]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/cavium/thunder/nicvf_queues.c
Merge tag 'v4.2-rc8' into x86/mm, before applying new changes
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / cavium / thunder / nicvf_queues.c
1 /*
2 * Copyright (C) 2015 Cavium, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
8
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20
21 struct rbuf_info {
22 struct page *page;
23 void *data;
24 u64 offset;
25 };
26
27 #define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28
29 /* Poll a register for a specific value */
30 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 u64 reg, int bit_pos, int bits, int val)
32 {
33 u64 bit_mask;
34 u64 reg_val;
35 int timeout = 10;
36
37 bit_mask = (1ULL << bits) - 1;
38 bit_mask = (bit_mask << bit_pos);
39
40 while (timeout) {
41 reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 if (((reg_val & bit_mask) >> bit_pos) == val)
43 return 0;
44 usleep_range(1000, 2000);
45 timeout--;
46 }
47 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 return 1;
49 }
50
51 /* Allocate memory for a queue's descriptors */
52 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 int q_len, int desc_size, int align_bytes)
54 {
55 dmem->q_len = q_len;
56 dmem->size = (desc_size * q_len) + align_bytes;
57 /* Save address, need it while freeing */
58 dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 &dmem->dma, GFP_KERNEL);
60 if (!dmem->unalign_base)
61 return -ENOMEM;
62
63 /* Align memory address for 'align_bytes' */
64 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
65 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
66 return 0;
67 }
68
69 /* Free queue's descriptor memory */
70 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
71 {
72 if (!dmem)
73 return;
74
75 dma_free_coherent(&nic->pdev->dev, dmem->size,
76 dmem->unalign_base, dmem->dma);
77 dmem->unalign_base = NULL;
78 dmem->base = NULL;
79 }
80
81 /* Allocate buffer for packet reception
82 * HW returns memory address where packet is DMA'ed but not a pointer
83 * into RBDR ring, so save buffer address at the start of fragment and
84 * align the start address to a cache aligned address
85 */
86 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
87 u32 buf_len, u64 **rbuf)
88 {
89 u64 data;
90 struct rbuf_info *rinfo;
91 int order = get_order(buf_len);
92
93 /* Check if request can be accomodated in previous allocated page */
94 if (nic->rb_page) {
95 if ((nic->rb_page_offset + buf_len + buf_len) >
96 (PAGE_SIZE << order)) {
97 nic->rb_page = NULL;
98 } else {
99 nic->rb_page_offset += buf_len;
100 get_page(nic->rb_page);
101 }
102 }
103
104 /* Allocate a new page */
105 if (!nic->rb_page) {
106 nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
107 order);
108 if (!nic->rb_page) {
109 netdev_err(nic->netdev,
110 "Failed to allocate new rcv buffer\n");
111 return -ENOMEM;
112 }
113 nic->rb_page_offset = 0;
114 }
115
116 data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
117
118 /* Align buffer addr to cache line i.e 128 bytes */
119 rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
120 /* Save page address for reference updation */
121 rinfo->page = nic->rb_page;
122 /* Store start address for later retrieval */
123 rinfo->data = (void *)data;
124 /* Store alignment offset */
125 rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
126
127 data += rinfo->offset;
128
129 /* Give next aligned address to hw for DMA */
130 *rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
131 return 0;
132 }
133
134 /* Retrieve actual buffer start address and build skb for received packet */
135 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
136 u64 rb_ptr, int len)
137 {
138 struct sk_buff *skb;
139 struct rbuf_info *rinfo;
140
141 rb_ptr = (u64)phys_to_virt(rb_ptr);
142 /* Get buffer start address and alignment offset */
143 rinfo = GET_RBUF_INFO(rb_ptr);
144
145 /* Now build an skb to give to stack */
146 skb = build_skb(rinfo->data, RCV_FRAG_LEN);
147 if (!skb) {
148 put_page(rinfo->page);
149 return NULL;
150 }
151
152 /* Set correct skb->data */
153 skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
154
155 prefetch((void *)rb_ptr);
156 return skb;
157 }
158
159 /* Allocate RBDR ring and populate receive buffers */
160 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
161 int ring_len, int buf_size)
162 {
163 int idx;
164 u64 *rbuf;
165 struct rbdr_entry_t *desc;
166 int err;
167
168 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
169 sizeof(struct rbdr_entry_t),
170 NICVF_RCV_BUF_ALIGN_BYTES);
171 if (err)
172 return err;
173
174 rbdr->desc = rbdr->dmem.base;
175 /* Buffer size has to be in multiples of 128 bytes */
176 rbdr->dma_size = buf_size;
177 rbdr->enable = true;
178 rbdr->thresh = RBDR_THRESH;
179
180 nic->rb_page = NULL;
181 for (idx = 0; idx < ring_len; idx++) {
182 err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
183 &rbuf);
184 if (err)
185 return err;
186
187 desc = GET_RBDR_DESC(rbdr, idx);
188 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
189 }
190 return 0;
191 }
192
193 /* Free RBDR ring and its receive buffers */
194 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
195 {
196 int head, tail;
197 u64 buf_addr;
198 struct rbdr_entry_t *desc;
199 struct rbuf_info *rinfo;
200
201 if (!rbdr)
202 return;
203
204 rbdr->enable = false;
205 if (!rbdr->dmem.base)
206 return;
207
208 head = rbdr->head;
209 tail = rbdr->tail;
210
211 /* Free SKBs */
212 while (head != tail) {
213 desc = GET_RBDR_DESC(rbdr, head);
214 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
215 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
216 put_page(rinfo->page);
217 head++;
218 head &= (rbdr->dmem.q_len - 1);
219 }
220 /* Free SKB of tail desc */
221 desc = GET_RBDR_DESC(rbdr, tail);
222 buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
223 rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
224 put_page(rinfo->page);
225
226 /* Free RBDR ring */
227 nicvf_free_q_desc_mem(nic, &rbdr->dmem);
228 }
229
230 /* Refill receive buffer descriptors with new buffers.
