]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_queues.c
Merge tag 'dmaengine-4.2-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20
21 struct rbuf_info {
22 struct page *page;
23 void *data;
24 u64 offset;
25 };
26
27 #define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28
29 /* Poll a register for a specific value */
30 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 u64 reg, int bit_pos, int bits, int val)
32 {
33 u64 bit_mask;
34 u64 reg_val;
35 int timeout = 10;
36
37 bit_mask = (1ULL << bits) - 1;
38 bit_mask = (bit_mask << bit_pos);
39
40 while (timeout) {
41 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 if (((reg_val & bit_mask) >> bit_pos) == val)
43 return 0;
44 usleep_range(1000, 2000);
45 timeout--;
46 }
47 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 return 1;
49 }
50
51 /* Allocate memory for a queue's descriptors */
52 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 int q_len, int desc_size, int align_bytes)
54 {
55 dmem->q_len = q_len;
56 dmem->size = (desc_size * q_len) + align_bytes;
57 /* Save address, need it while freeing */
58 dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 &dmem->dma, GFP_KERNEL);
60 if (!dmem->unalign_base)
61 return -ENOMEM;
62
63 /* Align memory address for 'align_bytes' */
64 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
65 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
66 return 0;
67 }
68
69 /* Free queue's descriptor memory */
70 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
71 {
72 if (!dmem)
73 return;
74
75 dma_free_coherent(&nic->pdev->dev, dmem->size,
76 dmem->unalign_base, dmem->dma);
77 dmem->unalign_base = NULL;
78 dmem->base = NULL;
79 }
80
81 /* Allocate buffer for packet reception
82 * HW returns memory address where packet is DMA'ed but not a pointer
83 * into RBDR ring, so save buffer address at the start of fragment and
84 * align the start address to a cache aligned address
85 */
86 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
87 u32 buf_len, u64 **rbuf)
88 {
89 u64 data;
90 struct rbuf_info *rinfo;
91 int order = get_order(buf_len);
92
93 /* Check if request can be accomodated in previous allocated page */
94 if (nic->rb_page) {
95 if ((nic->rb_page_offset + buf_len + buf_len) >
96 (PAGE_SIZE << order)) {
97 nic->rb_page = NULL;
98 } else {
99 nic->rb_page_offset += buf_len;
100 get_page(nic->rb_page);
101 }
102 }
103
104 /* Allocate a new page */
105 if (!nic->rb_page) {
106 nic->rb_page = alloc_pages(gfp | __GFP_COMP, order);
107 if (!nic->rb_page) {
108 netdev_err(nic->netdev, "Failed to allocate new rcv buffer\n");
109 return -ENOMEM;
110 }
111 nic->rb_page_offset = 0;
112 }
113
114 data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
115
116 /* Align buffer addr to cache line i.e 128 bytes */
117 rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
118 /* Save page address for reference updation */
119 rinfo->page = nic->rb_page;
120 /* Store start address for later retrieval */
121 rinfo->data = (void *)data;
122 /* Store alignment offset */
123 rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
124
125 data += rinfo->offset;
126
127 /* Give next aligned address to hw for DMA */
128 *rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
129 return 0;
130 }
131
132 /* Retrieve actual buffer start address and build skb for received packet */
133 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
134 u64 rb_ptr, int len)
135 {
136 struct sk_buff *skb;
137 struct rbuf_info *rinfo;
138
139 rb_ptr = (u64)phys_to_virt(rb_ptr);
140 /* Get buffer start address and alignment offset */
141 rinfo = GET_RBUF_INFO(rb_ptr);
142
143 /* Now build an skb to give to stack */
144 skb = build_skb(rinfo->data, RCV_FRAG_LEN);
145 if (!skb) {
146 put_page(rinfo->page);
147 return NULL;
148 }
149
150 /* Set correct skb->data */
151 skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
152
153 prefetch((void *)rb_ptr);
154 return skb;
155 }
156
157 /* Allocate RBDR ring and populate receive buffers */
158 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
159 int ring_len, int buf_size)
160 {
161 int idx;
162 u64 *rbuf;
163 struct rbdr_entry_t *desc;
164 int err;
165
166 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
167 sizeof(struct rbdr_entry_t),
168 NICVF_RCV_BUF_ALIGN_BYTES);
169 if (err)
170 return err;
171
172 rbdr->desc = rbdr->dmem.base;
173 /* Buffer size has to be in multiples of 128 bytes */
174 rbdr->dma_size = buf_size;
175 rbdr->enable = true;
176 rbdr->thresh = RBDR_THRESH;
177
178 nic->rb_page = NULL;
179 for (idx = 0; idx < ring_len; idx++) {
180 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
181 &rbuf);
182 if (err)
183 return err;
184
185 desc = GET_RBDR_DESC(rbdr, idx);
186 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
187 }
188 return 0;
189 }
190
191 /* Free RBDR ring and its receive buffers */
192 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
193 {
194 int head, tail;
195 u64 buf_addr;
196 struct rbdr_entry_t *desc;
197 struct rbuf_info *rinfo;
198
199 if (!rbdr)
200 return;
201
202 rbdr->enable = false;
203 if (!rbdr->dmem.base)
204 return;
205
206 head = rbdr->head;
207 tail = rbdr->tail;
208
209 /* Free SKBs */
210 while (head != tail) {
211 desc = GET_RBDR_DESC(rbdr, head);
212 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
213 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
214 put_page(rinfo->page);
215 head++;
216 head &= (rbdr->dmem.q_len - 1);
217 }
218 /* Free SKB of tail desc */
219 desc = GET_RBDR_DESC(rbdr, tail);
220 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
221 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
222 put_page(rinfo->page);
223
224 /* Free RBDR ring */
225 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
226 }
227
228 /* Refill receive buffer descriptors with new buffers.
