]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_main.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / cavium / thunder / nicvf_main.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19
20 #include "nic_reg.h"
21 #include "nic.h"
22 #include "nicvf_queues.h"
23 #include "thunder_bgx.h"
24
25 #define DRV_NAME "thunder-nicvf"
26 #define DRV_VERSION "1.0"
27
28 /* Supported devices */
29 static const struct pci_device_id nicvf_id_table[] = {
30 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
31 PCI_DEVICE_ID_THUNDER_NIC_VF,
32 PCI_VENDOR_ID_CAVIUM, 0xA134) },
33 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
34 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
35 PCI_VENDOR_ID_CAVIUM, 0xA11E) },
36 { 0, } /* end of table */
37 };
38
39 MODULE_AUTHOR("Sunil Goutham");
40 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
41 MODULE_LICENSE("GPL v2");
42 MODULE_VERSION(DRV_VERSION);
43 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
44
45 static int debug = 0x00;
46 module_param(debug, int, 0644);
47 MODULE_PARM_DESC(debug, "Debug message level bitmap");
48
49 static int cpi_alg = CPI_ALG_NONE;
50 module_param(cpi_alg, int, S_IRUGO);
51 MODULE_PARM_DESC(cpi_alg,
52 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
53
54 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
55 {
56 if (nic->sqs_mode)
57 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
58 else
59 return qidx;
60 }
61
62 static inline void nicvf_set_rx_frame_cnt(struct nicvf *nic,
63 struct sk_buff *skb)
64 {
65 if (skb->len <= 64)
66 nic->drv_stats.rx_frames_64++;
67 else if (skb->len <= 127)
68 nic->drv_stats.rx_frames_127++;
69 else if (skb->len <= 255)
70 nic->drv_stats.rx_frames_255++;
71 else if (skb->len <= 511)
72 nic->drv_stats.rx_frames_511++;
73 else if (skb->len <= 1023)
74 nic->drv_stats.rx_frames_1023++;
75 else if (skb->len <= 1518)
76 nic->drv_stats.rx_frames_1518++;
77 else
78 nic->drv_stats.rx_frames_jumbo++;
79 }
80
81 /* The Cavium ThunderX network controller can *only* be found in SoCs
82 * containing the ThunderX ARM64 CPU implementation. All accesses to the device
83 * registers on this platform are implicitly strongly ordered with respect
84 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
85 * with no memory barriers in this driver. The readq()/writeq() functions add
86 * explicit ordering operation which in this case are redundant, and only
87 * add overhead.
88 */
89
90 /* Register read/write APIs */
91 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
92 {
93 writeq_relaxed(val, nic->reg_base + offset);
94 }
95
96 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
97 {
98 return readq_relaxed(nic->reg_base + offset);
99 }
100
101 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
102 u64 qidx, u64 val)
103 {
104 void __iomem *addr = nic->reg_base + offset;
105
106 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
107 }
108
109 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
110 {
111 void __iomem *addr = nic->reg_base + offset;
112
113 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
114 }
115
116 /* VF -> PF mailbox communication */
117 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
118 {
119 u64 *msg = (u64 *)mbx;
120
121 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
122 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
123 }
124
125 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
126 {
127 int timeout = NIC_MBOX_MSG_TIMEOUT;
128 int sleep = 10;
129
130 nic->pf_acked = false;
131 nic->pf_nacked = false;
132
133 nicvf_write_to_mbx(nic, mbx);
134
135 /* Wait for previous message to be acked, timeout 2sec */
136 while (!nic->pf_acked) {
137 if (nic->pf_nacked)
138 return -EINVAL;
139 msleep(sleep);
140 if (nic->pf_acked)
141 break;
142 timeout -= sleep;
143 if (!timeout) {
144 netdev_err(nic->netdev,
145 "PF didn't ack to mbox msg %d from VF%d\n",
146 (mbx->msg.msg & 0xFF), nic->vf_id);
147 return -EBUSY;
148 }
149 }
150 return 0;
151 }
152
153 /* Checks if VF is able to comminicate with PF
154 * and also gets the VNIC number this VF is associated to.
155 */
156 static int nicvf_check_pf_ready(struct nicvf *nic)
157 {
158 union nic_mbx mbx = {};
159
160 mbx.msg.msg = NIC_MBOX_MSG_READY;
161 if (nicvf_send_msg_to_pf(nic, &mbx)) {
162 netdev_err(nic->netdev,
163 "PF didn't respond to READY msg\n");
164 return 0;
165 }
166
167 return 1;
168 }
169
170 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
171 {
172 if (bgx->rx)
173 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
174 else
175 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
176 }
177
178 static void nicvf_handle_mbx_intr(struct nicvf *nic)
179 {
180 union nic_mbx mbx = {};
181 u64 *mbx_data;
182 u64 mbx_addr;
183 int i;
184
185 mbx_addr = NIC_VF_PF_MAILBOX_0_1;
186 mbx_data = (u64 *)&mbx;
187
188 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
189 *mbx_data = nicvf_reg_read(nic, mbx_addr);
190 mbx_data++;
191 mbx_addr += sizeof(u64);
192 }
193
194 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
195 switch (mbx.msg.msg) {
196 case NIC_MBOX_MSG_READY:
197 nic->pf_acked = true;
198 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
199 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
200 nic->node = mbx.nic_cfg.node_id;
201 if (!nic->set_mac_pending)
202 ether_addr_copy(nic->netdev->dev_addr,
203 mbx.nic_cfg.mac_addr);
204 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
205 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
206 nic->link_up = false;
207 nic->duplex = 0;
208 nic->speed = 0;
209 break;
210 case NIC_MBOX_MSG_ACK:
211 nic->pf_acked = true;
212 break;
213 case NIC_MBOX_MSG_NACK:
214 nic->pf_nacked = true;
215 break;
216 case NIC_MBOX_MSG_RSS_SIZE:
217 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
218 nic->pf_acked = true;
219 break;
220 case NIC_MBOX_MSG_BGX_STATS:
221 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
222 nic->pf_acked = true;
223 break;
224 case NIC_MBOX_MSG_BGX_LINK_CHANGE:
225 nic->pf_acked = true;
226 nic->link_up = mbx.link_status.link_up;
227 nic->duplex = mbx.link_status.duplex;
228 nic->speed = mbx.link_status.speed;
229 if (nic->link_up) {
230 netdev_info(nic->netdev, "%s: Link is Up %d Mbps %s\n",
231 nic->netdev->name, nic->speed,
232 nic->duplex == DUPLEX_FULL ?