231 */
232 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
233 {
234 struct queue_set *qs = nic->qs;
235 int rbdr_idx = qs->rbdr_cnt;
236 int tail, qcount;
237 int refill_rb_cnt;
238 struct rbdr *rbdr;
239 struct rbdr_entry_t *desc;
240 u64 *rbuf;
241 int new_rb = 0;
242
243 refill:
244 if (!rbdr_idx)
245 return;
246 rbdr_idx--;
247 rbdr = &qs->rbdr[rbdr_idx];
248 /* Check if it's enabled */
249 if (!rbdr->enable)
250 goto next_rbdr;
251
252 /* Get no of desc's to be refilled */
253 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
254 qcount &= 0x7FFFF;
255 /* Doorbell can be ringed with a max of ring size minus 1 */
256 if (qcount >= (qs->rbdr_len - 1))
257 goto next_rbdr;
258 else
259 refill_rb_cnt = qs->rbdr_len - qcount - 1;
260
261 /* Start filling descs from tail */
262 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
263 while (refill_rb_cnt) {
264 tail++;
265 tail &= (rbdr->dmem.q_len - 1);
266
267 if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
268 break;
269
270 desc = GET_RBDR_DESC(rbdr, tail);
271 desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
272 refill_rb_cnt--;
273 new_rb++;
274 }
275
276 /* make sure all memory stores are done before ringing doorbell */
277 smp_wmb();
278
279 /* Check if buffer allocation failed */
280 if (refill_rb_cnt)
281 nic->rb_alloc_fail = true;
282 else
283 nic->rb_alloc_fail = false;
284
285 /* Notify HW */
286 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
287 rbdr_idx, new_rb);
288 next_rbdr:
289 /* Re-enable RBDR interrupts only if buffer allocation is success */
290 if (!nic->rb_alloc_fail && rbdr->enable)
291 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
292
293 if (rbdr_idx)
294 goto refill;
295 }
296
297 /* Alloc rcv buffers in non-atomic mode for better success */
298 void nicvf_rbdr_work(struct work_struct *work)
299 {
300 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
301
302 nicvf_refill_rbdr(nic, GFP_KERNEL);
303 if (nic->rb_alloc_fail)
304 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
305 else
306 nic->rb_work_scheduled = false;
307 }
308
309 /* In Softirq context, alloc rcv buffers in atomic mode */
310 void nicvf_rbdr_task(unsigned long data)
311 {
312 struct nicvf *nic = (struct nicvf *)data;
313
314 nicvf_refill_rbdr(nic, GFP_ATOMIC);
315 if (nic->rb_alloc_fail) {
316 nic->rb_work_scheduled = true;
317 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
318 }
319 }
320
321 /* Initialize completion queue */
322 static int nicvf_init_cmp_queue(struct nicvf *nic,
323 struct cmp_queue *cq, int q_len)
324 {
325 int err;
326
327 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
328 NICVF_CQ_BASE_ALIGN_BYTES);
329 if (err)
330 return err;
331
332 cq->desc = cq->dmem.base;
333 cq->thresh = CMP_QUEUE_CQE_THRESH;
334 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
335
336 return 0;
337 }
338
339 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
340 {
341 if (!cq)
342 return;
343 if (!cq->dmem.base)
344 return;
345
346 nicvf_free_q_desc_mem(nic, &cq->dmem);
347 }
348
349 /* Initialize transmit queue */
350 static int nicvf_init_snd_queue(struct nicvf *nic,
351 struct snd_queue *sq, int q_len)
352 {
353 int err;
354
355 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
356 NICVF_SQ_BASE_ALIGN_BYTES);
357 if (err)
358 return err;
359
360 sq->desc = sq->dmem.base;
361 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
362 if (!sq->skbuff)
363 return -ENOMEM;
364 sq->head = 0;
365 sq->tail = 0;
366 atomic_set(&sq->free_cnt, q_len - 1);
367 sq->thresh = SND_QUEUE_THRESH;
368
369 /* Preallocate memory for TSO segment's header */
370 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
371 q_len * TSO_HEADER_SIZE,
372 &sq->tso_hdrs_phys, GFP_KERNEL);
373 if (!sq->tso_hdrs)
374 return -ENOMEM;
375
376 return 0;
377 }
378
379 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
380 {
381 if (!sq)
382 return;
383 if (!sq->dmem.base)
384 return;
385
386 if (sq->tso_hdrs)
387 dma_free_coherent(&nic->pdev->dev,
388 sq->dmem.q_len * TSO_HEADER_SIZE,
389 sq->tso_hdrs, sq->tso_hdrs_phys);
390
391 kfree(sq->skbuff);
392 nicvf_free_q_desc_mem(nic, &sq->dmem);
393 }
394
395 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
396 struct queue_set *qs, int qidx)
397 {
398 /* Disable send queue */
399 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
400 /* Check if SQ is stopped */
401 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
402 return;
403 /* Reset send queue */
404 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
405 }
406
407 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
408 struct queue_set *qs, int qidx)
409 {
410 union nic_mbx mbx = {};
411
412 /* Make sure all packets in the pipeline are written back into mem */
413 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
414 nicvf_send_msg_to_pf(nic, &mbx);
415 }
416
417 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
418 struct queue_set *qs, int qidx)
419 {
420 /* Disable timer threshold (doesn't get reset upon CQ reset */
421 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
422 /* Disable completion queue */
423 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
424 /* Reset completion queue */
425 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
426 }
427
428 static void nicvf_reclaim_rbdr(struct nicvf *nic,
429 struct rbdr *rbdr, int qidx)
430 {
431 u64 tmp, fifo_state;
432 int timeout = 10;
433
434 /* Save head and tail pointers for feeing up buffers */
435 rbdr->head = nicvf_queue_reg_read(nic,
436 NIC_QSET_RBDR_0_1_HEAD,
437 qidx) >> 3;
438 rbdr->tail = nicvf_queue_reg_read(nic,
439 NIC_QSET_RBDR_0_1_TAIL,
440 qidx) >> 3;
441
442 /* If RBDR FIFO is in 'FAIL' state then do a reset first
443 * before relaiming.
