]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb3/t3_hw.c
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / chelsio / cxgb3 / t3_hw.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include "common.h"
33 #include "regs.h"
34 #include "sge_defs.h"
35 #include "firmware_exports.h"
36
37 static void t3_port_intr_clear(struct adapter *adapter, int idx);
38
39 /**
40 * t3_wait_op_done_val - wait until an operation is completed
41 * @adapter: the adapter performing the operation
42 * @reg: the register to check for completion
43 * @mask: a single-bit field within @reg that indicates completion
44 * @polarity: the value of the field when the operation is completed
45 * @attempts: number of check iterations
46 * @delay: delay in usecs between iterations
47 * @valp: where to store the value of the register at completion time
48 *
49 * Wait until an operation is completed by checking a bit in a register
50 * up to @attempts times. If @valp is not NULL the value of the register
51 * at the time it indicated completion is stored there. Returns 0 if the
52 * operation completes and -EAGAIN otherwise.
53 */
54
55 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
56 int polarity, int attempts, int delay, u32 *valp)
57 {
58 while (1) {
59 u32 val = t3_read_reg(adapter, reg);
60
61 if (!!(val & mask) == polarity) {
62 if (valp)
63 *valp = val;
64 return 0;
65 }
66 if (--attempts == 0)
67 return -EAGAIN;
68 if (delay)
69 udelay(delay);
70 }
71 }
72
73 /**
74 * t3_write_regs - write a bunch of registers
75 * @adapter: the adapter to program
76 * @p: an array of register address/register value pairs
77 * @n: the number of address/value pairs
78 * @offset: register address offset
79 *
80 * Takes an array of register address/register value pairs and writes each
81 * value to the corresponding register. Register addresses are adjusted
82 * by the supplied offset.
83 */
84 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
85 int n, unsigned int offset)
86 {
87 while (n--) {
88 t3_write_reg(adapter, p->reg_addr + offset, p->val);
89 p++;
90 }
91 }
92
93 /**
94 * t3_set_reg_field - set a register field to a value
95 * @adapter: the adapter to program
96 * @addr: the register address
97 * @mask: specifies the portion of the register to modify
98 * @val: the new value for the register field
99 *
100 * Sets a register field specified by the supplied mask to the
101 * given value.
102 */
103 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
104 u32 val)
105 {
106 u32 v = t3_read_reg(adapter, addr) & ~mask;
107
108 t3_write_reg(adapter, addr, v | val);
109 t3_read_reg(adapter, addr); /* flush */
110 }
111
112 /**
113 * t3_read_indirect - read indirectly addressed registers
114 * @adap: the adapter
115 * @addr_reg: register holding the indirect address
116 * @data_reg: register holding the value of the indirect register
117 * @vals: where the read register values are stored
118 * @start_idx: index of first indirect register to read
119 * @nregs: how many indirect registers to read
120 *
121 * Reads registers that are accessed indirectly through an address/data
122 * register pair.
123 */
124 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
125 unsigned int data_reg, u32 *vals,
126 unsigned int nregs, unsigned int start_idx)
127 {
128 while (nregs--) {
129 t3_write_reg(adap, addr_reg, start_idx);
130 *vals++ = t3_read_reg(adap, data_reg);
131 start_idx++;
132 }
133 }
134
135 /**
136 * t3_mc7_bd_read - read from MC7 through backdoor accesses
137 * @mc7: identifies MC7 to read from
138 * @start: index of first 64-bit word to read
139 * @n: number of 64-bit words to read
140 * @buf: where to store the read result
141 *
142 * Read n 64-bit words from MC7 starting at word start, using backdoor
143 * accesses.
144 */
145 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
146 u64 *buf)
147 {
148 static const int shift[] = { 0, 0, 16, 24 };
149 static const int step[] = { 0, 32, 16, 8 };
150
151 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
152 struct adapter *adap = mc7->adapter;
153
154 if (start >= size64 || start + n > size64)
155 return -EINVAL;
156
157 start *= (8 << mc7->width);
158 while (n--) {
159 int i;
160 u64 val64 = 0;
161
162 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
163 int attempts = 10;
164 u32 val;
165
166 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
167 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
168 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
169 while ((val & F_BUSY) && attempts--)
170 val = t3_read_reg(adap,
171 mc7->offset + A_MC7_BD_OP);
172 if (val & F_BUSY)
173 return -EIO;
174
175 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
176 if (mc7->width == 0) {
177 val64 = t3_read_reg(adap,
178 mc7->offset +
179 A_MC7_BD_DATA0);
180 val64 |= (u64) val << 32;
181 } else {
182 if (mc7->width > 1)
183 val >>= shift[mc7->width];
184 val64 |= (u64) val << (step[mc7->width] * i);
185 }
186 start += 8;
187 }
188 *buf++ = val64;
189 }
190 return 0;
191 }
192
193 /*
194 * Initialize MI1.
195 */
196 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
197 {
198 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
199 u32 val = F_PREEN | V_CLKDIV(clkdiv);
200
201 t3_write_reg(adap, A_MI1_CFG, val);
202 }
203
204 #define MDIO_ATTEMPTS 20
205
206 /*
207 * MI1 read/write operations for clause 22 PHYs.
208 */
209 static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
210 u16 reg_addr)
211 {
212 struct port_info *pi = netdev_priv(dev);
213 struct adapter *adapter = pi->adapter;
214 int ret;
215 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
216
217 mutex_lock(&adapter->mdio_lock);
218 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
219 t3_write_reg(adapter, A_MI1_ADDR, addr);
220 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
221 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
222 if (!ret)
223 ret = t3_read_reg(adapter, A_MI1_DATA);
224 mutex_unlock(&adapter->mdio_lock);
225 return ret;
226 }
227
228 static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
229 u16 reg_addr, u16 val)
230 {
231 struct port_info *pi = netdev_priv(dev);
232 struct adapter *adapter = pi->adapter;
233 int ret;
234 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
235
236 mutex_lock(&adapter->mdio_lock);
237 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
238 t3_write_reg(adapter, A_MI1_ADDR, addr);
239 t3_write_reg(adapter, A_MI1_DATA, val);
240 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
241 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
242 mutex_unlock(&adapter->mdio_lock);
243 return ret;
244 }
245
246 static const struct mdio_ops mi1_mdio_ops = {
247 .read = t3_mi1_read,
248 .write = t3_mi1_write,
249 .mode_support = MDIO_SUPPORTS_C22
250 };
251
252 /*
253 * Performs the address cycle for clause 45 PHYs.
254 * Must be called with the MDIO_LOCK held.
255 */
256 static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
257 int reg_addr)
258 {
259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260
261 t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
262 t3_write_reg(adapter, A_MI1_ADDR, addr);
263 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
266 MDIO_ATTEMPTS, 10);
267 }
268
269 /*
270 * MI1 read/write operations for indirect-addressed PHYs.
271 */
272 static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
273 u16 reg_addr)
274 {
275 struct port_info *pi = netdev_priv(dev);
276 struct adapter *adapter = pi->adapter;
277 int ret;
278
279 mutex_lock(&adapter->mdio_lock);
280 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
281 if (!ret) {
282 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
283 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
284 MDIO_ATTEMPTS, 10);
285 if (!ret)
286 ret = t3_read_reg(adapter, A_MI1_DATA);
287 }
288 mutex_unlock(&adapter->mdio_lock);
289 return ret;
290 }
291
292 static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
293 u16 reg_addr, u16 val)
294 {
295 struct port_info *pi = netdev_priv(dev);
296 struct adapter *adapter = pi->adapter;
297 int ret;
298
299 mutex_lock(&adapter->mdio_lock);
300 ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
301 if (!ret) {
302 t3_write_reg(adapter, A_MI1_DATA, val);
303 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
304 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
305 MDIO_ATTEMPTS, 10);
306 }
307 mutex_unlock(&adapter->mdio_lock);
308 return ret;
309 }
310
311 static const struct mdio_ops mi1_mdio_ext_ops = {
312 .read = mi1_ext_read,
313 .write = mi1_ext_write,
314 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
315 };
316
317 /**
318 * t3_mdio_change_bits - modify the value of a PHY register
319 * @phy: the PHY to operate on
320 * @mmd: the device address
321 * @reg: the register address
322 * @clear: what part of the register value to mask off
323 * @set: what part of the register value to set
324 *
325 * Changes the value of a PHY register by applying a mask to its current
326 * value and ORing the result with a new value.
327 */
328 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
329 unsigned int set)
330 {
331 int ret;
332 unsigned int val;
333
334 ret = t3_mdio_read(phy, mmd, reg, &val);
335 if (!ret) {
336 val &= ~clear;
337 ret = t3_mdio_write(phy, mmd, reg, val | set);
338 }
339 return ret;
340 }
341
342 /**
343 * t3_phy_reset - reset a PHY block
344 * @phy: the PHY to operate on
345 * @mmd: the device address of the PHY block to reset
346 * @wait: how long to wait for the reset to complete in 1ms increments
347 *
348 * Resets a PHY block and optionally waits for the reset to complete.
349 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
350 * for 10G PHYs.
351 */
352 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
353 {
354 int err;
355 unsigned int ctl;
356
357 err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
358 MDIO_CTRL1_RESET);
359 if (err || !wait)
360 return err;
361
362 do {
363 err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
364 if (err)
365 return err;
366 ctl &= MDIO_CTRL1_RESET;
367 if (ctl)
368 msleep(1);
369 } while (ctl && --wait);
370
371 return ctl ? -1 : 0;
372 }
373
374 /**
375 * t3_phy_advertise - set the PHY advertisement registers for autoneg
376 * @phy: the PHY to operate on
377 * @advert: bitmap of capabilities the PHY should advertise
378 *
379 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
380 * requested capabilities.
381 */
382 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
383 {
384 int err;
385 unsigned int val = 0;
386
387 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
388 if (err)
389 return err;
390
391 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
392 if (advert & ADVERTISED_1000baseT_Half)
393 val |= ADVERTISE_1000HALF;
394 if (advert & ADVERTISED_1000baseT_Full)
395 val |= ADVERTISE_1000FULL;
396
397 err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
398 if (err)
399 return err;
400
401 val = 1;
402 if (advert & ADVERTISED_10baseT_Half)
403 val |= ADVERTISE_10HALF;
404 if (advert & ADVERTISED_10baseT_Full)
405 val |= ADVERTISE_10FULL;
406 if (advert & ADVERTISED_100baseT_Half)
407 val |= ADVERTISE_100HALF;
408 if (advert & ADVERTISED_100baseT_Full)
409 val |= ADVERTISE_100FULL;
410 if (advert & ADVERTISED_Pause)
411 val |= ADVERTISE_PAUSE_CAP;
412 if (advert & ADVERTISED_Asym_Pause)
413 val |= ADVERTISE_PAUSE_ASYM;
414 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
415 }
416
417 /**
418 * t3_phy_advertise_fiber - set fiber PHY advertisement register
419 * @phy: the PHY to operate on
420 * @advert: bitmap of capabilities the PHY should advertise
421 *
422 * Sets a fiber PHY's advertisement register to advertise the
423 * requested capabilities.
424 */
425 int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
426 {
427 unsigned int val = 0;
428
429 if (advert & ADVERTISED_1000baseT_Half)
430 val |= ADVERTISE_1000XHALF;
431 if (advert & ADVERTISED_1000baseT_Full)
432 val |= ADVERTISE_1000XFULL;
433 if (advert & ADVERTISED_Pause)
434 val |= ADVERTISE_1000XPAUSE;
435 if (advert & ADVERTISED_Asym_Pause)
436 val |= ADVERTISE_1000XPSE_ASYM;
437 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
438 }
439
440 /**
441 * t3_set_phy_speed_duplex - force PHY speed and duplex
442 * @phy: the PHY to operate on
443 * @speed: requested PHY speed
444 * @duplex: requested PHY duplex
445 *
446 * Force a 10/100/1000 PHY's speed and duplex. This also disables
447 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
448 */
449 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
450 {
451 int err;
452 unsigned int ctl;
453
454 err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
455 if (err)
456 return err;
457
458 if (speed >= 0) {
459 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
460 if (speed == SPEED_100)
461 ctl |= BMCR_SPEED100;
462 else if (speed == SPEED_1000)
463 ctl |= BMCR_SPEED1000;
464 }
465 if (duplex >= 0) {
466 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
467 if (duplex == DUPLEX_FULL)
468 ctl |= BMCR_FULLDPLX;
469 }
470 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
471 ctl |= BMCR_ANENABLE;
472 return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
473 }
474
475 int t3_phy_lasi_intr_enable(struct cphy *phy)
476 {
477 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
478 MDIO_PMA_LASI_LSALARM);
479 }
480
481 int t3_phy_lasi_intr_disable(struct cphy *phy)
482 {
483 return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
484 }
485
486 int t3_phy_lasi_intr_clear(struct cphy *phy)
487 {
488 u32 val;
489
490 return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
491 }
492
493 int t3_phy_lasi_intr_handler(struct cphy *phy)
494 {
495 unsigned int status;
496 int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
497 &status);
498
499 if (err)
500 return err;
501 return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
502 }
503
504 static const struct adapter_info t3_adap_info[] = {
505 {1, 1, 0,
506 F_GPIO2_OEN | F_GPIO4_OEN |
507 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
508 &mi1_mdio_ops, "Chelsio PE9000"},
509 {1, 1, 0,
510 F_GPIO2_OEN | F_GPIO4_OEN |
511 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
512 &mi1_mdio_ops, "Chelsio T302"},
513 {1, 0, 0,
514 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
515 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
516 { 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
517 &mi1_mdio_ext_ops, "Chelsio T310"},
518 {1, 1, 0,
519 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
520 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
521 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
522 { S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
523 &mi1_mdio_ext_ops, "Chelsio T320"},
524 {},
525 {},
526 {1, 0, 0,
527 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
528 F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
529 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
530 &mi1_mdio_ext_ops, "Chelsio T310" },
531 {1, 0, 0,
532 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
533 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
534 { S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
535 &mi1_mdio_ext_ops, "Chelsio N320E-G2" },
536 };
537
538 /*
539 * Return the adapter_info structure with a given index. Out-of-range indices
540 * return NULL.
