shhwtstamps;
2246 u64 ns;
2247 u16 vtag = 0;
2248 u32 r_dh_off;
2249 struct net_device *netdev = (struct net_device *)arg;
2250 struct octeon_droq *droq = container_of(param, struct octeon_droq,
2251 napi);
2252 if (netdev) {
2253 int packet_was_received;
2254 struct lio *lio = GET_LIO(netdev);
2255 struct octeon_device *oct = lio->oct_dev;
2256
2257 /* Do not proceed if the interface is not in RUNNING state. */
2258 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
2259 recv_buffer_free(skb);
2260 droq->stats.rx_dropped++;
2261 return;
2262 }
2263
2264 skb->dev = netdev;
2265
2266 skb_record_rx_queue(skb, droq->q_no);
2267 if (likely(len > MIN_SKB_SIZE)) {
2268 struct octeon_skb_page_info *pg_info;
2269 unsigned char *va;
2270
2271 pg_info = ((struct octeon_skb_page_info *)(skb->cb));
2272 if (pg_info->page) {
2273 /* For Paged allocation use the frags */
2274 va = page_address(pg_info->page) +
2275 pg_info->page_offset;
2276 memcpy(skb->data, va, MIN_SKB_SIZE);
2277 skb_put(skb, MIN_SKB_SIZE);
2278 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2279 pg_info->page,
2280 pg_info->page_offset +
2281 MIN_SKB_SIZE,
2282 len - MIN_SKB_SIZE,
2283 LIO_RXBUFFER_SZ);
2284 }
2285 } else {
2286 struct octeon_skb_page_info *pg_info =
2287 ((struct octeon_skb_page_info *)(skb->cb));
2288 skb_copy_to_linear_data(skb, page_address(pg_info->page)
2289 + pg_info->page_offset, len);
2290 skb_put(skb, len);
2291 put_page(pg_info->page);
2292 }
2293
2294 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT;
2295
2296 if (((oct->chip_id == OCTEON_CN66XX) ||
2297 (oct->chip_id == OCTEON_CN68XX)) &&
2298 ptp_enable) {
2299 if (rh->r_dh.has_hwtstamp) {
2300 /* timestamp is included from the hardware at
2301 * the beginning of the packet.
2302 */
2303 if (ifstate_check
2304 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
2305 /* Nanoseconds are in the first 64-bits
2306 * of the packet.
2307 */
2308 memcpy(&ns, (skb->data + r_dh_off),
2309 sizeof(ns));
2310 r_dh_off -= BYTES_PER_DHLEN_UNIT;
2311 shhwtstamps = skb_hwtstamps(skb);
2312 shhwtstamps->hwtstamp =
2313 ns_to_ktime(ns +
2314 lio->ptp_adjust);
2315 }
2316 }
2317 }
2318
2319 if (rh->r_dh.has_hash) {
2320 __be32 *hash_be = (__be32 *)(skb->data + r_dh_off);
2321 u32 hash = be32_to_cpu(*hash_be);
2322
2323 skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
2324 r_dh_off -= BYTES_PER_DHLEN_UNIT;
2325 }
2326
2327 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT);
2328
2329 skb->protocol = eth_type_trans(skb, skb->dev);
2330 if ((netdev->features & NETIF_F_RXCSUM) &&
2331 (((rh->r_dh.encap_on) &&
2332 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2333 (!(rh->r_dh.encap_on) &&
2334 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2335 /* checksum has already been verified */
2336 skb->ip_summed = CHECKSUM_UNNECESSARY;
2337 else
2338 skb->ip_summed = CHECKSUM_NONE;
2339
2340 /* Setting Encapsulation field on basis of status received
2341 * from the firmware
2342 */
2343 if (rh->r_dh.encap_on) {
2344 skb->encapsulation = 1;
2345 skb->csum_level = 1;
2346 droq->stats.rx_vxlan++;
2347 }
2348
2349 /* inbound VLAN tag */
2350 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2351 (rh->r_dh.vlan != 0)) {
2352 u16 vid = rh->r_dh.vlan;
2353 u16 priority = rh->r_dh.priority;
2354
2355 vtag = priority << 13 | vid;
2356 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2357 }
2358
2359 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2360
2361 if (packet_was_received) {
2362 droq->stats.rx_bytes_received += len;
2363 droq->stats.rx_pkts_received++;
2364 } else {
2365 droq->stats.rx_dropped++;
2366 netif_info(lio, rx_err, lio->netdev,
2367 "droq:%d error rx_dropped:%llu\n",
2368 droq->q_no, droq->stats.rx_dropped);
2369 }
2370
2371 } else {
2372 recv_buffer_free(skb);
2373 }
2374 }
2375
2376 /**
2377 * \brief wrapper for calling napi_schedule
2378 * @param param parameters to pass to napi_schedule
2379 *
2380 * Used when scheduling on different CPUs
2381 */
2382 static void napi_schedule_wrapper(void *param)
2383 {
2384 struct napi_struct *napi = param;
2385
2386 napi_schedule(napi);
2387 }
2388
2389 /**
2390 * \brief callback when receive interrupt occurs and we are in NAPI mode
2391 * @param arg pointer to octeon output queue
2392 */
2393 static void liquidio_napi_drv_callback(void *arg)
2394 {
2395 struct octeon_device *oct;
2396 struct octeon_droq *droq = arg;
2397 int this_cpu = smp_processor_id();
2398
2399 oct = droq->oct_dev;
2400
2401 if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) {
2402 napi_schedule_irqoff(&droq->napi);
2403 } else {
2404 struct call_single_data *csd = &droq->csd;
2405
2406 csd->func = napi_schedule_wrapper;
2407 csd->info = &droq->napi;
2408 csd->flags = 0;
2409
2410 smp_call_function_single_async(droq->cpu_id, csd);
2411 }
2412 }
2413
2414 /**
2415 * \brief Entry point for NAPI polling
2416 * @param napi NAPI structure
2417 * @param budget maximum number of items to process
2418 */
2419 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2420 {
2421 struct octeon_droq *droq;
2422 int work_done;
2423 int tx_done = 0, iq_no;
2424 struct octeon_instr_queue *iq;
2425 struct octeon_device *oct;
2426
2427 droq = container_of(napi, struct octeon_droq, napi);
2428 oct = droq->oct_dev;
2429 iq_no = droq->q_no;
2430 /* Handle Droq descriptors */
2431 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2432 POLL_EVENT_PROCESS_PKTS,
2433 budget);
2434
2435 /* Flush the instruction queue */
2436 iq = oct->instr_queue[iq_no];
2437 if (iq) {
2438 /* Process iq buffers with in the budget limits */
2439 tx_done = octeon_flush_iq(oct, iq, budget);
2440 /* Update iq read-index rather than waiting for next interrupt.
2441 * Return back if tx_done is false.
2442 */
2443 update_txq_status(oct, iq_no);
2444 } else {
2445 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
2446 __func__, iq_no);
2447 }
2448
2449 /* force enable interrupt if reg cnts are high to avoid wraparound */
2450 if ((work_done < budget && tx_done) ||
2451 (iq && iq->pkt_in_done >= MAX_REG_CNT) ||
2452 (droq->pkt_count >= MAX_REG_CNT)) {
2453 tx_done = 1;
2454 napi_complete_done(napi, work_done);
2455 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2456 POLL_EVENT_ENABLE_INTR, 0);
2457 return 0;
2458 }
2459
2460 return (!tx_done) ? (budget) : (work_done);
2461 }
2462
2463 /**
2464 * \brief Setup input and output queues
2465 * @param octeon_dev octeon device
2466 * @param ifidx Interface Index
2467 *
2468 * Note: Queues are with respect to the octeon device. Thus
2469 * an input queue is for egress packets, and output queues
2470 * are for ingress packets.
2471 */
2472 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2473 int ifidx)
2474 {
2475 struct octeon_droq_ops droq_ops;
2476 struct net_device *netdev;
2477 static int cpu_id;
2478 static int cpu_id_modulus;
2479 struct octeon_droq *droq;
2480 struct napi_struct *napi;
2481 int q, q_no, retval = 0;
2482 struct lio *lio;
2483 int num_tx_descs;
2484
2485 netdev = octeon_dev->props[ifidx].netdev;
2486
2487 lio = GET_LIO(netdev);
2488
2489 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2490
2491 droq_ops.fptr = liquidio_push_packet;
2492 droq_ops.farg = (void *)netdev;
2493
2494 droq_ops.poll_mode = 1;
2495 droq_ops.napi_fn = liquidio_napi_drv_callback;
2496 cpu_id = 0;
2497 cpu_id_modulus = num_present_cpus();
2498
2499 /* set up DROQs. */
2500 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2501 q_no = lio->linfo.rxpciq[q].s.q_no;
2502 dev_dbg(&octeon_dev->pci_dev->dev,
2503 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2504 q, q_no);
2505 retval = octeon_setup_droq(octeon_dev, q_no,
2506 CFG_GET_NUM_RX_DESCS_NIC_IF
2507 (octeon_get_conf(octeon_dev),
2508 lio->ifidx),
2509 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2510 (octeon_get_conf(octeon_dev),
2511 lio->ifidx), NULL);
2512 if (retval) {
2513 dev_err(&octeon_dev->pci_dev->dev,
2514 "%s : Runtime DROQ(RxQ) creation failed.\n",
2515 __func__);
2516 return 1;
2517 }
2518
2519 droq = octeon_dev->droq[q_no];
2520 napi = &droq->napi;
2521 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n",
2522 (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num);
2523 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2524
2525 /* designate a CPU for this droq */
2526 droq->cpu_id = cpu_id;
2527 cpu_id++;
2528 if (cpu_id >= cpu_id_modulus)
2529 cpu_id = 0;
2530
2531 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2532 }
2533
2534 if (OCTEON_CN23XX_PF(octeon_dev)) {
2535 /* 23XX PF can receive control messages (via the first PF-owned
2536 * droq) from the firmware even if the ethX interface is down,
2537 * so that's why poll_mode must be off for the first droq.