444 */
445 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
446 if (((fifo_state >> 62) & 0x03) == 0x3)
447 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
448 qidx, NICVF_RBDR_RESET);
449
450 /* Disable RBDR */
451 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
452 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
453 return;
454 while (1) {
455 tmp = nicvf_queue_reg_read(nic,
456 NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
457 qidx);
458 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
459 break;
460 usleep_range(1000, 2000);
461 timeout--;
462 if (!timeout) {
463 netdev_err(nic->netdev,
464 "Failed polling on prefetch status\n");
465 return;
466 }
467 }
468 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
469 qidx, NICVF_RBDR_RESET);
470
471 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
472 return;
473 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
474 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
475 return;
476 }
477
478 /* Configures receive queue */
479 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
480 int qidx, bool enable)
481 {
482 union nic_mbx mbx = {};
483 struct rcv_queue *rq;
484 struct rq_cfg rq_cfg;
485
486 rq = &qs->rq[qidx];
487 rq->enable = enable;
488
489 /* Disable receive queue */
490 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
491
492 if (!rq->enable) {
493 nicvf_reclaim_rcv_queue(nic, qs, qidx);
494 return;
495 }
496
497 rq->cq_qs = qs->vnic_id;
498 rq->cq_idx = qidx;
499 rq->start_rbdr_qs = qs->vnic_id;
500 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
501 rq->cont_rbdr_qs = qs->vnic_id;
502 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
503 /* all writes of RBDR data to be loaded into L2 Cache as well*/
504 rq->caching = 1;
505
506 /* Send a mailbox msg to PF to config RQ */
507 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
508 mbx.rq.qs_num = qs->vnic_id;
509 mbx.rq.rq_num = qidx;
510 mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
511 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
512 (rq->cont_qs_rbdr_idx << 8) |
513 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
514 nicvf_send_msg_to_pf(nic, &mbx);
515
516 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
517 mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
518 nicvf_send_msg_to_pf(nic, &mbx);
519
520 /* RQ drop config
521 * Enable CQ drop to reserve sufficient CQEs for all tx packets
522 */
523 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
524 mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
525 nicvf_send_msg_to_pf(nic, &mbx);
526
527 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, qidx, 0x00);
528
529 /* Enable Receive queue */
530 rq_cfg.ena = 1;
531 rq_cfg.tcp_ena = 0;
532 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
533 }
534
535 /* Configures completion queue */
536 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
537 int qidx, bool enable)
538 {
539 struct cmp_queue *cq;
540 struct cq_cfg cq_cfg;
541
542 cq = &qs->cq[qidx];
543 cq->enable = enable;
544
545 if (!cq->enable) {
546 nicvf_reclaim_cmp_queue(nic, qs, qidx);
547 return;
548 }
549
550 /* Reset completion queue */
551 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
552
553 if (!cq->enable)
554 return;
555
556 spin_lock_init(&cq->lock);
557 /* Set completion queue base address */
558 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
559 qidx, (u64)(cq->dmem.phys_base));
560
561 /* Enable Completion queue */
562 cq_cfg.ena = 1;
563 cq_cfg.reset = 0;
564 cq_cfg.caching = 0;
565 cq_cfg.qsize = CMP_QSIZE;
566 cq_cfg.avg_con = 0;
567 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
568
569 /* Set threshold value for interrupt generation */
570 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
571 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
572 qidx, nic->cq_coalesce_usecs);
573 }
574
575 /* Configures transmit queue */
576 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
577 int qidx, bool enable)
578 {
579 union nic_mbx mbx = {};
580 struct snd_queue *sq;
581 struct sq_cfg sq_cfg;
582
583 sq = &qs->sq[qidx];
584 sq->enable = enable;
585
586 if (!sq->enable) {
587 nicvf_reclaim_snd_queue(nic, qs, qidx);
588 return;
589 }
590
591 /* Reset send queue */
592 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
593
594 sq->cq_qs = qs->vnic_id;
595 sq->cq_idx = qidx;
596
597 /* Send a mailbox msg to PF to config SQ */
598 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
599 mbx.sq.qs_num = qs->vnic_id;
600 mbx.sq.sq_num = qidx;
601 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
602 nicvf_send_msg_to_pf(nic, &mbx);
603
604 /* Set queue base address */
605 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
606 qidx, (u64)(sq->dmem.phys_base));
607
608 /* Enable send queue & set queue size */
609 sq_cfg.ena = 1;
610 sq_cfg.reset = 0;
611 sq_cfg.ldwb = 0;
612 sq_cfg.qsize = SND_QSIZE;
613 sq_cfg.tstmp_bgx_intf = 0;
614 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
615
616 /* Set threshold value for interrupt generation */
617 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
618
619 /* Set queue:cpu affinity for better load distribution */
620 if (cpu_online(qidx)) {
