]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_debugfs.c
NFC: pn533: handle interrupted commands in pn533_recv_frame
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_debugfs.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/seq_file.h>
36 #include <linux/debugfs.h>
37 #include <linux/string_helpers.h>
38 #include <linux/sort.h>
39 #include <linux/ctype.h>
40
41 #include "cxgb4.h"
42 #include "t4_regs.h"
43 #include "t4_values.h"
44 #include "t4fw_api.h"
45 #include "cxgb4_debugfs.h"
46 #include "clip_tbl.h"
47 #include "l2t.h"
48
49 /* generic seq_file support for showing a table of size rows x width. */
50 static void *seq_tab_get_idx(struct seq_tab *tb, loff_t pos)
51 {
52 pos -= tb->skip_first;
53 return pos >= tb->rows ? NULL : &tb->data[pos * tb->width];
54 }
55
56 static void *seq_tab_start(struct seq_file *seq, loff_t *pos)
57 {
58 struct seq_tab *tb = seq->private;
59
60 if (tb->skip_first && *pos == 0)
61 return SEQ_START_TOKEN;
62
63 return seq_tab_get_idx(tb, *pos);
64 }
65
66 static void *seq_tab_next(struct seq_file *seq, void *v, loff_t *pos)
67 {
68 v = seq_tab_get_idx(seq->private, *pos + 1);
69 if (v)
70 ++*pos;
71 return v;
72 }
73
74 static void seq_tab_stop(struct seq_file *seq, void *v)
75 {
76 }
77
78 static int seq_tab_show(struct seq_file *seq, void *v)
79 {
80 const struct seq_tab *tb = seq->private;
81
82 return tb->show(seq, v, ((char *)v - tb->data) / tb->width);
83 }
84
85 static const struct seq_operations seq_tab_ops = {
86 .start = seq_tab_start,
87 .next = seq_tab_next,
88 .stop = seq_tab_stop,
89 .show = seq_tab_show
90 };
91
92 struct seq_tab *seq_open_tab(struct file *f, unsigned int rows,
93 unsigned int width, unsigned int have_header,
94 int (*show)(struct seq_file *seq, void *v, int i))
95 {
96 struct seq_tab *p;
97
98 p = __seq_open_private(f, &seq_tab_ops, sizeof(*p) + rows * width);
99 if (p) {
100 p->show = show;
101 p->rows = rows;
102 p->width = width;
103 p->skip_first = have_header != 0;
104 }
105 return p;
106 }
107
108 /* Trim the size of a seq_tab to the supplied number of rows. The operation is
109 * irreversible.
110 */
111 static int seq_tab_trim(struct seq_tab *p, unsigned int new_rows)
112 {
113 if (new_rows > p->rows)
114 return -EINVAL;
115 p->rows = new_rows;
116 return 0;
117 }
118
119 static int cim_la_show(struct seq_file *seq, void *v, int idx)
120 {
121 if (v == SEQ_START_TOKEN)
122 seq_puts(seq, "Status Data PC LS0Stat LS0Addr "
123 " LS0Data\n");
124 else {
125 const u32 *p = v;
126
127 seq_printf(seq,
128 " %02x %x%07x %x%07x %08x %08x %08x%08x%08x%08x\n",
129 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
130 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
131 p[6], p[7]);
132 }
133 return 0;
134 }
135
136 static int cim_la_show_3in1(struct seq_file *seq, void *v, int idx)
137 {
138 if (v == SEQ_START_TOKEN) {
139 seq_puts(seq, "Status Data PC\n");
140 } else {
141 const u32 *p = v;
142
143 seq_printf(seq, " %02x %08x %08x\n", p[5] & 0xff, p[6],
144 p[7]);
145 seq_printf(seq, " %02x %02x%06x %02x%06x\n",
146 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
147 p[4] & 0xff, p[5] >> 8);
148 seq_printf(seq, " %02x %x%07x %x%07x\n", (p[0] >> 4) & 0xff,
149 p[0] & 0xf, p[1] >> 4, p[1] & 0xf, p[2] >> 4);
150 }
151 return 0;
152 }
153
154 static int cim_la_show_t6(struct seq_file *seq, void *v, int idx)
155 {
156 if (v == SEQ_START_TOKEN) {
157 seq_puts(seq, "Status Inst Data PC LS0Stat "
158 "LS0Addr LS0Data LS1Stat LS1Addr LS1Data\n");
159 } else {
160 const u32 *p = v;
161
162 seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x %08x %08x %08x %08x %08x %08x\n",
163 (p[9] >> 16) & 0xff, /* Status */
164 p[9] & 0xffff, p[8] >> 16, /* Inst */
165 p[8] & 0xffff, p[7] >> 16, /* Data */
166 p[7] & 0xffff, p[6] >> 16, /* PC */
167 p[2], p[1], p[0], /* LS0 Stat, Addr and Data */
168 p[5], p[4], p[3]); /* LS1 Stat, Addr and Data */
169 }
170 return 0;
171 }
172
173 static int cim_la_show_pc_t6(struct seq_file *seq, void *v, int idx)
174 {
175 if (v == SEQ_START_TOKEN) {
176 seq_puts(seq, "Status Inst Data PC\n");
177 } else {
178 const u32 *p = v;
179
180 seq_printf(seq, " %02x %08x %08x %08x\n",
181 p[3] & 0xff, p[2], p[1], p[0]);
182 seq_printf(seq, " %02x %02x%06x %02x%06x %02x%06x\n",
183 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
184 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
185 seq_printf(seq, " %02x %04x%04x %04x%04x %04x%04x\n",
186 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
187 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
188 p[6] >> 16);
189 }
190 return 0;
191 }
192
193 static int cim_la_open(struct inode *inode, struct file *file)
194 {
195 int ret;
196 unsigned int cfg;
197 struct seq_tab *p;
198 struct adapter *adap = inode->i_private;
199
200 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
201 if (ret)
202 return ret;
203
204 if (is_t6(adap->params.chip)) {
205 /* +1 to account for integer division of CIMLA_SIZE/10 */
206 p = seq_open_tab(file, (adap->params.cim_la_size / 10) + 1,
207 10 * sizeof(u32), 1,
208 cfg & UPDBGLACAPTPCONLY_F ?
209 cim_la_show_pc_t6 : cim_la_show_t6);
210 } else {
211 p = seq_open_tab(file, adap->params.cim_la_size / 8,
212 8 * sizeof(u32), 1,
213 cfg & UPDBGLACAPTPCONLY_F ? cim_la_show_3in1 :
214 cim_la_show);
215 }
216 if (!p)
217 return -ENOMEM;
218
219 ret = t4_cim_read_la(adap, (u32 *)p->data, NULL);
220 if (ret)
221 seq_release_private(inode, file);
222 return ret;
223 }
224
225 static const struct file_operations cim_la_fops = {
226 .owner = THIS_MODULE,
227 .open = cim_la_open,
228 .read = seq_read,
229 .llseek = seq_lseek,
230 .release = seq_release_private
231 };
232
233 static int cim_pif_la_show(struct seq_file *seq, void *v, int idx)
234 {
235 const u32 *p = v;
236
237 if (v == SEQ_START_TOKEN) {
238 seq_puts(seq, "Cntl ID DataBE Addr Data\n");
239 } else if (idx < CIM_PIFLA_SIZE) {
240 seq_printf(seq, " %02x %02x %04x %08x %08x%08x%08x%08x\n",
241 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f,
242 p[5] & 0xffff, p[4], p[3], p[2], p[1], p[0]);
243 } else {
244 if (idx == CIM_PIFLA_SIZE)
245 seq_puts(seq, "\nCntl ID Data\n");
246 seq_printf(seq, " %02x %02x %08x%08x%08x%08x\n",
247 (p[4] >> 6) & 0xff, p[4] & 0x3f,
248 p[3], p[2], p[1], p[0]);
249 }
250 return 0;
251 }
252
253 static int cim_pif_la_open(struct inode *inode, struct file *file)
254 {
255 struct seq_tab *p;
256 struct adapter *adap = inode->i_private;
257
258 p = seq_open_tab(file, 2 * CIM_PIFLA_SIZE, 6 * sizeof(u32), 1,
259 cim_pif_la_show);
260 if (!p)
261 return -ENOMEM;
262
263 t4_cim_read_pif_la(adap, (u32 *)p->data,
264 (u32 *)p->data + 6 * CIM_PIFLA_SIZE, NULL, NULL);
265 return 0;
266 }
267
268 static const struct file_operations cim_pif_la_fops = {
269 .owner = THIS_MODULE,
270 .open = cim_pif_la_open,
271 .read = seq_read,
272 .llseek = seq_lseek,
273 .release = seq_release_private
274 };
275
276 static int cim_ma_la_show(struct seq_file *seq, void *v, int idx)
277 {
278 const u32 *p = v;
279
280 if (v == SEQ_START_TOKEN) {
281 seq_puts(seq, "\n");
282 } else if (idx < CIM_MALA_SIZE) {
283 seq_printf(seq, "%02x%08x%08x%08x%08x\n",
284 p[4], p[3], p[2], p[1], p[0]);
285 } else {
286 if (idx == CIM_MALA_SIZE)
287 seq_puts(seq,
288 "\nCnt ID Tag UE Data RDY VLD\n");
289 seq_printf(seq, "%3u %2u %x %u %08x%08x %u %u\n",
290 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
291 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
292 (p[1] >> 2) | ((p[2] & 3) << 30),
293 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
294 p[0] & 1);
295 }
296 return 0;
297 }
298
299 static int cim_ma_la_open(struct inode *inode, struct file *file)
300 {
301 struct seq_tab *p;
302 struct adapter *adap = inode->i_private;
303
304 p = seq_open_tab(file, 2 * CIM_MALA_SIZE, 5 * sizeof(u32), 1,
305 cim_ma_la_show);
306 if (!p)
307 return -ENOMEM;
308
309 t4_cim_read_ma_la(adap, (u32 *)p->data,
310 (u32 *)p->data + 5 * CIM_MALA_SIZE);
311 return 0;
312 }
313
314 static const struct file_operations cim_ma_la_fops = {
315 .owner = THIS_MODULE,
316 .open = cim_ma_la_open,
317 .read = seq_read,
318 .llseek = seq_lseek,
319 .release = seq_release_private
320 };
321
322 static int cim_qcfg_show(struct seq_file *seq, void *v)
323 {
324 static const char * const qname[] = {
325 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",
326 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",
327 "SGE0-RX", "SGE1-RX"
328 };
329
330 int i;
331 struct adapter *adap = seq->private;
332 u16 base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
333 u16 size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
334 u32 stat[(4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5))];
335 u16 thres[CIM_NUM_IBQ];
336 u32 obq_wr_t4[2 * CIM_NUM_OBQ], *wr;
337 u32 obq_wr_t5[2 * CIM_NUM_OBQ_T5];
338 u32 *p = stat;
339 int cim_num_obq = is_t4(adap->params.chip) ?
340 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
341
342 i = t4_cim_read(adap, is_t4(adap->params.chip) ? UP_IBQ_0_RDADDR_A :
343 UP_IBQ_0_SHADOW_RDADDR_A,
344 ARRAY_SIZE(stat), stat);
345 if (!i) {
346 if (is_t4(adap->params.chip)) {
347 i = t4_cim_read(adap, UP_OBQ_0_REALADDR_A,
348 ARRAY_SIZE(obq_wr_t4), obq_wr_t4);
349 wr = obq_wr_t4;
350 } else {
351 i = t4_cim_read(adap, UP_OBQ_0_SHADOW_REALADDR_A,
352 ARRAY_SIZE(obq_wr_t5), obq_wr_t5);
353 wr = obq_wr_t5;
354 }
355 }
356 if (i)
357 return i;
358
359 t4_read_cimq_cfg(adap, base, size, thres);
360
361 seq_printf(seq,
362 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail\n");
363 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
364 seq_printf(seq, "%7s %5x %5u %5u %6x %4x %4u %4u %5u\n",
365 qname[i], base[i], size[i], thres[i],
366 IBQRDADDR_G(p[0]), IBQWRADDR_G(p[1]),
367 QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
368 QUEREMFLITS_G(p[2]) * 16);
369 for ( ; i < CIM_NUM_IBQ + cim_num_obq; i++, p += 4, wr += 2)
370 seq_printf(seq, "%7s %5x %5u %12x %4x %4u %4u %5u\n",
371 qname[i], base[i], size[i],
372 QUERDADDR_G(p[0]) & 0x3fff, wr[0] - base[i],
373 QUESOPCNT_G(p[3]), QUEEOPCNT_G(p[3]),
374 QUEREMFLITS_G(p[2]) * 16);
375 return 0;
376 }
377
378 static int cim_qcfg_open(struct inode *inode, struct file *file)
379 {
380 return single_open(file, cim_qcfg_show, inode->i_private);
381 }
382
383 static const struct file_operations cim_qcfg_fops = {
384 .owner = THIS_MODULE,
385 .open = cim_qcfg_open,
386 .read = seq_read,
387 .llseek = seq_lseek,
388 .release = single_release,
389 };
390
391 static int cimq_show(struct seq_file *seq, void *v, int idx)
392 {
393 const u32 *p = v;
394
395 seq_printf(seq, "%#06x: %08x %08x %08x %08x\n", idx * 16, p[0], p[1],
396 p[2], p[3]);
397 return 0;
398 }
399
400 static int cim_ibq_open(struct inode *inode, struct file *file)
401 {
402 int ret;
403 struct seq_tab *p;
404 unsigned int qid = (uintptr_t)inode->i_private & 7;
405 struct adapter *adap = inode->i_private - qid;
406
407 p = seq_open_tab(file, CIM_IBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
408 if (!p)
409 return -ENOMEM;
410
411 ret = t4_read_cim_ibq(adap, qid, (u32 *)p->data, CIM_IBQ_SIZE * 4);
412 if (ret < 0)
413 seq_release_private(inode, file);
414 else
415 ret = 0;
416 return ret;
417 }
418
419 static const struct file_operations cim_ibq_fops = {
420 .owner = THIS_MODULE,
421 .open = cim_ibq_open,
422 .read = seq_read,
423 .llseek = seq_lseek,
424 .release = seq_release_private
425 };
426
427 static int cim_obq_open(struct inode *inode, struct file *file)
428 {
429 int ret;
430 struct seq_tab *p;
431 unsigned int qid = (uintptr_t)inode->i_private & 7;
432 struct adapter *adap = inode->i_private - qid;
433
434 p = seq_open_tab(file, 6 * CIM_OBQ_SIZE, 4 * sizeof(u32), 0, cimq_show);
435 if (!p)
436 return -ENOMEM;
437
438 ret = t4_read_cim_obq(adap, qid, (u32 *)p->data, 6 * CIM_OBQ_SIZE * 4);
439 if (ret < 0) {
440 seq_release_private(inode, file);
441 } else {
442 seq_tab_trim(p, ret / 4);
443 ret = 0;
444 }
445 return ret;
446 }
447
448 static const struct file_operations cim_obq_fops = {
449 .owner = THIS_MODULE,
450 .open = cim_obq_open,
451 .read = seq_read,
452 .llseek = seq_lseek,
453 .release = seq_release_private
454 };
455
456 struct field_desc {
457 const char *name;