541 */
542 const struct adapter_info *t3_get_adapter_info(unsigned int id)
543 {
544 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
545 }
546
547 struct port_type_info {
548 int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
549 int phy_addr, const struct mdio_ops *ops);
550 };
551
552 static const struct port_type_info port_types[] = {
553 { NULL },
554 { t3_ael1002_phy_prep },
555 { t3_vsc8211_phy_prep },
556 { NULL},
557 { t3_xaui_direct_phy_prep },
558 { t3_ael2005_phy_prep },
559 { t3_qt2045_phy_prep },
560 { t3_ael1006_phy_prep },
561 { NULL },
562 { t3_aq100x_phy_prep },
563 { t3_ael2020_phy_prep },
564 };
565
566 #define VPD_ENTRY(name, len) \
567 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
568
569 /*
570 * Partial EEPROM Vital Product Data structure. Includes only the ID and
571 * VPD-R sections.
572 */
573 struct t3_vpd {
574 u8 id_tag;
575 u8 id_len[2];
576 u8 id_data[16];
577 u8 vpdr_tag;
578 u8 vpdr_len[2];
579 VPD_ENTRY(pn, 16); /* part number */
580 VPD_ENTRY(ec, 16); /* EC level */
581 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
582 VPD_ENTRY(na, 12); /* MAC address base */
583 VPD_ENTRY(cclk, 6); /* core clock */
584 VPD_ENTRY(mclk, 6); /* mem clock */
585 VPD_ENTRY(uclk, 6); /* uP clk */
586 VPD_ENTRY(mdc, 6); /* MDIO clk */
587 VPD_ENTRY(mt, 2); /* mem timing */
588 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
589 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
590 VPD_ENTRY(port0, 2); /* PHY0 complex */
591 VPD_ENTRY(port1, 2); /* PHY1 complex */
592 VPD_ENTRY(port2, 2); /* PHY2 complex */
593 VPD_ENTRY(port3, 2); /* PHY3 complex */
594 VPD_ENTRY(rv, 1); /* csum */
595 u32 pad; /* for multiple-of-4 sizing and alignment */
596 };
597
598 #define EEPROM_MAX_POLL 40
599 #define EEPROM_STAT_ADDR 0x4000
600 #define VPD_BASE 0xc00
601
602 /**
603 * t3_seeprom_read - read a VPD EEPROM location
604 * @adapter: adapter to read
605 * @addr: EEPROM address
606 * @data: where to store the read data
607 *
608 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
609 * VPD ROM capability. A zero is written to the flag bit when the
610 * address is written to the control register. The hardware device will
611 * set the flag to 1 when 4 bytes have been read into the data register.
612 */
613 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
614 {
615 u16 val;
616 int attempts = EEPROM_MAX_POLL;
617 u32 v;
618 unsigned int base = adapter->params.pci.vpd_cap_addr;
619
620 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
621 return -EINVAL;
622
623 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
624 do {
625 udelay(10);
626 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
627 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
628
629 if (!(val & PCI_VPD_ADDR_F)) {
630 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
631 return -EIO;
632 }
633 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
634 *data = cpu_to_le32(v);
635 return 0;
636 }
637
638 /**
639 * t3_seeprom_write - write a VPD EEPROM location
640 * @adapter: adapter to write
641 * @addr: EEPROM address
642 * @data: value to write
643 *
644 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
645 * VPD ROM capability.
646 */
647 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
648 {
649 u16 val;
650 int attempts = EEPROM_MAX_POLL;
651 unsigned int base = adapter->params.pci.vpd_cap_addr;
652
653 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
654 return -EINVAL;
655
656 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
657 le32_to_cpu(data));
658 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
659 addr | PCI_VPD_ADDR_F);
660 do {
661 msleep(1);
662 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
663 } while ((val & PCI_VPD_ADDR_F) && --attempts);
664
665 if (val & PCI_VPD_ADDR_F) {
666 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
667 return -EIO;
668 }
669 return 0;
670 }
671
672 /**
673 * t3_seeprom_wp - enable/disable EEPROM write protection
674 * @adapter: the adapter
675 * @enable: 1 to enable write protection, 0 to disable it
676 *
677 * Enables or disables write protection on the serial EEPROM.
678 */
679 int t3_seeprom_wp(struct adapter *adapter, int enable)
680 {
681 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
682 }
683
684 static int vpdstrtouint(char *s, u8 len, unsigned int base, unsigned int *val)
685 {
686 char tok[256];
687
688 memcpy(tok, s, len);
689 tok[len] = 0;
690 return kstrtouint(strim(tok), base, val);
691 }
692
693 static int vpdstrtou16(char *s, u8 len, unsigned int base, u16 *val)
694 {
695 char tok[256];
696
697 memcpy(tok, s, len);
698 tok[len] = 0;
699 return kstrtou16(strim(tok), base, val);
700 }
701
702 /**
703 * get_vpd_params - read VPD parameters from VPD EEPROM
704 * @adapter: adapter to read
705 * @p: where to store the parameters
706 *
707 * Reads card parameters stored in VPD EEPROM.
708 */
709 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
710 {
711 int i, addr, ret;
712 struct t3_vpd vpd;
713
714 /*
715 * Card information is normally at VPD_BASE but some early cards had
716 * it at 0.
717 */
718 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
719 if (ret)
720 return ret;
721 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
722
723 for (i = 0; i < sizeof(vpd); i += 4) {
724 ret = t3_seeprom_read(adapter, addr + i,
725 (__le32 *)((u8 *)&vpd + i));
726 if (ret)
727 return ret;
728 }
729
730 ret = vpdstrtouint(vpd.cclk_data, vpd.cclk_len, 10, &p->cclk);
731 if (ret)
732 return ret;
733 ret = vpdstrtouint(vpd.mclk_data, vpd.mclk_len, 10, &p->mclk);
734 if (ret)
735 return ret;
736 ret = vpdstrtouint(vpd.uclk_data, vpd.uclk_len, 10, &p->uclk);
737 if (ret)
738 return ret;
739 ret = vpdstrtouint(vpd.mdc_data, vpd.mdc_len, 10, &p->mdc);
740 if (ret)
741 return ret;
742 ret = vpdstrtouint(vpd.mt_data, vpd.mt_len, 10, &p->mem_timing);
743 if (ret)
744 return ret;
745 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
746
747 /* Old eeproms didn't have port information */
748 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
749 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
750 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
751 } else {
752 p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
753 p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
754 ret = vpdstrtou16(vpd.xaui0cfg_data, vpd.xaui0cfg_len, 16,
755 &p->xauicfg[0]);
756 if (ret)
757 return ret;
758 ret = vpdstrtou16(vpd.xaui1cfg_data, vpd.xaui1cfg_len, 16,
759 &p->xauicfg[1]);
760 if (ret)
761 return ret;
762 }
763
764 ret = hex2bin(p->eth_base, vpd.na_data, 6);
765 if (ret < 0)
766 return -EINVAL;
767 return 0;
768 }
769
770 /* serial flash and firmware constants */
771 enum {
772 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
773 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
774 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
775
776 /* flash command opcodes */
777 SF_PROG_PAGE = 2, /* program page */
778 SF_WR_DISABLE = 4, /* disable writes */
779 SF_RD_STATUS = 5, /* read status register */
780 SF_WR_ENABLE = 6, /* enable writes */
781 SF_RD_DATA_FAST = 0xb, /* read flash */
782 SF_ERASE_SECTOR = 0xd8, /* erase sector */
783
784 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
785 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
786 FW_MIN_SIZE = 8 /* at least version and csum */
787 };
788
789 /**
790 * sf1_read - read data from the serial flash
791 * @adapter: the adapter
792 * @byte_cnt: number of bytes to read
793 * @cont: whether another operation will be chained
794 * @valp: where to store the read data
795 *
796 * Reads up to 4 bytes of data from the serial flash. The location of
797 * the read needs to be specified prior to calling this by issuing the
798 * appropriate commands to the serial flash.
799 */
800 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
801 u32 *valp)
802 {
803 int ret;
804
805 if (!byte_cnt || byte_cnt > 4)
806 return -EINVAL;
807 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
808 return -EBUSY;
809 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
810 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
811 if (!ret)
812 *valp = t3_read_reg(adapter, A_SF_DATA);
813 return ret;
814 }
815
816 /**
817 * sf1_write - write data to the serial flash
818 * @adapter: the adapter
819 * @byte_cnt: number of bytes to write
820 * @cont: whether another operation will be chained
821 * @val: value to write
822 *
823 * Writes up to 4 bytes of data to the serial flash. The location of
824 * the write needs to be specified prior to calling this by issuing the
825 * appropriate commands to the serial flash.
826 */
827 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
828 u32 val)
829 {
830 if (!byte_cnt || byte_cnt > 4)
831 return -EINVAL;
832 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
833 return -EBUSY;
834 t3_write_reg(adapter, A_SF_DATA, val);
835 t3_write_reg(adapter, A_SF_OP,
836 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
837 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
838 }
839
840 /**
841 * flash_wait_op - wait for a flash operation to complete
842 * @adapter: the adapter
843 * @attempts: max number of polls of the status register
844 * @delay: delay between polls in ms
845 *
846 * Wait for a flash operation to complete by polling the status register.
847 */
848 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
849 {
850 int ret;
851 u32 status;
852
853 while (1) {
854 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
855 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
856 return ret;
857 if (!(status & 1))
858 return 0;
859 if (--attempts == 0)
860 return -EAGAIN;
861 if (delay)
862 msleep(delay);
863 }
864 }
865
866 /**
867 * t3_read_flash - read words from serial flash
868 * @adapter: the adapter
869 * @addr: the start address for the read
870 * @nwords: how many 32-bit words to read
871 * @data: where to store the read data
872 * @byte_oriented: whether to store data as bytes or as words
873 *
874 * Read the specified number of 32-bit words from the serial flash.
875 * If @byte_oriented is set the read data is stored as a byte array
876 * (i.e., big-endian), otherwise as 32-bit words in the platform's
877 * natural endianness.
878 */
879 static int t3_read_flash(struct adapter *adapter, unsigned int addr,
880 unsigned int nwords, u32 *data, int byte_oriented)
881 {
882 int ret;
883
884 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
885 return -EINVAL;
886
887 addr = swab32(addr) | SF_RD_DATA_FAST;
888
889 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
890 (ret = sf1_read(adapter, 1, 1, data)) != 0)
891 return ret;
892
893 for (; nwords; nwords--, data++) {
894 ret = sf1_read(adapter, 4, nwords > 1, data);
895 if (ret)
896 return ret;
897 if (byte_oriented)
898 *data = htonl(*data);
899 }
900 return 0;
901 }
902
903 /**
904 * t3_write_flash - write up to a page of data to the serial flash
905 * @adapter: the adapter
906 * @addr: the start address to write
907 * @n: length of data to write
908 * @data: the data to write
909 *
910 * Writes up to a page of data (256 bytes) to the serial flash starting
911 * at the given address.
912 */
913 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
914 unsigned int n, const u8 *data)
915 {
916 int ret;
917 u32 buf[64];
918 unsigned int i, c, left, val, offset = addr & 0xff;
919
920 if (addr + n > SF_SIZE || offset + n > 256)
921 return -EINVAL;
922
923 val = swab32(addr) | SF_PROG_PAGE;
924
925 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
926 (ret = sf1_write(adapter, 4, 1, val)) != 0)
927 return ret;
928
929 for (left = n; left; left -= c) {
930 c = min(left, 4U);
931 for (val = 0, i = 0; i < c; ++i)
932 val = (val << 8) + *data++;
933
934 ret = sf1_write(adapter, c, c != left, val);
935 if (ret)
936 return ret;
937 }
938 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
939 return ret;
940
941 /* Read the page to verify the write succeeded */
942 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
943 if (ret)
944 return ret;
945
946 if (memcmp(data - n, (u8 *) buf + offset, n))
947 return -EIO;
948 return 0;
949 }
950
951 /**
952 * t3_get_tp_version - read the tp sram version
953 * @adapter: the adapter
954 * @vers: where to place the version
955 *
956 * Reads the protocol sram version from sram.
