]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
treewide: Add __GFP_NOWARN to k.alloc calls with v.alloc fallbacks
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <asm/uaccess.h>
64
65 #include "cxgb4.h"
66 #include "t4_regs.h"
67 #include "t4_msg.h"
68 #include "t4fw_api.h"
69 #include "l2t.h"
70
71 #define DRV_VERSION "2.0.0-ko"
72 #define DRV_DESC "Chelsio T4/T5 Network Driver"
73
74 /*
75 * Max interrupt hold-off timer value in us. Queues fall back to this value
76 * under extreme memory pressure so it's largish to give the system time to
77 * recover.
78 */
79 #define MAX_SGE_TIMERVAL 200U
80
81 enum {
82 /*
83 * Physical Function provisioning constants.
84 */
85 PFRES_NVI = 4, /* # of Virtual Interfaces */
86 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
87 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
88 */
89 PFRES_NEQ = 256, /* # of egress queues */
90 PFRES_NIQ = 0, /* # of ingress queues */
91 PFRES_TC = 0, /* PCI-E traffic class */
92 PFRES_NEXACTF = 128, /* # of exact MPS filters */
93
94 PFRES_R_CAPS = FW_CMD_CAP_PF,
95 PFRES_WX_CAPS = FW_CMD_CAP_PF,
96
97 #ifdef CONFIG_PCI_IOV
98 /*
99 * Virtual Function provisioning constants. We need two extra Ingress
100 * Queues with Interrupt capability to serve as the VF's Firmware
101 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
102 * neither will have Free Lists associated with them). For each
103 * Ethernet/Control Egress Queue and for each Free List, we need an
104 * Egress Context.
105 */
106 VFRES_NPORTS = 1, /* # of "ports" per VF */
107 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
108
109 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
110 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
111 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
112 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
113 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
114 VFRES_TC = 0, /* PCI-E traffic class */
115 VFRES_NEXACTF = 16, /* # of exact MPS filters */
116
117 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
118 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
119 #endif
120 };
121
122 /*
123 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
124 * static and likely not to be useful in the long run. We really need to
125 * implement some form of persistent configuration which the firmware
126 * controls.
127 */
128 static unsigned int pfvfres_pmask(struct adapter *adapter,
129 unsigned int pf, unsigned int vf)
130 {
131 unsigned int portn, portvec;
132
133 /*
134 * Give PF's access to all of the ports.
135 */
136 if (vf == 0)
137 return FW_PFVF_CMD_PMASK_MASK;
138
139 /*
140 * For VFs, we'll assign them access to the ports based purely on the
141 * PF. We assign active ports in order, wrapping around if there are
142 * fewer active ports than PFs: e.g. active port[pf % nports].
143 * Unfortunately the adapter's port_info structs haven't been
144 * initialized yet so we have to compute this.
145 */
146 if (adapter->params.nports == 0)
147 return 0;
148
149 portn = pf % adapter->params.nports;
150 portvec = adapter->params.portvec;
151 for (;;) {
152 /*
153 * Isolate the lowest set bit in the port vector. If we're at
154 * the port number that we want, return that as the pmask.
155 * otherwise mask that bit out of the port vector and
156 * decrement our port number ...
157 */
158 unsigned int pmask = portvec ^ (portvec & (portvec-1));
159 if (portn == 0)
160 return pmask;
161 portn--;
162 portvec &= ~pmask;
163 }
164 /*NOTREACHED*/
165 }
166
167 enum {
168 MAX_TXQ_ENTRIES = 16384,
169 MAX_CTRL_TXQ_ENTRIES = 1024,
170 MAX_RSPQ_ENTRIES = 16384,
171 MAX_RX_BUFFERS = 16384,
172 MIN_TXQ_ENTRIES = 32,
173 MIN_CTRL_TXQ_ENTRIES = 32,
174 MIN_RSPQ_ENTRIES = 128,
175 MIN_FL_ENTRIES = 16
176 };
177
178 /* Host shadow copy of ingress filter entry. This is in host native format
179 * and doesn't match the ordering or bit order, etc. of the hardware of the
180 * firmware command. The use of bit-field structure elements is purely to
181 * remind ourselves of the field size limitations and save memory in the case
182 * where the filter table is large.
183 */
184 struct filter_entry {
185 /* Administrative fields for filter.
186 */
187 u32 valid:1; /* filter allocated and valid */
188 u32 locked:1; /* filter is administratively locked */
189
190 u32 pending:1; /* filter action is pending firmware reply */
191 u32 smtidx:8; /* Source MAC Table index for smac */
192 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
193
194 /* The filter itself. Most of this is a straight copy of information
195 * provided by the extended ioctl(). Some fields are translated to
196 * internal forms -- for instance the Ingress Queue ID passed in from
197 * the ioctl() is translated into the Absolute Ingress Queue ID.
198 */
199 struct ch_filter_specification fs;
200 };
201
202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
203 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
204 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
205
206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
207
208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
209 CH_DEVICE(0xa000, 0), /* PE10K */
210 CH_DEVICE(0x4001, -1),
211 CH_DEVICE(0x4002, -1),
212 CH_DEVICE(0x4003, -1),
213 CH_DEVICE(0x4004, -1),
214 CH_DEVICE(0x4005, -1),
215 CH_DEVICE(0x4006, -1),
216 CH_DEVICE(0x4007, -1),
217 CH_DEVICE(0x4008, -1),
218 CH_DEVICE(0x4009, -1),
219 CH_DEVICE(0x400a, -1),
220 CH_DEVICE(0x4401, 4),
221 CH_DEVICE(0x4402, 4),
222 CH_DEVICE(0x4403, 4),
223 CH_DEVICE(0x4404, 4),
224 CH_DEVICE(0x4405, 4),
225 CH_DEVICE(0x4406, 4),
226 CH_DEVICE(0x4407, 4),
227 CH_DEVICE(0x4408, 4),
228 CH_DEVICE(0x4409, 4),
229 CH_DEVICE(0x440a, 4),
230 CH_DEVICE(0x440d, 4),
231 CH_DEVICE(0x440e, 4),
232 CH_DEVICE(0x5001, 4),
233 CH_DEVICE(0x5002, 4),
234 CH_DEVICE(0x5003, 4),
235 CH_DEVICE(0x5004, 4),
236 CH_DEVICE(0x5005, 4),
237 CH_DEVICE(0x5006, 4),
238 CH_DEVICE(0x5007, 4),
239 CH_DEVICE(0x5008, 4),
240 CH_DEVICE(0x5009, 4),
241 CH_DEVICE(0x500A, 4),
242 CH_DEVICE(0x500B, 4),
243 CH_DEVICE(0x500C, 4),
244 CH_DEVICE(0x500D, 4),
245 CH_DEVICE(0x500E, 4),
246 CH_DEVICE(0x500F, 4),
247 CH_DEVICE(0x5010, 4),
248 CH_DEVICE(0x5011, 4),
249 CH_DEVICE(0x5012, 4),
250 CH_DEVICE(0x5013, 4),
251 CH_DEVICE(0x5401, 4),
252 CH_DEVICE(0x5402, 4),
253 CH_DEVICE(0x5403, 4),
254 CH_DEVICE(0x5404, 4),
255 CH_DEVICE(0x5405, 4),
256 CH_DEVICE(0x5406, 4),
257 CH_DEVICE(0x5407, 4),
258 CH_DEVICE(0x5408, 4),
259 CH_DEVICE(0x5409, 4),
260 CH_DEVICE(0x540A, 4),
261 CH_DEVICE(0x540B, 4),
262 CH_DEVICE(0x540C, 4),
263 CH_DEVICE(0x540D, 4),
264 CH_DEVICE(0x540E, 4),
265 CH_DEVICE(0x540F, 4),
266 CH_DEVICE(0x5410, 4),
267 CH_DEVICE(0x5411, 4),
268 CH_DEVICE(0x5412, 4),
269 CH_DEVICE(0x5413, 4),
270 { 0, }
271 };
272
273 #define FW_FNAME "cxgb4/t4fw.bin"
274 #define FW5_FNAME "cxgb4/t5fw.bin"
275 #define FW_CFNAME "cxgb4/t4-config.txt"
276 #define FW5_CFNAME "cxgb4/t5-config.txt"
277
278 MODULE_DESCRIPTION(DRV_DESC);
279 MODULE_AUTHOR("Chelsio Communications");
280 MODULE_LICENSE("Dual BSD/GPL");
281 MODULE_VERSION(DRV_VERSION);
282 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
283 MODULE_FIRMWARE(FW_FNAME);
284 MODULE_FIRMWARE(FW5_FNAME);
285
286 /*
287 * Normally we're willing to become the firmware's Master PF but will be happy
288 * if another PF has already become the Master and initialized the adapter.
289 * Setting "force_init" will cause this driver to forcibly establish itself as
290 * the Master PF and initialize the adapter.
291 */
292 static uint force_init;
293
294 module_param(force_init, uint, 0644);
295 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
296
297 /*
298 * Normally if the firmware we connect to has Configuration File support, we
299 * use that and only fall back to the old Driver-based initialization if the
300 * Configuration File fails for some reason. If force_old_init is set, then
301 * we'll always use the old Driver-based initialization sequence.
302 */
303 static uint force_old_init;
304
305 module_param(force_old_init, uint, 0644);
306 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
307
308 static int dflt_msg_enable = DFLT_MSG_ENABLE;
309
310 module_param(dflt_msg_enable, int, 0644);
311 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
312
313 /*
314 * The driver uses the best interrupt scheme available on a platform in the
315 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
316 * of these schemes the driver may consider as follows:
317 *
318 * msi = 2: choose from among all three options
319 * msi = 1: only consider MSI and INTx interrupts
320 * msi = 0: force INTx interrupts
321 */
322 static int msi = 2;
323
324 module_param(msi, int, 0644);
325 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
326
327 /*
328 * Queue interrupt hold-off timer values. Queues default to the first of these
329 * upon creation.
330 */
331 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
332
333 module_param_array(intr_holdoff, uint, NULL, 0644);
334 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
335 "0..4 in microseconds");
336
337 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
338
339 module_param_array(intr_cnt, uint, NULL, 0644);
340 MODULE_PARM_DESC(intr_cnt,
341 "thresholds 1..3 for queue interrupt packet counters");
342
343 /*
344 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
345 * offset by 2 bytes in order to have the IP headers line up on 4-byte
346 * boundaries. This is a requirement for many architectures which will throw
347 * a machine check fault if an attempt is made to access one of the 4-byte IP
348 * header fields on a non-4-byte boundary. And it's a major performance issue
349 * even on some architectures which allow it like some implementations of the
350 * x86 ISA. However, some architectures don't mind this and for some very
351 * edge-case performance sensitive applications (like forwarding large volumes
352 * of small packets), setting this DMA offset to 0 will decrease the number of
353 * PCI-E Bus transfers enough to measurably affect performance.
354 */
355 static int rx_dma_offset = 2;
356
357 static bool vf_acls;
358
359 #ifdef CONFIG_PCI_IOV
360 module_param(vf_acls, bool, 0644);
361 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
362
363 /* Configure the number of PCI-E Virtual Function which are to be instantiated
364 * on SR-IOV Capable Physical Functions.
365 */
366 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
367
368 module_param_array(num_vf, uint, NULL, 0644);
369 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
370 #endif
371
372 /*
373 * The filter TCAM has a fixed portion and a variable portion. The fixed
374 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
375 * ports. The variable portion is 36 bits which can include things like Exact
376 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
377 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
378 * far exceed the 36-bit budget for this "compressed" header portion of the
379 * filter. Thus, we have a scarce resource which must be carefully managed.
380 *
381 * By default we set this up to mostly match the set of filter matching
382 * capabilities of T3 but with accommodations for some of T4's more
383 * interesting features:
384 *
385 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
386 * [Inner] VLAN (17), Port (3), FCoE (1) }
387 */
388 enum {
389 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
390 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
391 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
392 };
393
394 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
395
396 module_param(tp_vlan_pri_map, uint, 0644);
397 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
398
399 static struct dentry *cxgb4_debugfs_root;
400
401 static LIST_HEAD(adapter_list);
402 static DEFINE_MUTEX(uld_mutex);
403 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
404 static const char *uld_str[] = { "RDMA", "iSCSI" };
405
406 static void link_report(struct net_device *dev)
407 {
408 if (!netif_carrier_ok(dev))
409 netdev_info(dev, "link down\n");
410 else {
411 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
412
413 const char *s = "10Mbps";
414 const struct port_info *p = netdev_priv(dev);
415
416 switch (p->link_cfg.speed) {
417 case SPEED_10000:
418 s = "10Gbps";
419 break;
420 case SPEED_1000:
421 s = "1000Mbps";
422 break;
423 case SPEED_100:
424 s = "100Mbps";
425 break;
426 }
427
428 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
429 fc[p->link_cfg.fc]);
430 }
431 }
432
433 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
434 {
435 struct net_device *dev = adapter->port[port_id];
436
437 /* Skip changes from disabled ports. */
438 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
439 if (link_stat)
440 netif_carrier_on(dev);
441 else
442 netif_carrier_off(dev);
443
444 link_report(dev);
445 }
446 }
447
448 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
449 {
450 static const char *mod_str[] = {
451 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
452 };
453
454 const struct net_device *dev = adap->port[port_id];
455 const struct port_info *pi = netdev_priv(dev);
456
457 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
458 netdev_info(dev, "port module unplugged\n");
459 else if (pi->mod_type < ARRAY_SIZE(mod_str))
460 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
461 }
462
463 /*
464 * Configure the exact and hash address filters to handle a port's multicast
465 * and secondary unicast MAC addresses.