233 "Full duplex" : "Half duplex");
234 netif_carrier_on(nic->netdev);
235 netif_tx_start_all_queues(nic->netdev);
236 } else {
237 netdev_info(nic->netdev, "%s: Link is Down\n",
238 nic->netdev->name);
239 netif_carrier_off(nic->netdev);
240 netif_tx_stop_all_queues(nic->netdev);
241 }
242 break;
243 case NIC_MBOX_MSG_ALLOC_SQS:
244 nic->sqs_count = mbx.sqs_alloc.qs_count;
245 nic->pf_acked = true;
246 break;
247 case NIC_MBOX_MSG_SNICVF_PTR:
248 /* Primary VF: make note of secondary VF's pointer
249 * to be used while packet transmission.
250 */
251 nic->snicvf[mbx.nicvf.sqs_id] =
252 (struct nicvf *)mbx.nicvf.nicvf;
253 nic->pf_acked = true;
254 break;
255 case NIC_MBOX_MSG_PNICVF_PTR:
256 /* Secondary VF/Qset: make note of primary VF's pointer
257 * to be used while packet reception, to handover packet
258 * to primary VF's netdev.
259 */
260 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
261 nic->pf_acked = true;
262 break;
263 default:
264 netdev_err(nic->netdev,
265 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
266 break;
267 }
268 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
269 }
270
271 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
272 {
273 union nic_mbx mbx = {};
274
275 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
276 mbx.mac.vf_id = nic->vf_id;
277 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
278
279 return nicvf_send_msg_to_pf(nic, &mbx);
280 }
281
282 static void nicvf_config_cpi(struct nicvf *nic)
283 {
284 union nic_mbx mbx = {};
285
286 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
287 mbx.cpi_cfg.vf_id = nic->vf_id;
288 mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
289 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
290
291 nicvf_send_msg_to_pf(nic, &mbx);
292 }
293
294 static void nicvf_get_rss_size(struct nicvf *nic)
295 {
296 union nic_mbx mbx = {};
297
298 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
299 mbx.rss_size.vf_id = nic->vf_id;
300 nicvf_send_msg_to_pf(nic, &mbx);
301 }
302
303 void nicvf_config_rss(struct nicvf *nic)
304 {
305 union nic_mbx mbx = {};
306 struct nicvf_rss_info *rss = &nic->rss_info;
307 int ind_tbl_len = rss->rss_size;
308 int i, nextq = 0;
309
310 mbx.rss_cfg.vf_id = nic->vf_id;
311 mbx.rss_cfg.hash_bits = rss->hash_bits;
312 while (ind_tbl_len) {
313 mbx.rss_cfg.tbl_offset = nextq;
314 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
315 RSS_IND_TBL_LEN_PER_MBX_MSG);
316 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
317 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
318
319 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
320 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
321
322 nicvf_send_msg_to_pf(nic, &mbx);
323
324 ind_tbl_len -= mbx.rss_cfg.tbl_len;
325 }
326 }
327
328 void nicvf_set_rss_key(struct nicvf *nic)
329 {
330 struct nicvf_rss_info *rss = &nic->rss_info;
331 u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
332 int idx;
333
334 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
335 nicvf_reg_write(nic, key_addr, rss->key[idx]);
336 key_addr += sizeof(u64);
337 }
338 }
339
340 static int nicvf_rss_init(struct nicvf *nic)
341 {
342 struct nicvf_rss_info *rss = &nic->rss_info;
343 int idx;
344
345 nicvf_get_rss_size(nic);
346
347 if (cpi_alg != CPI_ALG_NONE) {
348 rss->enable = false;
349 rss->hash_bits = 0;
350 return 0;
351 }
352
353 rss->enable = true;
354
355 /* Using the HW reset value for now */
356 rss->key[0] = 0xFEED0BADFEED0BADULL;
357 rss->key[1] = 0xFEED0BADFEED0BADULL;
358 rss->key[2] = 0xFEED0BADFEED0BADULL;
359 rss->key[3] = 0xFEED0BADFEED0BADULL;
360 rss->key[4] = 0xFEED0BADFEED0BADULL;
361
362 nicvf_set_rss_key(nic);
363
364 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
365 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
366
367 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
368
369 for (idx = 0; idx < rss->rss_size; idx++)
370 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
371 nic->rx_queues);
372 nicvf_config_rss(nic);
373 return 1;
374 }
375
376 /* Request PF to allocate additional Qsets */
377 static void nicvf_request_sqs(struct nicvf *nic)
378 {
379 union nic_mbx mbx = {};
380 int sqs;
381 int sqs_count = nic->sqs_count;
382 int rx_queues = 0, tx_queues = 0;
383
384 /* Only primary VF should request */
385 if (nic->sqs_mode || !nic->sqs_count)
386 return;
387
388 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
389 mbx.sqs_alloc.vf_id = nic->vf_id;
390 mbx.sqs_alloc.qs_count = nic->sqs_count;
391 if (nicvf_send_msg_to_pf(nic, &mbx)) {
392 /* No response from PF */
393 nic->sqs_count = 0;
394 return;
395 }
396
397 /* Return if no Secondary Qsets available */
398 if (!nic->sqs_count)
399 return;
400
401 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
402 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
403 if (nic->tx_queues > MAX_SND_QUEUES_PER_QS)
404 tx_queues = nic->tx_queues - MAX_SND_QUEUES_PER_QS;
405
406 /* Set no of Rx/Tx queues in each of the SQsets */
407 for (sqs = 0; sqs < nic->sqs_count; sqs++) {
408 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
409 mbx.nicvf.vf_id = nic->vf_id;
410 mbx.nicvf.sqs_id = sqs;
411 nicvf_send_msg_to_pf(nic, &mbx);
412
413 nic->snicvf[sqs]->sqs_id = sqs;
414 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
415 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
416 rx_queues -= MAX_RCV_QUEUES_PER_QS;
417 } else {
418 nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
419 rx_queues = 0;
420 }
421
422 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
423 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
424 tx_queues -= MAX_SND_QUEUES_PER_QS;
425 } else {
426 nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
427 tx_queues = 0;
428 }
429
430 nic->snicvf[sqs]->qs->cq_cnt =
431 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
432
433 /* Initialize secondary Qset's queues and its interrupts */
434 nicvf_open(nic->snicvf[sqs]->netdev);
435 }
436
437 /* Update stack with actual Rx/Tx queue count allocated */
438 if (sqs_count != nic->sqs_count)
439 nicvf_set_real_num_queues(nic->netdev,
440 nic->tx_queues, nic->rx_queues);
441 }
442
443 /* Send this Qset's nicvf pointer to PF.