957 */
958 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
959 {
960 int ret;
961
962 /* Get version loaded in SRAM */
963 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
964 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
965 1, 1, 5, 1);
966 if (ret)
967 return ret;
968
969 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
970
971 return 0;
972 }
973
974 /**
975 * t3_check_tpsram_version - read the tp sram version
976 * @adapter: the adapter
977 *
978 * Reads the protocol sram version from flash.
979 */
980 int t3_check_tpsram_version(struct adapter *adapter)
981 {
982 int ret;
983 u32 vers;
984 unsigned int major, minor;
985
986 if (adapter->params.rev == T3_REV_A)
987 return 0;
988
989
990 ret = t3_get_tp_version(adapter, &vers);
991 if (ret)
992 return ret;
993
994 major = G_TP_VERSION_MAJOR(vers);
995 minor = G_TP_VERSION_MINOR(vers);
996
997 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
998 return 0;
999 else {
1000 CH_ERR(adapter, "found wrong TP version (%u.%u), "
1001 "driver compiled for version %d.%d\n", major, minor,
1002 TP_VERSION_MAJOR, TP_VERSION_MINOR);
1003 }
1004 return -EINVAL;
1005 }
1006
1007 /**
1008 * t3_check_tpsram - check if provided protocol SRAM
1009 * is compatible with this driver
1010 * @adapter: the adapter
1011 * @tp_sram: the firmware image to write
1012 * @size: image size
1013 *
1014 * Checks if an adapter's tp sram is compatible with the driver.
1015 * Returns 0 if the versions are compatible, a negative error otherwise.
1016 */
1017 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
1018 unsigned int size)
1019 {
1020 u32 csum;
1021 unsigned int i;
1022 const __be32 *p = (const __be32 *)tp_sram;
1023
1024 /* Verify checksum */
1025 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1026 csum += ntohl(p[i]);
1027 if (csum != 0xffffffff) {
1028 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
1029 csum);
1030 return -EINVAL;
1031 }
1032
1033 return 0;
1034 }
1035
1036 enum fw_version_type {
1037 FW_VERSION_N3,
1038 FW_VERSION_T3
1039 };
1040
1041 /**
1042 * t3_get_fw_version - read the firmware version
1043 * @adapter: the adapter
1044 * @vers: where to place the version
1045 *
1046 * Reads the FW version from flash.
1047 */
1048 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
1049 {
1050 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
1051 }
1052
1053 /**
1054 * t3_check_fw_version - check if the FW is compatible with this driver
1055 * @adapter: the adapter
1056 *
1057 * Checks if an adapter's FW is compatible with the driver. Returns 0
1058 * if the versions are compatible, a negative error otherwise.
1059 */
1060 int t3_check_fw_version(struct adapter *adapter)
1061 {
1062 int ret;
1063 u32 vers;
1064 unsigned int type, major, minor;
1065
1066 ret = t3_get_fw_version(adapter, &vers);
1067 if (ret)
1068 return ret;
1069
1070 type = G_FW_VERSION_TYPE(vers);
1071 major = G_FW_VERSION_MAJOR(vers);
1072 minor = G_FW_VERSION_MINOR(vers);
1073
1074 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
1075 minor == FW_VERSION_MINOR)
1076 return 0;
1077 else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
1078 CH_WARN(adapter, "found old FW minor version(%u.%u), "
1079 "driver compiled for version %u.%u\n", major, minor,
1080 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1081 else {
1082 CH_WARN(adapter, "found newer FW version(%u.%u), "
1083 "driver compiled for version %u.%u\n", major, minor,
1084 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1085 return 0;
1086 }
1087 return -EINVAL;
1088 }
1089
1090 /**
1091 * t3_flash_erase_sectors - erase a range of flash sectors
1092 * @adapter: the adapter
1093 * @start: the first sector to erase
1094 * @end: the last sector to erase
1095 *
1096 * Erases the sectors in the given range.
1097 */
1098 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1099 {
1100 while (start <= end) {
1101 int ret;
1102
1103 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1104 (ret = sf1_write(adapter, 4, 0,
1105 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1106 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1107 return ret;
1108 start++;
1109 }
1110 return 0;
1111 }
1112
1113 /**
1114 * t3_load_fw - download firmware
1115 * @adapter: the adapter
1116 * @fw_data: the firmware image to write
1117 * @size: image size
1118 *
1119 * Write the supplied firmware image to the card's serial flash.
1120 * The FW image has the following sections: @size - 8 bytes of code and
1121 * data, followed by 4 bytes of FW version, followed by the 32-bit
1122 * 1's complement checksum of the whole image.
1123 */
1124 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1125 {
1126 u32 csum;
1127 unsigned int i;
1128 const __be32 *p = (const __be32 *)fw_data;
1129 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1130
1131 if ((size & 3) || size < FW_MIN_SIZE)
1132 return -EINVAL;
1133 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1134 return -EFBIG;
1135
1136 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1137 csum += ntohl(p[i]);
1138 if (csum != 0xffffffff) {
1139 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1140 csum);
1141 return -EINVAL;
1142 }
1143
1144 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1145 if (ret)
1146 goto out;
1147
1148 size -= 8; /* trim off version and checksum */
1149 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1150 unsigned int chunk_size = min(size, 256U);
1151
1152 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1153 if (ret)
1154 goto out;
1155
1156 addr += chunk_size;
1157 fw_data += chunk_size;
1158 size -= chunk_size;
1159 }
1160
1161 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1162 out:
1163 if (ret)
1164 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1165 return ret;
1166 }
1167
1168 #define CIM_CTL_BASE 0x2000
1169
1170 /**
1171 * t3_cim_ctl_blk_read - read a block from CIM control region
1172 *
1173 * @adap: the adapter
1174 * @addr: the start address within the CIM control region
1175 * @n: number of words to read
1176 * @valp: where to store the result
1177 *
1178 * Reads a block of 4-byte words from the CIM control region.
1179 */
1180 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1181 unsigned int n, unsigned int *valp)
1182 {
1183 int ret = 0;
1184
1185 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1186 return -EBUSY;
1187
1188 for ( ; !ret && n--; addr += 4) {
1189 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1190 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1191 0, 5, 2);
1192 if (!ret)
1193 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1194 }
1195 return ret;
1196 }
1197
1198 static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
1199 u32 *rx_hash_high, u32 *rx_hash_low)
1200 {
1201 /* stop Rx unicast traffic */
1202 t3_mac_disable_exact_filters(mac);
1203
1204 /* stop broadcast, multicast, promiscuous mode traffic */
1205 *rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
1206 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1207 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1208 F_DISBCAST);
1209
1210 *rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
1211 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
1212
1213 *rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
1214 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
1215
1216 /* Leave time to drain max RX fifo */
1217 msleep(1);
1218 }
1219
1220 static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
1221 u32 rx_hash_high, u32 rx_hash_low)
1222 {
1223 t3_mac_enable_exact_filters(mac);
1224 t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
1225 F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
1226 rx_cfg);
1227 t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
1228 t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
1229 }
1230
1231 /**
1232 * t3_link_changed - handle interface link changes
1233 * @adapter: the adapter
1234 * @port_id: the port index that changed link state
1235 *
1236 * Called when a port's link settings change to propagate the new values
1237 * to the associated PHY and MAC. After performing the common tasks it
1238 * invokes an OS-specific handler.
1239 */
1240 void t3_link_changed(struct adapter *adapter, int port_id)
1241 {
1242 int link_ok, speed, duplex, fc;
1243 struct port_info *pi = adap2pinfo(adapter, port_id);
1244 struct cphy *phy = &pi->phy;
1245 struct cmac *mac = &pi->mac;
1246 struct link_config *lc = &pi->link_config;
1247
1248 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1249
1250 if (!lc->link_ok && link_ok) {
1251 u32 rx_cfg, rx_hash_high, rx_hash_low;
1252 u32 status;
1253
1254 t3_xgm_intr_enable(adapter, port_id);
1255 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1256 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1257 t3_mac_enable(mac, MAC_DIRECTION_RX);
1258
1259 status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
1260 if (status & F_LINKFAULTCHANGE) {
1261 mac->stats.link_faults++;
1262 pi->link_fault = 1;
1263 }
1264 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1265 }
1266
1267 if (lc->requested_fc & PAUSE_AUTONEG)
1268 fc &= lc->requested_fc;
1269 else
1270 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1271
1272 if (link_ok == lc->link_ok && speed == lc->speed &&
1273 duplex == lc->duplex && fc == lc->fc)
1274 return; /* nothing changed */
1275
1276 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1277 uses_xaui(adapter)) {
1278 if (link_ok)
1279 t3b_pcs_reset(mac);
1280 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1281 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1282 }
1283 lc->link_ok = link_ok;
1284 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1285 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1286
1287 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1288 /* Set MAC speed, duplex, and flow control to match PHY. */
1289 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1290 lc->fc = fc;
1291 }
1292
1293 t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
1294 speed, duplex, fc);
1295 }
1296
1297 void t3_link_fault(struct adapter *adapter, int port_id)
1298 {
1299 struct port_info *pi = adap2pinfo(adapter, port_id);
1300 struct cmac *mac = &pi->mac;
1301 struct cphy *phy = &pi->phy;
1302 struct link_config *lc = &pi->link_config;
1303 int link_ok, speed, duplex, fc, link_fault;
1304 u32 rx_cfg, rx_hash_high, rx_hash_low;
1305
1306 t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
1307
1308 if (adapter->params.rev > 0 && uses_xaui(adapter))
1309 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
1310
1311 t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
1312 t3_mac_enable(mac, MAC_DIRECTION_RX);
1313
1314 t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
1315
1316 link_fault = t3_read_reg(adapter,
1317 A_XGM_INT_STATUS + mac->offset);
1318 link_fault &= F_LINKFAULTCHANGE;
1319
1320 link_ok = lc->link_ok;
1321 speed = lc->speed;
1322 duplex = lc->duplex;
1323 fc = lc->fc;
1324
1325 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1326
1327 if (link_fault) {
1328 lc->link_ok = 0;
1329 lc->speed = SPEED_INVALID;
1330 lc->duplex = DUPLEX_INVALID;
1331
1332 t3_os_link_fault(adapter, port_id, 0);
1333
1334 /* Account link faults only when the phy reports a link up */
1335 if (link_ok)
1336 mac->stats.link_faults++;
1337 } else {
1338 if (link_ok)
1339 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1340 F_TXACTENABLE | F_RXEN);
1341
1342 pi->link_fault = 0;
1343 lc->link_ok = (unsigned char)link_ok;
1344 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1345 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1346 t3_os_link_fault(adapter, port_id, link_ok);
1347 }
1348 }
1349
1350 /**
1351 * t3_link_start - apply link configuration to MAC/PHY
1352 * @phy: the PHY to setup
1353 * @mac: the MAC to setup
1354 * @lc: the requested link configuration
1355 *
1356 * Set up a port's MAC and PHY according to a desired link configuration.
1357 * - If the PHY can auto-negotiate first decide what to advertise, then
1358 * enable/disable auto-negotiation as desired, and reset.
1359 * - If the PHY does not auto-negotiate just reset it.
1360 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1361 * otherwise do it later based on the outcome of auto-negotiation.
1362 */
1363 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1364 {
1365 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1366
1367 lc->link_ok = 0;
1368 if (lc->supported & SUPPORTED_Autoneg) {
1369 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1370 if (fc) {
1371 lc->advertising |= ADVERTISED_Asym_Pause;
1372 if (fc & PAUSE_RX)
1373 lc->advertising |= ADVERTISED_Pause;
1374 }
1375 phy->ops->advertise(phy, lc->advertising);
1376
1377 if (lc->autoneg == AUTONEG_DISABLE) {
1378 lc->speed = lc->requested_speed;
1379 lc->duplex = lc->requested_duplex;
1380 lc->fc = (unsigned char)fc;
1381 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1382 fc);
1383 /* Also disables autoneg */
1384 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1385 } else
1386 phy->ops->autoneg_enable(phy);
1387 } else {
1388 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1389 lc->fc = (unsigned char)fc;
1390 phy->ops->reset(phy, 0);
1391 }
1392 return 0;
1393 }
1394
1395 /**
1396 * t3_set_vlan_accel - control HW VLAN extraction
1397 * @adapter: the adapter
1398 * @ports: bitmap of adapter ports to operate on
1399 * @on: enable (1) or disable (0) HW VLAN extraction
1400 *
1401 * Enables or disables HW extraction of VLAN tags for the given port.
