]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_main.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / cavium / thunder / nicvf_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Cavium, Inc.
4 */
5
6 #include <linux/module.h>
7 #include <linux/interrupt.h>
8 #include <linux/pci.h>
9 #include <linux/netdevice.h>
10 #include <linux/if_vlan.h>
11 #include <linux/etherdevice.h>
12 #include <linux/ethtool.h>
13 #include <linux/log2.h>
14 #include <linux/prefetch.h>
15 #include <linux/irq.h>
16 #include <linux/iommu.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_trace.h>
19 #include <linux/filter.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/workqueue.h>
22
23 #include "nic_reg.h"
24 #include "nic.h"
25 #include "nicvf_queues.h"
26 #include "thunder_bgx.h"
27 #include "../common/cavium_ptp.h"
28
29 #define DRV_NAME "nicvf"
30 #define DRV_VERSION "1.0"
31
32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
33 * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
34 * this value, keeping headroom for the 14 byte Ethernet header and two
35 * VLAN tags (for QinQ)
36 */
37 #define MAX_XDP_MTU (1530 - ETH_HLEN - VLAN_HLEN * 2)
38
39 /* Supported devices */
40 static const struct pci_device_id nicvf_id_table[] = {
41 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 PCI_DEVICE_ID_THUNDER_NIC_VF,
43 PCI_VENDOR_ID_CAVIUM,
44 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
45 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
47 PCI_VENDOR_ID_CAVIUM,
48 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
49 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 PCI_VENDOR_ID_CAVIUM,
52 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
53 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
54 PCI_DEVICE_ID_THUNDER_NIC_VF,
55 PCI_VENDOR_ID_CAVIUM,
56 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
57 { 0, } /* end of table */
58 };
59
60 MODULE_AUTHOR("Sunil Goutham");
61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
62 MODULE_LICENSE("GPL v2");
63 MODULE_VERSION(DRV_VERSION);
64 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
65
66 static int debug = 0x00;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Debug message level bitmap");
69
70 static int cpi_alg = CPI_ALG_NONE;
71 module_param(cpi_alg, int, 0444);
72 MODULE_PARM_DESC(cpi_alg,
73 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
74
75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
76 {
77 if (nic->sqs_mode)
78 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
79 else
80 return qidx;
81 }
82
83 /* The Cavium ThunderX network controller can *only* be found in SoCs
84 * containing the ThunderX ARM64 CPU implementation. All accesses to the device
85 * registers on this platform are implicitly strongly ordered with respect
86 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
87 * with no memory barriers in this driver. The readq()/writeq() functions add
88 * explicit ordering operation which in this case are redundant, and only
89 * add overhead.
90 */
91
92 /* Register read/write APIs */
93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
94 {
95 writeq_relaxed(val, nic->reg_base + offset);
96 }
97
98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
99 {
100 return readq_relaxed(nic->reg_base + offset);
101 }
102
103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
104 u64 qidx, u64 val)
105 {
106 void __iomem *addr = nic->reg_base + offset;
107
108 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110
111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
112 {
113 void __iomem *addr = nic->reg_base + offset;
114
115 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
116 }
117
118 /* VF -> PF mailbox communication */
119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
120 {
121 u64 *msg = (u64 *)mbx;
122
123 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
124 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
125 }
126
127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
128 {
129 unsigned long timeout;
130 int ret = 0;
131
132 mutex_lock(&nic->rx_mode_mtx);
133
134 nic->pf_acked = false;
135 nic->pf_nacked = false;
136
137 nicvf_write_to_mbx(nic, mbx);
138
139 timeout = jiffies + msecs_to_jiffies(NIC_MBOX_MSG_TIMEOUT);
140 /* Wait for previous message to be acked, timeout 2sec */
141 while (!nic->pf_acked) {
142 if (nic->pf_nacked) {
143 netdev_err(nic->netdev,
144 "PF NACK to mbox msg 0x%02x from VF%d\n",
145 (mbx->msg.msg & 0xFF), nic->vf_id);
146 ret = -EINVAL;
147 break;
148 }
149 usleep_range(8000, 10000);
150 if (nic->pf_acked)
151 break;
152 if (time_after(jiffies, timeout)) {
153 netdev_err(nic->netdev,
154 "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
155 (mbx->msg.msg & 0xFF), nic->vf_id);
156 ret = -EBUSY;
157 break;
158 }
159 }
160 mutex_unlock(&nic->rx_mode_mtx);
161 return ret;
162 }
163
164 /* Checks if VF is able to comminicate with PF
165 * and also gets the VNIC number this VF is associated to.
166 */
167 static int nicvf_check_pf_ready(struct nicvf *nic)
168 {
169 union nic_mbx mbx = {};
170
171 mbx.msg.msg = NIC_MBOX_MSG_READY;
172 if (nicvf_send_msg_to_pf(nic, &mbx)) {
173 netdev_err(nic->netdev,
174 "PF didn't respond to READY msg\n");
175 return 0;
176 }
177
178 return 1;
179 }
180
181 static void nicvf_send_cfg_done(struct nicvf *nic)
182 {
183 union nic_mbx mbx = {};
184
185 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
186 if (nicvf_send_msg_to_pf(nic, &mbx)) {
187 netdev_err(nic->netdev,
188 "PF didn't respond to CFG DONE msg\n");
189 }
190 }
191
192 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
193 {
194 if (bgx->rx)
195 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
196 else
197 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
198 }
199
200 static void nicvf_handle_mbx_intr(struct nicvf *nic)
201 {
202 union nic_mbx mbx = {};
203 u64 *mbx_data;
204 u64 mbx_addr;
205 int i;
206
207 mbx_addr = NIC_VF_PF_MAILBOX_0_1;
208 mbx_data = (u64 *)&mbx;
209
210 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
211 *mbx_data = nicvf_reg_read(nic, mbx_addr);
212 mbx_data++;
213 mbx_addr += sizeof(u64);
214 }
215
216 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
217 switch (mbx.msg.msg) {
218 case NIC_MBOX_MSG_READY:
219 nic->pf_acked = true;
220 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
221 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
222 nic->node = mbx.nic_cfg.node_id;
223 if (!nic->set_mac_pending)
224 ether_addr_copy(nic->netdev->dev_addr,
225 mbx.nic_cfg.mac_addr);
226 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
227 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
228 nic->link_up = false;
229 nic->duplex = 0;
230 nic->speed = 0;
231 break;
232 case NIC_MBOX_MSG_ACK:
233 nic->pf_acked = true;
234 break;
235 case NIC_MBOX_MSG_NACK:
236 nic->pf_nacked = true;
237 break;
238 case NIC_MBOX_MSG_RSS_SIZE:
239 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
240 nic->pf_acked = true;
241 break;
242 case NIC_MBOX_MSG_BGX_STATS:
243 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
244 nic->pf_acked = true;
245 break;
246 case NIC_MBOX_MSG_BGX_LINK_CHANGE:
247 nic->pf_acked = true;
248 if (nic->link_up != mbx.link_status.link_up) {
249 nic->link_up = mbx.link_status.link_up;
250 nic->duplex = mbx.link_status.duplex;
251 nic->speed = mbx.link_status.speed;
252 nic->mac_type = mbx.link_status.mac_type;
253 if (nic->link_up) {
254 netdev_info(nic->netdev,
255 "Link is Up %d Mbps %s duplex\n",
256 nic->speed,
257 nic->duplex == DUPLEX_FULL ?
258 "Full" : "Half");
259 netif_carrier_on(nic->netdev);
260 netif_tx_start_all_queues(nic->netdev);
261 } else {
262 netdev_info(nic->netdev, "Link is Down\n");
263 netif_carrier_off(nic->netdev);
264 netif_tx_stop_all_queues(nic->netdev);
265 }
266 }
267 break;
268 case NIC_MBOX_MSG_ALLOC_SQS:
269 nic->sqs_count = mbx.sqs_alloc.qs_count;
270 nic->pf_acked = true;
271 break;
272 case NIC_MBOX_MSG_SNICVF_PTR:
273 /* Primary VF: make note of secondary VF's pointer
274 * to be used while packet transmission.
275 */
276 nic->snicvf[mbx.nicvf.sqs_id] =
277 (struct nicvf *)mbx.nicvf.nicvf;
278 nic->pf_acked = true;
279 break;
280 case NIC_MBOX_MSG_PNICVF_PTR:
281 /* Secondary VF/Qset: make note of primary VF's pointer
282 * to be used while packet reception, to handover packet
283 * to primary VF's netdev.
