]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_queues.c
Merge remote-tracking branches 'spi/topic/res', 'spi/topic/rockchip', 'spi/topic...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20
21 /* Poll a register for a specific value */
22 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
23 u64 reg, int bit_pos, int bits, int val)
24 {
25 u64 bit_mask;
26 u64 reg_val;
27 int timeout = 10;
28
29 bit_mask = (1ULL << bits) - 1;
30 bit_mask = (bit_mask << bit_pos);
31
32 while (timeout) {
33 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
34 if (((reg_val & bit_mask) >> bit_pos) == val)
35 return 0;
36 usleep_range(1000, 2000);
37 timeout--;
38 }
39 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
40 return 1;
41 }
42
43 /* Allocate memory for a queue's descriptors */
44 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
45 int q_len, int desc_size, int align_bytes)
46 {
47 dmem->q_len = q_len;
48 dmem->size = (desc_size * q_len) + align_bytes;
49 /* Save address, need it while freeing */
50 dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
51 &dmem->dma, GFP_KERNEL);
52 if (!dmem->unalign_base)
53 return -ENOMEM;
54
55 /* Align memory address for 'align_bytes' */
56 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
57 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
58 return 0;
59 }
60
61 /* Free queue's descriptor memory */
62 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
63 {
64 if (!dmem)
65 return;
66
67 dma_free_coherent(&nic->pdev->dev, dmem->size,
68 dmem->unalign_base, dmem->dma);
69 dmem->unalign_base = NULL;
70 dmem->base = NULL;
71 }
72
73 /* Allocate buffer for packet reception
74 * HW returns memory address where packet is DMA'ed but not a pointer
75 * into RBDR ring, so save buffer address at the start of fragment and
76 * align the start address to a cache aligned address
77 */
78 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
79 u32 buf_len, u64 **rbuf)
80 {
81 int order = get_order(buf_len);
82
83 /* Check if request can be accomodated in previous allocated page */
84 if (nic->rb_page) {
85 if ((nic->rb_page_offset + buf_len + buf_len) >
86 (PAGE_SIZE << order)) {
87 nic->rb_page = NULL;
88 } else {
89 nic->rb_page_offset += buf_len;
90 get_page(nic->rb_page);
91 }
92 }
93
94 /* Allocate a new page */
95 if (!nic->rb_page) {
96 nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
97 order);
98 if (!nic->rb_page) {
99 netdev_err(nic->netdev,
100 "Failed to allocate new rcv buffer\n");
101 return -ENOMEM;
102 }
103 nic->rb_page_offset = 0;
104 }
105
106 *rbuf = (u64 *)((u64)page_address(nic->rb_page) + nic->rb_page_offset);
107
108 return 0;
109 }
110
111 /* Build skb around receive buffer */
112 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
113 u64 rb_ptr, int len)
114 {
115 void *data;
116 struct sk_buff *skb;
117
118 data = phys_to_virt(rb_ptr);
119
120 /* Now build an skb to give to stack */
121 skb = build_skb(data, RCV_FRAG_LEN);
122 if (!skb) {
123 put_page(virt_to_page(data));
124 return NULL;
125 }
126
127 prefetch(skb->data);
128 return skb;
129 }
130
131 /* Allocate RBDR ring and populate receive buffers */
132 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
133 int ring_len, int buf_size)
134 {
135 int idx;
136 u64 *rbuf;
137 struct rbdr_entry_t *desc;
138 int err;
139
140 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
141 sizeof(struct rbdr_entry_t),
142 NICVF_RCV_BUF_ALIGN_BYTES);
143 if (err)
144 return err;
145
146 rbdr->desc = rbdr->dmem.base;
147 /* Buffer size has to be in multiples of 128 bytes */
148 rbdr->dma_size = buf_size;
149 rbdr->enable = true;
150 rbdr->thresh = RBDR_THRESH;
151
152 nic->rb_page = NULL;
153 for (idx = 0; idx < ring_len; idx++) {
154 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
155 &rbuf);
156 if (err)
157 return err;
158
159 desc = GET_RBDR_DESC(rbdr, idx);
160 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
161 }
162 return 0;
163 }
164
165 /* Free RBDR ring and its receive buffers */
166 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
167 {
168 int head, tail;
169 u64 buf_addr;
170 struct rbdr_entry_t *desc;
171
172 if (!rbdr)
173 return;
174
175 rbdr->enable = false;
176 if (!rbdr->dmem.base)
177 return;
178
179 head = rbdr->head;
180 tail = rbdr->tail;
181
182 /* Free SKBs */
183 while (head != tail) {
184 desc = GET_RBDR_DESC(rbdr, head);
185 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
186 put_page(virt_to_page(phys_to_virt(buf_addr)));
187 head++;
188 head &= (rbdr->dmem.q_len - 1);
189 }
190 /* Free SKB of tail desc */
191 desc = GET_RBDR_DESC(rbdr, tail);
192 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
193 put_page(virt_to_page(phys_to_virt(buf_addr)));
194
195 /* Free RBDR ring */
196 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
197 }
198
199 /* Refill receive buffer descriptors with new buffers.