466 */
467 static int set_addr_filters(const struct net_device *dev, bool sleep)
468 {
469 u64 mhash = 0;
470 u64 uhash = 0;
471 bool free = true;
472 u16 filt_idx[7];
473 const u8 *addr[7];
474 int ret, naddr = 0;
475 const struct netdev_hw_addr *ha;
476 int uc_cnt = netdev_uc_count(dev);
477 int mc_cnt = netdev_mc_count(dev);
478 const struct port_info *pi = netdev_priv(dev);
479 unsigned int mb = pi->adapter->fn;
480
481 /* first do the secondary unicast addresses */
482 netdev_for_each_uc_addr(ha, dev) {
483 addr[naddr++] = ha->addr;
484 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
485 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
486 naddr, addr, filt_idx, &uhash, sleep);
487 if (ret < 0)
488 return ret;
489
490 free = false;
491 naddr = 0;
492 }
493 }
494
495 /* next set up the multicast addresses */
496 netdev_for_each_mc_addr(ha, dev) {
497 addr[naddr++] = ha->addr;
498 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
499 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
500 naddr, addr, filt_idx, &mhash, sleep);
501 if (ret < 0)
502 return ret;
503
504 free = false;
505 naddr = 0;
506 }
507 }
508
509 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
510 uhash | mhash, sleep);
511 }
512
513 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
514 module_param(dbfifo_int_thresh, int, 0644);
515 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
516
517 /*
518 * usecs to sleep while draining the dbfifo
519 */
520 static int dbfifo_drain_delay = 1000;
521 module_param(dbfifo_drain_delay, int, 0644);
522 MODULE_PARM_DESC(dbfifo_drain_delay,
523 "usecs to sleep while draining the dbfifo");
524
525 /*
526 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
527 * If @mtu is -1 it is left unchanged.
528 */
529 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
530 {
531 int ret;
532 struct port_info *pi = netdev_priv(dev);
533
534 ret = set_addr_filters(dev, sleep_ok);
535 if (ret == 0)
536 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
537 (dev->flags & IFF_PROMISC) ? 1 : 0,
538 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
539 sleep_ok);
540 return ret;
541 }
542
543 static struct workqueue_struct *workq;
544
545 /**
546 * link_start - enable a port
547 * @dev: the port to enable
548 *
549 * Performs the MAC and PHY actions needed to enable a port.
550 */
551 static int link_start(struct net_device *dev)
552 {
553 int ret;
554 struct port_info *pi = netdev_priv(dev);
555 unsigned int mb = pi->adapter->fn;
556
557 /*
558 * We do not set address filters and promiscuity here, the stack does
559 * that step explicitly.
560 */
561 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
562 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
563 if (ret == 0) {
564 ret = t4_change_mac(pi->adapter, mb, pi->viid,
565 pi->xact_addr_filt, dev->dev_addr, true,
566 true);
567 if (ret >= 0) {
568 pi->xact_addr_filt = ret;
569 ret = 0;
570 }
571 }
572 if (ret == 0)
573 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
574 &pi->link_cfg);
575 if (ret == 0)
576 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
577 return ret;
578 }
579
580 /* Clear a filter and release any of its resources that we own. This also
581 * clears the filter's "pending" status.
582 */
583 static void clear_filter(struct adapter *adap, struct filter_entry *f)
584 {
585 /* If the new or old filter have loopback rewriteing rules then we'll
586 * need to free any existing Layer Two Table (L2T) entries of the old
587 * filter rule. The firmware will handle freeing up any Source MAC
588 * Table (SMT) entries used for rewriting Source MAC Addresses in
589 * loopback rules.
590 */
591 if (f->l2t)
592 cxgb4_l2t_release(f->l2t);
593
594 /* The zeroing of the filter rule below clears the filter valid,
595 * pending, locked flags, l2t pointer, etc. so it's all we need for
596 * this operation.
597 */
598 memset(f, 0, sizeof(*f));
599 }
600
601 /* Handle a filter write/deletion reply.
602 */
603 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
604 {
605 unsigned int idx = GET_TID(rpl);
606 unsigned int nidx = idx - adap->tids.ftid_base;
607 unsigned int ret;
608 struct filter_entry *f;
609
610 if (idx >= adap->tids.ftid_base && nidx <
611 (adap->tids.nftids + adap->tids.nsftids)) {
612 idx = nidx;
613 ret = GET_TCB_COOKIE(rpl->cookie);
614 f = &adap->tids.ftid_tab[idx];
615
616 if (ret == FW_FILTER_WR_FLT_DELETED) {
617 /* Clear the filter when we get confirmation from the
618 * hardware that the filter has been deleted.
619 */
620 clear_filter(adap, f);
621 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
622 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
623 idx);
624 clear_filter(adap, f);
625 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
626 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
627 f->pending = 0; /* asynchronous setup completed */
628 f->valid = 1;
629 } else {
630 /* Something went wrong. Issue a warning about the
631 * problem and clear everything out.
632 */
633 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
634 idx, ret);
635 clear_filter(adap, f);
636 }
637 }
638 }
639
640 /* Response queue handler for the FW event queue.
641 */
642 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
643 const struct pkt_gl *gl)
644 {
645 u8 opcode = ((const struct rss_header *)rsp)->opcode;
646
647 rsp++; /* skip RSS header */
648
649 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
650 */
651 if (unlikely(opcode == CPL_FW4_MSG &&
652 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
653 rsp++;
654 opcode = ((const struct rss_header *)rsp)->opcode;
655 rsp++;
656 if (opcode != CPL_SGE_EGR_UPDATE) {
657 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
658 , opcode);
659 goto out;
660 }
661 }
662
663 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
664 const struct cpl_sge_egr_update *p = (void *)rsp;
665 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
666 struct sge_txq *txq;
667
668 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
669 txq->restarts++;
670 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
671 struct sge_eth_txq *eq;
672
673 eq = container_of(txq, struct sge_eth_txq, q);
674 netif_tx_wake_queue(eq->txq);
675 } else {
676 struct sge_ofld_txq *oq;
677
678 oq = container_of(txq, struct sge_ofld_txq, q);
679 tasklet_schedule(&oq->qresume_tsk);
680 }
681 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
682 const struct cpl_fw6_msg *p = (void *)rsp;
683
684 if (p->type == 0)
685 t4_handle_fw_rpl(q->adap, p->data);
686 } else if (opcode == CPL_L2T_WRITE_RPL) {
687 const struct cpl_l2t_write_rpl *p = (void *)rsp;
688
689 do_l2t_write_rpl(q->adap, p);
690 } else if (opcode == CPL_SET_TCB_RPL) {
691 const struct cpl_set_tcb_rpl *p = (void *)rsp;
692
693 filter_rpl(q->adap, p);
694 } else
695 dev_err(q->adap->pdev_dev,
696 "unexpected CPL %#x on FW event queue\n", opcode);
697 out:
698 return 0;
699 }
700
701 /**
702 * uldrx_handler - response queue handler for ULD queues
703 * @q: the response queue that received the packet
704 * @rsp: the response queue descriptor holding the offload message
705 * @gl: the gather list of packet fragments
706 *
707 * Deliver an ingress offload packet to a ULD. All processing is done by
708 * the ULD, we just maintain statistics.
709 */
710 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
711 const struct pkt_gl *gl)
712 {
713 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
714
715 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
716 */
717 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
718 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
719 rsp += 2;
720
721 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
722 rxq->stats.nomem++;
723 return -1;
724 }
725 if (gl == NULL)
726 rxq->stats.imm++;
727 else if (gl == CXGB4_MSG_AN)
728 rxq->stats.an++;
729 else
730 rxq->stats.pkts++;
731 return 0;
732 }
733
734 static void disable_msi(struct adapter *adapter)
735 {
736 if (adapter->flags & USING_MSIX) {
737 pci_disable_msix(adapter->pdev);
738 adapter->flags &= ~USING_MSIX;
739 } else if (adapter->flags & USING_MSI) {
740 pci_disable_msi(adapter->pdev);
741 adapter->flags &= ~USING_MSI;
742 }
743 }
744
745 /*
746 * Interrupt handler for non-data events used with MSI-X.
747 */
748 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
749 {
750 struct adapter *adap = cookie;
751
752 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
753 if (v & PFSW) {
754 adap->swintr = 1;
755 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
756 }
757 t4_slow_intr_handler(adap);
758 return IRQ_HANDLED;
759 }
760
761 /*
762 * Name the MSI-X interrupts.
763 */
764 static void name_msix_vecs(struct adapter *adap)
765 {
766 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
767
768 /* non-data interrupts */
769 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
770
771 /* FW events */
772 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
773 adap->port[0]->name);
774
775 /* Ethernet queues */
776 for_each_port(adap, j) {
777 struct net_device *d = adap->port[j];
778 const struct port_info *pi = netdev_priv(d);
779
780 for (i = 0; i < pi->nqsets; i++, msi_idx++)
781 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
782 d->name, i);
783 }
784
785 /* offload queues */
786 for_each_ofldrxq(&adap->sge, i)
787 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
788 adap->port[0]->name, i);
789
790 for_each_rdmarxq(&adap->sge, i)
791 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
792 adap->port[0]->name, i);
793 }
794
795 static int request_msix_queue_irqs(struct adapter *adap)
796 {
797 struct sge *s = &adap->sge;
798 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2;
799
800 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
801 adap->msix_info[1].desc, &s->fw_evtq);
802 if (err)
803 return err;
804
805 for_each_ethrxq(s, ethqidx) {
806 err = request_irq(adap->msix_info[msi_index].vec,
807 t4_sge_intr_msix, 0,
808 adap->msix_info[msi_index].desc,
809 &s->ethrxq[ethqidx].rspq);
810 if (err)
811 goto unwind;
812 msi_index++;
813 }
814 for_each_ofldrxq(s, ofldqidx) {
815 err = request_irq(adap->msix_info[msi_index].vec,
816 t4_sge_intr_msix, 0,
817 adap->msix_info[msi_index].desc,
818 &s->ofldrxq[ofldqidx].rspq);
819 if (err)
820 goto unwind;
821 msi_index++;
822 }
823 for_each_rdmarxq(s, rdmaqidx) {
824 err = request_irq(adap->msix_info[msi_index].vec,
825 t4_sge_intr_msix, 0,
826 adap->msix_info[msi_index].desc,
827 &s->rdmarxq[rdmaqidx].rspq);
828 if (err)
829 goto unwind;
830 msi_index++;
831 }
832 return 0;
833
834 unwind:
835 while (--rdmaqidx >= 0)
836 free_irq(adap->msix_info[--msi_index].vec,
837 &s->rdmarxq[rdmaqidx].rspq);
838 while (--ofldqidx >= 0)
839 free_irq(adap->msix_info[--msi_index].vec,
840 &s->ofldrxq[ofldqidx].rspq);
841 while (--ethqidx >= 0)
842 free_irq(adap->msix_info[--msi_index].vec,
843 &s->ethrxq[ethqidx].rspq);
844 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
845 return err;
846 }
847
848 static void free_msix_queue_irqs(struct adapter *adap)
849 {
850 int i, msi_index = 2;
851 struct sge *s = &adap->sge;
852
853 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854 for_each_ethrxq(s, i)
855 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
856 for_each_ofldrxq(s, i)
857 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
858 for_each_rdmarxq(s, i)
859 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
860 }
861
862 /**
863 * write_rss - write the RSS table for a given port
864 * @pi: the port
865 * @queues: array of queue indices for RSS
866 *
867 * Sets up the portion of the HW RSS table for the port's VI to distribute
868 * packets to the Rx queues in @queues.
869 */
870 static int write_rss(const struct port_info *pi, const u16 *queues)
871 {
872 u16 *rss;
873 int i, err;
874 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
875
876 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877 if (!rss)
878 return -ENOMEM;
879
880 /* map the queue indices to queue ids */
881 for (i = 0; i < pi->rss_size; i++, queues++)
882 rss[i] = q[*queues].rspq.abs_id;
883
884 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
885 pi->rss_size, rss, pi->rss_size);
886 kfree(rss);
887 return err;
888 }
889
890 /**
891 * setup_rss - configure RSS
892 * @adap: the adapter
893 *
894 * Sets up RSS for each port.
895 */
896 static int setup_rss(struct adapter *adap)
897 {
898 int i, err;
899
900 for_each_port(adap, i) {
901 const struct port_info *pi = adap2pinfo(adap, i);
902
903 err = write_rss(pi, pi->rss);
904 if (err)
905 return err;
906 }
907 return 0;
908 }
909
910 /*
911 * Return the channel of the ingress queue with the given qid.
912 */
913 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
914 {
915 qid -= p->ingr_start;
916 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
917 }
918
919 /*
920 * Wait until all NAPI handlers are descheduled.
