1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
22 * http://www.chelsio.com *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
27 * Maintainers: maintainers@chelsio.com *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
38 ****************************************************************************/
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
52 #include <linux/tcp.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
57 #include <linux/prefetch.h>
64 /* This belongs in if_ether.h */
65 #define ETH_P_CPL5 0xf
68 #define SGE_FREELQ_N 2
69 #define SGE_CMDQ0_E_N 1024
70 #define SGE_CMDQ1_E_N 128
71 #define SGE_FREEL_SIZE 4096
72 #define SGE_JUMBO_FREEL_SIZE 512
73 #define SGE_FREEL_REFILL_THRESH 16
74 #define SGE_RESPQ_E_N 1024
75 #define SGE_INTRTIMER_NRES 1000
76 #define SGE_RX_SM_BUF_SIZE 1536
77 #define SGE_TX_DESC_MAX_PLEN 16384
79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
82 * Period of the TX buffer reclaim timer. This timer does not need to run
83 * frequently as TX buffers are usually reclaimed by new TX packets.
85 #define TX_RECLAIM_PERIOD (HZ / 4)
87 #define M_CMD_LEN 0x7fffffff
88 #define V_CMD_LEN(v) (v)
89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
90 #define V_CMD_GEN1(v) ((v) << 31)
91 #define V_CMD_GEN2(v) (v)
92 #define F_CMD_DATAVALID (1 << 1)
93 #define F_CMD_SOP (1 << 2)
94 #define V_CMD_EOP(v) ((v) << 3)
97 * Command queue, receive buffer list, and response queue descriptors.
99 #if defined(__BIG_ENDIAN_BITFIELD)
116 u32 Cmdq1CreditReturn
: 5;
117 u32 Cmdq1DmaComplete
: 5;
118 u32 Cmdq0CreditReturn
: 5;
119 u32 Cmdq0DmaComplete
: 5;
126 u32 GenerationBit
: 1;
129 #elif defined(__LITTLE_ENDIAN_BITFIELD)
146 u32 GenerationBit
: 1;
153 u32 Cmdq0DmaComplete
: 5;
154 u32 Cmdq0CreditReturn
: 5;
155 u32 Cmdq1DmaComplete
: 5;
156 u32 Cmdq1CreditReturn
: 5;
162 * SW Context Command and Freelist Queue Descriptors
166 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
167 DEFINE_DMA_UNMAP_LEN(dma_len
);
172 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
173 DEFINE_DMA_UNMAP_LEN(dma_len
);
177 * SW command, freelist and response rings
180 unsigned long status
; /* HW DMA fetch status */
181 unsigned int in_use
; /* # of in-use command descriptors */
182 unsigned int size
; /* # of descriptors */
183 unsigned int processed
; /* total # of descs HW has processed */
184 unsigned int cleaned
; /* total # of descs SW has reclaimed */
185 unsigned int stop_thres
; /* SW TX queue suspend threshold */
186 u16 pidx
; /* producer index (SW) */
187 u16 cidx
; /* consumer index (HW) */
188 u8 genbit
; /* current generation (=valid) bit */
189 u8 sop
; /* is next entry start of packet? */
190 struct cmdQ_e
*entries
; /* HW command descriptor Q */
191 struct cmdQ_ce
*centries
; /* SW command context descriptor Q */
192 dma_addr_t dma_addr
; /* DMA addr HW command descriptor Q */
193 spinlock_t lock
; /* Lock to protect cmdQ enqueuing */
197 unsigned int credits
; /* # of available RX buffers */
198 unsigned int size
; /* free list capacity */
199 u16 pidx
; /* producer index (SW) */
200 u16 cidx
; /* consumer index (HW) */
201 u16 rx_buffer_size
; /* Buffer size on this free list */
202 u16 dma_offset
; /* DMA offset to align IP headers */
203 u16 recycleq_idx
; /* skb recycle q to use */
204 u8 genbit
; /* current generation (=valid) bit */
205 struct freelQ_e
*entries
; /* HW freelist descriptor Q */
206 struct freelQ_ce
*centries
; /* SW freelist context descriptor Q */
207 dma_addr_t dma_addr
; /* DMA addr HW freelist descriptor Q */
211 unsigned int credits
; /* credits to be returned to SGE */
212 unsigned int size
; /* # of response Q descriptors */
213 u16 cidx
; /* consumer index (SW) */
214 u8 genbit
; /* current generation(=valid) bit */
215 struct respQ_e
*entries
; /* HW response descriptor Q */
216 dma_addr_t dma_addr
; /* DMA addr HW response descriptor Q */
219 /* Bit flags for cmdQ.status */
221 CMDQ_STAT_RUNNING
= 1, /* fetch engine is running */
222 CMDQ_STAT_LAST_PKT_DB
= 2 /* last packet rung the doorbell */
225 /* T204 TX SW scheduler */
227 /* Per T204 TX port */
229 unsigned int avail
; /* available bits - quota */
230 unsigned int drain_bits_per_1024ns
; /* drain rate */
231 unsigned int speed
; /* drain rate, mbps */
232 unsigned int mtu
; /* mtu size */
233 struct sk_buff_head skbq
; /* pending skbs */
236 /* Per T204 device */
238 ktime_t last_updated
; /* last time quotas were computed */
239 unsigned int max_avail
; /* max bits to be sent to any port */
240 unsigned int port
; /* port index (round robin ports) */
241 unsigned int num
; /* num skbs in per port queues */
242 struct sched_port p
[MAX_NPORTS
];
243 struct tasklet_struct sched_tsk
;/* tasklet used to run scheduler */
245 static void restart_sched(unsigned long);
249 * Main SGE data structure
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
257 struct adapter
*adapter
; /* adapter backpointer */
258 struct net_device
*netdev
; /* netdevice backpointer */
259 struct freelQ freelQ
[SGE_FREELQ_N
]; /* buffer free lists */
260 struct respQ respQ
; /* response Q */
261 unsigned long stopped_tx_queues
; /* bitmap of suspended Tx queues */
262 unsigned int rx_pkt_pad
; /* RX padding for L2 packets */
263 unsigned int jumbo_fl
; /* jumbo freelist Q index */
264 unsigned int intrtimer_nres
; /* no-resource interrupt timer */
265 unsigned int fixed_intrtimer
;/* non-adaptive interrupt timer */
266 struct timer_list tx_reclaim_timer
; /* reclaims TX buffers */
267 struct timer_list espibug_timer
;
268 unsigned long espibug_timeout
;
269 struct sk_buff
*espibug_skb
[MAX_NPORTS
];
270 u32 sge_control
; /* shadow value of sge control reg */
271 struct sge_intr_counts stats
;
272 struct sge_port_stats __percpu
*port_stats
[MAX_NPORTS
];
273 struct sched
*tx_sched
;
274 struct cmdQ cmdQ
[SGE_CMDQ_N
] ____cacheline_aligned_in_smp
;
277 static const u8 ch_mac_addr
[ETH_ALEN
] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
282 * stop tasklet and free all pending skb's
284 static void tx_sched_stop(struct sge
*sge
)
286 struct sched
*s
= sge
->tx_sched
;
289 tasklet_kill(&s
->sched_tsk
);
291 for (i
= 0; i
< MAX_NPORTS
; i
++)
292 __skb_queue_purge(&s
->p
[s
->port
].skbq
);
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
299 unsigned int t1_sched_update_parms(struct sge
*sge
, unsigned int port
,
300 unsigned int mtu
, unsigned int speed
)
302 struct sched
*s
= sge
->tx_sched
;
303 struct sched_port
*p
= &s
->p
[port
];
304 unsigned int max_avail_segs
;
306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu
, speed
);
313 unsigned long long drain
= 1024ULL * p
->speed
* (p
->mtu
- 40);
314 do_div(drain
, (p
->mtu
+ 50) * 1000);
315 p
->drain_bits_per_1024ns
= (unsigned int) drain
;
318 p
->drain_bits_per_1024ns
=
319 90 * p
->drain_bits_per_1024ns
/ 100;
322 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
) {
323 p
->drain_bits_per_1024ns
-= 16;
324 s
->max_avail
= max(4096U, p
->mtu
+ 16 + 14 + 4);
325 max_avail_segs
= max(1U, 4096 / (p
->mtu
- 40));
327 s
->max_avail
= 16384;
328 max_avail_segs
= max(1U, 9000 / (p
->mtu
- 40));
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p
->mtu
,
333 p
->speed
, s
->max_avail
, max_avail_segs
,
334 p
->drain_bits_per_1024ns
);
336 return max_avail_segs
* (p
->mtu
- 40);
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
345 void t1_sched_set_max_avail_bytes(struct sge
*sge
, unsigned int val
)
347 struct sched
*s
= sge
->tx_sched
;
351 for (i
= 0; i
< MAX_NPORTS
; i
++)
352 t1_sched_update_parms(sge
, i
, 0, 0);
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
359 void t1_sched_set_drain_bits_per_us(struct sge
*sge
, unsigned int port
,
362 struct sched
*s
= sge
->tx_sched
;
363 struct sched_port
*p
= &s
->p
[port
];
364 p
->drain_bits_per_1024ns
= val
* 1024 / 1000;
365 t1_sched_update_parms(sge
, port
, 0, 0);
371 * tx_sched_init() allocates resources and does basic initialization.