284 */
285 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
286 nic->pf_acked = true;
287 break;
288 case NIC_MBOX_MSG_PFC:
289 nic->pfc.autoneg = mbx.pfc.autoneg;
290 nic->pfc.fc_rx = mbx.pfc.fc_rx;
291 nic->pfc.fc_tx = mbx.pfc.fc_tx;
292 nic->pf_acked = true;
293 break;
294 default:
295 netdev_err(nic->netdev,
296 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
297 break;
298 }
299 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
300 }
301
302 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
303 {
304 union nic_mbx mbx = {};
305
306 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
307 mbx.mac.vf_id = nic->vf_id;
308 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
309
310 return nicvf_send_msg_to_pf(nic, &mbx);
311 }
312
313 static void nicvf_config_cpi(struct nicvf *nic)
314 {
315 union nic_mbx mbx = {};
316
317 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
318 mbx.cpi_cfg.vf_id = nic->vf_id;
319 mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
320 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
321
322 nicvf_send_msg_to_pf(nic, &mbx);
323 }
324
325 static void nicvf_get_rss_size(struct nicvf *nic)
326 {
327 union nic_mbx mbx = {};
328
329 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
330 mbx.rss_size.vf_id = nic->vf_id;
331 nicvf_send_msg_to_pf(nic, &mbx);
332 }
333
334 void nicvf_config_rss(struct nicvf *nic)
335 {
336 union nic_mbx mbx = {};
337 struct nicvf_rss_info *rss = &nic->rss_info;
338 int ind_tbl_len = rss->rss_size;
339 int i, nextq = 0;
340
341 mbx.rss_cfg.vf_id = nic->vf_id;
342 mbx.rss_cfg.hash_bits = rss->hash_bits;
343 while (ind_tbl_len) {
344 mbx.rss_cfg.tbl_offset = nextq;
345 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
346 RSS_IND_TBL_LEN_PER_MBX_MSG);
347 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
348 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
349
350 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
351 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
352
353 nicvf_send_msg_to_pf(nic, &mbx);
354
355 ind_tbl_len -= mbx.rss_cfg.tbl_len;
356 }
357 }
358
359 void nicvf_set_rss_key(struct nicvf *nic)
360 {
361 struct nicvf_rss_info *rss = &nic->rss_info;
362 u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
363 int idx;
364
365 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
366 nicvf_reg_write(nic, key_addr, rss->key[idx]);
367 key_addr += sizeof(u64);
368 }
369 }
370
371 static int nicvf_rss_init(struct nicvf *nic)
372 {
373 struct nicvf_rss_info *rss = &nic->rss_info;
374 int idx;
375
376 nicvf_get_rss_size(nic);
377
378 if (cpi_alg != CPI_ALG_NONE) {
379 rss->enable = false;
380 rss->hash_bits = 0;
381 return 0;
382 }
383
384 rss->enable = true;
385
386 netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
387 nicvf_set_rss_key(nic);
388
389 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
390 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
391
392 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
393
394 for (idx = 0; idx < rss->rss_size; idx++)
395 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
396 nic->rx_queues);
397 nicvf_config_rss(nic);
398 return 1;
399 }
400
401 /* Request PF to allocate additional Qsets */
402 static void nicvf_request_sqs(struct nicvf *nic)
403 {
404 union nic_mbx mbx = {};
405 int sqs;
406 int sqs_count = nic->sqs_count;
407 int rx_queues = 0, tx_queues = 0;
408
409 /* Only primary VF should request */
410 if (nic->sqs_mode || !nic->sqs_count)
411 return;
412
413 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
414 mbx.sqs_alloc.vf_id = nic->vf_id;
415 mbx.sqs_alloc.qs_count = nic->sqs_count;
416 if (nicvf_send_msg_to_pf(nic, &mbx)) {
417 /* No response from PF */
418 nic->sqs_count = 0;
419 return;
420 }
421
422 /* Return if no Secondary Qsets available */
423 if (!nic->sqs_count)
424 return;
425
426 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
427 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
428
429 tx_queues = nic->tx_queues + nic->xdp_tx_queues;
430 if (tx_queues > MAX_SND_QUEUES_PER_QS)
431 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
432
433 /* Set no of Rx/Tx queues in each of the SQsets */
434 for (sqs = 0; sqs < nic->sqs_count; sqs++) {
435 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
436 mbx.nicvf.vf_id = nic->vf_id;
437 mbx.nicvf.sqs_id = sqs;
438 nicvf_send_msg_to_pf(nic, &mbx);
439
440 nic->snicvf[sqs]->sqs_id = sqs;
441 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
442 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
443 rx_queues -= MAX_RCV_QUEUES_PER_QS;
444 } else {
445 nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
446 rx_queues = 0;
447 }
448
449 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
450 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
451 tx_queues -= MAX_SND_QUEUES_PER_QS;
452 } else {
453 nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
454 tx_queues = 0;
455 }
456
457 nic->snicvf[sqs]->qs->cq_cnt =
458 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
459
460 /* Initialize secondary Qset's queues and its interrupts */
461 nicvf_open(nic->snicvf[sqs]->netdev);
462 }
463
464 /* Update stack with actual Rx/Tx queue count allocated */
465 if (sqs_count != nic->sqs_count)
466 nicvf_set_real_num_queues(nic->netdev,
467 nic->tx_queues, nic->rx_queues);
468 }
469
470 /* Send this Qset's nicvf pointer to PF.
471 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
472 * so that packets received by these Qsets can use primary VF's netdev
473 */
474 static void nicvf_send_vf_struct(struct nicvf *nic)
475 {
476 union nic_mbx mbx = {};
477
478 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
479 mbx.nicvf.sqs_mode = nic->sqs_mode;
480 mbx.nicvf.nicvf = (u64)nic;
481 nicvf_send_msg_to_pf(nic, &mbx);
482 }
483
484 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
485 {
486 union nic_mbx mbx = {};
487
488 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
489 nicvf_send_msg_to_pf(nic, &mbx);
490 }
491
492 int nicvf_set_real_num_queues(struct net_device *netdev,
493 int tx_queues, int rx_queues)
494 {
495 int err = 0;
496
497 err = netif_set_real_num_tx_queues(netdev, tx_queues);
498 if (err) {
499 netdev_err(netdev,
500 "Failed to set no of Tx queues: %d\n", tx_queues);
501 return err;
502 }
503
504 err = netif_set_real_num_rx_queues(netdev, rx_queues);
505 if (err)
506 netdev_err(netdev,
507 "Failed to set no of Rx queues: %d\n", rx_queues);
508 return err;
509 }
510
511 static int nicvf_init_resources(struct nicvf *nic)
512 {
513 int err;
514
515 /* Enable Qset */
516 nicvf_qset_config(nic, true);
517
518 /* Initialize queues and HW for data transfer */
519 err = nicvf_config_data_transfer(nic, true);
520 if (err) {
521 netdev_err(nic->netdev,
522 "Failed to alloc/config VF's QSet resources\n");
523 return err;
524 }
525
526 return 0;
527 }
528
529 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
530 struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
531 struct rcv_queue *rq, struct sk_buff **skb)
532 {
533 unsigned char *hard_start, *data;
534 struct xdp_buff xdp;
535 struct page *page;
536 u32 action;
537 u16 len, offset = 0;
538 u64 dma_addr, cpu_addr;
539 void *orig_data;
540
541 /* Retrieve packet buffer's DMA address and length */
542 len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
543 dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
544
545 cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
546 if (!cpu_addr)
547 return false;
548 cpu_addr = (u64)phys_to_virt(cpu_addr);
549 page = virt_to_page((void *)cpu_addr);
550
551 xdp_init_buff(&xdp, RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
552 &rq->xdp_rxq);
553 hard_start = page_address(page);
554 data = (unsigned char *)cpu_addr;
555 xdp_prepare_buff(&xdp, hard_start, data - hard_start, len, false);
556 orig_data = xdp.data;
557
558 action = bpf_prog_run_xdp(prog, &xdp);
559
560 len = xdp.data_end - xdp.data;
561 /* Check if XDP program has changed headers */
562 if (orig_data != xdp.data) {
563 offset = orig_data - xdp.data;
564 dma_addr -= offset;
565 }
566
567 switch (action) {
568 case XDP_PASS:
569 /* Check if it's a recycled page, if not
570 * unmap the DMA mapping.
571 *
572 * Recycled page holds an extra reference.
573 */
574 if (page_ref_count(page) == 1) {
575 dma_addr &= PAGE_MASK;
576 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
577 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
578 DMA_FROM_DEVICE,
579 DMA_ATTR_SKIP_CPU_SYNC);
580 }
581
582 /* Build SKB and pass on packet to network stack */
583 *skb = build_skb(xdp.data,
584 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
585 if (!*skb)
586 put_page(page);
587 else
588 skb_put(*skb, len);
589 return false;
590 case XDP_TX:
591 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
592 return true;
593 default:
594 bpf_warn_invalid_xdp_action(action);
595 fallthrough;
596 case XDP_ABORTED:
597 trace_xdp_exception(nic->netdev, prog, action);
598 fallthrough;
599 case XDP_DROP:
600 /* Check if it's a recycled page, if not
601 * unmap the DMA mapping.