229 */
230 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
231 {
232 struct queue_set *qs = nic->qs;
233 int rbdr_idx = qs->rbdr_cnt;
234 int tail, qcount;
235 int refill_rb_cnt;
236 struct rbdr *rbdr;
237 struct rbdr_entry_t *desc;
238 u64 *rbuf;
239 int new_rb = 0;
240
241 refill:
242 if (!rbdr_idx)
243 return;
244 rbdr_idx--;
245 rbdr = &qs->rbdr[rbdr_idx];
246 /* Check if it's enabled */
247 if (!rbdr->enable)
248 goto next_rbdr;
249
250 /* Get no of desc's to be refilled */
251 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
252 qcount &= 0x7FFFF;
253 /* Doorbell can be ringed with a max of ring size minus 1 */
254 if (qcount >= (qs->rbdr_len - 1))
255 goto next_rbdr;
256 else
257 refill_rb_cnt = qs->rbdr_len - qcount - 1;
258
259 /* Start filling descs from tail */
260 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
261 while (refill_rb_cnt) {
262 tail++;
263 tail &= (rbdr->dmem.q_len - 1);
264
265 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
266 break;
267
268 desc = GET_RBDR_DESC(rbdr, tail);
269 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
270 refill_rb_cnt--;
271 new_rb++;
272 }
273
274 /* make sure all memory stores are done before ringing doorbell */
275 smp_wmb();
276
277 /* Check if buffer allocation failed */
278 if (refill_rb_cnt)
279 nic->rb_alloc_fail = true;
280 else
281 nic->rb_alloc_fail = false;
282
283 /* Notify HW */
284 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
285 rbdr_idx, new_rb);
286 next_rbdr:
287 /* Re-enable RBDR interrupts only if buffer allocation is success */
288 if (!nic->rb_alloc_fail && rbdr->enable)
289 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
290
291 if (rbdr_idx)
292 goto refill;
293 }
294
295 /* Alloc rcv buffers in non-atomic mode for better success */
296 void nicvf_rbdr_work(struct work_struct *work)
297 {
298 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
299
300 nicvf_refill_rbdr(nic, GFP_KERNEL);
301 if (nic->rb_alloc_fail)
302 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
303 else
304 nic->rb_work_scheduled = false;
305 }
306
307 /* In Softirq context, alloc rcv buffers in atomic mode */
308 void nicvf_rbdr_task(unsigned long data)
309 {
310 struct nicvf *nic = (struct nicvf *)data;
311
312 nicvf_refill_rbdr(nic, GFP_ATOMIC);
313 if (nic->rb_alloc_fail) {
314 nic->rb_work_scheduled = true;
315 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
316 }
317 }
318
319 /* Initialize completion queue */
320 static int nicvf_init_cmp_queue(struct nicvf *nic,
321 struct cmp_queue *cq, int q_len)
322 {
323 int err;
324
325 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
326 NICVF_CQ_BASE_ALIGN_BYTES);
327 if (err)
328 return err;
329
330 cq->desc = cq->dmem.base;
331 cq->thresh = CMP_QUEUE_CQE_THRESH;
332 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
333
334 return 0;
335 }
336
337 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
338 {
339 if (!cq)
340 return;
341 if (!cq->dmem.base)
342 return;
343
344 nicvf_free_q_desc_mem(nic, &cq->dmem);
345 }
346
347 /* Initialize transmit queue */
348 static int nicvf_init_snd_queue(struct nicvf *nic,
349 struct snd_queue *sq, int q_len)
350 {
351 int err;
352
353 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
354 NICVF_SQ_BASE_ALIGN_BYTES);
355 if (err)
356 return err;
357
358 sq->desc = sq->dmem.base;
359 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
360 if (!sq->skbuff)
361 return -ENOMEM;
362 sq->head = 0;
363 sq->tail = 0;
364 atomic_set(&sq->free_cnt, q_len - 1);
365 sq->thresh = SND_QUEUE_THRESH;
366
367 /* Preallocate memory for TSO segment's header */
368 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
369 q_len * TSO_HEADER_SIZE,
370 &sq->tso_hdrs_phys, GFP_KERNEL);
371 if (!sq->tso_hdrs)
372 return -ENOMEM;
373
374 return 0;
375 }
376
377 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
378 {
379 if (!sq)
380 return;
381 if (!sq->dmem.base)
382 return;
383
384 if (sq->tso_hdrs)
385 dma_free_coherent(&nic->pdev->dev, sq->dmem.q_len,
386 sq->tso_hdrs, sq->tso_hdrs_phys);
387
388 kfree(sq->skbuff);
389 nicvf_free_q_desc_mem(nic, &sq->dmem);
390 }
391
392 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
393 struct queue_set *qs, int qidx)
394 {
395 /* Disable send queue */
396 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
397 /* Check if SQ is stopped */
398 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
399 return;
400 /* Reset send queue */
401 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
402 }
403
404 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
405 struct queue_set *qs, int qidx)
406 {
407 union nic_mbx mbx = {};
408
409 /* Make sure all packets in the pipeline are written back into mem */
410 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
411 nicvf_send_msg_to_pf(nic, &mbx);
412 }
413
414 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
415 struct queue_set *qs, int qidx)
416 {
417 /* Disable timer threshold (doesn't get reset upon CQ reset */
418 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
419 /* Disable completion queue */
420 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
421 /* Reset completion queue */
422 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
423 }
424
425 static void nicvf_reclaim_rbdr(struct nicvf *nic,
426 struct rbdr *rbdr, int qidx)
427 {
428 u64 tmp, fifo_state;
429 int timeout = 10;
430
431 /* Save head and tail pointers for feeing up buffers */
432 rbdr->head = nicvf_queue_reg_read(nic,
433 NIC_QSET_RBDR_0_1_HEAD,
434 qidx) >> 3;
435 rbdr->tail = nicvf_queue_reg_read(nic,
436 NIC_QSET_RBDR_0_1_TAIL,
437 qidx) >> 3;
438
439 /* If RBDR FIFO is in 'FAIL' state then do a reset first
440 * before relaiming.