373 static int tx_sched_init(struct sge
*sge
)
378 s
= kzalloc(sizeof (struct sched
), GFP_KERNEL
);
382 pr_debug("tx_sched_init\n");
383 tasklet_init(&s
->sched_tsk
, restart_sched
, (unsigned long) sge
);
386 for (i
= 0; i
< MAX_NPORTS
; i
++) {
387 skb_queue_head_init(&s
->p
[i
].skbq
);
388 t1_sched_update_parms(sge
, i
, 1500, 1000);
395 * sched_update_avail() computes the delta since the last time it was called
396 * and updates the per port quota (number of bits that can be sent to the any
399 static inline int sched_update_avail(struct sge
*sge
)
401 struct sched
*s
= sge
->tx_sched
;
402 ktime_t now
= ktime_get();
404 long long delta_time_ns
;
406 delta_time_ns
= ktime_to_ns(ktime_sub(now
, s
->last_updated
));
408 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns
);
409 if (delta_time_ns
< 15000)
412 for (i
= 0; i
< MAX_NPORTS
; i
++) {
413 struct sched_port
*p
= &s
->p
[i
];
414 unsigned int delta_avail
;
416 delta_avail
= (p
->drain_bits_per_1024ns
* delta_time_ns
) >> 13;
417 p
->avail
= min(p
->avail
+ delta_avail
, s
->max_avail
);
420 s
->last_updated
= now
;
426 * sched_skb() is called from two different places. In the tx path, any
427 * packet generating load on an output port will call sched_skb()
428 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
429 * context (skb == NULL).
430 * The scheduler only returns a skb (which will then be sent) if the
431 * length of the skb is <= the current quota of the output port.
433 static struct sk_buff
*sched_skb(struct sge
*sge
, struct sk_buff
*skb
,
434 unsigned int credits
)
436 struct sched
*s
= sge
->tx_sched
;
437 struct sk_buff_head
*skbq
;
438 unsigned int i
, len
, update
= 1;
440 pr_debug("sched_skb %p\n", skb
);
445 skbq
= &s
->p
[skb
->dev
->if_port
].skbq
;
446 __skb_queue_tail(skbq
, skb
);
451 if (credits
< MAX_SKB_FRAGS
+ 1)
455 for (i
= 0; i
< MAX_NPORTS
; i
++) {
456 s
->port
= (s
->port
+ 1) & (MAX_NPORTS
- 1);
457 skbq
= &s
->p
[s
->port
].skbq
;
459 skb
= skb_peek(skbq
);
465 if (len
<= s
->p
[s
->port
].avail
) {
466 s
->p
[s
->port
].avail
-= len
;
468 __skb_unlink(skb
, skbq
);
474 if (update
-- && sched_update_avail(sge
))
478 /* If there are more pending skbs, we use the hardware to schedule us
481 if (s
->num
&& !skb
) {
482 struct cmdQ
*q
= &sge
->cmdQ
[0];
483 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
484 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
485 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
486 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
489 pr_debug("sched_skb ret %p\n", skb
);
495 * PIO to indicate that memory mapped Q contains valid descriptor(s).
497 static inline void doorbell_pio(struct adapter
*adapter
, u32 val
)
500 writel(val
, adapter
->regs
+ A_SG_DOORBELL
);
504 * Frees all RX buffers on the freelist Q. The caller must make sure that
505 * the SGE is turned off before calling this function.
507 static void free_freelQ_buffers(struct pci_dev
*pdev
, struct freelQ
*q
)
509 unsigned int cidx
= q
->cidx
;
511 while (q
->credits
--) {
512 struct freelQ_ce
*ce
= &q
->centries
[cidx
];
514 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
515 dma_unmap_len(ce
, dma_len
),
517 dev_kfree_skb(ce
->skb
);
519 if (++cidx
== q
->size
)
525 * Free RX free list and response queue resources.
527 static void free_rx_resources(struct sge
*sge
)
529 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
530 unsigned int size
, i
;
532 if (sge
->respQ
.entries
) {
533 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
534 pci_free_consistent(pdev
, size
, sge
->respQ
.entries
,
535 sge
->respQ
.dma_addr
);
538 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
539 struct freelQ
*q
= &sge
->freelQ
[i
];
542 free_freelQ_buffers(pdev
, q
);
546 size
= sizeof(struct freelQ_e
) * q
->size
;
547 pci_free_consistent(pdev
, size
, q
->entries
,
554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
557 static int alloc_rx_resources(struct sge
*sge
, struct sge_params
*p
)
559 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
560 unsigned int size
, i
;
562 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
563 struct freelQ
*q
= &sge
->freelQ
[i
];
566 q
->size
= p
->freelQ_size
[i
];
567 q
->dma_offset
= sge
->rx_pkt_pad
? 0 : NET_IP_ALIGN
;
568 size
= sizeof(struct freelQ_e
) * q
->size
;
569 q
->entries
= pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
573 size
= sizeof(struct freelQ_ce
) * q
->size
;
574 q
->centries
= kzalloc(size
, GFP_KERNEL
);
580 * Calculate the buffer sizes for the two free lists. FL0 accommodates
581 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
582 * including all the sk_buff overhead.
584 * Note: For T2 FL0 and FL1 are reversed.
586 sge
->freelQ
[!sge
->jumbo_fl
].rx_buffer_size
= SGE_RX_SM_BUF_SIZE
+
587 sizeof(struct cpl_rx_data
) +
588 sge
->freelQ
[!sge
->jumbo_fl
].dma_offset
;
591 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
593 sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
= size
;
596 * Setup which skb recycle Q should be used when recycling buffers from
599 sge
->freelQ
[!sge
->jumbo_fl
].recycleq_idx
= 0;
600 sge
->freelQ
[sge
->jumbo_fl
].recycleq_idx
= 1;
602 sge
->respQ
.genbit
= 1;
603 sge
->respQ
.size
= SGE_RESPQ_E_N
;
604 sge
->respQ
.credits
= 0;
605 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
607 pci_alloc_consistent(pdev
, size
, &sge
->respQ
.dma_addr
);
608 if (!sge
->respQ
.entries
)
613 free_rx_resources(sge
);
618 * Reclaims n TX descriptors and frees the buffers associated with them.