602 *
603 * Recycled page holds an extra reference.
604 */
605 if (page_ref_count(page) == 1) {
606 dma_addr &= PAGE_MASK;
607 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
608 RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
609 DMA_FROM_DEVICE,
610 DMA_ATTR_SKIP_CPU_SYNC);
611 }
612 put_page(page);
613 return true;
614 }
615 return false;
616 }
617
618 static void nicvf_snd_ptp_handler(struct net_device *netdev,
619 struct cqe_send_t *cqe_tx)
620 {
621 struct nicvf *nic = netdev_priv(netdev);
622 struct skb_shared_hwtstamps ts;
623 u64 ns;
624
625 nic = nic->pnicvf;
626
627 /* Sync for 'ptp_skb' */
628 smp_rmb();
629
630 /* New timestamp request can be queued now */
631 atomic_set(&nic->tx_ptp_skbs, 0);
632
633 /* Check for timestamp requested skb */
634 if (!nic->ptp_skb)
635 return;
636
637 /* Check if timestamping is timedout, which is set to 10us */
638 if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
639 cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
640 goto no_tstamp;
641
642 /* Get the timestamp */
643 memset(&ts, 0, sizeof(ts));
644 ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
645 ts.hwtstamp = ns_to_ktime(ns);
646 skb_tstamp_tx(nic->ptp_skb, &ts);
647
648 no_tstamp:
649 /* Free the original skb */
650 dev_kfree_skb_any(nic->ptp_skb);
651 nic->ptp_skb = NULL;
652 /* Sync 'ptp_skb' */
653 smp_wmb();
654 }
655
656 static void nicvf_snd_pkt_handler(struct net_device *netdev,
657 struct cqe_send_t *cqe_tx,
658 int budget, int *subdesc_cnt,
659 unsigned int *tx_pkts, unsigned int *tx_bytes)
660 {
661 struct sk_buff *skb = NULL;
662 struct page *page;
663 struct nicvf *nic = netdev_priv(netdev);
664 struct snd_queue *sq;
665 struct sq_hdr_subdesc *hdr;
666 struct sq_hdr_subdesc *tso_sqe;
667
668 sq = &nic->qs->sq[cqe_tx->sq_idx];
669
670 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
671 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
672 return;
673
674 /* Check for errors */
675 if (cqe_tx->send_status)
676 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
677
678 /* Is this a XDP designated Tx queue */
679 if (sq->is_xdp) {
680 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
681 /* Check if it's recycled page or else unmap DMA mapping */
682 if (page && (page_ref_count(page) == 1))
683 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
684 hdr->subdesc_cnt);
685
686 /* Release page reference for recycling */
687 if (page)
688 put_page(page);
689 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
690 *subdesc_cnt += hdr->subdesc_cnt + 1;
691 return;
692 }
693
694 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
695 if (skb) {
696 /* Check for dummy descriptor used for HW TSO offload on 88xx */
697 if (hdr->dont_send) {
698 /* Get actual TSO descriptors and free them */
699 tso_sqe =
700 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
701 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
702 tso_sqe->subdesc_cnt);
703 *subdesc_cnt += tso_sqe->subdesc_cnt + 1;
704 } else {
705 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
706 hdr->subdesc_cnt);
707 }
708 *subdesc_cnt += hdr->subdesc_cnt + 1;
709 prefetch(skb);
710 (*tx_pkts)++;
711 *tx_bytes += skb->len;
712 /* If timestamp is requested for this skb, don't free it */
713 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
714 !nic->pnicvf->ptp_skb)
715 nic->pnicvf->ptp_skb = skb;
716 else
717 napi_consume_skb(skb, budget);
718 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
719 } else {
720 /* In case of SW TSO on 88xx, only last segment will have
721 * a SKB attached, so just free SQEs here.
722 */
723 if (!nic->hw_tso)
724 *subdesc_cnt += hdr->subdesc_cnt + 1;
725 }
726 }
727
728 static inline void nicvf_set_rxhash(struct net_device *netdev,
729 struct cqe_rx_t *cqe_rx,
730 struct sk_buff *skb)
731 {
732 u8 hash_type;
733 u32 hash;
734
735 if (!(netdev->features & NETIF_F_RXHASH))
736 return;
737
738 switch (cqe_rx->rss_alg) {
739 case RSS_ALG_TCP_IP:
740 case RSS_ALG_UDP_IP:
741 hash_type = PKT_HASH_TYPE_L4;
742 hash = cqe_rx->rss_tag;
743 break;
744 case RSS_ALG_IP:
745 hash_type = PKT_HASH_TYPE_L3;
746 hash = cqe_rx->rss_tag;
747 break;
748 default:
749 hash_type = PKT_HASH_TYPE_NONE;
750 hash = 0;
751 }
752
753 skb_set_hash(skb, hash, hash_type);
754 }
755
756 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
757 {
758 u64 ns;
759
760 if (!nic->ptp_clock || !nic->hw_rx_tstamp)
761 return;
762
763 /* The first 8 bytes is the timestamp */
764 ns = cavium_ptp_tstamp2time(nic->ptp_clock,
765 be64_to_cpu(*(__be64 *)skb->data));
766 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
767
768 __skb_pull(skb, 8);
769 }
770
771 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
772 struct napi_struct *napi,
773 struct cqe_rx_t *cqe_rx,
774 struct snd_queue *sq, struct rcv_queue *rq)
775 {
776 struct sk_buff *skb = NULL;
777 struct nicvf *nic = netdev_priv(netdev);
778 struct nicvf *snic = nic;
779 int err = 0;
780 int rq_idx;
781
782 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
783
784 if (nic->sqs_mode) {
785 /* Use primary VF's 'nicvf' struct */
786 nic = nic->pnicvf;
787 netdev = nic->netdev;
788 }
789
790 /* Check for errors */
791 if (cqe_rx->err_level || cqe_rx->err_opcode) {
792 err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
793 if (err && !cqe_rx->rb_cnt)
794 return;
795 }
796
797 /* For XDP, ignore pkts spanning multiple pages */
798 if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
799 /* Packet consumed by XDP */
800 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
801 return;
802 } else {
803 skb = nicvf_get_rcv_skb(snic, cqe_rx,
804 nic->xdp_prog ? true : false);
805 }
806
807 if (!skb)
808 return;
809
810 if (netif_msg_pktdata(nic)) {
811 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
812 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
813 skb->data, skb->len, true);
814 }
815
816 /* If error packet, drop it here */
817 if (err) {
818 dev_kfree_skb_any(skb);
819 return;
820 }
821
822 nicvf_set_rxtstamp(nic, skb);
823 nicvf_set_rxhash(netdev, cqe_rx, skb);
824
825 skb_record_rx_queue(skb, rq_idx);
826 if (netdev->hw_features & NETIF_F_RXCSUM) {
827 /* HW by default verifies TCP/UDP/SCTP checksums */
828 skb->ip_summed = CHECKSUM_UNNECESSARY;
829 } else {
830 skb_checksum_none_assert(skb);
831 }
832
833 skb->protocol = eth_type_trans(skb, netdev);
834
835 /* Check for stripped VLAN */
836 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
837 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
838 ntohs((__force __be16)cqe_rx->vlan_tci));
839
840 if (napi && (netdev->features & NETIF_F_GRO))
841 napi_gro_receive(napi, skb);
842 else
843 netif_receive_skb(skb);
844 }
845
846 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
847 struct napi_struct *napi, int budget)
848 {
849 int processed_cqe, work_done = 0, tx_done = 0;
850 int cqe_count, cqe_head;
851 int subdesc_cnt = 0;
852 struct nicvf *nic = netdev_priv(netdev);
853 struct queue_set *qs = nic->qs;
854 struct cmp_queue *cq = &qs->cq[cq_idx];
855 struct cqe_rx_t *cq_desc;
856 struct netdev_queue *txq;
857 struct snd_queue *sq = &qs->sq[cq_idx];
858 struct rcv_queue *rq = &qs->rq[cq_idx];
859 unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
860
861 spin_lock_bh(&cq->lock);
862 loop:
863 processed_cqe = 0;
864 /* Get no of valid CQ entries to process */
865 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
866 cqe_count &= CQ_CQE_COUNT;
867 if (!cqe_count)
868 goto done;
869
870 /* Get head of the valid CQ entries */
871 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
872 cqe_head &= 0xFFFF;
873
874 while (processed_cqe < cqe_count) {
875 /* Get the CQ descriptor */
876 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
877 cqe_head++;
878 cqe_head &= (cq->dmem.q_len - 1);
879 /* Initiate prefetch for next descriptor */
880 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
881
882 if ((work_done >= budget) && napi &&
883 (cq_desc->cqe_type != CQE_TYPE_SEND)) {
884 break;
885 }
886
887 switch (cq_desc->cqe_type) {
888 case CQE_TYPE_RX:
889 nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
890 work_done++;
891 break;
892 case CQE_TYPE_SEND:
893 nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
894 budget, &subdesc_cnt,
895 &tx_pkts, &tx_bytes);
896 tx_done++;
897 break;
898 case CQE_TYPE_SEND_PTP:
899 nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
900 break;
901 case CQE_TYPE_INVALID:
902 case CQE_TYPE_RX_SPLIT:
903 case CQE_TYPE_RX_TCP:
904 /* Ignore for now */
905 break;
906 }
907 processed_cqe++;
908 }
909
910 /* Ring doorbell to inform H/W to reuse processed CQEs */
