]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_queues.c
4c91959f1d0ef0229f8b2ba7018a4472ffdf7967
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20
21 struct rbuf_info {
22 struct page *page;
23 void *data;
24 u64 offset;
25 };
26
27 #define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28
29 /* Poll a register for a specific value */
30 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 u64 reg, int bit_pos, int bits, int val)
32 {
33 u64 bit_mask;
34 u64 reg_val;
35 int timeout = 10;
36
37 bit_mask = (1ULL << bits) - 1;
38 bit_mask = (bit_mask << bit_pos);
39
40 while (timeout) {
41 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 if (((reg_val & bit_mask) >> bit_pos) == val)
43 return 0;
44 usleep_range(1000, 2000);
45 timeout--;
46 }
47 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 return 1;
49 }
50
51 /* Allocate memory for a queue's descriptors */
52 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 int q_len, int desc_size, int align_bytes)
54 {
55 dmem->q_len = q_len;
56 dmem->size = (desc_size * q_len) + align_bytes;
57 /* Save address, need it while freeing */
58 dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 &dmem->dma, GFP_KERNEL);
60 if (!dmem->unalign_base)
61 return -ENOMEM;
62
63 /* Align memory address for 'align_bytes' */
64 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
65 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
66 return 0;
67 }
68
69 /* Free queue's descriptor memory */
70 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
71 {
72 if (!dmem)
73 return;
74
75 dma_free_coherent(&nic->pdev->dev, dmem->size,
76 dmem->unalign_base, dmem->dma);
77 dmem->unalign_base = NULL;
78 dmem->base = NULL;
79 }
80
81 /* Allocate buffer for packet reception
82 * HW returns memory address where packet is DMA'ed but not a pointer
83 * into RBDR ring, so save buffer address at the start of fragment and
84 * align the start address to a cache aligned address
85 */
86 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
87 u32 buf_len, u64 **rbuf)
88 {
89 u64 data;
90 struct rbuf_info *rinfo;
91 int order = get_order(buf_len);
92
93 /* Check if request can be accomodated in previous allocated page */
94 if (nic->rb_page) {
95 if ((nic->rb_page_offset + buf_len + buf_len) >
96 (PAGE_SIZE << order)) {
97 nic->rb_page = NULL;
98 } else {
99 nic->rb_page_offset += buf_len;
100 get_page(nic->rb_page);
101 }
102 }
103
104 /* Allocate a new page */
105 if (!nic->rb_page) {
106 nic->rb_page = alloc_pages(gfp | __GFP_COMP, order);
107 if (!nic->rb_page) {
108 netdev_err(nic->netdev, "Failed to allocate new rcv buffer\n");
109 return -ENOMEM;
110 }
111 nic->rb_page_offset = 0;
112 }
113
114 data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
115
116 /* Align buffer addr to cache line i.e 128 bytes */
117 rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
118 /* Save page address for reference updation */
119 rinfo->page = nic->rb_page;
120 /* Store start address for later retrieval */
121 rinfo->data = (void *)data;
122 /* Store alignment offset */
123 rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
124
125 data += rinfo->offset;
126
127 /* Give next aligned address to hw for DMA */
128 *rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
129 return 0;
130 }
131
132 /* Retrieve actual buffer start address and build skb for received packet */
133 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
134 u64 rb_ptr, int len)
135 {
136 struct sk_buff *skb;
137 struct rbuf_info *rinfo;
138
139 rb_ptr = (u64)phys_to_virt(rb_ptr);
140 /* Get buffer start address and alignment offset */
141 rinfo = GET_RBUF_INFO(rb_ptr);
142
143 /* Now build an skb to give to stack */
144 skb = build_skb(rinfo->data, RCV_FRAG_LEN);
145 if (!skb) {
146 put_page(rinfo->page);
147 return NULL;
148 }
149
150 /* Set correct skb->data */
151 skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
152
153 prefetch((void *)rb_ptr);
154 return skb;
155 }
156
157 /* Allocate RBDR ring and populate receive buffers */
158 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
159 int ring_len, int buf_size)
160 {
161 int idx;
162 u64 *rbuf;
163 struct rbdr_entry_t *desc;
164 int err;
165
166 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
167 sizeof(struct rbdr_entry_t),
168 NICVF_RCV_BUF_ALIGN_BYTES);
169 if (err)
170 return err;
171
172 rbdr->desc = rbdr->dmem.base;
173 /* Buffer size has to be in multiples of 128 bytes */
174 rbdr->dma_size = buf_size;
175 rbdr->enable = true;
176 rbdr->thresh = RBDR_THRESH;
177
178 nic->rb_page = NULL;
179 for (idx = 0; idx < ring_len; idx++) {
180 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
181 &rbuf);
182 if (err)
183 return err;
184
185 desc = GET_RBDR_DESC(rbdr, idx);
186 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
187 }
188 return 0;
189 }
190
191 /* Free RBDR ring and its receive buffers */
192 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
193 {
194 int head, tail;
195 u64 buf_addr;
196 struct rbdr_entry_t *desc;
197 struct rbuf_info *rinfo;
198
199 if (!rbdr)
200 return;
201
202 rbdr->enable = false;
203 if (!rbdr->dmem.base)
204 return;
205
206 head = rbdr->head;
207 tail = rbdr->tail;
208
209 /* Free SKBs */
210 while (head != tail) {
211 desc = GET_RBDR_DESC(rbdr, head);
212 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
213 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
214 put_page(rinfo->page);
215 head++;
216 head &= (rbdr->dmem.q_len - 1);
217 }
218 /* Free SKB of tail desc */
219 desc = GET_RBDR_DESC(rbdr, tail);
220 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
221 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
222 put_page(rinfo->page);
223
224 /* Free RBDR ring */
225 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
226 }
227
228 /* Refill receive buffer descriptors with new buffers.
