]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/cavium/liquidio/lio_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more details.
17 ***********************************************************************/
18 #include <linux/module.h>
19 #include <linux/pci.h>
20 #include <linux/firmware.h>
21 #include <net/vxlan.h>
22 #include <linux/kthread.h>
23 #include "liquidio_common.h"
24 #include "octeon_droq.h"
25 #include "octeon_iq.h"
26 #include "response_manager.h"
27 #include "octeon_device.h"
28 #include "octeon_nic.h"
29 #include "octeon_main.h"
30 #include "octeon_network.h"
31 #include "cn66xx_regs.h"
32 #include "cn66xx_device.h"
33 #include "cn68xx_device.h"
34 #include "cn23xx_pf_device.h"
35 #include "liquidio_image.h"
36
37 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
38 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
39 MODULE_LICENSE("GPL");
40 MODULE_VERSION(LIQUIDIO_VERSION);
41 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX);
45
46 static int ddr_timeout = 10000;
47 module_param(ddr_timeout, int, 0644);
48 MODULE_PARM_DESC(ddr_timeout,
49 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
50
51 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
52
53 static int debug = -1;
54 module_param(debug, int, 0644);
55 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
56
57 static char fw_type[LIO_MAX_FW_TYPE_LEN];
58 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
59 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
60
61 static int ptp_enable = 1;
62
63 /* Bit mask values for lio->ifstate */
64 #define LIO_IFSTATE_DROQ_OPS 0x01
65 #define LIO_IFSTATE_REGISTERED 0x02
66 #define LIO_IFSTATE_RUNNING 0x04
67 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
68
69 /* Polling interval for determining when NIC application is alive */
70 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
71
72 /* runtime link query interval */
73 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
74
75 struct liquidio_if_cfg_context {
76 int octeon_id;
77
78 wait_queue_head_t wc;
79
80 int cond;
81 };
82
83 struct liquidio_if_cfg_resp {
84 u64 rh;
85 struct liquidio_if_cfg_info cfg_info;
86 u64 status;
87 };
88
89 struct liquidio_rx_ctl_context {
90 int octeon_id;
91
92 wait_queue_head_t wc;
93
94 int cond;
95 };
96
97 struct oct_link_status_resp {
98 u64 rh;
99 struct oct_link_info link_info;
100 u64 status;
101 };
102
103 struct oct_timestamp_resp {
104 u64 rh;
105 u64 timestamp;
106 u64 status;
107 };
108
109 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
110
111 union tx_info {
112 u64 u64;
113 struct {
114 #ifdef __BIG_ENDIAN_BITFIELD
115 u16 gso_size;
116 u16 gso_segs;
117 u32 reserved;
118 #else
119 u32 reserved;
120 u16 gso_segs;
121 u16 gso_size;
122 #endif
123 } s;
124 };
125
126 /** Octeon device properties to be used by the NIC module.
127 * Each octeon device in the system will be represented
128 * by this structure in the NIC module.
129 */
130
131 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
132
133 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
134 #define OCTNIC_GSO_MAX_SIZE \
135 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
136
137 /** Structure of a node in list of gather components maintained by
138 * NIC driver for each network device.
139 */
140 struct octnic_gather {
141 /** List manipulation. Next and prev pointers. */
142 struct list_head list;
143
144 /** Size of the gather component at sg in bytes. */
145 int sg_size;
146
147 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
148 int adjust;
149
150 /** Gather component that can accommodate max sized fragment list
151 * received from the IP layer.
152 */
153 struct octeon_sg_entry *sg;
154
155 dma_addr_t sg_dma_ptr;
156 };
157
158 struct handshake {
159 struct completion init;
160 struct completion started;
161 struct pci_dev *pci_dev;
162 int init_ok;
163 int started_ok;
164 };
165
166 struct octeon_device_priv {
167 /** Tasklet structures for this device. */
168 struct tasklet_struct droq_tasklet;
169 unsigned long napi_mask;
170 };
171
172 #ifdef CONFIG_PCI_IOV
173 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs);
174 #endif
175
176 static int octeon_device_init(struct octeon_device *);
177 static int liquidio_stop(struct net_device *netdev);
178 static void liquidio_remove(struct pci_dev *pdev);
179 static int liquidio_probe(struct pci_dev *pdev,
180 const struct pci_device_id *ent);
181
182 static struct handshake handshake[MAX_OCTEON_DEVICES];
183 static struct completion first_stage;
184
185 static void octeon_droq_bh(unsigned long pdev)
186 {
187 int q_no;
188 int reschedule = 0;
189 struct octeon_device *oct = (struct octeon_device *)pdev;
190 struct octeon_device_priv *oct_priv =
191 (struct octeon_device_priv *)oct->priv;
192
193 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
194 if (!(oct->io_qmask.oq & BIT_ULL(q_no)))
195 continue;
196 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
197 MAX_PACKET_BUDGET);
198 lio_enable_irq(oct->droq[q_no], NULL);
199
200 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
201 /* set time and cnt interrupt thresholds for this DROQ
202 * for NAPI
203 */
204 int adjusted_q_no = q_no + oct->sriov_info.pf_srn;
205
206 octeon_write_csr64(
207 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no),
208 0x5700000040ULL);
209 octeon_write_csr64(
210 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0);
211 }
212 }
213
214 if (reschedule)
215 tasklet_schedule(&oct_priv->droq_tasklet);
216 }
217
218 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
219 {
220 struct octeon_device_priv *oct_priv =
221 (struct octeon_device_priv *)oct->priv;
222 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
223 int i;
224
225 do {
226 pending_pkts = 0;
227
228 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
229 if (!(oct->io_qmask.oq & BIT_ULL(i)))
230 continue;
231 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
232 }
233 if (pkt_cnt > 0) {
234 pending_pkts += pkt_cnt;
235 tasklet_schedule(&oct_priv->droq_tasklet);
236 }
237 pkt_cnt = 0;
238 schedule_timeout_uninterruptible(1);
239
240 } while (retry-- && pending_pkts);
241
242 return pkt_cnt;
243 }
244
245 /**
246 * \brief Forces all IO queues off on a given device
247 * @param oct Pointer to Octeon device
248 */
249 static void force_io_queues_off(struct octeon_device *oct)
250 {
251 if ((oct->chip_id == OCTEON_CN66XX) ||
252 (oct->chip_id == OCTEON_CN68XX)) {
253 /* Reset the Enable bits for Input Queues. */
254 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
255
256 /* Reset the Enable bits for Output Queues. */
257 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
258 }
259 }
260
261 /**
262 * \brief wait for all pending requests to complete
263 * @param oct Pointer to Octeon device
264 *
265 * Called during shutdown sequence
266 */
267 static int wait_for_pending_requests(struct octeon_device *oct)
268 {
269 int i, pcount = 0;
270
271 for (i = 0; i < 100; i++) {
272 pcount =
273 atomic_read(&oct->response_list
274 [OCTEON_ORDERED_SC_LIST].pending_req_count);
275 if (pcount)
276 schedule_timeout_uninterruptible(HZ / 10);
277 else
278 break;
279 }
280
281 if (pcount)
282 return 1;
283
284 return 0;
285 }
286
287 /**
288 * \brief Cause device to go quiet so it can be safely removed/reset/etc
289 * @param oct Pointer to Octeon device
290 */
291 static inline void pcierror_quiesce_device(struct octeon_device *oct)
292 {
293 int i;
294
295 /* Disable the input and output queues now. No more packets will
296 * arrive from Octeon, but we should wait for all packet processing
297 * to finish.
298 */
299 force_io_queues_off(oct);
300
301 /* To allow for in-flight requests */
302 schedule_timeout_uninterruptible(100);
303
304 if (wait_for_pending_requests(oct))
305 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
306
307 /* Force all requests waiting to be fetched by OCTEON to complete. */
308 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
309 struct octeon_instr_queue *iq;
310
311 if (!(oct->io_qmask.iq & BIT_ULL(i)))
312 continue;
313 iq = oct->instr_queue[i];
314
315 if (atomic_read(&iq->instr_pending)) {
316 spin_lock_bh(&iq->lock);
317 iq->fill_cnt = 0;
318 iq->octeon_read_index = iq->host_write_index;
319 iq->stats.instr_processed +=
320 atomic_read(&iq->instr_pending);
321 lio_process_iq_request_list(oct, iq, 0);
322 spin_unlock_bh(&iq->lock);
323 }
324 }
325
326 /* Force all pending ordered list requests to time out. */
327 lio_process_ordered_list(oct, 1);
328
329 /* We do not need to wait for output queue packets to be processed. */
330 }
331
332 /**
333 * \brief Cleanup PCI AER uncorrectable error status
334 * @param dev Pointer to PCI device
335 */
336 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
337 {
338 int pos = 0x100;
339 u32 status, mask;
340
341 pr_info("%s :\n", __func__);
342
343 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
344 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
345 if (dev->error_state == pci_channel_io_normal)
346 status &= ~mask; /* Clear corresponding nonfatal bits */
347 else
348 status &= mask; /* Clear corresponding fatal bits */
349 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
350 }
351
352 /**
353 * \brief Stop all PCI IO to a given device
354 * @param dev Pointer to Octeon device
355 */
356 static void stop_pci_io(struct octeon_device *oct)
357 {
358 /* No more instructions will be forwarded. */
359 atomic_set(&oct->status, OCT_DEV_IN_RESET);
360
361 pci_disable_device(oct->pci_dev);
362
363 /* Disable interrupts */
364 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
365
366 pcierror_quiesce_device(oct);
367
368 /* Release the interrupt line */
369 free_irq(oct->pci_dev->irq, oct);
370
371 if (oct->flags & LIO_FLAG_MSI_ENABLED)
372 pci_disable_msi(oct->pci_dev);
373
374 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
375 lio_get_state_string(&oct->status));
376
377 /* making it a common function for all OCTEON models */
378 cleanup_aer_uncorrect_error_status(oct->pci_dev);
379 }
380
381 /**
382 * \brief called when PCI error is detected
383 * @param pdev Pointer to PCI device
384 * @param state The current pci connection state
385 *
386 * This function is called after a PCI bus error affecting
387 * this device has been detected.
388 */
389 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
390 pci_channel_state_t state)
391 {
392 struct octeon_device *oct = pci_get_drvdata(pdev);
393
394 /* Non-correctable Non-fatal errors */
395 if (state == pci_channel_io_normal) {
396 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
397 cleanup_aer_uncorrect_error_status(oct->pci_dev);
398 return PCI_ERS_RESULT_CAN_RECOVER;
399 }
400
401 /* Non-correctable Fatal errors */
402 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
403 stop_pci_io(oct);
404
405 /* Always return a DISCONNECT. There is no support for recovery but only
406 * for a clean shutdown.
407 */
408 return PCI_ERS_RESULT_DISCONNECT;
409 }
410
411 /**
412 * \brief mmio handler
413 * @param pdev Pointer to PCI device
414 */
415 static pci_ers_result_t liquidio_pcie_mmio_enabled(
416 struct pci_dev *pdev __attribute__((unused)))
417 {
418 /* We should never hit this since we never ask for a reset for a Fatal
419 * Error. We always return DISCONNECT in io_error above.
420 * But play safe and return RECOVERED for now.
421 */
422 return PCI_ERS_RESULT_RECOVERED;
423 }
424
425 /**
426 * \brief called after the pci bus has been reset.
427 * @param pdev Pointer to PCI device
428 *
429 * Restart the card from scratch, as if from a cold-boot. Implementation
430 * resembles the first-half of the octeon_resume routine.
431 */
432 static pci_ers_result_t liquidio_pcie_slot_reset(
433 struct pci_dev *pdev __attribute__((unused)))
434 {
435 /* We should never hit this since we never ask for a reset for a Fatal
436 * Error. We always return DISCONNECT in io_error above.
437 * But play safe and return RECOVERED for now.
438 */
439 return PCI_ERS_RESULT_RECOVERED;
440 }
441
442 /**
443 * \brief called when traffic can start flowing again.
444 * @param pdev Pointer to PCI device
445 *
446 * This callback is called when the error recovery driver tells us that
447 * its OK to resume normal operation. Implementation resembles the
448 * second-half of the octeon_resume routine.
449 */
450 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
451 {
452 /* Nothing to be done here. */
453 }
454
455 #ifdef CONFIG_PM
456 /**
457 * \brief called when suspending
458 * @param pdev Pointer to PCI device
459 * @param state state to suspend to
460 */
461 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
462 pm_message_t state __attribute__((unused)))
463 {
464 return 0;
465 }
466
467 /**
468 * \brief called when resuming
469 * @param pdev Pointer to PCI device
470 */
471 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
472 {
473 return 0;
474 }
475 #endif
476
477 /* For PCI-E Advanced Error Recovery (AER) Interface */
478 static const struct pci_error_handlers liquidio_err_handler = {
479 .error_detected = liquidio_pcie_error_detected,
480 .mmio_enabled = liquidio_pcie_mmio_enabled,
481 .slot_reset = liquidio_pcie_slot_reset,
482 .resume = liquidio_pcie_resume,
483 };
484
485 static const struct pci_device_id liquidio_pci_tbl[] = {
486 { /* 68xx */
487 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
488 },
489 { /* 66xx */
490 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
491 },
492 { /* 23xx pf */
493 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
494 },
495 {
496 0, 0, 0, 0, 0, 0, 0
497 }
498 };
499 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
500
501 static struct pci_driver liquidio_pci_driver = {
502 .name = "LiquidIO",
503 .id_table = liquidio_pci_tbl,
504 .probe = liquidio_probe,
505 .remove = liquidio_remove,
506 .err_handler = &liquidio_err_handler, /* For AER */
507
508 #ifdef CONFIG_PM
509 .suspend = liquidio_suspend,
510 .resume = liquidio_resume,
511 #endif
512 #ifdef CONFIG_PCI_IOV
513 .sriov_configure = liquidio_enable_sriov,
514 #endif
515 };
516
517 /**
518 * \brief register PCI driver
519 */
520 static int liquidio_init_pci(void)
521 {
522 return pci_register_driver(&liquidio_pci_driver);
523 }
524
525 /**
526 * \brief unregister PCI driver
527 */
528 static void liquidio_deinit_pci(void)
529 {
530 pci_unregister_driver(&liquidio_pci_driver);
531 }
532
533 /**
534 * \brief check interface state
535 * @param lio per-network private data
536 * @param state_flag flag state to check
537 */
538 static inline int ifstate_check(struct lio *lio, int state_flag)
539 {
540 return atomic_read(&lio->ifstate) & state_flag;
541 }
542
543 /**
544 * \brief set interface state
545 * @param lio per-network private data
546 * @param state_flag flag state to set
547 */
548 static inline void ifstate_set(struct lio *lio, int state_flag)
549 {
550 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
551 }
552
553 /**
554 * \brief clear interface state
555 * @param lio per-network private data
556 * @param state_flag flag state to clear
557 */
558 static inline void ifstate_reset(struct lio *lio, int state_flag)
559 {
560 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
561 }
562
563 /**
564 * \brief Stop Tx queues
565 * @param netdev network device
566 */
567 static inline void txqs_stop(struct net_device *netdev)
568 {
569 if (netif_is_multiqueue(netdev)) {
570 int i;
571
572 for (i = 0; i < netdev->num_tx_queues; i++)
573 netif_stop_subqueue(netdev, i);
574 } else {
575 netif_stop_queue(netdev);
576 }
577 }
578
579 /**
580 * \brief Start Tx queues
581 * @param netdev network device
582 */
583 static inline void txqs_start(struct net_device *netdev)
584 {
585 if (netif_is_multiqueue(netdev)) {
586 int i;
587
588 for (i = 0; i < netdev->num_tx_queues; i++)
589 netif_start_subqueue(netdev, i);
590 } else {
591 netif_start_queue(netdev);
592 }
593 }
594
595 /**
596 * \brief Wake Tx queues
597 * @param netdev network device
598 */
599 static inline void txqs_wake(struct net_device *netdev)
600 {
601 struct lio *lio = GET_LIO(netdev);
602
603 if (netif_is_multiqueue(netdev)) {
604 int i;
605
606 for (i = 0; i < netdev->num_tx_queues; i++) {
607 int qno = lio->linfo.txpciq[i %
608 (lio->linfo.num_txpciq)].s.q_no;
609
610 if (__netif_subqueue_stopped(netdev, i)) {
611 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
612 tx_restart, 1);
613 netif_wake_subqueue(netdev, i);
614 }
615 }
616 } else {
617 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
618 tx_restart, 1);
619 netif_wake_queue(netdev);
620 }
621 }
622
623 /**
624 * \brief Stop Tx queue
625 * @param netdev network device
626 */
627 static void stop_txq(struct net_device *netdev)
628 {
629 txqs_stop(netdev);
630 }
631
632 /**
633 * \brief Start Tx queue
634 * @param netdev network device
635 */
636 static void start_txq(struct net_device *netdev)
637 {
638 struct lio *lio = GET_LIO(netdev);
639
640 if (lio->linfo.link.s.link_up) {
641 txqs_start(netdev);
642 return;
643 }
644 }
645
646 /**
647 * \brief Wake a queue
648 * @param netdev network device
649 * @param q which queue to wake
650 */
651 static inline void wake_q(struct net_device *netdev, int q)
652 {
653 if (netif_is_multiqueue(netdev))
654 netif_wake_subqueue(netdev, q);
655 else
656 netif_wake_queue(netdev);
657 }
658
659 /**
660 * \brief Stop a queue
661 * @param netdev network device
662 * @param q which queue to stop
663 */
664 static inline void stop_q(struct net_device *netdev, int q)
665 {
666 if (netif_is_multiqueue(netdev))
667 netif_stop_subqueue(netdev, q);
668 else
669 netif_stop_queue(netdev);
670 }
671
672 /**
673 * \brief Check Tx queue status, and take appropriate action
674 * @param lio per-network private data
675 * @returns 0 if full, number of queues woken up otherwise
676 */
677 static inline int check_txq_status(struct lio *lio)
678 {
679 int ret_val = 0;
680
681 if (netif_is_multiqueue(lio->netdev)) {
682 int numqs = lio->netdev->num_tx_queues;
683 int q, iq = 0;
684
685 /* check each sub-queue state */
686 for (q = 0; q < numqs; q++) {
687 iq = lio->linfo.txpciq[q %
688 (lio->linfo.num_txpciq)].s.q_no;
689 if (octnet_iq_is_full(lio->oct_dev, iq))
690 continue;
691 if (__netif_subqueue_stopped(lio->netdev, q)) {
692 wake_q(lio->netdev, q);
693 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
694 tx_restart, 1);
695 ret_val++;
696 }
697 }
698 } else {
699 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
700 return 0;
701 wake_q(lio->netdev, lio->txq);
702 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
703 tx_restart, 1);
704 ret_val = 1;
705 }
706 return ret_val;
707 }
708
709 /**
710 * Remove the node at the head of the list. The list would be empty at
711 * the end of this call if there are no more nodes in the list.
