]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/cavium/liquidio/request_manager.c
Merge tag 'mac80211-next-for-davem-2018-03-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / cavium / liquidio / request_manager.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2016 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 **********************************************************************/
19 #include <linux/pci.h>
20 #include <linux/netdevice.h>
21 #include <linux/vmalloc.h>
22 #include "liquidio_common.h"
23 #include "octeon_droq.h"
24 #include "octeon_iq.h"
25 #include "response_manager.h"
26 #include "octeon_device.h"
27 #include "octeon_main.h"
28 #include "octeon_network.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32
33 struct iq_post_status {
34 int status;
35 int index;
36 };
37
38 static void check_db_timeout(struct work_struct *work);
39 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
40
41 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
42
43 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
44 {
45 struct octeon_instr_queue *iq =
46 (struct octeon_instr_queue *)oct->instr_queue[iq_no];
47 return iq->iqcmd_64B;
48 }
49
50 #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
51
52 /* Define this to return the request status comaptible to old code */
53 /*#define OCTEON_USE_OLD_REQ_STATUS*/
54
55 /* Return 0 on success, 1 on failure */
56 int octeon_init_instr_queue(struct octeon_device *oct,
57 union oct_txpciq txpciq,
58 u32 num_descs)
59 {
60 struct octeon_instr_queue *iq;
61 struct octeon_iq_config *conf = NULL;
62 u32 iq_no = (u32)txpciq.s.q_no;
63 u32 q_size;
64 struct cavium_wq *db_wq;
65 int numa_node = dev_to_node(&oct->pci_dev->dev);
66
67 if (OCTEON_CN6XXX(oct))
68 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
69 else if (OCTEON_CN23XX_PF(oct))
70 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
71 else if (OCTEON_CN23XX_VF(oct))
72 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
73
74 if (!conf) {
75 dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
76 oct->chip_id);
77 return 1;
78 }
79
80 q_size = (u32)conf->instr_type * num_descs;
81
82 iq = oct->instr_queue[iq_no];
83
84 iq->oct_dev = oct;
85
86 iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
87 if (!iq->base_addr) {
88 dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
89 iq_no);
90 return 1;
91 }
92
93 iq->max_count = num_descs;
94
95 /* Initialize a list to holds requests that have been posted to Octeon
96 * but has yet to be fetched by octeon
97 */
98 iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
99 numa_node);
100 if (!iq->request_list)
101 iq->request_list = vmalloc(sizeof(*iq->request_list) *
102 num_descs);
103 if (!iq->request_list) {
104 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
105 dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
106 iq_no);
107 return 1;
108 }
109
110 memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
111
112 dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
113 iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
114
115 iq->txpciq.u64 = txpciq.u64;
116 iq->fill_threshold = (u32)conf->db_min;
117 iq->fill_cnt = 0;
118 iq->host_write_index = 0;
119 iq->octeon_read_index = 0;
120 iq->flush_index = 0;
121 iq->last_db_time = 0;
122 iq->do_auto_flush = 1;
123 iq->db_timeout = (u32)conf->db_timeout;
124 atomic_set(&iq->instr_pending, 0);
125
126 /* Initialize the spinlock for this instruction queue */
127 spin_lock_init(&iq->lock);
128 spin_lock_init(&iq->post_lock);
129
130 spin_lock_init(&iq->iq_flush_running_lock);
131
132 oct->io_qmask.iq |= BIT_ULL(iq_no);
133
134 /* Set the 32B/64B mode for each input queue */
135 oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
136 iq->iqcmd_64B = (conf->instr_type == 64);
137
138 oct->fn_list.setup_iq_regs(oct, iq_no);
139
140 oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
141 WQ_MEM_RECLAIM,
142 0);
143 if (!oct->check_db_wq[iq_no].wq) {
144 vfree(iq->request_list);
145 iq->request_list = NULL;
146 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
147 dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
148 iq_no);
149 return 1;
150 }
151
152 db_wq = &oct->check_db_wq[iq_no];