441 */
442 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
443 if (((fifo_state >> 62) & 0x03) == 0x3)
444 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
445 qidx, NICVF_RBDR_RESET);
446
447 /* Disable RBDR */
448 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
449 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
450 return;
451 while (1) {
452 tmp = nicvf_queue_reg_read(nic,
453 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
454 qidx);
455 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
456 break;
457 usleep_range(1000, 2000);
458 timeout--;
459 if (!timeout) {
460 netdev_err(nic->netdev,
461 "Failed polling on prefetch status\n");
462 return;
463 }
464 }
465 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
466 qidx, NICVF_RBDR_RESET);
467
468 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
469 return;
470 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
471 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
472 return;
473 }
474
475 /* Configures receive queue */
476 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
477 int qidx, bool enable)
478 {
479 union nic_mbx mbx = {};
480 struct rcv_queue *rq;
481 struct rq_cfg rq_cfg;
482
483 rq = &qs->rq[qidx];
484 rq->enable = enable;
485
486 /* Disable receive queue */
487 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
488
489 if (!rq->enable) {
490 nicvf_reclaim_rcv_queue(nic, qs, qidx);
491 return;
492 }
493
494 rq->cq_qs = qs->vnic_id;
495 rq->cq_idx = qidx;
496 rq->start_rbdr_qs = qs->vnic_id;
497 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
498 rq->cont_rbdr_qs = qs->vnic_id;
499 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
500 /* all writes of RBDR data to be loaded into L2 Cache as well*/
501 rq->caching = 1;
502
503 /* Send a mailbox msg to PF to config RQ */
504 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
505 mbx.rq.qs_num = qs->vnic_id;
506 mbx.rq.rq_num = qidx;
507 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
508 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
509 (rq->cont_qs_rbdr_idx << 8) |
510 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
511 nicvf_send_msg_to_pf(nic, &mbx);
512
513 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
514 mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
515 nicvf_send_msg_to_pf(nic, &mbx);
516
517 /* RQ drop config
518 * Enable CQ drop to reserve sufficient CQEs for all tx packets
519 */
520 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
521 mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
522 nicvf_send_msg_to_pf(nic, &mbx);
523
524 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, qidx, 0x00);
525
526 /* Enable Receive queue */
527 rq_cfg.ena = 1;
528 rq_cfg.tcp_ena = 0;
529 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
530 }
531
532 /* Configures completion queue */
533 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
534 int qidx, bool enable)
535 {
536 struct cmp_queue *cq;
537 struct cq_cfg cq_cfg;
538
539 cq = &qs->cq[qidx];
540 cq->enable = enable;
541
542 if (!cq->enable) {
543 nicvf_reclaim_cmp_queue(nic, qs, qidx);
544 return;
545 }
546
547 /* Reset completion queue */
548 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
549
550 if (!cq->enable)
551 return;
552
553 spin_lock_init(&cq->lock);
554 /* Set completion queue base address */
555 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
556 qidx, (u64)(cq->dmem.phys_base));
557
558 /* Enable Completion queue */
559 cq_cfg.ena = 1;
560 cq_cfg.reset = 0;
561 cq_cfg.caching = 0;
562 cq_cfg.qsize = CMP_QSIZE;
563 cq_cfg.avg_con = 0;
564 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
565
566 /* Set threshold value for interrupt generation */
567 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
568 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
569 qidx, nic->cq_coalesce_usecs);
570 }
571
572 /* Configures transmit queue */
573 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
574 int qidx, bool enable)
575 {
576 union nic_mbx mbx = {};
577 struct snd_queue *sq;
578 struct sq_cfg sq_cfg;
579
580 sq = &qs->sq[qidx];
581 sq->enable = enable;
582
583 if (!sq->enable) {
584 nicvf_reclaim_snd_queue(nic, qs, qidx);
585 return;
586 }
587
588 /* Reset send queue */
589 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
590
591 sq->cq_qs = qs->vnic_id;
592 sq->cq_idx = qidx;
593
594 /* Send a mailbox msg to PF to config SQ */
595 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
596 mbx.sq.qs_num = qs->vnic_id;
597 mbx.sq.sq_num = qidx;
598 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
599 nicvf_send_msg_to_pf(nic, &mbx);
600
601 /* Set queue base address */
602 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
603 qidx, (u64)(sq->dmem.phys_base));
604
605 /* Enable send queue & set queue size */
606 sq_cfg.ena = 1;
607 sq_cfg.reset = 0;
608 sq_cfg.ldwb = 0;
609 sq_cfg.qsize = SND_QSIZE;
610 sq_cfg.tstmp_bgx_intf = 0;
611 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
612
613 /* Set threshold value for interrupt generation */
614 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
615
616 /* Set queue:cpu affinity for better load distribution */
617 if (cpu_online(qidx)) {