911 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
912 cq_idx, processed_cqe);
913
914 if ((work_done < budget) && napi)
915 goto loop;
916
917 done:
918 /* Update SQ's descriptor free count */
919 if (subdesc_cnt)
920 nicvf_put_sq_desc(sq, subdesc_cnt);
921
922 txq_idx = nicvf_netdev_qidx(nic, cq_idx);
923 /* Handle XDP TX queues */
924 if (nic->pnicvf->xdp_prog) {
925 if (txq_idx < nic->pnicvf->xdp_tx_queues) {
926 nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
927 goto out;
928 }
929 nic = nic->pnicvf;
930 txq_idx -= nic->pnicvf->xdp_tx_queues;
931 }
932
933 /* Wakeup TXQ if its stopped earlier due to SQ full */
934 if (tx_done ||
935 (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
936 netdev = nic->pnicvf->netdev;
937 txq = netdev_get_tx_queue(netdev, txq_idx);
938 if (tx_pkts)
939 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
940
941 /* To read updated queue and carrier status */
942 smp_mb();
943 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
944 netif_tx_wake_queue(txq);
945 nic = nic->pnicvf;
946 this_cpu_inc(nic->drv_stats->txq_wake);
947 netif_warn(nic, tx_err, netdev,
948 "Transmit queue wakeup SQ%d\n", txq_idx);
949 }
950 }
951
952 out:
953 spin_unlock_bh(&cq->lock);
954 return work_done;
955 }
956
957 static int nicvf_poll(struct napi_struct *napi, int budget)
958 {
959 u64 cq_head;
960 int work_done = 0;
961 struct net_device *netdev = napi->dev;
962 struct nicvf *nic = netdev_priv(netdev);
963 struct nicvf_cq_poll *cq;
964
965 cq = container_of(napi, struct nicvf_cq_poll, napi);
966 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
967
968 if (work_done < budget) {
969 /* Slow packet rate, exit polling */
970 napi_complete_done(napi, work_done);
971 /* Re-enable interrupts */
972 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
973 cq->cq_idx);
974 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
975 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
976 cq->cq_idx, cq_head);
977 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
978 }
979 return work_done;
980 }
981
982 /* Qset error interrupt handler
983 *
984 * As of now only CQ errors are handled
985 */
986 static void nicvf_handle_qs_err(struct tasklet_struct *t)
987 {
988 struct nicvf *nic = from_tasklet(nic, t, qs_err_task);
989 struct queue_set *qs = nic->qs;
990 int qidx;
991 u64 status;
992
993 netif_tx_disable(nic->netdev);
994
995 /* Check if it is CQ err */
996 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
997 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
998 qidx);
999 if (!(status & CQ_ERR_MASK))
1000 continue;
1001 /* Process already queued CQEs and reconfig CQ */
1002 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1003 nicvf_sq_disable(nic, qidx);
1004 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1005 nicvf_cmp_queue_config(nic, qs, qidx, true);
1006 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1007 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1008
1009 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1010 }
1011
1012 netif_tx_start_all_queues(nic->netdev);
1013 /* Re-enable Qset error interrupt */
1014 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1015 }
1016
1017 static void nicvf_dump_intr_status(struct nicvf *nic)
1018 {
1019 netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1020 nicvf_reg_read(nic, NIC_VF_INT));
1021 }
1022
1023 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1024 {
1025 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1026 u64 intr;
1027
1028 nicvf_dump_intr_status(nic);
1029
1030 intr = nicvf_reg_read(nic, NIC_VF_INT);
1031 /* Check for spurious interrupt */
1032 if (!(intr & NICVF_INTR_MBOX_MASK))
1033 return IRQ_HANDLED;
1034
1035 nicvf_handle_mbx_intr(nic);
1036
1037 return IRQ_HANDLED;
1038 }
1039
1040 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1041 {
1042 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1043 struct nicvf *nic = cq_poll->nicvf;
1044 int qidx = cq_poll->cq_idx;
1045
1046 nicvf_dump_intr_status(nic);
1047
1048 /* Disable interrupts */
1049 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1050
1051 /* Schedule NAPI */
1052 napi_schedule_irqoff(&cq_poll->napi);
1053
1054 /* Clear interrupt */
1055 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1056
1057 return IRQ_HANDLED;
1058 }
1059
1060 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1061 {
1062 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1063 u8 qidx;
1064
1065
1066 nicvf_dump_intr_status(nic);
1067
1068 /* Disable RBDR interrupt and schedule softirq */
1069 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1070 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1071 continue;
1072 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1073 tasklet_hi_schedule(&nic->rbdr_task);
1074 /* Clear interrupt */
1075 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1076 }
1077
1078 return IRQ_HANDLED;
1079 }
1080
1081 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1082 {
1083 struct nicvf *nic = (struct nicvf *)nicvf_irq;
1084
1085 nicvf_dump_intr_status(nic);
1086
1087 /* Disable Qset err interrupt and schedule softirq */
1088 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1089 tasklet_hi_schedule(&nic->qs_err_task);
1090 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1091
1092 return IRQ_HANDLED;
1093 }
1094
1095 static void nicvf_set_irq_affinity(struct nicvf *nic)
1096 {
1097 int vec, cpu;
1098
1099 for (vec = 0; vec < nic->num_vec; vec++) {
1100 if (!nic->irq_allocated[vec])
1101 continue;
1102
1103 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1104 return;
1105 /* CQ interrupts */
1106 if (vec < NICVF_INTR_ID_SQ)
1107 /* Leave CPU0 for RBDR and other interrupts */
1108 cpu = nicvf_netdev_qidx(nic, vec) + 1;
1109 else
1110 cpu = 0;
1111
1112 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1113 nic->affinity_mask[vec]);
1114 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1115 nic->affinity_mask[vec]);
1116 }
1117 }
1118
1119 static int nicvf_register_interrupts(struct nicvf *nic)
1120 {
1121 int irq, ret = 0;
1122
1123 for_each_cq_irq(irq)
1124 sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1125 nic->pnicvf->netdev->name,
1126 nicvf_netdev_qidx(nic, irq));
1127
1128 for_each_sq_irq(irq)
1129 sprintf(nic->irq_name[irq], "%s-sq-%d",
1130 nic->pnicvf->netdev->name,
1131 nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1132
1133 for_each_rbdr_irq(irq)
1134 sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1135 nic->pnicvf->netdev->name,
1136 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1137
1138 /* Register CQ interrupts */
1139 for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1140 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1141 nicvf_intr_handler,
1142 0, nic->irq_name[irq], nic->napi[irq]);
1143 if (ret)
1144 goto err;
1145 nic->irq_allocated[irq] = true;
1146 }
1147
1148 /* Register RBDR interrupt */
1149 for (irq = NICVF_INTR_ID_RBDR;
1150 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1151 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1152 nicvf_rbdr_intr_handler,
1153 0, nic->irq_name[irq], nic);
1154 if (ret)
1155 goto err;
1156 nic->irq_allocated[irq] = true;
1157 }
1158
1159 /* Register QS error interrupt */
1160 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1161 nic->pnicvf->netdev->name,
1162 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1163 irq = NICVF_INTR_ID_QS_ERR;
1164 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1165 nicvf_qs_err_intr_handler,
1166 0, nic->irq_name[irq], nic);
1167 if (ret)
1168 goto err;
1169
1170 nic->irq_allocated[irq] = true;
1171
1172 /* Set IRQ affinities */
1173 nicvf_set_irq_affinity(nic);
1174
1175 err:
1176 if (ret)
1177 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1178
1179 return ret;
1180 }
1181
1182 static void nicvf_unregister_interrupts(struct nicvf *nic)
1183 {
1184 struct pci_dev *pdev = nic->pdev;
1185 int irq;
1186
1187 /* Free registered interrupts */
1188 for (irq = 0; irq < nic->num_vec; irq++) {
1189 if (!nic->irq_allocated[irq])
1190 continue;
1191
1192 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1193 free_cpumask_var(nic->affinity_mask[irq]);
1194
1195 if (irq < NICVF_INTR_ID_SQ)
1196 free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1197 else
1198 free_irq(pci_irq_vector(pdev, irq), nic);
1199
1200 nic->irq_allocated[irq] = false;
1201 }
1202
1203 /* Disable MSI-X */
1204 pci_free_irq_vectors(pdev);
1205 nic->num_vec = 0;
1206 }
1207
1208 /* Initialize MSIX vectors and register MISC interrupt.