712 */
713 static inline struct list_head *list_delete_head(struct list_head *root)
714 {
715 struct list_head *node;
716
717 if ((root->prev == root) && (root->next == root))
718 node = NULL;
719 else
720 node = root->next;
721
722 if (node)
723 list_del(node);
724
725 return node;
726 }
727
728 /**
729 * \brief Delete gather lists
730 * @param lio per-network private data
731 */
732 static void delete_glists(struct lio *lio)
733 {
734 struct octnic_gather *g;
735 int i;
736
737 kfree(lio->glist_lock);
738 lio->glist_lock = NULL;
739
740 if (!lio->glist)
741 return;
742
743 for (i = 0; i < lio->linfo.num_txpciq; i++) {
744 do {
745 g = (struct octnic_gather *)
746 list_delete_head(&lio->glist[i]);
747 if (g)
748 kfree(g);
749 } while (g);
750
751 if (lio->glists_virt_base && lio->glists_virt_base[i]) {
752 lio_dma_free(lio->oct_dev,
753 lio->glist_entry_size * lio->tx_qsize,
754 lio->glists_virt_base[i],
755 lio->glists_dma_base[i]);
756 }
757 }
758
759 kfree(lio->glists_virt_base);
760 lio->glists_virt_base = NULL;
761
762 kfree(lio->glists_dma_base);
763 lio->glists_dma_base = NULL;
764
765 kfree(lio->glist);
766 lio->glist = NULL;
767 }
768
769 /**
770 * \brief Setup gather lists
771 * @param lio per-network private data
772 */
773 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
774 {
775 int i, j;
776 struct octnic_gather *g;
777
778 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
779 GFP_KERNEL);
780 if (!lio->glist_lock)
781 return -ENOMEM;
782
783 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
784 GFP_KERNEL);
785 if (!lio->glist) {
786 kfree(lio->glist_lock);
787 lio->glist_lock = NULL;
788 return -ENOMEM;
789 }
790
791 lio->glist_entry_size =
792 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
793
794 /* allocate memory to store virtual and dma base address of
795 * per glist consistent memory
796 */
797 lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base),
798 GFP_KERNEL);
799 lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base),
800 GFP_KERNEL);
801
802 if (!lio->glists_virt_base || !lio->glists_dma_base) {
803 delete_glists(lio);
804 return -ENOMEM;
805 }
806
807 for (i = 0; i < num_iqs; i++) {
808 int numa_node = dev_to_node(&oct->pci_dev->dev);
809
810 spin_lock_init(&lio->glist_lock[i]);
811
812 INIT_LIST_HEAD(&lio->glist[i]);
813
814 lio->glists_virt_base[i] =
815 lio_dma_alloc(oct,
816 lio->glist_entry_size * lio->tx_qsize,
817 &lio->glists_dma_base[i]);
818
819 if (!lio->glists_virt_base[i]) {
820 delete_glists(lio);
821 return -ENOMEM;
822 }
823
824 for (j = 0; j < lio->tx_qsize; j++) {
825 g = kzalloc_node(sizeof(*g), GFP_KERNEL,
826 numa_node);
827 if (!g)
828 g = kzalloc(sizeof(*g), GFP_KERNEL);
829 if (!g)
830 break;
831
832 g->sg = lio->glists_virt_base[i] +
833 (j * lio->glist_entry_size);
834
835 g->sg_dma_ptr = lio->glists_dma_base[i] +
836 (j * lio->glist_entry_size);
837
838 list_add_tail(&g->list, &lio->glist[i]);
839 }
840
841 if (j != lio->tx_qsize) {
842 delete_glists(lio);
843 return -ENOMEM;
844 }
845 }
846
847 return 0;
848 }
849
850 /**
851 * \brief Print link information
852 * @param netdev network device
853 */
854 static void print_link_info(struct net_device *netdev)
855 {
856 struct lio *lio = GET_LIO(netdev);
857
858 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
859 struct oct_link_info *linfo = &lio->linfo;
860
861 if (linfo->link.s.link_up) {
862 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
863 linfo->link.s.speed,
864 (linfo->link.s.duplex) ? "Full" : "Half");
865 } else {
866 netif_info(lio, link, lio->netdev, "Link Down\n");
867 }
868 }
869 }
870
871 /**
872 * \brief Routine to notify MTU change
873 * @param work work_struct data structure
874 */
875 static void octnet_link_status_change(struct work_struct *work)
876 {
877 struct cavium_wk *wk = (struct cavium_wk *)work;
878 struct lio *lio = (struct lio *)wk->ctxptr;
879
880 rtnl_lock();
881 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
882 rtnl_unlock();
883 }
884
885 /**
886 * \brief Sets up the mtu status change work
887 * @param netdev network device
888 */
889 static inline int setup_link_status_change_wq(struct net_device *netdev)
890 {
891 struct lio *lio = GET_LIO(netdev);
892 struct octeon_device *oct = lio->oct_dev;
893
894 lio->link_status_wq.wq = alloc_workqueue("link-status",
895 WQ_MEM_RECLAIM, 0);
896 if (!lio->link_status_wq.wq) {
897 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
898 return -1;
899 }
900 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
901 octnet_link_status_change);
902 lio->link_status_wq.wk.ctxptr = lio;
903
904 return 0;
905 }
906
907 static inline void cleanup_link_status_change_wq(struct net_device *netdev)
908 {
909 struct lio *lio = GET_LIO(netdev);
910
911 if (lio->link_status_wq.wq) {
912 cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
913 destroy_workqueue(lio->link_status_wq.wq);
914 }
915 }
916
917 /**
918 * \brief Update link status
919 * @param netdev network device
920 * @param ls link status structure
921 *
922 * Called on receipt of a link status response from the core application to
923 * update each interface's link status.
924 */
925 static inline void update_link_status(struct net_device *netdev,
926 union oct_link_status *ls)
927 {
928 struct lio *lio = GET_LIO(netdev);
929 int changed = (lio->linfo.link.u64 != ls->u64);
930
931 lio->linfo.link.u64 = ls->u64;
932
933 if ((lio->intf_open) && (changed)) {
934 print_link_info(netdev);
935 lio->link_changes++;
936
937 if (lio->linfo.link.s.link_up) {
938 netif_carrier_on(netdev);
939 txqs_wake(netdev);
940 } else {
941 netif_carrier_off(netdev);
942 stop_txq(netdev);
943 }
944 }
945 }
946
947 /* Runs in interrupt context. */
948 static void update_txq_status(struct octeon_device *oct, int iq_num)
949 {
950 struct net_device *netdev;
951 struct lio *lio;
952 struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
953
954 netdev = oct->props[iq->ifidx].netdev;
955
956 /* This is needed because the first IQ does not have
957 * a netdev associated with it.
958 */
959 if (!netdev)
960 return;
961
962 lio = GET_LIO(netdev);
963 if (netif_is_multiqueue(netdev)) {
964 if (__netif_subqueue_stopped(netdev, iq->q_index) &&
965 lio->linfo.link.s.link_up &&
966 (!octnet_iq_is_full(oct, iq_num))) {
967 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
968 tx_restart, 1);
969 netif_wake_subqueue(netdev, iq->q_index);
970 } else {
971 if (!octnet_iq_is_full(oct, lio->txq)) {
972 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
973 lio->txq,
974 tx_restart, 1);
975 wake_q(netdev, lio->txq);
976 }
977 }
978 }
979 }
980
981 static
982 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
983 {
984 struct octeon_device *oct = droq->oct_dev;
985 struct octeon_device_priv *oct_priv =
986 (struct octeon_device_priv *)oct->priv;
987
988 if (droq->ops.poll_mode) {
989 droq->ops.napi_fn(droq);
990 } else {
991 if (ret & MSIX_PO_INT) {
992 tasklet_schedule(&oct_priv->droq_tasklet);
993 return 1;
994 }
995 /* this will be flushed periodically by check iq db */
996 if (ret & MSIX_PI_INT)
997 return 0;
998 }
999 return 0;
1000 }
1001
1002 /**
1003 * \brief Droq packet processor sceduler
1004 * @param oct octeon device
1005 */
1006 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
1007 {
1008 struct octeon_device_priv *oct_priv =
1009 (struct octeon_device_priv *)oct->priv;
1010 u64 oq_no;
1011 struct octeon_droq *droq;
1012
1013 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
1014 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
1015 oq_no++) {
1016 if (!(oct->droq_intr & BIT_ULL(oq_no)))
1017 continue;
1018
1019 droq = oct->droq[oq_no];
1020
1021 if (droq->ops.poll_mode) {
1022 droq->ops.napi_fn(droq);
1023 oct_priv->napi_mask |= (1 << oq_no);
1024 } else {
1025 tasklet_schedule(&oct_priv->droq_tasklet);
1026 }
1027 }
1028 }
1029 }
1030
1031 static irqreturn_t
1032 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
1033 {
1034 u64 ret;
1035 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
1036 struct octeon_device *oct = ioq_vector->oct_dev;
1037 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
1038
1039 ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
1040
1041 if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
1042 liquidio_schedule_msix_droq_pkt_handler(droq, ret);
1043
1044 return IRQ_HANDLED;
1045 }
1046
1047 /**
1048 * \brief Interrupt handler for octeon
1049 * @param irq unused
1050 * @param dev octeon device
1051 */
1052 static
1053 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)),
1054 void *dev)
1055 {
1056 struct octeon_device *oct = (struct octeon_device *)dev;
1057 irqreturn_t ret;
1058
1059 /* Disable our interrupts for the duration of ISR */
1060 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1061
1062 ret = oct->fn_list.process_interrupt_regs(oct);
1063
1064 if (ret == IRQ_HANDLED)
1065 liquidio_schedule_droq_pkt_handlers(oct);
1066
1067 /* Re-enable our interrupts */
1068 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1069 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
1070
1071 return ret;
1072 }
1073
1074 /**
1075 * \brief Setup interrupt for octeon device
1076 * @param oct octeon device
1077 *
1078 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
1079 */
1080 static int octeon_setup_interrupt(struct octeon_device *oct)
1081 {
1082 int irqret, err;
1083 struct msix_entry *msix_entries;
1084 int i;
1085 int num_ioq_vectors;
1086 int num_alloc_ioq_vectors;
1087
1088 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
1089 oct->num_msix_irqs = oct->sriov_info.num_pf_rings;
1090 /* one non ioq interrupt for handling sli_mac_pf_int_sum */
1091 oct->num_msix_irqs += 1;
1092
1093 oct->msix_entries = kcalloc(
1094 oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
1095 if (!oct->msix_entries)
1096 return 1;
1097
1098 msix_entries = (struct msix_entry *)oct->msix_entries;
1099 /*Assumption is that pf msix vectors start from pf srn to pf to
1100 * trs and not from 0. if not change this code
1101 */
1102 for (i = 0; i < oct->num_msix_irqs - 1; i++)
1103 msix_entries[i].entry = oct->sriov_info.pf_srn + i;
1104 msix_entries[oct->num_msix_irqs - 1].entry =
1105 oct->sriov_info.trs;
1106 num_alloc_ioq_vectors = pci_enable_msix_range(
1107 oct->pci_dev, msix_entries,
1108 oct->num_msix_irqs,
1109 oct->num_msix_irqs);
1110 if (num_alloc_ioq_vectors < 0) {
1111 dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1112 kfree(oct->msix_entries);
1113 oct->msix_entries = NULL;
1114 return 1;
1115 }
1116 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1117
1118 num_ioq_vectors = oct->num_msix_irqs;
1119
1120 /** For PF, there is one non-ioq interrupt handler */
1121 num_ioq_vectors -= 1;
1122 irqret = request_irq(msix_entries[num_ioq_vectors].vector,
1123 liquidio_legacy_intr_handler, 0, "octeon",
1124 oct);
1125 if (irqret) {
1126 dev_err(&oct->pci_dev->dev,
1127 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1128 irqret);
1129 pci_disable_msix(oct->pci_dev);
1130 kfree(oct->msix_entries);
1131 oct->msix_entries = NULL;
1132 return 1;
1133 }
1134
1135 for (i = 0; i < num_ioq_vectors; i++) {
1136 irqret = request_irq(msix_entries[i].vector,
1137 liquidio_msix_intr_handler, 0,
1138 "octeon", &oct->ioq_vector[i]);
1139 if (irqret) {
1140 dev_err(&oct->pci_dev->dev,
1141 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1142 irqret);
1143 /** Freeing the non-ioq irq vector here . */
1144 free_irq(msix_entries[num_ioq_vectors].vector,
1145 oct);
1146
1147 while (i) {
1148 i--;
1149 /** clearing affinity mask. */
1150 irq_set_affinity_hint(
1151 msix_entries[i].vector, NULL);
1152 free_irq(msix_entries[i].vector,
1153 &oct->ioq_vector[i]);
1154 }
1155 pci_disable_msix(oct->pci_dev);
1156 kfree(oct->msix_entries);
1157 oct->msix_entries = NULL;
1158 return 1;
1159 }
1160 oct->ioq_vector[i].vector = msix_entries[i].vector;
1161 /* assign the cpu mask for this msix interrupt vector */
1162 irq_set_affinity_hint(
1163 msix_entries[i].vector,
1164 (&oct->ioq_vector[i].affinity_mask));
1165 }
1166 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1167 oct->octeon_id);
1168 } else {
1169 err = pci_enable_msi(oct->pci_dev);
1170 if (err)
1171 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1172 err);
1173 else
1174 oct->flags |= LIO_FLAG_MSI_ENABLED;
1175
1176 irqret = request_irq(oct->pci_dev->irq,
1177 liquidio_legacy_intr_handler, IRQF_SHARED,
1178 "octeon", oct);
1179 if (irqret) {
1180 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1181 pci_disable_msi(oct->pci_dev);
1182 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1183 irqret);
1184 return 1;
1185 }
1186 }
1187 return 0;
1188 }
1189
1190 static int liquidio_watchdog(void *param)
1191 {
1192 u64 wdog;
1193 u16 mask_of_stuck_cores = 0;
1194 u16 mask_of_crashed_cores = 0;
1195 int core_num;
1196 u8 core_is_stuck[LIO_MAX_CORES];
1197 u8 core_crashed[LIO_MAX_CORES];
1198 struct octeon_device *oct = param;
1199
1200 memset(core_is_stuck, 0, sizeof(core_is_stuck));
1201 memset(core_crashed, 0, sizeof(core_crashed));
1202
1203 while (!kthread_should_stop()) {
1204 mask_of_crashed_cores =
1205 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1206
1207 for (core_num = 0; core_num < LIO_MAX_CORES; core_num++) {
1208 if (!core_is_stuck[core_num]) {
1209 wdog = lio_pci_readq(oct, CIU3_WDOG(core_num));
1210
1211 /* look at watchdog state field */
1212 wdog &= CIU3_WDOG_MASK;
1213 if (wdog) {
1214 /* this watchdog timer has expired */
1215 core_is_stuck[core_num] =
1216 LIO_MONITOR_WDOG_EXPIRE;
1217 mask_of_stuck_cores |= (1 << core_num);
1218 }
1219 }
1220
1221 if (!core_crashed[core_num])
1222 core_crashed[core_num] =
1223 (mask_of_crashed_cores >> core_num) & 1;
1224 }
1225
1226 if (mask_of_stuck_cores) {
1227 for (core_num = 0; core_num < LIO_MAX_CORES;
1228 core_num++) {
1229 if (core_is_stuck[core_num] == 1) {
1230 dev_err(&oct->pci_dev->dev,
1231 "ERROR: Octeon core %d is stuck!\n",
1232 core_num);
1233 /* 2 means we have printk'd an error
1234 * so no need to repeat the same printk
1235 */
1236 core_is_stuck[core_num] =
1237 LIO_MONITOR_CORE_STUCK_MSGD;
1238 }
1239 }
1240 }
1241
1242 if (mask_of_crashed_cores) {
1243 for (core_num = 0; core_num < LIO_MAX_CORES;
1244 core_num++) {
1245 if (core_crashed[core_num] == 1) {
1246 dev_err(&oct->pci_dev->dev,
1247 "ERROR: Octeon core %d crashed! See oct-fwdump for details.\n",
1248 core_num);
1249 /* 2 means we have printk'd an error
1250 * so no need to repeat the same printk
1251 */
1252 core_crashed[core_num] =
1253 LIO_MONITOR_CORE_STUCK_MSGD;
1254 }
1255 }
1256 }
1257 #ifdef CONFIG_MODULE_UNLOAD
1258 if (mask_of_stuck_cores || mask_of_crashed_cores) {
1259 /* make module refcount=0 so that rmmod will work */
1260 long refcount;
1261
1262 refcount = module_refcount(THIS_MODULE);
1263
1264 while (refcount > 0) {
1265 module_put(THIS_MODULE);
1266 refcount = module_refcount(THIS_MODULE);
1267 }
1268
1269 /* compensate for and withstand an unlikely (but still
1270 * possible) race condition
1271 */
1272 while (refcount < 0) {
1273 try_module_get(THIS_MODULE);
1274 refcount = module_refcount(THIS_MODULE);
1275 }
1276 }
1277 #endif
1278 /* sleep for two seconds */
1279 set_current_state(TASK_INTERRUPTIBLE);
1280 schedule_timeout(2 * HZ);
1281 }
1282
1283 return 0;
1284 }
1285
1286 /**
1287 * \brief PCI probe handler
1288 * @param pdev PCI device structure
1289 * @param ent unused
1290 */
1291 static int
1292 liquidio_probe(struct pci_dev *pdev,
1293 const struct pci_device_id *ent __attribute__((unused)))
1294 {
1295 struct octeon_device *oct_dev = NULL;
1296 struct handshake *hs;
1297
1298 oct_dev = octeon_allocate_device(pdev->device,
1299 sizeof(struct octeon_device_priv));
1300 if (!oct_dev) {
1301 dev_err(&pdev->dev, "Unable to allocate device\n");
1302 return -ENOMEM;
1303 }
1304
1305 if (pdev->device == OCTEON_CN23XX_PF_VID)
1306 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
1307
1308 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1309 (u32)pdev->vendor, (u32)pdev->device);
1310
1311 /* Assign octeon_device for this device to the private data area. */
1312 pci_set_drvdata(pdev, oct_dev);
1313
1314 /* set linux specific device pointer */
1315 oct_dev->pci_dev = (void *)pdev;
1316
1317 hs = &handshake[oct_dev->octeon_id];
1318 init_completion(&hs->init);
1319 init_completion(&hs->started);
1320 hs->pci_dev = pdev;
1321
1322 if (oct_dev->octeon_id == 0)
1323 /* first LiquidIO NIC is detected */
1324 complete(&first_stage);
1325
1326 if (octeon_device_init(oct_dev)) {
1327 complete(&hs->init);
1328 liquidio_remove(pdev);
1329 return -ENOMEM;
1330 }
1331
1332 if (OCTEON_CN23XX_PF(oct_dev)) {
1333 u64 scratch1;
1334 u8 bus, device, function;
1335
1336 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1);
1337 if (!(scratch1 & 4ULL)) {
1338 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that
1339 * the lio watchdog kernel thread is running for this
1340 * NIC. Each NIC gets one watchdog kernel thread.