618 cpumask_set_cpu(qidx, &sq->affinity_mask);
619 netif_set_xps_queue(nic->netdev,
620 &sq->affinity_mask, qidx);
621 }
622 }
623
624 /* Configures receive buffer descriptor ring */
625 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
626 int qidx, bool enable)
627 {
628 struct rbdr *rbdr;
629 struct rbdr_cfg rbdr_cfg;
630
631 rbdr = &qs->rbdr[qidx];
632 nicvf_reclaim_rbdr(nic, rbdr, qidx);
633 if (!enable)
634 return;
635
636 /* Set descriptor base address */
637 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
638 qidx, (u64)(rbdr->dmem.phys_base));
639
640 /* Enable RBDR & set queue size */
641 /* Buffer size should be in multiples of 128 bytes */
642 rbdr_cfg.ena = 1;
643 rbdr_cfg.reset = 0;
644 rbdr_cfg.ldwb = 0;
645 rbdr_cfg.qsize = RBDR_SIZE;
646 rbdr_cfg.avg_con = 0;
647 rbdr_cfg.lines = rbdr->dma_size / 128;
648 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
649 qidx, *(u64 *)&rbdr_cfg);
650
651 /* Notify HW */
652 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
653 qidx, qs->rbdr_len - 1);
654
655 /* Set threshold value for interrupt generation */
656 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
657 qidx, rbdr->thresh - 1);
658 }
659
660 /* Requests PF to assign and enable Qset */
661 void nicvf_qset_config(struct nicvf *nic, bool enable)
662 {
663 union nic_mbx mbx = {};
664 struct queue_set *qs = nic->qs;
665 struct qs_cfg *qs_cfg;
666
667 if (!qs) {
668 netdev_warn(nic->netdev,
669 "Qset is still not allocated, don't init queues\n");
670 return;
671 }
672
673 qs->enable = enable;
674 qs->vnic_id = nic->vf_id;
675
676 /* Send a mailbox msg to PF to config Qset */
677 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
678 mbx.qs.num = qs->vnic_id;
679
680 mbx.qs.cfg = 0;
681 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
682 if (qs->enable) {
683 qs_cfg->ena = 1;
684 #ifdef __BIG_ENDIAN
685 qs_cfg->be = 1;
686 #endif
687 qs_cfg->vnic = qs->vnic_id;
688 }
689 nicvf_send_msg_to_pf(nic, &mbx);
690 }
691
692 static void nicvf_free_resources(struct nicvf *nic)
693 {
694 int qidx;
695 struct queue_set *qs = nic->qs;
696
697 /* Free receive buffer descriptor ring */
698 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
699 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
700
701 /* Free completion queue */
702 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
703 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
704
705 /* Free send queue */
706 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
707 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
708 }
709
710 static int nicvf_alloc_resources(struct nicvf *nic)
711 {
712 int qidx;
713 struct queue_set *qs = nic->qs;
714
715 /* Alloc receive buffer descriptor ring */
716 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
717 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
718 DMA_BUFFER_LEN))
719 goto alloc_fail;
720 }
721
722 /* Alloc send queue */
723 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
724 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
725 goto alloc_fail;
726 }
727
728 /* Alloc completion queue */
729 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
730 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
731 goto alloc_fail;
732 }
733
734 return 0;
735 alloc_fail:
736 nicvf_free_resources(nic);
737 return -ENOMEM;
738 }
739
740 int nicvf_set_qset_resources(struct nicvf *nic)
741 {
742 struct queue_set *qs;
743
744 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
745 if (!qs)
746 return -ENOMEM;
747 nic->qs = qs;
748
749 /* Set count of each queue */
750 qs->rbdr_cnt = RBDR_CNT;
751 qs->rq_cnt = RCV_QUEUE_CNT;
752 qs->sq_cnt = SND_QUEUE_CNT;
753 qs->cq_cnt = CMP_QUEUE_CNT;
754
755 /* Set queue lengths */
756 qs->rbdr_len = RCV_BUF_COUNT;
757 qs->sq_len = SND_QUEUE_LEN;
758 qs->cq_len = CMP_QUEUE_LEN;
759 return 0;
760 }
761
762 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
763 {
764 bool disable = false;
765 struct queue_set *qs = nic->qs;
766 int qidx;
767
768 if (!qs)
769 return 0;
770
771 if (enable) {
772 if (nicvf_alloc_resources(nic))
773 return -ENOMEM;
774
775 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
776 nicvf_snd_queue_config(nic, qs, qidx, enable);
777 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
778 nicvf_cmp_queue_config(nic, qs, qidx, enable);
779 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
780 nicvf_rbdr_config(nic, qs, qidx, enable);
781 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
782 nicvf_rcv_queue_config(nic, qs, qidx, enable);
783 } else {
784 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
785 nicvf_rcv_queue_config(nic, qs, qidx, disable);
786 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
787 nicvf_rbdr_config(nic, qs, qidx, disable);
788 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
789 nicvf_snd_queue_config(nic, qs, qidx, disable);
790 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
791 nicvf_cmp_queue_config(nic, qs, qidx, disable);
792
793 nicvf_free_resources(nic);
794 }
795
796 return 0;
797 }
798
799 /* Get a free desc from SQ
800 * returns descriptor ponter & descriptor number
801 */
802 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
803 {
804 int qentry;
805