200 */
201 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
202 {
203 struct queue_set *qs = nic->qs;
204 int rbdr_idx = qs->rbdr_cnt;
205 int tail, qcount;
206 int refill_rb_cnt;
207 struct rbdr *rbdr;
208 struct rbdr_entry_t *desc;
209 u64 *rbuf;
210 int new_rb = 0;
211
212 refill:
213 if (!rbdr_idx)
214 return;
215 rbdr_idx--;
216 rbdr = &qs->rbdr[rbdr_idx];
217 /* Check if it's enabled */
218 if (!rbdr->enable)
219 goto next_rbdr;
220
221 /* Get no of desc's to be refilled */
222 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
223 qcount &= 0x7FFFF;
224 /* Doorbell can be ringed with a max of ring size minus 1 */
225 if (qcount >= (qs->rbdr_len - 1))
226 goto next_rbdr;
227 else
228 refill_rb_cnt = qs->rbdr_len - qcount - 1;
229
230 /* Start filling descs from tail */
231 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
232 while (refill_rb_cnt) {
233 tail++;
234 tail &= (rbdr->dmem.q_len - 1);
235
236 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
237 break;
238
239 desc = GET_RBDR_DESC(rbdr, tail);
240 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
241 refill_rb_cnt--;
242 new_rb++;
243 }
244
245 /* make sure all memory stores are done before ringing doorbell */
246 smp_wmb();
247
248 /* Check if buffer allocation failed */
249 if (refill_rb_cnt)
250 nic->rb_alloc_fail = true;
251 else
252 nic->rb_alloc_fail = false;
253
254 /* Notify HW */
255 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
256 rbdr_idx, new_rb);
257 next_rbdr:
258 /* Re-enable RBDR interrupts only if buffer allocation is success */
259 if (!nic->rb_alloc_fail && rbdr->enable)
260 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
261
262 if (rbdr_idx)
263 goto refill;
264 }
265
266 /* Alloc rcv buffers in non-atomic mode for better success */
267 void nicvf_rbdr_work(struct work_struct *work)
268 {
269 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
270
271 nicvf_refill_rbdr(nic, GFP_KERNEL);
272 if (nic->rb_alloc_fail)
273 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
274 else
275 nic->rb_work_scheduled = false;
276 }
277
278 /* In Softirq context, alloc rcv buffers in atomic mode */
279 void nicvf_rbdr_task(unsigned long data)
280 {
281 struct nicvf *nic = (struct nicvf *)data;
282
283 nicvf_refill_rbdr(nic, GFP_ATOMIC);
284 if (nic->rb_alloc_fail) {
285 nic->rb_work_scheduled = true;
286 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
287 }
288 }
289
290 /* Initialize completion queue */
291 static int nicvf_init_cmp_queue(struct nicvf *nic,
292 struct cmp_queue *cq, int q_len)
293 {
294 int err;
295
296 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
297 NICVF_CQ_BASE_ALIGN_BYTES);
298 if (err)
299 return err;
300
301 cq->desc = cq->dmem.base;
302 cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
303 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
304
305 return 0;
306 }
307
308 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
309 {
310 if (!cq)
311 return;
312 if (!cq->dmem.base)
313 return;
314
315 nicvf_free_q_desc_mem(nic, &cq->dmem);
316 }
317
318 /* Initialize transmit queue */
319 static int nicvf_init_snd_queue(struct nicvf *nic,
320 struct snd_queue *sq, int q_len)
321 {
322 int err;
323
324 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
325 NICVF_SQ_BASE_ALIGN_BYTES);
326 if (err)
327 return err;
328
329 sq->desc = sq->dmem.base;
330 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
331 if (!sq->skbuff)
332 return -ENOMEM;
333 sq->head = 0;
334 sq->tail = 0;
335 atomic_set(&sq->free_cnt, q_len - 1);
336 sq->thresh = SND_QUEUE_THRESH;
337
338 /* Preallocate memory for TSO segment's header */
339 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
340 q_len * TSO_HEADER_SIZE,
341 &sq->tso_hdrs_phys, GFP_KERNEL);
342 if (!sq->tso_hdrs)
343 return -ENOMEM;
344
345 return 0;
346 }
347
348 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
349 {
350 if (!sq)
351 return;
352 if (!sq->dmem.base)
353 return;
354
355 if (sq->tso_hdrs)
356 dma_free_coherent(&nic->pdev->dev,
357 sq->dmem.q_len * TSO_HEADER_SIZE,
358 sq->tso_hdrs, sq->tso_hdrs_phys);
359
360 kfree(sq->skbuff);
361 nicvf_free_q_desc_mem(nic, &sq->dmem);
362 }
363
364 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
365 struct queue_set *qs, int qidx)
366 {
367 /* Disable send queue */
368 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
369 /* Check if SQ is stopped */
370 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
371 return;
372 /* Reset send queue */
373 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
374 }
375
376 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
377 struct queue_set *qs, int qidx)
378 {
379 union nic_mbx mbx = {};
380
381 /* Make sure all packets in the pipeline are written back into mem */
382 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
383 nicvf_send_msg_to_pf(nic, &mbx);
384 }
385
386 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
387 struct queue_set *qs, int qidx)
388 {
389 /* Disable timer threshold (doesn't get reset upon CQ reset */
390 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
391 /* Disable completion queue */
392 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
393 /* Reset completion queue */
394 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
395 }
396
397 static void nicvf_reclaim_rbdr(struct nicvf *nic,
398 struct rbdr *rbdr, int qidx)
399 {
400 u64 tmp, fifo_state;
401 int timeout = 10;
402
403 /* Save head and tail pointers for feeing up buffers */
404 rbdr->head = nicvf_queue_reg_read(nic,
405 NIC_QSET_RBDR_0_1_HEAD,
406 qidx) >> 3;
407 rbdr->tail = nicvf_queue_reg_read(nic,
408 NIC_QSET_RBDR_0_1_TAIL,
409 qidx) >> 3;
410
411 /* If RBDR FIFO is in 'FAIL' state then do a reset first
412 * before relaiming.