229 */
230 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
231 {
232 struct queue_set *qs = nic->qs;
233 int rbdr_idx = qs->rbdr_cnt;
234 int tail, qcount;
235 int refill_rb_cnt;
236 struct rbdr *rbdr;
237 struct rbdr_entry_t *desc;
238 u64 *rbuf;
239 int new_rb = 0;
240
241 refill:
242 if (!rbdr_idx)
243 return;
244 rbdr_idx--;
245 rbdr = &qs->rbdr[rbdr_idx];
246 /* Check if it's enabled */
247 if (!rbdr->enable)
248 goto next_rbdr;
249
250 /* Get no of desc's to be refilled */
251 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
252 qcount &= 0x7FFFF;
253 /* Doorbell can be ringed with a max of ring size minus 1 */
254 if (qcount >= (qs->rbdr_len - 1))
255 goto next_rbdr;
256 else
257 refill_rb_cnt = qs->rbdr_len - qcount - 1;
258
259 /* Start filling descs from tail */
260 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
261 while (refill_rb_cnt) {
262 tail++;
263 tail &= (rbdr->dmem.q_len - 1);
264
265 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
266 break;
267
268 desc = GET_RBDR_DESC(rbdr, tail);
269 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
270 refill_rb_cnt--;
271 new_rb++;
272 }
273
274 /* make sure all memory stores are done before ringing doorbell */
275 smp_wmb();
276
277 /* Check if buffer allocation failed */
278 if (refill_rb_cnt)
279 nic->rb_alloc_fail = true;
280 else
281 nic->rb_alloc_fail = false;
282
283 /* Notify HW */
284 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
285 rbdr_idx, new_rb);
286 next_rbdr:
287 /* Re-enable RBDR interrupts only if buffer allocation is success */
288 if (!nic->rb_alloc_fail && rbdr->enable)
289 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
290
291 if (rbdr_idx)
292 goto refill;
293 }
294
295 /* Alloc rcv buffers in non-atomic mode for better success */
296 void nicvf_rbdr_work(struct work_struct *work)
297 {
298 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
299
300 nicvf_refill_rbdr(nic, GFP_KERNEL);
301 if (nic->rb_alloc_fail)
302 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
303 else
304 nic->rb_work_scheduled = false;
305 }
306
307 /* In Softirq context, alloc rcv buffers in atomic mode */
308 void nicvf_rbdr_task(unsigned long data)
309 {
310 struct nicvf *nic = (struct nicvf *)data;
311
312 nicvf_refill_rbdr(nic, GFP_ATOMIC);
313 if (nic->rb_alloc_fail) {
314 nic->rb_work_scheduled = true;
315 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
316 }
317 }
318
319 /* Initialize completion queue */
320 static int nicvf_init_cmp_queue(struct nicvf *nic,
321 struct cmp_queue *cq, int q_len)
322 {
323 int err;
324
325 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
326 NICVF_CQ_BASE_ALIGN_BYTES);
327 if (err)
328 return err;
329
330 cq->desc = cq->dmem.base;
331 cq->thresh = CMP_QUEUE_CQE_THRESH;
332 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
333
334 return 0;
335 }
336
337 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
338 {
339 if (!cq)
340 return;
341 if (!cq->dmem.base)
342 return;
343
344 nicvf_free_q_desc_mem(nic, &cq->dmem);
345 }
346
347 /* Initialize transmit queue */
348 static int nicvf_init_snd_queue(struct nicvf *nic,
349 struct snd_queue *sq, int q_len)
350 {
351 int err;
352
353 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
354 NICVF_SQ_BASE_ALIGN_BYTES);
355 if (err)
356 return err;
357
358 sq->desc = sq->dmem.base;
359 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
360 if (!sq->skbuff)
361 return -ENOMEM;
362 sq->head = 0;
363 sq->tail = 0;
364 atomic_set(&sq->free_cnt, q_len - 1);
365 sq->thresh = SND_QUEUE_THRESH;
366
367 /* Preallocate memory for TSO segment's header */
368 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
369 q_len * TSO_HEADER_SIZE,
370 &sq->tso_hdrs_phys, GFP_KERNEL);
371 if (!sq->tso_hdrs)
372 return -ENOMEM;
373
374 return 0;
375 }
376
377 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
378 {
379 if (!sq)
380 return;
381 if (!sq->dmem.base)
382 return;
383
384 if (sq->tso_hdrs)
385 dma_free_coherent(&nic->pdev->dev,
386 sq->dmem.q_len * TSO_HEADER_SIZE,
387 sq->tso_hdrs, sq->tso_hdrs_phys);
388
389 kfree(sq->skbuff);
390 nicvf_free_q_desc_mem(nic, &sq->dmem);
391 }
392
393 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
394 struct queue_set *qs, int qidx)
395 {
396 /* Disable send queue */
397 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
398 /* Check if SQ is stopped */
399 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
400 return;
401 /* Reset send queue */
402 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
403 }
404
405 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
406 struct queue_set *qs, int qidx)
407 {
408 union nic_mbx mbx = {};
409
410 /* Make sure all packets in the pipeline are written back into mem */
411 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
412 nicvf_send_msg_to_pf(nic, &mbx);
413 }
414
415 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
416 struct queue_set *qs, int qidx)
417 {
418 /* Disable timer threshold (doesn't get reset upon CQ reset */
419 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
420 /* Disable completion queue */
421 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
422 /* Reset completion queue */
423 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
424 }
425
426 static void nicvf_reclaim_rbdr(struct nicvf *nic,
427 struct rbdr *rbdr, int qidx)
428 {
429 u64 tmp, fifo_state;
430 int timeout = 10;
431
432 /* Save head and tail pointers for feeing up buffers */
433 rbdr->head = nicvf_queue_reg_read(nic,
434 NIC_QSET_RBDR_0_1_HEAD,
435 qidx) >> 3;
436 rbdr->tail = nicvf_queue_reg_read(nic,
437 NIC_QSET_RBDR_0_1_TAIL,
438 qidx) >> 3;
439
440 /* If RBDR FIFO is in 'FAIL' state then do a reset first
441 * before relaiming.