806 qentry = sq->tail;
807 atomic_sub(desc_cnt, &sq->free_cnt);
808 sq->tail += desc_cnt;
809 sq->tail &= (sq->dmem.q_len - 1);
810
811 return qentry;
812 }
813
814 /* Free descriptor back to SQ for future use */
815 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
816 {
817 atomic_add(desc_cnt, &sq->free_cnt);
818 sq->head += desc_cnt;
819 sq->head &= (sq->dmem.q_len - 1);
820 }
821
822 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
823 {
824 qentry++;
825 qentry &= (sq->dmem.q_len - 1);
826 return qentry;
827 }
828
829 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
830 {
831 u64 sq_cfg;
832
833 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
834 sq_cfg |= NICVF_SQ_EN;
835 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
836 /* Ring doorbell so that H/W restarts processing SQEs */
837 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
838 }
839
840 void nicvf_sq_disable(struct nicvf *nic, int qidx)
841 {
842 u64 sq_cfg;
843
844 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
845 sq_cfg &= ~NICVF_SQ_EN;
846 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
847 }
848
849 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
850 int qidx)
851 {
852 u64 head, tail;
853 struct sk_buff *skb;
854 struct nicvf *nic = netdev_priv(netdev);
855 struct sq_hdr_subdesc *hdr;
856
857 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
858 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
859 while (sq->head != head) {
860 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
861 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
862 nicvf_put_sq_desc(sq, 1);
863 continue;
864 }
865 skb = (struct sk_buff *)sq->skbuff[sq->head];
866 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
867 atomic64_add(hdr->tot_len,
868 (atomic64_t *)&netdev->stats.tx_bytes);
869 dev_kfree_skb_any(skb);
870 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
871 }
872 }
873
874 /* Calculate no of SQ subdescriptors needed to transmit all
875 * segments of this TSO packet.
876 * Taken from 'Tilera network driver' with a minor modification.
877 */
878 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
879 {
880 struct skb_shared_info *sh = skb_shinfo(skb);
881 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
882 unsigned int data_len = skb->len - sh_len;
883 unsigned int p_len = sh->gso_size;
884 long f_id = -1; /* id of the current fragment */
885 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
886 long f_used = 0; /* bytes used from the current fragment */
887 long n; /* size of the current piece of payload */
888 int num_edescs = 0;
889 int segment;
890
891 for (segment = 0; segment < sh->gso_segs; segment++) {
892 unsigned int p_used = 0;
893
894 /* One edesc for header and for each piece of the payload. */
895 for (num_edescs++; p_used < p_len; num_edescs++) {
896 /* Advance as needed. */
897 while (f_used >= f_size) {
898 f_id++;
899 f_size = skb_frag_size(&sh->frags[f_id]);
900 f_used = 0;
901 }
902
903 /* Use bytes from the current fragment. */
904 n = p_len - p_used;
905 if (n > f_size - f_used)
906 n = f_size - f_used;
907 f_used += n;
908 p_used += n;
909 }
910
911 /* The last segment may be less than gso_size. */
912 data_len -= p_len;
913 if (data_len < p_len)
914 p_len = data_len;
915 }
916
917 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
918 return num_edescs + sh->gso_segs;
919 }
920
921 /* Get the number of SQ descriptors needed to xmit this skb */
922 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
923 {
924 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
925
926 if (skb_shinfo(skb)->gso_size) {
927 subdesc_cnt = nicvf_tso_count_subdescs(skb);
928 return subdesc_cnt;
929 }
930
931 if (skb_shinfo(skb)->nr_frags)
932 subdesc_cnt += skb_shinfo(skb)->nr_frags;
933
934 return subdesc_cnt;
935 }
936
937 /* Add SQ HEADER subdescriptor.
938 * First subdescriptor for every send descriptor.
939 */
940 static inline void
941 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
942 int subdesc_cnt, struct sk_buff *skb, int len)
943 {
944 int proto;
945 struct sq_hdr_subdesc *hdr;
946
947 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
948 sq->skbuff[qentry] = (u64)skb;
949
950 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
951 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
952 /* Enable notification via CQE after processing SQE */
953 hdr->post_cqe = 1;
954 /* No of subdescriptors following this */
955 hdr->subdesc_cnt = subdesc_cnt;
956 hdr->tot_len = len;
957
958 /* Offload checksum calculation to HW */
959 if (skb->ip_summed == CHECKSUM_PARTIAL) {
960 if (skb->protocol != htons(ETH_P_IP))
961 return;
962
963 hdr->csum_l3 = 1; /* Enable IP csum calculation */
964 hdr->l3_offset = skb_network_offset(skb);
965 hdr->l4_offset = skb_transport_offset(skb);
966
967 proto = ip_hdr(skb)->protocol;
968 switch (proto) {
969 case IPPROTO_TCP:
970 hdr->csum_l4 = SEND_L4_CSUM_TCP;
971 break;
972 case IPPROTO_UDP:
973 hdr->csum_l4 = SEND_L4_CSUM_UDP;
974 break;
975 case IPPROTO_SCTP:
976 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
977 break;
978 }
979 }
980 }
981
982 /* SQ GATHER subdescriptor
983 * Must follow HDR descriptor
984 */