620 static void free_cmdQ_buffers(struct sge
*sge
, struct cmdQ
*q
, unsigned int n
)
623 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
624 unsigned int cidx
= q
->cidx
;
627 ce
= &q
->centries
[cidx
];
629 if (likely(dma_unmap_len(ce
, dma_len
))) {
630 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
631 dma_unmap_len(ce
, dma_len
),
637 dev_kfree_skb_any(ce
->skb
);
641 if (++cidx
== q
->size
) {
652 * Assumes that SGE is stopped and all interrupts are disabled.
654 static void free_tx_resources(struct sge
*sge
)
656 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
657 unsigned int size
, i
;
659 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
660 struct cmdQ
*q
= &sge
->cmdQ
[i
];
664 free_cmdQ_buffers(sge
, q
, q
->in_use
);
668 size
= sizeof(struct cmdQ_e
) * q
->size
;
669 pci_free_consistent(pdev
, size
, q
->entries
,
676 * Allocates basic TX resources, consisting of memory mapped command Qs.
678 static int alloc_tx_resources(struct sge
*sge
, struct sge_params
*p
)
680 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
681 unsigned int size
, i
;
683 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
684 struct cmdQ
*q
= &sge
->cmdQ
[i
];
688 q
->size
= p
->cmdQ_size
[i
];
691 q
->processed
= q
->cleaned
= 0;
693 spin_lock_init(&q
->lock
);
694 size
= sizeof(struct cmdQ_e
) * q
->size
;
695 q
->entries
= pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
699 size
= sizeof(struct cmdQ_ce
) * q
->size
;
700 q
->centries
= kzalloc(size
, GFP_KERNEL
);
706 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
707 * only. For queue 0 set the stop threshold so we can handle one more
708 * packet from each port, plus reserve an additional 24 entries for
709 * Ethernet packets only. Queue 1 never suspends nor do we reserve
710 * space for Ethernet packets.
712 sge
->cmdQ
[0].stop_thres
= sge
->adapter
->params
.nports
*
717 free_tx_resources(sge
);
721 static inline void setup_ring_params(struct adapter
*adapter
, u64 addr
,
722 u32 size
, int base_reg_lo
,
723 int base_reg_hi
, int size_reg
)
725 writel((u32
)addr
, adapter
->regs
+ base_reg_lo
);
726 writel(addr
>> 32, adapter
->regs
+ base_reg_hi
);
727 writel(size
, adapter
->regs
+ size_reg
);
731 * Enable/disable VLAN acceleration.
733 void t1_vlan_mode(struct adapter
*adapter
, netdev_features_t features
)
735 struct sge
*sge
= adapter
->sge
;
737 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
738 sge
->sge_control
|= F_VLAN_XTRACT
;
740 sge
->sge_control
&= ~F_VLAN_XTRACT
;
741 if (adapter
->open_device_map
) {
742 writel(sge
->sge_control
, adapter
->regs
+ A_SG_CONTROL
);
743 readl(adapter
->regs
+ A_SG_CONTROL
); /* flush */
748 * Programs the various SGE registers. However, the engine is not yet enabled,
749 * but sge->sge_control is setup and ready to go.
751 static void configure_sge(struct sge
*sge
, struct sge_params
*p
)
753 struct adapter
*ap
= sge
->adapter
;
755 writel(0, ap
->regs
+ A_SG_CONTROL
);
756 setup_ring_params(ap
, sge
->cmdQ
[0].dma_addr
, sge
->cmdQ
[0].size
,
757 A_SG_CMD0BASELWR
, A_SG_CMD0BASEUPR
, A_SG_CMD0SIZE
);
758 setup_ring_params(ap
, sge
->cmdQ
[1].dma_addr
, sge
->cmdQ
[1].size
,
759 A_SG_CMD1BASELWR
, A_SG_CMD1BASEUPR
, A_SG_CMD1SIZE
);
760 setup_ring_params(ap
, sge
->freelQ
[0].dma_addr
,
761 sge
->freelQ
[0].size
, A_SG_FL0BASELWR
,
762 A_SG_FL0BASEUPR
, A_SG_FL0SIZE
);
763 setup_ring_params(ap
, sge
->freelQ
[1].dma_addr
,
764 sge
->freelQ
[1].size
, A_SG_FL1BASELWR
,
765 A_SG_FL1BASEUPR
, A_SG_FL1SIZE
);
767 /* The threshold comparison uses <. */
768 writel(SGE_RX_SM_BUF_SIZE
+ 1, ap
->regs
+ A_SG_FLTHRESHOLD
);
770 setup_ring_params(ap
, sge
->respQ
.dma_addr
, sge
->respQ
.size
,
771 A_SG_RSPBASELWR
, A_SG_RSPBASEUPR
, A_SG_RSPSIZE
);
772 writel((u32
)sge
->respQ
.size
- 1, ap
->regs
+ A_SG_RSPQUEUECREDIT
);
774 sge
->sge_control
= F_CMDQ0_ENABLE
| F_CMDQ1_ENABLE
| F_FL0_ENABLE
|
775 F_FL1_ENABLE
| F_CPL_ENABLE
| F_RESPONSE_QUEUE_ENABLE
|
776 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS
| F_ISCSI_COALESCE
|
777 V_RX_PKT_OFFSET(sge
->rx_pkt_pad
);
779 #if defined(__BIG_ENDIAN_BITFIELD)
780 sge
->sge_control
|= F_ENABLE_BIG_ENDIAN
;
783 /* Initialize no-resource timer */
784 sge
->intrtimer_nres
= SGE_INTRTIMER_NRES
* core_ticks_per_usec(ap
);
786 t1_sge_set_coalesce_params(sge
, p
);
790 * Return the payload capacity of the jumbo free-list buffers.
792 static inline unsigned int jumbo_payload_capacity(const struct sge
*sge
)
794 return sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
-
795 sge
->freelQ
[sge
->jumbo_fl
].dma_offset
-
796 sizeof(struct cpl_rx_data
);
800 * Frees all SGE related resources and the sge structure itself
802 void t1_sge_destroy(struct sge
*sge
)
806 for_each_port(sge
->adapter
, i
)
807 free_percpu(sge
->port_stats
[i
]);
809 kfree(sge
->tx_sched
);
810 free_tx_resources(sge
);
811 free_rx_resources(sge
);
816 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
817 * context Q) until the Q is full or alloc_skb fails.
819 * It is possible that the generation bits already match, indicating that the
820 * buffer is already valid and nothing needs to be done. This happens when we
821 * copied a received buffer into a new sk_buff during the interrupt processing.
823 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
824 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
827 static void refill_free_list(struct sge
*sge
, struct freelQ
*q
)
829 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
830 struct freelQ_ce
*ce
= &q
->centries
[q
->pidx
];
831 struct freelQ_e
*e
= &q
->entries
[q
->pidx
];
832 unsigned int dma_len
= q
->rx_buffer_size
- q
->dma_offset
;
834 while (q
->credits
< q
->size
) {
838 skb
= dev_alloc_skb(q
->rx_buffer_size
);
842 skb_reserve(skb
, q
->dma_offset
);
843 mapping
= pci_map_single(pdev
, skb
->data
, dma_len
,
845 skb_reserve(skb
, sge
->rx_pkt_pad
);
848 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
849 dma_unmap_len_set(ce
, dma_len
, dma_len
);
850 e
->addr_lo
= (u32
)mapping
;
851 e
->addr_hi
= (u64
)mapping
>> 32;
852 e
->len_gen
= V_CMD_LEN(dma_len
) | V_CMD_GEN1(q
->genbit
);
854 e
->gen2
= V_CMD_GEN2(q
->genbit
);
858 if (++q
->pidx
== q
->size
) {
869 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
870 * of both rings, we go into 'few interrupt mode' in order to give the system
871 * time to free up resources.