458 unsigned int start;
459 unsigned int width;
460 };
461
462 static void field_desc_show(struct seq_file *seq, u64 v,
463 const struct field_desc *p)
464 {
465 char buf[32];
466 int line_size = 0;
467
468 while (p->name) {
469 u64 mask = (1ULL << p->width) - 1;
470 int len = scnprintf(buf, sizeof(buf), "%s: %llu", p->name,
471 ((unsigned long long)v >> p->start) & mask);
472
473 if (line_size + len >= 79) {
474 line_size = 8;
475 seq_puts(seq, "\n ");
476 }
477 seq_printf(seq, "%s ", buf);
478 line_size += len + 1;
479 p++;
480 }
481 seq_putc(seq, '\n');
482 }
483
484 static struct field_desc tp_la0[] = {
485 { "RcfOpCodeOut", 60, 4 },
486 { "State", 56, 4 },
487 { "WcfState", 52, 4 },
488 { "RcfOpcSrcOut", 50, 2 },
489 { "CRxError", 49, 1 },
490 { "ERxError", 48, 1 },
491 { "SanityFailed", 47, 1 },
492 { "SpuriousMsg", 46, 1 },
493 { "FlushInputMsg", 45, 1 },
494 { "FlushInputCpl", 44, 1 },
495 { "RssUpBit", 43, 1 },
496 { "RssFilterHit", 42, 1 },
497 { "Tid", 32, 10 },
498 { "InitTcb", 31, 1 },
499 { "LineNumber", 24, 7 },
500 { "Emsg", 23, 1 },
501 { "EdataOut", 22, 1 },
502 { "Cmsg", 21, 1 },
503 { "CdataOut", 20, 1 },
504 { "EreadPdu", 19, 1 },
505 { "CreadPdu", 18, 1 },
506 { "TunnelPkt", 17, 1 },
507 { "RcfPeerFin", 16, 1 },
508 { "RcfReasonOut", 12, 4 },
509 { "TxCchannel", 10, 2 },
510 { "RcfTxChannel", 8, 2 },
511 { "RxEchannel", 6, 2 },
512 { "RcfRxChannel", 5, 1 },
513 { "RcfDataOutSrdy", 4, 1 },
514 { "RxDvld", 3, 1 },
515 { "RxOoDvld", 2, 1 },
516 { "RxCongestion", 1, 1 },
517 { "TxCongestion", 0, 1 },
518 { NULL }
519 };
520
521 static int tp_la_show(struct seq_file *seq, void *v, int idx)
522 {
523 const u64 *p = v;
524
525 field_desc_show(seq, *p, tp_la0);
526 return 0;
527 }
528
529 static int tp_la_show2(struct seq_file *seq, void *v, int idx)
530 {
531 const u64 *p = v;
532
533 if (idx)
534 seq_putc(seq, '\n');
535 field_desc_show(seq, p[0], tp_la0);
536 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
537 field_desc_show(seq, p[1], tp_la0);
538 return 0;
539 }
540
541 static int tp_la_show3(struct seq_file *seq, void *v, int idx)
542 {
543 static struct field_desc tp_la1[] = {
544 { "CplCmdIn", 56, 8 },
545 { "CplCmdOut", 48, 8 },
546 { "ESynOut", 47, 1 },
547 { "EAckOut", 46, 1 },
548 { "EFinOut", 45, 1 },
549 { "ERstOut", 44, 1 },
550 { "SynIn", 43, 1 },
551 { "AckIn", 42, 1 },
552 { "FinIn", 41, 1 },
553 { "RstIn", 40, 1 },
554 { "DataIn", 39, 1 },
555 { "DataInVld", 38, 1 },
556 { "PadIn", 37, 1 },
557 { "RxBufEmpty", 36, 1 },
558 { "RxDdp", 35, 1 },
559 { "RxFbCongestion", 34, 1 },
560 { "TxFbCongestion", 33, 1 },
561 { "TxPktSumSrdy", 32, 1 },
562 { "RcfUlpType", 28, 4 },
563 { "Eread", 27, 1 },
564 { "Ebypass", 26, 1 },
565 { "Esave", 25, 1 },
566 { "Static0", 24, 1 },
567 { "Cread", 23, 1 },
568 { "Cbypass", 22, 1 },
569 { "Csave", 21, 1 },
570 { "CPktOut", 20, 1 },
571 { "RxPagePoolFull", 18, 2 },
572 { "RxLpbkPkt", 17, 1 },
573 { "TxLpbkPkt", 16, 1 },
574 { "RxVfValid", 15, 1 },
575 { "SynLearned", 14, 1 },
576 { "SetDelEntry", 13, 1 },
577 { "SetInvEntry", 12, 1 },
578 { "CpcmdDvld", 11, 1 },
579 { "CpcmdSave", 10, 1 },
580 { "RxPstructsFull", 8, 2 },
581 { "EpcmdDvld", 7, 1 },
582 { "EpcmdFlush", 6, 1 },
583 { "EpcmdTrimPrefix", 5, 1 },
584 { "EpcmdTrimPostfix", 4, 1 },
585 { "ERssIp4Pkt", 3, 1 },
586 { "ERssIp6Pkt", 2, 1 },
587 { "ERssTcpUdpPkt", 1, 1 },
588 { "ERssFceFipPkt", 0, 1 },
589 { NULL }
590 };
591 static struct field_desc tp_la2[] = {
592 { "CplCmdIn", 56, 8 },
593 { "MpsVfVld", 55, 1 },
594 { "MpsPf", 52, 3 },
595 { "MpsVf", 44, 8 },
596 { "SynIn", 43, 1 },
597 { "AckIn", 42, 1 },
598 { "FinIn", 41, 1 },
599 { "RstIn", 40, 1 },
600 { "DataIn", 39, 1 },
601 { "DataInVld", 38, 1 },
602 { "PadIn", 37, 1 },
603 { "RxBufEmpty", 36, 1 },
604 { "RxDdp", 35, 1 },
605 { "RxFbCongestion", 34, 1 },
606 { "TxFbCongestion", 33, 1 },
607 { "TxPktSumSrdy", 32, 1 },
608 { "RcfUlpType", 28, 4 },
609 { "Eread", 27, 1 },
610 { "Ebypass", 26, 1 },
611 { "Esave", 25, 1 },
612 { "Static0", 24, 1 },
613 { "Cread", 23, 1 },
614 { "Cbypass", 22, 1 },
615 { "Csave", 21, 1 },
616 { "CPktOut", 20, 1 },
617 { "RxPagePoolFull", 18, 2 },
618 { "RxLpbkPkt", 17, 1 },
619 { "TxLpbkPkt", 16, 1 },
620 { "RxVfValid", 15, 1 },
621 { "SynLearned", 14, 1 },
622 { "SetDelEntry", 13, 1 },
623 { "SetInvEntry", 12, 1 },
624 { "CpcmdDvld", 11, 1 },
625 { "CpcmdSave", 10, 1 },
626 { "RxPstructsFull", 8, 2 },
627 { "EpcmdDvld", 7, 1 },
628 { "EpcmdFlush", 6, 1 },
629 { "EpcmdTrimPrefix", 5, 1 },
630 { "EpcmdTrimPostfix", 4, 1 },
631 { "ERssIp4Pkt", 3, 1 },
632 { "ERssIp6Pkt", 2, 1 },
633 { "ERssTcpUdpPkt", 1, 1 },
634 { "ERssFceFipPkt", 0, 1 },
635 { NULL }
636 };
637 const u64 *p = v;
638
639 if (idx)
640 seq_putc(seq, '\n');
641 field_desc_show(seq, p[0], tp_la0);
642 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
643 field_desc_show(seq, p[1], (p[0] & BIT(17)) ? tp_la2 : tp_la1);
644 return 0;
645 }
646
647 static int tp_la_open(struct inode *inode, struct file *file)
648 {
649 struct seq_tab *p;
650 struct adapter *adap = inode->i_private;
651
652 switch (DBGLAMODE_G(t4_read_reg(adap, TP_DBG_LA_CONFIG_A))) {
653 case 2:
654 p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
655 tp_la_show2);
656 break;
657 case 3:
658 p = seq_open_tab(file, TPLA_SIZE / 2, 2 * sizeof(u64), 0,
659 tp_la_show3);
660 break;
661 default:
662 p = seq_open_tab(file, TPLA_SIZE, sizeof(u64), 0, tp_la_show);
663 }
664 if (!p)
665 return -ENOMEM;
666
667 t4_tp_read_la(adap, (u64 *)p->data, NULL);
668 return 0;
669 }
670
671 static ssize_t tp_la_write(struct file *file, const char __user *buf,
672 size_t count, loff_t *pos)
673 {
674 int err;
675 char s[32];
676 unsigned long val;
677 size_t size = min(sizeof(s) - 1, count);
678 struct adapter *adap = file_inode(file)->i_private;
679
680 if (copy_from_user(s, buf, size))
681 return -EFAULT;
682 s[size] = '\0';
683 err = kstrtoul(s, 0, &val);
684 if (err)
685 return err;
686 if (val > 0xffff)
687 return -EINVAL;
688 adap->params.tp.la_mask = val << 16;
689 t4_set_reg_field(adap, TP_DBG_LA_CONFIG_A, 0xffff0000U,
690 adap->params.tp.la_mask);
691 return count;
692 }
693
694 static const struct file_operations tp_la_fops = {
695 .owner = THIS_MODULE,
696 .open = tp_la_open,
697 .read = seq_read,
698 .llseek = seq_lseek,
699 .release = seq_release_private,
700 .write = tp_la_write
701 };
702
703 static int ulprx_la_show(struct seq_file *seq, void *v, int idx)
704 {
705 const u32 *p = v;
706
707 if (v == SEQ_START_TOKEN)
708 seq_puts(seq, " Pcmd Type Message"
709 " Data\n");
710 else
711 seq_printf(seq, "%08x%08x %4x %08x %08x%08x%08x%08x\n",
712 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
713 return 0;
714 }
715
716 static int ulprx_la_open(struct inode *inode, struct file *file)
717 {
718 struct seq_tab *p;
719 struct adapter *adap = inode->i_private;
720
721 p = seq_open_tab(file, ULPRX_LA_SIZE, 8 * sizeof(u32), 1,
722 ulprx_la_show);
723 if (!p)
724 return -ENOMEM;
725
726 t4_ulprx_read_la(adap, (u32 *)p->data);
727 return 0;
728 }
729
730 static const struct file_operations ulprx_la_fops = {
731 .owner = THIS_MODULE,
732 .open = ulprx_la_open,
733 .read = seq_read,
734 .llseek = seq_lseek,
735 .release = seq_release_private
736 };
737
738 /* Show the PM memory stats. These stats include:
739 *
740 * TX:
741 * Read: memory read operation
742 * Write Bypass: cut-through
743 * Bypass + mem: cut-through and save copy
744 *
745 * RX:
746 * Read: memory read
747 * Write Bypass: cut-through
748 * Flush: payload trim or drop
749 */
750 static int pm_stats_show(struct seq_file *seq, void *v)
751 {
752 static const char * const tx_pm_stats[] = {
753 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:"
754 };
755 static const char * const rx_pm_stats[] = {
756 "Read:", "Write bypass:", "Write mem:", "Flush:"
757 };
758
759 int i;
760 u32 tx_cnt[T6_PM_NSTATS], rx_cnt[T6_PM_NSTATS];
761 u64 tx_cyc[T6_PM_NSTATS], rx_cyc[T6_PM_NSTATS];
762 struct adapter *adap = seq->private;
763
764 t4_pmtx_get_stats(adap, tx_cnt, tx_cyc);
765 t4_pmrx_get_stats(adap, rx_cnt, rx_cyc);
766
767 seq_printf(seq, "%13s %10s %20s\n", " ", "Tx pcmds", "Tx bytes");
768 for (i = 0; i < PM_NSTATS - 1; i++)
769 seq_printf(seq, "%-13s %10u %20llu\n",
770 tx_pm_stats[i], tx_cnt[i], tx_cyc[i]);
771
772 seq_printf(seq, "%13s %10s %20s\n", " ", "Rx pcmds", "Rx bytes");
773 for (i = 0; i < PM_NSTATS - 1; i++)
774 seq_printf(seq, "%-13s %10u %20llu\n",
775 rx_pm_stats[i], rx_cnt[i], rx_cyc[i]);
776
777 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
778 /* In T5 the granularity of the total wait is too fine.
779 * It is not useful as it reaches the max value too fast.
780 * Hence display this Input FIFO wait for T6 onwards.
781 */
782 seq_printf(seq, "%13s %10s %20s\n",
783 " ", "Total wait", "Total Occupancy");
784 seq_printf(seq, "Tx FIFO wait %10u %20llu\n",
785 tx_cnt[i], tx_cyc[i]);
786 seq_printf(seq, "Rx FIFO wait %10u %20llu\n",
787 rx_cnt[i], rx_cyc[i]);
788
789 /* Skip index 6 as there is nothing useful ihere */
790 i += 2;
791
792 /* At index 7, a new stat for read latency (count, total wait)
793 * is added.
794 */
795 seq_printf(seq, "%13s %10s %20s\n",
796 " ", "Reads", "Total wait");
797 seq_printf(seq, "Tx latency %10u %20llu\n",
798 tx_cnt[i], tx_cyc[i]);
799 seq_printf(seq, "Rx latency %10u %20llu\n",
800 rx_cnt[i], rx_cyc[i]);
801 }
802 return 0;
803 }
804
805 static int pm_stats_open(struct inode *inode, struct file *file)
806 {
807 return single_open(file, pm_stats_show, inode->i_private);
808 }
809
810 static ssize_t pm_stats_clear(struct file *file, const char __user *buf,
811 size_t count, loff_t *pos)
812 {
813 struct adapter *adap = file_inode(file)->i_private;
814
815 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, 0);
816 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, 0);
817 return count;
818 }
819
820 static const struct file_operations pm_stats_debugfs_fops = {
821 .owner = THIS_MODULE,
822 .open = pm_stats_open,
823 .read = seq_read,
824 .llseek = seq_lseek,
825 .release = single_release,
826 .write = pm_stats_clear
827 };
828
829 static int tx_rate_show(struct seq_file *seq, void *v)
830 {
831 u64 nrate[NCHAN], orate[NCHAN];
832 struct adapter *adap = seq->private;
833
834 t4_get_chan_txrate(adap, nrate, orate);
835 if (adap->params.arch.nchan == NCHAN) {
836 seq_puts(seq, " channel 0 channel 1 "
837 "channel 2 channel 3\n");
838 seq_printf(seq, "NIC B/s: %10llu %10llu %10llu %10llu\n",
839 (unsigned long long)nrate[0],
840 (unsigned long long)nrate[1],
841 (unsigned long long)nrate[2],
842 (unsigned long long)nrate[3]);
843 seq_printf(seq, "Offload B/s: %10llu %10llu %10llu %10llu\n",
844 (unsigned long long)orate[0],
845 (unsigned long long)orate[1],
846 (unsigned long long)orate[2],
847 (unsigned long long)orate[3]);
848 } else {
849 seq_puts(seq, " channel 0 channel 1\n");
850 seq_printf(seq, "NIC B/s: %10llu %10llu\n",
851 (unsigned long long)nrate[0],
852 (unsigned long long)nrate[1]);
853 seq_printf(seq, "Offload B/s: %10llu %10llu\n",
854 (unsigned long long)orate[0],
855 (unsigned long long)orate[1]);
856 }
857 return 0;
858 }
859
860 DEFINE_SIMPLE_DEBUGFS_FILE(tx_rate);
861
862 static int cctrl_tbl_show(struct seq_file *seq, void *v)
863 {
864 static const char * const dec_fac[] = {
865 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
866 "0.9375" };
867
868 int i;
869 u16 (*incr)[NCCTRL_WIN];
870 struct adapter *adap = seq->private;
871
872 incr = kmalloc(sizeof(*incr) * NMTUS, GFP_KERNEL);
873 if (!incr)
874 return -ENOMEM;
875
876 t4_read_cong_tbl(adap, incr);
877
878 for (i = 0; i < NCCTRL_WIN; ++i) {
879 seq_printf(seq, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
880 incr[0][i], incr[1][i], incr[2][i], incr[3][i],
881 incr[4][i], incr[5][i], incr[6][i], incr[7][i]);
882 seq_printf(seq, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
883 incr[8][i], incr[9][i], incr[10][i], incr[11][i],
884 incr[12][i], incr[13][i], incr[14][i], incr[15][i],
885 adap->params.a_wnd[i],
886 dec_fac[adap->params.b_wnd[i]]);
887 }
888
889 kfree(incr);
890 return 0;
891 }
892
893 DEFINE_SIMPLE_DEBUGFS_FILE(cctrl_tbl);
894
895 /* Format a value in a unit that differs from the value's native unit by the
896 * given factor.