1341 */
1342 scratch1 |= 4ULL;
1343 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1,
1344 scratch1);
1345
1346 bus = pdev->bus->number;
1347 device = PCI_SLOT(pdev->devfn);
1348 function = PCI_FUNC(pdev->devfn);
1349 oct_dev->watchdog_task = kthread_create(
1350 liquidio_watchdog, oct_dev,
1351 "liowd/%02hhx:%02hhx.%hhx", bus, device, function);
1352 if (!IS_ERR(oct_dev->watchdog_task)) {
1353 wake_up_process(oct_dev->watchdog_task);
1354 } else {
1355 oct_dev->watchdog_task = NULL;
1356 dev_err(&oct_dev->pci_dev->dev,
1357 "failed to create kernel_thread\n");
1358 liquidio_remove(pdev);
1359 return -1;
1360 }
1361 }
1362 }
1363
1364 oct_dev->rx_pause = 1;
1365 oct_dev->tx_pause = 1;
1366
1367 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1368
1369 return 0;
1370 }
1371
1372 /**
1373 *\brief Destroy resources associated with octeon device
1374 * @param pdev PCI device structure
1375 * @param ent unused
1376 */
1377 static void octeon_destroy_resources(struct octeon_device *oct)
1378 {
1379 int i;
1380 struct msix_entry *msix_entries;
1381 struct octeon_device_priv *oct_priv =
1382 (struct octeon_device_priv *)oct->priv;
1383
1384 struct handshake *hs;
1385
1386 switch (atomic_read(&oct->status)) {
1387 case OCT_DEV_RUNNING:
1388 case OCT_DEV_CORE_OK:
1389
1390 /* No more instructions will be forwarded. */
1391 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1392
1393 oct->app_mode = CVM_DRV_INVALID_APP;
1394 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1395 lio_get_state_string(&oct->status));
1396
1397 schedule_timeout_uninterruptible(HZ / 10);
1398
1399 /* fallthrough */
1400 case OCT_DEV_HOST_OK:
1401
1402 /* fallthrough */
1403 case OCT_DEV_CONSOLE_INIT_DONE:
1404 /* Remove any consoles */
1405 octeon_remove_consoles(oct);
1406
1407 /* fallthrough */
1408 case OCT_DEV_IO_QUEUES_DONE:
1409 if (wait_for_pending_requests(oct))
1410 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1411
1412 if (lio_wait_for_instr_fetch(oct))
1413 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1414
1415 /* Disable the input and output queues now. No more packets will
1416 * arrive from Octeon, but we should wait for all packet
1417 * processing to finish.
1418 */
1419 oct->fn_list.disable_io_queues(oct);
1420
1421 if (lio_wait_for_oq_pkts(oct))
1422 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1423
1424 /* fallthrough */
1425 case OCT_DEV_INTR_SET_DONE:
1426 /* Disable interrupts */
1427 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1428
1429 if (oct->msix_on) {
1430 msix_entries = (struct msix_entry *)oct->msix_entries;
1431 for (i = 0; i < oct->num_msix_irqs - 1; i++) {
1432 /* clear the affinity_cpumask */
1433 irq_set_affinity_hint(msix_entries[i].vector,
1434 NULL);
1435 free_irq(msix_entries[i].vector,
1436 &oct->ioq_vector[i]);
1437 }
1438 /* non-iov vector's argument is oct struct */
1439 free_irq(msix_entries[i].vector, oct);
1440
1441 pci_disable_msix(oct->pci_dev);
1442 kfree(oct->msix_entries);
1443 oct->msix_entries = NULL;
1444 } else {
1445 /* Release the interrupt line */
1446 free_irq(oct->pci_dev->irq, oct);
1447
1448 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1449 pci_disable_msi(oct->pci_dev);
1450 }
1451
1452 /* fallthrough */
1453 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE:
1454 if (OCTEON_CN23XX_PF(oct))
1455 octeon_free_ioq_vector(oct);
1456
1457 /* fallthrough */
1458 case OCT_DEV_MBOX_SETUP_DONE:
1459 if (OCTEON_CN23XX_PF(oct))
1460 oct->fn_list.free_mbox(oct);
1461
1462 /* fallthrough */
1463 case OCT_DEV_IN_RESET:
1464 case OCT_DEV_DROQ_INIT_DONE:
1465 /* Wait for any pending operations */
1466 mdelay(100);
1467 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1468 if (!(oct->io_qmask.oq & BIT_ULL(i)))
1469 continue;
1470 octeon_delete_droq(oct, i);
1471 }
1472
1473 /* Force any pending handshakes to complete */
1474 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1475 hs = &handshake[i];
1476
1477 if (hs->pci_dev) {
1478 handshake[oct->octeon_id].init_ok = 0;
1479 complete(&handshake[oct->octeon_id].init);
1480 handshake[oct->octeon_id].started_ok = 0;
1481 complete(&handshake[oct->octeon_id].started);
1482 }
1483 }
1484
1485 /* fallthrough */
1486 case OCT_DEV_RESP_LIST_INIT_DONE:
1487 octeon_delete_response_list(oct);
1488
1489 /* fallthrough */
1490 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1491 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1492 if (!(oct->io_qmask.iq & BIT_ULL(i)))
1493 continue;
1494 octeon_delete_instr_queue(oct, i);
1495 }
1496 #ifdef CONFIG_PCI_IOV
1497 if (oct->sriov_info.sriov_enabled)
1498 pci_disable_sriov(oct->pci_dev);
1499 #endif
1500 /* fallthrough */
1501 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1502 octeon_free_sc_buffer_pool(oct);
1503
1504 /* fallthrough */
1505 case OCT_DEV_DISPATCH_INIT_DONE:
1506 octeon_delete_dispatch_list(oct);
1507 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1508
1509 /* fallthrough */
1510 case OCT_DEV_PCI_MAP_DONE:
1511 /* Soft reset the octeon device before exiting */
1512 if ((!OCTEON_CN23XX_PF(oct)) || !oct->octeon_id)
1513 oct->fn_list.soft_reset(oct);
1514
1515 octeon_unmap_pci_barx(oct, 0);
1516 octeon_unmap_pci_barx(oct, 1);
1517
1518 /* fallthrough */
1519 case OCT_DEV_PCI_ENABLE_DONE:
1520 pci_clear_master(oct->pci_dev);
1521 /* Disable the device, releasing the PCI INT */
1522 pci_disable_device(oct->pci_dev);
1523
1524 /* fallthrough */
1525 case OCT_DEV_BEGIN_STATE:
1526 /* Nothing to be done here either */
1527 break;
1528 } /* end switch (oct->status) */
1529
1530 tasklet_kill(&oct_priv->droq_tasklet);
1531 }
1532
1533 /**
1534 * \brief Callback for rx ctrl
1535 * @param status status of request
1536 * @param buf pointer to resp structure
1537 */
1538 static void rx_ctl_callback(struct octeon_device *oct,
1539 u32 status,
1540 void *buf)
1541 {
1542 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1543 struct liquidio_rx_ctl_context *ctx;
1544
1545 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1546
1547 oct = lio_get_device(ctx->octeon_id);
1548 if (status)
1549 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1550 CVM_CAST64(status));
1551 WRITE_ONCE(ctx->cond, 1);
1552
1553 /* This barrier is required to be sure that the response has been
1554 * written fully before waking up the handler
1555 */
1556 wmb();
1557
1558 wake_up_interruptible(&ctx->wc);
1559 }
1560
1561 /**
1562 * \brief Send Rx control command
1563 * @param lio per-network private data
1564 * @param start_stop whether to start or stop
1565 */
1566 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1567 {
1568 struct octeon_soft_command *sc;
1569 struct liquidio_rx_ctl_context *ctx;
1570 union octnet_cmd *ncmd;
1571 int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1572 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1573 int retval;
1574
1575 if (oct->props[lio->ifidx].rx_on == start_stop)
1576 return;
1577
1578 sc = (struct octeon_soft_command *)
1579 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1580 16, ctx_size);
1581
1582 ncmd = (union octnet_cmd *)sc->virtdptr;
1583 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1584
1585 WRITE_ONCE(ctx->cond, 0);
1586 ctx->octeon_id = lio_get_device_id(oct);
1587 init_waitqueue_head(&ctx->wc);
1588
1589 ncmd->u64 = 0;
1590 ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1591 ncmd->s.param1 = start_stop;
1592
1593 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1594
1595 sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1596
1597 octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1598 OPCODE_NIC_CMD, 0, 0, 0);
1599
1600 sc->callback = rx_ctl_callback;
1601 sc->callback_arg = sc;
1602 sc->wait_time = 5000;
1603
1604 retval = octeon_send_soft_command(oct, sc);
1605 if (retval == IQ_SEND_FAILED) {
1606 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1607 } else {
1608 /* Sleep on a wait queue till the cond flag indicates that the
1609 * response arrived or timed-out.
1610 */
1611 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1612 return;
1613 oct->props[lio->ifidx].rx_on = start_stop;
1614 }
1615
1616 octeon_free_soft_command(oct, sc);
1617 }
1618
1619 /**
1620 * \brief Destroy NIC device interface
1621 * @param oct octeon device
1622 * @param ifidx which interface to destroy
1623 *
1624 * Cleanup associated with each interface for an Octeon device when NIC
1625 * module is being unloaded or if initialization fails during load.
1626 */
1627 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1628 {
1629 struct net_device *netdev = oct->props[ifidx].netdev;
1630 struct lio *lio;
1631 struct napi_struct *napi, *n;
1632
1633 if (!netdev) {
1634 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1635 __func__, ifidx);
1636 return;
1637 }
1638
1639 lio = GET_LIO(netdev);
1640
1641 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1642
1643 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1644 liquidio_stop(netdev);
1645
1646 if (oct->props[lio->ifidx].napi_enabled == 1) {
1647 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1648 napi_disable(napi);
1649
1650 oct->props[lio->ifidx].napi_enabled = 0;
1651
1652 if (OCTEON_CN23XX_PF(oct))
1653 oct->droq[0]->ops.poll_mode = 0;
1654 }
1655
1656 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1657 unregister_netdev(netdev);
1658
1659 cleanup_link_status_change_wq(netdev);
1660
1661 delete_glists(lio);
1662
1663 free_netdev(netdev);
1664
1665 oct->props[ifidx].gmxport = -1;
1666
1667 oct->props[ifidx].netdev = NULL;
1668 }
1669
1670 /**
1671 * \brief Stop complete NIC functionality
1672 * @param oct octeon device
1673 */
1674 static int liquidio_stop_nic_module(struct octeon_device *oct)
1675 {
1676 int i, j;
1677 struct lio *lio;
1678
1679 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1680 if (!oct->ifcount) {
1681 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1682 return 1;
1683 }
1684
1685 spin_lock_bh(&oct->cmd_resp_wqlock);
1686 oct->cmd_resp_state = OCT_DRV_OFFLINE;
1687 spin_unlock_bh(&oct->cmd_resp_wqlock);
1688
1689 for (i = 0; i < oct->ifcount; i++) {
1690 lio = GET_LIO(oct->props[i].netdev);
1691 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1692 octeon_unregister_droq_ops(oct,
1693 lio->linfo.rxpciq[j].s.q_no);
1694 }
1695
1696 for (i = 0; i < oct->ifcount; i++)
1697 liquidio_destroy_nic_device(oct, i);
1698
1699 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1700 return 0;
1701 }
1702
1703 /**
1704 * \brief Cleans up resources at unload time
1705 * @param pdev PCI device structure
1706 */
1707 static void liquidio_remove(struct pci_dev *pdev)
1708 {
1709 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1710
1711 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1712
1713 if (oct_dev->watchdog_task)
1714 kthread_stop(oct_dev->watchdog_task);
1715
1716 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1717 liquidio_stop_nic_module(oct_dev);
1718
1719 /* Reset the octeon device and cleanup all memory allocated for
1720 * the octeon device by driver.
1721 */
1722 octeon_destroy_resources(oct_dev);
1723
1724 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1725
1726 /* This octeon device has been removed. Update the global
1727 * data structure to reflect this. Free the device structure.
1728 */
1729 octeon_free_device_mem(oct_dev);
1730 }
1731
1732 /**
1733 * \brief Identify the Octeon device and to map the BAR address space
1734 * @param oct octeon device
1735 */
1736 static int octeon_chip_specific_setup(struct octeon_device *oct)
1737 {
1738 u32 dev_id, rev_id;
1739 int ret = 1;
1740 char *s;
1741
1742 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1743 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1744 oct->rev_id = rev_id & 0xff;
1745
1746 switch (dev_id) {
1747 case OCTEON_CN68XX_PCIID:
1748 oct->chip_id = OCTEON_CN68XX;
1749 ret = lio_setup_cn68xx_octeon_device(oct);
1750 s = "CN68XX";
1751 break;
1752
1753 case OCTEON_CN66XX_PCIID:
1754 oct->chip_id = OCTEON_CN66XX;
1755 ret = lio_setup_cn66xx_octeon_device(oct);
1756 s = "CN66XX";
1757 break;
1758
1759 case OCTEON_CN23XX_PCIID_PF:
1760 oct->chip_id = OCTEON_CN23XX_PF_VID;
1761 ret = setup_cn23xx_octeon_pf_device(oct);
1762 s = "CN23XX";
1763 break;
1764
1765 default:
1766 s = "?";
1767 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1768 dev_id);
1769 }
1770
1771 if (!ret)
1772 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1773 OCTEON_MAJOR_REV(oct),
1774 OCTEON_MINOR_REV(oct),
1775 octeon_get_conf(oct)->card_name,
1776 LIQUIDIO_VERSION);
1777
1778 return ret;
1779 }
1780
1781 /**
1782 * \brief PCI initialization for each Octeon device.