153
154 INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
155 db_wq->wk.ctxptr = oct;
156 db_wq->wk.ctxul = iq_no;
157 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
158
159 return 0;
160 }
161
162 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
163 {
164 u64 desc_size = 0, q_size;
165 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
166
167 cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
168 destroy_workqueue(oct->check_db_wq[iq_no].wq);
169
170 if (OCTEON_CN6XXX(oct))
171 desc_size =
172 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
173 else if (OCTEON_CN23XX_PF(oct))
174 desc_size =
175 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
176 else if (OCTEON_CN23XX_VF(oct))
177 desc_size =
178 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
179
180 vfree(iq->request_list);
181
182 if (iq->base_addr) {
183 q_size = iq->max_count * desc_size;
184 lio_dma_free(oct, (u32)q_size, iq->base_addr,
185 iq->base_addr_dma);
186 oct->io_qmask.iq &= ~(1ULL << iq_no);
187 vfree(oct->instr_queue[iq_no]);
188 oct->instr_queue[iq_no] = NULL;
189 oct->num_iqs--;
190 return 0;
191 }
192 return 1;
193 }
194
195 /* Return 0 on success, 1 on failure */
196 int octeon_setup_iq(struct octeon_device *oct,
197 int ifidx,
198 int q_index,
199 union oct_txpciq txpciq,
200 u32 num_descs,
201 void *app_ctx)
202 {
203 u32 iq_no = (u32)txpciq.s.q_no;
204 int numa_node = dev_to_node(&oct->pci_dev->dev);
205
206 if (oct->instr_queue[iq_no]) {
207 dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
208 iq_no);
209 oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
210 oct->instr_queue[iq_no]->app_ctx = app_ctx;
211 return 0;
212 }
213 oct->instr_queue[iq_no] =
214 vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
215 if (!oct->instr_queue[iq_no])
216 oct->instr_queue[iq_no] =
217 vmalloc(sizeof(struct octeon_instr_queue));
218 if (!oct->instr_queue[iq_no])
219 return 1;
220
221 memset(oct->instr_queue[iq_no], 0,
222 sizeof(struct octeon_instr_queue));
223
224 oct->instr_queue[iq_no]->q_index = q_index;
225 oct->instr_queue[iq_no]->app_ctx = app_ctx;
226 oct->instr_queue[iq_no]->ifidx = ifidx;
227
228 if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
229 vfree(oct->instr_queue[iq_no]);
230 oct->instr_queue[iq_no] = NULL;
231 return 1;
232 }
233
234 oct->num_iqs++;
235 if (oct->fn_list.enable_io_queues(oct))
236 return 1;
237
238 return 0;
239 }
240
241 int lio_wait_for_instr_fetch(struct octeon_device *oct)
242 {
243 int i, retry = 1000, pending, instr_cnt = 0;
244
245 do {
246 instr_cnt = 0;
247
248 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
249 if (!(oct->io_qmask.iq & BIT_ULL(i)))
250 continue;
251 pending =
252 atomic_read(&oct->instr_queue[i]->instr_pending);
253 if (pending)
254 __check_db_timeout(oct, i);
255 instr_cnt += pending;
256 }
257
258 if (instr_cnt == 0)
259 break;
260
261 schedule_timeout_uninterruptible(1);
262
263 } while (retry-- && instr_cnt);
264
265 return instr_cnt;
266 }
267
268 static inline void
269 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
270 {
271 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
272 writel(iq->fill_cnt, iq->doorbell_reg);
273 /* make sure doorbell write goes through */
274 mmiowb();
275 iq->fill_cnt = 0;
276 iq->last_db_time = jiffies;
277 return;
278 }
279 }
280
281 void
282 octeon_ring_doorbell_locked(struct octeon_device *oct, u32 iq_no)
283 {
284 struct octeon_instr_queue *iq;
285
286 iq = oct->instr_queue[iq_no];
287 spin_lock(&iq->post_lock);
288 if (iq->fill_cnt)
289 ring_doorbell(oct, iq);
290 spin_unlock(&iq->post_lock);
291 }
292
293 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
294 u8 *cmd)
295 {
296 u8 *iqptr, cmdsize;
297
298 cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
299 iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
300
301 memcpy(iqptr, cmd, cmdsize);
302 }
303
304 static inline struct iq_post_status
305 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
306 {
307 struct iq_post_status st;
308
309 st.status = IQ_SEND_OK;
310
311 /* This ensures that the read index does not wrap around to the same
312 * position if queue gets full before Octeon could fetch any instr.