2538 */
2539 octeon_dev->droq[0]->ops.poll_mode = 0;
2540 }
2541
2542 /* set up IQs. */
2543 for (q = 0; q < lio->linfo.num_txpciq; q++) {
2544 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2545 (octeon_dev),
2546 lio->ifidx);
2547 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2548 lio->linfo.txpciq[q], num_tx_descs,
2549 netdev_get_tx_queue(netdev, q));
2550 if (retval) {
2551 dev_err(&octeon_dev->pci_dev->dev,
2552 " %s : Runtime IQ(TxQ) creation failed.\n",
2553 __func__);
2554 return 1;
2555 }
2556 }
2557
2558 return 0;
2559 }
2560
2561 /**
2562 * \brief Poll routine for checking transmit queue status
2563 * @param work work_struct data structure
2564 */
2565 static void octnet_poll_check_txq_status(struct work_struct *work)
2566 {
2567 struct cavium_wk *wk = (struct cavium_wk *)work;
2568 struct lio *lio = (struct lio *)wk->ctxptr;
2569
2570 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2571 return;
2572
2573 check_txq_status(lio);
2574 queue_delayed_work(lio->txq_status_wq.wq,
2575 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2576 }
2577
2578 /**
2579 * \brief Sets up the txq poll check
2580 * @param netdev network device
2581 */
2582 static inline int setup_tx_poll_fn(struct net_device *netdev)
2583 {
2584 struct lio *lio = GET_LIO(netdev);
2585 struct octeon_device *oct = lio->oct_dev;
2586
2587 lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2588 WQ_MEM_RECLAIM, 0);
2589 if (!lio->txq_status_wq.wq) {
2590 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2591 return -1;
2592 }
2593 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2594 octnet_poll_check_txq_status);
2595 lio->txq_status_wq.wk.ctxptr = lio;
2596 queue_delayed_work(lio->txq_status_wq.wq,
2597 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2598 return 0;
2599 }
2600
2601 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2602 {
2603 struct lio *lio = GET_LIO(netdev);
2604
2605 if (lio->txq_status_wq.wq) {
2606 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2607 destroy_workqueue(lio->txq_status_wq.wq);
2608 }
2609 }
2610
2611 /**
2612 * \brief Net device open for LiquidIO
2613 * @param netdev network device
2614 */
2615 static int liquidio_open(struct net_device *netdev)
2616 {
2617 struct lio *lio = GET_LIO(netdev);
2618 struct octeon_device *oct = lio->oct_dev;
2619 struct napi_struct *napi, *n;
2620
2621 if (oct->props[lio->ifidx].napi_enabled == 0) {
2622 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2623 napi_enable(napi);
2624
2625 oct->props[lio->ifidx].napi_enabled = 1;
2626
2627 if (OCTEON_CN23XX_PF(oct))
2628 oct->droq[0]->ops.poll_mode = 1;
2629 }
2630
2631 if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) &&
2632 ptp_enable)
2633 oct_ptp_open(netdev);
2634
2635 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2636
2637 /* Ready for link status updates */
2638 lio->intf_open = 1;
2639
2640 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2641
2642 if (OCTEON_CN23XX_PF(oct)) {
2643 if (!oct->msix_on)
2644 if (setup_tx_poll_fn(netdev))
2645 return -1;
2646 } else {
2647 if (setup_tx_poll_fn(netdev))
2648 return -1;
2649 }
2650
2651 start_txq(netdev);
2652
2653 /* tell Octeon to start forwarding packets to host */
2654 send_rx_ctrl_cmd(lio, 1);
2655
2656 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2657 netdev->name);
2658
2659 return 0;
2660 }
2661
2662 /**
2663 * \brief Net device stop for LiquidIO
2664 * @param netdev network device
2665 */
2666 static int liquidio_stop(struct net_device *netdev)
2667 {
2668 struct lio *lio = GET_LIO(netdev);
2669 struct octeon_device *oct = lio->oct_dev;
2670
2671 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2672
2673 netif_tx_disable(netdev);
2674
2675 /* Inform that netif carrier is down */
2676 netif_carrier_off(netdev);
2677 lio->intf_open = 0;
2678 lio->linfo.link.s.link_up = 0;
2679 lio->link_changes++;
2680
2681 /* Tell Octeon that nic interface is down. */
2682 send_rx_ctrl_cmd(lio, 0);
2683
2684 if (OCTEON_CN23XX_PF(oct)) {
2685 if (!oct->msix_on)
2686 cleanup_tx_poll_fn(netdev);
2687 } else {
2688 cleanup_tx_poll_fn(netdev);
2689 }
2690
2691 if (lio->ptp_clock) {
2692 ptp_clock_unregister(lio->ptp_clock);
2693 lio->ptp_clock = NULL;
2694 }
2695
2696 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * \brief Converts a mask based on net device flags
2703 * @param netdev network device
2704 *
2705 * This routine generates a octnet_ifflags mask from the net device flags
2706 * received from the OS.
2707 */
2708 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2709 {
2710 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2711
2712 if (netdev->flags & IFF_PROMISC)
2713 f |= OCTNET_IFFLAG_PROMISC;
2714
2715 if (netdev->flags & IFF_ALLMULTI)
2716 f |= OCTNET_IFFLAG_ALLMULTI;
2717
2718 if (netdev->flags & IFF_MULTICAST) {
2719 f |= OCTNET_IFFLAG_MULTICAST;
2720
2721 /* Accept all multicast addresses if there are more than we
2722 * can handle
2723 */
2724 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2725 f |= OCTNET_IFFLAG_ALLMULTI;
2726 }
2727
2728 if (netdev->flags & IFF_BROADCAST)
2729 f |= OCTNET_IFFLAG_BROADCAST;
2730
2731 return f;
2732 }
2733
2734 /**
2735 * \brief Net device set_multicast_list
2736 * @param netdev network device
2737 */
2738 static void liquidio_set_mcast_list(struct net_device *netdev)
2739 {
2740 struct lio *lio = GET_LIO(netdev);
2741 struct octeon_device *oct = lio->oct_dev;
2742 struct octnic_ctrl_pkt nctrl;
2743 struct netdev_hw_addr *ha;
2744 u64 *mc;
2745 int ret;
2746 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2747
2748 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2749
2750 /* Create a ctrl pkt command to be sent to core app. */
2751 nctrl.ncmd.u64 = 0;
2752 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2753 nctrl.ncmd.s.param1 = get_new_flags(netdev);
2754 nctrl.ncmd.s.param2 = mc_count;
2755 nctrl.ncmd.s.more = mc_count;
2756 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2757 nctrl.netpndev = (u64)netdev;
2758 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2759
2760 /* copy all the addresses into the udd */
2761 mc = &nctrl.udd[0];
2762 netdev_for_each_mc_addr(ha, netdev) {
2763 *mc = 0;
2764 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2765 /* no need to swap bytes */
2766
2767 if (++mc > &nctrl.udd[mc_count])
2768 break;
2769 }
2770
2771 /* Apparently, any activity in this call from the kernel has to
2772 * be atomic. So we won't wait for response.