444 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
445 * so that packets received by these Qsets can use primary VF's netdev
446 */
447 static void nicvf_send_vf_struct(struct nicvf *nic)
448 {
449 union nic_mbx mbx = {};
450
451 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
452 mbx.nicvf.sqs_mode = nic->sqs_mode;
453 mbx.nicvf.nicvf = (u64)nic;
454 nicvf_send_msg_to_pf(nic, &mbx);
455 }
456
457 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
458 {
459 union nic_mbx mbx = {};
460
461 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
462 nicvf_send_msg_to_pf(nic, &mbx);
463 }
464
465 int nicvf_set_real_num_queues(struct net_device *netdev,
466 int tx_queues, int rx_queues)
467 {
468 int err = 0;
469
470 err = netif_set_real_num_tx_queues(netdev, tx_queues);
471 if (err) {
472 netdev_err(netdev,
473 "Failed to set no of Tx queues: %d\n", tx_queues);
474 return err;
475 }
476
477 err = netif_set_real_num_rx_queues(netdev, rx_queues);
478 if (err)
479 netdev_err(netdev,
480 "Failed to set no of Rx queues: %d\n", rx_queues);
481 return err;
482 }
483
484 static int nicvf_init_resources(struct nicvf *nic)
485 {
486 int err;
487 union nic_mbx mbx = {};
488
489 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
490
491 /* Enable Qset */
492 nicvf_qset_config(nic, true);
493
494 /* Initialize queues and HW for data transfer */
495 err = nicvf_config_data_transfer(nic, true);
496 if (err) {
497 netdev_err(nic->netdev,
498 "Failed to alloc/config VF's QSet resources\n");
499 return err;
500 }
501
502 /* Send VF config done msg to PF */
503 nicvf_write_to_mbx(nic, &mbx);
504
505 return 0;
506 }
507
508 static void nicvf_snd_pkt_handler(struct net_device *netdev,
509 struct cmp_queue *cq,
510 struct cqe_send_t *cqe_tx, int cqe_type)
511 {
512 struct sk_buff *skb = NULL;
513 struct nicvf *nic = netdev_priv(netdev);
514 struct snd_queue *sq;
515 struct sq_hdr_subdesc *hdr;
516
517 sq = &nic->qs->sq[cqe_tx->sq_idx];
518
519 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
520 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
521 return;
522
523 netdev_dbg(nic->netdev,
524 "%s Qset #%d SQ #%d SQ ptr #%d subdesc count %d\n",
525 __func__, cqe_tx->sq_qs, cqe_tx->sq_idx,
526 cqe_tx->sqe_ptr, hdr->subdesc_cnt);
527
528 nicvf_check_cqe_tx_errs(nic, cq, cqe_tx);
529 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
530 /* For TSO offloaded packets only one SQE will have a valid SKB */
531 if (skb) {
532 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
533 prefetch(skb);
534 dev_consume_skb_any(skb);
535 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
536 } else {
537 /* In case of HW TSO, HW sends a CQE for each segment of a TSO
538 * packet instead of a single CQE for the whole TSO packet
539 * transmitted. Each of this CQE points to the same SQE, so
540 * avoid freeing same SQE multiple times.
541 */
542 if (!nic->hw_tso)
543 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
544 }
545 }
546
547 static inline void nicvf_set_rxhash(struct net_device *netdev,
548 struct cqe_rx_t *cqe_rx,
549 struct sk_buff *skb)
550 {
551 u8 hash_type;
552 u32 hash;
553
554 if (!(netdev->features & NETIF_F_RXHASH))
555 return;
556
557 switch (cqe_rx->rss_alg) {
558 case RSS_ALG_TCP_IP:
559 case RSS_ALG_UDP_IP:
560 hash_type = PKT_HASH_TYPE_L4;
561 hash = cqe_rx->rss_tag;
562 break;
563 case RSS_ALG_IP:
564 hash_type = PKT_HASH_TYPE_L3;
565 hash = cqe_rx->rss_tag;
566 break;
567 default:
568 hash_type = PKT_HASH_TYPE_NONE;
569 hash = 0;
570 }
571
572 skb_set_hash(skb, hash, hash_type);
573 }
574
575 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
576 struct napi_struct *napi,
577 struct cmp_queue *cq,
578 struct cqe_rx_t *cqe_rx, int cqe_type)
579 {
580 struct sk_buff *skb;
581 struct nicvf *nic = netdev_priv(netdev);
582 int err = 0;
583 int rq_idx;
584
585 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
586
587 if (nic->sqs_mode) {
588 /* Use primary VF's 'nicvf' struct */
589 nic = nic->pnicvf;
590 netdev = nic->netdev;
591 }
592
593 /* Check for errors */
594 err = nicvf_check_cqe_rx_errs(nic, cq, cqe_rx);
595 if (err && !cqe_rx->rb_cnt)
596 return;
597
598 skb = nicvf_get_rcv_skb(nic, cqe_rx);
599 if (!skb) {
600 netdev_dbg(nic->netdev, "Packet not received\n");
601 return;
602 }
603
604 if (netif_msg_pktdata(nic)) {
605 netdev_info(nic->netdev, "%s: skb 0x%p, len=%d\n", netdev->name,
606 skb, skb->len);
607 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
608 skb->data, skb->len, true);
609 }
610
611 /* If error packet, drop it here */
612 if (err) {
613 dev_kfree_skb_any(skb);
614 return;
615 }
616
617 nicvf_set_rx_frame_cnt(nic, skb);
618
619 nicvf_set_rxhash(netdev, cqe_rx, skb);
620
621 skb_record_rx_queue(skb, rq_idx);
622 if (netdev->hw_features & NETIF_F_RXCSUM) {
623 /* HW by default verifies TCP/UDP/SCTP checksums */
624 skb->ip_summed = CHECKSUM_UNNECESSARY;
625 } else {