313 */
314 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
315 st.status = IQ_SEND_FAILED;
316 st.index = -1;
317 return st;
318 }
319
320 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
321 st.status = IQ_SEND_STOP;
322
323 __copy_cmd_into_iq(iq, cmd);
324
325 /* "index" is returned, host_write_index is modified. */
326 st.index = iq->host_write_index;
327 iq->host_write_index = incr_index(iq->host_write_index, 1,
328 iq->max_count);
329 iq->fill_cnt++;
330
331 /* Flush the command into memory. We need to be sure the data is in
332 * memory before indicating that the instruction is pending.
333 */
334 wmb();
335
336 atomic_inc(&iq->instr_pending);
337
338 return st;
339 }
340
341 int
342 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
343 void (*fn)(void *))
344 {
345 if (reqtype > REQTYPE_LAST) {
346 dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
347 __func__, reqtype);
348 return -EINVAL;
349 }
350
351 reqtype_free_fn[oct->octeon_id][reqtype] = fn;
352
353 return 0;
354 }
355
356 static inline void
357 __add_to_request_list(struct octeon_instr_queue *iq,
358 int idx, void *buf, int reqtype)
359 {
360 iq->request_list[idx].buf = buf;
361 iq->request_list[idx].reqtype = reqtype;
362 }
363
364 /* Can only run in process context */
365 int
366 lio_process_iq_request_list(struct octeon_device *oct,
367 struct octeon_instr_queue *iq, u32 napi_budget)
368 {
369 struct cavium_wq *cwq = &oct->dma_comp_wq;
370 int reqtype;
371 void *buf;
372 u32 old = iq->flush_index;
373 u32 inst_count = 0;
374 unsigned int pkts_compl = 0, bytes_compl = 0;
375 struct octeon_soft_command *sc;
376 struct octeon_instr_irh *irh;
377 unsigned long flags;
378
379 while (old != iq->octeon_read_index) {
380 reqtype = iq->request_list[old].reqtype;
381 buf = iq->request_list[old].buf;
382
383 if (reqtype == REQTYPE_NONE)
384 goto skip_this;
385
386 octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
387 &bytes_compl);
388
389 switch (reqtype) {
390 case REQTYPE_NORESP_NET:
391 case REQTYPE_NORESP_NET_SG:
392 case REQTYPE_RESP_NET_SG:
393 reqtype_free_fn[oct->octeon_id][reqtype](buf);
394 break;
395 case REQTYPE_RESP_NET:
396 case REQTYPE_SOFT_COMMAND:
397 sc = buf;
398
399 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
400 irh = (struct octeon_instr_irh *)
401 &sc->cmd.cmd3.irh;
402 else
403 irh = (struct octeon_instr_irh *)
404 &sc->cmd.cmd2.irh;
405 if (irh->rflag) {
406 /* We're expecting a response from Octeon.
407 * It's up to lio_process_ordered_list() to
408 * process sc. Add sc to the ordered soft
409 * command response list because we expect
410 * a response from Octeon.
411 */
412 spin_lock_irqsave
413 (&oct->response_list
414 [OCTEON_ORDERED_SC_LIST].lock,
415 flags);
416 atomic_inc(&oct->response_list
417 [OCTEON_ORDERED_SC_LIST].