1209 * Send READY message to PF to check if its alive
1210 */
1211 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1212 {
1213 int ret = 0;
1214 int irq = NICVF_INTR_ID_MISC;
1215
1216 /* Return if mailbox interrupt is already registered */
1217 if (nic->pdev->msix_enabled)
1218 return 0;
1219
1220 /* Enable MSI-X */
1221 nic->num_vec = pci_msix_vec_count(nic->pdev);
1222 ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1223 PCI_IRQ_MSIX);
1224 if (ret < 0) {
1225 netdev_err(nic->netdev,
1226 "Req for #%d msix vectors failed\n", nic->num_vec);
1227 return ret;
1228 }
1229
1230 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1231 /* Register Misc interrupt */
1232 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1233 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1234
1235 if (ret)
1236 return ret;
1237 nic->irq_allocated[irq] = true;
1238
1239 /* Enable mailbox interrupt */
1240 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1241
1242 /* Check if VF is able to communicate with PF */
1243 if (!nicvf_check_pf_ready(nic)) {
1244 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1245 nicvf_unregister_interrupts(nic);
1246 return -EIO;
1247 }
1248
1249 return 0;
1250 }
1251
1252 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1253 {
1254 struct nicvf *nic = netdev_priv(netdev);
1255 int qid = skb_get_queue_mapping(skb);
1256 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1257 struct nicvf *snic;
1258 struct snd_queue *sq;
1259 int tmp;
1260
1261 /* Check for minimum packet length */
1262 if (skb->len <= ETH_HLEN) {
1263 dev_kfree_skb(skb);
1264 return NETDEV_TX_OK;
1265 }
1266
1267 /* In XDP case, initial HW tx queues are used for XDP,
1268 * but stack's queue mapping starts at '0', so skip the
1269 * Tx queues attached to Rx queues for XDP.
1270 */
1271 if (nic->xdp_prog)
1272 qid += nic->xdp_tx_queues;
1273
1274 snic = nic;
1275 /* Get secondary Qset's SQ structure */
1276 if (qid >= MAX_SND_QUEUES_PER_QS) {
1277 tmp = qid / MAX_SND_QUEUES_PER_QS;
1278 snic = (struct nicvf *)nic->snicvf[tmp - 1];
1279 if (!snic) {
1280 netdev_warn(nic->netdev,
1281 "Secondary Qset#%d's ptr not initialized\n",
1282 tmp - 1);
1283 dev_kfree_skb(skb);
1284 return NETDEV_TX_OK;
1285 }
1286 qid = qid % MAX_SND_QUEUES_PER_QS;
1287 }
1288
1289 sq = &snic->qs->sq[qid];
1290 if (!netif_tx_queue_stopped(txq) &&
1291 !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1292 netif_tx_stop_queue(txq);
1293
1294 /* Barrier, so that stop_queue visible to other cpus */
1295 smp_mb();
1296
1297 /* Check again, incase another cpu freed descriptors */
1298 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1299 netif_tx_wake_queue(txq);
1300 } else {
1301 this_cpu_inc(nic->drv_stats->txq_stop);
1302 netif_warn(nic, tx_err, netdev,
1303 "Transmit ring full, stopping SQ%d\n", qid);
1304 }
1305 return NETDEV_TX_BUSY;
1306 }
1307
1308 return NETDEV_TX_OK;
1309 }
1310
1311 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1312 {
1313 struct nicvf_cq_poll *cq_poll;
1314 int qidx;
1315
1316 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1317 cq_poll = nic->napi[qidx];
1318 if (!cq_poll)
1319 continue;
1320 nic->napi[qidx] = NULL;
1321 kfree(cq_poll);
1322 }
1323 }
1324
1325 int nicvf_stop(struct net_device *netdev)
1326 {
1327 int irq, qidx;
1328 struct nicvf *nic = netdev_priv(netdev);
1329 struct queue_set *qs = nic->qs;
1330 struct nicvf_cq_poll *cq_poll = NULL;
1331 union nic_mbx mbx = {};
1332
1333 /* wait till all queued set_rx_mode tasks completes */
1334 if (nic->nicvf_rx_mode_wq) {
1335 cancel_delayed_work_sync(&nic->link_change_work);
1336 drain_workqueue(nic->nicvf_rx_mode_wq);
1337 }
1338
1339 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1340 nicvf_send_msg_to_pf(nic, &mbx);
1341
1342 netif_carrier_off(netdev);
1343 netif_tx_stop_all_queues(nic->netdev);
1344 nic->link_up = false;
1345
1346 /* Teardown secondary qsets first */
1347 if (!nic->sqs_mode) {
1348 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1349 if (!nic->snicvf[qidx])
1350 continue;
1351 nicvf_stop(nic->snicvf[qidx]->netdev);
1352 nic->snicvf[qidx] = NULL;
1353 }
1354 }
1355
1356 /* Disable RBDR & QS error interrupts */
1357 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1358 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1359 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1360 }
1361 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1362 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1363
1364 /* Wait for pending IRQ handlers to finish */
1365 for (irq = 0; irq < nic->num_vec; irq++)
1366 synchronize_irq(pci_irq_vector(nic->pdev, irq));
1367
1368 tasklet_kill(&nic->rbdr_task);
1369 tasklet_kill(&nic->qs_err_task);
1370 if (nic->rb_work_scheduled)
1371 cancel_delayed_work_sync(&nic->rbdr_work);
1372
1373 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1374 cq_poll = nic->napi[qidx];
1375 if (!cq_poll)
1376 continue;
1377 napi_synchronize(&cq_poll->napi);
1378 /* CQ intr is enabled while napi_complete,
1379 * so disable it now
1380 */
1381 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1382 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1383 napi_disable(&cq_poll->napi);
1384 netif_napi_del(&cq_poll->napi);
1385 }
1386
1387 netif_tx_disable(netdev);
1388
1389 for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1390 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1391
1392 /* Free resources */
1393 nicvf_config_data_transfer(nic, false);
1394
1395 /* Disable HW Qset */
1396 nicvf_qset_config(nic, false);
1397
1398 /* disable mailbox interrupt */
1399 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1400
1401 nicvf_unregister_interrupts(nic);
1402
1403 nicvf_free_cq_poll(nic);
1404
1405 /* Free any pending SKB saved to receive timestamp */
1406 if (nic->ptp_skb) {
1407 dev_kfree_skb_any(nic->ptp_skb);
1408 nic->ptp_skb = NULL;
1409 }
1410
1411 /* Clear multiqset info */
1412 nic->pnicvf = nic;
1413
1414 return 0;
1415 }
1416
1417 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1418 {
1419 union nic_mbx mbx = {};
1420
1421 mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1422 mbx.ptp.enable = enable;
1423
1424 return nicvf_send_msg_to_pf(nic, &mbx);
1425 }
1426
1427 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1428 {
1429 union nic_mbx mbx = {};
1430
1431 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1432 mbx.frs.max_frs = mtu;
1433 mbx.frs.vf_id = nic->vf_id;
1434
1435 return nicvf_send_msg_to_pf(nic, &mbx);
1436 }
1437
1438 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1439 {
1440 struct nicvf *nic = container_of(work_arg,
1441 struct nicvf,
1442 link_change_work.work);
1443 union nic_mbx mbx = {};
1444 mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1445 nicvf_send_msg_to_pf(nic, &mbx);
1446 queue_delayed_work(nic->nicvf_rx_mode_wq,
1447 &nic->link_change_work, 2 * HZ);
1448 }
1449
1450 int nicvf_open(struct net_device *netdev)
1451 {
1452 int cpu, err, qidx;
1453 struct nicvf *nic = netdev_priv(netdev);
1454 struct queue_set *qs = nic->qs;
1455 struct nicvf_cq_poll *cq_poll = NULL;
1456
1457 /* wait till all queued set_rx_mode tasks completes if any */
1458 if (nic->nicvf_rx_mode_wq)
1459 drain_workqueue(nic->nicvf_rx_mode_wq);
1460
1461 netif_carrier_off(netdev);
1462
1463 err = nicvf_register_misc_interrupt(nic);
1464 if (err)
1465 return err;
1466
1467 /* Register NAPI handler for processing CQEs */
1468 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1469 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1470 if (!cq_poll) {
1471 err = -ENOMEM;
1472 goto napi_del;
1473 }
1474 cq_poll->cq_idx = qidx;
1475 cq_poll->nicvf = nic;
1476 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1477 NAPI_POLL_WEIGHT);
1478 napi_enable(&cq_poll->napi);
1479 nic->napi[qidx] = cq_poll;
1480 }
1481
1482 /* Check if we got MAC address from PF or else generate a radom MAC */
1483 if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1484 eth_hw_addr_random(netdev);
1485 nicvf_hw_set_mac_addr(nic, netdev);
1486 }
1487
1488 if (nic->set_mac_pending) {
1489 nic->set_mac_pending = false;
1490 nicvf_hw_set_mac_addr(nic, netdev);
1491 }
1492
1493 /* Init tasklet for handling Qset err interrupt */
1494 tasklet_setup(&nic->qs_err_task, nicvf_handle_qs_err);
1495
1496 /* Init RBDR tasklet which will refill RBDR */
1497 tasklet_setup(&nic->rbdr_task, nicvf_rbdr_task);
1498 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1499
1500 /* Configure CPI alorithm */
1501 nic->cpi_alg = cpi_alg;
1502 if (!nic->sqs_mode)
1503 nicvf_config_cpi(nic);
1504
1505 nicvf_request_sqs(nic);
1506 if (nic->sqs_mode)
1507 nicvf_get_primary_vf_struct(nic);
1508
1509 /* Configure PTP timestamp */
1510 if (nic->ptp_clock)
1511 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1512 atomic_set(&nic->tx_ptp_skbs, 0);
1513 nic->ptp_skb = NULL;
1514
1515 /* Configure receive side scaling and MTU */
1516 if (!nic->sqs_mode) {