921 */
922 static void quiesce_rx(struct adapter *adap)
923 {
924 int i;
925
926 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
927 struct sge_rspq *q = adap->sge.ingr_map[i];
928
929 if (q && q->handler)
930 napi_disable(&q->napi);
931 }
932 }
933
934 /*
935 * Enable NAPI scheduling and interrupt generation for all Rx queues.
936 */
937 static void enable_rx(struct adapter *adap)
938 {
939 int i;
940
941 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
942 struct sge_rspq *q = adap->sge.ingr_map[i];
943
944 if (!q)
945 continue;
946 if (q->handler)
947 napi_enable(&q->napi);
948 /* 0-increment GTS to start the timer and enable interrupts */
949 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
950 SEINTARM(q->intr_params) |
951 INGRESSQID(q->cntxt_id));
952 }
953 }
954
955 /**
956 * setup_sge_queues - configure SGE Tx/Rx/response queues
957 * @adap: the adapter
958 *
959 * Determines how many sets of SGE queues to use and initializes them.
960 * We support multiple queue sets per port if we have MSI-X, otherwise
961 * just one queue set per port.
962 */
963 static int setup_sge_queues(struct adapter *adap)
964 {
965 int err, msi_idx, i, j;
966 struct sge *s = &adap->sge;
967
968 bitmap_zero(s->starving_fl, MAX_EGRQ);
969 bitmap_zero(s->txq_maperr, MAX_EGRQ);
970
971 if (adap->flags & USING_MSIX)
972 msi_idx = 1; /* vector 0 is for non-queue interrupts */
973 else {
974 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
975 NULL, NULL);
976 if (err)
977 return err;
978 msi_idx = -((int)s->intrq.abs_id + 1);
979 }
980
981 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
982 msi_idx, NULL, fwevtq_handler);
983 if (err) {
984 freeout: t4_free_sge_resources(adap);
985 return err;
986 }
987
988 for_each_port(adap, i) {
989 struct net_device *dev = adap->port[i];
990 struct port_info *pi = netdev_priv(dev);
991 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
992 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
993
994 for (j = 0; j < pi->nqsets; j++, q++) {
995 if (msi_idx > 0)
996 msi_idx++;
997 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
998 msi_idx, &q->fl,
999 t4_ethrx_handler);
1000 if (err)
1001 goto freeout;
1002 q->rspq.idx = j;
1003 memset(&q->stats, 0, sizeof(q->stats));
1004 }
1005 for (j = 0; j < pi->nqsets; j++, t++) {
1006 err = t4_sge_alloc_eth_txq(adap, t, dev,
1007 netdev_get_tx_queue(dev, j),
1008 s->fw_evtq.cntxt_id);
1009 if (err)
1010 goto freeout;
1011 }
1012 }
1013
1014 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1015 for_each_ofldrxq(s, i) {
1016 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1017 struct net_device *dev = adap->port[i / j];
1018
1019 if (msi_idx > 0)
1020 msi_idx++;
1021 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1022 &q->fl, uldrx_handler);
1023 if (err)
1024 goto freeout;
1025 memset(&q->stats, 0, sizeof(q->stats));
1026 s->ofld_rxq[i] = q->rspq.abs_id;
1027 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1028 s->fw_evtq.cntxt_id);
1029 if (err)
1030 goto freeout;
1031 }
1032
1033 for_each_rdmarxq(s, i) {
1034 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1035
1036 if (msi_idx > 0)
1037 msi_idx++;
1038 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1039 msi_idx, &q->fl, uldrx_handler);
1040 if (err)
1041 goto freeout;
1042 memset(&q->stats, 0, sizeof(q->stats));
1043 s->rdma_rxq[i] = q->rspq.abs_id;
1044 }
1045
1046 for_each_port(adap, i) {
1047 /*
1048 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1049 * have RDMA queues, and that's the right value.
1050 */
1051 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1052 s->fw_evtq.cntxt_id,
1053 s->rdmarxq[i].rspq.cntxt_id);
1054 if (err)
1055 goto freeout;
1056 }
1057
1058 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1059 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1060 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1061 return 0;
1062 }
1063
1064 /*
1065 * Returns 0 if new FW was successfully loaded, a positive errno if a load was
1066 * started but failed, and a negative errno if flash load couldn't start.
1067 */
1068 static int upgrade_fw(struct adapter *adap)
1069 {
1070 int ret;
1071 u32 vers, exp_major;
1072 const struct fw_hdr *hdr;
1073 const struct firmware *fw;
1074 struct device *dev = adap->pdev_dev;
1075 char *fw_file_name;
1076
1077 switch (CHELSIO_CHIP_VERSION(adap->chip)) {
1078 case CHELSIO_T4:
1079 fw_file_name = FW_FNAME;
1080 exp_major = FW_VERSION_MAJOR;
1081 break;
1082 case CHELSIO_T5:
1083 fw_file_name = FW5_FNAME;
1084 exp_major = FW_VERSION_MAJOR_T5;
1085 break;
1086 default:
1087 dev_err(dev, "Unsupported chip type, %x\n", adap->chip);
1088 return -EINVAL;
1089 }
1090
1091 ret = request_firmware(&fw, fw_file_name, dev);
1092 if (ret < 0) {
1093 dev_err(dev, "unable to load firmware image %s, error %d\n",
1094 fw_file_name, ret);
1095 return ret;
1096 }
1097
1098 hdr = (const struct fw_hdr *)fw->data;
1099 vers = ntohl(hdr->fw_ver);
1100 if (FW_HDR_FW_VER_MAJOR_GET(vers) != exp_major) {
1101 ret = -EINVAL; /* wrong major version, won't do */
1102 goto out;
1103 }
1104
1105 /*
1106 * If the flash FW is unusable or we found something newer, load it.
1107 */
1108 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != exp_major ||
1109 vers > adap->params.fw_vers) {
1110 dev_info(dev, "upgrading firmware ...\n");
1111 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size,
1112 /*force=*/false);
1113 if (!ret)
1114 dev_info(dev,
1115 "firmware upgraded to version %pI4 from %s\n",
1116 &hdr->fw_ver, fw_file_name);
1117 else
1118 dev_err(dev, "firmware upgrade failed! err=%d\n", -ret);
1119 } else {
1120 /*
1121 * Tell our caller that we didn't upgrade the firmware.
1122 */
1123 ret = -EINVAL;
1124 }
1125
1126 out: release_firmware(fw);
1127 return ret;
1128 }
1129
1130 /*
1131 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1132 * The allocated memory is cleared.
1133 */
1134 void *t4_alloc_mem(size_t size)
1135 {
1136 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1137
1138 if (!p)
1139 p = vzalloc(size);
1140 return p;
1141 }
1142
1143 /*
1144 * Free memory allocated through alloc_mem().
1145 */
1146 static void t4_free_mem(void *addr)
1147 {
1148 if (is_vmalloc_addr(addr))
1149 vfree(addr);
1150 else
1151 kfree(addr);
1152 }
1153
1154 /* Send a Work Request to write the filter at a specified index. We construct
1155 * a Firmware Filter Work Request to have the work done and put the indicated
1156 * filter into "pending" mode which will prevent any further actions against
1157 * it till we get a reply from the firmware on the completion status of the
1158 * request.
1159 */
1160 static int set_filter_wr(struct adapter *adapter, int fidx)
1161 {
1162 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1163 struct sk_buff *skb;
1164 struct fw_filter_wr *fwr;
1165 unsigned int ftid;
1166
1167 /* If the new filter requires loopback Destination MAC and/or VLAN
1168 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1169 * the filter.
1170 */
1171 if (f->fs.newdmac || f->fs.newvlan) {
1172 /* allocate L2T entry for new filter */
1173 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1174 if (f->l2t == NULL)
1175 return -EAGAIN;
1176 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1177 f->fs.eport, f->fs.dmac)) {
1178 cxgb4_l2t_release(f->l2t);
1179 f->l2t = NULL;
1180 return -ENOMEM;
1181 }
1182 }
1183
1184 ftid = adapter->tids.ftid_base + fidx;
1185
1186 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1187 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1188 memset(fwr, 0, sizeof(*fwr));
1189
1190 /* It would be nice to put most of the following in t4_hw.c but most
1191 * of the work is translating the cxgbtool ch_filter_specification
1192 * into the Work Request and the definition of that structure is
1193 * currently in cxgbtool.h which isn't appropriate to pull into the
1194 * common code. We may eventually try to come up with a more neutral
1195 * filter specification structure but for now it's easiest to simply
1196 * put this fairly direct code in line ...
1197 */
1198 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1199 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1200 fwr->tid_to_iq =
1201 htonl(V_FW_FILTER_WR_TID(ftid) |
1202 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1203 V_FW_FILTER_WR_NOREPLY(0) |
1204 V_FW_FILTER_WR_IQ(f->fs.iq));
1205 fwr->del_filter_to_l2tix =
1206 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1207 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1208 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1209 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1210 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1211 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1212 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1213 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1214 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1215 f->fs.newvlan == VLAN_REWRITE) |
1216 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1217 f->fs.newvlan == VLAN_REWRITE) |
1218 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1219 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1220 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1221 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1222 fwr->ethtype = htons(f->fs.val.ethtype);
1223 fwr->ethtypem = htons(f->fs.mask.ethtype);
1224 fwr->frag_to_ovlan_vldm =
1225 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1226 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1227 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1228 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1229 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1230 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1231 fwr->smac_sel = 0;
1232 fwr->rx_chan_rx_rpl_iq =
1233 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1234 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1235 fwr->maci_to_matchtypem =
1236 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1237 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1238 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1239 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1240 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1241 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1242 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1243 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1244 fwr->ptcl = f->fs.val.proto;
1245 fwr->ptclm = f->fs.mask.proto;
1246 fwr->ttyp = f->fs.val.tos;
1247 fwr->ttypm = f->fs.mask.tos;
1248 fwr->ivlan = htons(f->fs.val.ivlan);
1249 fwr->ivlanm = htons(f->fs.mask.ivlan);
1250 fwr->ovlan = htons(f->fs.val.ovlan);
1251 fwr->ovlanm = htons(f->fs.mask.ovlan);
1252 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1253 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1254 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1255 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1256 fwr->lp = htons(f->fs.val.lport);
1257 fwr->lpm = htons(f->fs.mask.lport);
1258 fwr->fp = htons(f->fs.val.fport);
1259 fwr->fpm = htons(f->fs.mask.fport);
1260 if (f->fs.newsmac)
1261 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1262
1263 /* Mark the filter as "pending" and ship off the Filter Work Request.
1264 * When we get the Work Request Reply we'll clear the pending status.
1265 */
1266 f->pending = 1;
1267 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1268 t4_ofld_send(adapter, skb);
1269 return 0;
1270 }
1271
1272 /* Delete the filter at a specified index.
1273 */
1274 static int del_filter_wr(struct adapter *adapter, int fidx)
1275 {
1276 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1277 struct sk_buff *skb;
1278 struct fw_filter_wr *fwr;
1279 unsigned int len, ftid;
1280
1281 len = sizeof(*fwr);
1282 ftid = adapter->tids.ftid_base + fidx;
1283
1284 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1285 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1286 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1287
1288 /* Mark the filter as "pending" and ship off the Filter Work Request.
1289 * When we get the Work Request Reply we'll clear the pending status.
1290 */
1291 f->pending = 1;
1292 t4_mgmt_tx(adapter, skb);
1293 return 0;
1294 }
1295
1296 static inline int is_offload(const struct adapter *adap)
1297 {
1298 return adap->params.offload;
1299 }
1300
1301 /*
1302 * Implementation of ethtool operations.