2773 */
2774 nctrl.wait_time = 0;
2775
2776 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2777 if (ret < 0) {
2778 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2779 ret);
2780 }
2781 }
2782
2783 /**
2784 * \brief Net device set_mac_address
2785 * @param netdev network device
2786 */
2787 static int liquidio_set_mac(struct net_device *netdev, void *p)
2788 {
2789 int ret = 0;
2790 struct lio *lio = GET_LIO(netdev);
2791 struct octeon_device *oct = lio->oct_dev;
2792 struct sockaddr *addr = (struct sockaddr *)p;
2793 struct octnic_ctrl_pkt nctrl;
2794
2795 if (!is_valid_ether_addr(addr->sa_data))
2796 return -EADDRNOTAVAIL;
2797
2798 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2799
2800 nctrl.ncmd.u64 = 0;
2801 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2802 nctrl.ncmd.s.param1 = 0;
2803 nctrl.ncmd.s.more = 1;
2804 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2805 nctrl.netpndev = (u64)netdev;
2806 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2807 nctrl.wait_time = 100;
2808
2809 nctrl.udd[0] = 0;
2810 /* The MAC Address is presented in network byte order. */
2811 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2812
2813 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2814 if (ret < 0) {
2815 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2816 return -ENOMEM;
2817 }
2818 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2819 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2820
2821 return 0;
2822 }
2823
2824 /**
2825 * \brief Net device get_stats
2826 * @param netdev network device
2827 */
2828 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2829 {
2830 struct lio *lio = GET_LIO(netdev);
2831 struct net_device_stats *stats = &netdev->stats;
2832 struct octeon_device *oct;
2833 u64 pkts = 0, drop = 0, bytes = 0;
2834 struct oct_droq_stats *oq_stats;
2835 struct oct_iq_stats *iq_stats;
2836 int i, iq_no, oq_no;
2837
2838 oct = lio->oct_dev;
2839
2840 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2841 iq_no = lio->linfo.txpciq[i].s.q_no;
2842 iq_stats = &oct->instr_queue[iq_no]->stats;
2843 pkts += iq_stats->tx_done;
2844 drop += iq_stats->tx_dropped;
2845 bytes += iq_stats->tx_tot_bytes;
2846 }
2847
2848 stats->tx_packets = pkts;
2849 stats->tx_bytes = bytes;
2850 stats->tx_dropped = drop;
2851
2852 pkts = 0;
2853 drop = 0;
2854 bytes = 0;
2855
2856 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2857 oq_no = lio->linfo.rxpciq[i].s.q_no;
2858 oq_stats = &oct->droq[oq_no]->stats;
2859 pkts += oq_stats->rx_pkts_received;
2860 drop += (oq_stats->rx_dropped +
2861 oq_stats->dropped_nodispatch +
2862 oq_stats->dropped_toomany +
2863 oq_stats->dropped_nomem);
2864 bytes += oq_stats->rx_bytes_received;
2865 }
2866
2867 stats->rx_bytes = bytes;
2868 stats->rx_packets = pkts;
2869 stats->rx_dropped = drop;
2870
2871 return stats;
2872 }
2873
2874 /**
2875 * \brief Net device change_mtu
2876 * @param netdev network device
2877 */
2878 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2879 {
2880 struct lio *lio = GET_LIO(netdev);
2881 struct octeon_device *oct = lio->oct_dev;
2882 struct octnic_ctrl_pkt nctrl;
2883 int ret = 0;
2884
2885 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2886
2887 nctrl.ncmd.u64 = 0;
2888 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2889 nctrl.ncmd.s.param1 = new_mtu;
2890 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2891 nctrl.wait_time = 100;
2892 nctrl.netpndev = (u64)netdev;
2893 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2894
2895 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2896 if (ret < 0) {
2897 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2898 return -1;
2899 }
2900
2901 lio->mtu = new_mtu;
2902
2903 return 0;
2904 }
2905
2906 /**
2907 * \brief Handler for SIOCSHWTSTAMP ioctl
2908 * @param netdev network device
2909 * @param ifr interface request
2910 * @param cmd command
2911 */
2912 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2913 {
2914 struct hwtstamp_config conf;
2915 struct lio *lio = GET_LIO(netdev);
2916
2917 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2918 return -EFAULT;
2919
2920 if (conf.flags)
2921 return -EINVAL;
2922
2923 switch (conf.tx_type) {
2924 case HWTSTAMP_TX_ON:
2925 case HWTSTAMP_TX_OFF:
2926 break;
2927 default:
2928 return -ERANGE;
2929 }
2930
2931 switch (conf.rx_filter) {
2932 case HWTSTAMP_FILTER_NONE:
2933 break;
2934 case HWTSTAMP_FILTER_ALL:
2935 case HWTSTAMP_FILTER_SOME:
2936 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2937 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2938 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2939 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2940 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2941 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2942 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2943 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2944 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2945 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2946 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2947 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2948 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2949 break;
2950 default:
2951 return -ERANGE;
2952 }
2953
2954 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2955 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2956
2957 else
2958 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2959
2960 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2961 }
2962
2963 /**
2964 * \brief ioctl handler
2965 * @param netdev network device
2966 * @param ifr interface request
2967 * @param cmd command
2968 */
2969 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2970 {
2971 struct lio *lio = GET_LIO(netdev);
2972
2973 switch (cmd) {
2974 case SIOCSHWTSTAMP:
2975 if ((lio->oct_dev->chip_id == OCTEON_CN66XX ||
2976 lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable)
2977 return hwtstamp_ioctl(netdev, ifr);
2978 default:
2979 return -EOPNOTSUPP;
2980 }
2981 }
2982
2983 /**
2984 * \brief handle a Tx timestamp response
2985 * @param status response status
2986 * @param buf pointer to skb
2987 */
2988 static void handle_timestamp(struct octeon_device *oct,
2989 u32 status,
2990 void *buf)
2991 {
2992 struct octnet_buf_free_info *finfo;
2993 struct octeon_soft_command *sc;
2994 struct oct_timestamp_resp *resp;
2995 struct lio *lio;
2996 struct sk_buff *skb = (struct sk_buff *)buf;
2997
2998 finfo = (struct octnet_buf_free_info *)skb->cb;
2999 lio = finfo->lio;
3000 sc = finfo->sc;
3001 oct = lio->oct_dev;
3002 resp = (struct oct_timestamp_resp *)sc->virtrptr;
3003
3004 if (status != OCTEON_REQUEST_DONE) {
3005 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
3006 CVM_CAST64(status));
3007 resp->timestamp = 0;
3008 }
3009
3010 octeon_swap_8B_data(&resp->timestamp, 1);
3011
3012 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
3013 struct skb_shared_hwtstamps ts;
3014 u64 ns = resp->timestamp;
3015
3016 netif_info(lio, tx_done, lio->netdev,
3017 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
3018 skb, (unsigned long long)ns);
3019 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
3020 skb_tstamp_tx(skb, &ts);
3021 }
3022
3023 octeon_free_soft_command(oct, sc);
3024 tx_buffer_free(skb);
3025 }
3026
3027 /* \brief Send a data packet that will be timestamped
3028 * @param oct octeon device
3029 * @param ndata pointer to network data
3030 * @param finfo pointer to private network data
3031 */
3032 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
3033 struct octnic_data_pkt *ndata,
3034 struct octnet_buf_free_info *finfo)
3035 {
3036 int retval;
3037 struct octeon_soft_command *sc;
3038 struct lio *lio;
3039 int ring_doorbell;
3040 u32 len;
3041
3042 lio = finfo->lio;
3043
3044 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
3045 sizeof(struct oct_timestamp_resp));
3046 finfo->sc = sc;
3047
3048 if (!sc) {
3049 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
3050 return IQ_SEND_FAILED;
3051 }
3052
3053 if (ndata->reqtype == REQTYPE_NORESP_NET)
3054 ndata->reqtype = REQTYPE_RESP_NET;
3055 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
3056 ndata->reqtype = REQTYPE_RESP_NET_SG;
3057
3058 sc->callback = handle_timestamp;
3059 sc->callback_arg = finfo->skb;
3060 sc->iq_no = ndata->q_no;
3061
3062 if (OCTEON_CN23XX_PF(oct))
3063 len = (u32)((struct octeon_instr_ih3 *)
3064 (&sc->cmd.cmd3.ih3))->dlengsz;
3065 else
3066 len = (u32)((struct octeon_instr_ih2 *)
3067 (&sc->cmd.cmd2.ih2))->dlengsz;
3068
3069 ring_doorbell = 1;
3070
3071 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
3072 sc, len, ndata->reqtype);
3073
3074 if (retval == IQ_SEND_FAILED) {
3075 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
3076 retval);
3077 octeon_free_soft_command(oct, sc);
3078 } else {
3079 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
3080 }
3081
3082 return retval;
3083 }
3084
3085 /** \brief Transmit networks packets to the Octeon interface
3086 * @param skbuff skbuff struct to be passed to network layer.
3087 * @param netdev pointer to network device
3088 * @returns whether the packet was transmitted to the device okay or not
3089 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
3090 */
3091 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
3092 {
3093 struct lio *lio;
3094 struct octnet_buf_free_info *finfo;
3095 union octnic_cmd_setup cmdsetup;
3096 struct octnic_data_pkt ndata;
3097 struct octeon_device *oct;
3098 struct oct_iq_stats *stats;
3099 struct octeon_instr_irh *irh;
3100 union tx_info *tx_info;
3101 int status = 0;
3102 int q_idx = 0, iq_no = 0;
3103 int j;
3104 u64 dptr = 0;
3105 u32 tag = 0;
3106
3107 lio = GET_LIO(netdev);
3108 oct = lio->oct_dev;
3109
3110 if (netif_is_multiqueue(netdev)) {
3111 q_idx = skb->queue_mapping;
3112 q_idx = (q_idx % (lio->linfo.num_txpciq));
3113 tag = q_idx;
3114 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
3115 } else {
3116 iq_no = lio->txq;
3117 }
3118
3119 stats = &oct->instr_queue[iq_no]->stats;
3120
3121 /* Check for all conditions in which the current packet cannot be
3122 * transmitted.
3123 */
3124 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
3125 (!lio->linfo.link.s.link_up) ||
3126 (skb->len <= 0)) {
3127 netif_info(lio, tx_err, lio->netdev,
3128 "Transmit failed link_status : %d\n",
3129 lio->linfo.link.s.link_up);
3130 goto lio_xmit_failed;
3131 }
3132
3133 /* Use space in skb->cb to store info used to unmap and
3134 * free the buffers.