621 cpumask_set_cpu(qidx, &sq->affinity_mask);
622 netif_set_xps_queue(nic->netdev,
623 &sq->affinity_mask, qidx);
624 }
625 }
626
627 /* Configures receive buffer descriptor ring */
628 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
629 int qidx, bool enable)
630 {
631 struct rbdr *rbdr;
632 struct rbdr_cfg rbdr_cfg;
633
634 rbdr = &qs->rbdr[qidx];
635 nicvf_reclaim_rbdr(nic, rbdr, qidx);
636 if (!enable)
637 return;
638
639 /* Set descriptor base address */
640 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
641 qidx, (u64)(rbdr->dmem.phys_base));
642
643 /* Enable RBDR & set queue size */
644 /* Buffer size should be in multiples of 128 bytes */
645 rbdr_cfg.ena = 1;
646 rbdr_cfg.reset = 0;
647 rbdr_cfg.ldwb = 0;
648 rbdr_cfg.qsize = RBDR_SIZE;
649 rbdr_cfg.avg_con = 0;
650 rbdr_cfg.lines = rbdr->dma_size / 128;
651 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
652 qidx, *(u64 *)&rbdr_cfg);
653
654 /* Notify HW */
655 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
656 qidx, qs->rbdr_len - 1);
657
658 /* Set threshold value for interrupt generation */
659 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
660 qidx, rbdr->thresh - 1);
661 }
662
663 /* Requests PF to assign and enable Qset */
664 void nicvf_qset_config(struct nicvf *nic, bool enable)
665 {
666 union nic_mbx mbx = {};
667 struct queue_set *qs = nic->qs;
668 struct qs_cfg *qs_cfg;
669
670 if (!qs) {
671 netdev_warn(nic->netdev,
672 "Qset is still not allocated, don't init queues\n");
673 return;
674 }
675
676 qs->enable = enable;
677 qs->vnic_id = nic->vf_id;
678
679 /* Send a mailbox msg to PF to config Qset */
680 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
681 mbx.qs.num = qs->vnic_id;
682
683 mbx.qs.cfg = 0;
684 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
685 if (qs->enable) {
686 qs_cfg->ena = 1;
687 #ifdef __BIG_ENDIAN
688 qs_cfg->be = 1;
689 #endif
690 qs_cfg->vnic = qs->vnic_id;
691 }
692 nicvf_send_msg_to_pf(nic, &mbx);
693 }
694
695 static void nicvf_free_resources(struct nicvf *nic)
696 {
697 int qidx;
698 struct queue_set *qs = nic->qs;
699
700 /* Free receive buffer descriptor ring */
701 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
702 nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
703
704 /* Free completion queue */
705 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
706 nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
707
708 /* Free send queue */
709 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
710 nicvf_free_snd_queue(nic, &qs->sq[qidx]);
711 }
712
713 static int nicvf_alloc_resources(struct nicvf *nic)
714 {
715 int qidx;
716 struct queue_set *qs = nic->qs;
717
718 /* Alloc receive buffer descriptor ring */
719 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
720 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
721 DMA_BUFFER_LEN))
722 goto alloc_fail;
723 }
724
725 /* Alloc send queue */
726 for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
727 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
728 goto alloc_fail;
729 }
730
731 /* Alloc completion queue */
732 for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
733 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
734 goto alloc_fail;
735 }
736
737 return 0;
738 alloc_fail:
739 nicvf_free_resources(nic);
740 return -ENOMEM;
741 }
742
743 int nicvf_set_qset_resources(struct nicvf *nic)
744 {
745 struct queue_set *qs;
746
747 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
748 if (!qs)
749 return -ENOMEM;
750 nic->qs = qs;
751
752 /* Set count of each queue */
753 qs->rbdr_cnt = RBDR_CNT;
754 qs->rq_cnt = RCV_QUEUE_CNT;
755 qs->sq_cnt = SND_QUEUE_CNT;
756 qs->cq_cnt = CMP_QUEUE_CNT;
757
758 /* Set queue lengths */
759 qs->rbdr_len = RCV_BUF_COUNT;
760 qs->sq_len = SND_QUEUE_LEN;
761 qs->cq_len = CMP_QUEUE_LEN;
762 return 0;
763 }
764
765 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
766 {
767 bool disable = false;
768 struct queue_set *qs = nic->qs;
769 int qidx;
770
771 if (!qs)
772 return 0;
773
774 if (enable) {
775 if (nicvf_alloc_resources(nic))
776 return -ENOMEM;
777
778 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
779 nicvf_snd_queue_config(nic, qs, qidx, enable);
780 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
781 nicvf_cmp_queue_config(nic, qs, qidx, enable);
782 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
783 nicvf_rbdr_config(nic, qs, qidx, enable);
784 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
785 nicvf_rcv_queue_config(nic, qs, qidx, enable);
786 } else {
787 for (qidx = 0; qidx < qs->rq_cnt; qidx++)
788 nicvf_rcv_queue_config(nic, qs, qidx, disable);
789 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
790 nicvf_rbdr_config(nic, qs, qidx, disable);
791 for (qidx = 0; qidx < qs->sq_cnt; qidx++)
792 nicvf_snd_queue_config(nic, qs, qidx, disable);
793 for (qidx = 0; qidx < qs->cq_cnt; qidx++)
794 nicvf_cmp_queue_config(nic, qs, qidx, disable);
795
796 nicvf_free_resources(nic);
797 }
798
799 return 0;
800 }
801
802 /* Get a free desc from SQ
803 * returns descriptor ponter & descriptor number
804 */
805 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
806 {
807 int qentry;
808
809 qentry = sq->tail;