1303 */
1304
1305 static u32 get_msglevel(struct net_device *dev)
1306 {
1307 return netdev2adap(dev)->msg_enable;
1308 }
1309
1310 static void set_msglevel(struct net_device *dev, u32 val)
1311 {
1312 netdev2adap(dev)->msg_enable = val;
1313 }
1314
1315 static char stats_strings[][ETH_GSTRING_LEN] = {
1316 "TxOctetsOK ",
1317 "TxFramesOK ",
1318 "TxBroadcastFrames ",
1319 "TxMulticastFrames ",
1320 "TxUnicastFrames ",
1321 "TxErrorFrames ",
1322
1323 "TxFrames64 ",
1324 "TxFrames65To127 ",
1325 "TxFrames128To255 ",
1326 "TxFrames256To511 ",
1327 "TxFrames512To1023 ",
1328 "TxFrames1024To1518 ",
1329 "TxFrames1519ToMax ",
1330
1331 "TxFramesDropped ",
1332 "TxPauseFrames ",
1333 "TxPPP0Frames ",
1334 "TxPPP1Frames ",
1335 "TxPPP2Frames ",
1336 "TxPPP3Frames ",
1337 "TxPPP4Frames ",
1338 "TxPPP5Frames ",
1339 "TxPPP6Frames ",
1340 "TxPPP7Frames ",
1341
1342 "RxOctetsOK ",
1343 "RxFramesOK ",
1344 "RxBroadcastFrames ",
1345 "RxMulticastFrames ",
1346 "RxUnicastFrames ",
1347
1348 "RxFramesTooLong ",
1349 "RxJabberErrors ",
1350 "RxFCSErrors ",
1351 "RxLengthErrors ",
1352 "RxSymbolErrors ",
1353 "RxRuntFrames ",
1354
1355 "RxFrames64 ",
1356 "RxFrames65To127 ",
1357 "RxFrames128To255 ",
1358 "RxFrames256To511 ",
1359 "RxFrames512To1023 ",
1360 "RxFrames1024To1518 ",
1361 "RxFrames1519ToMax ",
1362
1363 "RxPauseFrames ",
1364 "RxPPP0Frames ",
1365 "RxPPP1Frames ",
1366 "RxPPP2Frames ",
1367 "RxPPP3Frames ",
1368 "RxPPP4Frames ",
1369 "RxPPP5Frames ",
1370 "RxPPP6Frames ",
1371 "RxPPP7Frames ",
1372
1373 "RxBG0FramesDropped ",
1374 "RxBG1FramesDropped ",
1375 "RxBG2FramesDropped ",
1376 "RxBG3FramesDropped ",
1377 "RxBG0FramesTrunc ",
1378 "RxBG1FramesTrunc ",
1379 "RxBG2FramesTrunc ",
1380 "RxBG3FramesTrunc ",
1381
1382 "TSO ",
1383 "TxCsumOffload ",
1384 "RxCsumGood ",
1385 "VLANextractions ",
1386 "VLANinsertions ",
1387 "GROpackets ",
1388 "GROmerged ",
1389 "WriteCoalSuccess ",
1390 "WriteCoalFail ",
1391 };
1392
1393 static int get_sset_count(struct net_device *dev, int sset)
1394 {
1395 switch (sset) {
1396 case ETH_SS_STATS:
1397 return ARRAY_SIZE(stats_strings);
1398 default:
1399 return -EOPNOTSUPP;
1400 }
1401 }
1402
1403 #define T4_REGMAP_SIZE (160 * 1024)
1404 #define T5_REGMAP_SIZE (332 * 1024)
1405
1406 static int get_regs_len(struct net_device *dev)
1407 {
1408 struct adapter *adap = netdev2adap(dev);
1409 if (is_t4(adap->chip))
1410 return T4_REGMAP_SIZE;
1411 else
1412 return T5_REGMAP_SIZE;
1413 }
1414
1415 static int get_eeprom_len(struct net_device *dev)
1416 {
1417 return EEPROMSIZE;
1418 }
1419
1420 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1421 {
1422 struct adapter *adapter = netdev2adap(dev);
1423
1424 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1425 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1426 strlcpy(info->bus_info, pci_name(adapter->pdev),
1427 sizeof(info->bus_info));
1428
1429 if (adapter->params.fw_vers)
1430 snprintf(info->fw_version, sizeof(info->fw_version),
1431 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1432 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1433 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1434 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1435 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1436 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1437 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1438 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1439 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1440 }
1441
1442 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1443 {
1444 if (stringset == ETH_SS_STATS)
1445 memcpy(data, stats_strings, sizeof(stats_strings));
1446 }
1447
1448 /*
1449 * port stats maintained per queue of the port. They should be in the same
1450 * order as in stats_strings above.
1451 */
1452 struct queue_port_stats {
1453 u64 tso;
1454 u64 tx_csum;
1455 u64 rx_csum;
1456 u64 vlan_ex;
1457 u64 vlan_ins;
1458 u64 gro_pkts;
1459 u64 gro_merged;
1460 };
1461
1462 static void collect_sge_port_stats(const struct adapter *adap,
1463 const struct port_info *p, struct queue_port_stats *s)
1464 {
1465 int i;
1466 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1467 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1468
1469 memset(s, 0, sizeof(*s));
1470 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1471 s->tso += tx->tso;
1472 s->tx_csum += tx->tx_cso;
1473 s->rx_csum += rx->stats.rx_cso;
1474 s->vlan_ex += rx->stats.vlan_ex;
1475 s->vlan_ins += tx->vlan_ins;
1476 s->gro_pkts += rx->stats.lro_pkts;
1477 s->gro_merged += rx->stats.lro_merged;
1478 }
1479 }
1480
1481 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1482 u64 *data)
1483 {
1484 struct port_info *pi = netdev_priv(dev);
1485 struct adapter *adapter = pi->adapter;
1486 u32 val1, val2;
1487
1488 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1489
1490 data += sizeof(struct port_stats) / sizeof(u64);
1491 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1492 data += sizeof(struct queue_port_stats) / sizeof(u64);
1493 if (!is_t4(adapter->chip)) {
1494 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1495 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1496 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1497 *data = val1 - val2;
1498 data++;
1499 *data = val2;
1500 data++;
1501 } else {
1502 memset(data, 0, 2 * sizeof(u64));
1503 *data += 2;
1504 }
1505 }
1506
1507 /*
1508 * Return a version number to identify the type of adapter. The scheme is:
1509 * - bits 0..9: chip version
1510 * - bits 10..15: chip revision
1511 * - bits 16..23: register dump version
1512 */
1513 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1514 {
1515 return CHELSIO_CHIP_VERSION(ap->chip) |
1516 (CHELSIO_CHIP_RELEASE(ap->chip) << 10) | (1 << 16);
1517 }
1518
1519 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1520 unsigned int end)
1521 {
1522 u32 *p = buf + start;
1523
1524 for ( ; start <= end; start += sizeof(u32))
1525 *p++ = t4_read_reg(ap, start);
1526 }
1527
1528 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1529 void *buf)
1530 {
1531 static const unsigned int t4_reg_ranges[] = {
1532 0x1008, 0x1108,
1533 0x1180, 0x11b4,
1534 0x11fc, 0x123c,
1535 0x1300, 0x173c,
1536 0x1800, 0x18fc,
1537 0x3000, 0x30d8,
1538 0x30e0, 0x5924,
1539 0x5960, 0x59d4,
1540 0x5a00, 0x5af8,
1541 0x6000, 0x6098,
1542 0x6100, 0x6150,
1543 0x6200, 0x6208,
1544 0x6240, 0x6248,
1545 0x6280, 0x6338,
1546 0x6370, 0x638c,
1547 0x6400, 0x643c,
1548 0x6500, 0x6524,
1549 0x6a00, 0x6a38,
1550 0x6a60, 0x6a78,
1551 0x6b00, 0x6b84,
1552 0x6bf0, 0x6c84,
1553 0x6cf0, 0x6d84,
1554 0x6df0, 0x6e84,
1555 0x6ef0, 0x6f84,
1556 0x6ff0, 0x7084,
1557 0x70f0, 0x7184,
1558 0x71f0, 0x7284,
1559 0x72f0, 0x7384,
1560 0x73f0, 0x7450,
1561 0x7500, 0x7530,
1562 0x7600, 0x761c,
1563 0x7680, 0x76cc,
1564 0x7700, 0x7798,
1565 0x77c0, 0x77fc,
1566 0x7900, 0x79fc,
1567 0x7b00, 0x7c38,
1568 0x7d00, 0x7efc,
1569 0x8dc0, 0x8e1c,
1570 0x8e30, 0x8e78,
1571 0x8ea0, 0x8f6c,
1572 0x8fc0, 0x9074,
1573 0x90fc, 0x90fc,
1574 0x9400, 0x9458,
1575 0x9600, 0x96bc,
1576 0x9800, 0x9808,
1577 0x9820, 0x983c,
1578 0x9850, 0x9864,
1579 0x9c00, 0x9c6c,
1580 0x9c80, 0x9cec,
1581 0x9d00, 0x9d6c,
1582 0x9d80, 0x9dec,
1583 0x9e00, 0x9e6c,
1584 0x9e80, 0x9eec,
1585 0x9f00, 0x9f6c,
1586 0x9f80, 0x9fec,
1587 0xd004, 0xd03c,
1588 0xdfc0, 0xdfe0,
1589 0xe000, 0xea7c,
1590 0xf000, 0x11190,
1591 0x19040, 0x1906c,
1592 0x19078, 0x19080,
1593 0x1908c, 0x19124,
1594 0x19150, 0x191b0,
1595 0x191d0, 0x191e8,
1596 0x19238, 0x1924c,
1597 0x193f8, 0x19474,
1598 0x19490, 0x194f8,
1599 0x19800, 0x19f30,
1600 0x1a000, 0x1a06c,
1601 0x1a0b0, 0x1a120,
1602 0x1a128, 0x1a138,
1603 0x1a190, 0x1a1c4,
1604 0x1a1fc, 0x1a1fc,
1605 0x1e040, 0x1e04c,
1606 0x1e284, 0x1e28c,
1607 0x1e2c0, 0x1e2c0,
1608 0x1e2e0, 0x1e2e0,
1609 0x1e300, 0x1e384,
1610 0x1e3c0, 0x1e3c8,
1611 0x1e440, 0x1e44c,
1612 0x1e684, 0x1e68c,
1613 0x1e6c0, 0x1e6c0,
1614 0x1e6e0, 0x1e6e0,
1615 0x1e700, 0x1e784,
1616 0x1e7c0, 0x1e7c8,
1617 0x1e840, 0x1e84c,
1618 0x1ea84, 0x1ea8c,
1619 0x1eac0, 0x1eac0,
1620 0x1eae0, 0x1eae0,
1621 0x1eb00, 0x1eb84,
1622 0x1ebc0, 0x1ebc8,
1623 0x1ec40, 0x1ec4c,
1624 0x1ee84, 0x1ee8c,
1625 0x1eec0, 0x1eec0,
1626 0x1eee0, 0x1eee0,
1627 0x1ef00, 0x1ef84,
1628 0x1efc0, 0x1efc8,
1629 0x1f040, 0x1f04c,
1630 0x1f284, 0x1f28c,
1631 0x1f2c0, 0x1f2c0,
1632 0x1f2e0, 0x1f2e0,
1633 0x1f300, 0x1f384,
1634 0x1f3c0, 0x1f3c8,
1635 0x1f440, 0x1f44c,
1636 0x1f684, 0x1f68c,
1637 0x1f6c0, 0x1f6c0,
1638 0x1f6e0, 0x1f6e0,
1639 0x1f700, 0x1f784,
1640 0x1f7c0, 0x1f7c8,
1641 0x1f840, 0x1f84c,
1642 0x1fa84, 0x1fa8c,
1643 0x1fac0, 0x1fac0,
1644 0x1fae0, 0x1fae0,
1645 0x1fb00, 0x1fb84,
1646 0x1fbc0, 0x1fbc8,