873 static void freelQs_empty(struct sge
*sge
)
875 struct adapter
*adapter
= sge
->adapter
;
876 u32 irq_reg
= readl(adapter
->regs
+ A_SG_INT_ENABLE
);
879 refill_free_list(sge
, &sge
->freelQ
[0]);
880 refill_free_list(sge
, &sge
->freelQ
[1]);
882 if (sge
->freelQ
[0].credits
> (sge
->freelQ
[0].size
>> 2) &&
883 sge
->freelQ
[1].credits
> (sge
->freelQ
[1].size
>> 2)) {
884 irq_reg
|= F_FL_EXHAUSTED
;
885 irqholdoff_reg
= sge
->fixed_intrtimer
;
887 /* Clear the F_FL_EXHAUSTED interrupts for now */
888 irq_reg
&= ~F_FL_EXHAUSTED
;
889 irqholdoff_reg
= sge
->intrtimer_nres
;
891 writel(irqholdoff_reg
, adapter
->regs
+ A_SG_INTRTIMER
);
892 writel(irq_reg
, adapter
->regs
+ A_SG_INT_ENABLE
);
894 /* We reenable the Qs to force a freelist GTS interrupt later */
895 doorbell_pio(adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
898 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
899 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
900 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
901 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
904 * Disable SGE Interrupts
906 void t1_sge_intr_disable(struct sge
*sge
)
908 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
910 writel(val
& ~SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
911 writel(0, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
915 * Enable SGE interrupts.
917 void t1_sge_intr_enable(struct sge
*sge
)
919 u32 en
= SGE_INT_ENABLE
;
920 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
922 if (sge
->adapter
->port
[0].dev
->hw_features
& NETIF_F_TSO
)
923 en
&= ~F_PACKET_TOO_BIG
;
924 writel(en
, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
925 writel(val
| SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
929 * Clear SGE interrupts.
931 void t1_sge_intr_clear(struct sge
*sge
)
933 writel(SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_CAUSE
);
934 writel(0xffffffff, sge
->adapter
->regs
+ A_SG_INT_CAUSE
);
938 * SGE 'Error' interrupt handler
940 int t1_sge_intr_error_handler(struct sge
*sge
)
942 struct adapter
*adapter
= sge
->adapter
;
943 u32 cause
= readl(adapter
->regs
+ A_SG_INT_CAUSE
);
945 if (adapter
->port
[0].dev
->hw_features
& NETIF_F_TSO
)
946 cause
&= ~F_PACKET_TOO_BIG
;
947 if (cause
& F_RESPQ_EXHAUSTED
)
948 sge
->stats
.respQ_empty
++;
949 if (cause
& F_RESPQ_OVERFLOW
) {
950 sge
->stats
.respQ_overflow
++;
951 pr_alert("%s: SGE response queue overflow\n",
954 if (cause
& F_FL_EXHAUSTED
) {
955 sge
->stats
.freelistQ_empty
++;
958 if (cause
& F_PACKET_TOO_BIG
) {
959 sge
->stats
.pkt_too_big
++;
960 pr_alert("%s: SGE max packet size exceeded\n",
963 if (cause
& F_PACKET_MISMATCH
) {
964 sge
->stats
.pkt_mismatch
++;
965 pr_alert("%s: SGE packet mismatch\n", adapter
->name
);
967 if (cause
& SGE_INT_FATAL
)
968 t1_fatal_err(adapter
);
970 writel(cause
, adapter
->regs
+ A_SG_INT_CAUSE
);
974 const struct sge_intr_counts
*t1_sge_get_intr_counts(const struct sge
*sge
)
979 void t1_sge_get_port_stats(const struct sge
*sge
, int port
,
980 struct sge_port_stats
*ss
)
984 memset(ss
, 0, sizeof(*ss
));
985 for_each_possible_cpu(cpu
) {
986 struct sge_port_stats
*st
= per_cpu_ptr(sge
->port_stats
[port
], cpu
);
988 ss
->rx_cso_good
+= st
->rx_cso_good
;
989 ss
->tx_cso
+= st
->tx_cso
;
990 ss
->tx_tso
+= st
->tx_tso
;
991 ss
->tx_need_hdrroom
+= st
->tx_need_hdrroom
;
992 ss
->vlan_xtract
+= st
->vlan_xtract
;
993 ss
->vlan_insert
+= st
->vlan_insert
;
998 * recycle_fl_buf - recycle a free list buffer
1000 * @idx: index of buffer to recycle
1002 * Recycles the specified buffer on the given free list by adding it at
1003 * the next available slot on the list.
1005 static void recycle_fl_buf(struct freelQ
*fl
, int idx
)
1007 struct freelQ_e
*from
= &fl
->entries
[idx
];
1008 struct freelQ_e
*to
= &fl
->entries
[fl
->pidx
];
1010 fl
->centries
[fl
->pidx
] = fl
->centries
[idx
];
1011 to
->addr_lo
= from
->addr_lo
;
1012 to
->addr_hi
= from
->addr_hi
;
1013 to
->len_gen
= G_CMD_LEN(from
->len_gen
) | V_CMD_GEN1(fl
->genbit
);
1015 to
->gen2
= V_CMD_GEN2(fl
->genbit
);
1018 if (++fl
->pidx
== fl
->size
) {
1024 static int copybreak __read_mostly
= 256;
1025 module_param(copybreak
, int, 0);
1026 MODULE_PARM_DESC(copybreak
, "Receive copy threshold");
1029 * get_packet - return the next ingress packet buffer
1030 * @pdev: the PCI device that received the packet
1031 * @fl: the SGE free list holding the packet
1032 * @len: the actual packet length, excluding any SGE padding
1034 * Get the next packet from a free list and complete setup of the
1035 * sk_buff. If the packet is small we make a copy and recycle the
1036 * original buffer, otherwise we use the original buffer itself. If a
1037 * positive drop threshold is supplied packets are dropped and their
1038 * buffers recycled if (a) the number of remaining buffers is under the
1039 * threshold and the packet is too big to copy, or (b) the packet should
1040 * be copied but there is no memory for the copy.
1042 static inline struct sk_buff
*get_packet(struct pci_dev
*pdev
,
1043 struct freelQ
*fl
, unsigned int len
)
1045 struct sk_buff
*skb
;
1046 const struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1048 if (len
< copybreak
) {
1049 skb
= netdev_alloc_skb_ip_align(NULL
, len
);
1054 pci_dma_sync_single_for_cpu(pdev
,
1055 dma_unmap_addr(ce
, dma_addr
),
1056 dma_unmap_len(ce
, dma_len
),
1057 PCI_DMA_FROMDEVICE
);
1058 skb_copy_from_linear_data(ce
->skb
, skb
->data
, len
);
1059 pci_dma_sync_single_for_device(pdev
,
1060 dma_unmap_addr(ce
, dma_addr
),
1061 dma_unmap_len(ce
, dma_len
),
1062 PCI_DMA_FROMDEVICE
);
1063 recycle_fl_buf(fl
, fl
->cidx
);
1068 if (fl
->credits
< 2) {
1069 recycle_fl_buf(fl
, fl
->cidx
);
1073 pci_unmap_single(pdev
, dma_unmap_addr(ce
, dma_addr
),
1074 dma_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1076 prefetch(skb
->data
);
1083 * unexpected_offload - handle an unexpected offload packet
1084 * @adapter: the adapter
1085 * @fl: the free list that received the packet
1087 * Called when we receive an unexpected offload packet (e.g., the TOE
1088 * function is disabled or the card is a NIC). Prints a message and
1089 * recycles the buffer.