626 skb_checksum_none_assert(skb);
627 }
628
629 skb->protocol = eth_type_trans(skb, netdev);
630
631 /* Check for stripped VLAN */
632 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
633 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
634 ntohs((__force __be16)cqe_rx->vlan_tci));
635
636 if (napi && (netdev->features & NETIF_F_GRO))
637 napi_gro_receive(napi, skb);
638 else
639 netif_receive_skb(skb);
640 }
641
642 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
643 struct napi_struct *napi, int budget)
644 {
645 int processed_cqe, work_done = 0, tx_done = 0;
646 int cqe_count, cqe_head;
647 struct nicvf *nic = netdev_priv(netdev);
648 struct queue_set *qs = nic->qs;
649 struct cmp_queue *cq = &qs->cq[cq_idx];
650 struct cqe_rx_t *cq_desc;
651 struct netdev_queue *txq;
652
653 spin_lock_bh(&cq->lock);
654 loop:
655 processed_cqe = 0;
656 /* Get no of valid CQ entries to process */
657 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
658 cqe_count &= CQ_CQE_COUNT;
659 if (!cqe_count)
660 goto done;
661
662 /* Get head of the valid CQ entries */
663 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
664 cqe_head &= 0xFFFF;
665
666 netdev_dbg(nic->netdev, "%s CQ%d cqe_count %d cqe_head %d\n",
667 __func__, cq_idx, cqe_count, cqe_head);
668 while (processed_cqe < cqe_count) {
669 /* Get the CQ descriptor */
670 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
671 cqe_head++;
672 cqe_head &= (cq->dmem.q_len - 1);
673 /* Initiate prefetch for next descriptor */
674 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
675
676 if ((work_done >= budget) && napi &&
677 (cq_desc->cqe_type != CQE_TYPE_SEND)) {
678 break;
679 }
680
681 netdev_dbg(nic->netdev, "CQ%d cq_desc->cqe_type %d\n",
682 cq_idx, cq_desc->cqe_type);
683 switch (cq_desc->cqe_type) {
684 case CQE_TYPE_RX:
685 nicvf_rcv_pkt_handler(netdev, napi, cq,
686 cq_desc, CQE_TYPE_RX);
687 work_done++;
688 break;
689 case CQE_TYPE_SEND:
690 nicvf_snd_pkt_handler(netdev, cq,
691 (void *)cq_desc, CQE_TYPE_SEND);
692 tx_done++;
693 break;
694 case CQE_TYPE_INVALID:
695 case CQE_TYPE_RX_SPLIT:
696 case CQE_TYPE_RX_TCP:
697 case CQE_TYPE_SEND_PTP:
698 /* Ignore for now */
699 break;
700 }
701 processed_cqe++;
702 }
703 netdev_dbg(nic->netdev,
704 "%s CQ%d processed_cqe %d work_done %d budget %d\n",
705 __func__, cq_idx, processed_cqe, work_done, budget);
706
707 /* Ring doorbell to inform H/W to reuse processed CQEs */
708 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
709 cq_idx, processed_cqe);
710
711 if ((work_done < budget) && napi)
712 goto loop;
713
714 done:
715 /* Wakeup TXQ if its stopped earlier due to SQ full */
716 if (tx_done) {
717 netdev = nic->pnicvf->netdev;
718 txq = netdev_get_tx_queue(netdev,
719 nicvf_netdev_qidx(nic, cq_idx));
720 nic = nic->pnicvf;
721 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
722 netif_tx_start_queue(txq);
723 nic->drv_stats.txq_wake++;
724 if (netif_msg_tx_err(nic))
725 netdev_warn(netdev,
726 "%s: Transmit queue wakeup SQ%d\n",
727 netdev->name, cq_idx);
728 }
729 }
730
731 spin_unlock_bh(&cq->lock);
732 return work_done;
733 }
734
735 static int nicvf_poll(struct napi_struct *napi, int budget)
736 {
737 u64 cq_head;
738 int work_done = 0;
739 struct net_device *netdev = napi->dev;
740 struct nicvf *nic = netdev_priv(netdev);
741 struct nicvf_cq_poll *cq;
742
743 cq = container_of(napi, struct nicvf_cq_poll, napi);
744 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
745
746 if (work_done < budget) {
747 /* Slow packet rate, exit polling */
748 napi_complete(napi);
749 /* Re-enable interrupts */
750 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
751 cq->cq_idx);
752 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
753 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
754 cq->cq_idx, cq_head);
755 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
756 }
757 return work_done;
758 }
759
760 /* Qset error interrupt handler
761 *
762 * As of now only CQ errors are handled
763 */
764 static void nicvf_handle_qs_err(unsigned long data)
765 {
766 struct nicvf *nic = (struct nicvf *)data;
767 struct queue_set *qs = nic->qs;
768 int qidx;
769 u64 status;
770
771 netif_tx_disable(nic->netdev);
772
773 /* Check if it is CQ err */
774 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
775 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
776 qidx);
777 if (!(status & CQ_ERR_MASK))
778 continue;
779 /* Process already queued CQEs and reconfig CQ */
780 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
781 nicvf_sq_disable(nic, qidx);
782 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
783 nicvf_cmp_queue_config(nic, qs, qidx, true);
784 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
785 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
786
787 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
788 }
789
790 netif_tx_start_all_queues(nic->netdev);
791 /* Re-enable Qset error interrupt */