810 atomic_sub(desc_cnt, &sq->free_cnt);
811 sq->tail += desc_cnt;
812 sq->tail &= (sq->dmem.q_len - 1);
813
814 return qentry;
815 }
816
817 /* Free descriptor back to SQ for future use */
818 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
819 {
820 atomic_add(desc_cnt, &sq->free_cnt);
821 sq->head += desc_cnt;
822 sq->head &= (sq->dmem.q_len - 1);
823 }
824
825 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
826 {
827 qentry++;
828 qentry &= (sq->dmem.q_len - 1);
829 return qentry;
830 }
831
832 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
833 {
834 u64 sq_cfg;
835
836 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
837 sq_cfg |= NICVF_SQ_EN;
838 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
839 /* Ring doorbell so that H/W restarts processing SQEs */
840 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
841 }
842
843 void nicvf_sq_disable(struct nicvf *nic, int qidx)
844 {
845 u64 sq_cfg;
846
847 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
848 sq_cfg &= ~NICVF_SQ_EN;
849 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
850 }
851
852 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
853 int qidx)
854 {
855 u64 head, tail;
856 struct sk_buff *skb;
857 struct nicvf *nic = netdev_priv(netdev);
858 struct sq_hdr_subdesc *hdr;
859
860 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
861 tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
862 while (sq->head != head) {
863 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
864 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
865 nicvf_put_sq_desc(sq, 1);
866 continue;
867 }
868 skb = (struct sk_buff *)sq->skbuff[sq->head];
869 if (skb)
870 dev_kfree_skb_any(skb);
871 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
872 atomic64_add(hdr->tot_len,
873 (atomic64_t *)&netdev->stats.tx_bytes);
874 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
875 }
876 }
877
878 /* Calculate no of SQ subdescriptors needed to transmit all
879 * segments of this TSO packet.
880 * Taken from 'Tilera network driver' with a minor modification.
881 */
882 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
883 {
884 struct skb_shared_info *sh = skb_shinfo(skb);
885 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
886 unsigned int data_len = skb->len - sh_len;
887 unsigned int p_len = sh->gso_size;
888 long f_id = -1; /* id of the current fragment */
889 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
890 long f_used = 0; /* bytes used from the current fragment */
891 long n; /* size of the current piece of payload */
892 int num_edescs = 0;
893 int segment;
894
895 for (segment = 0; segment < sh->gso_segs; segment++) {
896 unsigned int p_used = 0;
897
898 /* One edesc for header and for each piece of the payload. */
899 for (num_edescs++; p_used < p_len; num_edescs++) {
900 /* Advance as needed. */
901 while (f_used >= f_size) {
902 f_id++;
903 f_size = skb_frag_size(&sh->frags[f_id]);
904 f_used = 0;
905 }
906
907 /* Use bytes from the current fragment. */
908 n = p_len - p_used;
909 if (n > f_size - f_used)
910 n = f_size - f_used;
911 f_used += n;
912 p_used += n;
913 }
914
915 /* The last segment may be less than gso_size. */
916 data_len -= p_len;
917 if (data_len < p_len)
918 p_len = data_len;
919 }
920
921 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
922 return num_edescs + sh->gso_segs;
923 }
924
925 /* Get the number of SQ descriptors needed to xmit this skb */
926 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
927 {
928 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
929
930 if (skb_shinfo(skb)->gso_size) {
931 subdesc_cnt = nicvf_tso_count_subdescs(skb);
932 return subdesc_cnt;
933 }
934
935 if (skb_shinfo(skb)->nr_frags)
936 subdesc_cnt += skb_shinfo(skb)->nr_frags;
937
938 return subdesc_cnt;
939 }
940
941 /* Add SQ HEADER subdescriptor.
942 * First subdescriptor for every send descriptor.
943 */
944 static inline void
945 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
946 int subdesc_cnt, struct sk_buff *skb, int len)
947 {
948 int proto;
949 struct sq_hdr_subdesc *hdr;
950
951 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
952 sq->skbuff[qentry] = (u64)skb;
953
954 memset(hdr, 0, SND_QUEUE_DESC_SIZE);
955 hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
956 /* Enable notification via CQE after processing SQE */
957 hdr->post_cqe = 1;
958 /* No of subdescriptors following this */
959 hdr->subdesc_cnt = subdesc_cnt;
960 hdr->tot_len = len;
961
962 /* Offload checksum calculation to HW */
963 if (skb->ip_summed == CHECKSUM_PARTIAL) {
964 if (skb->protocol != htons(ETH_P_IP))
965 return;
966
967 hdr->csum_l3 = 1; /* Enable IP csum calculation */
968 hdr->l3_offset = skb_network_offset(skb);
969 hdr->l4_offset = skb_transport_offset(skb);
970
971 proto = ip_hdr(skb)->protocol;
972 switch (proto) {
973 case IPPROTO_TCP:
974 hdr->csum_l4 = SEND_L4_CSUM_TCP;
975 break;
976 case IPPROTO_UDP:
977 hdr->csum_l4 = SEND_L4_CSUM_UDP;
978 break;
979 case IPPROTO_SCTP:
980 hdr->csum_l4 = SEND_L4_CSUM_SCTP;
981 break;
982 }
983 }
984 }
985
986 /* SQ GATHER subdescriptor
987 * Must follow HDR descriptor
988 */
989 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
990 int size, u64 data)