985 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
986 int size, u64 data)
987 {
988 struct sq_gather_subdesc *gather;
989
990 qentry &= (sq->dmem.q_len - 1);
991 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
992
993 memset(gather, 0, SND_QUEUE_DESC_SIZE);
994 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
995 gather->ld_type = NIC_SEND_LD_TYPE_E_LDWB;
996 gather->size = size;
997 gather->addr = data;
998 }
999
1000 /* Segment a TSO packet into 'gso_size' segments and append
1001 * them to SQ for transfer
1002 */
1003 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1004 int qentry, struct sk_buff *skb)
1005 {
1006 struct tso_t tso;
1007 int seg_subdescs = 0, desc_cnt = 0;
1008 int seg_len, total_len, data_left;
1009 int hdr_qentry = qentry;
1010 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1011
1012 tso_start(skb, &tso);
1013 total_len = skb->len - hdr_len;
1014 while (total_len > 0) {
1015 char *hdr;
1016
1017 /* Save Qentry for adding HDR_SUBDESC at the end */
1018 hdr_qentry = qentry;
1019
1020 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1021 total_len -= data_left;
1022
1023 /* Add segment's header */
1024 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1025 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1026 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1027 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1028 sq->tso_hdrs_phys +
1029 qentry * TSO_HEADER_SIZE);
1030 /* HDR_SUDESC + GATHER */
1031 seg_subdescs = 2;
1032 seg_len = hdr_len;
1033
1034 /* Add segment's payload fragments */
1035 while (data_left > 0) {
1036 int size;
1037
1038 size = min_t(int, tso.size, data_left);
1039
1040 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1041 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1042 virt_to_phys(tso.data));
1043 seg_subdescs++;
1044 seg_len += size;
1045
1046 data_left -= size;
1047 tso_build_data(skb, &tso, size);
1048 }
1049 nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1050 seg_subdescs - 1, skb, seg_len);
1051 sq->skbuff[hdr_qentry] = 0;
1052 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1053
1054 desc_cnt += seg_subdescs;
1055 }
1056 /* Save SKB in the last segment for freeing */
1057 sq->skbuff[hdr_qentry] = (u64)skb;
1058
1059 /* make sure all memory stores are done before ringing doorbell */
1060 smp_wmb();
1061
1062 /* Inform HW to xmit all TSO segments */
1063 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1064 skb_get_queue_mapping(skb), desc_cnt);
1065 return 1;
1066 }
1067
1068 /* Append an skb to a SQ for packet transfer. */
1069 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1070 {
1071 int i, size;
1072 int subdesc_cnt;
1073 int sq_num, qentry;
1074 struct queue_set *qs = nic->qs;
1075 struct snd_queue *sq;
1076
1077 sq_num = skb_get_queue_mapping(skb);
1078 sq = &qs->sq[sq_num];
1079
1080 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1081 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1082 goto append_fail;
1083
1084 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1085
1086 /* Check if its a TSO packet */
1087 if (skb_shinfo(skb)->gso_size)
1088 return nicvf_sq_append_tso(nic, sq, qentry, skb);
1089
1090 /* Add SQ header subdesc */
1091 nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1092
1093 /* Add SQ gather subdescs */
1094 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1095 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1096 nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1097
1098 /* Check for scattered buffer */
1099 if (!skb_is_nonlinear(skb))
1100 goto doorbell;
1101
1102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1103 const struct skb_frag_struct *frag;
1104
1105 frag = &skb_shinfo(skb)->frags[i];
1106
1107 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1108 size = skb_frag_size(frag);
1109 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1110 virt_to_phys(
1111 skb_frag_address(frag)));
1112 }
1113
1114 doorbell:
1115 /* make sure all memory stores are done before ringing doorbell */
1116 smp_wmb();
1117
1118 /* Inform HW to xmit new packet */
1119 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1120 sq_num, subdesc_cnt);
1121 return 1;
1122
1123 append_fail:
1124 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1125 return 0;
1126 }
1127
1128 static inline unsigned frag_num(unsigned i)
1129 {
1130 #ifdef __BIG_ENDIAN
1131 return (i & ~3) + 3 - (i & 3);
1132 #else
1133 return i;
1134 #endif
1135 }
1136
1137 /* Returns SKB for a received packet */
1138 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1139 {
1140 int frag;
1141 int payload_len = 0;
1142 struct sk_buff *skb = NULL;
1143 struct sk_buff *skb_frag = NULL;
1144 struct sk_buff *prev_frag = NULL;
1145 u16 *rb_lens = NULL;
1146 u64 *rb_ptrs = NULL;
1147
1148 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1149 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1150
1151 netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1152 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1153
1154 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1155 payload_len = rb_lens[frag_num(frag)];
1156 if (!frag) {
1157 /* First fragment */
1158 skb = nicvf_rb_ptr_to_skb(nic,