1783 * @param oct octeon device
1784 */
1785 static int octeon_pci_os_setup(struct octeon_device *oct)
1786 {
1787 /* setup PCI stuff first */
1788 if (pci_enable_device(oct->pci_dev)) {
1789 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1790 return 1;
1791 }
1792
1793 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1794 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1795 pci_disable_device(oct->pci_dev);
1796 return 1;
1797 }
1798
1799 /* Enable PCI DMA Master. */
1800 pci_set_master(oct->pci_dev);
1801
1802 return 0;
1803 }
1804
1805 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1806 {
1807 int q = 0;
1808
1809 if (netif_is_multiqueue(lio->netdev))
1810 q = skb->queue_mapping % lio->linfo.num_txpciq;
1811
1812 return q;
1813 }
1814
1815 /**
1816 * \brief Check Tx queue state for a given network buffer
1817 * @param lio per-network private data
1818 * @param skb network buffer
1819 */
1820 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1821 {
1822 int q = 0, iq = 0;
1823
1824 if (netif_is_multiqueue(lio->netdev)) {
1825 q = skb->queue_mapping;
1826 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1827 } else {
1828 iq = lio->txq;
1829 q = iq;
1830 }
1831
1832 if (octnet_iq_is_full(lio->oct_dev, iq))
1833 return 0;
1834
1835 if (__netif_subqueue_stopped(lio->netdev, q)) {
1836 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1837 wake_q(lio->netdev, q);
1838 }
1839 return 1;
1840 }
1841
1842 /**
1843 * \brief Unmap and free network buffer
1844 * @param buf buffer
1845 */
1846 static void free_netbuf(void *buf)
1847 {
1848 struct sk_buff *skb;
1849 struct octnet_buf_free_info *finfo;
1850 struct lio *lio;
1851
1852 finfo = (struct octnet_buf_free_info *)buf;
1853 skb = finfo->skb;
1854 lio = finfo->lio;
1855
1856 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1857 DMA_TO_DEVICE);
1858
1859 check_txq_state(lio, skb);
1860
1861 tx_buffer_free(skb);
1862 }
1863
1864 /**
1865 * \brief Unmap and free gather buffer
1866 * @param buf buffer
1867 */
1868 static void free_netsgbuf(void *buf)
1869 {
1870 struct octnet_buf_free_info *finfo;
1871 struct sk_buff *skb;
1872 struct lio *lio;
1873 struct octnic_gather *g;
1874 int i, frags, iq;
1875
1876 finfo = (struct octnet_buf_free_info *)buf;
1877 skb = finfo->skb;
1878 lio = finfo->lio;
1879 g = finfo->g;
1880 frags = skb_shinfo(skb)->nr_frags;
1881
1882 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1883 g->sg[0].ptr[0], (skb->len - skb->data_len),
1884 DMA_TO_DEVICE);
1885
1886 i = 1;
1887 while (frags--) {
1888 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1889
1890 pci_unmap_page((lio->oct_dev)->pci_dev,
1891 g->sg[(i >> 2)].ptr[(i & 3)],
1892 frag->size, DMA_TO_DEVICE);
1893 i++;
1894 }
1895
1896 iq = skb_iq(lio, skb);
1897 spin_lock(&lio->glist_lock[iq]);
1898 list_add_tail(&g->list, &lio->glist[iq]);
1899 spin_unlock(&lio->glist_lock[iq]);
1900
1901 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1902
1903 tx_buffer_free(skb);
1904 }
1905
1906 /**
1907 * \brief Unmap and free gather buffer with response
1908 * @param buf buffer
1909 */
1910 static void free_netsgbuf_with_resp(void *buf)
1911 {
1912 struct octeon_soft_command *sc;
1913 struct octnet_buf_free_info *finfo;
1914 struct sk_buff *skb;
1915 struct lio *lio;
1916 struct octnic_gather *g;
1917 int i, frags, iq;
1918
1919 sc = (struct octeon_soft_command *)buf;
1920 skb = (struct sk_buff *)sc->callback_arg;
1921 finfo = (struct octnet_buf_free_info *)&skb->cb;
1922
1923 lio = finfo->lio;
1924 g = finfo->g;
1925 frags = skb_shinfo(skb)->nr_frags;
1926
1927 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1928 g->sg[0].ptr[0], (skb->len - skb->data_len),
1929 DMA_TO_DEVICE);
1930
1931 i = 1;
1932 while (frags--) {
1933 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1934
1935 pci_unmap_page((lio->oct_dev)->pci_dev,
1936 g->sg[(i >> 2)].ptr[(i & 3)],
1937 frag->size, DMA_TO_DEVICE);
1938 i++;
1939 }
1940
1941 iq = skb_iq(lio, skb);
1942
1943 spin_lock(&lio->glist_lock[iq]);
1944 list_add_tail(&g->list, &lio->glist[iq]);
1945 spin_unlock(&lio->glist_lock[iq]);
1946
1947 /* Don't free the skb yet */
1948
1949 check_txq_state(lio, skb);
1950 }
1951
1952 /**
1953 * \brief Adjust ptp frequency
1954 * @param ptp PTP clock info
1955 * @param ppb how much to adjust by, in parts-per-billion
1956 */
1957 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1958 {
1959 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1960 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1961 u64 comp, delta;
1962 unsigned long flags;
1963 bool neg_adj = false;
1964
1965 if (ppb < 0) {
1966 neg_adj = true;
1967 ppb = -ppb;
1968 }
1969
1970 /* The hardware adds the clock compensation value to the
1971 * PTP clock on every coprocessor clock cycle, so we
1972 * compute the delta in terms of coprocessor clocks.
1973 */
1974 delta = (u64)ppb << 32;
1975 do_div(delta, oct->coproc_clock_rate);
1976
1977 spin_lock_irqsave(&lio->ptp_lock, flags);
1978 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1979 if (neg_adj)
1980 comp -= delta;
1981 else
1982 comp += delta;
1983 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1984 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1985
1986 return 0;
1987 }
1988
1989 /**
1990 * \brief Adjust ptp time
1991 * @param ptp PTP clock info
1992 * @param delta how much to adjust by, in nanosecs
1993 */
1994 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1995 {
1996 unsigned long flags;
1997 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1998
1999 spin_lock_irqsave(&lio->ptp_lock, flags);
2000 lio->ptp_adjust += delta;
2001 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2002
2003 return 0;
2004 }
2005
2006 /**
2007 * \brief Get hardware clock time, including any adjustment
2008 * @param ptp PTP clock info
2009 * @param ts timespec
2010 */
2011 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
2012 struct timespec64 *ts)
2013 {
2014 u64 ns;
2015 unsigned long flags;
2016 struct lio *lio = container_of(ptp, struct lio, ptp_info);
2017 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2018
2019 spin_lock_irqsave(&lio->ptp_lock, flags);
2020 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
2021 ns += lio->ptp_adjust;
2022 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2023
2024 *ts = ns_to_timespec64(ns);
2025
2026 return 0;
2027 }
2028
2029 /**
2030 * \brief Set hardware clock time. Reset adjustment
2031 * @param ptp PTP clock info
2032 * @param ts timespec
2033 */
2034 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
2035 const struct timespec64 *ts)
2036 {
2037 u64 ns;
2038 unsigned long flags;
2039 struct lio *lio = container_of(ptp, struct lio, ptp_info);
2040 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2041
2042 ns = timespec_to_ns(ts);
2043
2044 spin_lock_irqsave(&lio->ptp_lock, flags);
2045 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
2046 lio->ptp_adjust = 0;
2047 spin_unlock_irqrestore(&lio->ptp_lock, flags);
2048
2049 return 0;
2050 }
2051
2052 /**
2053 * \brief Check if PTP is enabled
2054 * @param ptp PTP clock info
2055 * @param rq request
2056 * @param on is it on
2057 */
2058 static int
2059 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
2060 struct ptp_clock_request *rq __attribute__((unused)),
2061 int on __attribute__((unused)))
2062 {
2063 return -EOPNOTSUPP;
2064 }
2065
2066 /**
2067 * \brief Open PTP clock source
2068 * @param netdev network device
2069 */
2070 static void oct_ptp_open(struct net_device *netdev)
2071 {
2072 struct lio *lio = GET_LIO(netdev);
2073 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2074
2075 spin_lock_init(&lio->ptp_lock);
2076
2077 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
2078 lio->ptp_info.owner = THIS_MODULE;
2079 lio->ptp_info.max_adj = 250000000;
2080 lio->ptp_info.n_alarm = 0;
2081 lio->ptp_info.n_ext_ts = 0;
2082 lio->ptp_info.n_per_out = 0;
2083 lio->ptp_info.pps = 0;
2084 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
2085 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
2086 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
2087 lio->ptp_info.settime64 = liquidio_ptp_settime;
2088 lio->ptp_info.enable = liquidio_ptp_enable;
2089
2090 lio->ptp_adjust = 0;
2091
2092 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
2093 &oct->pci_dev->dev);
2094
2095 if (IS_ERR(lio->ptp_clock))
2096 lio->ptp_clock = NULL;
2097 }
2098
2099 /**
2100 * \brief Init PTP clock
2101 * @param oct octeon device
2102 */
2103 static void liquidio_ptp_init(struct octeon_device *oct)
2104 {
2105 u64 clock_comp, cfg;
2106
2107 clock_comp = (u64)NSEC_PER_SEC << 32;
2108 do_div(clock_comp, oct->coproc_clock_rate);
2109 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2110
2111 /* Enable */
2112 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
2113 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
2114 }
2115
2116 /**
2117 * \brief Load firmware to device
2118 * @param oct octeon device
2119 *
2120 * Maps device to firmware filename, requests firmware, and downloads it
2121 */
2122 static int load_firmware(struct octeon_device *oct)
2123 {
2124 int ret = 0;
2125 const struct firmware *fw;
2126 char fw_name[LIO_MAX_FW_FILENAME_LEN];
2127 char *tmp_fw_type;
2128
2129 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
2130 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
2131 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
2132 return ret;
2133 }
2134
2135 if (fw_type[0] == '\0')
2136 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
2137 else
2138 tmp_fw_type = fw_type;
2139
2140 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
2141 octeon_get_conf(oct)->card_name, tmp_fw_type,
2142 LIO_FW_NAME_SUFFIX);
2143
2144 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
2145 if (ret) {
2146 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
2147 fw_name);
2148 release_firmware(fw);
2149 return ret;
2150 }
2151
2152 ret = octeon_download_firmware(oct, fw->data, fw->size);
2153
2154 release_firmware(fw);
2155
2156 return ret;
2157 }
2158
2159 /**
2160 * \brief Setup output queue
2161 * @param oct octeon device
2162 * @param q_no which queue
2163 * @param num_descs how many descriptors
2164 * @param desc_size size of each descriptor
2165 * @param app_ctx application context
2166 */
2167 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
2168 int desc_size, void *app_ctx)
2169 {
2170 int ret_val = 0;
2171
2172 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
2173 /* droq creation and local register settings. */
2174 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
2175 if (ret_val < 0)
2176 return ret_val;
2177
2178 if (ret_val == 1) {
2179 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
2180 return 0;
2181 }
2182 /* tasklet creation for the droq */
2183
2184 /* Enable the droq queues */
2185 octeon_set_droq_pkt_op(oct, q_no, 1);
2186
2187 /* Send Credit for Octeon Output queues. Credits are always
2188 * sent after the output queue is enabled.
2189 */
2190 writel(oct->droq[q_no]->max_count,
2191 oct->droq[q_no]->pkts_credit_reg);
2192
2193 return ret_val;
2194 }
2195
2196 /**
2197 * \brief Callback for getting interface configuration
2198 * @param status status of request
2199 * @param buf pointer to resp structure
2200 */
2201 static void if_cfg_callback(struct octeon_device *oct,
2202 u32 status __attribute__((unused)),
2203 void *buf)
2204 {
2205 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
2206 struct liquidio_if_cfg_resp *resp;
2207 struct liquidio_if_cfg_context *ctx;
2208
2209 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2210 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
2211
2212 oct = lio_get_device(ctx->octeon_id);
2213 if (resp->status)
2214 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
2215 CVM_CAST64(resp->status));
2216 WRITE_ONCE(ctx->cond, 1);
2217
2218 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
2219 resp->cfg_info.liquidio_firmware_version);
2220
2221 /* This barrier is required to be sure that the response has been
2222 * written fully before waking up the handler
2223 */
2224 wmb();
2225
2226 wake_up_interruptible(&ctx->wc);
2227 }
2228
2229 /** Routine to push packets arriving on Octeon interface upto network layer.
2230 * @param oct_id - octeon device id.
2231 * @param skbuff - skbuff struct to be passed to network layer.
2232 * @param len - size of total data received.
2233 * @param rh - Control header associated with the packet
2234 * @param param - additional control data with the packet
2235 * @param arg - farg registered in droq_ops
2236 */
2237 static void
2238 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
2239 void *skbuff,
2240 u32 len,
2241 union octeon_rh *rh,
2242 void *param,
2243 void *arg)
2244 {
2245 struct napi_struct *napi = param;
2246 struct sk_buff *skb = (struct sk_buff *)skbuff;
2247 struct skb_shared_hwtstamps *shhwtstamps;
2248 u64 ns;
2249 u16 vtag = 0;
2250 u32 r_dh_off;
2251 struct net_device *netdev = (struct net_device *)arg;
2252 struct octeon_droq *droq = container_of(param, struct octeon_droq,
2253 napi);
2254 if (netdev) {
2255 int packet_was_received;
2256 struct lio *lio = GET_LIO(netdev);
2257 struct octeon_device *oct = lio->oct_dev;
2258
2259 /* Do not proceed if the interface is not in RUNNING state. */
2260 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
2261 recv_buffer_free(skb);
2262 droq->stats.rx_dropped++;
2263 return;
2264 }
2265
2266 skb->dev = netdev;
2267
2268 skb_record_rx_queue(skb, droq->q_no);
2269 if (likely(len > MIN_SKB_SIZE)) {
2270 struct octeon_skb_page_info *pg_info;
2271 unsigned char *va;
2272
2273 pg_info = ((struct octeon_skb_page_info *)(skb->cb));
2274 if (pg_info->page) {
2275 /* For Paged allocation use the frags */
2276 va = page_address(pg_info->page) +
2277 pg_info->page_offset;
2278 memcpy(skb->data, va, MIN_SKB_SIZE);
2279 skb_put(skb, MIN_SKB_SIZE);
2280 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2281 pg_info->page,
2282 pg_info->page_offset +
2283 MIN_SKB_SIZE,
2284 len - MIN_SKB_SIZE,
2285 LIO_RXBUFFER_SZ);
2286 }
2287 } else {
2288 struct octeon_skb_page_info *pg_info =
2289 ((struct octeon_skb_page_info *)(skb->cb));
2290 skb_copy_to_linear_data(skb, page_address(pg_info->page)
2291 + pg_info->page_offset, len);
2292 skb_put(skb, len);
2293 put_page(pg_info->page);
2294 }
2295
2296 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT;
2297
2298 if (((oct->chip_id == OCTEON_CN66XX) ||
2299 (oct->chip_id == OCTEON_CN68XX)) &&
2300 ptp_enable) {
2301 if (rh->r_dh.has_hwtstamp) {
2302 /* timestamp is included from the hardware at
2303 * the beginning of the packet.
2304 */
2305 if (ifstate_check
2306 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
2307 /* Nanoseconds are in the first 64-bits
2308 * of the packet.
2309 */
2310 memcpy(&ns, (skb->data + r_dh_off),
2311 sizeof(ns));
2312 r_dh_off -= BYTES_PER_DHLEN_UNIT;
2313 shhwtstamps = skb_hwtstamps(skb);
2314 shhwtstamps->hwtstamp =
2315 ns_to_ktime(ns +
2316 lio->ptp_adjust);
2317 }
2318 }
2319 }
2320
2321 if (rh->r_dh.has_hash) {
2322 __be32 *hash_be = (__be32 *)(skb->data + r_dh_off);
2323 u32 hash = be32_to_cpu(*hash_be);
2324
2325 skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
2326 r_dh_off -= BYTES_PER_DHLEN_UNIT;
2327 }
2328
2329 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT);
2330
2331 skb->protocol = eth_type_trans(skb, skb->dev);
2332 if ((netdev->features & NETIF_F_RXCSUM) &&
2333 (((rh->r_dh.encap_on) &&
2334 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2335 (!(rh->r_dh.encap_on) &&
2336 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2337 /* checksum has already been verified */
2338 skb->ip_summed = CHECKSUM_UNNECESSARY;
2339 else
2340 skb->ip_summed = CHECKSUM_NONE;
2341
2342 /* Setting Encapsulation field on basis of status received
2343 * from the firmware
2344 */
2345 if (rh->r_dh.encap_on) {
2346 skb->encapsulation = 1;
2347 skb->csum_level = 1;
2348 droq->stats.rx_vxlan++;
2349 }
2350
2351 /* inbound VLAN tag */
2352 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2353 (rh->r_dh.vlan != 0)) {
2354 u16 vid = rh->r_dh.vlan;
2355 u16 priority = rh->r_dh.priority;
2356
2357 vtag = priority << 13 | vid;
2358 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2359 }
2360
2361 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2362
2363 if (packet_was_received) {
2364 droq->stats.rx_bytes_received += len;
2365 droq->stats.rx_pkts_received++;
2366 } else {
2367 droq->stats.rx_dropped++;
2368 netif_info(lio, rx_err, lio->netdev,
2369 "droq:%d error rx_dropped:%llu\n",
2370 droq->q_no, droq->stats.rx_dropped);
2371 }
2372
2373 } else {
2374 recv_buffer_free(skb);
2375 }
2376 }
2377
2378 /**
2379 * \brief wrapper for calling napi_schedule
2380 * @param param parameters to pass to napi_schedule
2381 *
2382 * Used when scheduling on different CPUs
2383 */
2384 static void napi_schedule_wrapper(void *param)
2385 {
2386 struct napi_struct *napi = param;
2387
2388 napi_schedule(napi);
2389 }
2390
2391 /**
2392 * \brief callback when receive interrupt occurs and we are in NAPI mode
2393 * @param arg pointer to octeon output queue
2394 */
2395 static void liquidio_napi_drv_callback(void *arg)
2396 {
2397 struct octeon_device *oct;
2398 struct octeon_droq *droq = arg;
2399 int this_cpu = smp_processor_id();
2400
2401 oct = droq->oct_dev;
2402
2403 if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) {
2404 napi_schedule_irqoff(&droq->napi);
2405 } else {
2406 struct call_single_data *csd = &droq->csd;
2407
2408 csd->func = napi_schedule_wrapper;
2409 csd->info = &droq->napi;
2410 csd->flags = 0;
2411
2412 smp_call_function_single_async(droq->cpu_id, csd);
2413 }
2414 }
2415
2416 /**
2417 * \brief Entry point for NAPI polling
2418 * @param napi NAPI structure
2419 * @param budget maximum number of items to process
2420 */
2421 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2422 {
2423 struct octeon_droq *droq;
2424 int work_done;
2425 int tx_done = 0, iq_no;
2426 struct octeon_instr_queue *iq;
2427 struct octeon_device *oct;
2428
2429 droq = container_of(napi, struct octeon_droq, napi);
2430 oct = droq->oct_dev;
2431 iq_no = droq->q_no;
2432 /* Handle Droq descriptors */
2433 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2434 POLL_EVENT_PROCESS_PKTS,
2435 budget);
2436
2437 /* Flush the instruction queue */
2438 iq = oct->instr_queue[iq_no];
2439 if (iq) {
2440 /* Process iq buffers with in the budget limits */
2441 tx_done = octeon_flush_iq(oct, iq, budget);
2442 /* Update iq read-index rather than waiting for next interrupt.