3135 */
3136 finfo = (struct octnet_buf_free_info *)skb->cb;
3137 finfo->lio = lio;
3138 finfo->skb = skb;
3139 finfo->sc = NULL;
3140
3141 /* Prepare the attributes for the data to be passed to OSI. */
3142 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
3143
3144 ndata.buf = (void *)finfo;
3145
3146 ndata.q_no = iq_no;
3147
3148 if (netif_is_multiqueue(netdev)) {
3149 if (octnet_iq_is_full(oct, ndata.q_no)) {
3150 /* defer sending if queue is full */
3151 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3152 ndata.q_no);
3153 stats->tx_iq_busy++;
3154 return NETDEV_TX_BUSY;
3155 }
3156 } else {
3157 if (octnet_iq_is_full(oct, lio->txq)) {
3158 /* defer sending if queue is full */
3159 stats->tx_iq_busy++;
3160 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3161 lio->txq);
3162 return NETDEV_TX_BUSY;
3163 }
3164 }
3165 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
3166 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
3167 */
3168
3169 ndata.datasize = skb->len;
3170
3171 cmdsetup.u64 = 0;
3172 cmdsetup.s.iq_no = iq_no;
3173
3174 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3175 if (skb->encapsulation) {
3176 cmdsetup.s.tnl_csum = 1;
3177 stats->tx_vxlan++;
3178 } else {
3179 cmdsetup.s.transport_csum = 1;
3180 }
3181 }
3182 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3183 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3184 cmdsetup.s.timestamp = 1;
3185 }
3186
3187 if (skb_shinfo(skb)->nr_frags == 0) {
3188 cmdsetup.s.u.datasize = skb->len;
3189 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3190
3191 /* Offload checksum calculation for TCP/UDP packets */
3192 dptr = dma_map_single(&oct->pci_dev->dev,
3193 skb->data,
3194 skb->len,
3195 DMA_TO_DEVICE);
3196 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
3197 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
3198 __func__);
3199 return NETDEV_TX_BUSY;
3200 }
3201
3202 if (OCTEON_CN23XX_PF(oct))
3203 ndata.cmd.cmd3.dptr = dptr;
3204 else
3205 ndata.cmd.cmd2.dptr = dptr;
3206 finfo->dptr = dptr;
3207 ndata.reqtype = REQTYPE_NORESP_NET;
3208
3209 } else {
3210 int i, frags;
3211 struct skb_frag_struct *frag;
3212 struct octnic_gather *g;
3213
3214 spin_lock(&lio->glist_lock[q_idx]);
3215 g = (struct octnic_gather *)
3216 list_delete_head(&lio->glist[q_idx]);
3217 spin_unlock(&lio->glist_lock[q_idx]);
3218
3219 if (!g) {
3220 netif_info(lio, tx_err, lio->netdev,
3221 "Transmit scatter gather: glist null!\n");
3222 goto lio_xmit_failed;
3223 }
3224
3225 cmdsetup.s.gather = 1;
3226 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3227 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3228
3229 memset(g->sg, 0, g->sg_size);
3230
3231 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3232 skb->data,
3233 (skb->len - skb->data_len),
3234 DMA_TO_DEVICE);
3235 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3236 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3237 __func__);
3238 return NETDEV_TX_BUSY;
3239 }
3240 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3241
3242 frags = skb_shinfo(skb)->nr_frags;
3243 i = 1;
3244 while (frags--) {
3245 frag = &skb_shinfo(skb)->frags[i - 1];
3246
3247 g->sg[(i >> 2)].ptr[(i & 3)] =
3248 dma_map_page(&oct->pci_dev->dev,
3249 frag->page.p,
3250 frag->page_offset,
3251 frag->size,
3252 DMA_TO_DEVICE);
3253
3254 if (dma_mapping_error(&oct->pci_dev->dev,
3255 g->sg[i >> 2].ptr[i & 3])) {
3256 dma_unmap_single(&oct->pci_dev->dev,
3257 g->sg[0].ptr[0],
3258 skb->len - skb->data_len,
3259 DMA_TO_DEVICE);
3260 for (j = 1; j < i; j++) {
3261 frag = &skb_shinfo(skb)->frags[j - 1];
3262 dma_unmap_page(&oct->pci_dev->dev,
3263 g->sg[j >> 2].ptr[j & 3],
3264 frag->size,
3265 DMA_TO_DEVICE);
3266 }
3267 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3268 __func__);
3269 return NETDEV_TX_BUSY;
3270 }
3271
3272 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3273 i++;
3274 }
3275
3276 dma_sync_single_for_device(&oct->pci_dev->dev, g->sg_dma_ptr,
3277 g->sg_size, DMA_TO_DEVICE);
3278 dptr = g->sg_dma_ptr;
3279
3280 if (OCTEON_CN23XX_PF(oct))
3281 ndata.cmd.cmd3.dptr = dptr;
3282 else
3283 ndata.cmd.cmd2.dptr = dptr;
3284 finfo->dptr = dptr;
3285 finfo->g = g;
3286
3287 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3288 }
3289
3290 if (OCTEON_CN23XX_PF(oct)) {
3291 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
3292 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
3293 } else {
3294 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3295 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3296 }
3297
3298 if (skb_shinfo(skb)->gso_size) {
3299 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3300 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3301 stats->tx_gso++;
3302 }
3303
3304 /* HW insert VLAN tag */
3305 if (skb_vlan_tag_present(skb)) {
3306 irh->priority = skb_vlan_tag_get(skb) >> 13;
3307 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3308 }
3309
3310 if (unlikely(cmdsetup.s.timestamp))
3311 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
3312 else
3313 status = octnet_send_nic_data_pkt(oct, &ndata);
3314 if (status == IQ_SEND_FAILED)
3315 goto lio_xmit_failed;
3316
3317 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3318
3319 if (status == IQ_SEND_STOP)
3320 stop_q(lio->netdev, q_idx);
3321
3322 netif_trans_update(netdev);
3323
3324 if (tx_info->s.gso_segs)
3325 stats->tx_done += tx_info->s.gso_segs;
3326 else
3327 stats->tx_done++;
3328 stats->tx_tot_bytes += ndata.datasize;
3329
3330 return NETDEV_TX_OK;
3331
3332 lio_xmit_failed:
3333 stats->tx_dropped++;
3334 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3335 iq_no, stats->tx_dropped);
3336 if (dptr)
3337 dma_unmap_single(&oct->pci_dev->dev, dptr,
3338 ndata.datasize, DMA_TO_DEVICE);
3339 tx_buffer_free(skb);
3340 return NETDEV_TX_OK;
3341 }
3342
3343 /** \brief Network device Tx timeout
3344 * @param netdev pointer to network device
3345 */
3346 static void liquidio_tx_timeout(struct net_device *netdev)
3347 {
3348 struct lio *lio;
3349
3350 lio = GET_LIO(netdev);
3351
3352 netif_info(lio, tx_err, lio->netdev,
3353 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3354 netdev->stats.tx_dropped);
3355 netif_trans_update(netdev);
3356 txqs_wake(netdev);
3357 }
3358
3359 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3360 __be16 proto __attribute__((unused)),
3361 u16 vid)
3362 {
3363 struct lio *lio = GET_LIO(netdev);
3364 struct octeon_device *oct = lio->oct_dev;
3365 struct octnic_ctrl_pkt nctrl;
3366 int ret = 0;
3367
3368 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3369
3370 nctrl.ncmd.u64 = 0;
3371 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3372 nctrl.ncmd.s.param1 = vid;
3373 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3374 nctrl.wait_time = 100;
3375 nctrl.netpndev = (u64)netdev;
3376 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3377
3378 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3379 if (ret < 0) {
3380 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3381 ret);
3382 }
3383
3384 return ret;
3385 }
3386
3387 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3388 __be16 proto __attribute__((unused)),
3389 u16 vid)
3390 {
3391 struct lio *lio = GET_LIO(netdev);
3392 struct octeon_device *oct = lio->oct_dev;
3393 struct octnic_ctrl_pkt nctrl;
3394 int ret = 0;
3395
3396 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3397
3398 nctrl.ncmd.u64 = 0;
3399 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3400 nctrl.ncmd.s.param1 = vid;
3401 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3402 nctrl.wait_time = 100;
3403 nctrl.netpndev = (u64)netdev;
3404 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3405
3406 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3407 if (ret < 0) {
3408 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3409 ret);
3410 }
3411 return ret;
3412 }
3413
3414 /** Sending command to enable/disable RX checksum offload
3415 * @param netdev pointer to network device
3416 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL
3417 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/
3418 * OCTNET_CMD_RXCSUM_DISABLE
3419 * @returns SUCCESS or FAILURE
3420 */
3421 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3422 u8 rx_cmd)
3423 {
3424 struct lio *lio = GET_LIO(netdev);
3425 struct octeon_device *oct = lio->oct_dev;
3426 struct octnic_ctrl_pkt nctrl;
3427 int ret = 0;
3428
3429 nctrl.ncmd.u64 = 0;
3430 nctrl.ncmd.s.cmd = command;
3431 nctrl.ncmd.s.param1 = rx_cmd;
3432 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3433 nctrl.wait_time = 100;
3434 nctrl.netpndev = (u64)netdev;
3435 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3436
3437 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3438 if (ret < 0) {
3439 dev_err(&oct->pci_dev->dev,
3440 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3441 ret);
3442 }
3443 return ret;
3444 }
3445
3446 /** Sending command to add/delete VxLAN UDP port to firmware
3447 * @param netdev pointer to network device
3448 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG
3449 * @param vxlan_port VxLAN port to be added or deleted
3450 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD,
3451 * OCTNET_CMD_VXLAN_PORT_DEL
3452 * @returns SUCCESS or FAILURE
3453 */
3454 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3455 u16 vxlan_port, u8 vxlan_cmd_bit)
3456 {
3457 struct lio *lio = GET_LIO(netdev);
3458 struct octeon_device *oct = lio->oct_dev;
3459 struct octnic_ctrl_pkt nctrl;
3460 int ret = 0;
3461
3462 nctrl.ncmd.u64 = 0;
3463 nctrl.ncmd.s.cmd = command;
3464 nctrl.ncmd.s.more = vxlan_cmd_bit;
3465 nctrl.ncmd.s.param1 = vxlan_port;
3466 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3467 nctrl.wait_time = 100;
3468 nctrl.netpndev = (u64)netdev;
3469 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3470
3471 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3472 if (ret < 0) {
3473 dev_err(&oct->pci_dev->dev,
3474 "VxLAN port add/delete failed in core (ret:0x%x)\n",
3475 ret);
3476 }
3477 return ret;
3478 }
3479
3480 /** \brief Net device fix features
3481 * @param netdev pointer to network device
3482 * @param request features requested
3483 * @returns updated features list
3484 */
3485 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3486 netdev_features_t request)
3487 {
3488 struct lio *lio = netdev_priv(netdev);
3489
3490 if ((request & NETIF_F_RXCSUM) &&