442 */
443 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
444 if (((fifo_state >> 62) & 0x03) == 0x3)
445 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
446 qidx, NICVF_RBDR_RESET);
447
448 /* Disable RBDR */
449 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
450 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
451 return;
452 while (1) {
453 tmp = nicvf_queue_reg_read(nic,
454 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
455 qidx);
456 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
457 break;
458 usleep_range(1000, 2000);
459 timeout--;
460 if (!timeout) {
461 netdev_err(nic->netdev,
462 "Failed polling on prefetch status\n");
463 return;
464 }
465 }
466 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
467 qidx, NICVF_RBDR_RESET);
468
469 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
470 return;
471 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
472 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
473 return;
474 }
475
476 /* Configures receive queue */
477 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
478 int qidx, bool enable)
479 {
480 union nic_mbx mbx = {};
481 struct rcv_queue *rq;
482 struct rq_cfg rq_cfg;
483
484 rq = &qs->rq[qidx];
485 rq->enable = enable;
486
487 /* Disable receive queue */
488 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
489
490 if (!rq->enable) {
491 nicvf_reclaim_rcv_queue(nic, qs, qidx);
492 return;
493 }
494
495 rq->cq_qs = qs->vnic_id;
496 rq->cq_idx = qidx;
497 rq->start_rbdr_qs = qs->vnic_id;
498 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
499 rq->cont_rbdr_qs = qs->vnic_id;
500 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
501 /* all writes of RBDR data to be loaded into L2 Cache as well*/
502 rq->caching = 1;
503
504 /* Send a mailbox msg to PF to config RQ */
505 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
506 mbx.rq.qs_num = qs->vnic_id;
507 mbx.rq.rq_num = qidx;
508 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
509 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
510 (rq->cont_qs_rbdr_idx << 8) |
511 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
512 nicvf_send_msg_to_pf(nic, &mbx);
513
514 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
515 mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
516 nicvf_send_msg_to_pf(nic, &mbx);
517
518 /* RQ drop config
519 * Enable CQ drop to reserve sufficient CQEs for all tx packets
520 */
521 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
522 mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
523 nicvf_send_msg_to_pf(nic, &mbx);
524
525 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, qidx, 0x00);
526
527 /* Enable Receive queue */
528 rq_cfg.ena = 1;
529 rq_cfg.tcp_ena = 0;
530 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
531 }
532
533 /* Configures completion queue */
534 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
535 int qidx, bool enable)
536 {
537 struct cmp_queue *cq;
538 struct cq_cfg cq_cfg;
539
540 cq = &qs->cq[qidx];
541 cq->enable = enable;
542
543 if (!cq->enable) {
544 nicvf_reclaim_cmp_queue(nic, qs, qidx);
545 return;
546 }
547
548 /* Reset completion queue */
549 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
550
551 if (!cq->enable)
552 return;
553
554 spin_lock_init(&cq->lock);
555 /* Set completion queue base address */
556 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
557 qidx, (u64)(cq->dmem.phys_base));
558
559 /* Enable Completion queue */
560 cq_cfg.ena = 1;
561 cq_cfg.reset = 0;
562 cq_cfg.caching = 0;
563 cq_cfg.qsize = CMP_QSIZE;
564 cq_cfg.avg_con = 0;
565 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
566
567 /* Set threshold value for interrupt generation */
568 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
569 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
570 qidx, nic->cq_coalesce_usecs);
571 }
572
573 /* Configures transmit queue */
574 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
575 int qidx, bool enable)
576 {
577 union nic_mbx mbx = {};
578 struct snd_queue *sq;
579 struct sq_cfg sq_cfg;
580
581 sq = &qs->sq[qidx];
582 sq->enable = enable;
583
584 if (!sq->enable) {
585 nicvf_reclaim_snd_queue(nic, qs, qidx);
586 return;
587 }
588
589 /* Reset send queue */
590 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
591
592 sq->cq_qs = qs->vnic_id;
593 sq->cq_idx = qidx;
594
595 /* Send a mailbox msg to PF to config SQ */
596 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
597 mbx.sq.qs_num = qs->vnic_id;
598 mbx.sq.sq_num = qidx;
599 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
600 nicvf_send_msg_to_pf(nic, &mbx);
601
602 /* Set queue base address */
603 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
604 qidx, (u64)(sq->dmem.phys_base));
605
606 /* Enable send queue & set queue size */
607 sq_cfg.ena = 1;
608 sq_cfg.reset = 0;
609 sq_cfg.ldwb = 0;
610 sq_cfg.qsize = SND_QSIZE;
611 sq_cfg.tstmp_bgx_intf = 0;
612 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
613
614 /* Set threshold value for interrupt generation */
615 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
616
617 /* Set queue:cpu affinity for better load distribution */
618 if (cpu_online(qidx)) {