1091 static void unexpected_offload(struct adapter
*adapter
, struct freelQ
*fl
)
1093 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1094 struct sk_buff
*skb
= ce
->skb
;
1096 pci_dma_sync_single_for_cpu(adapter
->pdev
, dma_unmap_addr(ce
, dma_addr
),
1097 dma_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
1098 pr_err("%s: unexpected offload packet, cmd %u\n",
1099 adapter
->name
, *skb
->data
);
1100 recycle_fl_buf(fl
, fl
->cidx
);
1104 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1105 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1106 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1107 * Note that the *_large_page_tx_descs stuff will be optimized out when
1108 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1110 * compute_large_page_descs() computes how many additional descriptors are
1111 * required to break down the stack's request.
1113 static inline unsigned int compute_large_page_tx_descs(struct sk_buff
*skb
)
1115 unsigned int count
= 0;
1117 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1118 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
1119 unsigned int i
, len
= skb_headlen(skb
);
1120 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1122 len
-= SGE_TX_DESC_MAX_PLEN
;
1124 for (i
= 0; nfrags
--; i
++) {
1125 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1126 len
= skb_frag_size(frag
);
1127 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1129 len
-= SGE_TX_DESC_MAX_PLEN
;
1137 * Write a cmdQ entry.
1139 * Since this function writes the 'flags' field, it must not be used to
1140 * write the first cmdQ entry.
1142 static inline void write_tx_desc(struct cmdQ_e
*e
, dma_addr_t mapping
,
1143 unsigned int len
, unsigned int gen
,
1146 BUG_ON(len
> SGE_TX_DESC_MAX_PLEN
);
1148 e
->addr_lo
= (u32
)mapping
;
1149 e
->addr_hi
= (u64
)mapping
>> 32;
1150 e
->len_gen
= V_CMD_LEN(len
) | V_CMD_GEN1(gen
);
1151 e
->flags
= F_CMD_DATAVALID
| V_CMD_EOP(eop
) | V_CMD_GEN2(gen
);
1155 * See comment for previous function.
1157 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1158 * *desc_len exceeds HW's capability.
1160 static inline unsigned int write_large_page_tx_descs(unsigned int pidx
,
1162 struct cmdQ_ce
**ce
,
1164 dma_addr_t
*desc_mapping
,
1165 unsigned int *desc_len
,
1166 unsigned int nfrags
,
1169 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1170 struct cmdQ_e
*e1
= *e
;
1171 struct cmdQ_ce
*ce1
= *ce
;
1173 while (*desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1174 *desc_len
-= SGE_TX_DESC_MAX_PLEN
;
1175 write_tx_desc(e1
, *desc_mapping
, SGE_TX_DESC_MAX_PLEN
,
1176 *gen
, nfrags
== 0 && *desc_len
== 0);
1178 dma_unmap_len_set(ce1
, dma_len
, 0);
1179 *desc_mapping
+= SGE_TX_DESC_MAX_PLEN
;
1183 if (++pidx
== q
->size
) {
1198 * Write the command descriptors to transmit the given skb starting at
1199 * descriptor pidx with the given generation.
1201 static inline void write_tx_descs(struct adapter
*adapter
, struct sk_buff
*skb
,
1202 unsigned int pidx
, unsigned int gen
,
1205 dma_addr_t mapping
, desc_mapping
;
1206 struct cmdQ_e
*e
, *e1
;
1208 unsigned int i
, flags
, first_desc_len
, desc_len
,
1209 nfrags
= skb_shinfo(skb
)->nr_frags
;
1211 e
= e1
= &q
->entries
[pidx
];
1212 ce
= &q
->centries
[pidx
];
1214 mapping
= pci_map_single(adapter
->pdev
, skb
->data
,
1215 skb_headlen(skb
), PCI_DMA_TODEVICE
);
1217 desc_mapping
= mapping
;
1218 desc_len
= skb_headlen(skb
);
1220 flags
= F_CMD_DATAVALID
| F_CMD_SOP
|
1221 V_CMD_EOP(nfrags
== 0 && desc_len
<= SGE_TX_DESC_MAX_PLEN
) |
1223 first_desc_len
= (desc_len
<= SGE_TX_DESC_MAX_PLEN
) ?
1224 desc_len
: SGE_TX_DESC_MAX_PLEN
;
1225 e
->addr_lo
= (u32
)desc_mapping
;
1226 e
->addr_hi
= (u64
)desc_mapping
>> 32;
1227 e
->len_gen
= V_CMD_LEN(first_desc_len
) | V_CMD_GEN1(gen
);
1229 dma_unmap_len_set(ce
, dma_len
, 0);
1231 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
&&
1232 desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1233 desc_mapping
+= first_desc_len
;
1234 desc_len
-= first_desc_len
;
1237 if (++pidx
== q
->size
) {
1243 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1244 &desc_mapping
, &desc_len
,
1247 if (likely(desc_len
))
1248 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1253 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1254 dma_unmap_len_set(ce
, dma_len
, skb_headlen(skb
));
1256 for (i
= 0; nfrags
--; i
++) {
1257 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1260 if (++pidx
== q
->size
) {
1267 mapping
= skb_frag_dma_map(&adapter
->pdev
->dev
, frag
, 0,
1268 skb_frag_size(frag
), DMA_TO_DEVICE
);
1269 desc_mapping
= mapping
;
1270 desc_len
= skb_frag_size(frag
);
1272 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1273 &desc_mapping
, &desc_len
,
1275 if (likely(desc_len
))
1276 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1279 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1280 dma_unmap_len_set(ce
, dma_len
, skb_frag_size(frag
));
1288 * Clean up completed Tx buffers.
1290 static inline void reclaim_completed_tx(struct sge
*sge
, struct cmdQ
*q
)
1292 unsigned int reclaim
= q
->processed
- q
->cleaned
;
1295 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1296 q
->processed
, q
->cleaned
);
1297 free_cmdQ_buffers(sge
, q
, reclaim
);
1298 q
->cleaned
+= reclaim
;
1303 * Called from tasklet. Checks the scheduler for any
1304 * pending skbs that can be sent.
1306 static void restart_sched(unsigned long arg
)
1308 struct sge
*sge
= (struct sge
*) arg
;
1309 struct adapter
*adapter
= sge
->adapter
;
1310 struct cmdQ
*q
= &sge
->cmdQ
[0];
1311 struct sk_buff
*skb
;
1312 unsigned int credits
, queued_skb
= 0;
1314 spin_lock(&q
->lock
);
1315 reclaim_completed_tx(sge
, q
);
1317 credits
= q
->size
- q
->in_use
;
1318 pr_debug("restart_sched credits=%d\n", credits
);
1319 while ((skb
= sched_skb(sge
, NULL
, credits
)) != NULL
) {
1320 unsigned int genbit
, pidx
, count
;
1321 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1322 count
+= compute_large_page_tx_descs(skb
);
1327 if (q
->pidx
>= q
->size
) {
1331 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1332 credits
= q
->size
- q
->in_use
;
1337 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1338 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1339 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1340 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1343 spin_unlock(&q
->lock
);
1347 * sge_rx - process an ingress ethernet packet
1348 * @sge: the sge structure
1349 * @fl: the free list that contains the packet buffer
1350 * @len: the packet length
1352 * Process an ingress ethernet pakcet and deliver it to the stack.