2443 * Return back if tx_done is false.
2444 */
2445 update_txq_status(oct, iq_no);
2446 } else {
2447 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
2448 __func__, iq_no);
2449 }
2450
2451 /* force enable interrupt if reg cnts are high to avoid wraparound */
2452 if ((work_done < budget && tx_done) ||
2453 (iq && iq->pkt_in_done >= MAX_REG_CNT) ||
2454 (droq->pkt_count >= MAX_REG_CNT)) {
2455 tx_done = 1;
2456 napi_complete_done(napi, work_done);
2457 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2458 POLL_EVENT_ENABLE_INTR, 0);
2459 return 0;
2460 }
2461
2462 return (!tx_done) ? (budget) : (work_done);
2463 }
2464
2465 /**
2466 * \brief Setup input and output queues
2467 * @param octeon_dev octeon device
2468 * @param ifidx Interface Index
2469 *
2470 * Note: Queues are with respect to the octeon device. Thus
2471 * an input queue is for egress packets, and output queues
2472 * are for ingress packets.
2473 */
2474 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2475 int ifidx)
2476 {
2477 struct octeon_droq_ops droq_ops;
2478 struct net_device *netdev;
2479 static int cpu_id;
2480 static int cpu_id_modulus;
2481 struct octeon_droq *droq;
2482 struct napi_struct *napi;
2483 int q, q_no, retval = 0;
2484 struct lio *lio;
2485 int num_tx_descs;
2486
2487 netdev = octeon_dev->props[ifidx].netdev;
2488
2489 lio = GET_LIO(netdev);
2490
2491 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2492
2493 droq_ops.fptr = liquidio_push_packet;
2494 droq_ops.farg = (void *)netdev;
2495
2496 droq_ops.poll_mode = 1;
2497 droq_ops.napi_fn = liquidio_napi_drv_callback;
2498 cpu_id = 0;
2499 cpu_id_modulus = num_present_cpus();
2500
2501 /* set up DROQs. */
2502 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2503 q_no = lio->linfo.rxpciq[q].s.q_no;
2504 dev_dbg(&octeon_dev->pci_dev->dev,
2505 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2506 q, q_no);
2507 retval = octeon_setup_droq(octeon_dev, q_no,
2508 CFG_GET_NUM_RX_DESCS_NIC_IF
2509 (octeon_get_conf(octeon_dev),
2510 lio->ifidx),
2511 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2512 (octeon_get_conf(octeon_dev),
2513 lio->ifidx), NULL);
2514 if (retval) {
2515 dev_err(&octeon_dev->pci_dev->dev,
2516 "%s : Runtime DROQ(RxQ) creation failed.\n",
2517 __func__);
2518 return 1;
2519 }
2520
2521 droq = octeon_dev->droq[q_no];
2522 napi = &droq->napi;
2523 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n",
2524 (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num);
2525 netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2526
2527 /* designate a CPU for this droq */
2528 droq->cpu_id = cpu_id;
2529 cpu_id++;
2530 if (cpu_id >= cpu_id_modulus)
2531 cpu_id = 0;
2532
2533 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2534 }
2535
2536 if (OCTEON_CN23XX_PF(octeon_dev)) {
2537 /* 23XX PF can receive control messages (via the first PF-owned
2538 * droq) from the firmware even if the ethX interface is down,
2539 * so that's why poll_mode must be off for the first droq.
2540 */
2541 octeon_dev->droq[0]->ops.poll_mode = 0;
2542 }
2543
2544 /* set up IQs. */
2545 for (q = 0; q < lio->linfo.num_txpciq; q++) {
2546 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2547 (octeon_dev),
2548 lio->ifidx);
2549 retval = octeon_setup_iq(octeon_dev, ifidx, q,
2550 lio->linfo.txpciq[q], num_tx_descs,
2551 netdev_get_tx_queue(netdev, q));
2552 if (retval) {
2553 dev_err(&octeon_dev->pci_dev->dev,
2554 " %s : Runtime IQ(TxQ) creation failed.\n",
2555 __func__);
2556 return 1;
2557 }
2558
2559 if (octeon_dev->ioq_vector) {
2560 struct octeon_ioq_vector *ioq_vector;
2561
2562 ioq_vector = &octeon_dev->ioq_vector[q];
2563 netif_set_xps_queue(netdev,
2564 &ioq_vector->affinity_mask,
2565 ioq_vector->iq_index);
2566 }
2567 }
2568
2569 return 0;
2570 }
2571
2572 /**
2573 * \brief Poll routine for checking transmit queue status
2574 * @param work work_struct data structure
2575 */
2576 static void octnet_poll_check_txq_status(struct work_struct *work)
2577 {
2578 struct cavium_wk *wk = (struct cavium_wk *)work;
2579 struct lio *lio = (struct lio *)wk->ctxptr;
2580
2581 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2582 return;
2583
2584 check_txq_status(lio);
2585 queue_delayed_work(lio->txq_status_wq.wq,
2586 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2587 }
2588
2589 /**
2590 * \brief Sets up the txq poll check
2591 * @param netdev network device
2592 */
2593 static inline int setup_tx_poll_fn(struct net_device *netdev)
2594 {
2595 struct lio *lio = GET_LIO(netdev);
2596 struct octeon_device *oct = lio->oct_dev;
2597
2598 lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2599 WQ_MEM_RECLAIM, 0);
2600 if (!lio->txq_status_wq.wq) {
2601 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2602 return -1;
2603 }
2604 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2605 octnet_poll_check_txq_status);
2606 lio->txq_status_wq.wk.ctxptr = lio;
2607 queue_delayed_work(lio->txq_status_wq.wq,
2608 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2609 return 0;
2610 }
2611
2612 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2613 {
2614 struct lio *lio = GET_LIO(netdev);
2615
2616 if (lio->txq_status_wq.wq) {
2617 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2618 destroy_workqueue(lio->txq_status_wq.wq);
2619 }
2620 }
2621
2622 /**
2623 * \brief Net device open for LiquidIO
2624 * @param netdev network device
2625 */
2626 static int liquidio_open(struct net_device *netdev)
2627 {
2628 struct lio *lio = GET_LIO(netdev);
2629 struct octeon_device *oct = lio->oct_dev;
2630 struct napi_struct *napi, *n;
2631
2632 if (oct->props[lio->ifidx].napi_enabled == 0) {
2633 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2634 napi_enable(napi);
2635
2636 oct->props[lio->ifidx].napi_enabled = 1;
2637
2638 if (OCTEON_CN23XX_PF(oct))
2639 oct->droq[0]->ops.poll_mode = 1;
2640 }
2641
2642 if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) &&
2643 ptp_enable)
2644 oct_ptp_open(netdev);
2645
2646 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2647
2648 /* Ready for link status updates */
2649 lio->intf_open = 1;
2650
2651 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2652
2653 if (OCTEON_CN23XX_PF(oct)) {
2654 if (!oct->msix_on)
2655 if (setup_tx_poll_fn(netdev))
2656 return -1;
2657 } else {
2658 if (setup_tx_poll_fn(netdev))
2659 return -1;
2660 }
2661
2662 start_txq(netdev);
2663
2664 /* tell Octeon to start forwarding packets to host */
2665 send_rx_ctrl_cmd(lio, 1);
2666
2667 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2668 netdev->name);
2669
2670 return 0;
2671 }
2672
2673 /**
2674 * \brief Net device stop for LiquidIO
2675 * @param netdev network device
2676 */
2677 static int liquidio_stop(struct net_device *netdev)
2678 {
2679 struct lio *lio = GET_LIO(netdev);
2680 struct octeon_device *oct = lio->oct_dev;
2681
2682 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2683
2684 netif_tx_disable(netdev);
2685
2686 /* Inform that netif carrier is down */
2687 netif_carrier_off(netdev);
2688 lio->intf_open = 0;
2689 lio->linfo.link.s.link_up = 0;
2690 lio->link_changes++;
2691
2692 /* Tell Octeon that nic interface is down. */
2693 send_rx_ctrl_cmd(lio, 0);
2694
2695 if (OCTEON_CN23XX_PF(oct)) {
2696 if (!oct->msix_on)
2697 cleanup_tx_poll_fn(netdev);
2698 } else {
2699 cleanup_tx_poll_fn(netdev);
2700 }
2701
2702 if (lio->ptp_clock) {
2703 ptp_clock_unregister(lio->ptp_clock);
2704 lio->ptp_clock = NULL;
2705 }
2706
2707 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2708
2709 return 0;
2710 }
2711
2712 /**
2713 * \brief Converts a mask based on net device flags
2714 * @param netdev network device
2715 *
2716 * This routine generates a octnet_ifflags mask from the net device flags
2717 * received from the OS.
2718 */
2719 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2720 {
2721 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2722
2723 if (netdev->flags & IFF_PROMISC)
2724 f |= OCTNET_IFFLAG_PROMISC;
2725
2726 if (netdev->flags & IFF_ALLMULTI)
2727 f |= OCTNET_IFFLAG_ALLMULTI;
2728
2729 if (netdev->flags & IFF_MULTICAST) {
2730 f |= OCTNET_IFFLAG_MULTICAST;
2731
2732 /* Accept all multicast addresses if there are more than we
2733 * can handle
2734 */
2735 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2736 f |= OCTNET_IFFLAG_ALLMULTI;
2737 }
2738
2739 if (netdev->flags & IFF_BROADCAST)
2740 f |= OCTNET_IFFLAG_BROADCAST;
2741
2742 return f;
2743 }
2744
2745 /**
2746 * \brief Net device set_multicast_list
2747 * @param netdev network device
2748 */
2749 static void liquidio_set_mcast_list(struct net_device *netdev)
2750 {
2751 struct lio *lio = GET_LIO(netdev);
2752 struct octeon_device *oct = lio->oct_dev;
2753 struct octnic_ctrl_pkt nctrl;
2754 struct netdev_hw_addr *ha;
2755 u64 *mc;
2756 int ret;
2757 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2758
2759 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2760
2761 /* Create a ctrl pkt command to be sent to core app. */
2762 nctrl.ncmd.u64 = 0;
2763 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2764 nctrl.ncmd.s.param1 = get_new_flags(netdev);
2765 nctrl.ncmd.s.param2 = mc_count;
2766 nctrl.ncmd.s.more = mc_count;
2767 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2768 nctrl.netpndev = (u64)netdev;
2769 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2770
2771 /* copy all the addresses into the udd */
2772 mc = &nctrl.udd[0];
2773 netdev_for_each_mc_addr(ha, netdev) {
2774 *mc = 0;
2775 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2776 /* no need to swap bytes */
2777
2778 if (++mc > &nctrl.udd[mc_count])
2779 break;
2780 }
2781
2782 /* Apparently, any activity in this call from the kernel has to
2783 * be atomic. So we won't wait for response.
2784 */
2785 nctrl.wait_time = 0;
2786
2787 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2788 if (ret < 0) {
2789 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2790 ret);
2791 }
2792 }
2793
2794 /**
2795 * \brief Net device set_mac_address
2796 * @param netdev network device
2797 */
2798 static int liquidio_set_mac(struct net_device *netdev, void *p)
2799 {
2800 int ret = 0;
2801 struct lio *lio = GET_LIO(netdev);
2802 struct octeon_device *oct = lio->oct_dev;
2803 struct sockaddr *addr = (struct sockaddr *)p;
2804 struct octnic_ctrl_pkt nctrl;
2805
2806 if (!is_valid_ether_addr(addr->sa_data))
2807 return -EADDRNOTAVAIL;
2808
2809 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2810
2811 nctrl.ncmd.u64 = 0;
2812 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2813 nctrl.ncmd.s.param1 = 0;
2814 nctrl.ncmd.s.more = 1;
2815 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2816 nctrl.netpndev = (u64)netdev;
2817 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2818 nctrl.wait_time = 100;
2819
2820 nctrl.udd[0] = 0;
2821 /* The MAC Address is presented in network byte order. */
2822 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2823
2824 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2825 if (ret < 0) {
2826 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2827 return -ENOMEM;
2828 }
2829 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2830 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2831
2832 return 0;
2833 }
2834
2835 /**
2836 * \brief Net device get_stats
2837 * @param netdev network device
2838 */
2839 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2840 {
2841 struct lio *lio = GET_LIO(netdev);
2842 struct net_device_stats *stats = &netdev->stats;
2843 struct octeon_device *oct;
2844 u64 pkts = 0, drop = 0, bytes = 0;
2845 struct oct_droq_stats *oq_stats;
2846 struct oct_iq_stats *iq_stats;
2847 int i, iq_no, oq_no;
2848
2849 oct = lio->oct_dev;
2850
2851 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2852 iq_no = lio->linfo.txpciq[i].s.q_no;
2853 iq_stats = &oct->instr_queue[iq_no]->stats;
2854 pkts += iq_stats->tx_done;
2855 drop += iq_stats->tx_dropped;
2856 bytes += iq_stats->tx_tot_bytes;
2857 }
2858
2859 stats->tx_packets = pkts;
2860 stats->tx_bytes = bytes;
2861 stats->tx_dropped = drop;
2862
2863 pkts = 0;
2864 drop = 0;
2865 bytes = 0;
2866
2867 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2868 oq_no = lio->linfo.rxpciq[i].s.q_no;
2869 oq_stats = &oct->droq[oq_no]->stats;
2870 pkts += oq_stats->rx_pkts_received;
2871 drop += (oq_stats->rx_dropped +
2872 oq_stats->dropped_nodispatch +
2873 oq_stats->dropped_toomany +
2874 oq_stats->dropped_nomem);
2875 bytes += oq_stats->rx_bytes_received;
2876 }
2877
2878 stats->rx_bytes = bytes;
2879 stats->rx_packets = pkts;
2880 stats->rx_dropped = drop;
2881
2882 return stats;
2883 }
2884
2885 /**
2886 * \brief Net device change_mtu
2887 * @param netdev network device
2888 */
2889 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2890 {
2891 struct lio *lio = GET_LIO(netdev);
2892 struct octeon_device *oct = lio->oct_dev;
2893 struct octnic_ctrl_pkt nctrl;
2894 int ret = 0;
2895
2896 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2897
2898 nctrl.ncmd.u64 = 0;
2899 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2900 nctrl.ncmd.s.param1 = new_mtu;
2901 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2902 nctrl.wait_time = 100;
2903 nctrl.netpndev = (u64)netdev;
2904 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2905
2906 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2907 if (ret < 0) {
2908 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2909 return -1;
2910 }
2911
2912 lio->mtu = new_mtu;
2913
2914 return 0;
2915 }
2916
2917 /**
2918 * \brief Handler for SIOCSHWTSTAMP ioctl
2919 * @param netdev network device
2920 * @param ifr interface request
2921 * @param cmd command
2922 */
2923 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2924 {
2925 struct hwtstamp_config conf;
2926 struct lio *lio = GET_LIO(netdev);
2927
2928 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2929 return -EFAULT;
2930
2931 if (conf.flags)
2932 return -EINVAL;
2933
2934 switch (conf.tx_type) {
2935 case HWTSTAMP_TX_ON:
2936 case HWTSTAMP_TX_OFF:
2937 break;
2938 default:
2939 return -ERANGE;
2940 }
2941
2942 switch (conf.rx_filter) {
2943 case HWTSTAMP_FILTER_NONE:
2944 break;
2945 case HWTSTAMP_FILTER_ALL:
2946 case HWTSTAMP_FILTER_SOME:
2947 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2948 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2949 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2950 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2951 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2952 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2953 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2954 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2955 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2956 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2957 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2958 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2959 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2960 break;
2961 default:
2962 return -ERANGE;
2963 }
2964
2965 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2966 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2967
2968 else
2969 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2970
2971 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2972 }
2973
2974 /**
2975 * \brief ioctl handler
2976 * @param netdev network device
2977 * @param ifr interface request
2978 * @param cmd command
2979 */
2980 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2981 {
2982 struct lio *lio = GET_LIO(netdev);
2983
2984 switch (cmd) {
2985 case SIOCSHWTSTAMP:
2986 if ((lio->oct_dev->chip_id == OCTEON_CN66XX ||
2987 lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable)
2988 return hwtstamp_ioctl(netdev, ifr);
2989 default:
2990 return -EOPNOTSUPP;
2991 }
2992 }
2993
2994 /**
2995 * \brief handle a Tx timestamp response
2996 * @param status response status
2997 * @param buf pointer to skb
2998 */
2999 static void handle_timestamp(struct octeon_device *oct,
3000 u32 status,
3001 void *buf)
3002 {
3003 struct octnet_buf_free_info *finfo;
3004 struct octeon_soft_command *sc;
3005 struct oct_timestamp_resp *resp;
3006 struct lio *lio;
3007 struct sk_buff *skb = (struct sk_buff *)buf;
3008
3009 finfo = (struct octnet_buf_free_info *)skb->cb;
3010 lio = finfo->lio;
3011 sc = finfo->sc;
3012 oct = lio->oct_dev;
3013 resp = (struct oct_timestamp_resp *)sc->virtrptr;
3014
3015 if (status != OCTEON_REQUEST_DONE) {
3016 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
3017 CVM_CAST64(status));
3018 resp->timestamp = 0;
3019 }
3020
3021 octeon_swap_8B_data(&resp->timestamp, 1);
3022
3023 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
3024 struct skb_shared_hwtstamps ts;
3025 u64 ns = resp->timestamp;
3026
3027 netif_info(lio, tx_done, lio->netdev,
3028 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
3029 skb, (unsigned long long)ns);
3030 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
3031 skb_tstamp_tx(skb, &ts);
3032 }
3033
3034 octeon_free_soft_command(oct, sc);
3035 tx_buffer_free(skb);
3036 }
3037
3038 /* \brief Send a data packet that will be timestamped
3039 * @param oct octeon device
3040 * @param ndata pointer to network data
3041 * @param finfo pointer to private network data
3042 */
3043 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
3044 struct octnic_data_pkt *ndata,
3045 struct octnet_buf_free_info *finfo)
3046 {
3047 int retval;
3048 struct octeon_soft_command *sc;
3049 struct lio *lio;
3050 int ring_doorbell;
3051 u32 len;
3052
3053 lio = finfo->lio;
3054
3055 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
3056 sizeof(struct oct_timestamp_resp));
3057 finfo->sc = sc;
3058
3059 if (!sc) {
3060 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
3061 return IQ_SEND_FAILED;
3062 }
3063
3064 if (ndata->reqtype == REQTYPE_NORESP_NET)
3065 ndata->reqtype = REQTYPE_RESP_NET;
3066 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
3067 ndata->reqtype = REQTYPE_RESP_NET_SG;
3068
3069 sc->callback = handle_timestamp;
3070 sc->callback_arg = finfo->skb;
3071 sc->iq_no = ndata->q_no;
3072
3073 if (OCTEON_CN23XX_PF(oct))
3074 len = (u32)((struct octeon_instr_ih3 *)
3075 (&sc->cmd.cmd3.ih3))->dlengsz;
3076 else
3077 len = (u32)((struct octeon_instr_ih2 *)
3078 (&sc->cmd.cmd2.ih2))->dlengsz;
3079
3080 ring_doorbell = 1;
3081
3082 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
3083 sc, len, ndata->reqtype);
3084
3085 if (retval == IQ_SEND_FAILED) {
3086 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
3087 retval);
3088 octeon_free_soft_command(oct, sc);
3089 } else {
3090 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
3091 }
3092
3093 return retval;
3094 }
3095
3096 /** \brief Transmit networks packets to the Octeon interface
3097 * @param skbuff skbuff struct to be passed to network layer.