991 {
992 struct sq_gather_subdesc *gather;
993
994 qentry &= (sq->dmem.q_len - 1);
995 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
996
997 memset(gather, 0, SND_QUEUE_DESC_SIZE);
998 gather->subdesc_type = SQ_DESC_TYPE_GATHER;
999 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1000 gather->size = size;
1001 gather->addr = data;
1002 }
1003
1004 /* Segment a TSO packet into 'gso_size' segments and append
1005 * them to SQ for transfer
1006 */
1007 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1008 int qentry, struct sk_buff *skb)
1009 {
1010 struct tso_t tso;
1011 int seg_subdescs = 0, desc_cnt = 0;
1012 int seg_len, total_len, data_left;
1013 int hdr_qentry = qentry;
1014 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1015
1016 tso_start(skb, &tso);
1017 total_len = skb->len - hdr_len;
1018 while (total_len > 0) {
1019 char *hdr;
1020
1021 /* Save Qentry for adding HDR_SUBDESC at the end */
1022 hdr_qentry = qentry;
1023
1024 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1025 total_len -= data_left;
1026
1027 /* Add segment's header */
1028 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1029 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1030 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1031 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1032 sq->tso_hdrs_phys +
1033 qentry * TSO_HEADER_SIZE);
1034 /* HDR_SUDESC + GATHER */
1035 seg_subdescs = 2;
1036 seg_len = hdr_len;
1037
1038 /* Add segment's payload fragments */
1039 while (data_left > 0) {
1040 int size;
1041
1042 size = min_t(int, tso.size, data_left);
1043
1044 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1045 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1046 virt_to_phys(tso.data));
1047 seg_subdescs++;
1048 seg_len += size;
1049
1050 data_left -= size;
1051 tso_build_data(skb, &tso, size);
1052 }
1053 nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1054 seg_subdescs - 1, skb, seg_len);
1055 sq->skbuff[hdr_qentry] = (u64)NULL;
1056 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1057
1058 desc_cnt += seg_subdescs;
1059 }
1060 /* Save SKB in the last segment for freeing */
1061 sq->skbuff[hdr_qentry] = (u64)skb;
1062
1063 /* make sure all memory stores are done before ringing doorbell */
1064 smp_wmb();
1065
1066 /* Inform HW to xmit all TSO segments */
1067 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1068 skb_get_queue_mapping(skb), desc_cnt);
1069 nic->drv_stats.tx_tso++;
1070 return 1;
1071 }
1072
1073 /* Append an skb to a SQ for packet transfer. */
1074 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1075 {
1076 int i, size;
1077 int subdesc_cnt;
1078 int sq_num, qentry;
1079 struct queue_set *qs = nic->qs;
1080 struct snd_queue *sq;
1081
1082 sq_num = skb_get_queue_mapping(skb);
1083 sq = &qs->sq[sq_num];
1084
1085 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1086 if (subdesc_cnt > atomic_read(&sq->free_cnt))
1087 goto append_fail;
1088
1089 qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1090
1091 /* Check if its a TSO packet */
1092 if (skb_shinfo(skb)->gso_size)
1093 return nicvf_sq_append_tso(nic, sq, qentry, skb);
1094
1095 /* Add SQ header subdesc */
1096 nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1097
1098 /* Add SQ gather subdescs */
1099 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1100 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1101 nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1102
1103 /* Check for scattered buffer */
1104 if (!skb_is_nonlinear(skb))
1105 goto doorbell;
1106
1107 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1108 const struct skb_frag_struct *frag;
1109
1110 frag = &skb_shinfo(skb)->frags[i];
1111
1112 qentry = nicvf_get_nxt_sqentry(sq, qentry);
1113 size = skb_frag_size(frag);
1114 nicvf_sq_add_gather_subdesc(sq, qentry, size,
1115 virt_to_phys(
1116 skb_frag_address(frag)));
1117 }
1118
1119 doorbell:
1120 /* make sure all memory stores are done before ringing doorbell */
1121 smp_wmb();
1122
1123 /* Inform HW to xmit new packet */
1124 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1125 sq_num, subdesc_cnt);
1126 return 1;
1127
1128 append_fail:
1129 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1130 return 0;
1131 }
1132
1133 static inline unsigned frag_num(unsigned i)
1134 {
1135 #ifdef __BIG_ENDIAN
1136 return (i & ~3) + 3 - (i & 3);
1137 #else
1138 return i;
1139 #endif
1140 }
1141
1142 /* Returns SKB for a received packet */
1143 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1144 {
1145 int frag;
1146 int payload_len = 0;
1147 struct sk_buff *skb = NULL;
1148 struct sk_buff *skb_frag = NULL;
1149 struct sk_buff *prev_frag = NULL;
1150 u16 *rb_lens = NULL;
1151 u64 *rb_ptrs = NULL;
1152
1153 rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1154 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1155
1156 netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1157 __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1158
1159 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1160 payload_len = rb_lens[frag_num(frag)];
1161 if (!frag) {
1162 /* First fragment */
1163 skb = nicvf_rb_ptr_to_skb(nic,
1164 *rb_ptrs - cqe_rx->align_pad,