418 pending_req_count);
419 list_add_tail(&sc->node, &oct->response_list
420 [OCTEON_ORDERED_SC_LIST].head);
421 spin_unlock_irqrestore
422 (&oct->response_list
423 [OCTEON_ORDERED_SC_LIST].lock,
424 flags);
425 } else {
426 if (sc->callback) {
427 /* This callback must not sleep */
428 sc->callback(oct, OCTEON_REQUEST_DONE,
429 sc->callback_arg);
430 }
431 }
432 break;
433 default:
434 dev_err(&oct->pci_dev->dev,
435 "%s Unknown reqtype: %d buf: %p at idx %d\n",
436 __func__, reqtype, buf, old);
437 }
438
439 iq->request_list[old].buf = NULL;
440 iq->request_list[old].reqtype = 0;
441
442 skip_this:
443 inst_count++;
444 old = incr_index(old, 1, iq->max_count);
445
446 if ((napi_budget) && (inst_count >= napi_budget))
447 break;
448 }
449 if (bytes_compl)
450 octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
451 bytes_compl);
452 iq->flush_index = old;
453
454 if (atomic_read(&oct->response_list
455 [OCTEON_ORDERED_SC_LIST].pending_req_count))
456 queue_delayed_work(cwq->wq, &cwq->wk.work, msecs_to_jiffies(1));
457
458 return inst_count;
459 }
460
461 /* Can only be called from process context */
462 int
463 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
464 u32 napi_budget)
465 {
466 u32 inst_processed = 0;
467 u32 tot_inst_processed = 0;
468 int tx_done = 1;
469
470 if (!spin_trylock(&iq->iq_flush_running_lock))
471 return tx_done;
472
473 spin_lock_bh(&iq->lock);
474
475 iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
476
477 do {
478 /* Process any outstanding IQ packets. */
479 if (iq->flush_index == iq->octeon_read_index)
480 break;
481
482 if (napi_budget)
483 inst_processed =
484 lio_process_iq_request_list(oct, iq,
485 napi_budget -
486 tot_inst_processed);
487 else
488 inst_processed =
489 lio_process_iq_request_list(oct, iq, 0);
490
491 if (inst_processed) {
492 atomic_sub(inst_processed, &iq->instr_pending);
493 iq->stats.instr_processed += inst_processed;
494 }
495
496 tot_inst_processed += inst_processed;
497 } while (tot_inst_processed < napi_budget);
498
499 if (napi_budget && (tot_inst_processed >= napi_budget))
500 tx_done = 0;
501
502 iq->last_db_time = jiffies;
503
504 spin_unlock_bh(&iq->lock);
505
506 spin_unlock(&iq->iq_flush_running_lock);
507
508 return tx_done;
509 }
510
511 /* Process instruction queue after timeout.
512 * This routine gets called from a workqueue or when removing the module.
513 */
514 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
515 {
516 struct octeon_instr_queue *iq;
517 u64 next_time;
518
519 if (!oct)
520 return;
521
522 iq = oct->instr_queue[iq_no];
523 if (!iq)
524 return;
525
526 /* return immediately, if no work pending */
527 if (!atomic_read(&iq->instr_pending))
528 return;
529 /* If jiffies - last_db_time < db_timeout do nothing */
530 next_time = iq->last_db_time + iq->db_timeout;
531 if (!time_after(jiffies, (unsigned long)next_time))
532 return;
533 iq->last_db_time = jiffies;
534
535 /* Flush the instruction queue */
536 octeon_flush_iq(oct, iq, 0);
537
538 lio_enable_irq(NULL, iq);
539 }
540
541 /* Called by the Poll thread at regular intervals to check the instruction
542 * queue for commands to be posted and for commands that were fetched by Octeon.
543 */
544 static void check_db_timeout(struct work_struct *work)
545 {
546 struct cavium_wk *wk = (struct cavium_wk *)work;
547 struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
548 u64 iq_no = wk->ctxul;
549 struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
550 u32 delay = 10;
551
552 __check_db_timeout(oct, iq_no);
553 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
554 }
555
556 int
557 octeon_send_command(struct octeon_device *oct, u32 iq_no,
558 u32 force_db, void *cmd, void *buf,
559 u32 datasize, u32 reqtype)
560 {
561 int xmit_stopped;
562 struct iq_post_status st;
563 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
564
565 /* Get the lock and prevent other tasks and tx interrupt handler from
566 * running.
567 */
568 spin_lock_bh(&iq->post_lock);
569
570 st = __post_command2(iq, cmd);
571
572 if (st.status != IQ_SEND_FAILED) {
573 xmit_stopped = octeon_report_sent_bytes_to_bql(buf, reqtype);
574 __add_to_request_list(iq, st.index, buf, reqtype);
575 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
576 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
577
578 if (iq->fill_cnt >= MAX_OCTEON_FILL_COUNT || force_db ||
579 xmit_stopped || st.status == IQ_SEND_STOP)
580 ring_doorbell(oct, iq);
581 } else {
582 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
583 }
584
585 spin_unlock_bh(&iq->post_lock);
586
587 /* This is only done here to expedite packets being flushed
588 * for cases where there are no IQ completion interrupts.