3098 * @param netdev pointer to network device
3099 * @returns whether the packet was transmitted to the device okay or not
3100 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
3101 */
3102 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
3103 {
3104 struct lio *lio;
3105 struct octnet_buf_free_info *finfo;
3106 union octnic_cmd_setup cmdsetup;
3107 struct octnic_data_pkt ndata;
3108 struct octeon_device *oct;
3109 struct oct_iq_stats *stats;
3110 struct octeon_instr_irh *irh;
3111 union tx_info *tx_info;
3112 int status = 0;
3113 int q_idx = 0, iq_no = 0;
3114 int j;
3115 u64 dptr = 0;
3116 u32 tag = 0;
3117
3118 lio = GET_LIO(netdev);
3119 oct = lio->oct_dev;
3120
3121 if (netif_is_multiqueue(netdev)) {
3122 q_idx = skb->queue_mapping;
3123 q_idx = (q_idx % (lio->linfo.num_txpciq));
3124 tag = q_idx;
3125 iq_no = lio->linfo.txpciq[q_idx].s.q_no;
3126 } else {
3127 iq_no = lio->txq;
3128 }
3129
3130 stats = &oct->instr_queue[iq_no]->stats;
3131
3132 /* Check for all conditions in which the current packet cannot be
3133 * transmitted.
3134 */
3135 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
3136 (!lio->linfo.link.s.link_up) ||
3137 (skb->len <= 0)) {
3138 netif_info(lio, tx_err, lio->netdev,
3139 "Transmit failed link_status : %d\n",
3140 lio->linfo.link.s.link_up);
3141 goto lio_xmit_failed;
3142 }
3143
3144 /* Use space in skb->cb to store info used to unmap and
3145 * free the buffers.
3146 */
3147 finfo = (struct octnet_buf_free_info *)skb->cb;
3148 finfo->lio = lio;
3149 finfo->skb = skb;
3150 finfo->sc = NULL;
3151
3152 /* Prepare the attributes for the data to be passed to OSI. */
3153 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
3154
3155 ndata.buf = (void *)finfo;
3156
3157 ndata.q_no = iq_no;
3158
3159 if (netif_is_multiqueue(netdev)) {
3160 if (octnet_iq_is_full(oct, ndata.q_no)) {
3161 /* defer sending if queue is full */
3162 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3163 ndata.q_no);
3164 stats->tx_iq_busy++;
3165 return NETDEV_TX_BUSY;
3166 }
3167 } else {
3168 if (octnet_iq_is_full(oct, lio->txq)) {
3169 /* defer sending if queue is full */
3170 stats->tx_iq_busy++;
3171 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3172 lio->txq);
3173 return NETDEV_TX_BUSY;
3174 }
3175 }
3176 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
3177 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
3178 */
3179
3180 ndata.datasize = skb->len;
3181
3182 cmdsetup.u64 = 0;
3183 cmdsetup.s.iq_no = iq_no;
3184
3185 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3186 if (skb->encapsulation) {
3187 cmdsetup.s.tnl_csum = 1;
3188 stats->tx_vxlan++;
3189 } else {
3190 cmdsetup.s.transport_csum = 1;
3191 }
3192 }
3193 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3194 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3195 cmdsetup.s.timestamp = 1;
3196 }
3197
3198 if (skb_shinfo(skb)->nr_frags == 0) {
3199 cmdsetup.s.u.datasize = skb->len;
3200 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3201
3202 /* Offload checksum calculation for TCP/UDP packets */
3203 dptr = dma_map_single(&oct->pci_dev->dev,
3204 skb->data,
3205 skb->len,
3206 DMA_TO_DEVICE);
3207 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
3208 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
3209 __func__);
3210 return NETDEV_TX_BUSY;
3211 }
3212
3213 if (OCTEON_CN23XX_PF(oct))
3214 ndata.cmd.cmd3.dptr = dptr;
3215 else
3216 ndata.cmd.cmd2.dptr = dptr;
3217 finfo->dptr = dptr;
3218 ndata.reqtype = REQTYPE_NORESP_NET;
3219
3220 } else {
3221 int i, frags;
3222 struct skb_frag_struct *frag;
3223 struct octnic_gather *g;
3224
3225 spin_lock(&lio->glist_lock[q_idx]);
3226 g = (struct octnic_gather *)
3227 list_delete_head(&lio->glist[q_idx]);
3228 spin_unlock(&lio->glist_lock[q_idx]);
3229
3230 if (!g) {
3231 netif_info(lio, tx_err, lio->netdev,
3232 "Transmit scatter gather: glist null!\n");
3233 goto lio_xmit_failed;
3234 }
3235
3236 cmdsetup.s.gather = 1;
3237 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3238 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3239
3240 memset(g->sg, 0, g->sg_size);
3241
3242 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3243 skb->data,
3244 (skb->len - skb->data_len),
3245 DMA_TO_DEVICE);
3246 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3247 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3248 __func__);
3249 return NETDEV_TX_BUSY;
3250 }
3251 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3252
3253 frags = skb_shinfo(skb)->nr_frags;
3254 i = 1;
3255 while (frags--) {
3256 frag = &skb_shinfo(skb)->frags[i - 1];
3257
3258 g->sg[(i >> 2)].ptr[(i & 3)] =
3259 dma_map_page(&oct->pci_dev->dev,
3260 frag->page.p,
3261 frag->page_offset,
3262 frag->size,
3263 DMA_TO_DEVICE);
3264
3265 if (dma_mapping_error(&oct->pci_dev->dev,
3266 g->sg[i >> 2].ptr[i & 3])) {
3267 dma_unmap_single(&oct->pci_dev->dev,
3268 g->sg[0].ptr[0],
3269 skb->len - skb->data_len,
3270 DMA_TO_DEVICE);
3271 for (j = 1; j < i; j++) {
3272 frag = &skb_shinfo(skb)->frags[j - 1];
3273 dma_unmap_page(&oct->pci_dev->dev,
3274 g->sg[j >> 2].ptr[j & 3],
3275 frag->size,
3276 DMA_TO_DEVICE);
3277 }
3278 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3279 __func__);
3280 return NETDEV_TX_BUSY;
3281 }
3282
3283 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3284 i++;
3285 }
3286
3287 dptr = g->sg_dma_ptr;
3288
3289 if (OCTEON_CN23XX_PF(oct))
3290 ndata.cmd.cmd3.dptr = dptr;
3291 else
3292 ndata.cmd.cmd2.dptr = dptr;
3293 finfo->dptr = dptr;
3294 finfo->g = g;
3295
3296 ndata.reqtype = REQTYPE_NORESP_NET_SG;
3297 }
3298
3299 if (OCTEON_CN23XX_PF(oct)) {
3300 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
3301 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
3302 } else {
3303 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3304 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3305 }
3306
3307 if (skb_shinfo(skb)->gso_size) {
3308 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3309 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3310 stats->tx_gso++;
3311 }
3312
3313 /* HW insert VLAN tag */
3314 if (skb_vlan_tag_present(skb)) {
3315 irh->priority = skb_vlan_tag_get(skb) >> 13;
3316 irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3317 }
3318
3319 if (unlikely(cmdsetup.s.timestamp))
3320 status = send_nic_timestamp_pkt(oct, &ndata, finfo);
3321 else
3322 status = octnet_send_nic_data_pkt(oct, &ndata);
3323 if (status == IQ_SEND_FAILED)
3324 goto lio_xmit_failed;
3325
3326 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3327
3328 if (status == IQ_SEND_STOP)
3329 stop_q(lio->netdev, q_idx);
3330
3331 netif_trans_update(netdev);
3332
3333 if (tx_info->s.gso_segs)
3334 stats->tx_done += tx_info->s.gso_segs;
3335 else
3336 stats->tx_done++;
3337 stats->tx_tot_bytes += ndata.datasize;
3338
3339 return NETDEV_TX_OK;
3340
3341 lio_xmit_failed:
3342 stats->tx_dropped++;
3343 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3344 iq_no, stats->tx_dropped);
3345 if (dptr)
3346 dma_unmap_single(&oct->pci_dev->dev, dptr,
3347 ndata.datasize, DMA_TO_DEVICE);
3348 tx_buffer_free(skb);
3349 return NETDEV_TX_OK;
3350 }
3351
3352 /** \brief Network device Tx timeout
3353 * @param netdev pointer to network device
3354 */
3355 static void liquidio_tx_timeout(struct net_device *netdev)
3356 {
3357 struct lio *lio;
3358
3359 lio = GET_LIO(netdev);
3360
3361 netif_info(lio, tx_err, lio->netdev,
3362 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3363 netdev->stats.tx_dropped);
3364 netif_trans_update(netdev);
3365 txqs_wake(netdev);
3366 }
3367
3368 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3369 __be16 proto __attribute__((unused)),
3370 u16 vid)
3371 {
3372 struct lio *lio = GET_LIO(netdev);
3373 struct octeon_device *oct = lio->oct_dev;
3374 struct octnic_ctrl_pkt nctrl;
3375 int ret = 0;
3376
3377 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3378
3379 nctrl.ncmd.u64 = 0;
3380 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3381 nctrl.ncmd.s.param1 = vid;
3382 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3383 nctrl.wait_time = 100;
3384 nctrl.netpndev = (u64)netdev;
3385 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3386
3387 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3388 if (ret < 0) {
3389 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3390 ret);
3391 }
3392
3393 return ret;
3394 }
3395
3396 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3397 __be16 proto __attribute__((unused)),
3398 u16 vid)
3399 {
3400 struct lio *lio = GET_LIO(netdev);
3401 struct octeon_device *oct = lio->oct_dev;
3402 struct octnic_ctrl_pkt nctrl;
3403 int ret = 0;
3404
3405 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3406
3407 nctrl.ncmd.u64 = 0;
3408 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3409 nctrl.ncmd.s.param1 = vid;
3410 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3411 nctrl.wait_time = 100;
3412 nctrl.netpndev = (u64)netdev;
3413 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3414
3415 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3416 if (ret < 0) {
3417 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3418 ret);
3419 }
3420 return ret;
3421 }
3422
3423 /** Sending command to enable/disable RX checksum offload
3424 * @param netdev pointer to network device
3425 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL
3426 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/
3427 * OCTNET_CMD_RXCSUM_DISABLE
3428 * @returns SUCCESS or FAILURE
3429 */
3430 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3431 u8 rx_cmd)
3432 {
3433 struct lio *lio = GET_LIO(netdev);
3434 struct octeon_device *oct = lio->oct_dev;
3435 struct octnic_ctrl_pkt nctrl;
3436 int ret = 0;
3437
3438 nctrl.ncmd.u64 = 0;
3439 nctrl.ncmd.s.cmd = command;
3440 nctrl.ncmd.s.param1 = rx_cmd;
3441 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3442 nctrl.wait_time = 100;
3443 nctrl.netpndev = (u64)netdev;
3444 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3445
3446 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3447 if (ret < 0) {
3448 dev_err(&oct->pci_dev->dev,
3449 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3450 ret);
3451 }
3452 return ret;
3453 }
3454
3455 /** Sending command to add/delete VxLAN UDP port to firmware
3456 * @param netdev pointer to network device
3457 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG
3458 * @param vxlan_port VxLAN port to be added or deleted
3459 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD,
3460 * OCTNET_CMD_VXLAN_PORT_DEL
3461 * @returns SUCCESS or FAILURE
3462 */
3463 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3464 u16 vxlan_port, u8 vxlan_cmd_bit)
3465 {
3466 struct lio *lio = GET_LIO(netdev);
3467 struct octeon_device *oct = lio->oct_dev;
3468 struct octnic_ctrl_pkt nctrl;
3469 int ret = 0;
3470
3471 nctrl.ncmd.u64 = 0;
3472 nctrl.ncmd.s.cmd = command;
3473 nctrl.ncmd.s.more = vxlan_cmd_bit;
3474 nctrl.ncmd.s.param1 = vxlan_port;
3475 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3476 nctrl.wait_time = 100;
3477 nctrl.netpndev = (u64)netdev;
3478 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3479
3480 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3481 if (ret < 0) {
3482 dev_err(&oct->pci_dev->dev,
3483 "VxLAN port add/delete failed in core (ret:0x%x)\n",
3484 ret);
3485 }
3486 return ret;
3487 }
3488
3489 /** \brief Net device fix features
3490 * @param netdev pointer to network device
3491 * @param request features requested
3492 * @returns updated features list
3493 */
3494 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3495 netdev_features_t request)
3496 {
3497 struct lio *lio = netdev_priv(netdev);
3498
3499 if ((request & NETIF_F_RXCSUM) &&
3500 !(lio->dev_capability & NETIF_F_RXCSUM))
3501 request &= ~NETIF_F_RXCSUM;
3502
3503 if ((request & NETIF_F_HW_CSUM) &&
3504 !(lio->dev_capability & NETIF_F_HW_CSUM))
3505 request &= ~NETIF_F_HW_CSUM;
3506
3507 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3508 request &= ~NETIF_F_TSO;
3509
3510 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3511 request &= ~NETIF_F_TSO6;
3512
3513 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3514 request &= ~NETIF_F_LRO;
3515
3516 /*Disable LRO if RXCSUM is off */
3517 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3518 (lio->dev_capability & NETIF_F_LRO))
3519 request &= ~NETIF_F_LRO;
3520
3521 return request;
3522 }
3523
3524 /** \brief Net device set features
3525 * @param netdev pointer to network device
3526 * @param features features to enable/disable
3527 */
3528 static int liquidio_set_features(struct net_device *netdev,
3529 netdev_features_t features)
3530 {
3531 struct lio *lio = netdev_priv(netdev);
3532
3533 if (!((netdev->features ^ features) & NETIF_F_LRO))
3534 return 0;
3535
3536 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3537 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3538 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3539 else if (!(features & NETIF_F_LRO) &&
3540 (lio->dev_capability & NETIF_F_LRO))
3541 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3542 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3543
3544 /* Sending command to firmware to enable/disable RX checksum
3545 * offload settings using ethtool
3546 */
3547 if (!(netdev->features & NETIF_F_RXCSUM) &&
3548 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3549 (features & NETIF_F_RXCSUM))
3550 liquidio_set_rxcsum_command(netdev,
3551 OCTNET_CMD_TNL_RX_CSUM_CTL,
3552 OCTNET_CMD_RXCSUM_ENABLE);
3553 else if ((netdev->features & NETIF_F_RXCSUM) &&
3554 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3555 !(features & NETIF_F_RXCSUM))
3556 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3557 OCTNET_CMD_RXCSUM_DISABLE);
3558
3559 return 0;
3560 }
3561
3562 static void liquidio_add_vxlan_port(struct net_device *netdev,
3563 struct udp_tunnel_info *ti)
3564 {
3565 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3566 return;
3567
3568 liquidio_vxlan_port_command(netdev,
3569 OCTNET_CMD_VXLAN_PORT_CONFIG,
3570 htons(ti->port),
3571 OCTNET_CMD_VXLAN_PORT_ADD);
3572 }
3573
3574 static void liquidio_del_vxlan_port(struct net_device *netdev,
3575 struct udp_tunnel_info *ti)
3576 {
3577 if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3578 return;
3579
3580 liquidio_vxlan_port_command(netdev,
3581 OCTNET_CMD_VXLAN_PORT_CONFIG,
3582 htons(ti->port),
3583 OCTNET_CMD_VXLAN_PORT_DEL);
3584 }
3585
3586 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx,
3587 u8 *mac, bool is_admin_assigned)
3588 {
3589 struct lio *lio = GET_LIO(netdev);
3590 struct octeon_device *oct = lio->oct_dev;
3591 struct octnic_ctrl_pkt nctrl;
3592