1165 payload_len);
1166 if (!skb)
1167 return NULL;
1168 skb_reserve(skb, cqe_rx->align_pad);
1169 skb_put(skb, payload_len);
1170 } else {
1171 /* Add fragments */
1172 skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1173 payload_len);
1174 if (!skb_frag) {
1175 dev_kfree_skb(skb);
1176 return NULL;
1177 }
1178
1179 if (!skb_shinfo(skb)->frag_list)
1180 skb_shinfo(skb)->frag_list = skb_frag;
1181 else
1182 prev_frag->next = skb_frag;
1183
1184 prev_frag = skb_frag;
1185 skb->len += payload_len;
1186 skb->data_len += payload_len;
1187 skb_frag->len = payload_len;
1188 }
1189 /* Next buffer pointer */
1190 rb_ptrs++;
1191 }
1192 return skb;
1193 }
1194
1195 /* Enable interrupt */
1196 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1197 {
1198 u64 reg_val;
1199
1200 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1201
1202 switch (int_type) {
1203 case NICVF_INTR_CQ:
1204 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1205 break;
1206 case NICVF_INTR_SQ:
1207 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1208 break;
1209 case NICVF_INTR_RBDR:
1210 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1211 break;
1212 case NICVF_INTR_PKT_DROP:
1213 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1214 break;
1215 case NICVF_INTR_TCP_TIMER:
1216 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1217 break;
1218 case NICVF_INTR_MBOX:
1219 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1220 break;
1221 case NICVF_INTR_QS_ERR:
1222 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1223 break;
1224 default:
1225 netdev_err(nic->netdev,
1226 "Failed to enable interrupt: unknown type\n");
1227 break;
1228 }
1229
1230 nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1231 }
1232
1233 /* Disable interrupt */
1234 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1235 {
1236 u64 reg_val = 0;
1237
1238 switch (int_type) {
1239 case NICVF_INTR_CQ:
1240 reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1241 break;
1242 case NICVF_INTR_SQ:
1243 reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1244 break;
1245 case NICVF_INTR_RBDR:
1246 reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1247 break;
1248 case NICVF_INTR_PKT_DROP:
1249 reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1250 break;
1251 case NICVF_INTR_TCP_TIMER:
1252 reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1253 break;
1254 case NICVF_INTR_MBOX:
1255 reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1256 break;
1257 case NICVF_INTR_QS_ERR:
1258 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1259 break;
1260 default:
1261 netdev_err(nic->netdev,
1262 "Failed to disable interrupt: unknown type\n");
1263 break;
1264 }
1265
1266 nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1267 }
1268
1269 /* Clear interrupt */
1270 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1271 {
1272 u64 reg_val = 0;
1273
1274 switch (int_type) {
1275 case NICVF_INTR_CQ:
1276 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1277 break;
1278 case NICVF_INTR_SQ:
1279 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1280 break;
1281 case NICVF_INTR_RBDR:
1282 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1283 break;
1284 case NICVF_INTR_PKT_DROP:
1285 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1286 break;
1287 case NICVF_INTR_TCP_TIMER:
1288 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1289 break;
1290 case NICVF_INTR_MBOX:
1291 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1292 break;
1293 case NICVF_INTR_QS_ERR:
1294 reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1295 break;
1296 default:
1297 netdev_err(nic->netdev,
1298 "Failed to clear interrupt: unknown type\n");
1299 break;
1300 }
1301
1302 nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1303 }
1304
1305 /* Check if interrupt is enabled */
1306 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1307 {
1308 u64 reg_val;
1309 u64 mask = 0xff;
1310
1311 reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1312
1313 switch (int_type) {
1314 case NICVF_INTR_CQ:
1315 mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1316 break;
1317 case NICVF_INTR_SQ:
1318 mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1319 break;
1320 case NICVF_INTR_RBDR:
1321 mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1322 break;
1323 case NICVF_INTR_PKT_DROP:
1324 mask = NICVF_INTR_PKT_DROP_MASK;
1325 break;
1326 case NICVF_INTR_TCP_TIMER:
1327 mask = NICVF_INTR_TCP_TIMER_MASK;
1328 break;
1329 case NICVF_INTR_MBOX:
1330 mask = NICVF_INTR_MBOX_MASK;
1331 break;
1332 case NICVF_INTR_QS_ERR:
1333 mask = NICVF_INTR_QS_ERR_MASK;
1334 break;
1335 default:
1336 netdev_err(nic->netdev,
1337 "Failed to check interrupt enable: unknown type\n");
1338 break;
1339 }
1340
1341 return (reg_val & mask);
1342 }
1343
1344 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1345 {
1346 struct rcv_queue *rq;
1347
1348 #define GET_RQ_STATS(reg) \
1349 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1350 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1351
1352 rq = &nic->qs->rq[rq_idx];
1353 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1354 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1355 }
1356