1647 0x1fc40, 0x1fc4c,
1648 0x1fe84, 0x1fe8c,
1649 0x1fec0, 0x1fec0,
1650 0x1fee0, 0x1fee0,
1651 0x1ff00, 0x1ff84,
1652 0x1ffc0, 0x1ffc8,
1653 0x20000, 0x2002c,
1654 0x20100, 0x2013c,
1655 0x20190, 0x201c8,
1656 0x20200, 0x20318,
1657 0x20400, 0x20528,
1658 0x20540, 0x20614,
1659 0x21000, 0x21040,
1660 0x2104c, 0x21060,
1661 0x210c0, 0x210ec,
1662 0x21200, 0x21268,
1663 0x21270, 0x21284,
1664 0x212fc, 0x21388,
1665 0x21400, 0x21404,
1666 0x21500, 0x21518,
1667 0x2152c, 0x2153c,
1668 0x21550, 0x21554,
1669 0x21600, 0x21600,
1670 0x21608, 0x21628,
1671 0x21630, 0x2163c,
1672 0x21700, 0x2171c,
1673 0x21780, 0x2178c,
1674 0x21800, 0x21c38,
1675 0x21c80, 0x21d7c,
1676 0x21e00, 0x21e04,
1677 0x22000, 0x2202c,
1678 0x22100, 0x2213c,
1679 0x22190, 0x221c8,
1680 0x22200, 0x22318,
1681 0x22400, 0x22528,
1682 0x22540, 0x22614,
1683 0x23000, 0x23040,
1684 0x2304c, 0x23060,
1685 0x230c0, 0x230ec,
1686 0x23200, 0x23268,
1687 0x23270, 0x23284,
1688 0x232fc, 0x23388,
1689 0x23400, 0x23404,
1690 0x23500, 0x23518,
1691 0x2352c, 0x2353c,
1692 0x23550, 0x23554,
1693 0x23600, 0x23600,
1694 0x23608, 0x23628,
1695 0x23630, 0x2363c,
1696 0x23700, 0x2371c,
1697 0x23780, 0x2378c,
1698 0x23800, 0x23c38,
1699 0x23c80, 0x23d7c,
1700 0x23e00, 0x23e04,
1701 0x24000, 0x2402c,
1702 0x24100, 0x2413c,
1703 0x24190, 0x241c8,
1704 0x24200, 0x24318,
1705 0x24400, 0x24528,
1706 0x24540, 0x24614,
1707 0x25000, 0x25040,
1708 0x2504c, 0x25060,
1709 0x250c0, 0x250ec,
1710 0x25200, 0x25268,
1711 0x25270, 0x25284,
1712 0x252fc, 0x25388,
1713 0x25400, 0x25404,
1714 0x25500, 0x25518,
1715 0x2552c, 0x2553c,
1716 0x25550, 0x25554,
1717 0x25600, 0x25600,
1718 0x25608, 0x25628,
1719 0x25630, 0x2563c,
1720 0x25700, 0x2571c,
1721 0x25780, 0x2578c,
1722 0x25800, 0x25c38,
1723 0x25c80, 0x25d7c,
1724 0x25e00, 0x25e04,
1725 0x26000, 0x2602c,
1726 0x26100, 0x2613c,
1727 0x26190, 0x261c8,
1728 0x26200, 0x26318,
1729 0x26400, 0x26528,
1730 0x26540, 0x26614,
1731 0x27000, 0x27040,
1732 0x2704c, 0x27060,
1733 0x270c0, 0x270ec,
1734 0x27200, 0x27268,
1735 0x27270, 0x27284,
1736 0x272fc, 0x27388,
1737 0x27400, 0x27404,
1738 0x27500, 0x27518,
1739 0x2752c, 0x2753c,
1740 0x27550, 0x27554,
1741 0x27600, 0x27600,
1742 0x27608, 0x27628,
1743 0x27630, 0x2763c,
1744 0x27700, 0x2771c,
1745 0x27780, 0x2778c,
1746 0x27800, 0x27c38,
1747 0x27c80, 0x27d7c,
1748 0x27e00, 0x27e04
1749 };
1750
1751 static const unsigned int t5_reg_ranges[] = {
1752 0x1008, 0x1148,
1753 0x1180, 0x11b4,
1754 0x11fc, 0x123c,
1755 0x1280, 0x173c,
1756 0x1800, 0x18fc,
1757 0x3000, 0x3028,
1758 0x3060, 0x30d8,
1759 0x30e0, 0x30fc,
1760 0x3140, 0x357c,
1761 0x35a8, 0x35cc,
1762 0x35ec, 0x35ec,
1763 0x3600, 0x5624,
1764 0x56cc, 0x575c,
1765 0x580c, 0x5814,
1766 0x5890, 0x58bc,
1767 0x5940, 0x59dc,
1768 0x59fc, 0x5a18,
1769 0x5a60, 0x5a9c,
1770 0x5b9c, 0x5bfc,
1771 0x6000, 0x6040,
1772 0x6058, 0x614c,
1773 0x7700, 0x7798,
1774 0x77c0, 0x78fc,
1775 0x7b00, 0x7c54,
1776 0x7d00, 0x7efc,
1777 0x8dc0, 0x8de0,
1778 0x8df8, 0x8e84,
1779 0x8ea0, 0x8f84,
1780 0x8fc0, 0x90f8,
1781 0x9400, 0x9470,
1782 0x9600, 0x96f4,
1783 0x9800, 0x9808,
1784 0x9820, 0x983c,
1785 0x9850, 0x9864,
1786 0x9c00, 0x9c6c,
1787 0x9c80, 0x9cec,
1788 0x9d00, 0x9d6c,
1789 0x9d80, 0x9dec,
1790 0x9e00, 0x9e6c,
1791 0x9e80, 0x9eec,
1792 0x9f00, 0x9f6c,
1793 0x9f80, 0xa020,
1794 0xd004, 0xd03c,
1795 0xdfc0, 0xdfe0,
1796 0xe000, 0x11088,
1797 0x1109c, 0x1117c,
1798 0x11190, 0x11204,
1799 0x19040, 0x1906c,
1800 0x19078, 0x19080,
1801 0x1908c, 0x19124,
1802 0x19150, 0x191b0,
1803 0x191d0, 0x191e8,
1804 0x19238, 0x19290,
1805 0x193f8, 0x19474,
1806 0x19490, 0x194cc,
1807 0x194f0, 0x194f8,
1808 0x19c00, 0x19c60,
1809 0x19c94, 0x19e10,
1810 0x19e50, 0x19f34,
1811 0x19f40, 0x19f50,
1812 0x19f90, 0x19fe4,
1813 0x1a000, 0x1a06c,
1814 0x1a0b0, 0x1a120,
1815 0x1a128, 0x1a138,
1816 0x1a190, 0x1a1c4,
1817 0x1a1fc, 0x1a1fc,
1818 0x1e008, 0x1e00c,
1819 0x1e040, 0x1e04c,
1820 0x1e284, 0x1e290,
1821 0x1e2c0, 0x1e2c0,
1822 0x1e2e0, 0x1e2e0,
1823 0x1e300, 0x1e384,
1824 0x1e3c0, 0x1e3c8,
1825 0x1e408, 0x1e40c,
1826 0x1e440, 0x1e44c,
1827 0x1e684, 0x1e690,
1828 0x1e6c0, 0x1e6c0,
1829 0x1e6e0, 0x1e6e0,
1830 0x1e700, 0x1e784,
1831 0x1e7c0, 0x1e7c8,
1832 0x1e808, 0x1e80c,
1833 0x1e840, 0x1e84c,
1834 0x1ea84, 0x1ea90,
1835 0x1eac0, 0x1eac0,
1836 0x1eae0, 0x1eae0,
1837 0x1eb00, 0x1eb84,
1838 0x1ebc0, 0x1ebc8,
1839 0x1ec08, 0x1ec0c,
1840 0x1ec40, 0x1ec4c,
1841 0x1ee84, 0x1ee90,
1842 0x1eec0, 0x1eec0,
1843 0x1eee0, 0x1eee0,
1844 0x1ef00, 0x1ef84,
1845 0x1efc0, 0x1efc8,
1846 0x1f008, 0x1f00c,
1847 0x1f040, 0x1f04c,
1848 0x1f284, 0x1f290,
1849 0x1f2c0, 0x1f2c0,
1850 0x1f2e0, 0x1f2e0,
1851 0x1f300, 0x1f384,
1852 0x1f3c0, 0x1f3c8,
1853 0x1f408, 0x1f40c,
1854 0x1f440, 0x1f44c,
1855 0x1f684, 0x1f690,
1856 0x1f6c0, 0x1f6c0,
1857 0x1f6e0, 0x1f6e0,
1858 0x1f700, 0x1f784,
1859 0x1f7c0, 0x1f7c8,
1860 0x1f808, 0x1f80c,
1861 0x1f840, 0x1f84c,
1862 0x1fa84, 0x1fa90,
1863 0x1fac0, 0x1fac0,
1864 0x1fae0, 0x1fae0,
1865 0x1fb00, 0x1fb84,
1866 0x1fbc0, 0x1fbc8,
1867 0x1fc08, 0x1fc0c,
1868 0x1fc40, 0x1fc4c,
1869 0x1fe84, 0x1fe90,
1870 0x1fec0, 0x1fec0,
1871 0x1fee0, 0x1fee0,
1872 0x1ff00, 0x1ff84,
1873 0x1ffc0, 0x1ffc8,
1874 0x30000, 0x30030,
1875 0x30100, 0x30144,
1876 0x30190, 0x301d0,
1877 0x30200, 0x30318,
1878 0x30400, 0x3052c,
1879 0x30540, 0x3061c,
1880 0x30800, 0x30834,
1881 0x308c0, 0x30908,
1882 0x30910, 0x309ac,
1883 0x30a00, 0x30a04,
1884 0x30a0c, 0x30a2c,
1885 0x30a44, 0x30a50,
1886 0x30a74, 0x30c24,
1887 0x30d08, 0x30d14,
1888 0x30d1c, 0x30d20,
1889 0x30d3c, 0x30d50,
1890 0x31200, 0x3120c,
1891 0x31220, 0x31220,
1892 0x31240, 0x31240,
1893 0x31600, 0x31600,
1894 0x31608, 0x3160c,
1895 0x31a00, 0x31a1c,
1896 0x31e04, 0x31e20,
1897 0x31e38, 0x31e3c,
1898 0x31e80, 0x31e80,
1899 0x31e88, 0x31ea8,
1900 0x31eb0, 0x31eb4,
1901 0x31ec8, 0x31ed4,
1902 0x31fb8, 0x32004,
1903 0x32208, 0x3223c,
1904 0x32600, 0x32630,
1905 0x32a00, 0x32abc,
1906 0x32b00, 0x32b70,
1907 0x33000, 0x33048,
1908 0x33060, 0x3309c,
1909 0x330f0, 0x33148,
1910 0x33160, 0x3319c,
1911 0x331f0, 0x332e4,
1912 0x332f8, 0x333e4,
1913 0x333f8, 0x33448,
1914 0x33460, 0x3349c,
1915 0x334f0, 0x33548,
1916 0x33560, 0x3359c,
1917 0x335f0, 0x336e4,
1918 0x336f8, 0x337e4,
1919 0x337f8, 0x337fc,
1920 0x33814, 0x33814,
1921 0x3382c, 0x3382c,
1922 0x33880, 0x3388c,
1923 0x338e8, 0x338ec,
1924 0x33900, 0x33948,
1925 0x33960, 0x3399c,
1926 0x339f0, 0x33ae4,
1927 0x33af8, 0x33b10,
1928 0x33b28, 0x33b28,
1929 0x33b3c, 0x33b50,
1930 0x33bf0, 0x33c10,
1931 0x33c28, 0x33c28,
1932 0x33c3c, 0x33c50,
1933 0x33cf0, 0x33cfc,
1934 0x34000, 0x34030,
1935 0x34100, 0x34144,
1936 0x34190, 0x341d0,
1937 0x34200, 0x34318,
1938 0x34400, 0x3452c,
1939 0x34540, 0x3461c,
1940 0x34800, 0x34834,
1941 0x348c0, 0x34908,
1942 0x34910, 0x349ac,
1943 0x34a00, 0x34a04,
1944 0x34a0c, 0x34a2c,
1945 0x34a44, 0x34a50,
1946 0x34a74, 0x34c24,
1947 0x34d08, 0x34d14,
1948 0x34d1c, 0x34d20,
1949 0x34d3c, 0x34d50,
1950 0x35200, 0x3520c,
1951 0x35220, 0x35220,
1952 0x35240, 0x35240,
1953 0x35600, 0x35600,
1954 0x35608, 0x3560c,
1955 0x35a00, 0x35a1c,
1956 0x35e04, 0x35e20,
1957 0x35e38, 0x35e3c,
1958 0x35e80, 0x35e80,
1959 0x35e88, 0x35ea8,
1960 0x35eb0, 0x35eb4,
1961 0x35ec8, 0x35ed4,
1962 0x35fb8, 0x36004,
1963 0x36208, 0x3623c,
1964 0x36600, 0x36630,
1965 0x36a00, 0x36abc,
1966 0x36b00, 0x36b70,
1967 0x37000, 0x37048,
1968 0x37060, 0x3709c,
1969 0x370f0, 0x37148,
1970 0x37160, 0x3719c,
1971 0x371f0, 0x372e4,
1972 0x372f8, 0x373e4,
1973 0x373f8, 0x37448,
1974 0x37460, 0x3749c,
1975 0x374f0, 0x37548,
1976 0x37560, 0x3759c,
1977 0x375f0, 0x376e4,
1978 0x376f8, 0x377e4,
1979 0x377f8, 0x377fc,
1980 0x37814, 0x37814,
1981 0x3782c, 0x3782c,
1982 0x37880, 0x3788c,
1983 0x378e8, 0x378ec,
1984 0x37900, 0x37948,
1985 0x37960, 0x3799c,
1986 0x379f0, 0x37ae4,
1987 0x37af8, 0x37b10,
1988 0x37b28, 0x37b28,
1989 0x37b3c, 0x37b50,
1990 0x37bf0, 0x37c10,
1991 0x37c28, 0x37c28,
1992 0x37c3c, 0x37c50,
1993 0x37cf0, 0x37cfc,
1994 0x38000, 0x38030,
1995 0x38100, 0x38144,
1996 0x38190, 0x381d0,
1997 0x38200, 0x38318,
1998 0x38400, 0x3852c,
1999 0x38540, 0x3861c,
2000 0x38800, 0x38834,
2001 0x388c0, 0x38908,
2002 0x38910, 0x389ac,
2003 0x38a00, 0x38a04,
2004 0x38a0c, 0x38a2c,
2005 0x38a44, 0x38a50,
2006 0x38a74, 0x38c24,
2007 0x38d08, 0x38d14,
2008 0x38d1c, 0x38d20,
2009 0x38d3c, 0x38d50,
2010 0x39200, 0x3920c,
2011 0x39220, 0x39220,
2012 0x39240, 0x39240,
2013 0x39600, 0x39600,
2014 0x39608, 0x3960c,
2015 0x39a00, 0x39a1c,
2016 0x39e04, 0x39e20,
2017 0x39e38, 0x39e3c,
2018 0x39e80, 0x39e80,
2019 0x39e88, 0x39ea8,
2020 0x39eb0, 0x39eb4,
2021 0x39ec8, 0x39ed4,
2022 0x39fb8, 0x3a004,
2023 0x3a208, 0x3a23c,
2024 0x3a600, 0x3a630,
2025 0x3aa00, 0x3aabc,
2026 0x3ab00, 0x3ab70,
2027 0x3b000, 0x3b048,