3491 !(lio->dev_capability & NETIF_F_RXCSUM))
3492 request &= ~NETIF_F_RXCSUM;
3493
3494 if ((request & NETIF_F_HW_CSUM) &&
3495 !(lio->dev_capability & NETIF_F_HW_CSUM))
3496 request &= ~NETIF_F_HW_CSUM;
3497
3498 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3499 request &= ~NETIF_F_TSO;
3500
3501 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3502 request &= ~NETIF_F_TSO6;
3503
3504 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3505 request &= ~NETIF_F_LRO;
3506
3507 /*Disable LRO if RXCSUM is off */
3508 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3509 (lio->dev_capability & NETIF_F_LRO))
3510 request &= ~NETIF_F_LRO;
3511
3512 return request;
3513 }
3514
3515 /** \brief Net device set features
3516 * @param netdev pointer to network device
3517 * @param features features to enable/disable
3518 */
3519 static int liquidio_set_features(struct net_device *netdev,
3520 netdev_features_t features)
3521 {
3522 struct lio *lio = netdev_priv(netdev);
3523
3524 if (!((netdev->features ^ features) & NETIF_F_LRO))
3525 return 0;
3526
3527 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3528 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3529 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3530 else if (!(features & NETIF_F_LRO) &&
3531 (lio->dev_capability & NETIF_F_LRO))
3532 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3533 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3534
3535 /* Sending command to firmware to enable/disable RX checksum
3536 * offload settings using ethtool
3537 */
3538 if (!(netdev->features & NETIF_F_RXCSUM) &&
3539 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3540 (features & NETIF_F_RXCSUM))
3541 liquidio_set_rxcsum_command(netdev,
3542 OCTNET_CMD_TNL_RX_CSUM_CTL,
3543 OCTNET_CMD_RXCSUM_ENABLE);
3544 else if ((netdev->features & NETIF_F_RXCSUM) &&
3545 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3546 !(features & NETIF_F_RXCSUM))
3547 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3548 OCTNET_CMD_RXCSUM_DISABLE);
3549
3550 return 0;
3551 }
3552
3553 static void liquidio_add_vxlan_port(struct net_device *netdev,
3554 struct udp_tunnel_info *ti)
3555 {
3556 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3557 return;
3558
3559 liquidio_vxlan_port_command(netdev,
3560 OCTNET_CMD_VXLAN_PORT_CONFIG,
3561 htons(ti->port),
3562 OCTNET_CMD_VXLAN_PORT_ADD);
3563 }
3564
3565 static void liquidio_del_vxlan_port(struct net_device *netdev,
3566 struct udp_tunnel_info *ti)
3567 {
3568 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3569 return;
3570
3571 liquidio_vxlan_port_command(netdev,
3572 OCTNET_CMD_VXLAN_PORT_CONFIG,
3573 htons(ti->port),
3574 OCTNET_CMD_VXLAN_PORT_DEL);
3575 }
3576
3577 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx,
3578 u8 *mac, bool is_admin_assigned)
3579 {
3580 struct lio *lio = GET_LIO(netdev);
3581 struct octeon_device *oct = lio->oct_dev;
3582 struct octnic_ctrl_pkt nctrl;
3583
3584 if (!is_valid_ether_addr(mac))
3585 return -EINVAL;
3586
3587 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs)
3588 return -EINVAL;
3589
3590 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3591
3592 nctrl.ncmd.u64 = 0;
3593 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
3594 /* vfidx is 0 based, but vf_num (param1) is 1 based */
3595 nctrl.ncmd.s.param1 = vfidx + 1;
3596 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0);
3597 nctrl.ncmd.s.more = 1;
3598 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3599 nctrl.cb_fn = 0;
3600 nctrl.wait_time = LIO_CMD_WAIT_TM;
3601
3602 nctrl.udd[0] = 0;
3603 /* The MAC Address is presented in network byte order. */
3604 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac);
3605
3606 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0];
3607
3608 octnet_send_nic_ctrl_pkt(oct, &nctrl);
3609
3610 return 0;
3611 }
3612
3613 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac)
3614 {
3615 struct lio *lio = GET_LIO(netdev);
3616 struct octeon_device *oct = lio->oct_dev;
3617 int retval;
3618
3619 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true);
3620 if (!retval)
3621 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac);
3622
3623 return retval;
3624 }
3625
3626 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx,
3627 u16 vlan, u8 qos, __be16 vlan_proto)
3628 {
3629 struct lio *lio = GET_LIO(netdev);
3630 struct octeon_device *oct = lio->oct_dev;
3631 struct octnic_ctrl_pkt nctrl;
3632 u16 vlantci;
3633
3634 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3635 return -EINVAL;
3636
3637 if (vlan_proto != htons(ETH_P_8021Q))
3638 return -EPROTONOSUPPORT;
3639
3640 if (vlan >= VLAN_N_VID || qos > 7)
3641 return -EINVAL;
3642
3643 if (vlan)
3644 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT;
3645 else
3646 vlantci = 0;
3647
3648 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci)
3649 return 0;
3650
3651 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3652
3653 if (vlan)
3654 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3655 else
3656 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3657
3658 nctrl.ncmd.s.param1 = vlantci;
3659 nctrl.ncmd.s.param2 =
3660 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */
3661 nctrl.ncmd.s.more = 0;
3662 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3663 nctrl.cb_fn = 0;
3664 nctrl.wait_time = LIO_CMD_WAIT_TM;
3665
3666 octnet_send_nic_ctrl_pkt(oct, &nctrl);
3667
3668 oct->sriov_info.vf_vlantci[vfidx] = vlantci;
3669
3670 return 0;
3671 }
3672
3673 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx,
3674 struct ifla_vf_info *ivi)
3675 {
3676 struct lio *lio = GET_LIO(netdev);
3677 struct octeon_device *oct = lio->oct_dev;
3678 u8 *macaddr;
3679
3680 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3681 return -EINVAL;
3682
3683 ivi->vf = vfidx;
3684 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx];
3685 ether_addr_copy(&ivi->mac[0], macaddr);
3686 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK;
3687 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT;
3688 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx];
3689 return 0;
3690 }
3691
3692 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx,
3693 int linkstate)
3694 {
3695 struct lio *lio = GET_LIO(netdev);
3696 struct octeon_device *oct = lio->oct_dev;
3697 struct octnic_ctrl_pkt nctrl;
3698
3699 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3700 return -EINVAL;
3701
3702 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate)
3703 return 0;
3704
3705 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3706 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE;
3707 nctrl.ncmd.s.param1 =
3708 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */
3709 nctrl.ncmd.s.param2 = linkstate;
3710 nctrl.ncmd.s.more = 0;
3711 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3712 nctrl.cb_fn = 0;
3713 nctrl.wait_time = LIO_CMD_WAIT_TM;
3714
3715 octnet_send_nic_ctrl_pkt(oct, &nctrl);
3716
3717 oct->sriov_info.vf_linkstate[vfidx] = linkstate;
3718
3719 return 0;
3720 }
3721
3722 static const struct net_device_ops lionetdevops = {
3723 .ndo_open = liquidio_open,
3724 .ndo_stop = liquidio_stop,
3725 .ndo_start_xmit = liquidio_xmit,
3726 .ndo_get_stats = liquidio_get_stats,
3727 .ndo_set_mac_address = liquidio_set_mac,
3728 .ndo_set_rx_mode = liquidio_set_mcast_list,
3729 .ndo_tx_timeout = liquidio_tx_timeout,
3730
3731 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid,
3732 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid,
3733 .ndo_change_mtu = liquidio_change_mtu,
3734 .ndo_do_ioctl = liquidio_ioctl,
3735 .ndo_fix_features = liquidio_fix_features,
3736 .ndo_set_features = liquidio_set_features,
3737 .ndo_udp_tunnel_add = liquidio_add_vxlan_port,
3738 .ndo_udp_tunnel_del = liquidio_del_vxlan_port,
3739 .ndo_set_vf_mac = liquidio_set_vf_mac,
3740 .ndo_set_vf_vlan = liquidio_set_vf_vlan,
3741 .ndo_get_vf_config = liquidio_get_vf_config,
3742 .ndo_set_vf_link_state = liquidio_set_vf_link_state,
3743 };
3744
3745 /** \brief Entry point for the liquidio module
3746 */
3747 static int __init liquidio_init(void)
3748 {
3749 int i;
3750 struct handshake *hs;
3751
3752 init_completion(&first_stage);
3753
3754 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT);
3755
3756 if (liquidio_init_pci())
3757 return -EINVAL;
3758
3759 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3760
3761 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3762 hs = &handshake[i];
3763 if (hs->pci_dev) {
3764 wait_for_completion(&hs->init);
3765 if (!hs->init_ok) {
3766 /* init handshake failed */
3767 dev_err(&hs->pci_dev->dev,
3768 "Failed to init device\n");
3769 liquidio_deinit_pci();
3770 return -EIO;
3771 }
3772 }
3773 }
3774
3775 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3776 hs = &handshake[i];
3777 if (hs->pci_dev) {
3778 wait_for_completion_timeout(&hs->started,
3779 msecs_to_jiffies(30000));
3780 if (!hs->started_ok) {
3781 /* starter handshake failed */
3782 dev_err(&hs->pci_dev->dev,
3783 "Firmware failed to start\n");
3784 liquidio_deinit_pci();
3785 return -EIO;
3786 }
3787 }
3788 }
3789
3790 return 0;
3791 }
3792
3793 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3794 {
3795 struct octeon_device *oct = (struct octeon_device *)buf;
3796 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3797 int gmxport = 0;
3798 union oct_link_status *ls;
3799 int i;
3800
3801 if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3802 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3803 recv_pkt->buffer_size[0],
3804 recv_pkt->rh.r_nic_info.gmxport);
3805 goto nic_info_err;
3806 }
3807
3808 gmxport = recv_pkt->rh.r_nic_info.gmxport;
3809 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3810
3811 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3812 for (i = 0; i < oct->ifcount; i++) {
3813 if (oct->props[i].gmxport == gmxport) {
3814 update_link_status(oct->props[i].netdev, ls);
3815 break;
3816 }
3817 }
3818
3819 nic_info_err:
3820 for (i = 0; i < recv_pkt->buffer_count; i++)
3821 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3822 octeon_free_recv_info(recv_info);
3823 return 0;
3824 }
3825
3826 /**
3827 * \brief Setup network interfaces
3828 * @param octeon_dev octeon device
3829 *
3830 * Called during init time for each device. It assumes the NIC
3831 * is already up and running. The link information for each
3832 * interface is passed in link_info.