897 */
898 static char *unit_conv(char *buf, size_t len, unsigned int val,
899 unsigned int factor)
900 {
901 unsigned int rem = val % factor;
902
903 if (rem == 0) {
904 snprintf(buf, len, "%u", val / factor);
905 } else {
906 while (rem % 10 == 0)
907 rem /= 10;
908 snprintf(buf, len, "%u.%u", val / factor, rem);
909 }
910 return buf;
911 }
912
913 static int clk_show(struct seq_file *seq, void *v)
914 {
915 char buf[32];
916 struct adapter *adap = seq->private;
917 unsigned int cclk_ps = 1000000000 / adap->params.vpd.cclk; /* in ps */
918 u32 res = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
919 unsigned int tre = TIMERRESOLUTION_G(res);
920 unsigned int dack_re = DELAYEDACKRESOLUTION_G(res);
921 unsigned long long tp_tick_us = (cclk_ps << tre) / 1000000; /* in us */
922
923 seq_printf(seq, "Core clock period: %s ns\n",
924 unit_conv(buf, sizeof(buf), cclk_ps, 1000));
925 seq_printf(seq, "TP timer tick: %s us\n",
926 unit_conv(buf, sizeof(buf), (cclk_ps << tre), 1000000));
927 seq_printf(seq, "TCP timestamp tick: %s us\n",
928 unit_conv(buf, sizeof(buf),
929 (cclk_ps << TIMESTAMPRESOLUTION_G(res)), 1000000));
930 seq_printf(seq, "DACK tick: %s us\n",
931 unit_conv(buf, sizeof(buf), (cclk_ps << dack_re), 1000000));
932 seq_printf(seq, "DACK timer: %u us\n",
933 ((cclk_ps << dack_re) / 1000000) *
934 t4_read_reg(adap, TP_DACK_TIMER_A));
935 seq_printf(seq, "Retransmit min: %llu us\n",
936 tp_tick_us * t4_read_reg(adap, TP_RXT_MIN_A));
937 seq_printf(seq, "Retransmit max: %llu us\n",
938 tp_tick_us * t4_read_reg(adap, TP_RXT_MAX_A));
939 seq_printf(seq, "Persist timer min: %llu us\n",
940 tp_tick_us * t4_read_reg(adap, TP_PERS_MIN_A));
941 seq_printf(seq, "Persist timer max: %llu us\n",
942 tp_tick_us * t4_read_reg(adap, TP_PERS_MAX_A));
943 seq_printf(seq, "Keepalive idle timer: %llu us\n",
944 tp_tick_us * t4_read_reg(adap, TP_KEEP_IDLE_A));
945 seq_printf(seq, "Keepalive interval: %llu us\n",
946 tp_tick_us * t4_read_reg(adap, TP_KEEP_INTVL_A));
947 seq_printf(seq, "Initial SRTT: %llu us\n",
948 tp_tick_us * INITSRTT_G(t4_read_reg(adap, TP_INIT_SRTT_A)));
949 seq_printf(seq, "FINWAIT2 timer: %llu us\n",
950 tp_tick_us * t4_read_reg(adap, TP_FINWAIT2_TIMER_A));
951
952 return 0;
953 }
954
955 DEFINE_SIMPLE_DEBUGFS_FILE(clk);
956
957 /* Firmware Device Log dump. */
958 static const char * const devlog_level_strings[] = {
959 [FW_DEVLOG_LEVEL_EMERG] = "EMERG",
960 [FW_DEVLOG_LEVEL_CRIT] = "CRIT",
961 [FW_DEVLOG_LEVEL_ERR] = "ERR",
962 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
963 [FW_DEVLOG_LEVEL_INFO] = "INFO",
964 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
965 };
966
967 static const char * const devlog_facility_strings[] = {
968 [FW_DEVLOG_FACILITY_CORE] = "CORE",
969 [FW_DEVLOG_FACILITY_CF] = "CF",
970 [FW_DEVLOG_FACILITY_SCHED] = "SCHED",
971 [FW_DEVLOG_FACILITY_TIMER] = "TIMER",
972 [FW_DEVLOG_FACILITY_RES] = "RES",
973 [FW_DEVLOG_FACILITY_HW] = "HW",
974 [FW_DEVLOG_FACILITY_FLR] = "FLR",
975 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
976 [FW_DEVLOG_FACILITY_PHY] = "PHY",
977 [FW_DEVLOG_FACILITY_MAC] = "MAC",
978 [FW_DEVLOG_FACILITY_PORT] = "PORT",
979 [FW_DEVLOG_FACILITY_VI] = "VI",
980 [FW_DEVLOG_FACILITY_FILTER] = "FILTER",
981 [FW_DEVLOG_FACILITY_ACL] = "ACL",
982 [FW_DEVLOG_FACILITY_TM] = "TM",
983 [FW_DEVLOG_FACILITY_QFC] = "QFC",
984 [FW_DEVLOG_FACILITY_DCB] = "DCB",
985 [FW_DEVLOG_FACILITY_ETH] = "ETH",
986 [FW_DEVLOG_FACILITY_OFLD] = "OFLD",
987 [FW_DEVLOG_FACILITY_RI] = "RI",
988 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
989 [FW_DEVLOG_FACILITY_FCOE] = "FCOE",
990 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
991 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE"
992 };
993
994 /* Information gathered by Device Log Open routine for the display routine.
995 */
996 struct devlog_info {
997 unsigned int nentries; /* number of entries in log[] */
998 unsigned int first; /* first [temporal] entry in log[] */
999 struct fw_devlog_e log[0]; /* Firmware Device Log */
1000 };
1001
1002 /* Dump a Firmaware Device Log entry.
1003 */
1004 static int devlog_show(struct seq_file *seq, void *v)
1005 {
1006 if (v == SEQ_START_TOKEN)
1007 seq_printf(seq, "%10s %15s %8s %8s %s\n",
1008 "Seq#", "Tstamp", "Level", "Facility", "Message");
1009 else {
1010 struct devlog_info *dinfo = seq->private;
1011 int fidx = (uintptr_t)v - 2;
1012 unsigned long index;
1013 struct fw_devlog_e *e;
1014
1015 /* Get a pointer to the log entry to display. Skip unused log
1016 * entries.
1017 */
1018 index = dinfo->first + fidx;
1019 if (index >= dinfo->nentries)
1020 index -= dinfo->nentries;
1021 e = &dinfo->log[index];
1022 if (e->timestamp == 0)
1023 return 0;
1024
1025 /* Print the message. This depends on the firmware using
1026 * exactly the same formating strings as the kernel so we may
1027 * eventually have to put a format interpreter in here ...
1028 */
1029 seq_printf(seq, "%10d %15llu %8s %8s ",
1030 be32_to_cpu(e->seqno),
1031 be64_to_cpu(e->timestamp),
1032 (e->level < ARRAY_SIZE(devlog_level_strings)
1033 ? devlog_level_strings[e->level]
1034 : "UNKNOWN"),
1035 (e->facility < ARRAY_SIZE(devlog_facility_strings)
1036 ? devlog_facility_strings[e->facility]
1037 : "UNKNOWN"));
1038 seq_printf(seq, e->fmt,
1039 be32_to_cpu(e->params[0]),
1040 be32_to_cpu(e->params[1]),
1041 be32_to_cpu(e->params[2]),
1042 be32_to_cpu(e->params[3]),
1043 be32_to_cpu(e->params[4]),
1044 be32_to_cpu(e->params[5]),
1045 be32_to_cpu(e->params[6]),
1046 be32_to_cpu(e->params[7]));
1047 }
1048 return 0;
1049 }
1050
1051 /* Sequential File Operations for Device Log.
1052 */
1053 static inline void *devlog_get_idx(struct devlog_info *dinfo, loff_t pos)
1054 {
1055 if (pos > dinfo->nentries)
1056 return NULL;
1057
1058 return (void *)(uintptr_t)(pos + 1);
1059 }
1060
1061 static void *devlog_start(struct seq_file *seq, loff_t *pos)
1062 {
1063 struct devlog_info *dinfo = seq->private;
1064
1065 return (*pos
1066 ? devlog_get_idx(dinfo, *pos)
1067 : SEQ_START_TOKEN);
1068 }
1069
1070 static void *devlog_next(struct seq_file *seq, void *v, loff_t *pos)
1071 {
1072 struct devlog_info *dinfo = seq->private;
1073
1074 (*pos)++;
1075 return devlog_get_idx(dinfo, *pos);
1076 }
1077
1078 static void devlog_stop(struct seq_file *seq, void *v)
1079 {
1080 }
1081
1082 static const struct seq_operations devlog_seq_ops = {
1083 .start = devlog_start,
1084 .next = devlog_next,
1085 .stop = devlog_stop,
1086 .show = devlog_show
1087 };
1088
1089 /* Set up for reading the firmware's device log. We read the entire log here
1090 * and then display it incrementally in devlog_show().
1091 */
1092 static int devlog_open(struct inode *inode, struct file *file)
1093 {
1094 struct adapter *adap = inode->i_private;
1095 struct devlog_params *dparams = &adap->params.devlog;
1096 struct devlog_info *dinfo;
1097 unsigned int index;
1098 u32 fseqno;
1099 int ret;
1100
1101 /* If we don't know where the log is we can't do anything.
1102 */
1103 if (dparams->start == 0)
1104 return -ENXIO;
1105
1106 /* Allocate the space to read in the firmware's device log and set up
1107 * for the iterated call to our display function.
1108 */
1109 dinfo = __seq_open_private(file, &devlog_seq_ops,
1110 sizeof(*dinfo) + dparams->size);
1111 if (!dinfo)
1112 return -ENOMEM;
1113
1114 /* Record the basic log buffer information and read in the raw log.
1115 */
1116 dinfo->nentries = (dparams->size / sizeof(struct fw_devlog_e));
1117 dinfo->first = 0;
1118 spin_lock(&adap->win0_lock);
1119 ret = t4_memory_rw(adap, adap->params.drv_memwin, dparams->memtype,
1120 dparams->start, dparams->size, (__be32 *)dinfo->log,
1121 T4_MEMORY_READ);
1122 spin_unlock(&adap->win0_lock);
1123 if (ret) {
1124 seq_release_private(inode, file);
1125 return ret;
1126 }
1127
1128 /* Find the earliest (lowest Sequence Number) log entry in the
1129 * circular Device Log.
1130 */
1131 for (fseqno = ~((u32)0), index = 0; index < dinfo->nentries; index++) {
1132 struct fw_devlog_e *e = &dinfo->log[index];
1133 __u32 seqno;
1134
1135 if (e->timestamp == 0)
1136 continue;
1137
1138 seqno = be32_to_cpu(e->seqno);
1139 if (seqno < fseqno) {
1140 fseqno = seqno;
1141 dinfo->first = index;
1142 }
1143 }
1144 return 0;
1145 }
1146
1147 static const struct file_operations devlog_fops = {
1148 .owner = THIS_MODULE,
1149 .open = devlog_open,
1150 .read = seq_read,
1151 .llseek = seq_lseek,
1152 .release = seq_release_private
1153 };
1154
1155 static int mbox_show(struct seq_file *seq, void *v)
1156 {
1157 static const char * const owner[] = { "none", "FW", "driver",
1158 "unknown", "<unread>" };
1159
1160 int i;
1161 unsigned int mbox = (uintptr_t)seq->private & 7;
1162 struct adapter *adap = seq->private - mbox;
1163 void __iomem *addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1164
1165 /* For T4 we don't have a shadow copy of the Mailbox Control register.
1166 * And since reading that real register causes a side effect of
1167 * granting ownership, we're best of simply not reading it at all.
1168 */
1169 if (is_t4(adap->params.chip)) {
1170 i = 4; /* index of "<unread>" */
1171 } else {
1172 unsigned int ctrl_reg = CIM_PF_MAILBOX_CTRL_SHADOW_COPY_A;
1173 void __iomem *ctrl = adap->regs + PF_REG(mbox, ctrl_reg);
1174
1175 i = MBOWNER_G(readl(ctrl));
1176 }
1177
1178 seq_printf(seq, "mailbox owned by %s\n\n", owner[i]);
1179
1180 for (i = 0; i < MBOX_LEN; i += 8)
1181 seq_printf(seq, "%016llx\n",
1182 (unsigned long long)readq(addr + i));
1183 return 0;
1184 }
1185
1186 static int mbox_open(struct inode *inode, struct file *file)
1187 {
1188 return single_open(file, mbox_show, inode->i_private);
1189 }
1190
1191 static ssize_t mbox_write(struct file *file, const char __user *buf,
1192 size_t count, loff_t *pos)
1193 {
1194 int i;
1195 char c = '\n', s[256];
1196 unsigned long long data[8];
1197 const struct inode *ino;
1198 unsigned int mbox;
1199 struct adapter *adap;
1200 void __iomem *addr;
1201 void __iomem *ctrl;
1202
1203 if (count > sizeof(s) - 1 || !count)
1204 return -EINVAL;
1205 if (copy_from_user(s, buf, count))
1206 return -EFAULT;
1207 s[count] = '\0';
1208
1209 if (sscanf(s, "%llx %llx %llx %llx %llx %llx %llx %llx%c", &data[0],
1210 &data[1], &data[2], &data[3], &data[4], &data[5], &data[6],
1211 &data[7], &c) < 8 || c != '\n')
1212 return -EINVAL;
1213
1214 ino = file_inode(file);
1215 mbox = (uintptr_t)ino->i_private & 7;
1216 adap = ino->i_private - mbox;
1217 addr = adap->regs + PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
1218 ctrl = addr + MBOX_LEN;
1219
1220 if (MBOWNER_G(readl(ctrl)) != X_MBOWNER_PL)
1221 return -EBUSY;
1222
1223 for (i = 0; i < 8; i++)
1224 writeq(data[i], addr + 8 * i);
1225
1226 writel(MBMSGVALID_F | MBOWNER_V(X_MBOWNER_FW), ctrl);
1227 return count;
1228 }
1229
1230 static const struct file_operations mbox_debugfs_fops = {
1231 .owner = THIS_MODULE,
1232 .open = mbox_open,
1233 .read = seq_read,
1234 .llseek = seq_lseek,
1235 .release = single_release,
1236 .write = mbox_write
1237 };
1238
1239 static int mps_trc_show(struct seq_file *seq, void *v)
1240 {
1241 int enabled, i;
1242 struct trace_params tp;
1243 unsigned int trcidx = (uintptr_t)seq->private & 3;
1244 struct adapter *adap = seq->private - trcidx;
1245
1246 t4_get_trace_filter(adap, &tp, trcidx, &enabled);
1247 if (!enabled) {
1248 seq_puts(seq, "tracer is disabled\n");
1249 return 0;
1250 }
1251
1252 if (tp.skip_ofst * 8 >= TRACE_LEN) {
1253 dev_err(adap->pdev_dev, "illegal trace pattern skip offset\n");
1254 return -EINVAL;
1255 }
1256 if (tp.port < 8) {
1257 i = adap->chan_map[tp.port & 3];
1258 if (i >= MAX_NPORTS) {
1259 dev_err(adap->pdev_dev, "tracer %u is assigned "
1260 "to non-existing port\n", trcidx);
1261 return -EINVAL;
1262 }
1263 seq_printf(seq, "tracer is capturing %s %s, ",
1264 adap->port[i]->name, tp.port < 4 ? "Rx" : "Tx");
1265 } else
1266 seq_printf(seq, "tracer is capturing loopback %d, ",
1267 tp.port - 8);
1268 seq_printf(seq, "snap length: %u, min length: %u\n", tp.snap_len,
1269 tp.min_len);
1270 seq_printf(seq, "packets captured %smatch filter\n",
1271 tp.invert ? "do not " : "");
1272
1273 if (tp.skip_ofst) {
1274 seq_puts(seq, "filter pattern: ");
1275 for (i = 0; i < tp.skip_ofst * 2; i += 2)
1276 seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1277 seq_putc(seq, '/');
1278 for (i = 0; i < tp.skip_ofst * 2; i += 2)
1279 seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1280 seq_puts(seq, "@0\n");
1281 }
1282
1283 seq_puts(seq, "filter pattern: ");
1284 for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1285 seq_printf(seq, "%08x%08x", tp.data[i], tp.data[i + 1]);
1286 seq_putc(seq, '/');
1287 for (i = tp.skip_ofst * 2; i < TRACE_LEN / 4; i += 2)
1288 seq_printf(seq, "%08x%08x", tp.mask[i], tp.mask[i + 1]);
1289 seq_printf(seq, "@%u\n", (tp.skip_ofst + tp.skip_len) * 8);
1290 return 0;
1291 }
1292
1293 static int mps_trc_open(struct inode *inode, struct file *file)
1294 {
1295 return single_open(file, mps_trc_show, inode->i_private);
1296 }
1297
1298 static unsigned int xdigit2int(unsigned char c)
1299 {
1300 return isdigit(c) ? c - '0' : tolower(c) - 'a' + 10;
1301 }
1302
1303 #define TRC_PORT_NONE 0xff
1304 #define TRC_RSS_ENABLE 0x33
1305 #define TRC_RSS_DISABLE 0x13
1306
1307 /* Set an MPS trace filter. Syntax is:
1308 *
1309 * disable
1310 *
1311 * to disable tracing, or
1312 *
1313 * interface qid=<qid no> [snaplen=<val>] [minlen=<val>] [not] [<pattern>]...
1314 *
1315 * where interface is one of rxN, txN, or loopbackN, N = 0..3, qid can be one
1316 * of the NIC's response qid obtained from sge_qinfo and pattern has the form
1317 *
1318 * <pattern data>[/<pattern mask>][@<anchor>]
1319 *
1320 * Up to 2 filter patterns can be specified. If 2 are supplied the first one
1321 * must be anchored at 0. An omited mask is taken as a mask of 1s, an omitted
1322 * anchor is taken as 0.