2028 0x3b060, 0x3b09c,
2029 0x3b0f0, 0x3b148,
2030 0x3b160, 0x3b19c,
2031 0x3b1f0, 0x3b2e4,
2032 0x3b2f8, 0x3b3e4,
2033 0x3b3f8, 0x3b448,
2034 0x3b460, 0x3b49c,
2035 0x3b4f0, 0x3b548,
2036 0x3b560, 0x3b59c,
2037 0x3b5f0, 0x3b6e4,
2038 0x3b6f8, 0x3b7e4,
2039 0x3b7f8, 0x3b7fc,
2040 0x3b814, 0x3b814,
2041 0x3b82c, 0x3b82c,
2042 0x3b880, 0x3b88c,
2043 0x3b8e8, 0x3b8ec,
2044 0x3b900, 0x3b948,
2045 0x3b960, 0x3b99c,
2046 0x3b9f0, 0x3bae4,
2047 0x3baf8, 0x3bb10,
2048 0x3bb28, 0x3bb28,
2049 0x3bb3c, 0x3bb50,
2050 0x3bbf0, 0x3bc10,
2051 0x3bc28, 0x3bc28,
2052 0x3bc3c, 0x3bc50,
2053 0x3bcf0, 0x3bcfc,
2054 0x3c000, 0x3c030,
2055 0x3c100, 0x3c144,
2056 0x3c190, 0x3c1d0,
2057 0x3c200, 0x3c318,
2058 0x3c400, 0x3c52c,
2059 0x3c540, 0x3c61c,
2060 0x3c800, 0x3c834,
2061 0x3c8c0, 0x3c908,
2062 0x3c910, 0x3c9ac,
2063 0x3ca00, 0x3ca04,
2064 0x3ca0c, 0x3ca2c,
2065 0x3ca44, 0x3ca50,
2066 0x3ca74, 0x3cc24,
2067 0x3cd08, 0x3cd14,
2068 0x3cd1c, 0x3cd20,
2069 0x3cd3c, 0x3cd50,
2070 0x3d200, 0x3d20c,
2071 0x3d220, 0x3d220,
2072 0x3d240, 0x3d240,
2073 0x3d600, 0x3d600,
2074 0x3d608, 0x3d60c,
2075 0x3da00, 0x3da1c,
2076 0x3de04, 0x3de20,
2077 0x3de38, 0x3de3c,
2078 0x3de80, 0x3de80,
2079 0x3de88, 0x3dea8,
2080 0x3deb0, 0x3deb4,
2081 0x3dec8, 0x3ded4,
2082 0x3dfb8, 0x3e004,
2083 0x3e208, 0x3e23c,
2084 0x3e600, 0x3e630,
2085 0x3ea00, 0x3eabc,
2086 0x3eb00, 0x3eb70,
2087 0x3f000, 0x3f048,
2088 0x3f060, 0x3f09c,
2089 0x3f0f0, 0x3f148,
2090 0x3f160, 0x3f19c,
2091 0x3f1f0, 0x3f2e4,
2092 0x3f2f8, 0x3f3e4,
2093 0x3f3f8, 0x3f448,
2094 0x3f460, 0x3f49c,
2095 0x3f4f0, 0x3f548,
2096 0x3f560, 0x3f59c,
2097 0x3f5f0, 0x3f6e4,
2098 0x3f6f8, 0x3f7e4,
2099 0x3f7f8, 0x3f7fc,
2100 0x3f814, 0x3f814,
2101 0x3f82c, 0x3f82c,
2102 0x3f880, 0x3f88c,
2103 0x3f8e8, 0x3f8ec,
2104 0x3f900, 0x3f948,
2105 0x3f960, 0x3f99c,
2106 0x3f9f0, 0x3fae4,
2107 0x3faf8, 0x3fb10,
2108 0x3fb28, 0x3fb28,
2109 0x3fb3c, 0x3fb50,
2110 0x3fbf0, 0x3fc10,
2111 0x3fc28, 0x3fc28,
2112 0x3fc3c, 0x3fc50,
2113 0x3fcf0, 0x3fcfc,
2114 0x40000, 0x4000c,
2115 0x40040, 0x40068,
2116 0x40080, 0x40144,
2117 0x40180, 0x4018c,
2118 0x40200, 0x40298,
2119 0x402ac, 0x4033c,
2120 0x403f8, 0x403fc,
2121 0x41300, 0x413c4,
2122 0x41400, 0x4141c,
2123 0x41480, 0x414d0,
2124 0x44000, 0x44078,
2125 0x440c0, 0x44278,
2126 0x442c0, 0x44478,
2127 0x444c0, 0x44678,
2128 0x446c0, 0x44878,
2129 0x448c0, 0x449fc,
2130 0x45000, 0x45068,
2131 0x45080, 0x45084,
2132 0x450a0, 0x450b0,
2133 0x45200, 0x45268,
2134 0x45280, 0x45284,
2135 0x452a0, 0x452b0,
2136 0x460c0, 0x460e4,
2137 0x47000, 0x4708c,
2138 0x47200, 0x47250,
2139 0x47400, 0x47420,
2140 0x47600, 0x47618,
2141 0x47800, 0x47814,
2142 0x48000, 0x4800c,
2143 0x48040, 0x48068,
2144 0x48080, 0x48144,
2145 0x48180, 0x4818c,
2146 0x48200, 0x48298,
2147 0x482ac, 0x4833c,
2148 0x483f8, 0x483fc,
2149 0x49300, 0x493c4,
2150 0x49400, 0x4941c,
2151 0x49480, 0x494d0,
2152 0x4c000, 0x4c078,
2153 0x4c0c0, 0x4c278,
2154 0x4c2c0, 0x4c478,
2155 0x4c4c0, 0x4c678,
2156 0x4c6c0, 0x4c878,
2157 0x4c8c0, 0x4c9fc,
2158 0x4d000, 0x4d068,
2159 0x4d080, 0x4d084,
2160 0x4d0a0, 0x4d0b0,
2161 0x4d200, 0x4d268,
2162 0x4d280, 0x4d284,
2163 0x4d2a0, 0x4d2b0,
2164 0x4e0c0, 0x4e0e4,
2165 0x4f000, 0x4f08c,
2166 0x4f200, 0x4f250,
2167 0x4f400, 0x4f420,
2168 0x4f600, 0x4f618,
2169 0x4f800, 0x4f814,
2170 0x50000, 0x500cc,
2171 0x50400, 0x50400,
2172 0x50800, 0x508cc,
2173 0x50c00, 0x50c00,
2174 0x51000, 0x5101c,
2175 0x51300, 0x51308,
2176 };
2177
2178 int i;
2179 struct adapter *ap = netdev2adap(dev);
2180 static const unsigned int *reg_ranges;
2181 int arr_size = 0, buf_size = 0;
2182
2183 if (is_t4(ap->chip)) {
2184 reg_ranges = &t4_reg_ranges[0];
2185 arr_size = ARRAY_SIZE(t4_reg_ranges);
2186 buf_size = T4_REGMAP_SIZE;
2187 } else {
2188 reg_ranges = &t5_reg_ranges[0];
2189 arr_size = ARRAY_SIZE(t5_reg_ranges);
2190 buf_size = T5_REGMAP_SIZE;
2191 }
2192
2193 regs->version = mk_adap_vers(ap);
2194
2195 memset(buf, 0, buf_size);
2196 for (i = 0; i < arr_size; i += 2)
2197 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2198 }
2199
2200 static int restart_autoneg(struct net_device *dev)
2201 {
2202 struct port_info *p = netdev_priv(dev);
2203
2204 if (!netif_running(dev))
2205 return -EAGAIN;
2206 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2207 return -EINVAL;
2208 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2209 return 0;
2210 }
2211
2212 static int identify_port(struct net_device *dev,
2213 enum ethtool_phys_id_state state)
2214 {
2215 unsigned int val;
2216 struct adapter *adap = netdev2adap(dev);
2217
2218 if (state == ETHTOOL_ID_ACTIVE)
2219 val = 0xffff;
2220 else if (state == ETHTOOL_ID_INACTIVE)
2221 val = 0;
2222 else
2223 return -EINVAL;
2224
2225 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2226 }
2227
2228 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2229 {
2230 unsigned int v = 0;
2231
2232 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2233 type == FW_PORT_TYPE_BT_XAUI) {
2234 v |= SUPPORTED_TP;
2235 if (caps & FW_PORT_CAP_SPEED_100M)
2236 v |= SUPPORTED_100baseT_Full;
2237 if (caps & FW_PORT_CAP_SPEED_1G)
2238 v |= SUPPORTED_1000baseT_Full;
2239 if (caps & FW_PORT_CAP_SPEED_10G)
2240 v |= SUPPORTED_10000baseT_Full;
2241 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2242 v |= SUPPORTED_Backplane;
2243 if (caps & FW_PORT_CAP_SPEED_1G)
2244 v |= SUPPORTED_1000baseKX_Full;
2245 if (caps & FW_PORT_CAP_SPEED_10G)
2246 v |= SUPPORTED_10000baseKX4_Full;
2247 } else if (type == FW_PORT_TYPE_KR)
2248 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2249 else if (type == FW_PORT_TYPE_BP_AP)
2250 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2251 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2252 else if (type == FW_PORT_TYPE_BP4_AP)
2253 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2254 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2255 SUPPORTED_10000baseKX4_Full;
2256 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2257 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2258 v |= SUPPORTED_FIBRE;
2259
2260 if (caps & FW_PORT_CAP_ANEG)
2261 v |= SUPPORTED_Autoneg;
2262 return v;
2263 }
2264
2265 static unsigned int to_fw_linkcaps(unsigned int caps)
2266 {
2267 unsigned int v = 0;
2268
2269 if (caps & ADVERTISED_100baseT_Full)
2270 v |= FW_PORT_CAP_SPEED_100M;
2271 if (caps & ADVERTISED_1000baseT_Full)
2272 v |= FW_PORT_CAP_SPEED_1G;
2273 if (caps & ADVERTISED_10000baseT_Full)
2274 v |= FW_PORT_CAP_SPEED_10G;
2275 return v;
2276 }
2277
2278 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2279 {
2280 const struct port_info *p = netdev_priv(dev);
2281
2282 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2283 p->port_type == FW_PORT_TYPE_BT_XFI ||
2284 p->port_type == FW_PORT_TYPE_BT_XAUI)
2285 cmd->port = PORT_TP;
2286 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2287 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2288 cmd->port = PORT_FIBRE;
2289 else if (p->port_type == FW_PORT_TYPE_SFP) {
2290 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2291 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2292 cmd->port = PORT_DA;
2293 else
2294 cmd->port = PORT_FIBRE;
2295 } else
2296 cmd->port = PORT_OTHER;
2297
2298 if (p->mdio_addr >= 0) {
2299 cmd->phy_address = p->mdio_addr;
2300 cmd->transceiver = XCVR_EXTERNAL;
2301 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2302 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2303 } else {
2304 cmd->phy_address = 0; /* not really, but no better option */
2305 cmd->transceiver = XCVR_INTERNAL;
2306 cmd->mdio_support = 0;
2307 }
2308
2309 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2310 cmd->advertising = from_fw_linkcaps(p->port_type,
2311 p->link_cfg.advertising);
2312 ethtool_cmd_speed_set(cmd,
2313 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2314 cmd->duplex = DUPLEX_FULL;
2315 cmd->autoneg = p->link_cfg.autoneg;
2316 cmd->maxtxpkt = 0;
2317 cmd->maxrxpkt = 0;
2318 return 0;
2319 }
2320
2321 static unsigned int speed_to_caps(int speed)
2322 {
2323 if (speed == SPEED_100)
2324 return FW_PORT_CAP_SPEED_100M;
2325 if (speed == SPEED_1000)
2326 return FW_PORT_CAP_SPEED_1G;
2327 if (speed == SPEED_10000)
2328 return FW_PORT_CAP_SPEED_10G;
2329 return 0;
2330 }
2331
2332 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2333 {
2334 unsigned int cap;
2335 struct port_info *p = netdev_priv(dev);
2336 struct link_config *lc = &p->link_cfg;
2337 u32 speed = ethtool_cmd_speed(cmd);
2338
2339 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2340 return -EINVAL;
2341
2342 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2343 /*
2344 * PHY offers a single speed. See if that's what's
2345 * being requested.