619 cpumask_set_cpu(qidx, &sq->affinity_mask);
620 netif_set_xps_queue(nic->netdev,
621 &sq->affinity_mask, qidx);
622 }
623 }
624
625 /* Configures receive buffer descriptor ring */
626 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
627 int qidx, bool enable)
628 {
629 struct rbdr *rbdr;
630 struct rbdr_cfg rbdr_cfg;
631
632 rbdr = &qs->rbdr[qidx];
633 nicvf_reclaim_rbdr(nic, rbdr, qidx);
634 if (!enable)
635 return;
636
637 /* Set descriptor base address */
638 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
639 qidx, (u64)(rbdr->dmem.phys_base));
640
641 /* Enable RBDR & set queue size */
642 /* Buffer size should be in multiples of 128 bytes */
643 rbdr_cfg.ena = 1;
644 rbdr_cfg.reset = 0;
645 rbdr_cfg.ldwb = 0;
646 rbdr_cfg.qsize = RBDR_SIZE;
647 rbdr_cfg.avg_con = 0;
648 rbdr_cfg.lines = rbdr->dma_size / 128;
649 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
650 qidx, *(u64 *)&rbdr_cfg);
651
652 /* Notify HW */
653 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
654 qidx, qs->rbdr_len - 1);
655
656 /* Set threshold value for interrupt generation */
657 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
658 qidx, rbdr->thresh - 1);
659 }
660
661 /* Requests PF to assign and enable Qset */
662 void nicvf_qset_config(struct nicvf *nic, bool enable)
663 {
664 union nic_mbx mbx = {};
665 struct queue_set *qs = nic->qs;
666 struct qs_cfg *qs_cfg;
667
668 if (!qs) {
669 netdev_warn(nic->netdev,
670 "Qset is still not allocated, don't init queues\n");
671 return;
672 }
673
674 qs->enable = enable;
675 qs->vnic_id = nic->vf_id;
676
677 /* Send a mailbox msg to PF to config Qset */
678 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
679 mbx.qs.num = qs->vnic_id;
680
681 mbx.qs.cfg = 0;
682 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
683 if (qs->enable) {
684 qs_cfg->ena = 1;
685 #ifdef __BIG_ENDIAN
686 qs_cfg->be = 1;
687 #endif
688 qs_cfg->vnic = qs->vnic_id;
689 }
690 nicvf_send_msg_to_pf(nic, &mbx);
691 }
692
693 static void nicvf_free_resources(struct nicvf *nic)
694 {
695 int qidx;
696 struct queue_set *qs = nic->qs;
697
698 /* Free receive buffer descriptor ring */
699 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
700 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
701
702 /* Free completion queue */
703 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
704 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
705
706 /* Free send queue */
707 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
708 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
709 }
710
711 static int nicvf_alloc_resources(struct nicvf *nic)
712 {
713 int qidx;
714 struct queue_set *qs = nic->qs;
715
716 /* Alloc receive buffer descriptor ring */
717 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
718 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
719 DMA_BUFFER_LEN))
720 goto alloc_fail;
721 }
722
723 /* Alloc send queue */
724 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
725 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
726 goto alloc_fail;
727 }
728
729 /* Alloc completion queue */
730 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
731 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
732 goto alloc_fail;
733 }
734
735 return 0;
736 alloc_fail:
737 nicvf_free_resources(nic);
738 return -ENOMEM;
739 }
740
741 int nicvf_set_qset_resources(struct nicvf *nic)
742 {
743 struct queue_set *qs;
744
745 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
746 if (!qs)
747 return -ENOMEM;
748 nic->qs = qs;
749
750 /* Set count of each queue */
751 qs->rbdr_cnt = RBDR_CNT;
752 qs->rq_cnt = RCV_QUEUE_CNT;
753 qs->sq_cnt = SND_QUEUE_CNT;
754 qs->cq_cnt = CMP_QUEUE_CNT;
755
756 /* Set queue lengths */
757 qs->rbdr_len = RCV_BUF_COUNT;
758 qs->sq_len = SND_QUEUE_LEN;
759 qs->cq_len = CMP_QUEUE_LEN;
760 return 0;
761 }
762
763 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
764 {
765 bool disable = false;
766 struct queue_set *qs = nic->qs;
767 int qidx;
768
769 if (!qs)
770 return 0;
771
772 if (enable) {
773 if (nicvf_alloc_resources(nic))
774 return -ENOMEM;
775
776 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
777 nicvf_snd_queue_config(nic, qs, qidx, enable);
778 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
779 nicvf_cmp_queue_config(nic, qs, qidx, enable);
780 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
781 nicvf_rbdr_config(nic, qs, qidx, enable);
782 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
783 nicvf_rcv_queue_config(nic, qs, qidx, enable);
784 } else {
785 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
786 nicvf_rcv_queue_config(nic, qs, qidx, disable);
787 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
788 nicvf_rbdr_config(nic, qs, qidx, disable);
789 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
790 nicvf_snd_queue_config(nic, qs, qidx, disable);
791 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
792 nicvf_cmp_queue_config(nic, qs, qidx, disable);
793
794 nicvf_free_resources(nic);
795 }
796
797 return 0;
798 }
799
800 /* Get a free desc from SQ
801 * returns descriptor ponter & descriptor number
802 */
803 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
804 {
805 int qentry;
806
807 qentry = sq->tail;