413 */
414 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
415 if (((fifo_state >> 62) & 0x03) == 0x3)
416 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
417 qidx, NICVF_RBDR_RESET);
418
419 /* Disable RBDR */
420 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
421 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
422 return;
423 while (1) {
424 tmp = nicvf_queue_reg_read(nic,
425 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
426 qidx);
427 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
428 break;
429 usleep_range(1000, 2000);
430 timeout--;
431 if (!timeout) {
432 netdev_err(nic->netdev,
433 "Failed polling on prefetch status\n");
434 return;
435 }
436 }
437 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
438 qidx, NICVF_RBDR_RESET);
439
440 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
441 return;
442 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
443 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
444 return;
445 }
446
447 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
448 {
449 u64 rq_cfg;
450 int sqs;
451
452 rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
453
454 /* Enable first VLAN stripping */
455 if (features & NETIF_F_HW_VLAN_CTAG_RX)
456 rq_cfg |= (1ULL << 25);
457 else
458 rq_cfg &= ~(1ULL << 25);
459 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
460
461 /* Configure Secondary Qsets, if any */
462 for (sqs = 0; sqs < nic->sqs_count; sqs++)
463 if (nic->snicvf[sqs])
464 nicvf_queue_reg_write(nic->snicvf[sqs],
465 NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
466 }
467
468 /* Configures receive queue */
469 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
470 int qidx, bool enable)
471 {
472 union nic_mbx mbx = {};
473 struct rcv_queue *rq;
474 struct rq_cfg rq_cfg;
475
476 rq = &qs->rq[qidx];
477 rq->enable = enable;
478
479 /* Disable receive queue */
480 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
481
482 if (!rq->enable) {
483 nicvf_reclaim_rcv_queue(nic, qs, qidx);
484 return;
485 }
486
487 rq->cq_qs = qs->vnic_id;
488 rq->cq_idx = qidx;
489 rq->start_rbdr_qs = qs->vnic_id;
490 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
491 rq->cont_rbdr_qs = qs->vnic_id;
492 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
493 /* all writes of RBDR data to be loaded into L2 Cache as well*/
494 rq->caching = 1;
495
496 /* Send a mailbox msg to PF to config RQ */
497 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
498 mbx.rq.qs_num = qs->vnic_id;
499 mbx.rq.rq_num = qidx;
500 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
501 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
502 (rq->cont_qs_rbdr_idx << 8) |
503 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
504 nicvf_send_msg_to_pf(nic, &mbx);
505
506 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
507 mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
508 nicvf_send_msg_to_pf(nic, &mbx);
509
510 /* RQ drop config
511 * Enable CQ drop to reserve sufficient CQEs for all tx packets
512 */
513 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
514 mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
515 nicvf_send_msg_to_pf(nic, &mbx);
516
517 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
518 if (!nic->sqs_mode)
519 nicvf_config_vlan_stripping(nic, nic->netdev->features);
520
521 /* Enable Receive queue */
522 rq_cfg.ena = 1;
523 rq_cfg.tcp_ena = 0;
524 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
525 }
526
527 /* Configures completion queue */
528 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
529 int qidx, bool enable)
530 {
531 struct cmp_queue *cq;
532 struct cq_cfg cq_cfg;
533
534 cq = &qs->cq[qidx];
535 cq->enable = enable;
536
537 if (!cq->enable) {
538 nicvf_reclaim_cmp_queue(nic, qs, qidx);
539 return;
540 }
541
542 /* Reset completion queue */
543 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
544
545 if (!cq->enable)
546 return;
547
548 spin_lock_init(&cq->lock);
549 /* Set completion queue base address */
550 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
551 qidx, (u64)(cq->dmem.phys_base));
552
553 /* Enable Completion queue */
554 cq_cfg.ena = 1;
555 cq_cfg.reset = 0;
556 cq_cfg.caching = 0;
557 cq_cfg.qsize = CMP_QSIZE;
558 cq_cfg.avg_con = 0;
559 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
560
561 /* Set threshold value for interrupt generation */
562 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
563 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
564 qidx, CMP_QUEUE_TIMER_THRESH);
565 }
566
567 /* Configures transmit queue */
568 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
569 int qidx, bool enable)
570 {
571 union nic_mbx mbx = {};
572 struct snd_queue *sq;
573 struct sq_cfg sq_cfg;
574
575 sq = &qs->sq[qidx];
576 sq->enable = enable;
577
578 if (!sq->enable) {
579 nicvf_reclaim_snd_queue(nic, qs, qidx);
580 return;
581 }
582
583 /* Reset send queue */
584 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
585
586 sq->cq_qs = qs->vnic_id;
587 sq->cq_idx = qidx;
588