1402 */
1403 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1404 {
1405 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1406 ports << S_VLANEXTRACTIONENABLE,
1407 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1408 }
1409
1410 struct intr_info {
1411 unsigned int mask; /* bits to check in interrupt status */
1412 const char *msg; /* message to print or NULL */
1413 short stat_idx; /* stat counter to increment or -1 */
1414 unsigned short fatal; /* whether the condition reported is fatal */
1415 };
1416
1417 /**
1418 * t3_handle_intr_status - table driven interrupt handler
1419 * @adapter: the adapter that generated the interrupt
1420 * @reg: the interrupt status register to process
1421 * @mask: a mask to apply to the interrupt status
1422 * @acts: table of interrupt actions
1423 * @stats: statistics counters tracking interrupt occurrences
1424 *
1425 * A table driven interrupt handler that applies a set of masks to an
1426 * interrupt status word and performs the corresponding actions if the
1427 * interrupts described by the mask have occurred. The actions include
1428 * optionally printing a warning or alert message, and optionally
1429 * incrementing a stat counter. The table is terminated by an entry
1430 * specifying mask 0. Returns the number of fatal interrupt conditions.
1431 */
1432 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1433 unsigned int mask,
1434 const struct intr_info *acts,
1435 unsigned long *stats)
1436 {
1437 int fatal = 0;
1438 unsigned int status = t3_read_reg(adapter, reg) & mask;
1439
1440 for (; acts->mask; ++acts) {
1441 if (!(status & acts->mask))
1442 continue;
1443 if (acts->fatal) {
1444 fatal++;
1445 CH_ALERT(adapter, "%s (0x%x)\n",
1446 acts->msg, status & acts->mask);
1447 status &= ~acts->mask;
1448 } else if (acts->msg)
1449 CH_WARN(adapter, "%s (0x%x)\n",
1450 acts->msg, status & acts->mask);
1451 if (acts->stat_idx >= 0)
1452 stats[acts->stat_idx]++;
1453 }
1454 if (status) /* clear processed interrupts */
1455 t3_write_reg(adapter, reg, status);
1456 return fatal;
1457 }
1458
1459 #define SGE_INTR_MASK (F_RSPQDISABLED | \
1460 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
1461 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
1462 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
1463 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
1464 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
1465 F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
1466 F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
1467 F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
1468 F_LOPIODRBDROPERR)
1469 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1470 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1471 F_NFASRCHFAIL)
1472 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1473 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1474 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1475 F_TXFIFO_UNDERRUN)
1476 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1477 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1478 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1479 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1480 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1481 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1482 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1483 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1484 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1485 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
1486 F_TXPARERR | V_BISTERR(M_BISTERR))
1487 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
1488 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
1489 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
1490 #define ULPTX_INTR_MASK 0xfc
1491 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
1492 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1493 F_ZERO_SWITCH_ERROR)
1494 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1495 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1496 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1497 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
1498 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
1499 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
1500 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
1501 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
1502 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1503 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1504 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1505 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1506 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1507 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1508 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1509 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1510 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1511 V_MCAPARERRENB(M_MCAPARERRENB))
1512 #define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
1513 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1514 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1515 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1516 F_MPS0 | F_CPL_SWITCH)
1517 /*
1518 * Interrupt handler for the PCIX1 module.
1519 */
1520 static void pci_intr_handler(struct adapter *adapter)
1521 {
1522 static const struct intr_info pcix1_intr_info[] = {
1523 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1524 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1525 {F_RCVTARABT, "PCI received target abort", -1, 1},
1526 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1527 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1528 {F_DETPARERR, "PCI detected parity error", -1, 1},
1529 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1530 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1531 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1532 1},
1533 {F_DETCORECCERR, "PCI correctable ECC error",
1534 STAT_PCI_CORR_ECC, 0},
1535 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1536 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1537 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1538 1},
1539 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1540 1},
1541 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1542 1},
1543 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1544 "error", -1, 1},
1545 {0}
1546 };
1547
1548 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1549 pcix1_intr_info, adapter->irq_stats))
1550 t3_fatal_err(adapter);
1551 }
1552
1553 /*
1554 * Interrupt handler for the PCIE module.
1555 */
1556 static void pcie_intr_handler(struct adapter *adapter)
1557 {
1558 static const struct intr_info pcie_intr_info[] = {
1559 {F_PEXERR, "PCI PEX error", -1, 1},
1560 {F_UNXSPLCPLERRR,
1561 "PCI unexpected split completion DMA read error", -1, 1},
1562 {F_UNXSPLCPLERRC,
1563 "PCI unexpected split completion DMA command error", -1, 1},
1564 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1565 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1566 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1567 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1568 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1569 "PCI MSI-X table/PBA parity error", -1, 1},
1570 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
1571 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
1572 {F_RXPARERR, "PCI Rx parity error", -1, 1},
1573 {F_TXPARERR, "PCI Tx parity error", -1, 1},
1574 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1575 {0}
1576 };
1577
1578 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1579 CH_ALERT(adapter, "PEX error code 0x%x\n",
1580 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1581
1582 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1583 pcie_intr_info, adapter->irq_stats))
1584 t3_fatal_err(adapter);
1585 }
1586
1587 /*
1588 * TP interrupt handler.
1589 */
1590 static void tp_intr_handler(struct adapter *adapter)
1591 {
1592 static const struct intr_info tp_intr_info[] = {
1593 {0xffffff, "TP parity error", -1, 1},
1594 {0x1000000, "TP out of Rx pages", -1, 1},
1595 {0x2000000, "TP out of Tx pages", -1, 1},
1596 {0}
1597 };
1598
1599 static const struct intr_info tp_intr_info_t3c[] = {
1600 {0x1fffffff, "TP parity error", -1, 1},
1601 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
1602 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
1603 {0}
1604 };
1605
1606 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1607 adapter->params.rev < T3_REV_C ?
1608 tp_intr_info : tp_intr_info_t3c, NULL))
1609 t3_fatal_err(adapter);
1610 }
1611
1612 /*
1613 * CIM interrupt handler.
1614 */
1615 static void cim_intr_handler(struct adapter *adapter)
1616 {
1617 static const struct intr_info cim_intr_info[] = {
1618 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1619 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1620 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1621 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1622 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1623 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1624 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1625 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1626 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1627 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1628 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1629 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1630 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
1631 {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
1632 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
1633 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
1634 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
1635 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
1636 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
1637 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
1638 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
1639 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
1640 {F_ITAGPARERR, "CIM itag parity error", -1, 1},
1641 {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
1642 {0}
1643 };
1644
1645 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1646 cim_intr_info, NULL))
1647 t3_fatal_err(adapter);
1648 }
1649
1650 /*
1651 * ULP RX interrupt handler.
1652 */
1653 static void ulprx_intr_handler(struct adapter *adapter)
1654 {
1655 static const struct intr_info ulprx_intr_info[] = {
1656 {F_PARERRDATA, "ULP RX data parity error", -1, 1},
1657 {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
1658 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
1659 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
1660 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
1661 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
1662 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
1663 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
1664 {0}
1665 };
1666
1667 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1668 ulprx_intr_info, NULL))
1669 t3_fatal_err(adapter);
1670 }
1671
1672 /*
1673 * ULP TX interrupt handler.
1674 */
1675 static void ulptx_intr_handler(struct adapter *adapter)
1676 {
1677 static const struct intr_info ulptx_intr_info[] = {
1678 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1679 STAT_ULP_CH0_PBL_OOB, 0},
1680 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1681 STAT_ULP_CH1_PBL_OOB, 0},
1682 {0xfc, "ULP TX parity error", -1, 1},
1683 {0}
1684 };
1685
1686 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1687 ulptx_intr_info, adapter->irq_stats))
1688 t3_fatal_err(adapter);
1689 }
1690
1691 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1692 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1693 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1694 F_ICSPI1_TX_FRAMING_ERROR)
1695 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1696 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1697 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1698 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1699
1700 /*
1701 * PM TX interrupt handler.
1702 */
1703 static void pmtx_intr_handler(struct adapter *adapter)
1704 {
1705 static const struct intr_info pmtx_intr_info[] = {
1706 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1707 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1708 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1709 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1710 "PMTX ispi parity error", -1, 1},
1711 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1712 "PMTX ospi parity error", -1, 1},
1713 {0}
1714 };
1715
1716 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1717 pmtx_intr_info, NULL))
1718 t3_fatal_err(adapter);
1719 }
1720
1721 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1722 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1723 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1724 F_IESPI1_TX_FRAMING_ERROR)
1725 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1726 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1727 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1728 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1729
1730 /*
1731 * PM RX interrupt handler.
1732 */
1733 static void pmrx_intr_handler(struct adapter *adapter)
1734 {
1735 static const struct intr_info pmrx_intr_info[] = {
1736 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1737 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1738 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1739 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1740 "PMRX ispi parity error", -1, 1},
1741 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1742 "PMRX ospi parity error", -1, 1},
1743 {0}
1744 };
1745
1746 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1747 pmrx_intr_info, NULL))
1748 t3_fatal_err(adapter);
1749 }
1750
1751 /*
1752 * CPL switch interrupt handler.
1753 */
1754 static void cplsw_intr_handler(struct adapter *adapter)
1755 {
1756 static const struct intr_info cplsw_intr_info[] = {
1757 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
1758 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
1759 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1760 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1761 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1762 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1763 {0}
1764 };
1765
1766 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1767 cplsw_intr_info, NULL))
1768 t3_fatal_err(adapter);
1769 }
1770
1771 /*
1772 * MPS interrupt handler.
1773 */
1774 static void mps_intr_handler(struct adapter *adapter)
1775 {
1776 static const struct intr_info mps_intr_info[] = {
1777 {0x1ff, "MPS parity error", -1, 1},
1778 {0}
1779 };
1780
1781 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1782 mps_intr_info, NULL))
1783 t3_fatal_err(adapter);
1784 }
1785
1786 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1787
1788 /*
1789 * MC7 interrupt handler.
1790 */
1791 static void mc7_intr_handler(struct mc7 *mc7)
1792 {
1793 struct adapter *adapter = mc7->adapter;
1794 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1795
1796 if (cause & F_CE) {
1797 mc7->stats.corr_err++;
1798 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1799 "data 0x%x 0x%x 0x%x\n", mc7->name,
1800 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1801 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1802 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1803 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1804 }
1805
1806 if (cause & F_UE) {
1807 mc7->stats.uncorr_err++;
1808 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1809 "data 0x%x 0x%x 0x%x\n", mc7->name,
1810 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1811 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1812 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1813 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1814 }
1815
1816 if (G_PE(cause)) {
1817 mc7->stats.parity_err++;
1818 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1819 mc7->name, G_PE(cause));
1820 }
1821
1822 if (cause & F_AE) {
1823 u32 addr = 0;
1824
1825 if (adapter->params.rev > 0)
1826 addr = t3_read_reg(adapter,
1827 mc7->offset + A_MC7_ERR_ADDR);
1828 mc7->stats.addr_err++;
1829 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1830 mc7->name, addr);
1831 }
1832
1833 if (cause & MC7_INTR_FATAL)
1834 t3_fatal_err(adapter);
1835
1836 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1837 }
1838
1839 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1840 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1841 /*
1842 * XGMAC interrupt handler.
1843 */
1844 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1845 {
1846 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1847 /*
1848 * We mask out interrupt causes for which we're not taking interrupts.
1849 * This allows us to use polling logic to monitor some of the other
1850 * conditions when taking interrupts would impose too much load on the
1851 * system.
1852 */
1853 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
1854 ~F_RXFIFO_OVERFLOW;
1855
1856 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1857 mac->stats.tx_fifo_parity_err++;
1858 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1859 }
1860 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1861 mac->stats.rx_fifo_parity_err++;
1862 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1863 }
1864 if (cause & F_TXFIFO_UNDERRUN)
1865 mac->stats.tx_fifo_urun++;
1866 if (cause & F_RXFIFO_OVERFLOW)
1867 mac->stats.rx_fifo_ovfl++;
1868 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1869 mac->stats.serdes_signal_loss++;
1870 if (cause & F_XAUIPCSCTCERR)
1871 mac->stats.xaui_pcs_ctc_err++;
1872 if (cause & F_XAUIPCSALIGNCHANGE)
1873 mac->stats.xaui_pcs_align_change++;
1874 if (cause & F_XGM_INT) {
1875 t3_set_reg_field(adap,
1876 A_XGM_INT_ENABLE + mac->offset,
1877 F_XGM_INT, 0);
1878 mac->stats.link_faults++;
1879
1880 t3_os_link_fault_handler(adap, idx);
1881 }
1882
1883 if (cause & XGM_INTR_FATAL)
1884 t3_fatal_err(adap);
1885
1886 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1887 return cause != 0;
1888 }
1889
1890 /*
1891 * Interrupt handler for PHY events.
1892 */
1893 int t3_phy_intr_handler(struct adapter *adapter)
1894 {
1895 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1896
1897 for_each_port(adapter, i) {
1898 struct port_info *p = adap2pinfo(adapter, i);
1899
1900 if (!(p->phy.caps & SUPPORTED_IRQ))
1901 continue;
1902
1903 if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
1904 int phy_cause = p->phy.ops->intr_handler(&p->phy);
1905
1906 if (phy_cause & cphy_cause_link_change)
1907 t3_link_changed(adapter, i);
1908 if (phy_cause & cphy_cause_fifo_error)
1909 p->phy.fifo_errors++;
1910 if (phy_cause & cphy_cause_module_change)
1911 t3_os_phymod_changed(adapter, i);
1912 }
1913 }
1914
1915 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1916 return 0;
1917 }
1918
1919 /*
1920 * T3 slow path (non-data) interrupt handler.