1354 static void sge_rx(struct sge
*sge
, struct freelQ
*fl
, unsigned int len
)
1356 struct sk_buff
*skb
;
1357 const struct cpl_rx_pkt
*p
;
1358 struct adapter
*adapter
= sge
->adapter
;
1359 struct sge_port_stats
*st
;
1360 struct net_device
*dev
;
1362 skb
= get_packet(adapter
->pdev
, fl
, len
- sge
->rx_pkt_pad
);
1363 if (unlikely(!skb
)) {
1364 sge
->stats
.rx_drops
++;
1368 p
= (const struct cpl_rx_pkt
*) skb
->data
;
1369 if (p
->iff
>= adapter
->params
.nports
) {
1373 __skb_pull(skb
, sizeof(*p
));
1375 st
= this_cpu_ptr(sge
->port_stats
[p
->iff
]);
1376 dev
= adapter
->port
[p
->iff
].dev
;
1378 skb
->protocol
= eth_type_trans(skb
, dev
);
1379 if ((dev
->features
& NETIF_F_RXCSUM
) && p
->csum
== 0xffff &&
1380 skb
->protocol
== htons(ETH_P_IP
) &&
1381 (skb
->data
[9] == IPPROTO_TCP
|| skb
->data
[9] == IPPROTO_UDP
)) {
1383 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1385 skb_checksum_none_assert(skb
);
1387 if (p
->vlan_valid
) {
1389 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(p
->vlan
));
1391 netif_receive_skb(skb
);
1395 * Returns true if a command queue has enough available descriptors that
1396 * we can resume Tx operation after temporarily disabling its packet queue.
1398 static inline int enough_free_Tx_descs(const struct cmdQ
*q
)
1400 unsigned int r
= q
->processed
- q
->cleaned
;
1402 return q
->in_use
- r
< (q
->size
>> 1);
1406 * Called when sufficient space has become available in the SGE command queues
1407 * after the Tx packet schedulers have been suspended to restart the Tx path.
1409 static void restart_tx_queues(struct sge
*sge
)
1411 struct adapter
*adap
= sge
->adapter
;
1414 if (!enough_free_Tx_descs(&sge
->cmdQ
[0]))
1417 for_each_port(adap
, i
) {
1418 struct net_device
*nd
= adap
->port
[i
].dev
;
1420 if (test_and_clear_bit(nd
->if_port
, &sge
->stopped_tx_queues
) &&
1421 netif_running(nd
)) {
1422 sge
->stats
.cmdQ_restarted
[2]++;
1423 netif_wake_queue(nd
);
1429 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1432 static unsigned int update_tx_info(struct adapter
*adapter
,
1436 struct sge
*sge
= adapter
->sge
;
1437 struct cmdQ
*cmdq
= &sge
->cmdQ
[0];
1439 cmdq
->processed
+= pr0
;
1440 if (flags
& (F_FL0_ENABLE
| F_FL1_ENABLE
)) {
1442 flags
&= ~(F_FL0_ENABLE
| F_FL1_ENABLE
);
1444 if (flags
& F_CMDQ0_ENABLE
) {
1445 clear_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1447 if (cmdq
->cleaned
+ cmdq
->in_use
!= cmdq
->processed
&&
1448 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB
, &cmdq
->status
)) {
1449 set_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1450 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1453 tasklet_hi_schedule(&sge
->tx_sched
->sched_tsk
);
1455 flags
&= ~F_CMDQ0_ENABLE
;
1458 if (unlikely(sge
->stopped_tx_queues
!= 0))
1459 restart_tx_queues(sge
);
1465 * Process SGE responses, up to the supplied budget. Returns the number of
1466 * responses processed. A negative budget is effectively unlimited.
1468 static int process_responses(struct adapter
*adapter
, int budget
)
1470 struct sge
*sge
= adapter
->sge
;
1471 struct respQ
*q
= &sge
->respQ
;
1472 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1474 unsigned int flags
= 0;
1475 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1477 while (done
< budget
&& e
->GenerationBit
== q
->genbit
) {
1478 flags
|= e
->Qsleeping
;
1480 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1481 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1483 /* We batch updates to the TX side to avoid cacheline
1484 * ping-pong of TX state information on MP where the sender
1485 * might run on a different CPU than this function...
1487 if (unlikely((flags
& F_CMDQ0_ENABLE
) || cmdq_processed
[0] > 64)) {
1488 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1489 cmdq_processed
[0] = 0;
1492 if (unlikely(cmdq_processed
[1] > 16)) {
1493 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1494 cmdq_processed
[1] = 0;
1497 if (likely(e
->DataValid
)) {
1498 struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1500 BUG_ON(!e
->Sop
|| !e
->Eop
);
1501 if (unlikely(e
->Offload
))
1502 unexpected_offload(adapter
, fl
);
1504 sge_rx(sge
, fl
, e
->BufferLength
);
1509 * Note: this depends on each packet consuming a
1510 * single free-list buffer; cf. the BUG above.
1512 if (++fl
->cidx
== fl
->size
)
1514 prefetch(fl
->centries
[fl
->cidx
].skb
);
1516 if (unlikely(--fl
->credits
<
1517 fl
->size
- SGE_FREEL_REFILL_THRESH
))
1518 refill_free_list(sge
, fl
);
1520 sge
->stats
.pure_rsps
++;
1523 if (unlikely(++q
->cidx
== q
->size
)) {
1530 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1531 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1536 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1537 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1542 static inline int responses_pending(const struct adapter
*adapter
)
1544 const struct respQ
*Q
= &adapter
->sge
->respQ
;
1545 const struct respQ_e
*e
= &Q
->entries
[Q
->cidx
];
1547 return e
->GenerationBit
== Q
->genbit
;
1551 * A simpler version of process_responses() that handles only pure (i.e.,
1552 * non data-carrying) responses. Such respones are too light-weight to justify
1553 * calling a softirq when using NAPI, so we handle them specially in hard
1554 * interrupt context. The function is called with a pointer to a response,
1555 * which the caller must ensure is a valid pure response. Returns 1 if it
1556 * encounters a valid data-carrying response, 0 otherwise.
1558 static int process_pure_responses(struct adapter
*adapter
)
1560 struct sge
*sge
= adapter
->sge
;
1561 struct respQ
*q
= &sge
->respQ
;
1562 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1563 const struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1564 unsigned int flags
= 0;
1565 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1567 prefetch(fl
->centries
[fl
->cidx
].skb
);
1572 flags
|= e
->Qsleeping
;
1574 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1575 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1578 if (unlikely(++q
->cidx
== q
->size
)) {
1585 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1586 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1589 sge
->stats
.pure_rsps
++;
1590 } while (e
->GenerationBit
== q
->genbit
&& !e
->DataValid
);
1592 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1593 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1595 return e
->GenerationBit
== q
->genbit
;
1599 * Handler for new data events when using NAPI. This does not need any locking
1600 * or protection from interrupts as data interrupts are off at this point and
1601 * other adapter interrupts do not interfere.
1603 int t1_poll(struct napi_struct
*napi
, int budget
)
1605 struct adapter
*adapter
= container_of(napi
, struct adapter
, napi
);
1606 int work_done
= process_responses(adapter
, budget
);
1608 if (likely(work_done
< budget
)) {
1609 napi_complete(napi
);
1610 writel(adapter
->sge
->respQ
.cidx
,
1611 adapter
->regs
+ A_SG_SLEEPING
);
1616 irqreturn_t
t1_interrupt(int irq
, void *data
)
1618 struct adapter
*adapter
= data
;
1619 struct sge
*sge
= adapter
->sge
;
1622 if (likely(responses_pending(adapter
))) {
1623 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1625 if (napi_schedule_prep(&adapter
->napi
)) {
1626 if (process_pure_responses(adapter
))
1627 __napi_schedule(&adapter
->napi
);
1629 /* no data, no NAPI needed */
1630 writel(sge
->respQ
.cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1631 /* undo schedule_prep */
1632 napi_enable(&adapter
->napi
);
1638 spin_lock(&adapter
->async_lock
);
1639 handled
= t1_slow_intr_handler(adapter
);
1640 spin_unlock(&adapter
->async_lock
);
1643 sge
->stats
.unhandled_irqs
++;
1645 return IRQ_RETVAL(handled
!= 0);
1649 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1651 * The code figures out how many entries the sk_buff will require in the
1652 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1653 * has complete. Then, it doesn't access the global structure anymore, but
1654 * uses the corresponding fields on the stack. In conjunction with a spinlock
1655 * around that code, we can make the function reentrant without holding the
1656 * lock when we actually enqueue (which might be expensive, especially on
1657 * architectures with IO MMUs).