808 atomic_sub(desc_cnt, &sq->free_cnt);
809 sq->tail += desc_cnt;
810 sq->tail &= (sq->dmem.q_len - 1);
811
812 return qentry;
813 }
814
815 /* Free descriptor back to SQ for future use */
816 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
817 {
818 atomic_add(desc_cnt, &sq->free_cnt);
819 sq->head += desc_cnt;
820 sq->head &= (sq->dmem.q_len - 1);
821 }
822
823 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
824 {
825 qentry++;
826 qentry &= (sq->dmem.q_len - 1);
827 return qentry;
828 }
829
830 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
831 {
832 u64 sq_cfg;
833
834 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
835 sq_cfg |= NICVF_SQ_EN;
836 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
837 /* Ring doorbell so that H/W restarts processing SQEs */
838 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
839 }
840
841 void nicvf_sq_disable(struct nicvf *nic, int qidx)
842 {
843 u64 sq_cfg;
844
845 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
846 sq_cfg &= ~NICVF_SQ_EN;
847 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
848 }
849
850 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
851 int qidx)
852 {
853 u64 head, tail;
854 struct sk_buff *skb;
855 struct nicvf *nic = netdev_priv(netdev);
856 struct sq_hdr_subdesc *hdr;
857
858 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
859 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
860 while (sq->head != head) {
861 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
862 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
863 nicvf_put_sq_desc(sq, 1);
864 continue;
865 }
866 skb = (struct sk_buff *)sq->skbuff[sq->head];
867 if (skb)
868 dev_kfree_skb_any(skb);
869 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
870 atomic64_add(hdr->tot_len,
871 (atomic64_t *)&netdev->stats.tx_bytes);
872 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
873 }
874 }
875
876 /* Calculate no of SQ subdescriptors needed to transmit all
877 * segments of this TSO packet.
878 * Taken from 'Tilera network driver' with a minor modification.
879 */
880 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
881 {
882 struct skb_shared_info *sh = skb_shinfo(skb);
883 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
884 unsigned int data_len = skb->len - sh_len;
885 unsigned int p_len = sh->gso_size;
886 long f_id = -1; /* id of the current fragment */
887 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
888 long f_used = 0; /* bytes used from the current fragment */
889 long n; /* size of the current piece of payload */
890 int num_edescs = 0;
891 int segment;
892
893 for (segment = 0; segment < sh->gso_segs; segment++) {
894 unsigned int p_used = 0;
895
896 /* One edesc for header and for each piece of the payload. */
897 for (num_edescs++; p_used < p_len; num_edescs++) {
898 /* Advance as needed. */
899 while (f_used >= f_size) {
900 f_id++;
901 f_size = skb_frag_size(&sh->frags[f_id]);
902 f_used = 0;
903 }
904
905 /* Use bytes from the current fragment. */
906 n = p_len - p_used;
907 if (n > f_size - f_used)
908 n = f_size - f_used;
909 f_used += n;
910 p_used += n;
911 }
912
913 /* The last segment may be less than gso_size. */
914 data_len -= p_len;
915 if (data_len < p_len)
916 p_len = data_len;
917 }
918
919 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
920 return num_edescs + sh->gso_segs;
921 }
922
923 /* Get the number of SQ descriptors needed to xmit this skb */
924 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
925 {
926 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
927
928 if (skb_shinfo(skb)->gso_size) {
929 subdesc_cnt = nicvf_tso_count_subdescs(skb);
930 return subdesc_cnt;
931 }
932
933 if (skb_shinfo(skb)->nr_frags)
934 subdesc_cnt += skb_shinfo(skb)->nr_frags;
935
936 return subdesc_cnt;
937 }
938
939 /* Add SQ HEADER subdescriptor.
940 * First subdescriptor for every send descriptor.
941 */
942 static inline void
943 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
944 int subdesc_cnt, struct sk_buff *skb, int len)
945 {
946 int proto;
947 struct sq_hdr_subdesc *hdr;
948
949 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
950 sq->skbuff[qentry] = (u64)skb;
951
952 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
953 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
954 /* Enable notification via CQE after processing SQE */
955 hdr->post_cqe = 1;
956 /* No of subdescriptors following this */
957 hdr->subdesc_cnt = subdesc_cnt;
958 hdr->tot_len = len;
959
960 /* Offload checksum calculation to HW */
961 if (skb->ip_summed == CHECKSUM_PARTIAL) {
962 if (skb->protocol != htons(ETH_P_IP))
963 return;
964
965 hdr->csum_l3 = 1; /* Enable IP csum calculation */
966 hdr->l3_offset = skb_network_offset(skb);
967 hdr->l4_offset = skb_transport_offset(skb);
968
969 proto = ip_hdr(skb)->protocol;
970 switch (proto) {
971 case IPPROTO_TCP:
972 hdr->csum_l4 = SEND_L4_CSUM_TCP;
973 break;
974 case IPPROTO_UDP:
975 hdr->csum_l4 = SEND_L4_CSUM_UDP;
976 break;
977 case IPPROTO_SCTP:
978 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
979 break;
980 }
981 }
982 }
983
984 /* SQ GATHER subdescriptor
985 * Must follow HDR descriptor
986 */
987 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