3833 */
3834 static int setup_nic_devices(struct octeon_device *octeon_dev)
3835 {
3836 struct lio *lio = NULL;
3837 struct net_device *netdev;
3838 u8 mac[6], i, j;
3839 struct octeon_soft_command *sc;
3840 struct liquidio_if_cfg_context *ctx;
3841 struct liquidio_if_cfg_resp *resp;
3842 struct octdev_props *props;
3843 int retval, num_iqueues, num_oqueues;
3844 union oct_nic_if_cfg if_cfg;
3845 unsigned int base_queue;
3846 unsigned int gmx_port_id;
3847 u32 resp_size, ctx_size, data_size;
3848 u32 ifidx_or_pfnum;
3849 struct lio_version *vdata;
3850
3851 /* This is to handle link status changes */
3852 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3853 OPCODE_NIC_INFO,
3854 lio_nic_info, octeon_dev);
3855
3856 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3857 * They are handled directly.
3858 */
3859 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3860 free_netbuf);
3861
3862 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3863 free_netsgbuf);
3864
3865 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3866 free_netsgbuf_with_resp);
3867
3868 for (i = 0; i < octeon_dev->ifcount; i++) {
3869 resp_size = sizeof(struct liquidio_if_cfg_resp);
3870 ctx_size = sizeof(struct liquidio_if_cfg_context);
3871 data_size = sizeof(struct lio_version);
3872 sc = (struct octeon_soft_command *)
3873 octeon_alloc_soft_command(octeon_dev, data_size,
3874 resp_size, ctx_size);
3875 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3876 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3877 vdata = (struct lio_version *)sc->virtdptr;
3878
3879 *((u64 *)vdata) = 0;
3880 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3881 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3882 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3883
3884 if (OCTEON_CN23XX_PF(octeon_dev)) {
3885 num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3886 num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3887 base_queue = octeon_dev->sriov_info.pf_srn;
3888
3889 gmx_port_id = octeon_dev->pf_num;
3890 ifidx_or_pfnum = octeon_dev->pf_num;
3891 } else {
3892 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3893 octeon_get_conf(octeon_dev), i);
3894 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3895 octeon_get_conf(octeon_dev), i);
3896 base_queue = CFG_GET_BASE_QUE_NIC_IF(
3897 octeon_get_conf(octeon_dev), i);
3898 gmx_port_id = CFG_GET_GMXID_NIC_IF(
3899 octeon_get_conf(octeon_dev), i);
3900 ifidx_or_pfnum = i;
3901 }
3902
3903 dev_dbg(&octeon_dev->pci_dev->dev,
3904 "requesting config for interface %d, iqs %d, oqs %d\n",
3905 ifidx_or_pfnum, num_iqueues, num_oqueues);
3906 WRITE_ONCE(ctx->cond, 0);
3907 ctx->octeon_id = lio_get_device_id(octeon_dev);
3908 init_waitqueue_head(&ctx->wc);
3909
3910 if_cfg.u64 = 0;
3911 if_cfg.s.num_iqueues = num_iqueues;
3912 if_cfg.s.num_oqueues = num_oqueues;
3913 if_cfg.s.base_queue = base_queue;
3914 if_cfg.s.gmx_port_id = gmx_port_id;
3915
3916 sc->iq_no = 0;
3917
3918 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3919 OPCODE_NIC_IF_CFG, 0,
3920 if_cfg.u64, 0);
3921
3922 sc->callback = if_cfg_callback;
3923 sc->callback_arg = sc;
3924 sc->wait_time = 3000;
3925
3926 retval = octeon_send_soft_command(octeon_dev, sc);
3927 if (retval == IQ_SEND_FAILED) {
3928 dev_err(&octeon_dev->pci_dev->dev,
3929 "iq/oq config failed status: %x\n",
3930 retval);
3931 /* Soft instr is freed by driver in case of failure. */
3932 goto setup_nic_dev_fail;
3933 }
3934
3935 /* Sleep on a wait queue till the cond flag indicates that the
3936 * response arrived or timed-out.
3937 */
3938 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
3939 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
3940 goto setup_nic_wait_intr;
3941 }
3942
3943 retval = resp->status;
3944 if (retval) {
3945 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3946 goto setup_nic_dev_fail;
3947 }
3948
3949 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3950 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3951
3952 num_iqueues = hweight64(resp->cfg_info.iqmask);
3953 num_oqueues = hweight64(resp->cfg_info.oqmask);
3954
3955 if (!(num_iqueues) || !(num_oqueues)) {
3956 dev_err(&octeon_dev->pci_dev->dev,
3957 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3958 resp->cfg_info.iqmask,
3959 resp->cfg_info.oqmask);
3960 goto setup_nic_dev_fail;
3961 }
3962 dev_dbg(&octeon_dev->pci_dev->dev,
3963 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3964 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3965 num_iqueues, num_oqueues);
3966 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3967
3968 if (!netdev) {
3969 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3970 goto setup_nic_dev_fail;
3971 }
3972
3973 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3974
3975 /* Associate the routines that will handle different
3976 * netdev tasks.
3977 */
3978 netdev->netdev_ops = &lionetdevops;
3979
3980 lio = GET_LIO(netdev);
3981
3982 memset(lio, 0, sizeof(struct lio));
3983
3984 lio->ifidx = ifidx_or_pfnum;
3985
3986 props = &octeon_dev->props[i];
3987 props->gmxport = resp->cfg_info.linfo.gmxport;
3988 props->netdev = netdev;
3989
3990 lio->linfo.num_rxpciq = num_oqueues;
3991 lio->linfo.num_txpciq = num_iqueues;
3992 for (j = 0; j < num_oqueues; j++) {
3993 lio->linfo.rxpciq[j].u64 =
3994 resp->cfg_info.linfo.rxpciq[j].u64;
3995 }
3996 for (j = 0; j < num_iqueues; j++) {
3997 lio->linfo.txpciq[j].u64 =
3998 resp->cfg_info.linfo.txpciq[j].u64;
3999 }
4000 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
4001 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
4002 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
4003
4004 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4005
4006 if (OCTEON_CN23XX_PF(octeon_dev) ||
4007 OCTEON_CN6XXX(octeon_dev)) {
4008 lio->dev_capability = NETIF_F_HIGHDMA
4009 | NETIF_F_IP_CSUM
4010 | NETIF_F_IPV6_CSUM
4011 | NETIF_F_SG | NETIF_F_RXCSUM
4012 | NETIF_F_GRO
4013 | NETIF_F_TSO | NETIF_F_TSO6
4014 | NETIF_F_LRO;
4015 }
4016 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
4017
4018 /* Copy of transmit encapsulation capabilities:
4019 * TSO, TSO6, Checksums for this device
4020 */
4021 lio->enc_dev_capability = NETIF_F_IP_CSUM
4022 | NETIF_F_IPV6_CSUM
4023 | NETIF_F_GSO_UDP_TUNNEL
4024 | NETIF_F_HW_CSUM | NETIF_F_SG
4025 | NETIF_F_RXCSUM
4026 | NETIF_F_TSO | NETIF_F_TSO6
4027 | NETIF_F_LRO;
4028
4029 netdev->hw_enc_features = (lio->enc_dev_capability &
4030 ~NETIF_F_LRO);
4031
4032 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
4033
4034 netdev->vlan_features = lio->dev_capability;
4035 /* Add any unchangeable hw features */
4036 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
4037 NETIF_F_HW_VLAN_CTAG_RX |
4038 NETIF_F_HW_VLAN_CTAG_TX;
4039
4040 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
4041
4042 netdev->hw_features = lio->dev_capability;
4043 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
4044 netdev->hw_features = netdev->hw_features &
4045 ~NETIF_F_HW_VLAN_CTAG_RX;
4046
4047 /* MTU range: 68 - 16000 */
4048 netdev->min_mtu = LIO_MIN_MTU_SIZE;
4049 netdev->max_mtu = LIO_MAX_MTU_SIZE;
4050
4051 /* Point to the properties for octeon device to which this
4052 * interface belongs.