589 */
590
591 return st.status;
592 }
593
594 void
595 octeon_prepare_soft_command(struct octeon_device *oct,
596 struct octeon_soft_command *sc,
597 u8 opcode,
598 u8 subcode,
599 u32 irh_ossp,
600 u64 ossp0,
601 u64 ossp1)
602 {
603 struct octeon_config *oct_cfg;
604 struct octeon_instr_ih2 *ih2;
605 struct octeon_instr_ih3 *ih3;
606 struct octeon_instr_pki_ih3 *pki_ih3;
607 struct octeon_instr_irh *irh;
608 struct octeon_instr_rdp *rdp;
609
610 WARN_ON(opcode > 15);
611 WARN_ON(subcode > 127);
612
613 oct_cfg = octeon_get_conf(oct);
614
615 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
616 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
617
618 ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
619
620 pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
621
622 pki_ih3->w = 1;
623 pki_ih3->raw = 1;
624 pki_ih3->utag = 1;
625 pki_ih3->uqpg =
626 oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
627 pki_ih3->utt = 1;
628 pki_ih3->tag = LIO_CONTROL;
629 pki_ih3->tagtype = ATOMIC_TAG;
630 pki_ih3->qpg =
631 oct->instr_queue[sc->iq_no]->txpciq.s.ctrl_qpg;
632
633 pki_ih3->pm = 0x7;
634 pki_ih3->sl = 8;
635
636 if (sc->datasize)
637 ih3->dlengsz = sc->datasize;
638
639 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
640 irh->opcode = opcode;
641 irh->subcode = subcode;
642
643 /* opcode/subcode specific parameters (ossp) */
644 irh->ossp = irh_ossp;
645 sc->cmd.cmd3.ossp[0] = ossp0;
646 sc->cmd.cmd3.ossp[1] = ossp1;
647
648 if (sc->rdatasize) {
649 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
650 rdp->pcie_port = oct->pcie_port;
651 rdp->rlen = sc->rdatasize;
652
653 irh->rflag = 1;
654 /*PKI IH3*/
655 /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
656 ih3->fsz = LIO_SOFTCMDRESP_IH3;
657 } else {
658 irh->rflag = 0;
659 /*PKI IH3*/
660 /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
661 ih3->fsz = LIO_PCICMD_O3;
662 }
663
664 } else {
665 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
666 ih2->tagtype = ATOMIC_TAG;
667 ih2->tag = LIO_CONTROL;
668 ih2->raw = 1;
669 ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
670
671 if (sc->datasize) {
672 ih2->dlengsz = sc->datasize;
673 ih2->rs = 1;
674 }
675
676 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
677 irh->opcode = opcode;
678 irh->subcode = subcode;
679
680 /* opcode/subcode specific parameters (ossp) */
681 irh->ossp = irh_ossp;
682 sc->cmd.cmd2.ossp[0] = ossp0;
683 sc->cmd.cmd2.ossp[1] = ossp1;
684
685 if (sc->rdatasize) {
686 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
687 rdp->pcie_port = oct->pcie_port;
688 rdp->rlen = sc->rdatasize;
689
690 irh->rflag = 1;
691 /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
692 ih2->fsz = LIO_SOFTCMDRESP_IH2;
693 } else {
694 irh->rflag = 0;
695 /* irh + ossp[0] + ossp[1] = 24 bytes */
696 ih2->fsz = LIO_PCICMD_O2;
697 }
698 }
699 }
700
701 int octeon_send_soft_command(struct octeon_device *oct,
702 struct octeon_soft_command *sc)
703 {
704 struct octeon_instr_ih2 *ih2;
705 struct octeon_instr_ih3 *ih3;
706 struct octeon_instr_irh *irh;
707 u32 len;
708
709 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
710 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
711 if (ih3->dlengsz) {
712 WARN_ON(!sc->dmadptr);
713 sc->cmd.cmd3.dptr = sc->dmadptr;
714 }
715 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
716 if (irh->rflag) {
717 WARN_ON(!sc->dmarptr);
718 WARN_ON(!sc->status_word);
719 *sc->status_word = COMPLETION_WORD_INIT;
720 sc->cmd.cmd3.rptr = sc->dmarptr;
721 }
722 len = (u32)ih3->dlengsz;
723 } else {
724 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
725 if (ih2->dlengsz) {