1323 */
1324 static ssize_t mps_trc_write(struct file *file, const char __user *buf,
1325 size_t count, loff_t *pos)
1326 {
1327 int i, enable, ret;
1328 u32 *data, *mask;
1329 struct trace_params tp;
1330 const struct inode *ino;
1331 unsigned int trcidx;
1332 char *s, *p, *word, *end;
1333 struct adapter *adap;
1334 u32 j;
1335
1336 ino = file_inode(file);
1337 trcidx = (uintptr_t)ino->i_private & 3;
1338 adap = ino->i_private - trcidx;
1339
1340 /* Don't accept input more than 1K, can't be anything valid except lots
1341 * of whitespace. Well, use less.
1342 */
1343 if (count > 1024)
1344 return -EFBIG;
1345 p = s = kzalloc(count + 1, GFP_USER);
1346 if (!s)
1347 return -ENOMEM;
1348 if (copy_from_user(s, buf, count)) {
1349 count = -EFAULT;
1350 goto out;
1351 }
1352
1353 if (s[count - 1] == '\n')
1354 s[count - 1] = '\0';
1355
1356 enable = strcmp("disable", s) != 0;
1357 if (!enable)
1358 goto apply;
1359
1360 /* enable or disable trace multi rss filter */
1361 if (adap->trace_rss)
1362 t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_ENABLE);
1363 else
1364 t4_write_reg(adap, MPS_TRC_CFG_A, TRC_RSS_DISABLE);
1365
1366 memset(&tp, 0, sizeof(tp));
1367 tp.port = TRC_PORT_NONE;
1368 i = 0; /* counts pattern nibbles */
1369
1370 while (p) {
1371 while (isspace(*p))
1372 p++;
1373 word = strsep(&p, " ");
1374 if (!*word)
1375 break;
1376
1377 if (!strncmp(word, "qid=", 4)) {
1378 end = (char *)word + 4;
1379 ret = kstrtouint(end, 10, &j);
1380 if (ret)
1381 goto out;
1382 if (!adap->trace_rss) {
1383 t4_write_reg(adap, MPS_T5_TRC_RSS_CONTROL_A, j);
1384 continue;
1385 }
1386
1387 switch (trcidx) {
1388 case 0:
1389 t4_write_reg(adap, MPS_TRC_RSS_CONTROL_A, j);
1390 break;
1391 case 1:
1392 t4_write_reg(adap,
1393 MPS_TRC_FILTER1_RSS_CONTROL_A, j);
1394 break;
1395 case 2:
1396 t4_write_reg(adap,
1397 MPS_TRC_FILTER2_RSS_CONTROL_A, j);
1398 break;
1399 case 3:
1400 t4_write_reg(adap,
1401 MPS_TRC_FILTER3_RSS_CONTROL_A, j);
1402 break;
1403 }
1404 continue;
1405 }
1406 if (!strncmp(word, "snaplen=", 8)) {
1407 end = (char *)word + 8;
1408 ret = kstrtouint(end, 10, &j);
1409 if (ret || j > 9600) {
1410 inval: count = -EINVAL;
1411 goto out;
1412 }
1413 tp.snap_len = j;
1414 continue;
1415 }
1416 if (!strncmp(word, "minlen=", 7)) {
1417 end = (char *)word + 7;
1418 ret = kstrtouint(end, 10, &j);
1419 if (ret || j > TFMINPKTSIZE_M)
1420 goto inval;
1421 tp.min_len = j;
1422 continue;
1423 }
1424 if (!strcmp(word, "not")) {
1425 tp.invert = !tp.invert;
1426 continue;
1427 }
1428 if (!strncmp(word, "loopback", 8) && tp.port == TRC_PORT_NONE) {
1429 if (word[8] < '0' || word[8] > '3' || word[9])
1430 goto inval;
1431 tp.port = word[8] - '0' + 8;
1432 continue;
1433 }
1434 if (!strncmp(word, "tx", 2) && tp.port == TRC_PORT_NONE) {
1435 if (word[2] < '0' || word[2] > '3' || word[3])
1436 goto inval;
1437 tp.port = word[2] - '0' + 4;
1438 if (adap->chan_map[tp.port & 3] >= MAX_NPORTS)
1439 goto inval;
1440 continue;
1441 }
1442 if (!strncmp(word, "rx", 2) && tp.port == TRC_PORT_NONE) {
1443 if (word[2] < '0' || word[2] > '3' || word[3])
1444 goto inval;
1445 tp.port = word[2] - '0';
1446 if (adap->chan_map[tp.port] >= MAX_NPORTS)
1447 goto inval;
1448 continue;
1449 }
1450 if (!isxdigit(*word))
1451 goto inval;
1452
1453 /* we have found a trace pattern */
1454 if (i) { /* split pattern */
1455 if (tp.skip_len) /* too many splits */
1456 goto inval;
1457 tp.skip_ofst = i / 16;
1458 }
1459
1460 data = &tp.data[i / 8];
1461 mask = &tp.mask[i / 8];
1462 j = i;
1463
1464 while (isxdigit(*word)) {
1465 if (i >= TRACE_LEN * 2) {
1466 count = -EFBIG;
1467 goto out;
1468 }
1469 *data = (*data << 4) + xdigit2int(*word++);
1470 if (++i % 8 == 0)
1471 data++;
1472 }
1473 if (*word == '/') {
1474 word++;
1475 while (isxdigit(*word)) {
1476 if (j >= i) /* mask longer than data */
1477 goto inval;
1478 *mask = (*mask << 4) + xdigit2int(*word++);
1479 if (++j % 8 == 0)
1480 mask++;
1481 }
1482 if (i != j) /* mask shorter than data */
1483 goto inval;
1484 } else { /* no mask, use all 1s */
1485 for ( ; i - j >= 8; j += 8)
1486 *mask++ = 0xffffffff;
1487 if (i % 8)
1488 *mask = (1 << (i % 8) * 4) - 1;
1489 }
1490 if (*word == '@') {
1491 end = (char *)word + 1;
1492 ret = kstrtouint(end, 10, &j);
1493 if (*end && *end != '\n')
1494 goto inval;
1495 if (j & 7) /* doesn't start at multiple of 8 */
1496 goto inval;
1497 j /= 8;
1498 if (j < tp.skip_ofst) /* overlaps earlier pattern */
1499 goto inval;
1500 if (j - tp.skip_ofst > 31) /* skip too big */
1501 goto inval;
1502 tp.skip_len = j - tp.skip_ofst;
1503 }
1504 if (i % 8) {
1505 *data <<= (8 - i % 8) * 4;
1506 *mask <<= (8 - i % 8) * 4;
1507 i = (i + 15) & ~15; /* 8-byte align */
1508 }
1509 }
1510
1511 if (tp.port == TRC_PORT_NONE)
1512 goto inval;
1513
1514 apply:
1515 i = t4_set_trace_filter(adap, &tp, trcidx, enable);
1516 if (i)
1517 count = i;
1518 out:
1519 kfree(s);
1520 return count;
1521 }
1522
1523 static const struct file_operations mps_trc_debugfs_fops = {
1524 .owner = THIS_MODULE,
1525 .open = mps_trc_open,
1526 .read = seq_read,
1527 .llseek = seq_lseek,
1528 .release = single_release,
1529 .write = mps_trc_write
1530 };
1531
1532 static ssize_t flash_read(struct file *file, char __user *buf, size_t count,
1533 loff_t *ppos)
1534 {
1535 loff_t pos = *ppos;
1536 loff_t avail = file_inode(file)->i_size;
1537 struct adapter *adap = file->private_data;
1538
1539 if (pos < 0)
1540 return -EINVAL;
1541 if (pos >= avail)
1542 return 0;
1543 if (count > avail - pos)
1544 count = avail - pos;
1545
1546 while (count) {
1547 size_t len;
1548 int ret, ofst;
1549 u8 data[256];
1550
1551 ofst = pos & 3;
1552 len = min(count + ofst, sizeof(data));
1553 ret = t4_read_flash(adap, pos - ofst, (len + 3) / 4,
1554 (u32 *)data, 1);
1555 if (ret)
1556 return ret;
1557
1558 len -= ofst;
1559 if (copy_to_user(buf, data + ofst, len))
1560 return -EFAULT;
1561
1562 buf += len;
1563 pos += len;
1564 count -= len;
1565 }
1566 count = pos - *ppos;
1567 *ppos = pos;
1568 return count;
1569 }
1570
1571 static const struct file_operations flash_debugfs_fops = {
1572 .owner = THIS_MODULE,
1573 .open = mem_open,
1574 .read = flash_read,
1575 };
1576
1577 static inline void tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
1578 {
1579 *mask = x | y;
1580 y = (__force u64)cpu_to_be64(y);
1581 memcpy(addr, (char *)&y + 2, ETH_ALEN);
1582 }
1583
1584 static int mps_tcam_show(struct seq_file *seq, void *v)
1585 {
1586 struct adapter *adap = seq->private;
1587 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1588 if (v == SEQ_START_TOKEN) {
1589 if (chip_ver > CHELSIO_T5) {
1590 seq_puts(seq, "Idx Ethernet address Mask "
1591 " VNI Mask IVLAN Vld "
1592 "DIP_Hit Lookup Port "
1593 "Vld Ports PF VF "
1594 "Replication "
1595 " P0 P1 P2 P3 ML\n");
1596 } else {
1597 if (adap->params.arch.mps_rplc_size > 128)
1598 seq_puts(seq, "Idx Ethernet address Mask "
1599 "Vld Ports PF VF "
1600 "Replication "
1601 " P0 P1 P2 P3 ML\n");
1602 else
1603 seq_puts(seq, "Idx Ethernet address Mask "
1604 "Vld Ports PF VF Replication"
1605 " P0 P1 P2 P3 ML\n");
1606 }
1607 } else {
1608 u64 mask;
1609 u8 addr[ETH_ALEN];
1610 bool replicate, dip_hit = false, vlan_vld = false;
1611 unsigned int idx = (uintptr_t)v - 2;
1612 u64 tcamy, tcamx, val;
1613 u32 cls_lo, cls_hi, ctl, data2, vnix = 0, vniy = 0;
1614 u32 rplc[8] = {0};
1615 u8 lookup_type = 0, port_num = 0;
1616 u16 ivlan = 0;
1617
1618 if (chip_ver > CHELSIO_T5) {
1619 /* CtlCmdType - 0: Read, 1: Write
1620 * CtlTcamSel - 0: TCAM0, 1: TCAM1
1621 * CtlXYBitSel- 0: Y bit, 1: X bit
1622 */
1623
1624 /* Read tcamy */
1625 ctl = CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
1626 if (idx < 256)
1627 ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
1628 else
1629 ctl |= CTLTCAMINDEX_V(idx - 256) |
1630 CTLTCAMSEL_V(1);
1631 t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1632 val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1633 tcamy = DMACH_G(val) << 32;
1634 tcamy |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1635 data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1636 lookup_type = DATALKPTYPE_G(data2);
1637 /* 0 - Outer header, 1 - Inner header
1638 * [71:48] bit locations are overloaded for
1639 * outer vs. inner lookup types.
1640 */
1641 if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1642 /* Inner header VNI */
1643 vniy = ((data2 & DATAVIDH2_F) << 23) |
1644 (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1645 dip_hit = data2 & DATADIPHIT_F;
1646 } else {
1647 vlan_vld = data2 & DATAVIDH2_F;
1648 ivlan = VIDL_G(val);
1649 }
1650 port_num = DATAPORTNUM_G(data2);
1651
1652 /* Read tcamx. Change the control param */
1653 ctl |= CTLXYBITSEL_V(1);
1654 t4_write_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
1655 val = t4_read_reg(adap, MPS_CLS_TCAM_DATA1_A);
1656 tcamx = DMACH_G(val) << 32;
1657 tcamx |= t4_read_reg(adap, MPS_CLS_TCAM_DATA0_A);
1658 data2 = t4_read_reg(adap, MPS_CLS_TCAM_DATA2_CTL_A);
1659 if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1660 /* Inner header VNI mask */
1661 vnix = ((data2 & DATAVIDH2_F) << 23) |
1662 (DATAVIDH1_G(data2) << 16) | VIDL_G(val);
1663 }
1664 } else {
1665 tcamy = t4_read_reg64(adap, MPS_CLS_TCAM_Y_L(idx));
1666 tcamx = t4_read_reg64(adap, MPS_CLS_TCAM_X_L(idx));
1667 }
1668
1669 cls_lo = t4_read_reg(adap, MPS_CLS_SRAM_L(idx));
1670 cls_hi = t4_read_reg(adap, MPS_CLS_SRAM_H(idx));
1671
1672 if (tcamx & tcamy) {
1673 seq_printf(seq, "%3u -\n", idx);
1674 goto out;
1675 }
1676
1677 rplc[0] = rplc[1] = rplc[2] = rplc[3] = 0;
1678 if (chip_ver > CHELSIO_T5)
1679 replicate = (cls_lo & T6_REPLICATE_F);
1680 else
1681 replicate = (cls_lo & REPLICATE_F);
1682
1683 if (replicate) {
1684 struct fw_ldst_cmd ldst_cmd;
1685 int ret;
1686 struct fw_ldst_mps_rplc mps_rplc;
1687 u32 ldst_addrspc;
1688
1689 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
1690 ldst_addrspc =
1691 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS);
1692 ldst_cmd.op_to_addrspace =
1693 htonl(FW_CMD_OP_V(FW_LDST_CMD) |
1694 FW_CMD_REQUEST_F |
1695 FW_CMD_READ_F |
1696 ldst_addrspc);
1697 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
1698 ldst_cmd.u.mps.rplc.fid_idx =
1699 htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
1700 FW_LDST_CMD_IDX_V(idx));
1701 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd,
1702 sizeof(ldst_cmd), &ldst_cmd);
1703 if (ret)
1704 dev_warn(adap->pdev_dev, "Can't read MPS "
1705 "replication map for idx %d: %d\n",
1706 idx, -ret);
1707 else {
1708 mps_rplc = ldst_cmd.u.mps.rplc;
1709 rplc[0] = ntohl(mps_rplc.rplc31_0);
1710 rplc[1] = ntohl(mps_rplc.rplc63_32);
1711 rplc[2] = ntohl(mps_rplc.rplc95_64);
1712 rplc[3] = ntohl(mps_rplc.rplc127_96);
1713 if (adap->params.arch.mps_rplc_size > 128) {
1714 rplc[4] = ntohl(mps_rplc.rplc159_128);
1715 rplc[5] = ntohl(mps_rplc.rplc191_160);
1716 rplc[6] = ntohl(mps_rplc.rplc223_192);
1717 rplc[7] = ntohl(mps_rplc.rplc255_224);
1718 }
1719 }
1720 }
1721
1722 tcamxy2valmask(tcamx, tcamy, addr, &mask);
1723 if (chip_ver > CHELSIO_T5) {
1724 /* Inner header lookup */
1725 if (lookup_type && (lookup_type != DATALKPTYPE_M)) {
1726 seq_printf(seq,
1727 "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1728 "%012llx %06x %06x - - %3c"
1729 " 'I' %4x "
1730 "%3c %#x%4u%4d", idx, addr[0],
1731 addr[1], addr[2], addr[3],
1732 addr[4], addr[5],
1733 (unsigned long long)mask,
1734 vniy, vnix, dip_hit ? 'Y' : 'N',
1735 port_num,
1736 (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1737 PORTMAP_G(cls_hi),
1738 T6_PF_G(cls_lo),
1739 (cls_lo & T6_VF_VALID_F) ?
1740 T6_VF_G(cls_lo) : -1);
1741 } else {
1742 seq_printf(seq,
1743 "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1744 "%012llx - - ",
1745 idx, addr[0], addr[1], addr[2],
1746 addr[3], addr[4], addr[5],
1747 (unsigned long long)mask);
1748
1749 if (vlan_vld)
1750 seq_printf(seq, "%4u Y ", ivlan);
1751 else
1752 seq_puts(seq, " - N ");
1753
1754 seq_printf(seq,
1755 "- %3c %4x %3c %#x%4u%4d",
1756 lookup_type ? 'I' : 'O', port_num,
1757 (cls_lo & T6_SRAM_VLD_F) ? 'Y' : 'N',
1758 PORTMAP_G(cls_hi),
1759 T6_PF_G(cls_lo),
1760 (cls_lo & T6_VF_VALID_F) ?