988 int size, u64 data)
989 {
990 struct sq_gather_subdesc *gather;
991
992 qentry &= (sq->dmem.q_len - 1);
993 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
994
995 memset(gather, 0, SND_QUEUE_DESC_SIZE);
996 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
997 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
998 gather->size = size;
999 gather->addr = data;
1000 }
1001
1002 /* Segment a TSO packet into 'gso_size' segments and append
1003 * them to SQ for transfer
1004 */
1005 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1006 int qentry, struct sk_buff *skb)
1007 {
1008 struct tso_t tso;
1009 int seg_subdescs = 0, desc_cnt = 0;
1010 int seg_len, total_len, data_left;
1011 int hdr_qentry = qentry;
1012 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1013
1014 tso_start(skb, &tso);
1015 total_len = skb->len - hdr_len;
1016 while (total_len > 0) {
1017 char *hdr;
1018
1019 /* Save Qentry for adding HDR_SUBDESC at the end */
1020 hdr_qentry = qentry;
1021
1022 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1023 total_len -= data_left;
1024
1025 /* Add segment's header */
1026 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1027 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1028 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1029 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1030 sq->tso_hdrs_phys +
1031 qentry * TSO_HEADER_SIZE);
1032 /* HDR_SUDESC + GATHER */
1033 seg_subdescs = 2;
1034 seg_len = hdr_len;
1035
1036 /* Add segment's payload fragments */
1037 while (data_left > 0) {
1038 int size;
1039
1040 size = min_t(int, tso.size, data_left);
1041
1042 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1043 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1044 virt_to_phys(tso.data));
1045 seg_subdescs++;
1046 seg_len += size;
1047
1048 data_left -= size;
1049 tso_build_data(skb, &tso, size);
1050 }
1051 nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1052 seg_subdescs - 1, skb, seg_len);
1053 sq->skbuff[hdr_qentry] = (u64)NULL;
1054 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1055
1056 desc_cnt += seg_subdescs;
1057 }
1058 /* Save SKB in the last segment for freeing */
1059 sq->skbuff[hdr_qentry] = (u64)skb;
1060
1061 /* make sure all memory stores are done before ringing doorbell */
1062 smp_wmb();
1063
1064 /* Inform HW to xmit all TSO segments */
1065 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1066 skb_get_queue_mapping(skb), desc_cnt);
1067 return 1;
1068 }
1069
1070 /* Append an skb to a SQ for packet transfer. */
1071 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1072 {
1073 int i, size;
1074 int subdesc_cnt;
1075 int sq_num, qentry;
1076 struct queue_set *qs = nic->qs;
1077 struct snd_queue *sq;
1078
1079 sq_num = skb_get_queue_mapping(skb);
1080 sq = &qs->sq[sq_num];
1081
1082 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1083 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1084 goto append_fail;
1085
1086 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1087
1088 /* Check if its a TSO packet */
1089 if (skb_shinfo(skb)->gso_size)
1090 return nicvf_sq_append_tso(nic, sq, qentry, skb);
1091
1092 /* Add SQ header subdesc */
1093 nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1094
1095 /* Add SQ gather subdescs */
1096 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1097 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1098 nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1099
1100 /* Check for scattered buffer */
1101 if (!skb_is_nonlinear(skb))
1102 goto doorbell;
1103
1104 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1105 const struct skb_frag_struct *frag;
1106
1107 frag = &skb_shinfo(skb)->frags[i];
1108
1109 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1110 size = skb_frag_size(frag);
1111 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1112 virt_to_phys(
1113 skb_frag_address(frag)));
1114 }
1115
1116 doorbell:
1117 /* make sure all memory stores are done before ringing doorbell */
1118 smp_wmb();
1119
1120 /* Inform HW to xmit new packet */
1121 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1122 sq_num, subdesc_cnt);
1123 return 1;
1124
1125 append_fail:
1126 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1127 return 0;
1128 }
1129
1130 static inline unsigned frag_num(unsigned i)
1131 {
1132 #ifdef __BIG_ENDIAN
1133 return (i & ~3) + 3 - (i & 3);
1134 #else
1135 return i;
1136 #endif
1137 }
1138
1139 /* Returns SKB for a received packet */
1140 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1141 {
1142 int frag;
1143 int payload_len = 0;
1144 struct sk_buff *skb = NULL;
1145 struct sk_buff *skb_frag = NULL;
1146 struct sk_buff *prev_frag = NULL;
1147 u16 *rb_lens = NULL;
1148 u64 *rb_ptrs = NULL;
1149
1150 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1151 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1152
1153 netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1154 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1155
1156 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1157 payload_len = rb_lens[frag_num(frag)];
1158 if (!frag) {
1159 /* First fragment */
1160 skb = nicvf_rb_ptr_to_skb(nic,