1659 * This runs with softirqs disabled.
1661 static int t1_sge_tx(struct sk_buff
*skb
, struct adapter
*adapter
,
1662 unsigned int qid
, struct net_device
*dev
)
1664 struct sge
*sge
= adapter
->sge
;
1665 struct cmdQ
*q
= &sge
->cmdQ
[qid
];
1666 unsigned int credits
, pidx
, genbit
, count
, use_sched_skb
= 0;
1668 if (!spin_trylock(&q
->lock
))
1669 return NETDEV_TX_LOCKED
;
1671 reclaim_completed_tx(sge
, q
);
1674 credits
= q
->size
- q
->in_use
;
1675 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1676 count
+= compute_large_page_tx_descs(skb
);
1678 /* Ethernet packet */
1679 if (unlikely(credits
< count
)) {
1680 if (!netif_queue_stopped(dev
)) {
1681 netif_stop_queue(dev
);
1682 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1683 sge
->stats
.cmdQ_full
[2]++;
1684 pr_err("%s: Tx ring full while queue awake!\n",
1687 spin_unlock(&q
->lock
);
1688 return NETDEV_TX_BUSY
;
1691 if (unlikely(credits
- count
< q
->stop_thres
)) {
1692 netif_stop_queue(dev
);
1693 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1694 sge
->stats
.cmdQ_full
[2]++;
1697 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1698 * through the scheduler.
1700 if (sge
->tx_sched
&& !qid
&& skb
->dev
) {
1703 /* Note that the scheduler might return a different skb than
1704 * the one passed in.
1706 skb
= sched_skb(sge
, skb
, credits
);
1708 spin_unlock(&q
->lock
);
1709 return NETDEV_TX_OK
;
1712 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1713 count
+= compute_large_page_tx_descs(skb
);
1720 if (q
->pidx
>= q
->size
) {
1724 spin_unlock(&q
->lock
);
1726 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1729 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1730 * the doorbell if the Q is asleep. There is a natural race, where
1731 * the hardware is going to sleep just after we checked, however,
1732 * then the interrupt handler will detect the outstanding TX packet
1733 * and ring the doorbell for us.
1736 doorbell_pio(adapter
, F_CMDQ1_ENABLE
);
1738 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1739 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1740 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1741 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1745 if (use_sched_skb
) {
1746 if (spin_trylock(&q
->lock
)) {
1747 credits
= q
->size
- q
->in_use
;
1752 return NETDEV_TX_OK
;
1755 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1758 * eth_hdr_len - return the length of an Ethernet header
1759 * @data: pointer to the start of the Ethernet header
1761 * Returns the length of an Ethernet header, including optional VLAN tag.
1763 static inline int eth_hdr_len(const void *data
)
1765 const struct ethhdr
*e
= data
;
1767 return e
->h_proto
== htons(ETH_P_8021Q
) ? VLAN_ETH_HLEN
: ETH_HLEN
;
1771 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1773 netdev_tx_t
t1_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1775 struct adapter
*adapter
= dev
->ml_priv
;
1776 struct sge
*sge
= adapter
->sge
;
1777 struct sge_port_stats
*st
= this_cpu_ptr(sge
->port_stats
[dev
->if_port
]);
1778 struct cpl_tx_pkt
*cpl
;
1779 struct sk_buff
*orig_skb
= skb
;
1782 if (skb
->protocol
== htons(ETH_P_CPL5
))
1786 * We are using a non-standard hard_header_len.
1787 * Allocate more header room in the rare cases it is not big enough.
1789 if (unlikely(skb_headroom(skb
) < dev
->hard_header_len
- ETH_HLEN
)) {
1790 skb
= skb_realloc_headroom(skb
, sizeof(struct cpl_tx_pkt_lso
));
1791 ++st
->tx_need_hdrroom
;
1792 dev_kfree_skb_any(orig_skb
);
1794 return NETDEV_TX_OK
;
1797 if (skb_shinfo(skb
)->gso_size
) {
1799 struct cpl_tx_pkt_lso
*hdr
;
1803 eth_type
= skb_network_offset(skb
) == ETH_HLEN
?
1804 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1806 hdr
= (struct cpl_tx_pkt_lso
*)skb_push(skb
, sizeof(*hdr
));
1807 hdr
->opcode
= CPL_TX_PKT_LSO
;
1808 hdr
->ip_csum_dis
= hdr
->l4_csum_dis
= 0;
1809 hdr
->ip_hdr_words
= ip_hdr(skb
)->ihl
;
1810 hdr
->tcp_hdr_words
= tcp_hdr(skb
)->doff
;
1811 hdr
->eth_type_mss
= htons(MK_ETH_TYPE_MSS(eth_type
,
1812 skb_shinfo(skb
)->gso_size
));
1813 hdr
->len
= htonl(skb
->len
- sizeof(*hdr
));
1814 cpl
= (struct cpl_tx_pkt
*)hdr
;
1817 * Packets shorter than ETH_HLEN can break the MAC, drop them
1818 * early. Also, we may get oversized packets because some
1819 * parts of the kernel don't handle our unusual hard_header_len
1820 * right, drop those too.
1822 if (unlikely(skb
->len
< ETH_HLEN
||
1823 skb
->len
> dev
->mtu
+ eth_hdr_len(skb
->data
))) {
1824 netdev_dbg(dev
, "packet size %d hdr %d mtu%d\n",
1825 skb
->len
, eth_hdr_len(skb
->data
), dev
->mtu
);
1826 dev_kfree_skb_any(skb
);
1827 return NETDEV_TX_OK
;
1830 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
1831 ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1832 if (unlikely(skb_checksum_help(skb
))) {
1833 netdev_dbg(dev
, "unable to do udp checksum\n");
1834 dev_kfree_skb_any(skb
);
1835 return NETDEV_TX_OK
;
1839 /* Hmmm, assuming to catch the gratious arp... and we'll use
1840 * it to flush out stuck espi packets...
1842 if ((unlikely(!adapter
->sge
->espibug_skb
[dev
->if_port
]))) {
1843 if (skb
->protocol
== htons(ETH_P_ARP
) &&
1844 arp_hdr(skb
)->ar_op
== htons(ARPOP_REQUEST
)) {
1845 adapter
->sge
->espibug_skb
[dev
->if_port
] = skb
;
1846 /* We want to re-use this skb later. We
1847 * simply bump the reference count and it
1848 * will not be freed...
1854 cpl
= (struct cpl_tx_pkt
*)__skb_push(skb
, sizeof(*cpl
));
1855 cpl
->opcode
= CPL_TX_PKT
;
1856 cpl
->ip_csum_dis
= 1; /* SW calculates IP csum */
1857 cpl
->l4_csum_dis
= skb
->ip_summed
== CHECKSUM_PARTIAL
? 0 : 1;
1858 /* the length field isn't used so don't bother setting it */
1860 st
->tx_cso
+= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
1862 cpl
->iff
= dev
->if_port
;
1864 if (vlan_tx_tag_present(skb
)) {
1865 cpl
->vlan_valid
= 1;
1866 cpl
->vlan
= htons(vlan_tx_tag_get(skb
));
1869 cpl
->vlan_valid
= 0;
1872 ret
= t1_sge_tx(skb
, adapter
, 0, dev
);
1874 /* If transmit busy, and we reallocated skb's due to headroom limit,
1875 * then silently discard to avoid leak.