792 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
793 }
794
795 static void nicvf_dump_intr_status(struct nicvf *nic)
796 {
797 if (netif_msg_intr(nic))
798 netdev_info(nic->netdev, "%s: interrupt status 0x%llx\n",
799 nic->netdev->name, nicvf_reg_read(nic, NIC_VF_INT));
800 }
801
802 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
803 {
804 struct nicvf *nic = (struct nicvf *)nicvf_irq;
805 u64 intr;
806
807 nicvf_dump_intr_status(nic);
808
809 intr = nicvf_reg_read(nic, NIC_VF_INT);
810 /* Check for spurious interrupt */
811 if (!(intr & NICVF_INTR_MBOX_MASK))
812 return IRQ_HANDLED;
813
814 nicvf_handle_mbx_intr(nic);
815
816 return IRQ_HANDLED;
817 }
818
819 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
820 {
821 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
822 struct nicvf *nic = cq_poll->nicvf;
823 int qidx = cq_poll->cq_idx;
824
825 nicvf_dump_intr_status(nic);
826
827 /* Disable interrupts */
828 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
829
830 /* Schedule NAPI */
831 napi_schedule(&cq_poll->napi);
832
833 /* Clear interrupt */
834 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
835
836 return IRQ_HANDLED;
837 }
838
839 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
840 {
841 struct nicvf *nic = (struct nicvf *)nicvf_irq;
842 u8 qidx;
843
844
845 nicvf_dump_intr_status(nic);
846
847 /* Disable RBDR interrupt and schedule softirq */
848 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
849 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
850 continue;
851 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
852 tasklet_hi_schedule(&nic->rbdr_task);
853 /* Clear interrupt */
854 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
855 }
856
857 return IRQ_HANDLED;
858 }
859
860 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
861 {
862 struct nicvf *nic = (struct nicvf *)nicvf_irq;
863
864 nicvf_dump_intr_status(nic);
865
866 /* Disable Qset err interrupt and schedule softirq */
867 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
868 tasklet_hi_schedule(&nic->qs_err_task);
869 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
870
871 return IRQ_HANDLED;
872 }
873
874 static int nicvf_enable_msix(struct nicvf *nic)
875 {
876 int ret, vec;
877
878 nic->num_vec = NIC_VF_MSIX_VECTORS;
879
880 for (vec = 0; vec < nic->num_vec; vec++)
881 nic->msix_entries[vec].entry = vec;
882
883 ret = pci_enable_msix(nic->pdev, nic->msix_entries, nic->num_vec);
884 if (ret) {
885 netdev_err(nic->netdev,
886 "Req for #%d msix vectors failed\n", nic->num_vec);
887 return 0;
888 }
889 nic->msix_enabled = 1;
890 return 1;
891 }
892
893 static void nicvf_disable_msix(struct nicvf *nic)
894 {
895 if (nic->msix_enabled) {
896 pci_disable_msix(nic->pdev);
897 nic->msix_enabled = 0;
898 nic->num_vec = 0;
899 }
900 }
901
902 static int nicvf_register_interrupts(struct nicvf *nic)
903 {
904 int irq, ret = 0;
905 int vector;
906
907 for_each_cq_irq(irq)
908 sprintf(nic->irq_name[irq], "NICVF%d CQ%d",
909 nic->vf_id, irq);
910
911 for_each_sq_irq(irq)
912 sprintf(nic->irq_name[irq], "NICVF%d SQ%d",
913 nic->vf_id, irq - NICVF_INTR_ID_SQ);
914
915 for_each_rbdr_irq(irq)
916 sprintf(nic->irq_name[irq], "NICVF%d RBDR%d",
917 nic->vf_id, irq - NICVF_INTR_ID_RBDR);
918
919 /* Register CQ interrupts */
920 for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
921 vector = nic->msix_entries[irq].vector;
922 ret = request_irq(vector, nicvf_intr_handler,
923 0, nic->irq_name[irq], nic->napi[irq]);
924 if (ret)
925 goto err;
926 nic->irq_allocated[irq] = true;
927 }
928
929 /* Register RBDR interrupt */
930 for (irq = NICVF_INTR_ID_RBDR;
931 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
932 vector = nic->msix_entries[irq].vector;
933 ret = request_irq(vector, nicvf_rbdr_intr_handler,
934 0, nic->irq_name[irq], nic);
935 if (ret)
936 goto err;
937 nic->irq_allocated[irq] = true;
938 }
939
940 /* Register QS error interrupt */
941 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR],
942 "NICVF%d Qset error", nic->vf_id);
943 irq = NICVF_INTR_ID_QS_ERR;
944 ret = request_irq(nic->msix_entries[irq].vector,
945 nicvf_qs_err_intr_handler,
946 0, nic->irq_name[irq], nic);
947 if (!ret)
948 nic->irq_allocated[irq] = true;
949
950 err:
951 if (ret)
952 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
953
954 return ret;
955 }
956
957 static void nicvf_unregister_interrupts(struct nicvf *nic)
958 {
959 int irq;
960
961 /* Free registered interrupts */
962 for (irq = 0; irq < nic->num_vec; irq++) {
963 if (!nic->irq_allocated[irq])
964 continue;
965
966 if (irq < NICVF_INTR_ID_SQ)
967 free_irq(nic->msix_entries[irq].vector, nic->napi[irq]);
968 else
969 free_irq(nic->msix_entries[irq].vector, nic);
970
971 nic->irq_allocated[irq] = false;
972 }
973
974 /* Disable MSI-X */
975 nicvf_disable_msix(nic);
976 }
977
978 /* Initialize MSIX vectors and register MISC interrupt.