1517 nicvf_rss_init(nic);
1518 err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1519 if (err)
1520 goto cleanup;
1521
1522 /* Clear percpu stats */
1523 for_each_possible_cpu(cpu)
1524 memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1525 sizeof(struct nicvf_drv_stats));
1526 }
1527
1528 err = nicvf_register_interrupts(nic);
1529 if (err)
1530 goto cleanup;
1531
1532 /* Initialize the queues */
1533 err = nicvf_init_resources(nic);
1534 if (err)
1535 goto cleanup;
1536
1537 /* Make sure queue initialization is written */
1538 wmb();
1539
1540 nicvf_reg_write(nic, NIC_VF_INT, -1);
1541 /* Enable Qset err interrupt */
1542 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1543
1544 /* Enable completion queue interrupt */
1545 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1546 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1547
1548 /* Enable RBDR threshold interrupt */
1549 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1550 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1551
1552 /* Send VF config done msg to PF */
1553 nicvf_send_cfg_done(nic);
1554
1555 if (nic->nicvf_rx_mode_wq) {
1556 INIT_DELAYED_WORK(&nic->link_change_work,
1557 nicvf_link_status_check_task);
1558 queue_delayed_work(nic->nicvf_rx_mode_wq,
1559 &nic->link_change_work, 0);
1560 }
1561
1562 return 0;
1563 cleanup:
1564 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1565 nicvf_unregister_interrupts(nic);
1566 tasklet_kill(&nic->qs_err_task);
1567 tasklet_kill(&nic->rbdr_task);
1568 napi_del:
1569 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1570 cq_poll = nic->napi[qidx];
1571 if (!cq_poll)
1572 continue;
1573 napi_disable(&cq_poll->napi);
1574 netif_napi_del(&cq_poll->napi);
1575 }
1576 nicvf_free_cq_poll(nic);
1577 return err;
1578 }
1579
1580 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1581 {
1582 struct nicvf *nic = netdev_priv(netdev);
1583 int orig_mtu = netdev->mtu;
1584
1585 /* For now just support only the usual MTU sized frames,
1586 * plus some headroom for VLAN, QinQ.
1587 */
1588 if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1589 netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1590 netdev->mtu);
1591 return -EINVAL;
1592 }
1593
1594 netdev->mtu = new_mtu;
1595
1596 if (!netif_running(netdev))
1597 return 0;
1598
1599 if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1600 netdev->mtu = orig_mtu;
1601 return -EINVAL;
1602 }
1603
1604 return 0;
1605 }
1606
1607 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1608 {
1609 struct sockaddr *addr = p;
1610 struct nicvf *nic = netdev_priv(netdev);
1611
1612 if (!is_valid_ether_addr(addr->sa_data))
1613 return -EADDRNOTAVAIL;
1614
1615 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1616
1617 if (nic->pdev->msix_enabled) {
1618 if (nicvf_hw_set_mac_addr(nic, netdev))
1619 return -EBUSY;
1620 } else {
1621 nic->set_mac_pending = true;
1622 }
1623
1624 return 0;
1625 }
1626
1627 void nicvf_update_lmac_stats(struct nicvf *nic)
1628 {
1629 int stat = 0;
1630 union nic_mbx mbx = {};
1631
1632 if (!netif_running(nic->netdev))
1633 return;
1634
1635 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1636 mbx.bgx_stats.vf_id = nic->vf_id;
1637 /* Rx stats */
1638 mbx.bgx_stats.rx = 1;
1639 while (stat < BGX_RX_STATS_COUNT) {
1640 mbx.bgx_stats.idx = stat;
1641 if (nicvf_send_msg_to_pf(nic, &mbx))
1642 return;
1643 stat++;
1644 }
1645
1646 stat = 0;
1647
1648 /* Tx stats */
1649 mbx.bgx_stats.rx = 0;
1650 while (stat < BGX_TX_STATS_COUNT) {
1651 mbx.bgx_stats.idx = stat;
1652 if (nicvf_send_msg_to_pf(nic, &mbx))
1653 return;
1654 stat++;
1655 }
1656 }
1657
1658 void nicvf_update_stats(struct nicvf *nic)
1659 {
1660 int qidx, cpu;
1661 u64 tmp_stats = 0;
1662 struct nicvf_hw_stats *stats = &nic->hw_stats;
1663 struct nicvf_drv_stats *drv_stats;
1664 struct queue_set *qs = nic->qs;
1665
1666 #define GET_RX_STATS(reg) \
1667 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1668 #define GET_TX_STATS(reg) \
1669 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1670
1671 stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1672 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1673 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1674 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1675 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1676 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1677 stats->rx_drop_red = GET_RX_STATS(RX_RED);
1678 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1679 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1680 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1681 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1682 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1683 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1684 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1685
1686 stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1687 stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1688 stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1689 stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1690 stats->tx_drops = GET_TX_STATS(TX_DROP);
1691
1692 /* On T88 pass 2.0, the dummy SQE added for TSO notification
1693 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1694 * pointed by dummy SQE and results in tx_drops counter being
1695 * incremented. Subtracting it from tx_tso counter will give
1696 * exact tx_drops counter.
1697 */
1698 if (nic->t88 && nic->hw_tso) {
1699 for_each_possible_cpu(cpu) {
1700 drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1701 tmp_stats += drv_stats->tx_tso;
1702 }
1703 stats->tx_drops = tmp_stats - stats->tx_drops;
1704 }
1705 stats->tx_frames = stats->tx_ucast_frames +
1706 stats->tx_bcast_frames +
1707 stats->tx_mcast_frames;
1708 stats->rx_frames = stats->rx_ucast_frames +
1709 stats->rx_bcast_frames +
1710 stats->rx_mcast_frames;
1711 stats->rx_drops = stats->rx_drop_red +
1712 stats->rx_drop_overrun;
1713
1714 /* Update RQ and SQ stats */
1715 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1716 nicvf_update_rq_stats(nic, qidx);
1717 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1718 nicvf_update_sq_stats(nic, qidx);
1719 }
1720
1721 static void nicvf_get_stats64(struct net_device *netdev,
1722 struct rtnl_link_stats64 *stats)
1723 {
1724 struct nicvf *nic = netdev_priv(netdev);
1725 struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1726
1727 nicvf_update_stats(nic);
1728
1729 stats->rx_bytes = hw_stats->rx_bytes;
1730 stats->rx_packets = hw_stats->rx_frames;
1731 stats->rx_dropped = hw_stats->rx_drops;
1732 stats->multicast = hw_stats->rx_mcast_frames;
1733
1734 stats->tx_bytes = hw_stats->tx_bytes;
1735 stats->tx_packets = hw_stats->tx_frames;
1736 stats->tx_dropped = hw_stats->tx_drops;
1737
1738 }
1739
1740 static void nicvf_tx_timeout(struct net_device *dev, unsigned int txqueue)
1741 {
1742 struct nicvf *nic = netdev_priv(dev);
1743
1744 netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1745
1746 this_cpu_inc(nic->drv_stats->tx_timeout);
1747 schedule_work(&nic->reset_task);
1748 }
1749
1750 static void nicvf_reset_task(struct work_struct *work)
1751 {
1752 struct nicvf *nic;
1753
1754 nic = container_of(work, struct nicvf, reset_task);
1755
1756 if (!netif_running(nic->netdev))
1757 return;
1758
1759 nicvf_stop(nic->netdev);
1760 nicvf_open(nic->netdev);
1761 netif_trans_update(nic->netdev);
1762 }
1763
1764 static int nicvf_config_loopback(struct nicvf *nic,
1765 netdev_features_t features)
1766 {
1767 union nic_mbx mbx = {};
1768
1769 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1770 mbx.lbk.vf_id = nic->vf_id;
1771 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1772
1773 return nicvf_send_msg_to_pf(nic, &mbx);
1774 }
1775
1776 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1777 netdev_features_t features)
1778 {
1779 struct nicvf *nic = netdev_priv(netdev);
1780
1781 if ((features & NETIF_F_LOOPBACK) &&
1782 netif_running(netdev) && !nic->loopback_supported)
1783 features &= ~NETIF_F_LOOPBACK;
1784
1785 return features;
1786 }
1787
1788 static int nicvf_set_features(struct net_device *netdev,
1789 netdev_features_t features)
1790 {
1791 struct nicvf *nic = netdev_priv(netdev);
1792 netdev_features_t changed = features ^ netdev->features;
1793
1794 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1795 nicvf_config_vlan_stripping(nic, features);
1796
1797 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1798 return nicvf_config_loopback(nic, features);
1799
1800 return 0;
1801 }
1802
1803 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1804 {
1805 u8 cq_count, txq_count;
1806
1807 /* Set XDP Tx queue count same as Rx queue count */
1808 if (!bpf_attached)
1809 nic->xdp_tx_queues = 0;
1810 else
1811 nic->xdp_tx_queues = nic->rx_queues;
1812
1813 /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1814 * needs to be allocated, check how many.