3593 if (!is_valid_ether_addr(mac))
3594 return -EINVAL;
3595
3596 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs)
3597 return -EINVAL;
3598
3599 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3600
3601 nctrl.ncmd.u64 = 0;
3602 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
3603 /* vfidx is 0 based, but vf_num (param1) is 1 based */
3604 nctrl.ncmd.s.param1 = vfidx + 1;
3605 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0);
3606 nctrl.ncmd.s.more = 1;
3607 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3608 nctrl.cb_fn = 0;
3609 nctrl.wait_time = LIO_CMD_WAIT_TM;
3610
3611 nctrl.udd[0] = 0;
3612 /* The MAC Address is presented in network byte order. */
3613 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac);
3614
3615 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0];
3616
3617 octnet_send_nic_ctrl_pkt(oct, &nctrl);
3618
3619 return 0;
3620 }
3621
3622 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac)
3623 {
3624 struct lio *lio = GET_LIO(netdev);
3625 struct octeon_device *oct = lio->oct_dev;
3626 int retval;
3627
3628 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true);
3629 if (!retval)
3630 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac);
3631
3632 return retval;
3633 }
3634
3635 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx,
3636 u16 vlan, u8 qos, __be16 vlan_proto)
3637 {
3638 struct lio *lio = GET_LIO(netdev);
3639 struct octeon_device *oct = lio->oct_dev;
3640 struct octnic_ctrl_pkt nctrl;
3641 u16 vlantci;
3642
3643 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3644 return -EINVAL;
3645
3646 if (vlan_proto != htons(ETH_P_8021Q))
3647 return -EPROTONOSUPPORT;
3648
3649 if (vlan >= VLAN_N_VID || qos > 7)
3650 return -EINVAL;
3651
3652 if (vlan)
3653 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT;
3654 else
3655 vlantci = 0;
3656
3657 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci)
3658 return 0;
3659
3660 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3661
3662 if (vlan)
3663 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3664 else
3665 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3666
3667 nctrl.ncmd.s.param1 = vlantci;
3668 nctrl.ncmd.s.param2 =
3669 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */
3670 nctrl.ncmd.s.more = 0;
3671 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3672 nctrl.cb_fn = 0;
3673 nctrl.wait_time = LIO_CMD_WAIT_TM;
3674
3675 octnet_send_nic_ctrl_pkt(oct, &nctrl);
3676
3677 oct->sriov_info.vf_vlantci[vfidx] = vlantci;
3678
3679 return 0;
3680 }
3681
3682 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx,
3683 struct ifla_vf_info *ivi)
3684 {
3685 struct lio *lio = GET_LIO(netdev);
3686 struct octeon_device *oct = lio->oct_dev;
3687 u8 *macaddr;
3688
3689 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3690 return -EINVAL;
3691
3692 ivi->vf = vfidx;
3693 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx];
3694 ether_addr_copy(&ivi->mac[0], macaddr);
3695 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK;
3696 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT;
3697 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx];
3698 return 0;
3699 }
3700
3701 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx,
3702 int linkstate)
3703 {
3704 struct lio *lio = GET_LIO(netdev);
3705 struct octeon_device *oct = lio->oct_dev;
3706 struct octnic_ctrl_pkt nctrl;
3707
3708 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3709 return -EINVAL;
3710
3711 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate)
3712 return 0;
3713
3714 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3715 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE;
3716 nctrl.ncmd.s.param1 =
3717 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */
3718 nctrl.ncmd.s.param2 = linkstate;
3719 nctrl.ncmd.s.more = 0;
3720 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3721 nctrl.cb_fn = 0;
3722 nctrl.wait_time = LIO_CMD_WAIT_TM;
3723
3724 octnet_send_nic_ctrl_pkt(oct, &nctrl);
3725
3726 oct->sriov_info.vf_linkstate[vfidx] = linkstate;
3727
3728 return 0;
3729 }
3730
3731 static const struct net_device_ops lionetdevops = {
3732 .ndo_open = liquidio_open,
3733 .ndo_stop = liquidio_stop,
3734 .ndo_start_xmit = liquidio_xmit,
3735 .ndo_get_stats = liquidio_get_stats,
3736 .ndo_set_mac_address = liquidio_set_mac,
3737 .ndo_set_rx_mode = liquidio_set_mcast_list,
3738 .ndo_tx_timeout = liquidio_tx_timeout,
3739
3740 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid,
3741 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid,
3742 .ndo_change_mtu = liquidio_change_mtu,
3743 .ndo_do_ioctl = liquidio_ioctl,
3744 .ndo_fix_features = liquidio_fix_features,
3745 .ndo_set_features = liquidio_set_features,
3746 .ndo_udp_tunnel_add = liquidio_add_vxlan_port,
3747 .ndo_udp_tunnel_del = liquidio_del_vxlan_port,
3748 .ndo_set_vf_mac = liquidio_set_vf_mac,
3749 .ndo_set_vf_vlan = liquidio_set_vf_vlan,
3750 .ndo_get_vf_config = liquidio_get_vf_config,
3751 .ndo_set_vf_link_state = liquidio_set_vf_link_state,
3752 };
3753
3754 /** \brief Entry point for the liquidio module
3755 */
3756 static int __init liquidio_init(void)
3757 {
3758 int i;
3759 struct handshake *hs;
3760
3761 init_completion(&first_stage);
3762
3763 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT);
3764
3765 if (liquidio_init_pci())
3766 return -EINVAL;
3767
3768 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3769
3770 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3771 hs = &handshake[i];
3772 if (hs->pci_dev) {
3773 wait_for_completion(&hs->init);
3774 if (!hs->init_ok) {
3775 /* init handshake failed */
3776 dev_err(&hs->pci_dev->dev,
3777 "Failed to init device\n");
3778 liquidio_deinit_pci();
3779 return -EIO;
3780 }
3781 }
3782 }
3783
3784 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3785 hs = &handshake[i];
3786 if (hs->pci_dev) {
3787 wait_for_completion_timeout(&hs->started,
3788 msecs_to_jiffies(30000));
3789 if (!hs->started_ok) {
3790 /* starter handshake failed */
3791 dev_err(&hs->pci_dev->dev,
3792 "Firmware failed to start\n");
3793 liquidio_deinit_pci();
3794 return -EIO;
3795 }
3796 }
3797 }
3798
3799 return 0;
3800 }
3801
3802 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3803 {
3804 struct octeon_device *oct = (struct octeon_device *)buf;
3805 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3806 int gmxport = 0;
3807 union oct_link_status *ls;
3808 int i;
3809
3810 if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3811 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3812 recv_pkt->buffer_size[0],
3813 recv_pkt->rh.r_nic_info.gmxport);
3814 goto nic_info_err;
3815 }
3816
3817 gmxport = recv_pkt->rh.r_nic_info.gmxport;
3818 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3819
3820 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3821 for (i = 0; i < oct->ifcount; i++) {
3822 if (oct->props[i].gmxport == gmxport) {
3823 update_link_status(oct->props[i].netdev, ls);
3824 break;
3825 }
3826 }
3827
3828 nic_info_err:
3829 for (i = 0; i < recv_pkt->buffer_count; i++)
3830 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3831 octeon_free_recv_info(recv_info);
3832 return 0;
3833 }
3834
3835 /**
3836 * \brief Setup network interfaces
3837 * @param octeon_dev octeon device
3838 *
3839 * Called during init time for each device. It assumes the NIC
3840 * is already up and running. The link information for each
3841 * interface is passed in link_info.
3842 */
3843 static int setup_nic_devices(struct octeon_device *octeon_dev)
3844 {
3845 struct lio *lio = NULL;
3846 struct net_device *netdev;
3847 u8 mac[6], i, j;
3848 struct octeon_soft_command *sc;
3849 struct liquidio_if_cfg_context *ctx;
3850 struct liquidio_if_cfg_resp *resp;
3851 struct octdev_props *props;
3852 int retval, num_iqueues, num_oqueues;
3853 union oct_nic_if_cfg if_cfg;
3854 unsigned int base_queue;
3855 unsigned int gmx_port_id;
3856 u32 resp_size, ctx_size, data_size;
3857 u32 ifidx_or_pfnum;
3858 struct lio_version *vdata;
3859
3860 /* This is to handle link status changes */
3861 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3862 OPCODE_NIC_INFO,
3863 lio_nic_info, octeon_dev);
3864
3865 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3866 * They are handled directly.
3867 */
3868 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3869 free_netbuf);
3870
3871 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3872 free_netsgbuf);
3873
3874 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3875 free_netsgbuf_with_resp);
3876
3877 for (i = 0; i < octeon_dev->ifcount; i++) {
3878 resp_size = sizeof(struct liquidio_if_cfg_resp);
3879 ctx_size = sizeof(struct liquidio_if_cfg_context);
3880 data_size = sizeof(struct lio_version);
3881 sc = (struct octeon_soft_command *)
3882 octeon_alloc_soft_command(octeon_dev, data_size,
3883 resp_size, ctx_size);
3884 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3885 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3886 vdata = (struct lio_version *)sc->virtdptr;
3887
3888 *((u64 *)vdata) = 0;
3889 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3890 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3891 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3892
3893 if (OCTEON_CN23XX_PF(octeon_dev)) {
3894 num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3895 num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3896 base_queue = octeon_dev->sriov_info.pf_srn;
3897
3898 gmx_port_id = octeon_dev->pf_num;
3899 ifidx_or_pfnum = octeon_dev->pf_num;
3900 } else {
3901 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3902 octeon_get_conf(octeon_dev), i);
3903 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3904 octeon_get_conf(octeon_dev), i);
3905 base_queue = CFG_GET_BASE_QUE_NIC_IF(
3906 octeon_get_conf(octeon_dev), i);
3907 gmx_port_id = CFG_GET_GMXID_NIC_IF(
3908 octeon_get_conf(octeon_dev), i);
3909 ifidx_or_pfnum = i;
3910 }
3911
3912 dev_dbg(&octeon_dev->pci_dev->dev,
3913 "requesting config for interface %d, iqs %d, oqs %d\n",
3914 ifidx_or_pfnum, num_iqueues, num_oqueues);
3915 WRITE_ONCE(ctx->cond, 0);
3916 ctx->octeon_id = lio_get_device_id(octeon_dev);
3917 init_waitqueue_head(&ctx->wc);
3918
3919 if_cfg.u64 = 0;
3920 if_cfg.s.num_iqueues = num_iqueues;
3921 if_cfg.s.num_oqueues = num_oqueues;
3922 if_cfg.s.base_queue = base_queue;
3923 if_cfg.s.gmx_port_id = gmx_port_id;
3924
3925 sc->iq_no = 0;
3926
3927 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3928 OPCODE_NIC_IF_CFG, 0,
3929 if_cfg.u64, 0);
3930
3931 sc->callback = if_cfg_callback;
3932 sc->callback_arg = sc;
3933 sc->wait_time = 3000;
3934
3935 retval = octeon_send_soft_command(octeon_dev, sc);
3936 if (retval == IQ_SEND_FAILED) {
3937 dev_err(&octeon_dev->pci_dev->dev,
3938 "iq/oq config failed status: %x\n",
3939 retval);
3940 /* Soft instr is freed by driver in case of failure. */
3941 goto setup_nic_dev_fail;
3942 }
3943
3944 /* Sleep on a wait queue till the cond flag indicates that the
3945 * response arrived or timed-out.
3946 */
3947 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
3948 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
3949 goto setup_nic_wait_intr;
3950 }
3951
3952 retval = resp->status;
3953 if (retval) {
3954 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3955 goto setup_nic_dev_fail;
3956 }
3957
3958 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3959 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3960
3961 num_iqueues = hweight64(resp->cfg_info.iqmask);
3962 num_oqueues = hweight64(resp->cfg_info.oqmask);
3963
3964 if (!(num_iqueues) || !(num_oqueues)) {
3965 dev_err(&octeon_dev->pci_dev->dev,
3966 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3967 resp->cfg_info.iqmask,
3968 resp->cfg_info.oqmask);
3969 goto setup_nic_dev_fail;
3970 }
3971 dev_dbg(&octeon_dev->pci_dev->dev,
3972 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3973 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3974 num_iqueues, num_oqueues);
3975 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3976
3977 if (!netdev) {
3978 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3979 goto setup_nic_dev_fail;
3980 }
3981
3982 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
3983
3984 /* Associate the routines that will handle different
3985 * netdev tasks.
3986 */
3987 netdev->netdev_ops = &lionetdevops;
3988
3989 lio = GET_LIO(netdev);
3990
3991 memset(lio, 0, sizeof(struct lio));
3992
3993 lio->ifidx = ifidx_or_pfnum;
3994
3995 props = &octeon_dev->props[i];
3996 props->gmxport = resp->cfg_info.linfo.gmxport;
3997 props->netdev = netdev;
3998
3999 lio->linfo.num_rxpciq = num_oqueues;
4000 lio->linfo.num_txpciq = num_iqueues;
4001 for (j = 0; j < num_oqueues; j++) {
4002 lio->linfo.rxpciq[j].u64 =
4003 resp->cfg_info.linfo.rxpciq[j].u64;
4004 }
4005 for (j = 0; j < num_iqueues; j++) {
4006 lio->linfo.txpciq[j].u64 =
4007 resp->cfg_info.linfo.txpciq[j].u64;
4008 }
4009 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
4010 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
4011 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
4012
4013 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4014
4015 if (OCTEON_CN23XX_PF(octeon_dev) ||
4016 OCTEON_CN6XXX(octeon_dev)) {
4017 lio->dev_capability = NETIF_F_HIGHDMA
4018 | NETIF_F_IP_CSUM
4019 | NETIF_F_IPV6_CSUM
4020 | NETIF_F_SG | NETIF_F_RXCSUM
4021 | NETIF_F_GRO
4022 | NETIF_F_TSO | NETIF_F_TSO6
4023 | NETIF_F_LRO;
4024 }
4025 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
4026
4027 /* Copy of transmit encapsulation capabilities:
4028 * TSO, TSO6, Checksums for this device
4029 */
4030 lio->enc_dev_capability = NETIF_F_IP_CSUM
4031 | NETIF_F_IPV6_CSUM
4032 | NETIF_F_GSO_UDP_TUNNEL
4033 | NETIF_F_HW_CSUM | NETIF_F_SG
4034 | NETIF_F_RXCSUM
4035 | NETIF_F_TSO | NETIF_F_TSO6
4036 | NETIF_F_LRO;
4037
4038 netdev->hw_enc_features = (lio->enc_dev_capability &
4039 ~NETIF_F_LRO);
4040
4041 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
4042
4043 netdev->vlan_features = lio->dev_capability;
4044 /* Add any unchangeable hw features */
4045 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
4046 NETIF_F_HW_VLAN_CTAG_RX |
4047 NETIF_F_HW_VLAN_CTAG_TX;
4048
4049 netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
4050
4051 netdev->hw_features = lio->dev_capability;
4052 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
4053 netdev->hw_features = netdev->hw_features &
4054 ~NETIF_F_HW_VLAN_CTAG_RX;
4055
4056 /* MTU range: 68 - 16000 */
4057 netdev->min_mtu = LIO_MIN_MTU_SIZE;
4058 netdev->max_mtu = LIO_MAX_MTU_SIZE;
4059
4060 /* Point to the properties for octeon device to which this
4061 * interface belongs.