589 /* Send a mailbox msg to PF to config SQ */
590 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
591 mbx.sq.qs_num = qs->vnic_id;
592 mbx.sq.sq_num = qidx;
593 mbx.sq.sqs_mode = nic->sqs_mode;
594 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
595 nicvf_send_msg_to_pf(nic, &mbx);
596
597 /* Set queue base address */
598 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
599 qidx, (u64)(sq->dmem.phys_base));
600
601 /* Enable send queue & set queue size */
602 sq_cfg.ena = 1;
603 sq_cfg.reset = 0;
604 sq_cfg.ldwb = 0;
605 sq_cfg.qsize = SND_QSIZE;
606 sq_cfg.tstmp_bgx_intf = 0;
607 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
608
609 /* Set threshold value for interrupt generation */
610 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
611
612 /* Set queue:cpu affinity for better load distribution */
613 if (cpu_online(qidx)) {
614 cpumask_set_cpu(qidx, &sq->affinity_mask);
615 netif_set_xps_queue(nic->netdev,
616 &sq->affinity_mask, qidx);
617 }
618 }
619
620 /* Configures receive buffer descriptor ring */
621 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
622 int qidx, bool enable)
623 {
624 struct rbdr *rbdr;
625 struct rbdr_cfg rbdr_cfg;
626
627 rbdr = &qs->rbdr[qidx];
628 nicvf_reclaim_rbdr(nic, rbdr, qidx);
629 if (!enable)
630 return;
631
632 /* Set descriptor base address */
633 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
634 qidx, (u64)(rbdr->dmem.phys_base));
635
636 /* Enable RBDR & set queue size */
637 /* Buffer size should be in multiples of 128 bytes */
638 rbdr_cfg.ena = 1;
639 rbdr_cfg.reset = 0;
640 rbdr_cfg.ldwb = 0;
641 rbdr_cfg.qsize = RBDR_SIZE;
642 rbdr_cfg.avg_con = 0;
643 rbdr_cfg.lines = rbdr->dma_size / 128;
644 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
645 qidx, *(u64 *)&rbdr_cfg);
646
647 /* Notify HW */
648 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
649 qidx, qs->rbdr_len - 1);
650
651 /* Set threshold value for interrupt generation */
652 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
653 qidx, rbdr->thresh - 1);
654 }
655
656 /* Requests PF to assign and enable Qset */
657 void nicvf_qset_config(struct nicvf *nic, bool enable)
658 {
659 union nic_mbx mbx = {};
660 struct queue_set *qs = nic->qs;
661 struct qs_cfg *qs_cfg;
662
663 if (!qs) {
664 netdev_warn(nic->netdev,
665 "Qset is still not allocated, don't init queues\n");
666 return;
667 }
668
669 qs->enable = enable;
670 qs->vnic_id = nic->vf_id;
671
672 /* Send a mailbox msg to PF to config Qset */
673 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
674 mbx.qs.num = qs->vnic_id;
675 mbx.qs.sqs_count = nic->sqs_count;
676
677 mbx.qs.cfg = 0;
678 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
679 if (qs->enable) {
680 qs_cfg->ena = 1;
681 #ifdef __BIG_ENDIAN
682 qs_cfg->be = 1;
683 #endif
684 qs_cfg->vnic = qs->vnic_id;
685 }
686 nicvf_send_msg_to_pf(nic, &mbx);
687 }
688
689 static void nicvf_free_resources(struct nicvf *nic)
690 {
691 int qidx;
692 struct queue_set *qs = nic->qs;
693
694 /* Free receive buffer descriptor ring */
695 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
696 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
697
698 /* Free completion queue */
699 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
700 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
701
702 /* Free send queue */
703 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
704 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
705 }
706
707 static int nicvf_alloc_resources(struct nicvf *nic)
708 {
709 int qidx;
710 struct queue_set *qs = nic->qs;
711
712 /* Alloc receive buffer descriptor ring */
713 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
714 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
715 DMA_BUFFER_LEN))
716 goto alloc_fail;
717 }
718
719 /* Alloc send queue */
720 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
721 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
722 goto alloc_fail;
723 }
724
725 /* Alloc completion queue */
726 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
727 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
728 goto alloc_fail;
729 }
730
731 return 0;
732 alloc_fail:
733 nicvf_free_resources(nic);
734 return -ENOMEM;
735 }
736
737 int nicvf_set_qset_resources(struct nicvf *nic)
738 {
739 struct queue_set *qs;
740
741 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
742 if (!qs)
743 return -ENOMEM;
744 nic->qs = qs;
745
746 /* Set count of each queue */
747 qs->rbdr_cnt = RBDR_CNT;
748 qs->rq_cnt = RCV_QUEUE_CNT;
749 qs->sq_cnt = SND_QUEUE_CNT;
750 qs->cq_cnt = CMP_QUEUE_CNT;
751
752 /* Set queue lengths */
753 qs->rbdr_len = RCV_BUF_COUNT;
754 qs->sq_len = SND_QUEUE_LEN;
755 qs->cq_len = CMP_QUEUE_LEN;
756
757 nic->rx_queues = qs->rq_cnt;
758 nic->tx_queues = qs->sq_cnt;
759
760 return 0;
761 }
762
763 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
764 {
765 bool disable = false;
766 struct queue_set *qs = nic->qs;
767 int qidx;
768
769 if (!qs)
770 return 0;
771
772 if (enable) {
773 if (nicvf_alloc_resources(nic))
774 return -ENOMEM;
775