1357 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1358 {
1359 struct snd_queue *sq;
1360
1361 #define GET_SQ_STATS(reg) \
1362 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1363 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1364
1365 sq = &nic->qs->sq[sq_idx];
1366 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1367 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1368 }
1369
1370 /* Check for errors in the receive cmp.queue entry */
1371 int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1372 struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1373 {
1374 struct cmp_queue_stats *stats = &cq->stats;
1375
1376 if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1377 stats->rx.errop.good++;
1378 return 0;
1379 }
1380
1381 if (netif_msg_rx_err(nic))
1382 netdev_err(nic->netdev,
1383 "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1384 nic->netdev->name,
1385 cqe_rx->err_level, cqe_rx->err_opcode);
1386
1387 switch (cqe_rx->err_level) {
1388 case CQ_ERRLVL_MAC:
1389 stats->rx.errlvl.mac_errs++;
1390 break;
1391 case CQ_ERRLVL_L2:
1392 stats->rx.errlvl.l2_errs++;
1393 break;
1394 case CQ_ERRLVL_L3:
1395 stats->rx.errlvl.l3_errs++;
1396 break;
1397 case CQ_ERRLVL_L4:
1398 stats->rx.errlvl.l4_errs++;
1399 break;
1400 }
1401
1402 switch (cqe_rx->err_opcode) {
1403 case CQ_RX_ERROP_RE_PARTIAL:
1404 stats->rx.errop.partial_pkts++;
1405 break;
1406 case CQ_RX_ERROP_RE_JABBER:
1407 stats->rx.errop.jabber_errs++;
1408 break;
1409 case CQ_RX_ERROP_RE_FCS:
1410 stats->rx.errop.fcs_errs++;
1411 break;
1412 case CQ_RX_ERROP_RE_TERMINATE:
1413 stats->rx.errop.terminate_errs++;
1414 break;
1415 case CQ_RX_ERROP_RE_RX_CTL:
1416 stats->rx.errop.bgx_rx_errs++;
1417 break;
1418 case CQ_RX_ERROP_PREL2_ERR:
1419 stats->rx.errop.prel2_errs++;
1420 break;
1421 case CQ_RX_ERROP_L2_FRAGMENT:
1422 stats->rx.errop.l2_frags++;
1423 break;
1424 case CQ_RX_ERROP_L2_OVERRUN:
1425 stats->rx.errop.l2_overruns++;
1426 break;
1427 case CQ_RX_ERROP_L2_PFCS:
1428 stats->rx.errop.l2_pfcs++;
1429 break;
1430 case CQ_RX_ERROP_L2_PUNY:
1431 stats->rx.errop.l2_puny++;
1432 break;
1433 case CQ_RX_ERROP_L2_MAL:
1434 stats->rx.errop.l2_hdr_malformed++;
1435 break;
1436 case CQ_RX_ERROP_L2_OVERSIZE:
1437 stats->rx.errop.l2_oversize++;
1438 break;
1439 case CQ_RX_ERROP_L2_UNDERSIZE:
1440 stats->rx.errop.l2_undersize++;
1441 break;
1442 case CQ_RX_ERROP_L2_LENMISM:
1443 stats->rx.errop.l2_len_mismatch++;
1444 break;
1445 case CQ_RX_ERROP_L2_PCLP:
1446 stats->rx.errop.l2_pclp++;
1447 break;
1448 case CQ_RX_ERROP_IP_NOT:
1449 stats->rx.errop.non_ip++;
1450 break;
1451 case CQ_RX_ERROP_IP_CSUM_ERR:
1452 stats->rx.errop.ip_csum_err++;
1453 break;
1454 case CQ_RX_ERROP_IP_MAL:
1455 stats->rx.errop.ip_hdr_malformed++;
1456 break;
1457 case CQ_RX_ERROP_IP_MALD:
1458 stats->rx.errop.ip_payload_malformed++;
1459 break;
1460 case CQ_RX_ERROP_IP_HOP:
1461 stats->rx.errop.ip_hop_errs++;
1462 break;
1463 case CQ_RX_ERROP_L3_ICRC:
1464 stats->rx.errop.l3_icrc_errs++;
1465 break;
1466 case CQ_RX_ERROP_L3_PCLP:
1467 stats->rx.errop.l3_pclp++;
1468 break;
1469 case CQ_RX_ERROP_L4_MAL:
1470 stats->rx.errop.l4_malformed++;
1471 break;
1472 case CQ_RX_ERROP_L4_CHK:
1473 stats->rx.errop.l4_csum_errs++;
1474 break;
1475 case CQ_RX_ERROP_UDP_LEN:
1476 stats->rx.errop.udp_len_err++;
1477 break;
1478 case CQ_RX_ERROP_L4_PORT:
1479 stats->rx.errop.bad_l4_port++;
1480 break;
1481 case CQ_RX_ERROP_TCP_FLAG:
1482 stats->rx.errop.bad_tcp_flag++;
1483 break;
1484 case CQ_RX_ERROP_TCP_OFFSET:
1485 stats->rx.errop.tcp_offset_errs++;
1486 break;
1487 case CQ_RX_ERROP_L4_PCLP:
1488 stats->rx.errop.l4_pclp++;
1489 break;
1490 case CQ_RX_ERROP_RBDR_TRUNC:
1491 stats->rx.errop.pkt_truncated++;
1492 break;
1493 }
1494
1495 return 1;
1496 }
1497
1498 /* Check for errors in the send cmp.queue entry */
1499 int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1500 struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1501 {
1502 struct cmp_queue_stats *stats = &cq->stats;
1503
1504 switch (cqe_tx->send_status) {
1505 case CQ_TX_ERROP_GOOD:
1506 stats->tx.good++;
1507 return 0;
1508 case CQ_TX_ERROP_DESC_FAULT:
1509 stats->tx.desc_fault++;
1510 break;
1511 case CQ_TX_ERROP_HDR_CONS_ERR:
1512 stats->tx.hdr_cons_err++;
1513 break;
1514 case CQ_TX_ERROP_SUBDC_ERR:
1515 stats->tx.subdesc_err++;
1516 break;
1517 case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1518 stats->tx.imm_size_oflow++;
1519 break;
1520 case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1521 stats->tx.data_seq_err++;
1522 break;
1523 case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1524 stats->tx.mem_seq_err++;
1525 break;
1526 case CQ_TX_ERROP_LOCK_VIOL:
1527 stats->tx.lock_viol++;
1528 break;
1529 case CQ_TX_ERROP_DATA_FAULT:
1530 stats->tx.data_fault++;
1531 break;
1532 case CQ_TX_ERROP_TSTMP_CONFLICT:
1533 stats->tx.tstmp_conflict++;
1534 break;
1535 case CQ_TX_ERROP_TSTMP_TIMEOUT:
1536 stats->tx.tstmp_timeout++;
1537 break;
1538 case CQ_TX_ERROP_MEM_FAULT:
1539 stats->tx.mem_fault++;
1540 break;
1541 case CQ_TX_ERROP_CK_OVERLAP:
1542 stats->tx.csum_overlap++;
1543 break;
1544 case CQ_TX_ERROP_CK_OFLOW:
1545 stats->tx.csum_overflow++;
1546 break;
1547 }
1548
1549 return 1;
1550 }