1921 */
1922 int t3_slow_intr_handler(struct adapter *adapter)
1923 {
1924 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1925
1926 cause &= adapter->slow_intr_mask;
1927 if (!cause)
1928 return 0;
1929 if (cause & F_PCIM0) {
1930 if (is_pcie(adapter))
1931 pcie_intr_handler(adapter);
1932 else
1933 pci_intr_handler(adapter);
1934 }
1935 if (cause & F_SGE3)
1936 t3_sge_err_intr_handler(adapter);
1937 if (cause & F_MC7_PMRX)
1938 mc7_intr_handler(&adapter->pmrx);
1939 if (cause & F_MC7_PMTX)
1940 mc7_intr_handler(&adapter->pmtx);
1941 if (cause & F_MC7_CM)
1942 mc7_intr_handler(&adapter->cm);
1943 if (cause & F_CIM)
1944 cim_intr_handler(adapter);
1945 if (cause & F_TP1)
1946 tp_intr_handler(adapter);
1947 if (cause & F_ULP2_RX)
1948 ulprx_intr_handler(adapter);
1949 if (cause & F_ULP2_TX)
1950 ulptx_intr_handler(adapter);
1951 if (cause & F_PM1_RX)
1952 pmrx_intr_handler(adapter);
1953 if (cause & F_PM1_TX)
1954 pmtx_intr_handler(adapter);
1955 if (cause & F_CPL_SWITCH)
1956 cplsw_intr_handler(adapter);
1957 if (cause & F_MPS0)
1958 mps_intr_handler(adapter);
1959 if (cause & F_MC5A)
1960 t3_mc5_intr_handler(&adapter->mc5);
1961 if (cause & F_XGMAC0_0)
1962 mac_intr_handler(adapter, 0);
1963 if (cause & F_XGMAC0_1)
1964 mac_intr_handler(adapter, 1);
1965 if (cause & F_T3DBG)
1966 t3_os_ext_intr_handler(adapter);
1967
1968 /* Clear the interrupts just processed. */
1969 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1970 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1971 return 1;
1972 }
1973
1974 static unsigned int calc_gpio_intr(struct adapter *adap)
1975 {
1976 unsigned int i, gpi_intr = 0;
1977
1978 for_each_port(adap, i)
1979 if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
1980 adapter_info(adap)->gpio_intr[i])
1981 gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
1982 return gpi_intr;
1983 }
1984
1985 /**
1986 * t3_intr_enable - enable interrupts
1987 * @adapter: the adapter whose interrupts should be enabled
1988 *
1989 * Enable interrupts by setting the interrupt enable registers of the
1990 * various HW modules and then enabling the top-level interrupt
1991 * concentrator.
1992 */
1993 void t3_intr_enable(struct adapter *adapter)
1994 {
1995 static const struct addr_val_pair intr_en_avp[] = {
1996 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1997 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1998 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1999 MC7_INTR_MASK},
2000 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
2001 MC7_INTR_MASK},
2002 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
2003 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
2004 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
2005 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
2006 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
2007 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
2008 };
2009
2010 adapter->slow_intr_mask = PL_INTR_MASK;
2011
2012 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
2013 t3_write_reg(adapter, A_TP_INT_ENABLE,
2014 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
2015
2016 if (adapter->params.rev > 0) {
2017 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
2018 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
2019 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
2020 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
2021 F_PBL_BOUND_ERR_CH1);
2022 } else {
2023 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
2024 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
2025 }
2026
2027 t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
2028
2029 if (is_pcie(adapter))
2030 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
2031 else
2032 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
2033 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
2034 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
2035 }
2036
2037 /**
2038 * t3_intr_disable - disable a card's interrupts
2039 * @adapter: the adapter whose interrupts should be disabled
2040 *
2041 * Disable interrupts. We only disable the top-level interrupt
2042 * concentrator and the SGE data interrupts.
2043 */
2044 void t3_intr_disable(struct adapter *adapter)
2045 {
2046 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
2047 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
2048 adapter->slow_intr_mask = 0;
2049 }
2050
2051 /**
2052 * t3_intr_clear - clear all interrupts
2053 * @adapter: the adapter whose interrupts should be cleared
2054 *
2055 * Clears all interrupts.
2056 */
2057 void t3_intr_clear(struct adapter *adapter)
2058 {
2059 static const unsigned int cause_reg_addr[] = {
2060 A_SG_INT_CAUSE,
2061 A_SG_RSPQ_FL_STATUS,
2062 A_PCIX_INT_CAUSE,
2063 A_MC7_INT_CAUSE,
2064 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
2065 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
2066 A_CIM_HOST_INT_CAUSE,
2067 A_TP_INT_CAUSE,
2068 A_MC5_DB_INT_CAUSE,
2069 A_ULPRX_INT_CAUSE,
2070 A_ULPTX_INT_CAUSE,
2071 A_CPL_INTR_CAUSE,
2072 A_PM1_TX_INT_CAUSE,
2073 A_PM1_RX_INT_CAUSE,
2074 A_MPS_INT_CAUSE,
2075 A_T3DBG_INT_CAUSE,
2076 };
2077 unsigned int i;
2078
2079 /* Clear PHY and MAC interrupts for each port. */
2080 for_each_port(adapter, i)
2081 t3_port_intr_clear(adapter, i);
2082
2083 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
2084 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
2085
2086 if (is_pcie(adapter))
2087 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
2088 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
2089 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
2090 }
2091
2092 void t3_xgm_intr_enable(struct adapter *adapter, int idx)
2093 {
2094 struct port_info *pi = adap2pinfo(adapter, idx);
2095
2096 t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
2097 XGM_EXTRA_INTR_MASK);
2098 }
2099
2100 void t3_xgm_intr_disable(struct adapter *adapter, int idx)
2101 {
2102 struct port_info *pi = adap2pinfo(adapter, idx);
2103
2104 t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
2105 0x7ff);
2106 }
2107
2108 /**
2109 * t3_port_intr_enable - enable port-specific interrupts
2110 * @adapter: associated adapter
2111 * @idx: index of port whose interrupts should be enabled
2112 *
2113 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
2114 * adapter port.
2115 */
2116 void t3_port_intr_enable(struct adapter *adapter, int idx)
2117 {
2118 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2119
2120 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
2121 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2122 phy->ops->intr_enable(phy);
2123 }
2124
2125 /**
2126 * t3_port_intr_disable - disable port-specific interrupts
2127 * @adapter: associated adapter
2128 * @idx: index of port whose interrupts should be disabled
2129 *
2130 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
2131 * adapter port.
2132 */
2133 void t3_port_intr_disable(struct adapter *adapter, int idx)
2134 {
2135 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2136
2137 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
2138 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
2139 phy->ops->intr_disable(phy);
2140 }
2141
2142 /**
2143 * t3_port_intr_clear - clear port-specific interrupts
2144 * @adapter: associated adapter
2145 * @idx: index of port whose interrupts to clear
2146 *
2147 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
2148 * adapter port.
2149 */
2150 static void t3_port_intr_clear(struct adapter *adapter, int idx)
2151 {
2152 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
2153
2154 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
2155 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
2156 phy->ops->intr_clear(phy);
2157 }
2158
2159 #define SG_CONTEXT_CMD_ATTEMPTS 100
2160
2161 /**
2162 * t3_sge_write_context - write an SGE context
2163 * @adapter: the adapter
2164 * @id: the context id
2165 * @type: the context type
2166 *
2167 * Program an SGE context with the values already loaded in the
2168 * CONTEXT_DATA? registers.
2169 */
2170 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
2171 unsigned int type)
2172 {
2173 if (type == F_RESPONSEQ) {
2174 /*
2175 * Can't write the Response Queue Context bits for
2176 * Interrupt Armed or the Reserve bits after the chip
2177 * has been initialized out of reset. Writing to these
2178 * bits can confuse the hardware.
2179 */
2180 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2181 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2182 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
2183 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2184 } else {
2185 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
2186 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
2187 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
2188 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
2189 }
2190 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2191 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2192 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2193 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2194 }
2195
2196 /**
2197 * clear_sge_ctxt - completely clear an SGE context
2198 * @adapter: the adapter
2199 * @id: the context id
2200 * @type: the context type
2201 *
2202 * Completely clear an SGE context. Used predominantly at post-reset
2203 * initialization. Note in particular that we don't skip writing to any
2204 * "sensitive bits" in the contexts the way that t3_sge_write_context()
2205 * does ...
2206 */
2207 static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
2208 unsigned int type)
2209 {
2210 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
2211 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
2212 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
2213 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
2214 t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
2215 t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
2216 t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
2217 t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
2218 t3_write_reg(adap, A_SG_CONTEXT_CMD,
2219 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
2220 return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2221 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2222 }
2223
2224 /**
2225 * t3_sge_init_ecntxt - initialize an SGE egress context
2226 * @adapter: the adapter to configure
2227 * @id: the context id
2228 * @gts_enable: whether to enable GTS for the context
2229 * @type: the egress context type
2230 * @respq: associated response queue
2231 * @base_addr: base address of queue
2232 * @size: number of queue entries
2233 * @token: uP token
2234 * @gen: initial generation value for the context
2235 * @cidx: consumer pointer
2236 *
2237 * Initialize an SGE egress context and make it ready for use. If the
2238 * platform allows concurrent context operations, the caller is
2239 * responsible for appropriate locking.
2240 */
2241 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
2242 enum sge_context_type type, int respq, u64 base_addr,
2243 unsigned int size, unsigned int token, int gen,
2244 unsigned int cidx)
2245 {
2246 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
2247
2248 if (base_addr & 0xfff) /* must be 4K aligned */
2249 return -EINVAL;
2250 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2251 return -EBUSY;
2252
2253 base_addr >>= 12;
2254 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
2255 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
2256 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
2257 V_EC_BASE_LO(base_addr & 0xffff));
2258 base_addr >>= 16;
2259 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
2260 base_addr >>= 32;
2261 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2262 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
2263 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
2264 F_EC_VALID);
2265 return t3_sge_write_context(adapter, id, F_EGRESS);
2266 }
2267
2268 /**
2269 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
2270 * @adapter: the adapter to configure
2271 * @id: the context id
2272 * @gts_enable: whether to enable GTS for the context
2273 * @base_addr: base address of queue
2274 * @size: number of queue entries
2275 * @bsize: size of each buffer for this queue
2276 * @cong_thres: threshold to signal congestion to upstream producers
2277 * @gen: initial generation value for the context
2278 * @cidx: consumer pointer
2279 *
2280 * Initialize an SGE free list context and make it ready for use. The
2281 * caller is responsible for ensuring only one context operation occurs
2282 * at a time.
2283 */
2284 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
2285 int gts_enable, u64 base_addr, unsigned int size,
2286 unsigned int bsize, unsigned int cong_thres, int gen,
2287 unsigned int cidx)
2288 {
2289 if (base_addr & 0xfff) /* must be 4K aligned */
2290 return -EINVAL;
2291 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2292 return -EBUSY;
2293
2294 base_addr >>= 12;
2295 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
2296 base_addr >>= 32;
2297 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
2298 V_FL_BASE_HI((u32) base_addr) |
2299 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
2300 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
2301 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
2302 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
2303 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2304 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
2305 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
2306 return t3_sge_write_context(adapter, id, F_FREELIST);
2307 }
2308
2309 /**
2310 * t3_sge_init_rspcntxt - initialize an SGE response queue context
2311 * @adapter: the adapter to configure
2312 * @id: the context id
2313 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
2314 * @base_addr: base address of queue
2315 * @size: number of queue entries
2316 * @fl_thres: threshold for selecting the normal or jumbo free list
2317 * @gen: initial generation value for the context
2318 * @cidx: consumer pointer
2319 *
2320 * Initialize an SGE response queue context and make it ready for use.
2321 * The caller is responsible for ensuring only one context operation
2322 * occurs at a time.
2323 */
2324 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
2325 int irq_vec_idx, u64 base_addr, unsigned int size,
2326 unsigned int fl_thres, int gen, unsigned int cidx)
2327 {
2328 unsigned int intr = 0;
2329
2330 if (base_addr & 0xfff) /* must be 4K aligned */
2331 return -EINVAL;
2332 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2333 return -EBUSY;
2334
2335 base_addr >>= 12;
2336 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2337 V_CQ_INDEX(cidx));
2338 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2339 base_addr >>= 32;
2340 if (irq_vec_idx >= 0)
2341 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2342 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2343 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2344 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2345 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2346 }
2347
2348 /**
2349 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2350 * @adapter: the adapter to configure
2351 * @id: the context id
2352 * @base_addr: base address of queue
2353 * @size: number of queue entries
2354 * @rspq: response queue for async notifications
2355 * @ovfl_mode: CQ overflow mode
2356 * @credits: completion queue credits
2357 * @credit_thres: the credit threshold
2358 *
2359 * Initialize an SGE completion queue context and make it ready for use.