979 * Send READY message to PF to check if its alive
980 */
981 static int nicvf_register_misc_interrupt(struct nicvf *nic)
982 {
983 int ret = 0;
984 int irq = NICVF_INTR_ID_MISC;
985
986 /* Return if mailbox interrupt is already registered */
987 if (nic->msix_enabled)
988 return 0;
989
990 /* Enable MSI-X */
991 if (!nicvf_enable_msix(nic))
992 return 1;
993
994 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
995 /* Register Misc interrupt */
996 ret = request_irq(nic->msix_entries[irq].vector,
997 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
998
999 if (ret)
1000 return ret;
1001 nic->irq_allocated[irq] = true;
1002
1003 /* Enable mailbox interrupt */
1004 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1005
1006 /* Check if VF is able to communicate with PF */
1007 if (!nicvf_check_pf_ready(nic)) {
1008 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1009 nicvf_unregister_interrupts(nic);
1010 return 1;
1011 }
1012
1013 return 0;
1014 }
1015
1016 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1017 {
1018 struct nicvf *nic = netdev_priv(netdev);
1019 int qid = skb_get_queue_mapping(skb);
1020 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1021
1022 /* Check for minimum packet length */
1023 if (skb->len <= ETH_HLEN) {
1024 dev_kfree_skb(skb);
1025 return NETDEV_TX_OK;
1026 }
1027
1028 if (!netif_tx_queue_stopped(txq) && !nicvf_sq_append_skb(nic, skb)) {
1029 netif_tx_stop_queue(txq);
1030 nic->drv_stats.txq_stop++;
1031 if (netif_msg_tx_err(nic))
1032 netdev_warn(netdev,
1033 "%s: Transmit ring full, stopping SQ%d\n",
1034 netdev->name, qid);
1035 return NETDEV_TX_BUSY;
1036 }
1037
1038 return NETDEV_TX_OK;
1039 }
1040
1041 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1042 {
1043 struct nicvf_cq_poll *cq_poll;
1044 int qidx;
1045
1046 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1047 cq_poll = nic->napi[qidx];
1048 if (!cq_poll)
1049 continue;
1050 nic->napi[qidx] = NULL;
1051 kfree(cq_poll);
1052 }
1053 }
1054
1055 int nicvf_stop(struct net_device *netdev)
1056 {
1057 int irq, qidx;
1058 struct nicvf *nic = netdev_priv(netdev);
1059 struct queue_set *qs = nic->qs;
1060 struct nicvf_cq_poll *cq_poll = NULL;
1061 union nic_mbx mbx = {};
1062
1063 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1064 nicvf_send_msg_to_pf(nic, &mbx);
1065
1066 netif_carrier_off(netdev);
1067 netif_tx_stop_all_queues(nic->netdev);
1068 nic->link_up = false;
1069
1070 /* Teardown secondary qsets first */
1071 if (!nic->sqs_mode) {
1072 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1073 if (!nic->snicvf[qidx])
1074 continue;
1075 nicvf_stop(nic->snicvf[qidx]->netdev);
1076 nic->snicvf[qidx] = NULL;
1077 }
1078 }
1079
1080 /* Disable RBDR & QS error interrupts */
1081 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1082 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1083 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1084 }
1085 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1086 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1087
1088 /* Wait for pending IRQ handlers to finish */
1089 for (irq = 0; irq < nic->num_vec; irq++)
1090 synchronize_irq(nic->msix_entries[irq].vector);
1091
1092 tasklet_kill(&nic->rbdr_task);
1093 tasklet_kill(&nic->qs_err_task);
1094 if (nic->rb_work_scheduled)
1095 cancel_delayed_work_sync(&nic->rbdr_work);
1096
1097 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1098 cq_poll = nic->napi[qidx];
1099 if (!cq_poll)
1100 continue;
1101 napi_synchronize(&cq_poll->napi);
1102 /* CQ intr is enabled while napi_complete,
1103 * so disable it now
1104 */
1105 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1106 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1107 napi_disable(&cq_poll->napi);
1108 netif_napi_del(&cq_poll->napi);
1109 }
1110
1111 netif_tx_disable(netdev);
1112
1113 /* Free resources */
1114 nicvf_config_data_transfer(nic, false);
1115
1116 /* Disable HW Qset */
1117 nicvf_qset_config(nic, false);
1118
1119 /* disable mailbox interrupt */
1120 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1121
1122 nicvf_unregister_interrupts(nic);
1123
1124 nicvf_free_cq_poll(nic);
1125
1126 /* Clear multiqset info */
1127 nic->pnicvf = nic;
1128 nic->sqs_count = 0;
1129
1130 return 0;
1131 }
1132
1133 int nicvf_open(struct net_device *netdev)
1134 {
1135 int err, qidx;
1136 struct nicvf *nic = netdev_priv(netdev);
1137 struct queue_set *qs = nic->qs;
1138 struct nicvf_cq_poll *cq_poll = NULL;
1139
1140 nic->mtu = netdev->mtu;
1141
1142 netif_carrier_off(netdev);
1143
1144 err = nicvf_register_misc_interrupt(nic);
1145 if (err)
1146 return err;
1147
1148 /* Register NAPI handler for processing CQEs */
1149 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1150 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1151 if (!cq_poll) {
1152 err = -ENOMEM;
1153 goto napi_del;
1154 }
1155 cq_poll->cq_idx = qidx;
1156 cq_poll->nicvf = nic;
1157 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1158 NAPI_POLL_WEIGHT);
1159 napi_enable(&cq_poll->napi);
1160 nic->napi[qidx] = cq_poll;
1161 }
1162
1163 /* Check if we got MAC address from PF or else generate a radom MAC */
1164 if (is_zero_ether_addr(netdev->dev_addr)) {
1165 eth_hw_addr_random(netdev);
1166 nicvf_hw_set_mac_addr(nic, netdev);
1167 }
1168
1169 if (nic->set_mac_pending) {
1170 nic->set_mac_pending = false;
1171 nicvf_hw_set_mac_addr(nic, netdev);
1172 }
1173
1174 /* Init tasklet for handling Qset err interrupt */
1175 tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1176 (unsigned long)nic);
1177
1178 /* Init RBDR tasklet which will refill RBDR */
1179 tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1180 (unsigned long)nic);
1181 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1182
1183 /* Configure CPI alorithm */
1184 nic->cpi_alg = cpi_alg;
1185 if (!nic->sqs_mode)
1186 nicvf_config_cpi(nic);
1187
1188 nicvf_request_sqs(nic);
1189 if (nic->sqs_mode)
1190 nicvf_get_primary_vf_struct(nic);
1191
1192 /* Configure receive side scaling */
1193 if (!nic->sqs_mode)
1194 nicvf_rss_init(nic);
1195
1196 err = nicvf_register_interrupts(nic);
1197 if (err)
1198 goto cleanup;
1199
1200 /* Initialize the queues */
1201 err = nicvf_init_resources(nic);
1202 if (err)
1203 goto cleanup;