1877 if (unlikely(ret
!= NETDEV_TX_OK
&& skb
!= orig_skb
)) {
1878 dev_kfree_skb_any(skb
);
1885 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1887 static void sge_tx_reclaim_cb(unsigned long data
)
1890 struct sge
*sge
= (struct sge
*)data
;
1892 for (i
= 0; i
< SGE_CMDQ_N
; ++i
) {
1893 struct cmdQ
*q
= &sge
->cmdQ
[i
];
1895 if (!spin_trylock(&q
->lock
))
1898 reclaim_completed_tx(sge
, q
);
1899 if (i
== 0 && q
->in_use
) { /* flush pending credits */
1900 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
1902 spin_unlock(&q
->lock
);
1904 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1908 * Propagate changes of the SGE coalescing parameters to the HW.
1910 int t1_sge_set_coalesce_params(struct sge
*sge
, struct sge_params
*p
)
1912 sge
->fixed_intrtimer
= p
->rx_coalesce_usecs
*
1913 core_ticks_per_usec(sge
->adapter
);
1914 writel(sge
->fixed_intrtimer
, sge
->adapter
->regs
+ A_SG_INTRTIMER
);
1919 * Allocates both RX and TX resources and configures the SGE. However,
1920 * the hardware is not enabled yet.
1922 int t1_sge_configure(struct sge
*sge
, struct sge_params
*p
)
1924 if (alloc_rx_resources(sge
, p
))
1926 if (alloc_tx_resources(sge
, p
)) {
1927 free_rx_resources(sge
);
1930 configure_sge(sge
, p
);
1933 * Now that we have sized the free lists calculate the payload
1934 * capacity of the large buffers. Other parts of the driver use
1935 * this to set the max offload coalescing size so that RX packets
1936 * do not overflow our large buffers.
1938 p
->large_buf_capacity
= jumbo_payload_capacity(sge
);
1943 * Disables the DMA engine.
1945 void t1_sge_stop(struct sge
*sge
)
1948 writel(0, sge
->adapter
->regs
+ A_SG_CONTROL
);
1949 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1951 if (is_T2(sge
->adapter
))
1952 del_timer_sync(&sge
->espibug_timer
);
1954 del_timer_sync(&sge
->tx_reclaim_timer
);
1958 for (i
= 0; i
< MAX_NPORTS
; i
++)
1959 kfree_skb(sge
->espibug_skb
[i
]);
1963 * Enables the DMA engine.
1965 void t1_sge_start(struct sge
*sge
)
1967 refill_free_list(sge
, &sge
->freelQ
[0]);
1968 refill_free_list(sge
, &sge
->freelQ
[1]);
1970 writel(sge
->sge_control
, sge
->adapter
->regs
+ A_SG_CONTROL
);
1971 doorbell_pio(sge
->adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
1972 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1974 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1976 if (is_T2(sge
->adapter
))
1977 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
1981 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1983 static void espibug_workaround_t204(unsigned long data
)
1985 struct adapter
*adapter
= (struct adapter
*)data
;
1986 struct sge
*sge
= adapter
->sge
;
1987 unsigned int nports
= adapter
->params
.nports
;
1988 u32 seop
[MAX_NPORTS
];
1990 if (adapter
->open_device_map
& PORT_MASK
) {
1993 if (t1_espi_get_mon_t204(adapter
, &(seop
[0]), 0) < 0)
1996 for (i
= 0; i
< nports
; i
++) {
1997 struct sk_buff
*skb
= sge
->espibug_skb
[i
];
1999 if (!netif_running(adapter
->port
[i
].dev
) ||
2000 netif_queue_stopped(adapter
->port
[i
].dev
) ||
2001 !seop
[i
] || ((seop
[i
] & 0xfff) != 0) || !skb
)
2005 skb_copy_to_linear_data_offset(skb
,
2006 sizeof(struct cpl_tx_pkt
),
2009 skb_copy_to_linear_data_offset(skb
,
2016 /* bump the reference count to avoid freeing of
2017 * the skb once the DMA has completed.
2020 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[i
].dev
);
2023 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2026 static void espibug_workaround(unsigned long data
)
2028 struct adapter
*adapter
= (struct adapter
*)data
;
2029 struct sge
*sge
= adapter
->sge
;
2031 if (netif_running(adapter
->port
[0].dev
)) {
2032 struct sk_buff
*skb
= sge
->espibug_skb
[0];
2033 u32 seop
= t1_espi_get_mon(adapter
, 0x930, 0);
2035 if ((seop
& 0xfff0fff) == 0xfff && skb
) {
2037 skb_copy_to_linear_data_offset(skb
,
2038 sizeof(struct cpl_tx_pkt
),
2041 skb_copy_to_linear_data_offset(skb
,
2048 /* bump the reference count to avoid freeing of the
2049 * skb once the DMA has completed.
2052 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[0].dev
);
2055 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2059 * Creates a t1_sge structure and returns suggested resource parameters.
2061 struct sge
*t1_sge_create(struct adapter
*adapter
, struct sge_params
*p
)
2063 struct sge
*sge
= kzalloc(sizeof(*sge
), GFP_KERNEL
);
2069 sge
->adapter
= adapter
;
2070 sge
->netdev
= adapter
->port
[0].dev
;
2071 sge
->rx_pkt_pad
= t1_is_T1B(adapter
) ? 0 : 2;
2072 sge
->jumbo_fl
= t1_is_T1B(adapter
) ? 1 : 0;
2074 for_each_port(adapter
, i
) {
2075 sge
->port_stats
[i
] = alloc_percpu(struct sge_port_stats
);
2076 if (!sge
->port_stats
[i
])
2080 init_timer(&sge
->tx_reclaim_timer
);
2081 sge
->tx_reclaim_timer
.data
= (unsigned long)sge
;
2082 sge
->tx_reclaim_timer
.function
= sge_tx_reclaim_cb
;
2084 if (is_T2(sge
->adapter
)) {
2085 init_timer(&sge
->espibug_timer
);
2087 if (adapter
->params
.nports
> 1) {
2089 sge
->espibug_timer
.function
= espibug_workaround_t204
;
2091 sge
->espibug_timer
.function
= espibug_workaround
;
2092 sge
->espibug_timer
.data
= (unsigned long)sge
->adapter
;
2094 sge
->espibug_timeout
= 1;
2095 /* for T204, every 10ms */
2096 if (adapter
->params
.nports
> 1)
2097 sge
->espibug_timeout
= HZ
/100;
2101 p
->cmdQ_size
[0] = SGE_CMDQ0_E_N
;
2102 p
->cmdQ_size
[1] = SGE_CMDQ1_E_N
;
2103 p
->freelQ_size
[!sge
->jumbo_fl
] = SGE_FREEL_SIZE
;
2104 p
->freelQ_size
[sge
->jumbo_fl
] = SGE_JUMBO_FREEL_SIZE
;
2105 if (sge
->tx_sched
) {
2106 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
)
2107 p
->rx_coalesce_usecs
= 15;
2109 p
->rx_coalesce_usecs
= 50;
2111 p
->rx_coalesce_usecs
= 50;
2113 p
->coalesce_enable
= 0;
2114 p
->sample_interval_usecs
= 0;
2119 free_percpu(sge
->port_stats
[i
]);