1761 T6_VF_G(cls_lo) : -1);
1762 }
1763 } else
1764 seq_printf(seq, "%3u %02x:%02x:%02x:%02x:%02x:%02x "
1765 "%012llx%3c %#x%4u%4d",
1766 idx, addr[0], addr[1], addr[2], addr[3],
1767 addr[4], addr[5], (unsigned long long)mask,
1768 (cls_lo & SRAM_VLD_F) ? 'Y' : 'N',
1769 PORTMAP_G(cls_hi),
1770 PF_G(cls_lo),
1771 (cls_lo & VF_VALID_F) ? VF_G(cls_lo) : -1);
1772
1773 if (replicate) {
1774 if (adap->params.arch.mps_rplc_size > 128)
1775 seq_printf(seq, " %08x %08x %08x %08x "
1776 "%08x %08x %08x %08x",
1777 rplc[7], rplc[6], rplc[5], rplc[4],
1778 rplc[3], rplc[2], rplc[1], rplc[0]);
1779 else
1780 seq_printf(seq, " %08x %08x %08x %08x",
1781 rplc[3], rplc[2], rplc[1], rplc[0]);
1782 } else {
1783 if (adap->params.arch.mps_rplc_size > 128)
1784 seq_printf(seq, "%72c", ' ');
1785 else
1786 seq_printf(seq, "%36c", ' ');
1787 }
1788
1789 if (chip_ver > CHELSIO_T5)
1790 seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1791 T6_SRAM_PRIO0_G(cls_lo),
1792 T6_SRAM_PRIO1_G(cls_lo),
1793 T6_SRAM_PRIO2_G(cls_lo),
1794 T6_SRAM_PRIO3_G(cls_lo),
1795 (cls_lo >> T6_MULTILISTEN0_S) & 0xf);
1796 else
1797 seq_printf(seq, "%4u%3u%3u%3u %#x\n",
1798 SRAM_PRIO0_G(cls_lo), SRAM_PRIO1_G(cls_lo),
1799 SRAM_PRIO2_G(cls_lo), SRAM_PRIO3_G(cls_lo),
1800 (cls_lo >> MULTILISTEN0_S) & 0xf);
1801 }
1802 out: return 0;
1803 }
1804
1805 static inline void *mps_tcam_get_idx(struct seq_file *seq, loff_t pos)
1806 {
1807 struct adapter *adap = seq->private;
1808 int max_mac_addr = is_t4(adap->params.chip) ?
1809 NUM_MPS_CLS_SRAM_L_INSTANCES :
1810 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1811 return ((pos <= max_mac_addr) ? (void *)(uintptr_t)(pos + 1) : NULL);
1812 }
1813
1814 static void *mps_tcam_start(struct seq_file *seq, loff_t *pos)
1815 {
1816 return *pos ? mps_tcam_get_idx(seq, *pos) : SEQ_START_TOKEN;
1817 }
1818
1819 static void *mps_tcam_next(struct seq_file *seq, void *v, loff_t *pos)
1820 {
1821 ++*pos;
1822 return mps_tcam_get_idx(seq, *pos);
1823 }
1824
1825 static void mps_tcam_stop(struct seq_file *seq, void *v)
1826 {
1827 }
1828
1829 static const struct seq_operations mps_tcam_seq_ops = {
1830 .start = mps_tcam_start,
1831 .next = mps_tcam_next,
1832 .stop = mps_tcam_stop,
1833 .show = mps_tcam_show
1834 };
1835
1836 static int mps_tcam_open(struct inode *inode, struct file *file)
1837 {
1838 int res = seq_open(file, &mps_tcam_seq_ops);
1839
1840 if (!res) {
1841 struct seq_file *seq = file->private_data;
1842
1843 seq->private = inode->i_private;
1844 }
1845 return res;
1846 }
1847
1848 static const struct file_operations mps_tcam_debugfs_fops = {
1849 .owner = THIS_MODULE,
1850 .open = mps_tcam_open,
1851 .read = seq_read,
1852 .llseek = seq_lseek,
1853 .release = seq_release,
1854 };
1855
1856 /* Display various sensor information.
1857 */
1858 static int sensors_show(struct seq_file *seq, void *v)
1859 {
1860 struct adapter *adap = seq->private;
1861 u32 param[7], val[7];
1862 int ret;
1863
1864 /* Note that if the sensors haven't been initialized and turned on
1865 * we'll get values of 0, so treat those as "<unknown>" ...
1866 */
1867 param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1868 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1869 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_TMP));
1870 param[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1871 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DIAG) |
1872 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_DIAG_VDD));
1873 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
1874 param, val);
1875
1876 if (ret < 0 || val[0] == 0)
1877 seq_puts(seq, "Temperature: <unknown>\n");
1878 else
1879 seq_printf(seq, "Temperature: %dC\n", val[0]);
1880
1881 if (ret < 0 || val[1] == 0)
1882 seq_puts(seq, "Core VDD: <unknown>\n");
1883 else
1884 seq_printf(seq, "Core VDD: %dmV\n", val[1]);
1885
1886 return 0;
1887 }
1888
1889 DEFINE_SIMPLE_DEBUGFS_FILE(sensors);
1890
1891 #if IS_ENABLED(CONFIG_IPV6)
1892 static int clip_tbl_open(struct inode *inode, struct file *file)
1893 {
1894 return single_open(file, clip_tbl_show, inode->i_private);
1895 }
1896
1897 static const struct file_operations clip_tbl_debugfs_fops = {
1898 .owner = THIS_MODULE,
1899 .open = clip_tbl_open,
1900 .read = seq_read,
1901 .llseek = seq_lseek,
1902 .release = single_release
1903 };
1904 #endif
1905
1906 /*RSS Table.
1907 */
1908
1909 static int rss_show(struct seq_file *seq, void *v, int idx)
1910 {
1911 u16 *entry = v;
1912
1913 seq_printf(seq, "%4d: %4u %4u %4u %4u %4u %4u %4u %4u\n",
1914 idx * 8, entry[0], entry[1], entry[2], entry[3], entry[4],
1915 entry[5], entry[6], entry[7]);
1916 return 0;
1917 }
1918
1919 static int rss_open(struct inode *inode, struct file *file)
1920 {
1921 int ret;
1922 struct seq_tab *p;
1923 struct adapter *adap = inode->i_private;
1924
1925 p = seq_open_tab(file, RSS_NENTRIES / 8, 8 * sizeof(u16), 0, rss_show);
1926 if (!p)
1927 return -ENOMEM;
1928
1929 ret = t4_read_rss(adap, (u16 *)p->data);
1930 if (ret)
1931 seq_release_private(inode, file);
1932
1933 return ret;
1934 }
1935
1936 static const struct file_operations rss_debugfs_fops = {
1937 .owner = THIS_MODULE,
1938 .open = rss_open,
1939 .read = seq_read,
1940 .llseek = seq_lseek,
1941 .release = seq_release_private
1942 };
1943
1944 /* RSS Configuration.
1945 */
1946
1947 /* Small utility function to return the strings "yes" or "no" if the supplied
1948 * argument is non-zero.
1949 */
1950 static const char *yesno(int x)
1951 {
1952 static const char *yes = "yes";
1953 static const char *no = "no";
1954
1955 return x ? yes : no;
1956 }
1957
1958 static int rss_config_show(struct seq_file *seq, void *v)
1959 {
1960 struct adapter *adapter = seq->private;
1961 static const char * const keymode[] = {
1962 "global",
1963 "global and per-VF scramble",
1964 "per-PF and per-VF scramble",
1965 "per-VF and per-VF scramble",
1966 };
1967 u32 rssconf;
1968
1969 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_A);
1970 seq_printf(seq, "TP_RSS_CONFIG: %#x\n", rssconf);
1971 seq_printf(seq, " Tnl4TupEnIpv6: %3s\n", yesno(rssconf &
1972 TNL4TUPENIPV6_F));
1973 seq_printf(seq, " Tnl2TupEnIpv6: %3s\n", yesno(rssconf &
1974 TNL2TUPENIPV6_F));
1975 seq_printf(seq, " Tnl4TupEnIpv4: %3s\n", yesno(rssconf &
1976 TNL4TUPENIPV4_F));
1977 seq_printf(seq, " Tnl2TupEnIpv4: %3s\n", yesno(rssconf &
1978 TNL2TUPENIPV4_F));
1979 seq_printf(seq, " TnlTcpSel: %3s\n", yesno(rssconf & TNLTCPSEL_F));
1980 seq_printf(seq, " TnlIp6Sel: %3s\n", yesno(rssconf & TNLIP6SEL_F));
1981 seq_printf(seq, " TnlVrtSel: %3s\n", yesno(rssconf & TNLVRTSEL_F));
1982 seq_printf(seq, " TnlMapEn: %3s\n", yesno(rssconf & TNLMAPEN_F));
1983 seq_printf(seq, " OfdHashSave: %3s\n", yesno(rssconf &
1984 OFDHASHSAVE_F));
1985 seq_printf(seq, " OfdVrtSel: %3s\n", yesno(rssconf & OFDVRTSEL_F));
1986 seq_printf(seq, " OfdMapEn: %3s\n", yesno(rssconf & OFDMAPEN_F));
1987 seq_printf(seq, " OfdLkpEn: %3s\n", yesno(rssconf & OFDLKPEN_F));
1988 seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1989 SYN4TUPENIPV6_F));
1990 seq_printf(seq, " Syn2TupEnIpv6: %3s\n", yesno(rssconf &
1991 SYN2TUPENIPV6_F));
1992 seq_printf(seq, " Syn4TupEnIpv4: %3s\n", yesno(rssconf &
1993 SYN4TUPENIPV4_F));
1994 seq_printf(seq, " Syn2TupEnIpv4: %3s\n", yesno(rssconf &
1995 SYN2TUPENIPV4_F));
1996 seq_printf(seq, " Syn4TupEnIpv6: %3s\n", yesno(rssconf &
1997 SYN4TUPENIPV6_F));
1998 seq_printf(seq, " SynIp6Sel: %3s\n", yesno(rssconf & SYNIP6SEL_F));
1999 seq_printf(seq, " SynVrt6Sel: %3s\n", yesno(rssconf & SYNVRTSEL_F));
2000 seq_printf(seq, " SynMapEn: %3s\n", yesno(rssconf & SYNMAPEN_F));
2001 seq_printf(seq, " SynLkpEn: %3s\n", yesno(rssconf & SYNLKPEN_F));
2002 seq_printf(seq, " ChnEn: %3s\n", yesno(rssconf &
2003 CHANNELENABLE_F));
2004 seq_printf(seq, " PrtEn: %3s\n", yesno(rssconf &
2005 PORTENABLE_F));
2006 seq_printf(seq, " TnlAllLkp: %3s\n", yesno(rssconf &
2007 TNLALLLOOKUP_F));
2008 seq_printf(seq, " VrtEn: %3s\n", yesno(rssconf &
2009 VIRTENABLE_F));
2010 seq_printf(seq, " CngEn: %3s\n", yesno(rssconf &
2011 CONGESTIONENABLE_F));
2012 seq_printf(seq, " HashToeplitz: %3s\n", yesno(rssconf &
2013 HASHTOEPLITZ_F));
2014 seq_printf(seq, " Udp4En: %3s\n", yesno(rssconf & UDPENABLE_F));
2015 seq_printf(seq, " Disable: %3s\n", yesno(rssconf & DISABLE_F));
2016
2017 seq_puts(seq, "\n");
2018
2019 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_TNL_A);
2020 seq_printf(seq, "TP_RSS_CONFIG_TNL: %#x\n", rssconf);
2021 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf));
2022 seq_printf(seq, " MaskFilter: %3d\n", MASKFILTER_G(rssconf));
2023 if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2024 seq_printf(seq, " HashAll: %3s\n",
2025 yesno(rssconf & HASHALL_F));
2026 seq_printf(seq, " HashEth: %3s\n",
2027 yesno(rssconf & HASHETH_F));
2028 }
2029 seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F));
2030
2031 seq_puts(seq, "\n");
2032
2033 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_OFD_A);
2034 seq_printf(seq, "TP_RSS_CONFIG_OFD: %#x\n", rssconf);
2035 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf));
2036 seq_printf(seq, " RRCplMapEn: %3s\n", yesno(rssconf &
2037 RRCPLMAPEN_F));
2038 seq_printf(seq, " RRCplQueWidth: %3d\n", RRCPLQUEWIDTH_G(rssconf));
2039
2040 seq_puts(seq, "\n");
2041
2042 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_SYN_A);
2043 seq_printf(seq, "TP_RSS_CONFIG_SYN: %#x\n", rssconf);
2044 seq_printf(seq, " MaskSize: %3d\n", MASKSIZE_G(rssconf));
2045 seq_printf(seq, " UseWireCh: %3s\n", yesno(rssconf & USEWIRECH_F));
2046
2047 seq_puts(seq, "\n");
2048
2049 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
2050 seq_printf(seq, "TP_RSS_CONFIG_VRT: %#x\n", rssconf);
2051 if (CHELSIO_CHIP_VERSION(adapter->params.chip) > CHELSIO_T5) {
2052 seq_printf(seq, " KeyWrAddrX: %3d\n",
2053 KEYWRADDRX_G(rssconf));
2054 seq_printf(seq, " KeyExtend: %3s\n",
2055 yesno(rssconf & KEYEXTEND_F));
2056 }
2057 seq_printf(seq, " VfRdRg: %3s\n", yesno(rssconf & VFRDRG_F));
2058 seq_printf(seq, " VfRdEn: %3s\n", yesno(rssconf & VFRDEN_F));
2059 seq_printf(seq, " VfPerrEn: %3s\n", yesno(rssconf & VFPERREN_F));
2060 seq_printf(seq, " KeyPerrEn: %3s\n", yesno(rssconf & KEYPERREN_F));
2061 seq_printf(seq, " DisVfVlan: %3s\n", yesno(rssconf &
2062 DISABLEVLAN_F));
2063 seq_printf(seq, " EnUpSwt: %3s\n", yesno(rssconf & ENABLEUP0_F));
2064 seq_printf(seq, " HashDelay: %3d\n", HASHDELAY_G(rssconf));
2065 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2066 seq_printf(seq, " VfWrAddr: %3d\n", VFWRADDR_G(rssconf));
2067 else
2068 seq_printf(seq, " VfWrAddr: %3d\n",
2069 T6_VFWRADDR_G(rssconf));
2070 seq_printf(seq, " KeyMode: %s\n", keymode[KEYMODE_G(rssconf)]);
2071 seq_printf(seq, " VfWrEn: %3s\n", yesno(rssconf & VFWREN_F));
2072 seq_printf(seq, " KeyWrEn: %3s\n", yesno(rssconf & KEYWREN_F));
2073 seq_printf(seq, " KeyWrAddr: %3d\n", KEYWRADDR_G(rssconf));
2074
2075 seq_puts(seq, "\n");
2076
2077 rssconf = t4_read_reg(adapter, TP_RSS_CONFIG_CNG_A);
2078 seq_printf(seq, "TP_RSS_CONFIG_CNG: %#x\n", rssconf);
2079 seq_printf(seq, " ChnCount3: %3s\n", yesno(rssconf & CHNCOUNT3_F));
2080 seq_printf(seq, " ChnCount2: %3s\n", yesno(rssconf & CHNCOUNT2_F));
2081 seq_printf(seq, " ChnCount1: %3s\n", yesno(rssconf & CHNCOUNT1_F));
2082 seq_printf(seq, " ChnCount0: %3s\n", yesno(rssconf & CHNCOUNT0_F));
2083 seq_printf(seq, " ChnUndFlow3: %3s\n", yesno(rssconf &
2084 CHNUNDFLOW3_F));
2085 seq_printf(seq, " ChnUndFlow2: %3s\n", yesno(rssconf &
2086 CHNUNDFLOW2_F));
2087 seq_printf(seq, " ChnUndFlow1: %3s\n", yesno(rssconf &
2088 CHNUNDFLOW1_F));
2089 seq_printf(seq, " ChnUndFlow0: %3s\n", yesno(rssconf &
2090 CHNUNDFLOW0_F));
2091 seq_printf(seq, " RstChn3: %3s\n", yesno(rssconf & RSTCHN3_F));
2092 seq_printf(seq, " RstChn2: %3s\n", yesno(rssconf & RSTCHN2_F));
2093 seq_printf(seq, " RstChn1: %3s\n", yesno(rssconf & RSTCHN1_F));
2094 seq_printf(seq, " RstChn0: %3s\n", yesno(rssconf & RSTCHN0_F));
2095 seq_printf(seq, " UpdVld: %3s\n", yesno(rssconf & UPDVLD_F));
2096 seq_printf(seq, " Xoff: %3s\n", yesno(rssconf & XOFF_F));
2097 seq_printf(seq, " UpdChn3: %3s\n", yesno(rssconf & UPDCHN3_F));
2098 seq_printf(seq, " UpdChn2: %3s\n", yesno(rssconf & UPDCHN2_F));
2099 seq_printf(seq, " UpdChn1: %3s\n", yesno(rssconf & UPDCHN1_F));
2100 seq_printf(seq, " UpdChn0: %3s\n", yesno(rssconf & UPDCHN0_F));
2101 seq_printf(seq, " Queue: %3d\n", QUEUE_G(rssconf));
2102
2103 return 0;
2104 }
2105
2106 DEFINE_SIMPLE_DEBUGFS_FILE(rss_config);
2107
2108 /* RSS Secret Key.