1159 *rb_ptrs - cqe_rx->align_pad,
1160 payload_len);
1161 if (!skb)
1162 return NULL;
1163 skb_reserve(skb, cqe_rx->align_pad);
1164 skb_put(skb, payload_len);
1165 } else {
1166 /* Add fragments */
1167 skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1168 payload_len);
1169 if (!skb_frag) {
1170 dev_kfree_skb(skb);
1171 return NULL;
1172 }
1173
1174 if (!skb_shinfo(skb)->frag_list)
1175 skb_shinfo(skb)->frag_list = skb_frag;
1176 else
1177 prev_frag->next = skb_frag;
1178
1179 prev_frag = skb_frag;
1180 skb->len += payload_len;
1181 skb->data_len += payload_len;
1182 skb_frag->len = payload_len;
1183 }
1184 /* Next buffer pointer */
1185 rb_ptrs++;
1186 }
1187 return skb;
1188 }
1189
1190 /* Enable interrupt */
1191 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1192 {
1193 u64 reg_val;
1194
1195 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1196
1197 switch (int_type) {
1198 case NICVF_INTR_CQ:
1199 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1200 break;
1201 case NICVF_INTR_SQ:
1202 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1203 break;
1204 case NICVF_INTR_RBDR:
1205 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1206 break;
1207 case NICVF_INTR_PKT_DROP:
1208 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1209 break;
1210 case NICVF_INTR_TCP_TIMER:
1211 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1212 break;
1213 case NICVF_INTR_MBOX:
1214 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1215 break;
1216 case NICVF_INTR_QS_ERR:
1217 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1218 break;
1219 default:
1220 netdev_err(nic->netdev,
1221 "Failed to enable interrupt: unknown type\n");
1222 break;
1223 }
1224
1225 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1226 }
1227
1228 /* Disable interrupt */
1229 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1230 {
1231 u64 reg_val = 0;
1232
1233 switch (int_type) {
1234 case NICVF_INTR_CQ:
1235 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1236 break;
1237 case NICVF_INTR_SQ:
1238 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1239 break;
1240 case NICVF_INTR_RBDR:
1241 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1242 break;
1243 case NICVF_INTR_PKT_DROP:
1244 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1245 break;
1246 case NICVF_INTR_TCP_TIMER:
1247 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1248 break;
1249 case NICVF_INTR_MBOX:
1250 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1251 break;
1252 case NICVF_INTR_QS_ERR:
1253 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1254 break;
1255 default:
1256 netdev_err(nic->netdev,
1257 "Failed to disable interrupt: unknown type\n");
1258 break;
1259 }
1260
1261 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1262 }
1263
1264 /* Clear interrupt */
1265 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1266 {
1267 u64 reg_val = 0;
1268
1269 switch (int_type) {
1270 case NICVF_INTR_CQ:
1271 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1272 break;
1273 case NICVF_INTR_SQ:
1274 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1275 break;
1276 case NICVF_INTR_RBDR:
1277 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1278 break;
1279 case NICVF_INTR_PKT_DROP:
1280 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1281 break;
1282 case NICVF_INTR_TCP_TIMER:
1283 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1284 break;
1285 case NICVF_INTR_MBOX:
1286 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1287 break;
1288 case NICVF_INTR_QS_ERR:
1289 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1290 break;
1291 default:
1292 netdev_err(nic->netdev,
1293 "Failed to clear interrupt: unknown type\n");
1294 break;
1295 }
1296
1297 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1298 }
1299
1300 /* Check if interrupt is enabled */
1301 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1302 {
1303 u64 reg_val;
1304 u64 mask = 0xff;
1305
1306 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1307
1308 switch (int_type) {
1309 case NICVF_INTR_CQ:
1310 mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1311 break;
1312 case NICVF_INTR_SQ:
1313 mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1314 break;
1315 case NICVF_INTR_RBDR:
1316 mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1317 break;
1318 case NICVF_INTR_PKT_DROP:
1319 mask = NICVF_INTR_PKT_DROP_MASK;
1320 break;
1321 case NICVF_INTR_TCP_TIMER:
1322 mask = NICVF_INTR_TCP_TIMER_MASK;
1323 break;
1324 case NICVF_INTR_MBOX:
1325 mask = NICVF_INTR_MBOX_MASK;
1326 break;
1327 case NICVF_INTR_QS_ERR:
1328 mask = NICVF_INTR_QS_ERR_MASK;
1329 break;
1330 default:
1331 netdev_err(nic->netdev,
1332 "Failed to check interrupt enable: unknown type\n");
1333 break;
1334 }
1335
1336 return (reg_val & mask);
1337 }
1338
1339 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1340 {
1341 struct rcv_queue *rq;
1342
1343 #define GET_RQ_STATS(reg) \
1344 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1345 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1346
1347 rq = &nic->qs->rq[rq_idx];
1348 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1349 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1350 }
1351