2360 * The caller is responsible for ensuring only one context operation
2361 * occurs at a time.
2362 */
2363 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2364 unsigned int size, int rspq, int ovfl_mode,
2365 unsigned int credits, unsigned int credit_thres)
2366 {
2367 if (base_addr & 0xfff) /* must be 4K aligned */
2368 return -EINVAL;
2369 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2370 return -EBUSY;
2371
2372 base_addr >>= 12;
2373 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2374 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2375 base_addr >>= 32;
2376 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2377 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2378 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2379 V_CQ_ERR(ovfl_mode));
2380 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2381 V_CQ_CREDIT_THRES(credit_thres));
2382 return t3_sge_write_context(adapter, id, F_CQ);
2383 }
2384
2385 /**
2386 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2387 * @adapter: the adapter
2388 * @id: the egress context id
2389 * @enable: enable (1) or disable (0) the context
2390 *
2391 * Enable or disable an SGE egress context. The caller is responsible for
2392 * ensuring only one context operation occurs at a time.
2393 */
2394 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2395 {
2396 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2397 return -EBUSY;
2398
2399 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2400 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2401 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2402 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2403 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2404 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2405 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2406 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2407 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2408 }
2409
2410 /**
2411 * t3_sge_disable_fl - disable an SGE free-buffer list
2412 * @adapter: the adapter
2413 * @id: the free list context id
2414 *
2415 * Disable an SGE free-buffer list. The caller is responsible for
2416 * ensuring only one context operation occurs at a time.
2417 */
2418 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2419 {
2420 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2421 return -EBUSY;
2422
2423 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2424 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2425 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2426 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2427 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2428 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2429 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2430 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2431 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2432 }
2433
2434 /**
2435 * t3_sge_disable_rspcntxt - disable an SGE response queue
2436 * @adapter: the adapter
2437 * @id: the response queue context id
2438 *
2439 * Disable an SGE response queue. The caller is responsible for
2440 * ensuring only one context operation occurs at a time.
2441 */
2442 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2443 {
2444 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2445 return -EBUSY;
2446
2447 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2448 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2449 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2450 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2451 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2452 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2453 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2454 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2455 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2456 }
2457
2458 /**
2459 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2460 * @adapter: the adapter
2461 * @id: the completion queue context id
2462 *
2463 * Disable an SGE completion queue. The caller is responsible for
2464 * ensuring only one context operation occurs at a time.
2465 */
2466 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2467 {
2468 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2469 return -EBUSY;
2470
2471 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2472 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2473 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2474 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2475 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2476 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2477 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2478 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2479 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2480 }
2481
2482 /**
2483 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2484 * @adapter: the adapter
2485 * @id: the context id
2486 * @op: the operation to perform
2487 *
2488 * Perform the selected operation on an SGE completion queue context.
2489 * The caller is responsible for ensuring only one context operation
2490 * occurs at a time.
2491 */
2492 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2493 unsigned int credits)
2494 {
2495 u32 val;
2496
2497 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2498 return -EBUSY;
2499
2500 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2501 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2502 V_CONTEXT(id) | F_CQ);
2503 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2504 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
2505 return -EIO;
2506
2507 if (op >= 2 && op < 7) {
2508 if (adapter->params.rev > 0)
2509 return G_CQ_INDEX(val);
2510
2511 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2512 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2513 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2514 F_CONTEXT_CMD_BUSY, 0,
2515 SG_CONTEXT_CMD_ATTEMPTS, 1))
2516 return -EIO;
2517 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2518 }
2519 return 0;
2520 }
2521
2522 /**
2523 * t3_config_rss - configure Rx packet steering
2524 * @adapter: the adapter
2525 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2526 * @cpus: values for the CPU lookup table (0xff terminated)
2527 * @rspq: values for the response queue lookup table (0xffff terminated)
2528 *
2529 * Programs the receive packet steering logic. @cpus and @rspq provide
2530 * the values for the CPU and response queue lookup tables. If they
2531 * provide fewer values than the size of the tables the supplied values
2532 * are used repeatedly until the tables are fully populated.
2533 */
2534 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2535 const u8 * cpus, const u16 *rspq)
2536 {
2537 int i, j, cpu_idx = 0, q_idx = 0;
2538
2539 if (cpus)
2540 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2541 u32 val = i << 16;
2542
2543 for (j = 0; j < 2; ++j) {
2544 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2545 if (cpus[cpu_idx] == 0xff)
2546 cpu_idx = 0;
2547 }
2548 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2549 }
2550
2551 if (rspq)
2552 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2553 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2554 (i << 16) | rspq[q_idx++]);
2555 if (rspq[q_idx] == 0xffff)
2556 q_idx = 0;
2557 }
2558
2559 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2560 }
2561
2562 /**
2563 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2564 * @adap: the adapter
2565 * @enable: 1 to select offload mode, 0 for regular NIC
2566 *
2567 * Switches TP to NIC/offload mode.
2568 */
2569 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2570 {
2571 if (is_offload(adap) || !enable)
2572 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2573 V_NICMODE(!enable));
2574 }
2575
2576 /**
2577 * pm_num_pages - calculate the number of pages of the payload memory
2578 * @mem_size: the size of the payload memory
2579 * @pg_size: the size of each payload memory page
2580 *
2581 * Calculate the number of pages, each of the given size, that fit in a
2582 * memory of the specified size, respecting the HW requirement that the
2583 * number of pages must be a multiple of 24.
2584 */
2585 static inline unsigned int pm_num_pages(unsigned int mem_size,
2586 unsigned int pg_size)
2587 {
2588 unsigned int n = mem_size / pg_size;
2589
2590 return n - n % 24;
2591 }
2592
2593 #define mem_region(adap, start, size, reg) \
2594 t3_write_reg((adap), A_ ## reg, (start)); \
2595 start += size
2596
2597 /**
2598 * partition_mem - partition memory and configure TP memory settings
2599 * @adap: the adapter
2600 * @p: the TP parameters
2601 *
2602 * Partitions context and payload memory and configures TP's memory
2603 * registers.
2604 */
2605 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2606 {
2607 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2608 unsigned int timers = 0, timers_shift = 22;
2609
2610 if (adap->params.rev > 0) {
2611 if (tids <= 16 * 1024) {
2612 timers = 1;
2613 timers_shift = 16;
2614 } else if (tids <= 64 * 1024) {
2615 timers = 2;
2616 timers_shift = 18;
2617 } else if (tids <= 256 * 1024) {
2618 timers = 3;
2619 timers_shift = 20;
2620 }
2621 }
2622
2623 t3_write_reg(adap, A_TP_PMM_SIZE,
2624 p->chan_rx_size | (p->chan_tx_size >> 16));
2625
2626 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2627 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2628 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2629 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2630 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2631
2632 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2633 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2634 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2635
2636 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2637 /* Add a bit of headroom and make multiple of 24 */
2638 pstructs += 48;
2639 pstructs -= pstructs % 24;
2640 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2641
2642 m = tids * TCB_SIZE;
2643 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2644 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2645 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2646 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2647 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2648 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2649 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2650 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2651
2652 m = (m + 4095) & ~0xfff;
2653 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2654 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2655
2656 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2657 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2658 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2659 if (tids < m)
2660 adap->params.mc5.nservers += m - tids;
2661 }
2662
2663 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2664 u32 val)
2665 {
2666 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2667 t3_write_reg(adap, A_TP_PIO_DATA, val);
2668 }
2669
2670 static void tp_config(struct adapter *adap, const struct tp_params *p)
2671 {
2672 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2673 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2674 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2675 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2676 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2677 V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
2678 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2679 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2680 V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
2681 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2682 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
2683 F_IPV6ENABLE | F_NICMODE);
2684 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2685 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2686 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2687 adap->params.rev > 0 ? F_ENABLEESND :
2688 F_T3A_ENABLEESND);
2689
2690 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2691 F_ENABLEEPCMDAFULL,
2692 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2693 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2694 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
2695 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
2696 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
2697 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2698 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2699
2700 if (adap->params.rev > 0) {
2701 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2702 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2703 F_TXPACEAUTO);
2704 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2705 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2706 } else
2707 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2708
2709 if (adap->params.rev == T3_REV_C)
2710 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2711 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
2712 V_TABLELATENCYDELTA(4));
2713
2714 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2715 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2716 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2717 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2718 }
2719
2720 /* Desired TP timer resolution in usec */
2721 #define TP_TMR_RES 50
2722
2723 /* TCP timer values in ms */
2724 #define TP_DACK_TIMER 50
2725 #define TP_RTO_MIN 250
2726
2727 /**
2728 * tp_set_timers - set TP timing parameters
2729 * @adap: the adapter to set
2730 * @core_clk: the core clock frequency in Hz
2731 *
2732 * Set TP's timing parameters, such as the various timer resolutions and
2733 * the TCP timer values.
2734 */
2735 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2736 {
2737 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2738 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2739 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2740 unsigned int tps = core_clk >> tre;
2741
2742 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2743 V_DELAYEDACKRESOLUTION(dack_re) |
2744 V_TIMESTAMPRESOLUTION(tstamp_re));
2745 t3_write_reg(adap, A_TP_DACK_TIMER,
2746 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2747 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2748 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2749 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2750 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2751 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2752 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2753 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2754 V_KEEPALIVEMAX(9));
2755
2756 #define SECONDS * tps
2757
2758 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2759 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2760 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2761 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2762 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2763 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2764 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2765 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2766 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2767
2768 #undef SECONDS
2769 }
2770
2771 /**
2772 * t3_tp_set_coalescing_size - set receive coalescing size
2773 * @adap: the adapter
2774 * @size: the receive coalescing size
2775 * @psh: whether a set PSH bit should deliver coalesced data
2776 *
2777 * Set the receive coalescing size and PSH bit handling.
2778 */
2779 static int t3_tp_set_coalescing_size(struct adapter *adap,
2780 unsigned int size, int psh)
2781 {
2782 u32 val;
2783
2784 if (size > MAX_RX_COALESCING_LEN)
2785 return -EINVAL;
2786
2787 val = t3_read_reg(adap, A_TP_PARA_REG3);
2788 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2789
2790 if (size) {
2791 val |= F_RXCOALESCEENABLE;
2792 if (psh)
2793 val |= F_RXCOALESCEPSHEN;
2794 size = min(MAX_RX_COALESCING_LEN, size);
2795 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2796 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2797 }
2798 t3_write_reg(adap, A_TP_PARA_REG3, val);
2799 return 0;
2800 }
2801
2802 /**
2803 * t3_tp_set_max_rxsize - set the max receive size
2804 * @adap: the adapter
2805 * @size: the max receive size
2806 *
2807 * Set TP's max receive size. This is the limit that applies when
2808 * receive coalescing is disabled.
2809 */
2810 static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2811 {
2812 t3_write_reg(adap, A_TP_PARA_REG7,
2813 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2814 }
2815
2816 static void init_mtus(unsigned short mtus[])
2817 {
2818 /*
2819 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2820 * it can accommodate max size TCP/IP headers when SACK and timestamps
2821 * are enabled and still have at least 8 bytes of payload.
2822 */
2823 mtus[0] = 88;
2824 mtus[1] = 88;
2825 mtus[2] = 256;
2826 mtus[3] = 512;
2827 mtus[4] = 576;
2828 mtus[5] = 1024;
2829 mtus[6] = 1280;
2830 mtus[7] = 1492;
2831 mtus[8] = 1500;
2832 mtus[9] = 2002;
2833 mtus[10] = 2048;
2834 mtus[11] = 4096;
2835 mtus[12] = 4352;
2836 mtus[13] = 8192;
2837 mtus[14] = 9000;
2838 mtus[15] = 9600;
2839 }
2840
2841 /*
2842 * Initial congestion control parameters.
2843 */
2844 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2845 {
2846 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2847 a[9] = 2;
2848 a[10] = 3;
2849 a[11] = 4;
2850 a[12] = 5;
2851 a[13] = 6;
2852 a[14] = 7;
2853 a[15] = 8;
2854 a[16] = 9;
2855 a[17] = 10;
2856 a[18] = 14;
2857 a[19] = 17;
2858 a[20] = 21;
2859 a[21] = 25;
2860 a[22] = 30;
2861 a[23] = 35;
2862 a[24] = 45;
2863 a[25] = 60;
2864 a[26] = 80;
2865 a[27] = 100;
2866 a[28] = 200;
2867 a[29] = 300;
2868 a[30] = 400;
2869 a[31] = 500;
2870
2871 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2872 b[9] = b[10] = 1;
2873 b[11] = b[12] = 2;
2874 b[13] = b[14] = b[15] = b[16] = 3;
2875 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2876 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2877 b[28] = b[29] = 6;
2878 b[30] = b[31] = 7;
2879 }
2880
2881 /* The minimum additive increment value for the congestion control table */
2882 #define CC_MIN_INCR 2U
2883
2884 /**
2885 * t3_load_mtus - write the MTU and congestion control HW tables
2886 * @adap: the adapter
2887 * @mtus: the unrestricted values for the MTU table
2888 * @alphs: the values for the congestion control alpha parameter
2889 * @beta: the values for the congestion control beta parameter
2890 * @mtu_cap: the maximum permitted effective MTU
2891 *
2892 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2893 * Update the high-speed congestion control table with the supplied alpha,
2894 * beta, and MTUs.