2109 */
2110
2111 static int rss_key_show(struct seq_file *seq, void *v)
2112 {
2113 u32 key[10];
2114
2115 t4_read_rss_key(seq->private, key);
2116 seq_printf(seq, "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
2117 key[9], key[8], key[7], key[6], key[5], key[4], key[3],
2118 key[2], key[1], key[0]);
2119 return 0;
2120 }
2121
2122 static int rss_key_open(struct inode *inode, struct file *file)
2123 {
2124 return single_open(file, rss_key_show, inode->i_private);
2125 }
2126
2127 static ssize_t rss_key_write(struct file *file, const char __user *buf,
2128 size_t count, loff_t *pos)
2129 {
2130 int i, j;
2131 u32 key[10];
2132 char s[100], *p;
2133 struct adapter *adap = file_inode(file)->i_private;
2134
2135 if (count > sizeof(s) - 1)
2136 return -EINVAL;
2137 if (copy_from_user(s, buf, count))
2138 return -EFAULT;
2139 for (i = count; i > 0 && isspace(s[i - 1]); i--)
2140 ;
2141 s[i] = '\0';
2142
2143 for (p = s, i = 9; i >= 0; i--) {
2144 key[i] = 0;
2145 for (j = 0; j < 8; j++, p++) {
2146 if (!isxdigit(*p))
2147 return -EINVAL;
2148 key[i] = (key[i] << 4) | hex2val(*p);
2149 }
2150 }
2151
2152 t4_write_rss_key(adap, key, -1);
2153 return count;
2154 }
2155
2156 static const struct file_operations rss_key_debugfs_fops = {
2157 .owner = THIS_MODULE,
2158 .open = rss_key_open,
2159 .read = seq_read,
2160 .llseek = seq_lseek,
2161 .release = single_release,
2162 .write = rss_key_write
2163 };
2164
2165 /* PF RSS Configuration.
2166 */
2167
2168 struct rss_pf_conf {
2169 u32 rss_pf_map;
2170 u32 rss_pf_mask;
2171 u32 rss_pf_config;
2172 };
2173
2174 static int rss_pf_config_show(struct seq_file *seq, void *v, int idx)
2175 {
2176 struct rss_pf_conf *pfconf;
2177
2178 if (v == SEQ_START_TOKEN) {
2179 /* use the 0th entry to dump the PF Map Index Size */
2180 pfconf = seq->private + offsetof(struct seq_tab, data);
2181 seq_printf(seq, "PF Map Index Size = %d\n\n",
2182 LKPIDXSIZE_G(pfconf->rss_pf_map));
2183
2184 seq_puts(seq, " RSS PF VF Hash Tuple Enable Default\n");
2185 seq_puts(seq, " Enable IPF Mask Mask IPv6 IPv4 UDP Queue\n");
2186 seq_puts(seq, " PF Map Chn Prt Map Size Size Four Two Four Two Four Ch1 Ch0\n");
2187 } else {
2188 #define G_PFnLKPIDX(map, n) \
2189 (((map) >> PF1LKPIDX_S*(n)) & PF0LKPIDX_M)
2190 #define G_PFnMSKSIZE(mask, n) \
2191 (((mask) >> PF1MSKSIZE_S*(n)) & PF1MSKSIZE_M)
2192
2193 pfconf = v;
2194 seq_printf(seq, "%3d %3s %3s %3s %3d %3d %3d %3s %3s %3s %3s %3s %3d %3d\n",
2195 idx,
2196 yesno(pfconf->rss_pf_config & MAPENABLE_F),
2197 yesno(pfconf->rss_pf_config & CHNENABLE_F),
2198 yesno(pfconf->rss_pf_config & PRTENABLE_F),
2199 G_PFnLKPIDX(pfconf->rss_pf_map, idx),
2200 G_PFnMSKSIZE(pfconf->rss_pf_mask, idx),
2201 IVFWIDTH_G(pfconf->rss_pf_config),
2202 yesno(pfconf->rss_pf_config & IP6FOURTUPEN_F),
2203 yesno(pfconf->rss_pf_config & IP6TWOTUPEN_F),
2204 yesno(pfconf->rss_pf_config & IP4FOURTUPEN_F),
2205 yesno(pfconf->rss_pf_config & IP4TWOTUPEN_F),
2206 yesno(pfconf->rss_pf_config & UDPFOURTUPEN_F),
2207 CH1DEFAULTQUEUE_G(pfconf->rss_pf_config),
2208 CH0DEFAULTQUEUE_G(pfconf->rss_pf_config));
2209
2210 #undef G_PFnLKPIDX
2211 #undef G_PFnMSKSIZE
2212 }
2213 return 0;
2214 }
2215
2216 static int rss_pf_config_open(struct inode *inode, struct file *file)
2217 {
2218 struct adapter *adapter = inode->i_private;
2219 struct seq_tab *p;
2220 u32 rss_pf_map, rss_pf_mask;
2221 struct rss_pf_conf *pfconf;
2222 int pf;
2223
2224 p = seq_open_tab(file, 8, sizeof(*pfconf), 1, rss_pf_config_show);
2225 if (!p)
2226 return -ENOMEM;
2227
2228 pfconf = (struct rss_pf_conf *)p->data;
2229 rss_pf_map = t4_read_rss_pf_map(adapter);
2230 rss_pf_mask = t4_read_rss_pf_mask(adapter);
2231 for (pf = 0; pf < 8; pf++) {
2232 pfconf[pf].rss_pf_map = rss_pf_map;
2233 pfconf[pf].rss_pf_mask = rss_pf_mask;
2234 t4_read_rss_pf_config(adapter, pf, &pfconf[pf].rss_pf_config);
2235 }
2236 return 0;
2237 }
2238
2239 static const struct file_operations rss_pf_config_debugfs_fops = {
2240 .owner = THIS_MODULE,
2241 .open = rss_pf_config_open,
2242 .read = seq_read,
2243 .llseek = seq_lseek,
2244 .release = seq_release_private
2245 };
2246
2247 /* VF RSS Configuration.
2248 */
2249
2250 struct rss_vf_conf {
2251 u32 rss_vf_vfl;
2252 u32 rss_vf_vfh;
2253 };
2254
2255 static int rss_vf_config_show(struct seq_file *seq, void *v, int idx)
2256 {
2257 if (v == SEQ_START_TOKEN) {
2258 seq_puts(seq, " RSS Hash Tuple Enable\n");
2259 seq_puts(seq, " Enable IVF Dis Enb IPv6 IPv4 UDP Def Secret Key\n");
2260 seq_puts(seq, " VF Chn Prt Map VLAN uP Four Two Four Two Four Que Idx Hash\n");
2261 } else {
2262 struct rss_vf_conf *vfconf = v;
2263
2264 seq_printf(seq, "%3d %3s %3s %3d %3s %3s %3s %3s %3s %3s %3s %4d %3d %#10x\n",
2265 idx,
2266 yesno(vfconf->rss_vf_vfh & VFCHNEN_F),
2267 yesno(vfconf->rss_vf_vfh & VFPRTEN_F),
2268 VFLKPIDX_G(vfconf->rss_vf_vfh),
2269 yesno(vfconf->rss_vf_vfh & VFVLNEX_F),
2270 yesno(vfconf->rss_vf_vfh & VFUPEN_F),
2271 yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2272 yesno(vfconf->rss_vf_vfh & VFIP6TWOTUPEN_F),
2273 yesno(vfconf->rss_vf_vfh & VFIP4FOURTUPEN_F),
2274 yesno(vfconf->rss_vf_vfh & VFIP4TWOTUPEN_F),
2275 yesno(vfconf->rss_vf_vfh & ENABLEUDPHASH_F),
2276 DEFAULTQUEUE_G(vfconf->rss_vf_vfh),
2277 KEYINDEX_G(vfconf->rss_vf_vfh),
2278 vfconf->rss_vf_vfl);
2279 }
2280 return 0;
2281 }
2282
2283 static int rss_vf_config_open(struct inode *inode, struct file *file)
2284 {
2285 struct adapter *adapter = inode->i_private;
2286 struct seq_tab *p;
2287 struct rss_vf_conf *vfconf;
2288 int vf, vfcount = adapter->params.arch.vfcount;
2289
2290 p = seq_open_tab(file, vfcount, sizeof(*vfconf), 1, rss_vf_config_show);
2291 if (!p)
2292 return -ENOMEM;
2293
2294 vfconf = (struct rss_vf_conf *)p->data;
2295 for (vf = 0; vf < vfcount; vf++) {
2296 t4_read_rss_vf_config(adapter, vf, &vfconf[vf].rss_vf_vfl,
2297 &vfconf[vf].rss_vf_vfh);
2298 }
2299 return 0;
2300 }
2301
2302 static const struct file_operations rss_vf_config_debugfs_fops = {
2303 .owner = THIS_MODULE,
2304 .open = rss_vf_config_open,
2305 .read = seq_read,
2306 .llseek = seq_lseek,
2307 .release = seq_release_private
2308 };
2309
2310 /**
2311 * ethqset2pinfo - return port_info of an Ethernet Queue Set
2312 * @adap: the adapter
2313 * @qset: Ethernet Queue Set
2314 */
2315 static inline struct port_info *ethqset2pinfo(struct adapter *adap, int qset)
2316 {
2317 int pidx;
2318
2319 for_each_port(adap, pidx) {
2320 struct port_info *pi = adap2pinfo(adap, pidx);
2321
2322 if (qset >= pi->first_qset &&
2323 qset < pi->first_qset + pi->nqsets)
2324 return pi;
2325 }
2326
2327 /* should never happen! */
2328 BUG_ON(1);
2329 return NULL;
2330 }
2331
2332 static int sge_qinfo_show(struct seq_file *seq, void *v)
2333 {
2334 struct adapter *adap = seq->private;
2335 int eth_entries = DIV_ROUND_UP(adap->sge.ethqsets, 4);
2336 int iscsi_entries = DIV_ROUND_UP(adap->sge.iscsiqsets, 4);
2337 int iscsit_entries = DIV_ROUND_UP(adap->sge.niscsitq, 4);
2338 int rdma_entries = DIV_ROUND_UP(adap->sge.rdmaqs, 4);
2339 int ciq_entries = DIV_ROUND_UP(adap->sge.rdmaciqs, 4);
2340 int ctrl_entries = DIV_ROUND_UP(MAX_CTRL_QUEUES, 4);
2341 int i, r = (uintptr_t)v - 1;
2342 int iscsi_idx = r - eth_entries;
2343 int iscsit_idx = iscsi_idx - iscsi_entries;
2344 int rdma_idx = iscsit_idx - iscsit_entries;
2345 int ciq_idx = rdma_idx - rdma_entries;
2346 int ctrl_idx = ciq_idx - ciq_entries;
2347 int fq_idx = ctrl_idx - ctrl_entries;
2348
2349 if (r)
2350 seq_putc(seq, '\n');
2351
2352 #define S3(fmt_spec, s, v) \
2353 do { \
2354 seq_printf(seq, "%-12s", s); \
2355 for (i = 0; i < n; ++i) \
2356 seq_printf(seq, " %16" fmt_spec, v); \
2357 seq_putc(seq, '\n'); \
2358 } while (0)
2359 #define S(s, v) S3("s", s, v)
2360 #define T3(fmt_spec, s, v) S3(fmt_spec, s, tx[i].v)
2361 #define T(s, v) S3("u", s, tx[i].v)
2362 #define TL(s, v) T3("lu", s, v)
2363 #define R3(fmt_spec, s, v) S3(fmt_spec, s, rx[i].v)
2364 #define R(s, v) S3("u", s, rx[i].v)
2365 #define RL(s, v) R3("lu", s, v)
2366
2367 if (r < eth_entries) {
2368 int base_qset = r * 4;
2369 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[base_qset];
2370 const struct sge_eth_txq *tx = &adap->sge.ethtxq[base_qset];
2371 int n = min(4, adap->sge.ethqsets - 4 * r);
2372
2373 S("QType:", "Ethernet");
2374 S("Interface:",
2375 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2376 T("TxQ ID:", q.cntxt_id);
2377 T("TxQ size:", q.size);
2378 T("TxQ inuse:", q.in_use);
2379 T("TxQ CIDX:", q.cidx);
2380 T("TxQ PIDX:", q.pidx);
2381 #ifdef CONFIG_CHELSIO_T4_DCB
2382 T("DCB Prio:", dcb_prio);
2383 S3("u", "DCB PGID:",
2384 (ethqset2pinfo(adap, base_qset + i)->dcb.pgid >>
2385 4*(7-tx[i].dcb_prio)) & 0xf);
2386 S3("u", "DCB PFC:",
2387 (ethqset2pinfo(adap, base_qset + i)->dcb.pfcen >>
2388 1*(7-tx[i].dcb_prio)) & 0x1);
2389 #endif
2390 R("RspQ ID:", rspq.abs_id);
2391 R("RspQ size:", rspq.size);
2392 R("RspQE size:", rspq.iqe_len);
2393 R("RspQ CIDX:", rspq.cidx);
2394 R("RspQ Gen:", rspq.gen);
2395 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2396 S3("u", "Intr pktcnt:",
2397 adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2398 R("FL ID:", fl.cntxt_id);
2399 R("FL size:", fl.size - 8);
2400 R("FL pend:", fl.pend_cred);
2401 R("FL avail:", fl.avail);
2402 R("FL PIDX:", fl.pidx);
2403 R("FL CIDX:", fl.cidx);
2404 RL("RxPackets:", stats.pkts);
2405 RL("RxCSO:", stats.rx_cso);
2406 RL("VLANxtract:", stats.vlan_ex);
2407 RL("LROmerged:", stats.lro_merged);
2408 RL("LROpackets:", stats.lro_pkts);
2409 RL("RxDrops:", stats.rx_drops);
2410 TL("TSO:", tso);
2411 TL("TxCSO:", tx_cso);
2412 TL("VLANins:", vlan_ins);
2413 TL("TxQFull:", q.stops);
2414 TL("TxQRestarts:", q.restarts);
2415 TL("TxMapErr:", mapping_err);
2416 RL("FLAllocErr:", fl.alloc_failed);
2417 RL("FLLrgAlcErr:", fl.large_alloc_failed);
2418 RL("FLMapErr:", fl.mapping_err);
2419 RL("FLLow:", fl.low);
2420 RL("FLStarving:", fl.starving);
2421
2422 } else if (iscsi_idx < iscsi_entries) {
2423 const struct sge_ofld_rxq *rx =
2424 &adap->sge.iscsirxq[iscsi_idx * 4];
2425 const struct sge_ofld_txq *tx =
2426 &adap->sge.ofldtxq[iscsi_idx * 4];
2427 int n = min(4, adap->sge.iscsiqsets - 4 * iscsi_idx);
2428
2429 S("QType:", "iSCSI");
2430 T("TxQ ID:", q.cntxt_id);
2431 T("TxQ size:", q.size);
2432 T("TxQ inuse:", q.in_use);
2433 T("TxQ CIDX:", q.cidx);
2434 T("TxQ PIDX:", q.pidx);
2435 R("RspQ ID:", rspq.abs_id);
2436 R("RspQ size:", rspq.size);
2437 R("RspQE size:", rspq.iqe_len);
2438 R("RspQ CIDX:", rspq.cidx);
2439 R("RspQ Gen:", rspq.gen);
2440 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2441 S3("u", "Intr pktcnt:",
2442 adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2443 R("FL ID:", fl.cntxt_id);
2444 R("FL size:", fl.size - 8);
2445 R("FL pend:", fl.pend_cred);
2446 R("FL avail:", fl.avail);
2447 R("FL PIDX:", fl.pidx);
2448 R("FL CIDX:", fl.cidx);
2449 RL("RxPackets:", stats.pkts);
2450 RL("RxImmPkts:", stats.imm);
2451 RL("RxNoMem:", stats.nomem);
2452 RL("FLAllocErr:", fl.alloc_failed);
2453 RL("FLLrgAlcErr:", fl.large_alloc_failed);
2454 RL("FLMapErr:", fl.mapping_err);
2455 RL("FLLow:", fl.low);
2456 RL("FLStarving:", fl.starving);
2457
2458 } else if (iscsit_idx < iscsit_entries) {
2459 const struct sge_ofld_rxq *rx =
2460 &adap->sge.iscsitrxq[iscsit_idx * 4];
2461 int n = min(4, adap->sge.niscsitq - 4 * iscsit_idx);
2462
2463 S("QType:", "iSCSIT");
2464 R("RspQ ID:", rspq.abs_id);
2465 R("RspQ size:", rspq.size);
2466 R("RspQE size:", rspq.iqe_len);
2467 R("RspQ CIDX:", rspq.cidx);
2468 R("RspQ Gen:", rspq.gen);
2469 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2470 S3("u", "Intr pktcnt:",
2471 adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2472 R("FL ID:", fl.cntxt_id);
2473 R("FL size:", fl.size - 8);
2474 R("FL pend:", fl.pend_cred);
2475 R("FL avail:", fl.avail);
2476 R("FL PIDX:", fl.pidx);
2477 R("FL CIDX:", fl.cidx);
2478 RL("RxPackets:", stats.pkts);
2479 RL("RxImmPkts:", stats.imm);
2480 RL("RxNoMem:", stats.nomem);
2481 RL("FLAllocErr:", fl.alloc_failed);
2482 RL("FLLrgAlcErr:", fl.large_alloc_failed);
2483 RL("FLMapErr:", fl.mapping_err);
2484 RL("FLLow:", fl.low);
2485 RL("FLStarving:", fl.starving);
2486