4053 */
4054 lio->oct_dev = octeon_dev;
4055 lio->octprops = props;
4056 lio->netdev = netdev;
4057
4058 dev_dbg(&octeon_dev->pci_dev->dev,
4059 "if%d gmx: %d hw_addr: 0x%llx\n", i,
4060 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
4061
4062 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) {
4063 u8 vfmac[ETH_ALEN];
4064
4065 random_ether_addr(&vfmac[0]);
4066 if (__liquidio_set_vf_mac(netdev, j,
4067 &vfmac[0], false)) {
4068 dev_err(&octeon_dev->pci_dev->dev,
4069 "Error setting VF%d MAC address\n",
4070 j);
4071 goto setup_nic_dev_fail;
4072 }
4073 }
4074
4075 /* 64-bit swap required on LE machines */
4076 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
4077 for (j = 0; j < 6; j++)
4078 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
4079
4080 /* Copy MAC Address to OS network device structure */
4081
4082 ether_addr_copy(netdev->dev_addr, mac);
4083
4084 /* By default all interfaces on a single Octeon uses the same
4085 * tx and rx queues
4086 */
4087 lio->txq = lio->linfo.txpciq[0].s.q_no;
4088 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
4089 if (setup_io_queues(octeon_dev, i)) {
4090 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
4091 goto setup_nic_dev_fail;
4092 }
4093
4094 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
4095
4096 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
4097 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
4098
4099 if (setup_glists(octeon_dev, lio, num_iqueues)) {
4100 dev_err(&octeon_dev->pci_dev->dev,
4101 "Gather list allocation failed\n");
4102 goto setup_nic_dev_fail;
4103 }
4104
4105 /* Register ethtool support */
4106 liquidio_set_ethtool_ops(netdev);
4107 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID)
4108 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
4109 else
4110 octeon_dev->priv_flags = 0x0;
4111
4112 if (netdev->features & NETIF_F_LRO)
4113 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
4114 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
4115
4116 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
4117
4118 if ((debug != -1) && (debug & NETIF_MSG_HW))
4119 liquidio_set_feature(netdev,
4120 OCTNET_CMD_VERBOSE_ENABLE, 0);
4121
4122 if (setup_link_status_change_wq(netdev))
4123 goto setup_nic_dev_fail;
4124
4125 /* Register the network device with the OS */
4126 if (register_netdev(netdev)) {
4127 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
4128 goto setup_nic_dev_fail;
4129 }
4130
4131 dev_dbg(&octeon_dev->pci_dev->dev,
4132 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
4133 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4134 netif_carrier_off(netdev);
4135 lio->link_changes++;
4136
4137 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
4138
4139 /* Sending command to firmware to enable Rx checksum offload
4140 * by default at the time of setup of Liquidio driver for
4141 * this device
4142 */
4143 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
4144 OCTNET_CMD_RXCSUM_ENABLE);
4145 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
4146 OCTNET_CMD_TXCSUM_ENABLE);
4147
4148 dev_dbg(&octeon_dev->pci_dev->dev,
4149 "NIC ifidx:%d Setup successful\n", i);
4150
4151 octeon_free_soft_command(octeon_dev, sc);
4152 }
4153
4154 return 0;
4155
4156 setup_nic_dev_fail:
4157
4158 octeon_free_soft_command(octeon_dev, sc);
4159
4160 setup_nic_wait_intr:
4161
4162 while (i--) {
4163 dev_err(&octeon_dev->pci_dev->dev,
4164 "NIC ifidx:%d Setup failed\n", i);
4165 liquidio_destroy_nic_device(octeon_dev, i);
4166 }
4167 return -ENODEV;
4168 }
4169
4170 #ifdef CONFIG_PCI_IOV
4171 static int octeon_enable_sriov(struct octeon_device *oct)
4172 {
4173 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced;
4174 struct pci_dev *vfdev;
4175 int err;
4176 u32 u;
4177
4178 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) {
4179 err = pci_enable_sriov(oct->pci_dev,
4180 oct->sriov_info.num_vfs_alloced);
4181 if (err) {
4182 dev_err(&oct->pci_dev->dev,
4183 "OCTEON: Failed to enable PCI sriov: %d\n",
4184 err);
4185 oct->sriov_info.num_vfs_alloced = 0;
4186 return err;
4187 }
4188 oct->sriov_info.sriov_enabled = 1;
4189
4190 /* init lookup table that maps DPI ring number to VF pci_dev
4191 * struct pointer
4192 */
4193 u = 0;
4194 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4195 OCTEON_CN23XX_VF_VID, NULL);
4196 while (vfdev) {
4197 if (vfdev->is_virtfn &&
4198 (vfdev->physfn == oct->pci_dev)) {
4199 oct->sriov_info.dpiring_to_vfpcidev_lut[u] =
4200 vfdev;
4201 u += oct->sriov_info.rings_per_vf;
4202 }
4203 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4204 OCTEON_CN23XX_VF_VID, vfdev);
4205 }
4206 }
4207
4208 return num_vfs_alloced;
4209 }
4210
4211 static int lio_pci_sriov_disable(struct octeon_device *oct)
4212 {
4213 int u;
4214
4215 if (pci_vfs_assigned(oct->pci_dev)) {
4216 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n");
4217 return -EPERM;
4218 }
4219
4220 pci_disable_sriov(oct->pci_dev);
4221
4222 u = 0;
4223 while (u < MAX_POSSIBLE_VFS) {
4224 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL;
4225 u += oct->sriov_info.rings_per_vf;
4226 }
4227
4228 oct->sriov_info.num_vfs_alloced = 0;
4229 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n",
4230 oct->pf_num);
4231
4232 return 0;
4233 }
4234
4235 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs)
4236 {
4237 struct octeon_device *oct = pci_get_drvdata(dev);
4238 int ret = 0;
4239
4240 if ((num_vfs == oct->sriov_info.num_vfs_alloced) &&
4241 (oct->sriov_info.sriov_enabled)) {
4242 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n",
4243 oct->pf_num, num_vfs);
4244 return 0;
4245 }
4246
4247 if (!num_vfs) {
4248 ret = lio_pci_sriov_disable(oct);
4249 } else if (num_vfs > oct->sriov_info.max_vfs) {
4250 dev_err(&oct->pci_dev->dev,
4251 "OCTEON: Max allowed VFs:%d user requested:%d",
4252 oct->sriov_info.max_vfs, num_vfs);
4253 ret = -EPERM;
4254 } else {
4255 oct->sriov_info.num_vfs_alloced = num_vfs;
4256 ret = octeon_enable_sriov(oct);
4257 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n",
4258 oct->pf_num, num_vfs);
4259 }
4260
4261 return ret;
4262 }
4263 #endif
4264
4265 /**
4266 * \brief initialize the NIC
4267 * @param oct octeon device
4268 *
4269 * This initialization routine is called once the Octeon device application is
4270 * up and running
4271 */
4272 static int liquidio_init_nic_module(struct octeon_device *oct)
4273 {
4274 struct oct_intrmod_cfg *intrmod_cfg;
4275 int i, retval = 0;
4276 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
4277
4278 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
4279
4280 /* only default iq and oq were initialized
4281 * initialize the rest as well
4282 */
4283 /* run port_config command for each port */
4284 oct->ifcount = num_nic_ports;
4285
4286 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports);
4287
4288 for (i = 0; i < MAX_OCTEON_LINKS; i++)
4289 oct->props[i].gmxport = -1;
4290
4291 retval = setup_nic_devices(oct);
4292 if (retval) {
4293 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
4294 goto octnet_init_failure;
4295 }
4296
4297 liquidio_ptp_init(oct);
4298
4299 /* Initialize interrupt moderation params */
4300 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
4301 intrmod_cfg->rx_enable = 1;
4302 intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
4303 intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
4304 intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
4305 intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
4306 intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
4307 intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
4308 intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
4309 intrmod_cfg->tx_enable = 1;
4310 intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
4311 intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
4312 intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
4313 intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
4314 intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
4315 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
4316
4317 return retval;
4318
4319 octnet_init_failure:
4320
4321 oct->ifcount = 0;
4322
4323 return retval;
4324 }
4325
4326 /**
4327 * \brief starter callback that invokes the remaining initialization work after
4328 * the NIC is up and running.
4329 * @param octptr work struct work_struct
4330 */
4331 static void nic_starter(struct work_struct *work)
4332 {
4333 struct octeon_device *oct;
4334 struct cavium_wk *wk = (struct cavium_wk *)work;
4335
4336 oct = (struct octeon_device *)wk->ctxptr;
4337
4338 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
4339 return;
4340
4341 /* If the status of the device is CORE_OK, the core
4342 * application has reported its application type. Call
4343 * any registered handlers now and move to the RUNNING
4344 * state.