1161 *rb_ptrs - cqe_rx->align_pad,
1162 payload_len);
1163 if (!skb)
1164 return NULL;
1165 skb_reserve(skb, cqe_rx->align_pad);
1166 skb_put(skb, payload_len);
1167 } else {
1168 /* Add fragments */
1169 skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1170 payload_len);
1171 if (!skb_frag) {
1172 dev_kfree_skb(skb);
1173 return NULL;
1174 }
1175
1176 if (!skb_shinfo(skb)->frag_list)
1177 skb_shinfo(skb)->frag_list = skb_frag;
1178 else
1179 prev_frag->next = skb_frag;
1180
1181 prev_frag = skb_frag;
1182 skb->len += payload_len;
1183 skb->data_len += payload_len;
1184 skb_frag->len = payload_len;
1185 }
1186 /* Next buffer pointer */
1187 rb_ptrs++;
1188 }
1189 return skb;
1190 }
1191
1192 /* Enable interrupt */
1193 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1194 {
1195 u64 reg_val;
1196
1197 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1198
1199 switch (int_type) {
1200 case NICVF_INTR_CQ:
1201 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1202 break;
1203 case NICVF_INTR_SQ:
1204 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1205 break;
1206 case NICVF_INTR_RBDR:
1207 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1208 break;
1209 case NICVF_INTR_PKT_DROP:
1210 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1211 break;
1212 case NICVF_INTR_TCP_TIMER:
1213 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1214 break;
1215 case NICVF_INTR_MBOX:
1216 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1217 break;
1218 case NICVF_INTR_QS_ERR:
1219 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1220 break;
1221 default:
1222 netdev_err(nic->netdev,
1223 "Failed to enable interrupt: unknown type\n");
1224 break;
1225 }
1226
1227 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1228 }
1229
1230 /* Disable interrupt */
1231 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1232 {
1233 u64 reg_val = 0;
1234
1235 switch (int_type) {
1236 case NICVF_INTR_CQ:
1237 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1238 break;
1239 case NICVF_INTR_SQ:
1240 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1241 break;
1242 case NICVF_INTR_RBDR:
1243 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1244 break;
1245 case NICVF_INTR_PKT_DROP:
1246 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1247 break;
1248 case NICVF_INTR_TCP_TIMER:
1249 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1250 break;
1251 case NICVF_INTR_MBOX:
1252 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1253 break;
1254 case NICVF_INTR_QS_ERR:
1255 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1256 break;
1257 default:
1258 netdev_err(nic->netdev,
1259 "Failed to disable interrupt: unknown type\n");
1260 break;
1261 }
1262
1263 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1264 }
1265
1266 /* Clear interrupt */
1267 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1268 {
1269 u64 reg_val = 0;
1270
1271 switch (int_type) {
1272 case NICVF_INTR_CQ:
1273 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1274 break;
1275 case NICVF_INTR_SQ:
1276 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1277 break;
1278 case NICVF_INTR_RBDR:
1279 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1280 break;
1281 case NICVF_INTR_PKT_DROP:
1282 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1283 break;
1284 case NICVF_INTR_TCP_TIMER:
1285 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1286 break;
1287 case NICVF_INTR_MBOX:
1288 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1289 break;
1290 case NICVF_INTR_QS_ERR:
1291 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1292 break;
1293 default:
1294 netdev_err(nic->netdev,
1295 "Failed to clear interrupt: unknown type\n");
1296 break;
1297 }
1298
1299 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1300 }
1301
1302 /* Check if interrupt is enabled */
1303 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1304 {
1305 u64 reg_val;
1306 u64 mask = 0xff;
1307
1308 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1309
1310 switch (int_type) {
1311 case NICVF_INTR_CQ:
1312 mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1313 break;
1314 case NICVF_INTR_SQ:
1315 mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1316 break;
1317 case NICVF_INTR_RBDR:
1318 mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1319 break;
1320 case NICVF_INTR_PKT_DROP:
1321 mask = NICVF_INTR_PKT_DROP_MASK;
1322 break;
1323 case NICVF_INTR_TCP_TIMER:
1324 mask = NICVF_INTR_TCP_TIMER_MASK;
1325 break;
1326 case NICVF_INTR_MBOX:
1327 mask = NICVF_INTR_MBOX_MASK;
1328 break;
1329 case NICVF_INTR_QS_ERR:
1330 mask = NICVF_INTR_QS_ERR_MASK;
1331 break;
1332 default:
1333 netdev_err(nic->netdev,
1334 "Failed to check interrupt enable: unknown type\n");
1335 break;
1336 }
1337
1338 return (reg_val & mask);
1339 }
1340
1341 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1342 {
1343 struct rcv_queue *rq;
1344
1345 #define GET_RQ_STATS(reg) \
1346 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1347 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1348
1349 rq = &nic->qs->rq[rq_idx];
1350 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1351 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1352 }
1353