2487 } else if (rdma_idx < rdma_entries) {
2488 const struct sge_ofld_rxq *rx =
2489 &adap->sge.rdmarxq[rdma_idx * 4];
2490 int n = min(4, adap->sge.rdmaqs - 4 * rdma_idx);
2491
2492 S("QType:", "RDMA-CPL");
2493 S("Interface:",
2494 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2495 R("RspQ ID:", rspq.abs_id);
2496 R("RspQ size:", rspq.size);
2497 R("RspQE size:", rspq.iqe_len);
2498 R("RspQ CIDX:", rspq.cidx);
2499 R("RspQ Gen:", rspq.gen);
2500 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2501 S3("u", "Intr pktcnt:",
2502 adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2503 R("FL ID:", fl.cntxt_id);
2504 R("FL size:", fl.size - 8);
2505 R("FL pend:", fl.pend_cred);
2506 R("FL avail:", fl.avail);
2507 R("FL PIDX:", fl.pidx);
2508 R("FL CIDX:", fl.cidx);
2509 RL("RxPackets:", stats.pkts);
2510 RL("RxImmPkts:", stats.imm);
2511 RL("RxNoMem:", stats.nomem);
2512 RL("FLAllocErr:", fl.alloc_failed);
2513 RL("FLLrgAlcErr:", fl.large_alloc_failed);
2514 RL("FLMapErr:", fl.mapping_err);
2515 RL("FLLow:", fl.low);
2516 RL("FLStarving:", fl.starving);
2517
2518 } else if (ciq_idx < ciq_entries) {
2519 const struct sge_ofld_rxq *rx = &adap->sge.rdmaciq[ciq_idx * 4];
2520 int n = min(4, adap->sge.rdmaciqs - 4 * ciq_idx);
2521
2522 S("QType:", "RDMA-CIQ");
2523 S("Interface:",
2524 rx[i].rspq.netdev ? rx[i].rspq.netdev->name : "N/A");
2525 R("RspQ ID:", rspq.abs_id);
2526 R("RspQ size:", rspq.size);
2527 R("RspQE size:", rspq.iqe_len);
2528 R("RspQ CIDX:", rspq.cidx);
2529 R("RspQ Gen:", rspq.gen);
2530 S3("u", "Intr delay:", qtimer_val(adap, &rx[i].rspq));
2531 S3("u", "Intr pktcnt:",
2532 adap->sge.counter_val[rx[i].rspq.pktcnt_idx]);
2533 RL("RxAN:", stats.an);
2534 RL("RxNoMem:", stats.nomem);
2535
2536 } else if (ctrl_idx < ctrl_entries) {
2537 const struct sge_ctrl_txq *tx = &adap->sge.ctrlq[ctrl_idx * 4];
2538 int n = min(4, adap->params.nports - 4 * ctrl_idx);
2539
2540 S("QType:", "Control");
2541 T("TxQ ID:", q.cntxt_id);
2542 T("TxQ size:", q.size);
2543 T("TxQ inuse:", q.in_use);
2544 T("TxQ CIDX:", q.cidx);
2545 T("TxQ PIDX:", q.pidx);
2546 TL("TxQFull:", q.stops);
2547 TL("TxQRestarts:", q.restarts);
2548 } else if (fq_idx == 0) {
2549 const struct sge_rspq *evtq = &adap->sge.fw_evtq;
2550
2551 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
2552 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
2553 seq_printf(seq, "%-12s %16u\n", "RspQ size:", evtq->size);
2554 seq_printf(seq, "%-12s %16u\n", "RspQE size:", evtq->iqe_len);
2555 seq_printf(seq, "%-12s %16u\n", "RspQ CIDX:", evtq->cidx);
2556 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
2557 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
2558 qtimer_val(adap, evtq));
2559 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
2560 adap->sge.counter_val[evtq->pktcnt_idx]);
2561 }
2562 #undef R
2563 #undef RL
2564 #undef T
2565 #undef TL
2566 #undef S
2567 #undef R3
2568 #undef T3
2569 #undef S3
2570 return 0;
2571 }
2572
2573 static int sge_queue_entries(const struct adapter *adap)
2574 {
2575 return DIV_ROUND_UP(adap->sge.ethqsets, 4) +
2576 DIV_ROUND_UP(adap->sge.iscsiqsets, 4) +
2577 DIV_ROUND_UP(adap->sge.niscsitq, 4) +
2578 DIV_ROUND_UP(adap->sge.rdmaqs, 4) +
2579 DIV_ROUND_UP(adap->sge.rdmaciqs, 4) +
2580 DIV_ROUND_UP(MAX_CTRL_QUEUES, 4) + 1;
2581 }
2582
2583 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
2584 {
2585 int entries = sge_queue_entries(seq->private);
2586
2587 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2588 }
2589
2590 static void sge_queue_stop(struct seq_file *seq, void *v)
2591 {
2592 }
2593
2594 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
2595 {
2596 int entries = sge_queue_entries(seq->private);
2597
2598 ++*pos;
2599 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
2600 }
2601
2602 static const struct seq_operations sge_qinfo_seq_ops = {
2603 .start = sge_queue_start,
2604 .next = sge_queue_next,
2605 .stop = sge_queue_stop,
2606 .show = sge_qinfo_show
2607 };
2608
2609 static int sge_qinfo_open(struct inode *inode, struct file *file)
2610 {
2611 int res = seq_open(file, &sge_qinfo_seq_ops);
2612
2613 if (!res) {
2614 struct seq_file *seq = file->private_data;
2615
2616 seq->private = inode->i_private;
2617 }
2618 return res;
2619 }
2620
2621 static const struct file_operations sge_qinfo_debugfs_fops = {
2622 .owner = THIS_MODULE,
2623 .open = sge_qinfo_open,
2624 .read = seq_read,
2625 .llseek = seq_lseek,
2626 .release = seq_release,
2627 };
2628
2629 int mem_open(struct inode *inode, struct file *file)
2630 {
2631 unsigned int mem;
2632 struct adapter *adap;
2633
2634 file->private_data = inode->i_private;
2635
2636 mem = (uintptr_t)file->private_data & 0x3;
2637 adap = file->private_data - mem;
2638
2639 (void)t4_fwcache(adap, FW_PARAM_DEV_FWCACHE_FLUSH);
2640
2641 return 0;
2642 }
2643
2644 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2645 loff_t *ppos)
2646 {
2647 loff_t pos = *ppos;
2648 loff_t avail = file_inode(file)->i_size;
2649 unsigned int mem = (uintptr_t)file->private_data & 3;
2650 struct adapter *adap = file->private_data - mem;
2651 __be32 *data;
2652 int ret;
2653
2654 if (pos < 0)
2655 return -EINVAL;
2656 if (pos >= avail)
2657 return 0;
2658 if (count > avail - pos)
2659 count = avail - pos;
2660
2661 data = t4_alloc_mem(count);
2662 if (!data)
2663 return -ENOMEM;
2664
2665 spin_lock(&adap->win0_lock);
2666 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
2667 spin_unlock(&adap->win0_lock);
2668 if (ret) {
2669 t4_free_mem(data);
2670 return ret;
2671 }
2672 ret = copy_to_user(buf, data, count);
2673
2674 t4_free_mem(data);
2675 if (ret)
2676 return -EFAULT;
2677
2678 *ppos = pos + count;
2679 return count;
2680 }
2681 static const struct file_operations mem_debugfs_fops = {
2682 .owner = THIS_MODULE,
2683 .open = simple_open,
2684 .read = mem_read,
2685 .llseek = default_llseek,
2686 };
2687
2688 static int tid_info_show(struct seq_file *seq, void *v)
2689 {
2690 struct adapter *adap = seq->private;
2691 const struct tid_info *t = &adap->tids;
2692 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
2693
2694 if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2695 unsigned int sb;
2696
2697 if (chip <= CHELSIO_T5)
2698 sb = t4_read_reg(adap, LE_DB_SERVER_INDEX_A) / 4;
2699 else
2700 sb = t4_read_reg(adap, LE_DB_SRVR_START_INDEX_A);
2701
2702 if (sb) {
2703 seq_printf(seq, "TID range: 0..%u/%u..%u", sb - 1,
2704 adap->tids.hash_base,
2705 t->ntids - 1);
2706 seq_printf(seq, ", in use: %u/%u\n",
2707 atomic_read(&t->tids_in_use),
2708 atomic_read(&t->hash_tids_in_use));
2709 } else if (adap->flags & FW_OFLD_CONN) {
2710 seq_printf(seq, "TID range: %u..%u/%u..%u",
2711 t->aftid_base,
2712 t->aftid_end,
2713 adap->tids.hash_base,
2714 t->ntids - 1);
2715 seq_printf(seq, ", in use: %u/%u\n",
2716 atomic_read(&t->tids_in_use),
2717 atomic_read(&t->hash_tids_in_use));
2718 } else {
2719 seq_printf(seq, "TID range: %u..%u",
2720 adap->tids.hash_base,
2721 t->ntids - 1);
2722 seq_printf(seq, ", in use: %u\n",
2723 atomic_read(&t->hash_tids_in_use));
2724 }
2725 } else if (t->ntids) {
2726 seq_printf(seq, "TID range: 0..%u", t->ntids - 1);
2727 seq_printf(seq, ", in use: %u\n",
2728 atomic_read(&t->tids_in_use));
2729 }
2730
2731 if (t->nstids)
2732 seq_printf(seq, "STID range: %u..%u, in use: %u\n",
2733 (!t->stid_base &&
2734 (chip <= CHELSIO_T5)) ?
2735 t->stid_base + 1 : t->stid_base,
2736 t->stid_base + t->nstids - 1, t->stids_in_use);
2737 if (t->natids)
2738 seq_printf(seq, "ATID range: 0..%u, in use: %u\n",
2739 t->natids - 1, t->atids_in_use);
2740 seq_printf(seq, "FTID range: %u..%u\n", t->ftid_base,
2741 t->ftid_base + t->nftids - 1);
2742 if (t->nsftids)
2743 seq_printf(seq, "SFTID range: %u..%u in use: %u\n",
2744 t->sftid_base, t->sftid_base + t->nsftids - 2,
2745 t->sftids_in_use);
2746 if (t->ntids)
2747 seq_printf(seq, "HW TID usage: %u IP users, %u IPv6 users\n",
2748 t4_read_reg(adap, LE_DB_ACT_CNT_IPV4_A),
2749 t4_read_reg(adap, LE_DB_ACT_CNT_IPV6_A));
2750 return 0;
2751 }
2752
2753 DEFINE_SIMPLE_DEBUGFS_FILE(tid_info);
2754
2755 static void add_debugfs_mem(struct adapter *adap, const char *name,
2756 unsigned int idx, unsigned int size_mb)
2757 {
2758 debugfs_create_file_size(name, S_IRUSR, adap->debugfs_root,
2759 (void *)adap + idx, &mem_debugfs_fops,
2760 size_mb << 20);
2761 }
2762
2763 static int blocked_fl_open(struct inode *inode, struct file *file)
2764 {
2765 file->private_data = inode->i_private;
2766 return 0;
2767 }
2768
2769 static ssize_t blocked_fl_read(struct file *filp, char __user *ubuf,
2770 size_t count, loff_t *ppos)
2771 {
2772 int len;
2773 const struct adapter *adap = filp->private_data;
2774 char *buf;
2775 ssize_t size = (adap->sge.egr_sz + 3) / 4 +
2776 adap->sge.egr_sz / 32 + 2; /* includes ,/\n/\0 */
2777
2778 buf = kzalloc(size, GFP_KERNEL);
2779 if (!buf)
2780 return -ENOMEM;
2781
2782 len = snprintf(buf, size - 1, "%*pb\n",
2783 adap->sge.egr_sz, adap->sge.blocked_fl);
2784 len += sprintf(buf + len, "\n");
2785 size = simple_read_from_buffer(ubuf, count, ppos, buf, len);
2786 t4_free_mem(buf);
2787 return size;
2788 }
2789
2790 static ssize_t blocked_fl_write(struct file *filp, const char __user *ubuf,
2791 size_t count, loff_t *ppos)
2792 {
2793 int err;
2794 unsigned long *t;
2795 struct adapter *adap = filp->private_data;
2796
2797 t = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL);
2798 if (!t)
2799 return -ENOMEM;
2800
2801 err = bitmap_parse_user(ubuf, count, t, adap->sge.egr_sz);
2802 if (err)
2803 return err;
2804
2805 bitmap_copy(adap->sge.blocked_fl, t, adap->sge.egr_sz);
2806 t4_free_mem(t);
2807 return count;
2808 }
2809
2810 static const struct file_operations blocked_fl_fops = {
2811 .owner = THIS_MODULE,
2812 .open = blocked_fl_open,
2813 .read = blocked_fl_read,
2814 .write = blocked_fl_write,
2815 .llseek = generic_file_llseek,
2816 };
2817
2818 struct mem_desc {
2819 unsigned int base;
2820 unsigned int limit;
2821 unsigned int idx;
2822 };
2823
2824 static int mem_desc_cmp(const void *a, const void *b)
2825 {
2826 return ((const struct mem_desc *)a)->base -
2827 ((const struct mem_desc *)b)->base;
2828 }
2829
2830 static void mem_region_show(struct seq_file *seq, const char *name,
2831 unsigned int from, unsigned int to)
2832 {
2833 char buf[40];
2834
2835 string_get_size((u64)to - from + 1, 1, STRING_UNITS_2, buf,
2836 sizeof(buf));
2837 seq_printf(seq, "%-15s %#x-%#x [%s]\n", name, from, to, buf);
2838 }
2839
2840 static int meminfo_show(struct seq_file *seq, void *v)
2841 {
2842 static const char * const memory[] = { "EDC0:", "EDC1:", "MC:",
2843 "MC0:", "MC1:"};
2844 static const char * const region[] = {
2845 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
2846 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
2847 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
2848 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
2849 "RQUDP region:", "PBL region:", "TXPBL region:",
2850 "DBVFIFO region:", "ULPRX state:", "ULPTX state:",
2851 "On-chip queues:"
2852 };
2853
2854 int i, n;
2855 u32 lo, hi, used, alloc;
2856 struct mem_desc avail[4];
2857 struct mem_desc mem[ARRAY_SIZE(region) + 3]; /* up to 3 holes */
2858 struct mem_desc *md = mem;
2859 struct adapter *adap = seq->private;
2860
2861 for (i = 0; i < ARRAY_SIZE(mem); i++) {
2862 mem[i].limit = 0;
2863 mem[i].idx = i;
2864 }
2865
2866 /* Find and sort the populated memory ranges */
2867 i = 0;
2868 lo = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
2869 if (lo & EDRAM0_ENABLE_F) {
2870 hi = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2871 avail[i].base = EDRAM0_BASE_G(hi) << 20;
2872 avail[i].limit = avail[i].base + (EDRAM0_SIZE_G(hi) << 20);
2873 avail[i].idx = 0;
2874 i++;
2875 }
2876 if (lo & EDRAM1_ENABLE_F) {
2877 hi = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2878 avail[i].base = EDRAM1_BASE_G(hi) << 20;
2879 avail[i].limit = avail[i].base + (EDRAM1_SIZE_G(hi) << 20);
2880 avail[i].idx = 1;
2881 i++;
2882 }
2883
2884 if (is_t5(adap->params.chip)) {
2885 if (lo & EXT_MEM0_ENABLE_F) {
2886 hi = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2887 avail[i].base = EXT_MEM0_BASE_G(hi) << 20;