4345 */
4346 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
4347 schedule_delayed_work(&oct->nic_poll_work.work,
4348 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4349 return;
4350 }
4351
4352 atomic_set(&oct->status, OCT_DEV_RUNNING);
4353
4354 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
4355 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
4356
4357 if (liquidio_init_nic_module(oct))
4358 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
4359 else
4360 handshake[oct->octeon_id].started_ok = 1;
4361 } else {
4362 dev_err(&oct->pci_dev->dev,
4363 "Unexpected application running on NIC (%d). Check firmware.\n",
4364 oct->app_mode);
4365 }
4366
4367 complete(&handshake[oct->octeon_id].started);
4368 }
4369
4370 static int
4371 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf)
4372 {
4373 struct octeon_device *oct = (struct octeon_device *)buf;
4374 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
4375 int i, notice, vf_idx;
4376 u64 *data, vf_num;
4377
4378 notice = recv_pkt->rh.r.ossp;
4379 data = (u64 *)get_rbd(recv_pkt->buffer_ptr[0]);
4380
4381 /* the first 64-bit word of data is the vf_num */
4382 vf_num = data[0];
4383 octeon_swap_8B_data(&vf_num, 1);
4384 vf_idx = (int)vf_num - 1;
4385
4386 if (notice == VF_DRV_LOADED) {
4387 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) {
4388 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx);
4389 dev_info(&oct->pci_dev->dev,
4390 "driver for VF%d was loaded\n", vf_idx);
4391 try_module_get(THIS_MODULE);
4392 }
4393 } else if (notice == VF_DRV_REMOVED) {
4394 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) {
4395 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx);
4396 dev_info(&oct->pci_dev->dev,
4397 "driver for VF%d was removed\n", vf_idx);
4398 module_put(THIS_MODULE);
4399 }
4400 } else if (notice == VF_DRV_MACADDR_CHANGED) {
4401 u8 *b = (u8 *)&data[1];
4402
4403 oct->sriov_info.vf_macaddr[vf_idx] = data[1];
4404 dev_info(&oct->pci_dev->dev,
4405 "VF driver changed VF%d's MAC address to %pM\n",
4406 vf_idx, b + 2);
4407 }
4408
4409 for (i = 0; i < recv_pkt->buffer_count; i++)
4410 recv_buffer_free(recv_pkt->buffer_ptr[i]);
4411 octeon_free_recv_info(recv_info);
4412
4413 return 0;
4414 }
4415
4416 /**
4417 * \brief Device initialization for each Octeon device that is probed
4418 * @param octeon_dev octeon device
4419 */
4420 static int octeon_device_init(struct octeon_device *octeon_dev)
4421 {
4422 int j, ret;
4423 int fw_loaded = 0;
4424 char bootcmd[] = "\n";
4425 struct octeon_device_priv *oct_priv =
4426 (struct octeon_device_priv *)octeon_dev->priv;
4427 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
4428
4429 /* Enable access to the octeon device and make its DMA capability
4430 * known to the OS.
4431 */
4432 if (octeon_pci_os_setup(octeon_dev))
4433 return 1;
4434
4435 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE);
4436
4437 /* Identify the Octeon type and map the BAR address space. */
4438 if (octeon_chip_specific_setup(octeon_dev)) {
4439 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
4440 return 1;
4441 }
4442
4443 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
4444
4445 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
4446
4447 if (OCTEON_CN23XX_PF(octeon_dev)) {
4448 if (!cn23xx_fw_loaded(octeon_dev)) {
4449 fw_loaded = 0;
4450 /* Do a soft reset of the Octeon device. */
4451 if (octeon_dev->fn_list.soft_reset(octeon_dev))
4452 return 1;
4453 /* things might have changed */
4454 if (!cn23xx_fw_loaded(octeon_dev))
4455 fw_loaded = 0;
4456 else
4457 fw_loaded = 1;
4458 } else {
4459 fw_loaded = 1;
4460 }
4461 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) {
4462 return 1;
4463 }
4464
4465 /* Initialize the dispatch mechanism used to push packets arriving on
4466 * Octeon Output queues.
4467 */
4468 if (octeon_init_dispatch_list(octeon_dev))
4469 return 1;
4470
4471 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4472 OPCODE_NIC_CORE_DRV_ACTIVE,
4473 octeon_core_drv_init,
4474 octeon_dev);
4475
4476 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4477 OPCODE_NIC_VF_DRV_NOTICE,
4478 octeon_recv_vf_drv_notice, octeon_dev);
4479 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
4480 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
4481 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
4482 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4483
4484 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
4485
4486 if (octeon_set_io_queues_off(octeon_dev)) {
4487 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n");
4488 return 1;
4489 }
4490
4491 if (OCTEON_CN23XX_PF(octeon_dev)) {
4492 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4493 if (ret) {
4494 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
4495 return ret;
4496 }
4497 }
4498
4499 /* Initialize soft command buffer pool
4500 */
4501 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
4502 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
4503 return 1;
4504 }
4505 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
4506
4507 /* Setup the data structures that manage this Octeon's Input queues. */
4508 if (octeon_setup_instr_queues(octeon_dev)) {
4509 dev_err(&octeon_dev->pci_dev->dev,
4510 "instruction queue initialization failed\n");
4511 return 1;
4512 }
4513 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
4514
4515 /* Initialize lists to manage the requests of different types that
4516 * arrive from user & kernel applications for this octeon device.
4517 */
4518 if (octeon_setup_response_list(octeon_dev)) {
4519 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
4520 return 1;
4521 }
4522 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
4523
4524 if (octeon_setup_output_queues(octeon_dev)) {
4525 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
4526 return 1;
4527 }
4528
4529 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
4530
4531 if (OCTEON_CN23XX_PF(octeon_dev)) {
4532 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) {
4533 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n");
4534 return 1;
4535 }
4536 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE);
4537
4538 if (octeon_allocate_ioq_vector(octeon_dev)) {
4539 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n");
4540 return 1;
4541 }
4542 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE);
4543
4544 } else {
4545 /* The input and output queue registers were setup earlier (the
4546 * queues were not enabled). Any additional registers
4547 * that need to be programmed should be done now.
4548 */
4549 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4550 if (ret) {
4551 dev_err(&octeon_dev->pci_dev->dev,
4552 "Failed to configure device registers\n");
4553 return ret;
4554 }
4555 }
4556
4557 /* Initialize the tasklet that handles output queue packet processing.*/
4558 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
4559 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
4560 (unsigned long)octeon_dev);
4561
4562 /* Setup the interrupt handler and record the INT SUM register address
4563 */
4564 if (octeon_setup_interrupt(octeon_dev))
4565 return 1;
4566
4567 /* Enable Octeon device interrupts */
4568 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR);
4569
4570 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE);
4571
4572 /* Enable the input and output queues for this Octeon device */
4573 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev);
4574 if (ret) {
4575 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues");
4576 return ret;
4577 }
4578
4579 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
4580
4581 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) {
4582 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
4583 if (!ddr_timeout) {
4584 dev_info(&octeon_dev->pci_dev->dev,
4585 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
4586 }
4587
4588 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4589
4590 /* Wait for the octeon to initialize DDR after the soft-reset.*/
4591 while (!ddr_timeout) {
4592 set_current_state(TASK_INTERRUPTIBLE);
4593 if (schedule_timeout(HZ / 10)) {
4594 /* user probably pressed Control-C */
4595 return 1;
4596 }
4597 }
4598 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4599 if (ret) {
4600 dev_err(&octeon_dev->pci_dev->dev,
4601 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4602 ret);
4603 return 1;
4604 }
4605
4606 if (octeon_wait_for_bootloader(octeon_dev, 1000)) {
4607 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4608 return 1;
4609 }
4610
4611 /* Divert uboot to take commands from host instead. */
4612 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4613
4614 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4615 ret = octeon_init_consoles(octeon_dev);
4616 if (ret) {
4617 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4618 return 1;
4619 }
4620 ret = octeon_add_console(octeon_dev, 0);
4621 if (ret) {
4622 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4623 return 1;
4624 }
4625
4626 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4627
4628 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4629 ret = load_firmware(octeon_dev);
4630 if (ret) {
4631 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4632 return 1;
4633 }
4634 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is
4635 * loaded
4636 */
4637 if (OCTEON_CN23XX_PF(octeon_dev))
4638 octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1,
4639 2ULL);
4640 }
4641
4642 handshake[octeon_dev->octeon_id].init_ok = 1;
4643 complete(&handshake[octeon_dev->octeon_id].init);
4644
4645 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4646
4647 /* Send Credit for Octeon Output queues. Credits are always sent after
4648 * the output queue is enabled.
4649 */
4650 for (j = 0; j < octeon_dev->num_oqs; j++)
4651 writel(octeon_dev->droq[j]->max_count,
4652 octeon_dev->droq[j]->pkts_credit_reg);
4653
4654 /* Packets can start arriving on the output queues from this point. */
4655 return 0;
4656 }
4657
4658 /**
4659 * \brief Exits the module
4660 */
4661 static void __exit liquidio_exit(void)
4662 {
4663 liquidio_deinit_pci();
4664
4665 pr_info("LiquidIO network module is now unloaded\n");
4666 }
4667
4668 module_init(liquidio_init);
4669 module_exit(liquidio_exit);