776 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
777 nicvf_snd_queue_config(nic, qs, qidx, enable);
778 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
779 nicvf_cmp_queue_config(nic, qs, qidx, enable);
780 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
781 nicvf_rbdr_config(nic, qs, qidx, enable);
782 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
783 nicvf_rcv_queue_config(nic, qs, qidx, enable);
784 } else {
785 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
786 nicvf_rcv_queue_config(nic, qs, qidx, disable);
787 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
788 nicvf_rbdr_config(nic, qs, qidx, disable);
789 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
790 nicvf_snd_queue_config(nic, qs, qidx, disable);
791 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
792 nicvf_cmp_queue_config(nic, qs, qidx, disable);
793
794 nicvf_free_resources(nic);
795 }
796
797 return 0;
798 }
799
800 /* Get a free desc from SQ
801 * returns descriptor ponter & descriptor number
802 */
803 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
804 {
805 int qentry;
806
807 qentry = sq->tail;
808 atomic_sub(desc_cnt, &sq->free_cnt);
809 sq->tail += desc_cnt;
810 sq->tail &= (sq->dmem.q_len - 1);
811
812 return qentry;
813 }
814
815 /* Free descriptor back to SQ for future use */
816 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
817 {
818 atomic_add(desc_cnt, &sq->free_cnt);
819 sq->head += desc_cnt;
820 sq->head &= (sq->dmem.q_len - 1);
821 }
822
823 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
824 {
825 qentry++;
826 qentry &= (sq->dmem.q_len - 1);
827 return qentry;
828 }
829
830 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
831 {
832 u64 sq_cfg;
833
834 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
835 sq_cfg |= NICVF_SQ_EN;
836 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
837 /* Ring doorbell so that H/W restarts processing SQEs */
838 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
839 }
840
841 void nicvf_sq_disable(struct nicvf *nic, int qidx)
842 {
843 u64 sq_cfg;
844
845 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
846 sq_cfg &= ~NICVF_SQ_EN;
847 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
848 }
849
850 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
851 int qidx)
852 {
853 u64 head, tail;
854 struct sk_buff *skb;
855 struct nicvf *nic = netdev_priv(netdev);
856 struct sq_hdr_subdesc *hdr;
857
858 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
859 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
860 while (sq->head != head) {
861 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
862 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
863 nicvf_put_sq_desc(sq, 1);
864 continue;
865 }
866 skb = (struct sk_buff *)sq->skbuff[sq->head];
867 if (skb)
868 dev_kfree_skb_any(skb);
869 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
870 atomic64_add(hdr->tot_len,
871 (atomic64_t *)&netdev->stats.tx_bytes);
872 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
873 }
874 }
875
876 /* Calculate no of SQ subdescriptors needed to transmit all
877 * segments of this TSO packet.
878 * Taken from 'Tilera network driver' with a minor modification.
879 */
880 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
881 {
882 struct skb_shared_info *sh = skb_shinfo(skb);
883 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
884 unsigned int data_len = skb->len - sh_len;
885 unsigned int p_len = sh->gso_size;
886 long f_id = -1; /* id of the current fragment */
887 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
888 long f_used = 0; /* bytes used from the current fragment */
889 long n; /* size of the current piece of payload */
890 int num_edescs = 0;
891 int segment;
892
893 for (segment = 0; segment < sh->gso_segs; segment++) {
894 unsigned int p_used = 0;
895
896 /* One edesc for header and for each piece of the payload. */
897 for (num_edescs++; p_used < p_len; num_edescs++) {
898 /* Advance as needed. */
899 while (f_used >= f_size) {
900 f_id++;
901 f_size = skb_frag_size(&sh->frags[f_id]);
902 f_used = 0;
903 }
904
905 /* Use bytes from the current fragment. */
906 n = p_len - p_used;
907 if (n > f_size - f_used)
908 n = f_size - f_used;
909 f_used += n;
910 p_used += n;
911 }
912
913 /* The last segment may be less than gso_size. */
914 data_len -= p_len;
915 if (data_len < p_len)
916 p_len = data_len;
917 }
918
919 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
920 return num_edescs + sh->gso_segs;
921 }
922
923 /* Get the number of SQ descriptors needed to xmit this skb */
924 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
925 {
926 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
927
928 if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
929 subdesc_cnt = nicvf_tso_count_subdescs(skb);
930 return subdesc_cnt;
931 }
932
933 if (skb_shinfo(skb)->nr_frags)
934 subdesc_cnt += skb_shinfo(skb)->nr_frags;
935
936 return subdesc_cnt;
937 }
938
939 /* Add SQ HEADER subdescriptor.
940 * First subdescriptor for every send descriptor.