1354 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1355 {
1356 struct snd_queue *sq;
1357
1358 #define GET_SQ_STATS(reg) \
1359 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1360 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1361
1362 sq = &nic->qs->sq[sq_idx];
1363 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1364 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1365 }
1366
1367 /* Check for errors in the receive cmp.queue entry */
1368 int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1369 struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1370 {
1371 struct cmp_queue_stats *stats = &cq->stats;
1372
1373 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1374 stats->rx.errop.good++;
1375 return 0;
1376 }
1377
1378 if (netif_msg_rx_err(nic))
1379 netdev_err(nic->netdev,
1380 "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1381 nic->netdev->name,
1382 cqe_rx->err_level, cqe_rx->err_opcode);
1383
1384 switch (cqe_rx->err_level) {
1385 case CQ_ERRLVL_MAC:
1386 stats->rx.errlvl.mac_errs++;
1387 break;
1388 case CQ_ERRLVL_L2:
1389 stats->rx.errlvl.l2_errs++;
1390 break;
1391 case CQ_ERRLVL_L3:
1392 stats->rx.errlvl.l3_errs++;
1393 break;
1394 case CQ_ERRLVL_L4:
1395 stats->rx.errlvl.l4_errs++;
1396 break;
1397 }
1398
1399 switch (cqe_rx->err_opcode) {
1400 case CQ_RX_ERROP_RE_PARTIAL:
1401 stats->rx.errop.partial_pkts++;
1402 break;
1403 case CQ_RX_ERROP_RE_JABBER:
1404 stats->rx.errop.jabber_errs++;
1405 break;
1406 case CQ_RX_ERROP_RE_FCS:
1407 stats->rx.errop.fcs_errs++;
1408 break;
1409 case CQ_RX_ERROP_RE_TERMINATE:
1410 stats->rx.errop.terminate_errs++;
1411 break;
1412 case CQ_RX_ERROP_RE_RX_CTL:
1413 stats->rx.errop.bgx_rx_errs++;
1414 break;
1415 case CQ_RX_ERROP_PREL2_ERR:
1416 stats->rx.errop.prel2_errs++;
1417 break;
1418 case CQ_RX_ERROP_L2_FRAGMENT:
1419 stats->rx.errop.l2_frags++;
1420 break;
1421 case CQ_RX_ERROP_L2_OVERRUN:
1422 stats->rx.errop.l2_overruns++;
1423 break;
1424 case CQ_RX_ERROP_L2_PFCS:
1425 stats->rx.errop.l2_pfcs++;
1426 break;
1427 case CQ_RX_ERROP_L2_PUNY:
1428 stats->rx.errop.l2_puny++;
1429 break;
1430 case CQ_RX_ERROP_L2_MAL:
1431 stats->rx.errop.l2_hdr_malformed++;
1432 break;
1433 case CQ_RX_ERROP_L2_OVERSIZE:
1434 stats->rx.errop.l2_oversize++;
1435 break;
1436 case CQ_RX_ERROP_L2_UNDERSIZE:
1437 stats->rx.errop.l2_undersize++;
1438 break;
1439 case CQ_RX_ERROP_L2_LENMISM:
1440 stats->rx.errop.l2_len_mismatch++;
1441 break;
1442 case CQ_RX_ERROP_L2_PCLP:
1443 stats->rx.errop.l2_pclp++;
1444 break;
1445 case CQ_RX_ERROP_IP_NOT:
1446 stats->rx.errop.non_ip++;
1447 break;
1448 case CQ_RX_ERROP_IP_CSUM_ERR:
1449 stats->rx.errop.ip_csum_err++;
1450 break;
1451 case CQ_RX_ERROP_IP_MAL:
1452 stats->rx.errop.ip_hdr_malformed++;
1453 break;
1454 case CQ_RX_ERROP_IP_MALD:
1455 stats->rx.errop.ip_payload_malformed++;
1456 break;
1457 case CQ_RX_ERROP_IP_HOP:
1458 stats->rx.errop.ip_hop_errs++;
1459 break;
1460 case CQ_RX_ERROP_L3_ICRC:
1461 stats->rx.errop.l3_icrc_errs++;
1462 break;
1463 case CQ_RX_ERROP_L3_PCLP:
1464 stats->rx.errop.l3_pclp++;
1465 break;
1466 case CQ_RX_ERROP_L4_MAL:
1467 stats->rx.errop.l4_malformed++;
1468 break;
1469 case CQ_RX_ERROP_L4_CHK:
1470 stats->rx.errop.l4_csum_errs++;
1471 break;
1472 case CQ_RX_ERROP_UDP_LEN:
1473 stats->rx.errop.udp_len_err++;
1474 break;
1475 case CQ_RX_ERROP_L4_PORT:
1476 stats->rx.errop.bad_l4_port++;
1477 break;
1478 case CQ_RX_ERROP_TCP_FLAG:
1479 stats->rx.errop.bad_tcp_flag++;
1480 break;
1481 case CQ_RX_ERROP_TCP_OFFSET:
1482 stats->rx.errop.tcp_offset_errs++;
1483 break;
1484 case CQ_RX_ERROP_L4_PCLP:
1485 stats->rx.errop.l4_pclp++;
1486 break;
1487 case CQ_RX_ERROP_RBDR_TRUNC:
1488 stats->rx.errop.pkt_truncated++;
1489 break;
1490 }
1491
1492 return 1;
1493 }
1494
1495 /* Check for errors in the send cmp.queue entry */
1496 int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1497 struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1498 {
1499 struct cmp_queue_stats *stats = &cq->stats;
1500
1501 switch (cqe_tx->send_status) {
1502 case CQ_TX_ERROP_GOOD:
1503 stats->tx.good++;
1504 return 0;
1505 case CQ_TX_ERROP_DESC_FAULT:
1506 stats->tx.desc_fault++;
1507 break;
1508 case CQ_TX_ERROP_HDR_CONS_ERR:
1509 stats->tx.hdr_cons_err++;
1510 break;
1511 case CQ_TX_ERROP_SUBDC_ERR:
1512 stats->tx.subdesc_err++;
1513 break;
1514 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1515 stats->tx.imm_size_oflow++;
1516 break;
1517 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1518 stats->tx.data_seq_err++;
1519 break;
1520 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1521 stats->tx.mem_seq_err++;
1522 break;
1523 case CQ_TX_ERROP_LOCK_VIOL:
1524 stats->tx.lock_viol++;
1525 break;
1526 case CQ_TX_ERROP_DATA_FAULT:
1527 stats->tx.data_fault++;
1528 break;
1529 case CQ_TX_ERROP_TSTMP_CONFLICT:
1530 stats->tx.tstmp_conflict++;
1531 break;
1532 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1533 stats->tx.tstmp_timeout++;
1534 break;
1535 case CQ_TX_ERROP_MEM_FAULT:
1536 stats->tx.mem_fault++;
1537 break;
1538 case CQ_TX_ERROP_CK_OVERLAP:
1539 stats->tx.csum_overlap++;
1540 break;
1541 case CQ_TX_ERROP_CK_OFLOW:
1542 stats->tx.csum_overflow++;
1543 break;
1544 }
1545
1546 return 1;
1547 }