1815 */
1816 txq_count = nic->xdp_tx_queues + nic->tx_queues;
1817 cq_count = max(nic->rx_queues, txq_count);
1818 if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1819 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1820 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1821 } else {
1822 nic->sqs_count = 0;
1823 }
1824
1825 /* Set primary Qset's resources */
1826 nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1827 nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1828 nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1829
1830 /* Update stack */
1831 nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1832 }
1833
1834 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1835 {
1836 struct net_device *dev = nic->netdev;
1837 bool if_up = netif_running(nic->netdev);
1838 struct bpf_prog *old_prog;
1839 bool bpf_attached = false;
1840 int ret = 0;
1841
1842 /* For now just support only the usual MTU sized frames,
1843 * plus some headroom for VLAN, QinQ.
1844 */
1845 if (prog && dev->mtu > MAX_XDP_MTU) {
1846 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1847 dev->mtu);
1848 return -EOPNOTSUPP;
1849 }
1850
1851 /* ALL SQs attached to CQs i.e same as RQs, are treated as
1852 * XDP Tx queues and more Tx queues are allocated for
1853 * network stack to send pkts out.
1854 *
1855 * No of Tx queues are either same as Rx queues or whatever
1856 * is left in max no of queues possible.
1857 */
1858 if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1859 netdev_warn(dev,
1860 "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1861 nic->max_queues);
1862 return -ENOMEM;
1863 }
1864
1865 if (if_up)
1866 nicvf_stop(nic->netdev);
1867
1868 old_prog = xchg(&nic->xdp_prog, prog);
1869 /* Detach old prog, if any */
1870 if (old_prog)
1871 bpf_prog_put(old_prog);
1872
1873 if (nic->xdp_prog) {
1874 /* Attach BPF program */
1875 bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1876 bpf_attached = true;
1877 }
1878
1879 /* Calculate Tx queues needed for XDP and network stack */
1880 nicvf_set_xdp_queues(nic, bpf_attached);
1881
1882 if (if_up) {
1883 /* Reinitialize interface, clean slate */
1884 nicvf_open(nic->netdev);
1885 netif_trans_update(nic->netdev);
1886 }
1887
1888 return ret;
1889 }
1890
1891 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1892 {
1893 struct nicvf *nic = netdev_priv(netdev);
1894
1895 /* To avoid checks while retrieving buffer address from CQE_RX,
1896 * do not support XDP for T88 pass1.x silicons which are anyway
1897 * not in use widely.
1898 */
1899 if (pass1_silicon(nic->pdev))
1900 return -EOPNOTSUPP;
1901
1902 switch (xdp->command) {
1903 case XDP_SETUP_PROG:
1904 return nicvf_xdp_setup(nic, xdp->prog);
1905 default:
1906 return -EINVAL;
1907 }
1908 }
1909
1910 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1911 {
1912 struct hwtstamp_config config;
1913 struct nicvf *nic = netdev_priv(netdev);
1914
1915 if (!nic->ptp_clock)
1916 return -ENODEV;
1917
1918 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1919 return -EFAULT;
1920
1921 /* reserved for future extensions */
1922 if (config.flags)
1923 return -EINVAL;
1924
1925 switch (config.tx_type) {
1926 case HWTSTAMP_TX_OFF:
1927 case HWTSTAMP_TX_ON:
1928 break;
1929 default:
1930 return -ERANGE;
1931 }
1932
1933 switch (config.rx_filter) {
1934 case HWTSTAMP_FILTER_NONE:
1935 nic->hw_rx_tstamp = false;
1936 break;
1937 case HWTSTAMP_FILTER_ALL:
1938 case HWTSTAMP_FILTER_SOME:
1939 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1940 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1941 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1942 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1943 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1944 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1945 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1946 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1947 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1948 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1949 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1950 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1951 nic->hw_rx_tstamp = true;
1952 config.rx_filter = HWTSTAMP_FILTER_ALL;
1953 break;
1954 default:
1955 return -ERANGE;
1956 }
1957
1958 if (netif_running(netdev))
1959 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1960
1961 if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1962 return -EFAULT;
1963
1964 return 0;
1965 }
1966
1967 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1968 {
1969 switch (cmd) {
1970 case SIOCSHWTSTAMP:
1971 return nicvf_config_hwtstamp(netdev, req);
1972 default:
1973 return -EOPNOTSUPP;
1974 }
1975 }
1976
1977 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1978 struct nicvf *nic)
1979 {
1980 union nic_mbx mbx = {};
1981 int idx;
1982
1983 /* From the inside of VM code flow we have only 128 bits memory
1984 * available to send message to host's PF, so send all mc addrs
1985 * one by one, starting from flush command in case if kernel
1986 * requests to configure specific MAC filtering
1987 */
1988
1989 /* flush DMAC filters and reset RX mode */
1990 mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1991 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1992 goto free_mc;
1993
1994 if (mode & BGX_XCAST_MCAST_FILTER) {
1995 /* once enabling filtering, we need to signal to PF to add
1996 * its' own LMAC to the filter to accept packets for it.
1997 */
1998 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1999 mbx.xcast.mac = 0;
2000 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2001 goto free_mc;
2002 }
2003
2004 /* check if we have any specific MACs to be added to PF DMAC filter */
2005 if (mc_addrs) {
2006 /* now go through kernel list of MACs and add them one by one */
2007 for (idx = 0; idx < mc_addrs->count; idx++) {
2008 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2009 mbx.xcast.mac = mc_addrs->mc[idx];
2010 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2011 goto free_mc;
2012 }
2013 }
2014
2015 /* and finally set rx mode for PF accordingly */
2016 mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2017 mbx.xcast.mode = mode;
2018
2019 nicvf_send_msg_to_pf(nic, &mbx);
2020 free_mc:
2021 kfree(mc_addrs);
2022 }
2023
2024 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2025 {
2026 struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2027 work);
2028 struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2029 u8 mode;
2030 struct xcast_addr_list *mc;
2031
2032 if (!vf_work)
2033 return;
2034
2035 /* Save message data locally to prevent them from
2036 * being overwritten by next ndo_set_rx_mode call().