4062 */
4063 lio->oct_dev = octeon_dev;
4064 lio->octprops = props;
4065 lio->netdev = netdev;
4066
4067 dev_dbg(&octeon_dev->pci_dev->dev,
4068 "if%d gmx: %d hw_addr: 0x%llx\n", i,
4069 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
4070
4071 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) {
4072 u8 vfmac[ETH_ALEN];
4073
4074 random_ether_addr(&vfmac[0]);
4075 if (__liquidio_set_vf_mac(netdev, j,
4076 &vfmac[0], false)) {
4077 dev_err(&octeon_dev->pci_dev->dev,
4078 "Error setting VF%d MAC address\n",
4079 j);
4080 goto setup_nic_dev_fail;
4081 }
4082 }
4083
4084 /* 64-bit swap required on LE machines */
4085 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
4086 for (j = 0; j < 6; j++)
4087 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
4088
4089 /* Copy MAC Address to OS network device structure */
4090
4091 ether_addr_copy(netdev->dev_addr, mac);
4092
4093 /* By default all interfaces on a single Octeon uses the same
4094 * tx and rx queues
4095 */
4096 lio->txq = lio->linfo.txpciq[0].s.q_no;
4097 lio->rxq = lio->linfo.rxpciq[0].s.q_no;
4098 if (setup_io_queues(octeon_dev, i)) {
4099 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
4100 goto setup_nic_dev_fail;
4101 }
4102
4103 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
4104
4105 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
4106 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
4107
4108 if (setup_glists(octeon_dev, lio, num_iqueues)) {
4109 dev_err(&octeon_dev->pci_dev->dev,
4110 "Gather list allocation failed\n");
4111 goto setup_nic_dev_fail;
4112 }
4113
4114 /* Register ethtool support */
4115 liquidio_set_ethtool_ops(netdev);
4116 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID)
4117 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
4118 else
4119 octeon_dev->priv_flags = 0x0;
4120
4121 if (netdev->features & NETIF_F_LRO)
4122 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
4123 OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
4124
4125 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
4126
4127 if ((debug != -1) && (debug & NETIF_MSG_HW))
4128 liquidio_set_feature(netdev,
4129 OCTNET_CMD_VERBOSE_ENABLE, 0);
4130
4131 if (setup_link_status_change_wq(netdev))
4132 goto setup_nic_dev_fail;
4133
4134 /* Register the network device with the OS */
4135 if (register_netdev(netdev)) {
4136 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
4137 goto setup_nic_dev_fail;
4138 }
4139
4140 dev_dbg(&octeon_dev->pci_dev->dev,
4141 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
4142 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4143 netif_carrier_off(netdev);
4144 lio->link_changes++;
4145
4146 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
4147
4148 /* Sending command to firmware to enable Rx checksum offload
4149 * by default at the time of setup of Liquidio driver for
4150 * this device
4151 */
4152 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
4153 OCTNET_CMD_RXCSUM_ENABLE);
4154 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
4155 OCTNET_CMD_TXCSUM_ENABLE);
4156
4157 dev_dbg(&octeon_dev->pci_dev->dev,
4158 "NIC ifidx:%d Setup successful\n", i);
4159
4160 octeon_free_soft_command(octeon_dev, sc);
4161 }
4162
4163 return 0;
4164
4165 setup_nic_dev_fail:
4166
4167 octeon_free_soft_command(octeon_dev, sc);
4168
4169 setup_nic_wait_intr:
4170
4171 while (i--) {
4172 dev_err(&octeon_dev->pci_dev->dev,
4173 "NIC ifidx:%d Setup failed\n", i);
4174 liquidio_destroy_nic_device(octeon_dev, i);
4175 }
4176 return -ENODEV;
4177 }
4178
4179 #ifdef CONFIG_PCI_IOV
4180 static int octeon_enable_sriov(struct octeon_device *oct)
4181 {
4182 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced;
4183 struct pci_dev *vfdev;
4184 int err;
4185 u32 u;
4186
4187 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) {
4188 err = pci_enable_sriov(oct->pci_dev,
4189 oct->sriov_info.num_vfs_alloced);
4190 if (err) {
4191 dev_err(&oct->pci_dev->dev,
4192 "OCTEON: Failed to enable PCI sriov: %d\n",
4193 err);
4194 oct->sriov_info.num_vfs_alloced = 0;
4195 return err;
4196 }
4197 oct->sriov_info.sriov_enabled = 1;
4198
4199 /* init lookup table that maps DPI ring number to VF pci_dev
4200 * struct pointer
4201 */
4202 u = 0;
4203 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4204 OCTEON_CN23XX_VF_VID, NULL);
4205 while (vfdev) {
4206 if (vfdev->is_virtfn &&
4207 (vfdev->physfn == oct->pci_dev)) {
4208 oct->sriov_info.dpiring_to_vfpcidev_lut[u] =
4209 vfdev;
4210 u += oct->sriov_info.rings_per_vf;
4211 }
4212 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4213 OCTEON_CN23XX_VF_VID, vfdev);
4214 }
4215 }
4216
4217 return num_vfs_alloced;
4218 }
4219
4220 static int lio_pci_sriov_disable(struct octeon_device *oct)
4221 {
4222 int u;
4223
4224 if (pci_vfs_assigned(oct->pci_dev)) {
4225 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n");
4226 return -EPERM;
4227 }
4228
4229 pci_disable_sriov(oct->pci_dev);
4230
4231 u = 0;
4232 while (u < MAX_POSSIBLE_VFS) {
4233 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL;
4234 u += oct->sriov_info.rings_per_vf;
4235 }
4236
4237 oct->sriov_info.num_vfs_alloced = 0;
4238 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n",
4239 oct->pf_num);
4240
4241 return 0;
4242 }
4243
4244 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs)
4245 {
4246 struct octeon_device *oct = pci_get_drvdata(dev);
4247 int ret = 0;
4248
4249 if ((num_vfs == oct->sriov_info.num_vfs_alloced) &&
4250 (oct->sriov_info.sriov_enabled)) {
4251 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n",
4252 oct->pf_num, num_vfs);
4253 return 0;
4254 }
4255
4256 if (!num_vfs) {
4257 ret = lio_pci_sriov_disable(oct);
4258 } else if (num_vfs > oct->sriov_info.max_vfs) {
4259 dev_err(&oct->pci_dev->dev,
4260 "OCTEON: Max allowed VFs:%d user requested:%d",
4261 oct->sriov_info.max_vfs, num_vfs);
4262 ret = -EPERM;
4263 } else {
4264 oct->sriov_info.num_vfs_alloced = num_vfs;
4265 ret = octeon_enable_sriov(oct);
4266 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n",
4267 oct->pf_num, num_vfs);
4268 }
4269
4270 return ret;
4271 }
4272 #endif
4273
4274 /**
4275 * \brief initialize the NIC
4276 * @param oct octeon device
4277 *
4278 * This initialization routine is called once the Octeon device application is
4279 * up and running
4280 */
4281 static int liquidio_init_nic_module(struct octeon_device *oct)
4282 {
4283 struct oct_intrmod_cfg *intrmod_cfg;
4284 int i, retval = 0;
4285 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
4286
4287 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
4288
4289 /* only default iq and oq were initialized
4290 * initialize the rest as well
4291 */
4292 /* run port_config command for each port */
4293 oct->ifcount = num_nic_ports;
4294
4295 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports);
4296
4297 for (i = 0; i < MAX_OCTEON_LINKS; i++)
4298 oct->props[i].gmxport = -1;
4299
4300 retval = setup_nic_devices(oct);
4301 if (retval) {
4302 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
4303 goto octnet_init_failure;
4304 }
4305
4306 liquidio_ptp_init(oct);
4307
4308 /* Initialize interrupt moderation params */
4309 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
4310 intrmod_cfg->rx_enable = 1;
4311 intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
4312 intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
4313 intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
4314 intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
4315 intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
4316 intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
4317 intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
4318 intrmod_cfg->tx_enable = 1;
4319 intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
4320 intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
4321 intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
4322 intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
4323 intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
4324 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
4325
4326 return retval;
4327
4328 octnet_init_failure:
4329
4330 oct->ifcount = 0;
4331
4332 return retval;
4333 }
4334
4335 /**
4336 * \brief starter callback that invokes the remaining initialization work after
4337 * the NIC is up and running.
4338 * @param octptr work struct work_struct
4339 */
4340 static void nic_starter(struct work_struct *work)
4341 {
4342 struct octeon_device *oct;
4343 struct cavium_wk *wk = (struct cavium_wk *)work;
4344
4345 oct = (struct octeon_device *)wk->ctxptr;
4346
4347 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
4348 return;
4349
4350 /* If the status of the device is CORE_OK, the core
4351 * application has reported its application type. Call
4352 * any registered handlers now and move to the RUNNING
4353 * state.
4354 */
4355 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
4356 schedule_delayed_work(&oct->nic_poll_work.work,
4357 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4358 return;
4359 }
4360
4361 atomic_set(&oct->status, OCT_DEV_RUNNING);
4362
4363 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
4364 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
4365
4366 if (liquidio_init_nic_module(oct))
4367 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
4368 else
4369 handshake[oct->octeon_id].started_ok = 1;
4370 } else {
4371 dev_err(&oct->pci_dev->dev,
4372 "Unexpected application running on NIC (%d). Check firmware.\n",
4373 oct->app_mode);
4374 }
4375
4376 complete(&handshake[oct->octeon_id].started);
4377 }
4378
4379 static int
4380 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf)
4381 {
4382 struct octeon_device *oct = (struct octeon_device *)buf;
4383 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
4384 int i, notice, vf_idx;
4385 u64 *data, vf_num;
4386
4387 notice = recv_pkt->rh.r.ossp;
4388 data = (u64 *)get_rbd(recv_pkt->buffer_ptr[0]);
4389
4390 /* the first 64-bit word of data is the vf_num */
4391 vf_num = data[0];
4392 octeon_swap_8B_data(&vf_num, 1);
4393 vf_idx = (int)vf_num - 1;
4394
4395 if (notice == VF_DRV_LOADED) {
4396 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) {
4397 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx);
4398 dev_info(&oct->pci_dev->dev,
4399 "driver for VF%d was loaded\n", vf_idx);
4400 try_module_get(THIS_MODULE);
4401 }
4402 } else if (notice == VF_DRV_REMOVED) {
4403 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) {
4404 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx);
4405 dev_info(&oct->pci_dev->dev,
4406 "driver for VF%d was removed\n", vf_idx);
4407 module_put(THIS_MODULE);
4408 }
4409 } else if (notice == VF_DRV_MACADDR_CHANGED) {
4410 u8 *b = (u8 *)&data[1];
4411
4412 oct->sriov_info.vf_macaddr[vf_idx] = data[1];
4413 dev_info(&oct->pci_dev->dev,
4414 "VF driver changed VF%d's MAC address to %pM\n",
4415 vf_idx, b + 2);
4416 }
4417
4418 for (i = 0; i < recv_pkt->buffer_count; i++)
4419 recv_buffer_free(recv_pkt->buffer_ptr[i]);
4420 octeon_free_recv_info(recv_info);
4421
4422 return 0;
4423 }
4424
4425 /**
4426 * \brief Device initialization for each Octeon device that is probed
4427 * @param octeon_dev octeon device
4428 */
4429 static int octeon_device_init(struct octeon_device *octeon_dev)
4430 {
4431 int j, ret;
4432 int fw_loaded = 0;
4433 char bootcmd[] = "\n";
4434 struct octeon_device_priv *oct_priv =
4435 (struct octeon_device_priv *)octeon_dev->priv;
4436 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
4437
4438 /* Enable access to the octeon device and make its DMA capability
4439 * known to the OS.
4440 */
4441 if (octeon_pci_os_setup(octeon_dev))
4442 return 1;
4443
4444 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE);
4445
4446 /* Identify the Octeon type and map the BAR address space. */
4447 if (octeon_chip_specific_setup(octeon_dev)) {
4448 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
4449 return 1;
4450 }
4451
4452 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
4453
4454 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
4455
4456 if (OCTEON_CN23XX_PF(octeon_dev)) {
4457 if (!cn23xx_fw_loaded(octeon_dev)) {
4458 fw_loaded = 0;
4459 /* Do a soft reset of the Octeon device. */
4460 if (octeon_dev->fn_list.soft_reset(octeon_dev))
4461 return 1;
4462 /* things might have changed */
4463 if (!cn23xx_fw_loaded(octeon_dev))
4464 fw_loaded = 0;
4465 else
4466 fw_loaded = 1;
4467 } else {
4468 fw_loaded = 1;
4469 }
4470 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) {
4471 return 1;
4472 }
4473
4474 /* Initialize the dispatch mechanism used to push packets arriving on
4475 * Octeon Output queues.
4476 */
4477 if (octeon_init_dispatch_list(octeon_dev))
4478 return 1;
4479
4480 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4481 OPCODE_NIC_CORE_DRV_ACTIVE,
4482 octeon_core_drv_init,
4483 octeon_dev);
4484
4485 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4486 OPCODE_NIC_VF_DRV_NOTICE,
4487 octeon_recv_vf_drv_notice, octeon_dev);
4488 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
4489 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
4490 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
4491 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4492
4493 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
4494
4495 if (octeon_set_io_queues_off(octeon_dev)) {
4496 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n");
4497 return 1;
4498 }
4499
4500 if (OCTEON_CN23XX_PF(octeon_dev)) {
4501 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4502 if (ret) {
4503 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
4504 return ret;
4505 }
4506 }
4507
4508 /* Initialize soft command buffer pool
4509 */
4510 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
4511 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
4512 return 1;
4513 }
4514 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
4515
4516 /* Setup the data structures that manage this Octeon's Input queues. */
4517 if (octeon_setup_instr_queues(octeon_dev)) {
4518 dev_err(&octeon_dev->pci_dev->dev,
4519 "instruction queue initialization failed\n");
4520 return 1;
4521 }
4522 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
4523
4524 /* Initialize lists to manage the requests of different types that
4525 * arrive from user & kernel applications for this octeon device.
4526 */
4527 if (octeon_setup_response_list(octeon_dev)) {
4528 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
4529 return 1;
4530 }
4531 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
4532
4533 if (octeon_setup_output_queues(octeon_dev)) {
4534 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
4535 return 1;
4536 }
4537
4538 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
4539
4540 if (OCTEON_CN23XX_PF(octeon_dev)) {
4541 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) {
4542 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n");
4543 return 1;
4544 }
4545 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE);
4546
4547 if (octeon_allocate_ioq_vector(octeon_dev)) {
4548 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n");
4549 return 1;
4550 }
4551 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE);
4552
4553 } else {
4554 /* The input and output queue registers were setup earlier (the
4555 * queues were not enabled). Any additional registers
4556 * that need to be programmed should be done now.
4557 */
4558 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4559 if (ret) {
4560 dev_err(&octeon_dev->pci_dev->dev,
4561 "Failed to configure device registers\n");
4562 return ret;
4563 }
4564 }
4565
4566 /* Initialize the tasklet that handles output queue packet processing.*/
4567 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
4568 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
4569 (unsigned long)octeon_dev);
4570
4571 /* Setup the interrupt handler and record the INT SUM register address
4572 */
4573 if (octeon_setup_interrupt(octeon_dev))
4574 return 1;
4575
4576 /* Enable Octeon device interrupts */
4577 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR);
4578
4579 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE);
4580
4581 /* Enable the input and output queues for this Octeon device */
4582 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev);
4583 if (ret) {
4584 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues");
4585 return ret;
4586 }
4587
4588 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
4589
4590 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) {
4591 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
4592 if (!ddr_timeout) {
4593 dev_info(&octeon_dev->pci_dev->dev,
4594 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
4595 }
4596
4597 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4598
4599 /* Wait for the octeon to initialize DDR after the soft-reset.*/
4600 while (!ddr_timeout) {
4601 set_current_state(TASK_INTERRUPTIBLE);
4602 if (schedule_timeout(HZ / 10)) {
4603 /* user probably pressed Control-C */
4604 return 1;
4605 }
4606 }
4607 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4608 if (ret) {
4609 dev_err(&octeon_dev->pci_dev->dev,
4610 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4611 ret);
4612 return 1;
4613 }
4614
4615 if (octeon_wait_for_bootloader(octeon_dev, 1000)) {
4616 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4617 return 1;
4618 }
4619
4620 /* Divert uboot to take commands from host instead. */
4621 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4622
4623 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4624 ret = octeon_init_consoles(octeon_dev);
4625 if (ret) {
4626 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4627 return 1;
4628 }
4629 ret = octeon_add_console(octeon_dev, 0);
4630 if (ret) {
4631 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4632 return 1;
4633 }
4634
4635 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4636
4637 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4638 ret = load_firmware(octeon_dev);
4639 if (ret) {
4640 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4641 return 1;
4642 }
4643 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is
4644 * loaded
4645 */
4646 if (OCTEON_CN23XX_PF(octeon_dev))
4647 octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1,
4648 2ULL);
4649 }
4650
4651 handshake[octeon_dev->octeon_id].init_ok = 1;
4652 complete(&handshake[octeon_dev->octeon_id].init);
4653
4654 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4655
4656 /* Send Credit for Octeon Output queues. Credits are always sent after
4657 * the output queue is enabled.
4658 */
4659 for (j = 0; j < octeon_dev->num_oqs; j++)
4660 writel(octeon_dev->droq[j]->max_count,
4661 octeon_dev->droq[j]->pkts_credit_reg);
4662
4663 /* Packets can start arriving on the output queues from this point. */
4664 return 0;
4665 }
4666
4667 /**
4668 * \brief Exits the module
4669 */
4670 static void __exit liquidio_exit(void)
4671 {
4672 liquidio_deinit_pci();
4673
4674 pr_info("LiquidIO network module is now unloaded\n");
4675 }
4676
4677 module_init(liquidio_init);
4678 module_exit(liquidio_exit);