941 */
942 static inline void
943 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
944 int subdesc_cnt, struct sk_buff *skb, int len)
945 {
946 int proto;
947 struct sq_hdr_subdesc *hdr;
948
949 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
950 sq->skbuff[qentry] = (u64)skb;
951
952 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
953 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
954 /* Enable notification via CQE after processing SQE */
955 hdr->post_cqe = 1;
956 /* No of subdescriptors following this */
957 hdr->subdesc_cnt = subdesc_cnt;
958 hdr->tot_len = len;
959
960 /* Offload checksum calculation to HW */
961 if (skb->ip_summed == CHECKSUM_PARTIAL) {
962 hdr->csum_l3 = 1; /* Enable IP csum calculation */
963 hdr->l3_offset = skb_network_offset(skb);
964 hdr->l4_offset = skb_transport_offset(skb);
965
966 proto = ip_hdr(skb)->protocol;
967 switch (proto) {
968 case IPPROTO_TCP:
969 hdr->csum_l4 = SEND_L4_CSUM_TCP;
970 break;
971 case IPPROTO_UDP:
972 hdr->csum_l4 = SEND_L4_CSUM_UDP;
973 break;
974 case IPPROTO_SCTP:
975 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
976 break;
977 }
978 }
979
980 if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
981 hdr->tso = 1;
982 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
983 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
984 /* For non-tunneled pkts, point this to L2 ethertype */
985 hdr->inner_l3_offset = skb_network_offset(skb) - 2;
986 nic->drv_stats.tx_tso++;
987 }
988 }
989
990 /* SQ GATHER subdescriptor
991 * Must follow HDR descriptor
992 */
993 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
994 int size, u64 data)
995 {
996 struct sq_gather_subdesc *gather;
997
998 qentry &= (sq->dmem.q_len - 1);
999 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1000
1001 memset(gather, 0, SND_QUEUE_DESC_SIZE);
1002 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1003 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1004 gather->size = size;
1005 gather->addr = data;
1006 }
1007
1008 /* Segment a TSO packet into 'gso_size' segments and append
1009 * them to SQ for transfer
1010 */
1011 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1012 int sq_num, int qentry, struct sk_buff *skb)
1013 {
1014 struct tso_t tso;
1015 int seg_subdescs = 0, desc_cnt = 0;
1016 int seg_len, total_len, data_left;
1017 int hdr_qentry = qentry;
1018 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1019
1020 tso_start(skb, &tso);
1021 total_len = skb->len - hdr_len;
1022 while (total_len > 0) {
1023 char *hdr;
1024
1025 /* Save Qentry for adding HDR_SUBDESC at the end */
1026 hdr_qentry = qentry;
1027
1028 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1029 total_len -= data_left;
1030
1031 /* Add segment's header */
1032 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1033 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1034 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1035 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1036 sq->tso_hdrs_phys +
1037 qentry * TSO_HEADER_SIZE);
1038 /* HDR_SUDESC + GATHER */
1039 seg_subdescs = 2;
1040 seg_len = hdr_len;
1041
1042 /* Add segment's payload fragments */
1043 while (data_left > 0) {
1044 int size;
1045
1046 size = min_t(int, tso.size, data_left);
1047
1048 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1049 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1050 virt_to_phys(tso.data));
1051 seg_subdescs++;
1052 seg_len += size;
1053
1054 data_left -= size;
1055 tso_build_data(skb, &tso, size);
1056 }
1057 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1058 seg_subdescs - 1, skb, seg_len);
1059 sq->skbuff[hdr_qentry] = (u64)NULL;
1060 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1061
1062 desc_cnt += seg_subdescs;
1063 }
1064 /* Save SKB in the last segment for freeing */
1065 sq->skbuff[hdr_qentry] = (u64)skb;
1066
1067 /* make sure all memory stores are done before ringing doorbell */
1068 smp_wmb();
1069
1070 /* Inform HW to xmit all TSO segments */
1071 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1072 sq_num, desc_cnt);
1073 nic->drv_stats.tx_tso++;
1074 return 1;
1075 }
1076
1077 /* Append an skb to a SQ for packet transfer. */
1078 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1079 {
1080 int i, size;
1081 int subdesc_cnt;
1082 int sq_num, qentry;
1083 struct queue_set *qs;
1084 struct snd_queue *sq;
1085
1086 sq_num = skb_get_queue_mapping(skb);
1087 if (sq_num >= MAX_SND_QUEUES_PER_QS) {
1088 /* Get secondary Qset's SQ structure */
1089 i = sq_num / MAX_SND_QUEUES_PER_QS;
1090 if (!nic->snicvf[i - 1]) {
1091 netdev_warn(nic->netdev,
1092 "Secondary Qset#%d's ptr not initialized\n",
1093 i - 1);
1094 return 1;
1095 }
1096 nic = (struct nicvf *)nic->snicvf[i - 1];
1097 sq_num = sq_num % MAX_SND_QUEUES_PER_QS;
1098 }
1099
1100 qs = nic->qs;
1101 sq = &qs->sq[sq_num];
1102
1103 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1104 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1105 goto append_fail;
1106