1352 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1353 {
1354 struct snd_queue *sq;
1355
1356 #define GET_SQ_STATS(reg) \
1357 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1358 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1359
1360 sq = &nic->qs->sq[sq_idx];
1361 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1362 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1363 }
1364
1365 /* Check for errors in the receive cmp.queue entry */
1366 int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1367 struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1368 {
1369 struct cmp_queue_stats *stats = &cq->stats;
1370
1371 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1372 stats->rx.errop.good++;
1373 return 0;
1374 }
1375
1376 if (netif_msg_rx_err(nic))
1377 netdev_err(nic->netdev,
1378 "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1379 nic->netdev->name,
1380 cqe_rx->err_level, cqe_rx->err_opcode);
1381
1382 switch (cqe_rx->err_level) {
1383 case CQ_ERRLVL_MAC:
1384 stats->rx.errlvl.mac_errs++;
1385 break;
1386 case CQ_ERRLVL_L2:
1387 stats->rx.errlvl.l2_errs++;
1388 break;
1389 case CQ_ERRLVL_L3:
1390 stats->rx.errlvl.l3_errs++;
1391 break;
1392 case CQ_ERRLVL_L4:
1393 stats->rx.errlvl.l4_errs++;
1394 break;
1395 }
1396
1397 switch (cqe_rx->err_opcode) {
1398 case CQ_RX_ERROP_RE_PARTIAL:
1399 stats->rx.errop.partial_pkts++;
1400 break;
1401 case CQ_RX_ERROP_RE_JABBER:
1402 stats->rx.errop.jabber_errs++;
1403 break;
1404 case CQ_RX_ERROP_RE_FCS:
1405 stats->rx.errop.fcs_errs++;
1406 break;
1407 case CQ_RX_ERROP_RE_TERMINATE:
1408 stats->rx.errop.terminate_errs++;
1409 break;
1410 case CQ_RX_ERROP_RE_RX_CTL:
1411 stats->rx.errop.bgx_rx_errs++;
1412 break;
1413 case CQ_RX_ERROP_PREL2_ERR:
1414 stats->rx.errop.prel2_errs++;
1415 break;
1416 case CQ_RX_ERROP_L2_FRAGMENT:
1417 stats->rx.errop.l2_frags++;
1418 break;
1419 case CQ_RX_ERROP_L2_OVERRUN:
1420 stats->rx.errop.l2_overruns++;
1421 break;
1422 case CQ_RX_ERROP_L2_PFCS:
1423 stats->rx.errop.l2_pfcs++;
1424 break;
1425 case CQ_RX_ERROP_L2_PUNY:
1426 stats->rx.errop.l2_puny++;
1427 break;
1428 case CQ_RX_ERROP_L2_MAL:
1429 stats->rx.errop.l2_hdr_malformed++;
1430 break;
1431 case CQ_RX_ERROP_L2_OVERSIZE:
1432 stats->rx.errop.l2_oversize++;
1433 break;
1434 case CQ_RX_ERROP_L2_UNDERSIZE:
1435 stats->rx.errop.l2_undersize++;
1436 break;
1437 case CQ_RX_ERROP_L2_LENMISM:
1438 stats->rx.errop.l2_len_mismatch++;
1439 break;
1440 case CQ_RX_ERROP_L2_PCLP:
1441 stats->rx.errop.l2_pclp++;
1442 break;
1443 case CQ_RX_ERROP_IP_NOT:
1444 stats->rx.errop.non_ip++;
1445 break;
1446 case CQ_RX_ERROP_IP_CSUM_ERR:
1447 stats->rx.errop.ip_csum_err++;
1448 break;
1449 case CQ_RX_ERROP_IP_MAL:
1450 stats->rx.errop.ip_hdr_malformed++;
1451 break;
1452 case CQ_RX_ERROP_IP_MALD:
1453 stats->rx.errop.ip_payload_malformed++;
1454 break;
1455 case CQ_RX_ERROP_IP_HOP:
1456 stats->rx.errop.ip_hop_errs++;
1457 break;
1458 case CQ_RX_ERROP_L3_ICRC:
1459 stats->rx.errop.l3_icrc_errs++;
1460 break;
1461 case CQ_RX_ERROP_L3_PCLP:
1462 stats->rx.errop.l3_pclp++;
1463 break;
1464 case CQ_RX_ERROP_L4_MAL:
1465 stats->rx.errop.l4_malformed++;
1466 break;
1467 case CQ_RX_ERROP_L4_CHK:
1468 stats->rx.errop.l4_csum_errs++;
1469 break;
1470 case CQ_RX_ERROP_UDP_LEN:
1471 stats->rx.errop.udp_len_err++;
1472 break;
1473 case CQ_RX_ERROP_L4_PORT:
1474 stats->rx.errop.bad_l4_port++;
1475 break;
1476 case CQ_RX_ERROP_TCP_FLAG:
1477 stats->rx.errop.bad_tcp_flag++;
1478 break;
1479 case CQ_RX_ERROP_TCP_OFFSET:
1480 stats->rx.errop.tcp_offset_errs++;
1481 break;
1482 case CQ_RX_ERROP_L4_PCLP:
1483 stats->rx.errop.l4_pclp++;
1484 break;
1485 case CQ_RX_ERROP_RBDR_TRUNC:
1486 stats->rx.errop.pkt_truncated++;
1487 break;
1488 }
1489
1490 return 1;
1491 }
1492
1493 /* Check for errors in the send cmp.queue entry */
1494 int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1495 struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1496 {
1497 struct cmp_queue_stats *stats = &cq->stats;
1498
1499 switch (cqe_tx->send_status) {
1500 case CQ_TX_ERROP_GOOD:
1501 stats->tx.good++;
1502 return 0;
1503 case CQ_TX_ERROP_DESC_FAULT:
1504 stats->tx.desc_fault++;
1505 break;
1506 case CQ_TX_ERROP_HDR_CONS_ERR:
1507 stats->tx.hdr_cons_err++;
1508 break;
1509 case CQ_TX_ERROP_SUBDC_ERR:
1510 stats->tx.subdesc_err++;
1511 break;
1512 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1513 stats->tx.imm_size_oflow++;
1514 break;
1515 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1516 stats->tx.data_seq_err++;
1517 break;
1518 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1519 stats->tx.mem_seq_err++;
1520 break;
1521 case CQ_TX_ERROP_LOCK_VIOL:
1522 stats->tx.lock_viol++;
1523 break;
1524 case CQ_TX_ERROP_DATA_FAULT:
1525 stats->tx.data_fault++;
1526 break;
1527 case CQ_TX_ERROP_TSTMP_CONFLICT:
1528 stats->tx.tstmp_conflict++;
1529 break;
1530 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1531 stats->tx.tstmp_timeout++;
1532 break;
1533 case CQ_TX_ERROP_MEM_FAULT:
1534 stats->tx.mem_fault++;
1535 break;
1536 case CQ_TX_ERROP_CK_OVERLAP:
1537 stats->tx.csum_overlap++;
1538 break;
1539 case CQ_TX_ERROP_CK_OFLOW:
1540 stats->tx.csum_overflow++;
1541 break;
1542 }
1543
1544 return 1;
1545 }