2895 */
2896 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2897 unsigned short alpha[NCCTRL_WIN],
2898 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2899 {
2900 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2901 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2902 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2903 28672, 40960, 57344, 81920, 114688, 163840, 229376
2904 };
2905
2906 unsigned int i, w;
2907
2908 for (i = 0; i < NMTUS; ++i) {
2909 unsigned int mtu = min(mtus[i], mtu_cap);
2910 unsigned int log2 = fls(mtu);
2911
2912 if (!(mtu & ((1 << log2) >> 2))) /* round */
2913 log2--;
2914 t3_write_reg(adap, A_TP_MTU_TABLE,
2915 (i << 24) | (log2 << 16) | mtu);
2916
2917 for (w = 0; w < NCCTRL_WIN; ++w) {
2918 unsigned int inc;
2919
2920 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2921 CC_MIN_INCR);
2922
2923 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2924 (w << 16) | (beta[w] << 13) | inc);
2925 }
2926 }
2927 }
2928
2929 /**
2930 * t3_tp_get_mib_stats - read TP's MIB counters
2931 * @adap: the adapter
2932 * @tps: holds the returned counter values
2933 *
2934 * Returns the values of TP's MIB counters.
2935 */
2936 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2937 {
2938 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2939 sizeof(*tps) / sizeof(u32), 0);
2940 }
2941
2942 #define ulp_region(adap, name, start, len) \
2943 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2944 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2945 (start) + (len) - 1); \
2946 start += len
2947
2948 #define ulptx_region(adap, name, start, len) \
2949 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2950 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2951 (start) + (len) - 1)
2952
2953 static void ulp_config(struct adapter *adap, const struct tp_params *p)
2954 {
2955 unsigned int m = p->chan_rx_size;
2956
2957 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2958 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2959 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2960 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2961 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2962 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2963 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2964 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2965 }
2966
2967 /**
2968 * t3_set_proto_sram - set the contents of the protocol sram
2969 * @adapter: the adapter
2970 * @data: the protocol image
2971 *
2972 * Write the contents of the protocol SRAM.
2973 */
2974 int t3_set_proto_sram(struct adapter *adap, const u8 *data)
2975 {
2976 int i;
2977 const __be32 *buf = (const __be32 *)data;
2978
2979 for (i = 0; i < PROTO_SRAM_LINES; i++) {
2980 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
2981 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
2982 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
2983 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
2984 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
2985
2986 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2987 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2988 return -EIO;
2989 }
2990 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2991
2992 return 0;
2993 }
2994
2995 void t3_config_trace_filter(struct adapter *adapter,
2996 const struct trace_params *tp, int filter_index,
2997 int invert, int enable)
2998 {
2999 u32 addr, key[4], mask[4];
3000
3001 key[0] = tp->sport | (tp->sip << 16);
3002 key[1] = (tp->sip >> 16) | (tp->dport << 16);
3003 key[2] = tp->dip;
3004 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
3005
3006 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
3007 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
3008 mask[2] = tp->dip_mask;
3009 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
3010
3011 if (invert)
3012 key[3] |= (1 << 29);
3013 if (enable)
3014 key[3] |= (1 << 28);
3015
3016 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
3017 tp_wr_indirect(adapter, addr++, key[0]);
3018 tp_wr_indirect(adapter, addr++, mask[0]);
3019 tp_wr_indirect(adapter, addr++, key[1]);
3020 tp_wr_indirect(adapter, addr++, mask[1]);
3021 tp_wr_indirect(adapter, addr++, key[2]);
3022 tp_wr_indirect(adapter, addr++, mask[2]);
3023 tp_wr_indirect(adapter, addr++, key[3]);
3024 tp_wr_indirect(adapter, addr, mask[3]);
3025 t3_read_reg(adapter, A_TP_PIO_DATA);
3026 }
3027
3028 /**
3029 * t3_config_sched - configure a HW traffic scheduler
3030 * @adap: the adapter
3031 * @kbps: target rate in Kbps
3032 * @sched: the scheduler index
3033 *
3034 * Configure a HW scheduler for the target rate
3035 */
3036 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
3037 {
3038 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3039 unsigned int clk = adap->params.vpd.cclk * 1000;
3040 unsigned int selected_cpt = 0, selected_bpt = 0;
3041
3042 if (kbps > 0) {
3043 kbps *= 125; /* -> bytes */
3044 for (cpt = 1; cpt <= 255; cpt++) {
3045 tps = clk / cpt;
3046 bpt = (kbps + tps / 2) / tps;
3047 if (bpt > 0 && bpt <= 255) {
3048 v = bpt * tps;
3049 delta = v >= kbps ? v - kbps : kbps - v;
3050 if (delta <= mindelta) {
3051 mindelta = delta;
3052 selected_cpt = cpt;
3053 selected_bpt = bpt;
3054 }
3055 } else if (selected_cpt)
3056 break;
3057 }
3058 if (!selected_cpt)
3059 return -EINVAL;
3060 }
3061 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
3062 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3063 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
3064 if (sched & 1)
3065 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3066 else
3067 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3068 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
3069 return 0;
3070 }
3071
3072 static int tp_init(struct adapter *adap, const struct tp_params *p)
3073 {
3074 int busy = 0;
3075
3076 tp_config(adap, p);
3077 t3_set_vlan_accel(adap, 3, 0);
3078
3079 if (is_offload(adap)) {
3080 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
3081 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
3082 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
3083 0, 1000, 5);
3084 if (busy)
3085 CH_ERR(adap, "TP initialization timed out\n");
3086 }
3087
3088 if (!busy)
3089 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
3090 return busy;
3091 }
3092
3093 /*
3094 * Perform the bits of HW initialization that are dependent on the Tx
3095 * channels being used.
3096 */
3097 static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
3098 {
3099 int i;
3100
3101 if (chan_map != 3) { /* one channel */
3102 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
3103 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
3104 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
3105 (chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
3106 F_TPTXPORT1EN | F_PORT1ACTIVE));
3107 t3_write_reg(adap, A_PM1_TX_CFG,
3108 chan_map == 1 ? 0xffffffff : 0);
3109 } else { /* two channels */
3110 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
3111 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
3112 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
3113 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
3114 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
3115 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
3116 F_ENFORCEPKT);
3117 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
3118 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
3119 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3120 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
3121 for (i = 0; i < 16; i++)
3122 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
3123 (i << 16) | 0x1010);
3124 }
3125 }
3126
3127 static int calibrate_xgm(struct adapter *adapter)
3128 {
3129 if (uses_xaui(adapter)) {
3130 unsigned int v, i;
3131
3132 for (i = 0; i < 5; ++i) {
3133 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
3134 t3_read_reg(adapter, A_XGM_XAUI_IMP);
3135 msleep(1);
3136 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
3137 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
3138 t3_write_reg(adapter, A_XGM_XAUI_IMP,
3139 V_XAUIIMP(G_CALIMP(v) >> 2));
3140 return 0;
3141 }
3142 }
3143 CH_ERR(adapter, "MAC calibration failed\n");
3144 return -1;
3145 } else {
3146 t3_write_reg(adapter, A_XGM_RGMII_IMP,
3147 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3148 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3149 F_XGM_IMPSETUPDATE);
3150 }
3151 return 0;
3152 }
3153
3154 static void calibrate_xgm_t3b(struct adapter *adapter)
3155 {
3156 if (!uses_xaui(adapter)) {
3157 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
3158 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3159 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
3160 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3161 F_XGM_IMPSETUPDATE);
3162 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3163 0);
3164 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3165 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3166 }
3167 }
3168
3169 struct mc7_timing_params {
3170 unsigned char ActToPreDly;
3171 unsigned char ActToRdWrDly;
3172 unsigned char PreCyc;
3173 unsigned char RefCyc[5];
3174 unsigned char BkCyc;
3175 unsigned char WrToRdDly;
3176 unsigned char RdToWrDly;
3177 };
3178
3179 /*
3180 * Write a value to a register and check that the write completed. These
3181 * writes normally complete in a cycle or two, so one read should suffice.
3182 * The very first read exists to flush the posted write to the device.
3183 */
3184 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3185 {
3186 t3_write_reg(adapter, addr, val);
3187 t3_read_reg(adapter, addr); /* flush */
3188 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3189 return 0;
3190 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3191 return -EIO;
3192 }
3193
3194 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3195 {
3196 static const unsigned int mc7_mode[] = {
3197 0x632, 0x642, 0x652, 0x432, 0x442
3198 };
3199 static const struct mc7_timing_params mc7_timings[] = {
3200 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3201 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3202 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3203 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3204 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3205 };
3206
3207 u32 val;
3208 unsigned int width, density, slow, attempts;
3209 struct adapter *adapter = mc7->adapter;
3210 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3211
3212 if (!mc7->size)
3213 return 0;
3214
3215 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3216 slow = val & F_SLOW;
3217 width = G_WIDTH(val);
3218 density = G_DEN(val);
3219
3220 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3221 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3222 msleep(1);
3223
3224 if (!slow) {
3225 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3226 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3227 msleep(1);
3228 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3229 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3230 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3231 mc7->name);
3232 goto out_fail;
3233 }
3234 }
3235
3236 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3237 V_ACTTOPREDLY(p->ActToPreDly) |
3238 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3239 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3240 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3241
3242 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3243 val | F_CLKEN | F_TERM150);
3244 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3245
3246 if (!slow)
3247 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3248 F_DLLENB);
3249 udelay(1);
3250
3251 val = slow ? 3 : 6;
3252 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3253 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3254 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3255 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3256 goto out_fail;
3257
3258 if (!slow) {
3259 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3260 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3261 udelay(5);
3262 }
3263
3264 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3265 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3266 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3267 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3268 mc7_mode[mem_type]) ||
3269 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3270 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3271 goto out_fail;
3272
3273 /* clock value is in KHz */
3274 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3275 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3276
3277 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3278 F_PERREFEN | V_PREREFDIV(mc7_clock));
3279 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3280
3281 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3282 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3283 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3284 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3285 (mc7->size << width) - 1);
3286 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3287 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3288
3289 attempts = 50;
3290 do {
3291 msleep(250);
3292 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3293 } while ((val & F_BUSY) && --attempts);
3294 if (val & F_BUSY) {
3295 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3296 goto out_fail;
3297 }
3298
3299 /* Enable normal memory accesses. */
3300 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3301 return 0;
3302
3303 out_fail:
3304 return -1;
3305 }
3306
3307 static void config_pcie(struct adapter *adap)
3308 {
3309 static const u16 ack_lat[4][6] = {
3310 {237, 416, 559, 1071, 2095, 4143},
3311 {128, 217, 289, 545, 1057, 2081},
3312 {73, 118, 154, 282, 538, 1050},
3313 {67, 107, 86, 150, 278, 534}
3314 };
3315 static const u16 rpl_tmr[4][6] = {
3316 {711, 1248, 1677, 3213, 6285, 12429},
3317 {384, 651, 867, 1635, 3171, 6243},
3318 {219, 354, 462, 846, 1614, 3150},
3319 {201, 321, 258, 450, 834, 1602}
3320 };
3321
3322 u16 val, devid;
3323 unsigned int log2_width, pldsize;
3324 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3325
3326 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, &val);
3327 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3328
3329 pci_read_config_word(adap->pdev, 0x2, &devid);
3330 if (devid == 0x37) {
3331 pcie_capability_write_word(adap->pdev, PCI_EXP_DEVCTL,
3332 val & ~PCI_EXP_DEVCTL_READRQ &
3333 ~PCI_EXP_DEVCTL_PAYLOAD);
3334 pldsize = 0;
3335 }
3336
3337 pcie_capability_read_word(adap->pdev, PCI_EXP_LNKCTL, &val);
3338
3339 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3340 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3341 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3342 log2_width = fls(adap->params.pci.width) - 1;
3343 acklat = ack_lat[log2_width][pldsize];
3344 if (val & PCI_EXP_LNKCTL_ASPM_L0S) /* check LOsEnable */
3345 acklat += fst_trn_tx * 4;
3346 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3347
3348 if (adap->params.rev == 0)
3349 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3350 V_T3A_ACKLAT(M_T3A_ACKLAT),
3351 V_T3A_ACKLAT(acklat));
3352 else
3353 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3354 V_ACKLAT(acklat));
3355
3356 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3357 V_REPLAYLMT(rpllmt));
3358
3359 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3360 t3_set_reg_field(adap, A_PCIE_CFG, 0,
3361 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
3362 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
3363 }
3364
3365 /*
3366 * Initialize and configure T3 HW modules. This performs the
3367 * initialization steps that need to be done once after a card is reset.