1107 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1108
1109 /* Check if its a TSO packet */
1110 if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1111 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1112
1113 /* Add SQ header subdesc */
1114 nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1115 skb, skb->len);
1116
1117 /* Add SQ gather subdescs */
1118 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1119 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1120 nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1121
1122 /* Check for scattered buffer */
1123 if (!skb_is_nonlinear(skb))
1124 goto doorbell;
1125
1126 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1127 const struct skb_frag_struct *frag;
1128
1129 frag = &skb_shinfo(skb)->frags[i];
1130
1131 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1132 size = skb_frag_size(frag);
1133 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1134 virt_to_phys(
1135 skb_frag_address(frag)));
1136 }
1137
1138 doorbell:
1139 /* make sure all memory stores are done before ringing doorbell */
1140 smp_wmb();
1141
1142 /* Inform HW to xmit new packet */
1143 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1144 sq_num, subdesc_cnt);
1145 return 1;
1146
1147 append_fail:
1148 /* Use original PCI dev for debug log */
1149 nic = nic->pnicvf;
1150 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1151 return 0;
1152 }
1153
1154 static inline unsigned frag_num(unsigned i)
1155 {
1156 #ifdef __BIG_ENDIAN
1157 return (i & ~3) + 3 - (i & 3);
1158 #else
1159 return i;
1160 #endif
1161 }
1162
1163 /* Returns SKB for a received packet */
1164 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1165 {
1166 int frag;
1167 int payload_len = 0;
1168 struct sk_buff *skb = NULL;
1169 struct sk_buff *skb_frag = NULL;
1170 struct sk_buff *prev_frag = NULL;
1171 u16 *rb_lens = NULL;
1172 u64 *rb_ptrs = NULL;
1173
1174 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1175 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1176
1177 netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1178 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1179
1180 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1181 payload_len = rb_lens[frag_num(frag)];
1182 if (!frag) {
1183 /* First fragment */
1184 skb = nicvf_rb_ptr_to_skb(nic,
1185 *rb_ptrs - cqe_rx->align_pad,
1186 payload_len);
1187 if (!skb)
1188 return NULL;
1189 skb_reserve(skb, cqe_rx->align_pad);
1190 skb_put(skb, payload_len);
1191 } else {
1192 /* Add fragments */
1193 skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1194 payload_len);
1195 if (!skb_frag) {
1196 dev_kfree_skb(skb);
1197 return NULL;
1198 }
1199
1200 if (!skb_shinfo(skb)->frag_list)
1201 skb_shinfo(skb)->frag_list = skb_frag;
1202 else
1203 prev_frag->next = skb_frag;
1204
1205 prev_frag = skb_frag;
1206 skb->len += payload_len;
1207 skb->data_len += payload_len;
1208 skb_frag->len = payload_len;
1209 }
1210 /* Next buffer pointer */
1211 rb_ptrs++;
1212 }
1213 return skb;
1214 }
1215
1216 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1217 {
1218 u64 reg_val;
1219
1220 switch (int_type) {
1221 case NICVF_INTR_CQ:
1222 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1223 break;
1224 case NICVF_INTR_SQ:
1225 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1226 break;
1227 case NICVF_INTR_RBDR:
1228 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1229 break;
1230 case NICVF_INTR_PKT_DROP:
1231 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1232 break;
1233 case NICVF_INTR_TCP_TIMER:
1234 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1235 break;
1236 case NICVF_INTR_MBOX:
1237 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1238 break;
1239 case NICVF_INTR_QS_ERR:
1240 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1241 break;
1242 default:
1243 reg_val = 0;
1244 }
1245
1246 return reg_val;
1247 }
1248
1249 /* Enable interrupt */
1250 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1251 {
1252 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1253
1254 if (!mask) {
1255 netdev_dbg(nic->netdev,
1256 "Failed to enable interrupt: unknown type\n");
1257 return;
1258 }
1259 nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1260 nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1261 }
1262
1263 /* Disable interrupt */
1264 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1265 {
1266 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1267
1268 if (!mask) {
1269 netdev_dbg(nic->netdev,
1270 "Failed to disable interrupt: unknown type\n");
1271 return;
1272 }
1273
1274 nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1275 }
1276
1277 /* Clear interrupt */
1278 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1279 {
1280 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1281
1282 if (!mask) {
1283 netdev_dbg(nic->netdev,
1284 "Failed to clear interrupt: unknown type\n");
1285 return;
1286 }
1287
1288 nicvf_reg_write(nic, NIC_VF_INT, mask);
1289 }
1290