2346 */
2347 if (cmd->autoneg == AUTONEG_DISABLE &&
2348 (lc->supported & speed_to_caps(speed)))
2349 return 0;
2350 return -EINVAL;
2351 }
2352
2353 if (cmd->autoneg == AUTONEG_DISABLE) {
2354 cap = speed_to_caps(speed);
2355
2356 if (!(lc->supported & cap) || (speed == SPEED_1000) ||
2357 (speed == SPEED_10000))
2358 return -EINVAL;
2359 lc->requested_speed = cap;
2360 lc->advertising = 0;
2361 } else {
2362 cap = to_fw_linkcaps(cmd->advertising);
2363 if (!(lc->supported & cap))
2364 return -EINVAL;
2365 lc->requested_speed = 0;
2366 lc->advertising = cap | FW_PORT_CAP_ANEG;
2367 }
2368 lc->autoneg = cmd->autoneg;
2369
2370 if (netif_running(dev))
2371 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2372 lc);
2373 return 0;
2374 }
2375
2376 static void get_pauseparam(struct net_device *dev,
2377 struct ethtool_pauseparam *epause)
2378 {
2379 struct port_info *p = netdev_priv(dev);
2380
2381 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2382 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2383 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2384 }
2385
2386 static int set_pauseparam(struct net_device *dev,
2387 struct ethtool_pauseparam *epause)
2388 {
2389 struct port_info *p = netdev_priv(dev);
2390 struct link_config *lc = &p->link_cfg;
2391
2392 if (epause->autoneg == AUTONEG_DISABLE)
2393 lc->requested_fc = 0;
2394 else if (lc->supported & FW_PORT_CAP_ANEG)
2395 lc->requested_fc = PAUSE_AUTONEG;
2396 else
2397 return -EINVAL;
2398
2399 if (epause->rx_pause)
2400 lc->requested_fc |= PAUSE_RX;
2401 if (epause->tx_pause)
2402 lc->requested_fc |= PAUSE_TX;
2403 if (netif_running(dev))
2404 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2405 lc);
2406 return 0;
2407 }
2408
2409 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2410 {
2411 const struct port_info *pi = netdev_priv(dev);
2412 const struct sge *s = &pi->adapter->sge;
2413
2414 e->rx_max_pending = MAX_RX_BUFFERS;
2415 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2416 e->rx_jumbo_max_pending = 0;
2417 e->tx_max_pending = MAX_TXQ_ENTRIES;
2418
2419 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2420 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2421 e->rx_jumbo_pending = 0;
2422 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2423 }
2424
2425 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2426 {
2427 int i;
2428 const struct port_info *pi = netdev_priv(dev);
2429 struct adapter *adapter = pi->adapter;
2430 struct sge *s = &adapter->sge;
2431
2432 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2433 e->tx_pending > MAX_TXQ_ENTRIES ||
2434 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2435 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2436 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2437 return -EINVAL;
2438
2439 if (adapter->flags & FULL_INIT_DONE)
2440 return -EBUSY;
2441
2442 for (i = 0; i < pi->nqsets; ++i) {
2443 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2444 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2445 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2446 }
2447 return 0;
2448 }
2449
2450 static int closest_timer(const struct sge *s, int time)
2451 {
2452 int i, delta, match = 0, min_delta = INT_MAX;
2453
2454 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2455 delta = time - s->timer_val[i];
2456 if (delta < 0)
2457 delta = -delta;
2458 if (delta < min_delta) {
2459 min_delta = delta;
2460 match = i;
2461 }
2462 }
2463 return match;
2464 }
2465
2466 static int closest_thres(const struct sge *s, int thres)
2467 {
2468 int i, delta, match = 0, min_delta = INT_MAX;
2469
2470 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2471 delta = thres - s->counter_val[i];
2472 if (delta < 0)
2473 delta = -delta;
2474 if (delta < min_delta) {
2475 min_delta = delta;
2476 match = i;
2477 }
2478 }
2479 return match;
2480 }
2481
2482 /*
2483 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2484 */
2485 static unsigned int qtimer_val(const struct adapter *adap,
2486 const struct sge_rspq *q)
2487 {
2488 unsigned int idx = q->intr_params >> 1;
2489
2490 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2491 }
2492
2493 /**
2494 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
2495 * @adap: the adapter
2496 * @q: the Rx queue
2497 * @us: the hold-off time in us, or 0 to disable timer
2498 * @cnt: the hold-off packet count, or 0 to disable counter
2499 *
2500 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2501 * one of the two needs to be enabled for the queue to generate interrupts.
2502 */
2503 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
2504 unsigned int us, unsigned int cnt)
2505 {
2506 if ((us | cnt) == 0)
2507 cnt = 1;
2508
2509 if (cnt) {
2510 int err;
2511 u32 v, new_idx;
2512
2513 new_idx = closest_thres(&adap->sge, cnt);
2514 if (q->desc && q->pktcnt_idx != new_idx) {
2515 /* the queue has already been created, update it */
2516 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2517 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2518 FW_PARAMS_PARAM_YZ(q->cntxt_id);
2519 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2520 &new_idx);
2521 if (err)
2522 return err;
2523 }
2524 q->pktcnt_idx = new_idx;
2525 }
2526
2527 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2528 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2529 return 0;
2530 }
2531
2532 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2533 {
2534 const struct port_info *pi = netdev_priv(dev);
2535 struct adapter *adap = pi->adapter;
2536 struct sge_rspq *q;
2537 int i;
2538 int r = 0;
2539
2540 for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) {
2541 q = &adap->sge.ethrxq[i].rspq;
2542 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs,
2543 c->rx_max_coalesced_frames);
2544 if (r) {
2545 dev_err(&dev->dev, "failed to set coalesce %d\n", r);
2546 break;
2547 }
2548 }
2549 return r;
2550 }
2551
2552 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2553 {
2554 const struct port_info *pi = netdev_priv(dev);
2555 const struct adapter *adap = pi->adapter;
2556 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2557
2558 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2559 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2560 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2561 return 0;
2562 }
2563
2564 /**
2565 * eeprom_ptov - translate a physical EEPROM address to virtual
2566 * @phys_addr: the physical EEPROM address
2567 * @fn: the PCI function number
2568 * @sz: size of function-specific area
2569 *
2570 * Translate a physical EEPROM address to virtual. The first 1K is
2571 * accessed through virtual addresses starting at 31K, the rest is
2572 * accessed through virtual addresses starting at 0.
2573 *
2574 * The mapping is as follows:
2575 * [0..1K) -> [31K..32K)
2576 * [1K..1K+A) -> [31K-A..31K)
2577 * [1K+A..ES) -> [0..ES-A-1K)
2578 *
2579 * where A = @fn * @sz, and ES = EEPROM size.
2580 */
2581 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2582 {
2583 fn *= sz;
2584 if (phys_addr < 1024)
2585 return phys_addr + (31 << 10);
2586 if (phys_addr < 1024 + fn)
2587 return 31744 - fn + phys_addr - 1024;
2588 if (phys_addr < EEPROMSIZE)
2589 return phys_addr - 1024 - fn;
2590 return -EINVAL;
2591 }
2592
2593 /*
2594 * The next two routines implement eeprom read/write from physical addresses.
2595 */
2596 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2597 {
2598 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2599
2600 if (vaddr >= 0)
2601 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2602 return vaddr < 0 ? vaddr : 0;
2603 }
2604
2605 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2606 {
2607 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2608
2609 if (vaddr >= 0)
2610 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2611 return vaddr < 0 ? vaddr : 0;
2612 }
2613
2614 #define EEPROM_MAGIC 0x38E2F10C
2615
2616 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2617 u8 *data)
2618 {
2619 int i, err = 0;
2620 struct adapter *adapter = netdev2adap(dev);
2621
2622 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2623 if (!buf)
2624 return -ENOMEM;
2625
2626 e->magic = EEPROM_MAGIC;
2627 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2628 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2629
2630 if (!err)
2631 memcpy(data, buf + e->offset, e->len);
2632 kfree(buf);
2633 return err;
2634 }
2635
2636 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2637 u8 *data)
2638 {
2639 u8 *buf;
2640 int err = 0;
2641 u32 aligned_offset, aligned_len, *p;
2642 struct adapter *adapter = netdev2adap(dev);
2643
2644 if (eeprom->magic != EEPROM_MAGIC)
2645 return -EINVAL;
2646
2647 aligned_offset = eeprom->offset & ~3;
2648 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2649
2650 if (adapter->fn > 0) {
2651 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2652
2653 if (aligned_offset < start ||
2654 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2655 return -EPERM;
2656 }
2657
2658 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2659 /*
2660 * RMW possibly needed for first or last words.
2661 */
2662 buf = kmalloc(aligned_len, GFP_KERNEL);
2663 if (!buf)
2664 return -ENOMEM;
2665 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2666 if (!err && aligned_len > 4)
2667 err = eeprom_rd_phys(adapter,
2668 aligned_offset + aligned_len - 4,
2669 (u32 *)&buf[aligned_len - 4]);
2670 if (err)
2671 goto out;
2672 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2673 } else
2674 buf = data;
2675
2676 err = t4_seeprom_wp(adapter, false);
2677 if (err)
2678 goto out;
2679
2680 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2681 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2682 aligned_offset += 4;
2683 }
2684
2685 if (!err)
2686 err = t4_seeprom_wp(adapter, true);
2687 out:
2688 if (buf != data)
2689 kfree(buf);
2690 return err;
2691 }
2692
2693 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2694 {
2695 int ret;
2696 const struct firmware *fw;
2697 struct adapter *adap = netdev2adap(netdev);
2698
2699 ef->data[sizeof(ef->data) - 1] = '\0';
2700 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2701 if (ret < 0)
2702 return ret;
2703
2704 ret = t4_load_fw(adap, fw->data, fw->size);
2705 release_firmware(fw);
2706 if (!ret)
2707 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2708 return ret;
2709 }
2710
2711 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2712 #define BCAST_CRC 0xa0ccc1a6
2713
2714 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2715 {
2716 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2717 wol->wolopts = netdev2adap(dev)->wol;
2718 memset(&wol->sopass, 0, sizeof(wol->sopass));
2719 }
2720
2721 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2722 {
2723 int err = 0;
2724 struct port_info *pi = netdev_priv(dev);
2725
2726 if (wol->wolopts & ~WOL_SUPPORTED)
2727 return -EINVAL;
2728 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2729 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2730 if (wol->wolopts & WAKE_BCAST) {
2731 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2732 ~0ULL, 0, false);
2733 if (!err)
2734 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2735 ~6ULL, ~0ULL, BCAST_CRC, true);
2736 } else
2737 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2738 return err;
2739 }
2740
2741 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2742 {
2743 const struct port_info *pi = netdev_priv(dev);
2744 netdev_features_t changed = dev->features ^ features;
2745 int err;
2746
2747 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2748 return 0;
2749
2750 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2751 -1, -1, -1,
2752 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2753 if (unlikely(err))
2754 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2755 return err;
2756 }
2757
2758 static u32 get_rss_table_size(struct net_device *dev)
2759 {
2760 const struct port_info *pi = netdev_priv(dev);
2761
2762 return pi->rss_size;
2763 }
2764
2765 static int get_rss_table(struct net_device *dev, u32 *p)
2766 {
2767 const struct port_info *pi = netdev_priv(dev);
2768 unsigned int n = pi->rss_size;
2769
2770 while (n--)
2771 p[n] = pi->rss[n];
2772 return 0;
2773 }
2774
2775 static int set_rss_table(struct net_device *dev, const u32 *p)
2776 {
2777 unsigned int i;
2778 struct port_info *pi = netdev_priv(dev);
2779
2780 for (i = 0; i < pi->rss_size; i++)
2781 pi->rss[i] = p[i];
2782 if (pi->adapter->flags & FULL_INIT_DONE)
2783 return write_rss(pi, pi->rss);
2784 return 0;
2785 }
2786
2787 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2788 u32 *rules)
2789 {
2790 const struct port_info *pi = netdev_priv(dev);
2791
2792 switch (info->cmd) {
2793 case ETHTOOL_GRXFH: {
2794 unsigned int v = pi->rss_mode;
2795
2796 info->data = 0;
2797 switch (info->flow_type) {
2798 case TCP_V4_FLOW:
2799 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2800 info->data = RXH_IP_SRC | RXH_IP_DST |
2801 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2802 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2803 info->data = RXH_IP_SRC | RXH_IP_DST;
2804 break;
2805 case UDP_V4_FLOW:
2806 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2807 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2808 info->data = RXH_IP_SRC | RXH_IP_DST |
2809 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2810 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2811 info->data = RXH_IP_SRC | RXH_IP_DST;
2812 break;
2813 case SCTP_V4_FLOW:
2814 case AH_ESP_V4_FLOW:
2815 case IPV4_FLOW:
2816 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2817 info->data = RXH_IP_SRC | RXH_IP_DST;
2818 break;
2819 case TCP_V6_FLOW:
2820 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2821 info->data = RXH_IP_SRC | RXH_IP_DST |
2822 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2823 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2824 info->data = RXH_IP_SRC | RXH_IP_DST;
2825 break;
2826 case UDP_V6_FLOW:
2827 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2828 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2829 info->data = RXH_IP_SRC | RXH_IP_DST |
2830 RXH_L4_B_0_1 | RXH_L4_B_2_3;
2831 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2832 info->data = RXH_IP_SRC | RXH_IP_DST;
2833 break;
2834 case SCTP_V6_FLOW:
2835 case AH_ESP_V6_FLOW:
2836 case IPV6_FLOW:
2837 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2838 info->data = RXH_IP_SRC | RXH_IP_DST;
2839 break;
2840 }
2841 return 0;
2842 }
2843 case ETHTOOL_GRXRINGS:
2844 info->data = pi->nqsets;
2845 return 0;
2846 }
2847 return -EOPNOTSUPP;
2848 }
2849
2850 static const struct ethtool_ops cxgb_ethtool_ops = {
2851 .get_settings = get_settings,
2852 .set_settings = set_settings,
2853 .get_drvinfo = get_drvinfo,
2854 .get_msglevel = get_msglevel,
2855 .set_msglevel = set_msglevel,
2856 .get_ringparam = get_sge_param,
2857 .set_ringparam = set_sge_param,
2858 .get_coalesce = get_coalesce,
2859 .set_coalesce = set_coalesce,
2860 .get_eeprom_len = get_eeprom_len,
2861 .get_eeprom = get_eeprom,
2862 .set_eeprom = set_eeprom,
2863 .get_pauseparam = get_pauseparam,
2864 .set_pauseparam = set_pauseparam,
2865 .get_link = ethtool_op_get_link,
2866 .get_strings = get_strings,
2867 .set_phys_id = identify_port,
2868 .nway_reset = restart_autoneg,
2869 .get_sset_count = get_sset_count,
2870 .get_ethtool_stats = get_stats,
2871 .get_regs_len = get_regs_len,
2872 .get_regs = get_regs,
2873 .get_wol = get_wol,
2874 .set_wol = set_wol,
2875 .get_rxnfc = get_rxnfc,
2876 .get_rxfh_indir_size = get_rss_table_size,
2877 .get_rxfh_indir = get_rss_table,
2878 .set_rxfh_indir = set_rss_table,
2879 .flash_device = set_flash,
2880 };
2881
2882 /*
2883 * debugfs support
2884 */
2885 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2886 loff_t *ppos)
2887 {
2888 loff_t pos = *ppos;
2889 loff_t avail = file_inode(file)->i_size;
2890 unsigned int mem = (uintptr_t)file->private_data & 3;
2891 struct adapter *adap = file->private_data - mem;
2892
2893 if (pos < 0)
2894 return -EINVAL;
2895 if (pos >= avail)
2896 return 0;
2897 if (count > avail - pos)
2898 count = avail - pos;
2899
2900 while (count) {
2901 size_t len;
2902 int ret, ofst;
2903 __be32 data[16];
2904
2905 if ((mem == MEM_MC) || (mem == MEM_MC1))
2906 ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
2907 else
2908 ret = t4_edc_read(adap, mem, pos, data, NULL);
2909 if (ret)
2910 return ret;
2911
2912 ofst = pos % sizeof(data);
2913 len = min(count, sizeof(data) - ofst);
2914 if (copy_to_user(buf, (u8 *)data + ofst, len))
2915 return -EFAULT;
2916
2917 buf += len;
2918 pos += len;
2919 count -= len;
2920 }
2921 count = pos - *ppos;
2922 *ppos = pos;
2923 return count;
2924 }
2925
2926 static const struct file_operations mem_debugfs_fops = {
2927 .owner = THIS_MODULE,
2928 .open = simple_open,
2929 .read = mem_read,
2930 .llseek = default_llseek,
2931 };
2932
2933 static void add_debugfs_mem(struct adapter *adap, const char *name,
2934 unsigned int idx, unsigned int size_mb)
2935 {
2936 struct dentry *de;
2937
2938 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2939 (void *)adap + idx, &mem_debugfs_fops);
2940 if (de && de->d_inode)
2941 de->d_inode->i_size = size_mb << 20;
2942 }
2943
2944 static int setup_debugfs(struct adapter *adap)
2945 {
2946 int i;
2947 u32 size;
2948
2949 if (IS_ERR_OR_NULL(adap->debugfs_root))
2950 return -1;
2951
2952 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2953 if (i & EDRAM0_ENABLE) {
2954 size = t4_read_reg(adap, MA_EDRAM0_BAR);
2955 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
2956 }
2957 if (i & EDRAM1_ENABLE) {
2958 size = t4_read_reg(adap, MA_EDRAM1_BAR);
2959 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
2960 }
2961 if (is_t4(adap->chip)) {
2962 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2963 if (i & EXT_MEM_ENABLE)
2964 add_debugfs_mem(adap, "mc", MEM_MC,
2965 EXT_MEM_SIZE_GET(size));
2966 } else {
2967 if (i & EXT_MEM_ENABLE) {
2968 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2969 add_debugfs_mem(adap, "mc0", MEM_MC0,
2970 EXT_MEM_SIZE_GET(size));
2971 }
2972 if (i & EXT_MEM1_ENABLE) {
2973 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
2974 add_debugfs_mem(adap, "mc1", MEM_MC1,
2975 EXT_MEM_SIZE_GET(size));
2976 }
2977 }
2978 if (adap->l2t)
2979 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2980 &t4_l2t_fops);
2981 return 0;
2982 }
2983
2984 /*
2985 * upper-layer driver support
2986 */
2987
2988 /*
2989 * Allocate an active-open TID and set it to the supplied value.