726 WARN_ON(!sc->dmadptr);
727 sc->cmd.cmd2.dptr = sc->dmadptr;
728 }
729 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
730 if (irh->rflag) {
731 WARN_ON(!sc->dmarptr);
732 WARN_ON(!sc->status_word);
733 *sc->status_word = COMPLETION_WORD_INIT;
734 sc->cmd.cmd2.rptr = sc->dmarptr;
735 }
736 len = (u32)ih2->dlengsz;
737 }
738
739 if (sc->wait_time)
740 sc->timeout = jiffies + sc->wait_time;
741
742 return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
743 len, REQTYPE_SOFT_COMMAND));
744 }
745
746 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
747 {
748 int i;
749 u64 dma_addr;
750 struct octeon_soft_command *sc;
751
752 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
753 spin_lock_init(&oct->sc_buf_pool.lock);
754 atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
755
756 for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
757 sc = (struct octeon_soft_command *)
758 lio_dma_alloc(oct,
759 SOFT_COMMAND_BUFFER_SIZE,
760 (dma_addr_t *)&dma_addr);
761 if (!sc) {
762 octeon_free_sc_buffer_pool(oct);
763 return 1;
764 }
765
766 sc->dma_addr = dma_addr;
767 sc->size = SOFT_COMMAND_BUFFER_SIZE;
768
769 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
770 }
771
772 return 0;
773 }
774
775 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
776 {
777 struct list_head *tmp, *tmp2;
778 struct octeon_soft_command *sc;
779
780 spin_lock_bh(&oct->sc_buf_pool.lock);
781
782 list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
783 list_del(tmp);
784
785 sc = (struct octeon_soft_command *)tmp;
786
787 lio_dma_free(oct, sc->size, sc, sc->dma_addr);
788 }
789
790 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
791
792 spin_unlock_bh(&oct->sc_buf_pool.lock);
793
794 return 0;
795 }
796
797 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
798 u32 datasize,
799 u32 rdatasize,
800 u32 ctxsize)
801 {
802 u64 dma_addr;
803 u32 size;
804 u32 offset = sizeof(struct octeon_soft_command);
805 struct octeon_soft_command *sc = NULL;
806 struct list_head *tmp;
807
808 WARN_ON((offset + datasize + rdatasize + ctxsize) >
809 SOFT_COMMAND_BUFFER_SIZE);
810
811 spin_lock_bh(&oct->sc_buf_pool.lock);
812
813 if (list_empty(&oct->sc_buf_pool.head)) {
814 spin_unlock_bh(&oct->sc_buf_pool.lock);
815 return NULL;
816 }
817
818 list_for_each(tmp, &oct->sc_buf_pool.head)
819 break;
820
821 list_del(tmp);
822
823 atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
824
825 spin_unlock_bh(&oct->sc_buf_pool.lock);
826
827 sc = (struct octeon_soft_command *)tmp;
828
829 dma_addr = sc->dma_addr;
830 size = sc->size;
831
832 memset(sc, 0, sc->size);
833
834 sc->dma_addr = dma_addr;
835 sc->size = size;
836
837 if (ctxsize) {
838 sc->ctxptr = (u8 *)sc + offset;
839 sc->ctxsize = ctxsize;
840 }
841
842 /* Start data at 128 byte boundary */
843 offset = (offset + ctxsize + 127) & 0xffffff80;
844
845 if (datasize) {
846 sc->virtdptr = (u8 *)sc + offset;
847 sc->dmadptr = dma_addr + offset;
848 sc->datasize = datasize;
849 }
850
851 /* Start rdata at 128 byte boundary */
852 offset = (offset + datasize + 127) & 0xffffff80;
853
854 if (rdatasize) {
855 WARN_ON(rdatasize < 16);
856 sc->virtrptr = (u8 *)sc + offset;
857 sc->dmarptr = dma_addr + offset;
858 sc->rdatasize = rdatasize;
859 sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
860 }
861
862 return sc;
863 }
864
865 void octeon_free_soft_command(struct octeon_device *oct,
866 struct octeon_soft_command *sc)
867 {
868 spin_lock_bh(&oct->sc_buf_pool.lock);
869
870 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
871
872 atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
873
874 spin_unlock_bh(&oct->sc_buf_pool.lock);
875 }