2037 */
2038 spin_lock_bh(&nic->rx_mode_wq_lock);
2039 mode = vf_work->mode;
2040 mc = vf_work->mc;
2041 vf_work->mc = NULL;
2042 spin_unlock_bh(&nic->rx_mode_wq_lock);
2043
2044 __nicvf_set_rx_mode_task(mode, mc, nic);
2045 }
2046
2047 static void nicvf_set_rx_mode(struct net_device *netdev)
2048 {
2049 struct nicvf *nic = netdev_priv(netdev);
2050 struct netdev_hw_addr *ha;
2051 struct xcast_addr_list *mc_list = NULL;
2052 u8 mode = 0;
2053
2054 if (netdev->flags & IFF_PROMISC) {
2055 mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2056 } else {
2057 if (netdev->flags & IFF_BROADCAST)
2058 mode |= BGX_XCAST_BCAST_ACCEPT;
2059
2060 if (netdev->flags & IFF_ALLMULTI) {
2061 mode |= BGX_XCAST_MCAST_ACCEPT;
2062 } else if (netdev->flags & IFF_MULTICAST) {
2063 mode |= BGX_XCAST_MCAST_FILTER;
2064 /* here we need to copy mc addrs */
2065 if (netdev_mc_count(netdev)) {
2066 mc_list = kmalloc(struct_size(mc_list, mc,
2067 netdev_mc_count(netdev)),
2068 GFP_ATOMIC);
2069 if (unlikely(!mc_list))
2070 return;
2071 mc_list->count = 0;
2072 netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2073 mc_list->mc[mc_list->count] =
2074 ether_addr_to_u64(ha->addr);
2075 mc_list->count++;
2076 }
2077 }
2078 }
2079 }
2080 spin_lock(&nic->rx_mode_wq_lock);
2081 kfree(nic->rx_mode_work.mc);
2082 nic->rx_mode_work.mc = mc_list;
2083 nic->rx_mode_work.mode = mode;
2084 queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2085 spin_unlock(&nic->rx_mode_wq_lock);
2086 }
2087
2088 static const struct net_device_ops nicvf_netdev_ops = {
2089 .ndo_open = nicvf_open,
2090 .ndo_stop = nicvf_stop,
2091 .ndo_start_xmit = nicvf_xmit,
2092 .ndo_change_mtu = nicvf_change_mtu,
2093 .ndo_set_mac_address = nicvf_set_mac_address,
2094 .ndo_get_stats64 = nicvf_get_stats64,
2095 .ndo_tx_timeout = nicvf_tx_timeout,
2096 .ndo_fix_features = nicvf_fix_features,
2097 .ndo_set_features = nicvf_set_features,
2098 .ndo_bpf = nicvf_xdp,
2099 .ndo_eth_ioctl = nicvf_ioctl,
2100 .ndo_set_rx_mode = nicvf_set_rx_mode,
2101 };
2102
2103 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2104 {
2105 struct device *dev = &pdev->dev;
2106 struct net_device *netdev;
2107 struct nicvf *nic;
2108 int err, qcount;
2109 u16 sdevid;
2110 struct cavium_ptp *ptp_clock;
2111
2112 ptp_clock = cavium_ptp_get();
2113 if (IS_ERR(ptp_clock)) {
2114 if (PTR_ERR(ptp_clock) == -ENODEV)
2115 /* In virtualized environment we proceed without ptp */
2116 ptp_clock = NULL;
2117 else
2118 return PTR_ERR(ptp_clock);
2119 }
2120
2121 err = pci_enable_device(pdev);
2122 if (err) {
2123 dev_err(dev, "Failed to enable PCI device\n");
2124 return err;
2125 }
2126
2127 err = pci_request_regions(pdev, DRV_NAME);
2128 if (err) {
2129 dev_err(dev, "PCI request regions failed 0x%x\n", err);
2130 goto err_disable_device;
2131 }
2132
2133 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2134 if (err) {
2135 dev_err(dev, "Unable to get usable DMA configuration\n");
2136 goto err_release_regions;
2137 }
2138
2139 qcount = netif_get_num_default_rss_queues();
2140
2141 /* Restrict multiqset support only for host bound VFs */
2142 if (pdev->is_virtfn) {
2143 /* Set max number of queues per VF */
2144 qcount = min_t(int, num_online_cpus(),
2145 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2146 }
2147
2148 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2149 if (!netdev) {
2150 err = -ENOMEM;
2151 goto err_release_regions;
2152 }
2153
2154 pci_set_drvdata(pdev, netdev);
2155
2156 SET_NETDEV_DEV(netdev, &pdev->dev);
2157
2158 nic = netdev_priv(netdev);
2159 nic->netdev = netdev;
2160 nic->pdev = pdev;
2161 nic->pnicvf = nic;
2162 nic->max_queues = qcount;
2163 /* If no of CPUs are too low, there won't be any queues left
2164 * for XDP_TX, hence double it.
2165 */
2166 if (!nic->t88)
2167 nic->max_queues *= 2;
2168 nic->ptp_clock = ptp_clock;
2169
2170 /* Initialize mutex that serializes usage of VF's mailbox */
2171 mutex_init(&nic->rx_mode_mtx);
2172
2173 /* MAP VF's configuration registers */
2174 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2175 if (!nic->reg_base) {
2176 dev_err(dev, "Cannot map config register space, aborting\n");
2177 err = -ENOMEM;
2178 goto err_free_netdev;
2179 }
2180
2181 nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2182 if (!nic->drv_stats) {
2183 err = -ENOMEM;
2184 goto err_free_netdev;
2185 }
2186
2187 err = nicvf_set_qset_resources(nic);
2188 if (err)
2189 goto err_free_netdev;
2190
2191 /* Check if PF is alive and get MAC address for this VF */
2192 err = nicvf_register_misc_interrupt(nic);
2193 if (err)
2194 goto err_free_netdev;
2195
2196 nicvf_send_vf_struct(nic);
2197
2198 if (!pass1_silicon(nic->pdev))
2199 nic->hw_tso = true;
2200
2201 /* Get iommu domain for iova to physical addr conversion */
2202 nic->iommu_domain = iommu_get_domain_for_dev(dev);
2203
2204 pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2205 if (sdevid == 0xA134)
2206 nic->t88 = true;
2207
2208 /* Check if this VF is in QS only mode */
2209 if (nic->sqs_mode)
2210 return 0;
2211
2212 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2213 if (err)
2214 goto err_unregister_interrupts;
2215
2216 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2217 NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2218 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2219 NETIF_F_HW_VLAN_CTAG_RX);
2220
2221 netdev->hw_features |= NETIF_F_RXHASH;
2222
2223 netdev->features |= netdev->hw_features;
2224 netdev->hw_features |= NETIF_F_LOOPBACK;
2225
2226 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2227 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2228
2229 netdev->netdev_ops = &nicvf_netdev_ops;
2230 netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2231
2232 /* MTU range: 64 - 9200 */
2233 netdev->min_mtu = NIC_HW_MIN_FRS;
2234 netdev->max_mtu = NIC_HW_MAX_FRS;
2235
2236 INIT_WORK(&nic->reset_task, nicvf_reset_task);
2237
2238 nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2239 WQ_MEM_RECLAIM,
2240 nic->vf_id);
2241 if (!nic->nicvf_rx_mode_wq) {
2242 err = -ENOMEM;
2243 dev_err(dev, "Failed to allocate work queue\n");
2244 goto err_unregister_interrupts;
2245 }
2246
2247 INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2248 spin_lock_init(&nic->rx_mode_wq_lock);
2249
2250 err = register_netdev(netdev);
2251 if (err) {
2252 dev_err(dev, "Failed to register netdevice\n");
2253 goto err_unregister_interrupts;
2254 }
2255
2256 nic->msg_enable = debug;
2257
2258 nicvf_set_ethtool_ops(netdev);
2259
2260 return 0;
2261
2262 err_unregister_interrupts:
2263 nicvf_unregister_interrupts(nic);
2264 err_free_netdev:
2265 pci_set_drvdata(pdev, NULL);
2266 if (nic->drv_stats)
2267 free_percpu(nic->drv_stats);
2268 free_netdev(netdev);
2269 err_release_regions:
2270 pci_release_regions(pdev);
2271 err_disable_device:
2272 pci_disable_device(pdev);
2273 return err;
2274 }
2275
2276 static void nicvf_remove(struct pci_dev *pdev)
2277 {
2278 struct net_device *netdev = pci_get_drvdata(pdev);
2279 struct nicvf *nic;
2280 struct net_device *pnetdev;
2281
2282 if (!netdev)
2283 return;
2284
2285 nic = netdev_priv(netdev);
2286 pnetdev = nic->pnicvf->netdev;
2287
2288 /* Check if this Qset is assigned to different VF.
2289 * If yes, clean primary and all secondary Qsets.
2290 */
2291 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2292 unregister_netdev(pnetdev);
2293 if (nic->nicvf_rx_mode_wq) {
2294 destroy_workqueue(nic->nicvf_rx_mode_wq);
2295 nic->nicvf_rx_mode_wq = NULL;
2296 }
2297 nicvf_unregister_interrupts(nic);
2298 pci_set_drvdata(pdev, NULL);
2299 if (nic->drv_stats)
2300 free_percpu(nic->drv_stats);
2301 cavium_ptp_put(nic->ptp_clock);
2302 free_netdev(netdev);
2303 pci_release_regions(pdev);
2304 pci_disable_device(pdev);
2305 }
2306
2307 static void nicvf_shutdown(struct pci_dev *pdev)
2308 {
2309 nicvf_remove(pdev);
2310 }
2311
2312 static struct pci_driver nicvf_driver = {
2313 .name = DRV_NAME,
2314 .id_table = nicvf_id_table,
2315 .probe = nicvf_probe,
2316 .remove = nicvf_remove,
2317 .shutdown = nicvf_shutdown,
2318 };
2319
2320 static int __init nicvf_init_module(void)
2321 {
2322 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2323 return pci_register_driver(&nicvf_driver);
2324 }
2325
2326 static void __exit nicvf_cleanup_module(void)
2327 {
2328 pci_unregister_driver(&nicvf_driver);
2329 }
2330
2331 module_init(nicvf_init_module);
2332 module_exit(nicvf_cleanup_module);