3368 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3369 *
3370 * fw_params are passed to FW and their value is platform dependent. Only the
3371 * top 8 bits are available for use, the rest must be 0.
3372 */
3373 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3374 {
3375 int err = -EIO, attempts, i;
3376 const struct vpd_params *vpd = &adapter->params.vpd;
3377
3378 if (adapter->params.rev > 0)
3379 calibrate_xgm_t3b(adapter);
3380 else if (calibrate_xgm(adapter))
3381 goto out_err;
3382
3383 if (vpd->mclk) {
3384 partition_mem(adapter, &adapter->params.tp);
3385
3386 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3387 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3388 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3389 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3390 adapter->params.mc5.nfilters,
3391 adapter->params.mc5.nroutes))
3392 goto out_err;
3393
3394 for (i = 0; i < 32; i++)
3395 if (clear_sge_ctxt(adapter, i, F_CQ))
3396 goto out_err;
3397 }
3398
3399 if (tp_init(adapter, &adapter->params.tp))
3400 goto out_err;
3401
3402 t3_tp_set_coalescing_size(adapter,
3403 min(adapter->params.sge.max_pkt_size,
3404 MAX_RX_COALESCING_LEN), 1);
3405 t3_tp_set_max_rxsize(adapter,
3406 min(adapter->params.sge.max_pkt_size, 16384U));
3407 ulp_config(adapter, &adapter->params.tp);
3408
3409 if (is_pcie(adapter))
3410 config_pcie(adapter);
3411 else
3412 t3_set_reg_field(adapter, A_PCIX_CFG, 0,
3413 F_DMASTOPEN | F_CLIDECEN);
3414
3415 if (adapter->params.rev == T3_REV_C)
3416 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
3417 F_CFG_CQE_SOP_MASK);
3418
3419 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3420 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3421 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3422 chan_init_hw(adapter, adapter->params.chan_map);
3423 t3_sge_init(adapter, &adapter->params.sge);
3424 t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN);
3425
3426 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
3427
3428 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3429 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3430 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3431 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3432
3433 attempts = 100;
3434 do { /* wait for uP to initialize */
3435 msleep(20);
3436 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3437 if (!attempts) {
3438 CH_ERR(adapter, "uP initialization timed out\n");
3439 goto out_err;
3440 }
3441
3442 err = 0;
3443 out_err:
3444 return err;
3445 }
3446
3447 /**
3448 * get_pci_mode - determine a card's PCI mode
3449 * @adapter: the adapter
3450 * @p: where to store the PCI settings
3451 *
3452 * Determines a card's PCI mode and associated parameters, such as speed
3453 * and width.
3454 */
3455 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3456 {
3457 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3458 u32 pci_mode;
3459
3460 if (pci_is_pcie(adapter->pdev)) {
3461 u16 val;
3462
3463 p->variant = PCI_VARIANT_PCIE;
3464 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
3465 p->width = (val >> 4) & 0x3f;
3466 return;
3467 }
3468
3469 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3470 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3471 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3472 pci_mode = G_PCIXINITPAT(pci_mode);
3473 if (pci_mode == 0)
3474 p->variant = PCI_VARIANT_PCI;
3475 else if (pci_mode < 4)
3476 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3477 else if (pci_mode < 8)
3478 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3479 else
3480 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3481 }
3482
3483 /**
3484 * init_link_config - initialize a link's SW state
3485 * @lc: structure holding the link state
3486 * @ai: information about the current card
3487 *
3488 * Initializes the SW state maintained for each link, including the link's
3489 * capabilities and default speed/duplex/flow-control/autonegotiation
3490 * settings.
3491 */
3492 static void init_link_config(struct link_config *lc, unsigned int caps)
3493 {
3494 lc->supported = caps;
3495 lc->requested_speed = lc->speed = SPEED_INVALID;
3496 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3497 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3498 if (lc->supported & SUPPORTED_Autoneg) {
3499 lc->advertising = lc->supported;
3500 lc->autoneg = AUTONEG_ENABLE;
3501 lc->requested_fc |= PAUSE_AUTONEG;
3502 } else {
3503 lc->advertising = 0;
3504 lc->autoneg = AUTONEG_DISABLE;
3505 }
3506 }
3507
3508 /**
3509 * mc7_calc_size - calculate MC7 memory size
3510 * @cfg: the MC7 configuration
3511 *
3512 * Calculates the size of an MC7 memory in bytes from the value of its
3513 * configuration register.
3514 */
3515 static unsigned int mc7_calc_size(u32 cfg)
3516 {
3517 unsigned int width = G_WIDTH(cfg);
3518 unsigned int banks = !!(cfg & F_BKS) + 1;
3519 unsigned int org = !!(cfg & F_ORG) + 1;
3520 unsigned int density = G_DEN(cfg);
3521 unsigned int MBs = ((256 << density) * banks) / (org << width);
3522
3523 return MBs << 20;
3524 }
3525
3526 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3527 unsigned int base_addr, const char *name)
3528 {
3529 u32 cfg;
3530
3531 mc7->adapter = adapter;
3532 mc7->name = name;
3533 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3534 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3535 mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3536 mc7->width = G_WIDTH(cfg);
3537 }
3538
3539 static void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3540 {
3541 u16 devid;
3542
3543 mac->adapter = adapter;
3544 pci_read_config_word(adapter->pdev, 0x2, &devid);
3545
3546 if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
3547 index = 0;
3548 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3549 mac->nucast = 1;
3550
3551 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3552 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3553 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3554 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3555 F_ENRGMII, 0);
3556 }
3557 }
3558
3559 static void early_hw_init(struct adapter *adapter,
3560 const struct adapter_info *ai)
3561 {
3562 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3563
3564 mi1_init(adapter, ai);
3565 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3566 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3567 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3568 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3569 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3570 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
3571
3572 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3573 val |= F_ENRGMII;
3574
3575 /* Enable MAC clocks so we can access the registers */
3576 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3577 t3_read_reg(adapter, A_XGM_PORT_CFG);
3578
3579 val |= F_CLKDIVRESET_;
3580 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3581 t3_read_reg(adapter, A_XGM_PORT_CFG);
3582 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3583 t3_read_reg(adapter, A_XGM_PORT_CFG);
3584 }
3585
3586 /*
3587 * Reset the adapter.
3588 * Older PCIe cards lose their config space during reset, PCI-X
3589 * ones don't.
3590 */
3591 int t3_reset_adapter(struct adapter *adapter)
3592 {
3593 int i, save_and_restore_pcie =
3594 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3595 uint16_t devid = 0;
3596
3597 if (save_and_restore_pcie)
3598 pci_save_state(adapter->pdev);
3599 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3600
3601 /*
3602 * Delay. Give Some time to device to reset fully.
3603 * XXX The delay time should be modified.
3604 */
3605 for (i = 0; i < 10; i++) {
3606 msleep(50);
3607 pci_read_config_word(adapter->pdev, 0x00, &devid);
3608 if (devid == 0x1425)
3609 break;
3610 }
3611
3612 if (devid != 0x1425)
3613 return -1;
3614
3615 if (save_and_restore_pcie)
3616 pci_restore_state(adapter->pdev);
3617 return 0;
3618 }
3619
3620 static int init_parity(struct adapter *adap)
3621 {
3622 int i, err, addr;
3623
3624 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
3625 return -EBUSY;
3626
3627 for (err = i = 0; !err && i < 16; i++)
3628 err = clear_sge_ctxt(adap, i, F_EGRESS);
3629 for (i = 0xfff0; !err && i <= 0xffff; i++)
3630 err = clear_sge_ctxt(adap, i, F_EGRESS);
3631 for (i = 0; !err && i < SGE_QSETS; i++)
3632 err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
3633 if (err)
3634 return err;
3635
3636 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
3637 for (i = 0; i < 4; i++)
3638 for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
3639 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
3640 F_IBQDBGWR | V_IBQDBGQID(i) |
3641 V_IBQDBGADDR(addr));
3642 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
3643 F_IBQDBGBUSY, 0, 2, 1);
3644 if (err)
3645 return err;
3646 }
3647 return 0;
3648 }
3649
3650 /*
3651 * Initialize adapter SW state for the various HW modules, set initial values
3652 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3653 * interface.
3654 */
3655 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
3656 int reset)
3657 {
3658 int ret;
3659 unsigned int i, j = -1;
3660
3661 get_pci_mode(adapter, &adapter->params.pci);
3662
3663 adapter->params.info = ai;
3664 adapter->params.nports = ai->nports0 + ai->nports1;
3665 adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
3666 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3667 /*
3668 * We used to only run the "adapter check task" once a second if
3669 * we had PHYs which didn't support interrupts (we would check
3670 * their link status once a second). Now we check other conditions
3671 * in that routine which could potentially impose a very high
3672 * interrupt load on the system. As such, we now always scan the
3673 * adapter state once a second ...
3674 */
3675 adapter->params.linkpoll_period = 10;
3676 adapter->params.stats_update_period = is_10G(adapter) ?
3677 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3678 adapter->params.pci.vpd_cap_addr =
3679 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3680 ret = get_vpd_params(adapter, &adapter->params.vpd);
3681 if (ret < 0)
3682 return ret;
3683
3684 if (reset && t3_reset_adapter(adapter))
3685 return -1;
3686
3687 t3_sge_prep(adapter, &adapter->params.sge);
3688
3689 if (adapter->params.vpd.mclk) {
3690 struct tp_params *p = &adapter->params.tp;
3691
3692 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3693 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3694 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3695
3696 p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
3697 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3698 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3699 p->cm_size = t3_mc7_size(&adapter->cm);
3700 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3701 p->chan_tx_size = p->pmtx_size / p->nchan;
3702 p->rx_pg_size = 64 * 1024;
3703 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3704 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3705 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3706 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3707 adapter->params.rev > 0 ? 12 : 6;
3708 }
3709
3710 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3711 t3_mc7_size(&adapter->pmtx) &&
3712 t3_mc7_size(&adapter->cm);
3713
3714 if (is_offload(adapter)) {
3715 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3716 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3717 DEFAULT_NFILTERS : 0;
3718 adapter->params.mc5.nroutes = 0;
3719 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3720
3721 init_mtus(adapter->params.mtus);
3722 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3723 }
3724
3725 early_hw_init(adapter, ai);
3726 ret = init_parity(adapter);
3727 if (ret)
3728 return ret;
3729
3730 for_each_port(adapter, i) {
3731 u8 hw_addr[6];
3732 const struct port_type_info *pti;
3733 struct port_info *p = adap2pinfo(adapter, i);
3734
3735 while (!adapter->params.vpd.port_type[++j])
3736 ;
3737
3738 pti = &port_types[adapter->params.vpd.port_type[j]];
3739 if (!pti->phy_prep) {
3740 CH_ALERT(adapter, "Invalid port type index %d\n",
3741 adapter->params.vpd.port_type[j]);
3742 return -EINVAL;
3743 }
3744
3745 p->phy.mdio.dev = adapter->port[i];
3746 ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3747 ai->mdio_ops);
3748 if (ret)
3749 return ret;
3750 mac_prep(&p->mac, adapter, j);
3751
3752 /*
3753 * The VPD EEPROM stores the base Ethernet address for the
3754 * card. A port's address is derived from the base by adding
3755 * the port's index to the base's low octet.
3756 */
3757 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3758 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3759
3760 memcpy(adapter->port[i]->dev_addr, hw_addr,
3761 ETH_ALEN);
3762 init_link_config(&p->link_config, p->phy.caps);
3763 p->phy.ops->power_down(&p->phy, 1);
3764
3765 /*
3766 * If the PHY doesn't support interrupts for link status
3767 * changes, schedule a scan of the adapter links at least
3768 * once a second.
3769 */
3770 if (!(p->phy.caps & SUPPORTED_IRQ) &&
3771 adapter->params.linkpoll_period > 10)
3772 adapter->params.linkpoll_period = 10;
3773 }
3774
3775 return 0;
3776 }
3777
3778 void t3_led_ready(struct adapter *adapter)
3779 {
3780 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3781 F_GPIO0_OUT_VAL);
3782 }
3783
3784 int t3_replay_prep_adapter(struct adapter *adapter)
3785 {
3786 const struct adapter_info *ai = adapter->params.info;
3787 unsigned int i, j = -1;
3788 int ret;
3789
3790 early_hw_init(adapter, ai);
3791 ret = init_parity(adapter);
3792 if (ret)
3793 return ret;
3794
3795 for_each_port(adapter, i) {
3796 const struct port_type_info *pti;
3797 struct port_info *p = adap2pinfo(adapter, i);
3798
3799 while (!adapter->params.vpd.port_type[++j])
3800 ;
3801
3802 pti = &port_types[adapter->params.vpd.port_type[j]];
3803 ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
3804 if (ret)
3805 return ret;
3806 p->phy.ops->power_down(&p->phy, 1);
3807 }
3808
3809 return 0;
3810 }
3811