1204
1205 /* Make sure queue initialization is written */
1206 wmb();
1207
1208 nicvf_reg_write(nic, NIC_VF_INT, -1);
1209 /* Enable Qset err interrupt */
1210 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1211
1212 /* Enable completion queue interrupt */
1213 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1214 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1215
1216 /* Enable RBDR threshold interrupt */
1217 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1218 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1219
1220 nic->drv_stats.txq_stop = 0;
1221 nic->drv_stats.txq_wake = 0;
1222
1223 return 0;
1224 cleanup:
1225 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1226 nicvf_unregister_interrupts(nic);
1227 tasklet_kill(&nic->qs_err_task);
1228 tasklet_kill(&nic->rbdr_task);
1229 napi_del:
1230 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1231 cq_poll = nic->napi[qidx];
1232 if (!cq_poll)
1233 continue;
1234 napi_disable(&cq_poll->napi);
1235 netif_napi_del(&cq_poll->napi);
1236 }
1237 nicvf_free_cq_poll(nic);
1238 return err;
1239 }
1240
1241 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1242 {
1243 union nic_mbx mbx = {};
1244
1245 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1246 mbx.frs.max_frs = mtu;
1247 mbx.frs.vf_id = nic->vf_id;
1248
1249 return nicvf_send_msg_to_pf(nic, &mbx);
1250 }
1251
1252 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1253 {
1254 struct nicvf *nic = netdev_priv(netdev);
1255
1256 if (new_mtu > NIC_HW_MAX_FRS)
1257 return -EINVAL;
1258
1259 if (new_mtu < NIC_HW_MIN_FRS)
1260 return -EINVAL;
1261
1262 if (nicvf_update_hw_max_frs(nic, new_mtu))
1263 return -EINVAL;
1264 netdev->mtu = new_mtu;
1265 nic->mtu = new_mtu;
1266
1267 return 0;
1268 }
1269
1270 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1271 {
1272 struct sockaddr *addr = p;
1273 struct nicvf *nic = netdev_priv(netdev);
1274
1275 if (!is_valid_ether_addr(addr->sa_data))
1276 return -EADDRNOTAVAIL;
1277
1278 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1279
1280 if (nic->msix_enabled) {
1281 if (nicvf_hw_set_mac_addr(nic, netdev))
1282 return -EBUSY;
1283 } else {
1284 nic->set_mac_pending = true;
1285 }
1286
1287 return 0;
1288 }
1289
1290 void nicvf_update_lmac_stats(struct nicvf *nic)
1291 {
1292 int stat = 0;
1293 union nic_mbx mbx = {};
1294
1295 if (!netif_running(nic->netdev))
1296 return;
1297
1298 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1299 mbx.bgx_stats.vf_id = nic->vf_id;
1300 /* Rx stats */
1301 mbx.bgx_stats.rx = 1;
1302 while (stat < BGX_RX_STATS_COUNT) {
1303 mbx.bgx_stats.idx = stat;
1304 if (nicvf_send_msg_to_pf(nic, &mbx))
1305 return;
1306 stat++;
1307 }
1308
1309 stat = 0;
1310
1311 /* Tx stats */
1312 mbx.bgx_stats.rx = 0;
1313 while (stat < BGX_TX_STATS_COUNT) {
1314 mbx.bgx_stats.idx = stat;
1315 if (nicvf_send_msg_to_pf(nic, &mbx))
1316 return;
1317 stat++;
1318 }
1319 }
1320
1321 void nicvf_update_stats(struct nicvf *nic)
1322 {
1323 int qidx;
1324 struct nicvf_hw_stats *stats = &nic->hw_stats;
1325 struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
1326 struct queue_set *qs = nic->qs;
1327
1328 #define GET_RX_STATS(reg) \
1329 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1330 #define GET_TX_STATS(reg) \
1331 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1332
1333 stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1334 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1335 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1336 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1337 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1338 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1339 stats->rx_drop_red = GET_RX_STATS(RX_RED);
1340 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1341 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1342 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1343 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1344 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1345 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1346 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1347
1348 stats->tx_bytes_ok = GET_TX_STATS(TX_OCTS);
1349 stats->tx_ucast_frames_ok = GET_TX_STATS(TX_UCAST);
1350 stats->tx_bcast_frames_ok = GET_TX_STATS(TX_BCAST);
1351 stats->tx_mcast_frames_ok = GET_TX_STATS(TX_MCAST);
1352 stats->tx_drops = GET_TX_STATS(TX_DROP);
1353
1354 drv_stats->tx_frames_ok = stats->tx_ucast_frames_ok +
1355 stats->tx_bcast_frames_ok +
1356 stats->tx_mcast_frames_ok;
1357 drv_stats->rx_drops = stats->rx_drop_red +
1358 stats->rx_drop_overrun;
1359 drv_stats->tx_drops = stats->tx_drops;
1360
1361 /* Update RQ and SQ stats */
1362 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1363 nicvf_update_rq_stats(nic, qidx);
1364 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1365 nicvf_update_sq_stats(nic, qidx);
1366 }
1367
1368 static struct rtnl_link_stats64 *nicvf_get_stats64(struct net_device *netdev,
1369 struct rtnl_link_stats64 *stats)
1370 {
1371 struct nicvf *nic = netdev_priv(netdev);
1372 struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1373 struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
1374
1375 nicvf_update_stats(nic);
1376
1377 stats->rx_bytes = hw_stats->rx_bytes;
1378 stats->rx_packets = drv_stats->rx_frames_ok;
1379 stats->rx_dropped = drv_stats->rx_drops;
1380 stats->multicast = hw_stats->rx_mcast_frames;
1381
1382 stats->tx_bytes = hw_stats->tx_bytes_ok;
1383 stats->tx_packets = drv_stats->tx_frames_ok;
1384 stats->tx_dropped = drv_stats->tx_drops;
1385
1386 return stats;
1387 }
1388
1389 static void nicvf_tx_timeout(struct net_device *dev)
1390 {
1391 struct nicvf *nic = netdev_priv(dev);
1392
1393 if (netif_msg_tx_err(nic))
1394 netdev_warn(dev, "%s: Transmit timed out, resetting\n",
1395 dev->name);
1396
1397 schedule_work(&nic->reset_task);
1398 }
1399
1400 static void nicvf_reset_task(struct work_struct *work)
1401 {
1402 struct nicvf *nic;
1403
1404 nic = container_of(work, struct nicvf, reset_task);
1405
1406 if (!netif_running(nic->netdev))
1407 return;
1408
1409 nicvf_stop(nic->netdev);
1410 nicvf_open(nic->netdev);
1411 nic->netdev->trans_start = jiffies;
1412 }
1413
1414 static int nicvf_config_loopback(struct nicvf *nic,