2888 avail[i].limit =
2889 avail[i].base + (EXT_MEM0_SIZE_G(hi) << 20);
2890 avail[i].idx = 3;
2891 i++;
2892 }
2893 if (lo & EXT_MEM1_ENABLE_F) {
2894 hi = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2895 avail[i].base = EXT_MEM1_BASE_G(hi) << 20;
2896 avail[i].limit =
2897 avail[i].base + (EXT_MEM1_SIZE_G(hi) << 20);
2898 avail[i].idx = 4;
2899 i++;
2900 }
2901 } else {
2902 if (lo & EXT_MEM_ENABLE_F) {
2903 hi = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
2904 avail[i].base = EXT_MEM_BASE_G(hi) << 20;
2905 avail[i].limit =
2906 avail[i].base + (EXT_MEM_SIZE_G(hi) << 20);
2907 avail[i].idx = 2;
2908 i++;
2909 }
2910 }
2911 if (!i) /* no memory available */
2912 return 0;
2913 sort(avail, i, sizeof(struct mem_desc), mem_desc_cmp, NULL);
2914
2915 (md++)->base = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A);
2916 (md++)->base = t4_read_reg(adap, SGE_IMSG_CTXT_BADDR_A);
2917 (md++)->base = t4_read_reg(adap, SGE_FLM_CACHE_BADDR_A);
2918 (md++)->base = t4_read_reg(adap, TP_CMM_TCB_BASE_A);
2919 (md++)->base = t4_read_reg(adap, TP_CMM_MM_BASE_A);
2920 (md++)->base = t4_read_reg(adap, TP_CMM_TIMER_BASE_A);
2921 (md++)->base = t4_read_reg(adap, TP_CMM_MM_RX_FLST_BASE_A);
2922 (md++)->base = t4_read_reg(adap, TP_CMM_MM_TX_FLST_BASE_A);
2923 (md++)->base = t4_read_reg(adap, TP_CMM_MM_PS_FLST_BASE_A);
2924
2925 /* the next few have explicit upper bounds */
2926 md->base = t4_read_reg(adap, TP_PMM_TX_BASE_A);
2927 md->limit = md->base - 1 +
2928 t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A) *
2929 PMTXMAXPAGE_G(t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A));
2930 md++;
2931
2932 md->base = t4_read_reg(adap, TP_PMM_RX_BASE_A);
2933 md->limit = md->base - 1 +
2934 t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) *
2935 PMRXMAXPAGE_G(t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A));
2936 md++;
2937
2938 if (t4_read_reg(adap, LE_DB_CONFIG_A) & HASHEN_F) {
2939 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
2940 hi = t4_read_reg(adap, LE_DB_TID_HASHBASE_A) / 4;
2941 md->base = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2942 } else {
2943 hi = t4_read_reg(adap, LE_DB_HASH_TID_BASE_A);
2944 md->base = t4_read_reg(adap,
2945 LE_DB_HASH_TBL_BASE_ADDR_A);
2946 }
2947 md->limit = 0;
2948 } else {
2949 md->base = 0;
2950 md->idx = ARRAY_SIZE(region); /* hide it */
2951 }
2952 md++;
2953
2954 #define ulp_region(reg) do { \
2955 md->base = t4_read_reg(adap, ULP_ ## reg ## _LLIMIT_A);\
2956 (md++)->limit = t4_read_reg(adap, ULP_ ## reg ## _ULIMIT_A); \
2957 } while (0)
2958
2959 ulp_region(RX_ISCSI);
2960 ulp_region(RX_TDDP);
2961 ulp_region(TX_TPT);
2962 ulp_region(RX_STAG);
2963 ulp_region(RX_RQ);
2964 ulp_region(RX_RQUDP);
2965 ulp_region(RX_PBL);
2966 ulp_region(TX_PBL);
2967 #undef ulp_region
2968 md->base = 0;
2969 md->idx = ARRAY_SIZE(region);
2970 if (!is_t4(adap->params.chip)) {
2971 u32 size = 0;
2972 u32 sge_ctrl = t4_read_reg(adap, SGE_CONTROL2_A);
2973 u32 fifo_size = t4_read_reg(adap, SGE_DBVFIFO_SIZE_A);
2974
2975 if (is_t5(adap->params.chip)) {
2976 if (sge_ctrl & VFIFO_ENABLE_F)
2977 size = DBVFIFO_SIZE_G(fifo_size);
2978 } else {
2979 size = T6_DBVFIFO_SIZE_G(fifo_size);
2980 }
2981
2982 if (size) {
2983 md->base = BASEADDR_G(t4_read_reg(adap,
2984 SGE_DBVFIFO_BADDR_A));
2985 md->limit = md->base + (size << 2) - 1;
2986 }
2987 }
2988
2989 md++;
2990
2991 md->base = t4_read_reg(adap, ULP_RX_CTX_BASE_A);
2992 md->limit = 0;
2993 md++;
2994 md->base = t4_read_reg(adap, ULP_TX_ERR_TABLE_BASE_A);
2995 md->limit = 0;
2996 md++;
2997
2998 md->base = adap->vres.ocq.start;
2999 if (adap->vres.ocq.size)
3000 md->limit = md->base + adap->vres.ocq.size - 1;
3001 else
3002 md->idx = ARRAY_SIZE(region); /* hide it */
3003 md++;
3004
3005 /* add any address-space holes, there can be up to 3 */
3006 for (n = 0; n < i - 1; n++)
3007 if (avail[n].limit < avail[n + 1].base)
3008 (md++)->base = avail[n].limit;
3009 if (avail[n].limit)
3010 (md++)->base = avail[n].limit;
3011
3012 n = md - mem;
3013 sort(mem, n, sizeof(struct mem_desc), mem_desc_cmp, NULL);
3014
3015 for (lo = 0; lo < i; lo++)
3016 mem_region_show(seq, memory[avail[lo].idx], avail[lo].base,
3017 avail[lo].limit - 1);
3018
3019 seq_putc(seq, '\n');
3020 for (i = 0; i < n; i++) {
3021 if (mem[i].idx >= ARRAY_SIZE(region))
3022 continue; /* skip holes */
3023 if (!mem[i].limit)
3024 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
3025 mem_region_show(seq, region[mem[i].idx], mem[i].base,
3026 mem[i].limit);
3027 }
3028
3029 seq_putc(seq, '\n');
3030 lo = t4_read_reg(adap, CIM_SDRAM_BASE_ADDR_A);
3031 hi = t4_read_reg(adap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1;
3032 mem_region_show(seq, "uP RAM:", lo, hi);
3033
3034 lo = t4_read_reg(adap, CIM_EXTMEM2_BASE_ADDR_A);
3035 hi = t4_read_reg(adap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1;
3036 mem_region_show(seq, "uP Extmem2:", lo, hi);
3037
3038 lo = t4_read_reg(adap, TP_PMM_RX_MAX_PAGE_A);
3039 seq_printf(seq, "\n%u Rx pages of size %uKiB for %u channels\n",
3040 PMRXMAXPAGE_G(lo),
3041 t4_read_reg(adap, TP_PMM_RX_PAGE_SIZE_A) >> 10,
3042 (lo & PMRXNUMCHN_F) ? 2 : 1);
3043
3044 lo = t4_read_reg(adap, TP_PMM_TX_MAX_PAGE_A);
3045 hi = t4_read_reg(adap, TP_PMM_TX_PAGE_SIZE_A);
3046 seq_printf(seq, "%u Tx pages of size %u%ciB for %u channels\n",
3047 PMTXMAXPAGE_G(lo),
3048 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
3049 hi >= (1 << 20) ? 'M' : 'K', 1 << PMTXNUMCHN_G(lo));
3050 seq_printf(seq, "%u p-structs\n\n",
3051 t4_read_reg(adap, TP_CMM_MM_MAX_PSTRUCT_A));
3052
3053 for (i = 0; i < 4; i++) {
3054 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
3055 lo = t4_read_reg(adap, MPS_RX_MAC_BG_PG_CNT0_A + i * 4);
3056 else
3057 lo = t4_read_reg(adap, MPS_RX_PG_RSV0_A + i * 4);
3058 if (is_t5(adap->params.chip)) {
3059 used = T5_USED_G(lo);
3060 alloc = T5_ALLOC_G(lo);
3061 } else {
3062 used = USED_G(lo);
3063 alloc = ALLOC_G(lo);
3064 }
3065 /* For T6 these are MAC buffer groups */
3066 seq_printf(seq, "Port %d using %u pages out of %u allocated\n",
3067 i, used, alloc);
3068 }
3069 for (i = 0; i < adap->params.arch.nchan; i++) {
3070 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5)
3071 lo = t4_read_reg(adap,
3072 MPS_RX_LPBK_BG_PG_CNT0_A + i * 4);
3073 else
3074 lo = t4_read_reg(adap, MPS_RX_PG_RSV4_A + i * 4);
3075 if (is_t5(adap->params.chip)) {
3076 used = T5_USED_G(lo);
3077 alloc = T5_ALLOC_G(lo);
3078 } else {
3079 used = USED_G(lo);
3080 alloc = ALLOC_G(lo);
3081 }
3082 /* For T6 these are MAC buffer groups */
3083 seq_printf(seq,
3084 "Loopback %d using %u pages out of %u allocated\n",
3085 i, used, alloc);
3086 }
3087 return 0;
3088 }
3089
3090 static int meminfo_open(struct inode *inode, struct file *file)
3091 {
3092 return single_open(file, meminfo_show, inode->i_private);
3093 }
3094
3095 static const struct file_operations meminfo_fops = {
3096 .owner = THIS_MODULE,
3097 .open = meminfo_open,
3098 .read = seq_read,
3099 .llseek = seq_lseek,
3100 .release = single_release,
3101 };
3102 /* Add an array of Debug FS files.
3103 */
3104 void add_debugfs_files(struct adapter *adap,
3105 struct t4_debugfs_entry *files,
3106 unsigned int nfiles)
3107 {
3108 int i;
3109
3110 /* debugfs support is best effort */
3111 for (i = 0; i < nfiles; i++)
3112 debugfs_create_file(files[i].name, files[i].mode,
3113 adap->debugfs_root,
3114 (void *)adap + files[i].data,
3115 files[i].ops);
3116 }
3117
3118 int t4_setup_debugfs(struct adapter *adap)
3119 {
3120 int i;
3121 u32 size = 0;
3122 struct dentry *de;
3123
3124 static struct t4_debugfs_entry t4_debugfs_files[] = {
3125 { "cim_la", &cim_la_fops, S_IRUSR, 0 },
3126 { "cim_pif_la", &cim_pif_la_fops, S_IRUSR, 0 },
3127 { "cim_ma_la", &cim_ma_la_fops, S_IRUSR, 0 },
3128 { "cim_qcfg", &cim_qcfg_fops, S_IRUSR, 0 },
3129 { "clk", &clk_debugfs_fops, S_IRUSR, 0 },
3130 { "devlog", &devlog_fops, S_IRUSR, 0 },
3131 { "mbox0", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3132 { "mbox1", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3133 { "mbox2", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3134 { "mbox3", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3135 { "mbox4", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 4 },
3136 { "mbox5", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 5 },
3137 { "mbox6", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 6 },
3138 { "mbox7", &mbox_debugfs_fops, S_IRUSR | S_IWUSR, 7 },
3139 { "trace0", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 0 },
3140 { "trace1", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 1 },
3141 { "trace2", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 2 },
3142 { "trace3", &mps_trc_debugfs_fops, S_IRUSR | S_IWUSR, 3 },
3143 { "l2t", &t4_l2t_fops, S_IRUSR, 0},
3144 { "mps_tcam", &mps_tcam_debugfs_fops, S_IRUSR, 0 },
3145 { "rss", &rss_debugfs_fops, S_IRUSR, 0 },
3146 { "rss_config", &rss_config_debugfs_fops, S_IRUSR, 0 },
3147 { "rss_key", &rss_key_debugfs_fops, S_IRUSR, 0 },
3148 { "rss_pf_config", &rss_pf_config_debugfs_fops, S_IRUSR, 0 },
3149 { "rss_vf_config", &rss_vf_config_debugfs_fops, S_IRUSR, 0 },
3150 { "sge_qinfo", &sge_qinfo_debugfs_fops, S_IRUSR, 0 },
3151 { "ibq_tp0", &cim_ibq_fops, S_IRUSR, 0 },
3152 { "ibq_tp1", &cim_ibq_fops, S_IRUSR, 1 },
3153 { "ibq_ulp", &cim_ibq_fops, S_IRUSR, 2 },
3154 { "ibq_sge0", &cim_ibq_fops, S_IRUSR, 3 },
3155 { "ibq_sge1", &cim_ibq_fops, S_IRUSR, 4 },
3156 { "ibq_ncsi", &cim_ibq_fops, S_IRUSR, 5 },
3157 { "obq_ulp0", &cim_obq_fops, S_IRUSR, 0 },
3158 { "obq_ulp1", &cim_obq_fops, S_IRUSR, 1 },
3159 { "obq_ulp2", &cim_obq_fops, S_IRUSR, 2 },
3160 { "obq_ulp3", &cim_obq_fops, S_IRUSR, 3 },
3161 { "obq_sge", &cim_obq_fops, S_IRUSR, 4 },
3162 { "obq_ncsi", &cim_obq_fops, S_IRUSR, 5 },
3163 { "tp_la", &tp_la_fops, S_IRUSR, 0 },
3164 { "ulprx_la", &ulprx_la_fops, S_IRUSR, 0 },
3165 { "sensors", &sensors_debugfs_fops, S_IRUSR, 0 },
3166 { "pm_stats", &pm_stats_debugfs_fops, S_IRUSR, 0 },
3167 { "tx_rate", &tx_rate_debugfs_fops, S_IRUSR, 0 },
3168 { "cctrl", &cctrl_tbl_debugfs_fops, S_IRUSR, 0 },
3169 #if IS_ENABLED(CONFIG_IPV6)
3170 { "clip_tbl", &clip_tbl_debugfs_fops, S_IRUSR, 0 },
3171 #endif
3172 { "tids", &tid_info_debugfs_fops, S_IRUSR, 0},
3173 { "blocked_fl", &blocked_fl_fops, S_IRUSR | S_IWUSR, 0 },
3174 { "meminfo", &meminfo_fops, S_IRUSR, 0 },
3175 };
3176
3177 /* Debug FS nodes common to all T5 and later adapters.
3178 */
3179 static struct t4_debugfs_entry t5_debugfs_files[] = {
3180 { "obq_sge_rx_q0", &cim_obq_fops, S_IRUSR, 6 },
3181 { "obq_sge_rx_q1", &cim_obq_fops, S_IRUSR, 7 },
3182 };
3183
3184 add_debugfs_files(adap,
3185 t4_debugfs_files,
3186 ARRAY_SIZE(t4_debugfs_files));
3187 if (!is_t4(adap->params.chip))
3188 add_debugfs_files(adap,
3189 t5_debugfs_files,
3190 ARRAY_SIZE(t5_debugfs_files));
3191
3192 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A);
3193 if (i & EDRAM0_ENABLE_F) {
3194 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
3195 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM0_SIZE_G(size));
3196 }
3197 if (i & EDRAM1_ENABLE_F) {
3198 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
3199 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM1_SIZE_G(size));
3200 }
3201 if (is_t5(adap->params.chip)) {
3202 if (i & EXT_MEM0_ENABLE_F) {
3203 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
3204 add_debugfs_mem(adap, "mc0", MEM_MC0,
3205 EXT_MEM0_SIZE_G(size));
3206 }
3207 if (i & EXT_MEM1_ENABLE_F) {
3208 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
3209 add_debugfs_mem(adap, "mc1", MEM_MC1,
3210 EXT_MEM1_SIZE_G(size));
3211 }
3212 } else {
3213 if (i & EXT_MEM_ENABLE_F) {
3214 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR_A);
3215 add_debugfs_mem(adap, "mc", MEM_MC,
3216 EXT_MEM_SIZE_G(size));
3217 }
3218 }
3219
3220 de = debugfs_create_file_size("flash", S_IRUSR, adap->debugfs_root, adap,
3221 &flash_debugfs_fops, adap->params.sf_size);
3222 debugfs_create_bool("use_backdoor", S_IWUSR | S_IRUSR,
3223 adap->debugfs_root, &adap->use_bd);
3224 debugfs_create_bool("trace_rss", S_IWUSR | S_IRUSR,
3225 adap->debugfs_root, &adap->trace_rss);
3226
3227 return 0;
3228 }