1291 /* Check if interrupt is enabled */
1292 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1293 {
1294 u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1295 /* If interrupt type is unknown, we treat it disabled. */
1296 if (!mask) {
1297 netdev_dbg(nic->netdev,
1298 "Failed to check interrupt enable: unknown type\n");
1299 return 0;
1300 }
1301
1302 return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1303 }
1304
1305 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1306 {
1307 struct rcv_queue *rq;
1308
1309 #define GET_RQ_STATS(reg) \
1310 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1311 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1312
1313 rq = &nic->qs->rq[rq_idx];
1314 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1315 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1316 }
1317
1318 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1319 {
1320 struct snd_queue *sq;
1321
1322 #define GET_SQ_STATS(reg) \
1323 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1324 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1325
1326 sq = &nic->qs->sq[sq_idx];
1327 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1328 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1329 }
1330
1331 /* Check for errors in the receive cmp.queue entry */
1332 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1333 {
1334 struct nicvf_hw_stats *stats = &nic->hw_stats;
1335
1336 if (!cqe_rx->err_level && !cqe_rx->err_opcode)
1337 return 0;
1338
1339 if (netif_msg_rx_err(nic))
1340 netdev_err(nic->netdev,
1341 "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1342 nic->netdev->name,
1343 cqe_rx->err_level, cqe_rx->err_opcode);
1344
1345 switch (cqe_rx->err_opcode) {
1346 case CQ_RX_ERROP_RE_PARTIAL:
1347 stats->rx_bgx_truncated_pkts++;
1348 break;
1349 case CQ_RX_ERROP_RE_JABBER:
1350 stats->rx_jabber_errs++;
1351 break;
1352 case CQ_RX_ERROP_RE_FCS:
1353 stats->rx_fcs_errs++;
1354 break;
1355 case CQ_RX_ERROP_RE_RX_CTL:
1356 stats->rx_bgx_errs++;
1357 break;
1358 case CQ_RX_ERROP_PREL2_ERR:
1359 stats->rx_prel2_errs++;
1360 break;
1361 case CQ_RX_ERROP_L2_MAL:
1362 stats->rx_l2_hdr_malformed++;
1363 break;
1364 case CQ_RX_ERROP_L2_OVERSIZE:
1365 stats->rx_oversize++;
1366 break;
1367 case CQ_RX_ERROP_L2_UNDERSIZE:
1368 stats->rx_undersize++;
1369 break;
1370 case CQ_RX_ERROP_L2_LENMISM:
1371 stats->rx_l2_len_mismatch++;
1372 break;
1373 case CQ_RX_ERROP_L2_PCLP:
1374 stats->rx_l2_pclp++;
1375 break;
1376 case CQ_RX_ERROP_IP_NOT:
1377 stats->rx_ip_ver_errs++;
1378 break;
1379 case CQ_RX_ERROP_IP_CSUM_ERR:
1380 stats->rx_ip_csum_errs++;
1381 break;
1382 case CQ_RX_ERROP_IP_MAL:
1383 stats->rx_ip_hdr_malformed++;
1384 break;
1385 case CQ_RX_ERROP_IP_MALD:
1386 stats->rx_ip_payload_malformed++;
1387 break;
1388 case CQ_RX_ERROP_IP_HOP:
1389 stats->rx_ip_ttl_errs++;
1390 break;
1391 case CQ_RX_ERROP_L3_PCLP:
1392 stats->rx_l3_pclp++;
1393 break;
1394 case CQ_RX_ERROP_L4_MAL:
1395 stats->rx_l4_malformed++;
1396 break;
1397 case CQ_RX_ERROP_L4_CHK:
1398 stats->rx_l4_csum_errs++;
1399 break;
1400 case CQ_RX_ERROP_UDP_LEN:
1401 stats->rx_udp_len_errs++;
1402 break;
1403 case CQ_RX_ERROP_L4_PORT:
1404 stats->rx_l4_port_errs++;
1405 break;
1406 case CQ_RX_ERROP_TCP_FLAG:
1407 stats->rx_tcp_flag_errs++;
1408 break;
1409 case CQ_RX_ERROP_TCP_OFFSET:
1410 stats->rx_tcp_offset_errs++;
1411 break;
1412 case CQ_RX_ERROP_L4_PCLP:
1413 stats->rx_l4_pclp++;
1414 break;
1415 case CQ_RX_ERROP_RBDR_TRUNC:
1416 stats->rx_truncated_pkts++;
1417 break;
1418 }
1419
1420 return 1;
1421 }
1422
1423 /* Check for errors in the send cmp.queue entry */
1424 int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1425 struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1426 {
1427 struct cmp_queue_stats *stats = &cq->stats;
1428
1429 switch (cqe_tx->send_status) {
1430 case CQ_TX_ERROP_GOOD:
1431 stats->tx.good++;
1432 return 0;
1433 case CQ_TX_ERROP_DESC_FAULT:
1434 stats->tx.desc_fault++;
1435 break;
1436 case CQ_TX_ERROP_HDR_CONS_ERR:
1437 stats->tx.hdr_cons_err++;
1438 break;
1439 case CQ_TX_ERROP_SUBDC_ERR:
1440 stats->tx.subdesc_err++;
1441 break;
1442 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1443 stats->tx.imm_size_oflow++;
1444 break;
1445 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1446 stats->tx.data_seq_err++;
1447 break;
1448 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1449 stats->tx.mem_seq_err++;
1450 break;
1451 case CQ_TX_ERROP_LOCK_VIOL:
1452 stats->tx.lock_viol++;
1453 break;
1454 case CQ_TX_ERROP_DATA_FAULT:
1455 stats->tx.data_fault++;
1456 break;
1457 case CQ_TX_ERROP_TSTMP_CONFLICT:
1458 stats->tx.tstmp_conflict++;
1459 break;
1460 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1461 stats->tx.tstmp_timeout++;
1462 break;
1463 case CQ_TX_ERROP_MEM_FAULT:
1464 stats->tx.mem_fault++;
1465 break;
1466 case CQ_TX_ERROP_CK_OVERLAP:
1467 stats->tx.csum_overlap++;
1468 break;
1469 case CQ_TX_ERROP_CK_OFLOW:
1470 stats->tx.csum_overflow++;
1471 break;
1472 }
1473
1474 return 1;
1475 }