1415 netdev_features_t features)
1416 {
1417 union nic_mbx mbx = {};
1418
1419 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1420 mbx.lbk.vf_id = nic->vf_id;
1421 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1422
1423 return nicvf_send_msg_to_pf(nic, &mbx);
1424 }
1425
1426 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1427 netdev_features_t features)
1428 {
1429 struct nicvf *nic = netdev_priv(netdev);
1430
1431 if ((features & NETIF_F_LOOPBACK) &&
1432 netif_running(netdev) && !nic->loopback_supported)
1433 features &= ~NETIF_F_LOOPBACK;
1434
1435 return features;
1436 }
1437
1438 static int nicvf_set_features(struct net_device *netdev,
1439 netdev_features_t features)
1440 {
1441 struct nicvf *nic = netdev_priv(netdev);
1442 netdev_features_t changed = features ^ netdev->features;
1443
1444 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1445 nicvf_config_vlan_stripping(nic, features);
1446
1447 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1448 return nicvf_config_loopback(nic, features);
1449
1450 return 0;
1451 }
1452
1453 static const struct net_device_ops nicvf_netdev_ops = {
1454 .ndo_open = nicvf_open,
1455 .ndo_stop = nicvf_stop,
1456 .ndo_start_xmit = nicvf_xmit,
1457 .ndo_change_mtu = nicvf_change_mtu,
1458 .ndo_set_mac_address = nicvf_set_mac_address,
1459 .ndo_get_stats64 = nicvf_get_stats64,
1460 .ndo_tx_timeout = nicvf_tx_timeout,
1461 .ndo_fix_features = nicvf_fix_features,
1462 .ndo_set_features = nicvf_set_features,
1463 };
1464
1465 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1466 {
1467 struct device *dev = &pdev->dev;
1468 struct net_device *netdev;
1469 struct nicvf *nic;
1470 int err, qcount;
1471
1472 err = pci_enable_device(pdev);
1473 if (err) {
1474 dev_err(dev, "Failed to enable PCI device\n");
1475 return err;
1476 }
1477
1478 err = pci_request_regions(pdev, DRV_NAME);
1479 if (err) {
1480 dev_err(dev, "PCI request regions failed 0x%x\n", err);
1481 goto err_disable_device;
1482 }
1483
1484 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1485 if (err) {
1486 dev_err(dev, "Unable to get usable DMA configuration\n");
1487 goto err_release_regions;
1488 }
1489
1490 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1491 if (err) {
1492 dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
1493 goto err_release_regions;
1494 }
1495
1496 qcount = MAX_CMP_QUEUES_PER_QS;
1497
1498 /* Restrict multiqset support only for host bound VFs */
1499 if (pdev->is_virtfn) {
1500 /* Set max number of queues per VF */
1501 qcount = roundup(num_online_cpus(), MAX_CMP_QUEUES_PER_QS);
1502 qcount = min(qcount,
1503 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
1504 }
1505
1506 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
1507 if (!netdev) {
1508 err = -ENOMEM;
1509 goto err_release_regions;
1510 }
1511
1512 pci_set_drvdata(pdev, netdev);
1513
1514 SET_NETDEV_DEV(netdev, &pdev->dev);
1515
1516 nic = netdev_priv(netdev);
1517 nic->netdev = netdev;
1518 nic->pdev = pdev;
1519 nic->pnicvf = nic;
1520 nic->max_queues = qcount;
1521
1522 /* MAP VF's configuration registers */
1523 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
1524 if (!nic->reg_base) {
1525 dev_err(dev, "Cannot map config register space, aborting\n");
1526 err = -ENOMEM;
1527 goto err_free_netdev;
1528 }
1529
1530 err = nicvf_set_qset_resources(nic);
1531 if (err)
1532 goto err_free_netdev;
1533
1534 /* Check if PF is alive and get MAC address for this VF */
1535 err = nicvf_register_misc_interrupt(nic);
1536 if (err)
1537 goto err_free_netdev;
1538
1539 nicvf_send_vf_struct(nic);
1540
1541 /* Check if this VF is in QS only mode */
1542 if (nic->sqs_mode)
1543 return 0;
1544
1545 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
1546 if (err)
1547 goto err_unregister_interrupts;
1548
1549 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
1550 NETIF_F_TSO | NETIF_F_GRO |
1551 NETIF_F_HW_VLAN_CTAG_RX);
1552
1553 netdev->hw_features |= NETIF_F_RXHASH;
1554
1555 netdev->features |= netdev->hw_features;
1556 netdev->hw_features |= NETIF_F_LOOPBACK;
1557
1558 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
1559
1560 if (!pass1_silicon(nic->pdev))
1561 nic->hw_tso = true;
1562
1563 netdev->netdev_ops = &nicvf_netdev_ops;
1564 netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
1565
1566 INIT_WORK(&nic->reset_task, nicvf_reset_task);
1567
1568 err = register_netdev(netdev);
1569 if (err) {
1570 dev_err(dev, "Failed to register netdevice\n");
1571 goto err_unregister_interrupts;
1572 }
1573
1574 nic->msg_enable = debug;
1575
1576 nicvf_set_ethtool_ops(netdev);
1577
1578 return 0;
1579
1580 err_unregister_interrupts:
1581 nicvf_unregister_interrupts(nic);
1582 err_free_netdev:
1583 pci_set_drvdata(pdev, NULL);
1584 free_netdev(netdev);
1585 err_release_regions:
1586 pci_release_regions(pdev);
1587 err_disable_device:
1588 pci_disable_device(pdev);
1589 return err;
1590 }
1591
1592 static void nicvf_remove(struct pci_dev *pdev)
1593 {
1594 struct net_device *netdev = pci_get_drvdata(pdev);
1595 struct nicvf *nic;
1596 struct net_device *pnetdev;
1597
1598 if (!netdev)
1599 return;
1600
1601 nic = netdev_priv(netdev);
1602 pnetdev = nic->pnicvf->netdev;
1603
1604 /* Check if this Qset is assigned to different VF.
1605 * If yes, clean primary and all secondary Qsets.
1606 */
1607 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
1608 unregister_netdev(pnetdev);
1609 nicvf_unregister_interrupts(nic);
1610 pci_set_drvdata(pdev, NULL);
1611 free_netdev(netdev);
1612 pci_release_regions(pdev);
1613 pci_disable_device(pdev);
1614 }
1615
1616 static void nicvf_shutdown(struct pci_dev *pdev)
1617 {
1618 nicvf_remove(pdev);
1619 }
1620
1621 static struct pci_driver nicvf_driver = {
1622 .name = DRV_NAME,
1623 .id_table = nicvf_id_table,
1624 .probe = nicvf_probe,
1625 .remove = nicvf_remove,
1626 .shutdown = nicvf_shutdown,
1627 };
1628
1629 static int __init nicvf_init_module(void)
1630 {
1631 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
1632
1633 return pci_register_driver(&nicvf_driver);
1634 }
1635
1636 static void __exit nicvf_cleanup_module(void)
1637 {
1638 pci_unregister_driver(&nicvf_driver);
1639 }
1640
1641 module_init(nicvf_init_module);
1642 module_exit(nicvf_cleanup_module);