2990 */
2991 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2992 {
2993 int atid = -1;
2994
2995 spin_lock_bh(&t->atid_lock);
2996 if (t->afree) {
2997 union aopen_entry *p = t->afree;
2998
2999 atid = (p - t->atid_tab) + t->atid_base;
3000 t->afree = p->next;
3001 p->data = data;
3002 t->atids_in_use++;
3003 }
3004 spin_unlock_bh(&t->atid_lock);
3005 return atid;
3006 }
3007 EXPORT_SYMBOL(cxgb4_alloc_atid);
3008
3009 /*
3010 * Release an active-open TID.
3011 */
3012 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3013 {
3014 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3015
3016 spin_lock_bh(&t->atid_lock);
3017 p->next = t->afree;
3018 t->afree = p;
3019 t->atids_in_use--;
3020 spin_unlock_bh(&t->atid_lock);
3021 }
3022 EXPORT_SYMBOL(cxgb4_free_atid);
3023
3024 /*
3025 * Allocate a server TID and set it to the supplied value.
3026 */
3027 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3028 {
3029 int stid;
3030
3031 spin_lock_bh(&t->stid_lock);
3032 if (family == PF_INET) {
3033 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3034 if (stid < t->nstids)
3035 __set_bit(stid, t->stid_bmap);
3036 else
3037 stid = -1;
3038 } else {
3039 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3040 if (stid < 0)
3041 stid = -1;
3042 }
3043 if (stid >= 0) {
3044 t->stid_tab[stid].data = data;
3045 stid += t->stid_base;
3046 t->stids_in_use++;
3047 }
3048 spin_unlock_bh(&t->stid_lock);
3049 return stid;
3050 }
3051 EXPORT_SYMBOL(cxgb4_alloc_stid);
3052
3053 /* Allocate a server filter TID and set it to the supplied value.
3054 */
3055 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3056 {
3057 int stid;
3058
3059 spin_lock_bh(&t->stid_lock);
3060 if (family == PF_INET) {
3061 stid = find_next_zero_bit(t->stid_bmap,
3062 t->nstids + t->nsftids, t->nstids);
3063 if (stid < (t->nstids + t->nsftids))
3064 __set_bit(stid, t->stid_bmap);
3065 else
3066 stid = -1;
3067 } else {
3068 stid = -1;
3069 }
3070 if (stid >= 0) {
3071 t->stid_tab[stid].data = data;
3072 stid += t->stid_base;
3073 t->stids_in_use++;
3074 }
3075 spin_unlock_bh(&t->stid_lock);
3076 return stid;
3077 }
3078 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3079
3080 /* Release a server TID.
3081 */
3082 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3083 {
3084 stid -= t->stid_base;
3085 spin_lock_bh(&t->stid_lock);
3086 if (family == PF_INET)
3087 __clear_bit(stid, t->stid_bmap);
3088 else
3089 bitmap_release_region(t->stid_bmap, stid, 2);
3090 t->stid_tab[stid].data = NULL;
3091 t->stids_in_use--;
3092 spin_unlock_bh(&t->stid_lock);
3093 }
3094 EXPORT_SYMBOL(cxgb4_free_stid);
3095
3096 /*
3097 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3098 */
3099 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3100 unsigned int tid)
3101 {
3102 struct cpl_tid_release *req;
3103
3104 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3105 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3106 INIT_TP_WR(req, tid);
3107 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3108 }
3109
3110 /*
3111 * Queue a TID release request and if necessary schedule a work queue to
3112 * process it.
3113 */
3114 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3115 unsigned int tid)
3116 {
3117 void **p = &t->tid_tab[tid];
3118 struct adapter *adap = container_of(t, struct adapter, tids);
3119
3120 spin_lock_bh(&adap->tid_release_lock);
3121 *p = adap->tid_release_head;
3122 /* Low 2 bits encode the Tx channel number */
3123 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3124 if (!adap->tid_release_task_busy) {
3125 adap->tid_release_task_busy = true;
3126 queue_work(workq, &adap->tid_release_task);
3127 }
3128 spin_unlock_bh(&adap->tid_release_lock);
3129 }
3130
3131 /*
3132 * Process the list of pending TID release requests.
3133 */
3134 static void process_tid_release_list(struct work_struct *work)
3135 {
3136 struct sk_buff *skb;
3137 struct adapter *adap;
3138
3139 adap = container_of(work, struct adapter, tid_release_task);
3140
3141 spin_lock_bh(&adap->tid_release_lock);
3142 while (adap->tid_release_head) {
3143 void **p = adap->tid_release_head;
3144 unsigned int chan = (uintptr_t)p & 3;
3145 p = (void *)p - chan;
3146
3147 adap->tid_release_head = *p;
3148 *p = NULL;
3149 spin_unlock_bh(&adap->tid_release_lock);
3150
3151 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3152 GFP_KERNEL)))
3153 schedule_timeout_uninterruptible(1);
3154
3155 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3156 t4_ofld_send(adap, skb);
3157 spin_lock_bh(&adap->tid_release_lock);
3158 }
3159 adap->tid_release_task_busy = false;
3160 spin_unlock_bh(&adap->tid_release_lock);
3161 }
3162
3163 /*
3164 * Release a TID and inform HW. If we are unable to allocate the release
3165 * message we defer to a work queue.
3166 */
3167 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3168 {
3169 void *old;
3170 struct sk_buff *skb;
3171 struct adapter *adap = container_of(t, struct adapter, tids);
3172
3173 old = t->tid_tab[tid];
3174 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3175 if (likely(skb)) {
3176 t->tid_tab[tid] = NULL;
3177 mk_tid_release(skb, chan, tid);
3178 t4_ofld_send(adap, skb);
3179 } else
3180 cxgb4_queue_tid_release(t, chan, tid);
3181 if (old)
3182 atomic_dec(&t->tids_in_use);
3183 }
3184 EXPORT_SYMBOL(cxgb4_remove_tid);
3185
3186 /*
3187 * Allocate and initialize the TID tables. Returns 0 on success.
3188 */
3189 static int tid_init(struct tid_info *t)
3190 {
3191 size_t size;
3192 unsigned int stid_bmap_size;
3193 unsigned int natids = t->natids;
3194
3195 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3196 size = t->ntids * sizeof(*t->tid_tab) +
3197 natids * sizeof(*t->atid_tab) +
3198 t->nstids * sizeof(*t->stid_tab) +
3199 t->nsftids * sizeof(*t->stid_tab) +
3200 stid_bmap_size * sizeof(long) +
3201 t->nftids * sizeof(*t->ftid_tab) +
3202 t->nsftids * sizeof(*t->ftid_tab);
3203
3204 t->tid_tab = t4_alloc_mem(size);
3205 if (!t->tid_tab)
3206 return -ENOMEM;
3207
3208 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3209 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3210 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3211 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3212 spin_lock_init(&t->stid_lock);
3213 spin_lock_init(&t->atid_lock);
3214
3215 t->stids_in_use = 0;
3216 t->afree = NULL;
3217 t->atids_in_use = 0;
3218 atomic_set(&t->tids_in_use, 0);
3219
3220 /* Setup the free list for atid_tab and clear the stid bitmap. */
3221 if (natids) {
3222 while (--natids)
3223 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3224 t->afree = t->atid_tab;
3225 }
3226 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3227 return 0;
3228 }
3229
3230 /**
3231 * cxgb4_create_server - create an IP server
3232 * @dev: the device
3233 * @stid: the server TID
3234 * @sip: local IP address to bind server to
3235 * @sport: the server's TCP port
3236 * @queue: queue to direct messages from this server to
3237 *
3238 * Create an IP server for the given port and address.
3239 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3240 */
3241 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3242 __be32 sip, __be16 sport, __be16 vlan,
3243 unsigned int queue)
3244 {
3245 unsigned int chan;
3246 struct sk_buff *skb;
3247 struct adapter *adap;
3248 struct cpl_pass_open_req *req;
3249
3250 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3251 if (!skb)
3252 return -ENOMEM;
3253
3254 adap = netdev2adap(dev);
3255 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3256 INIT_TP_WR(req, 0);
3257 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3258 req->local_port = sport;
3259 req->peer_port = htons(0);
3260 req->local_ip = sip;
3261 req->peer_ip = htonl(0);
3262 chan = rxq_to_chan(&adap->sge, queue);
3263 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3264 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3265 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3266 return t4_mgmt_tx(adap, skb);
3267 }
3268 EXPORT_SYMBOL(cxgb4_create_server);
3269
3270 /**
3271 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3272 * @mtus: the HW MTU table
3273 * @mtu: the target MTU
3274 * @idx: index of selected entry in the MTU table
3275 *
3276 * Returns the index and the value in the HW MTU table that is closest to
3277 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3278 * table, in which case that smallest available value is selected.
3279 */
3280 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3281 unsigned int *idx)
3282 {
3283 unsigned int i = 0;
3284
3285 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3286 ++i;
3287 if (idx)
3288 *idx = i;
3289 return mtus[i];
3290 }
3291 EXPORT_SYMBOL(cxgb4_best_mtu);
3292
3293 /**
3294 * cxgb4_port_chan - get the HW channel of a port
3295 * @dev: the net device for the port
3296 *
3297 * Return the HW Tx channel of the given port.
3298 */
3299 unsigned int cxgb4_port_chan(const struct net_device *dev)
3300 {
3301 return netdev2pinfo(dev)->tx_chan;
3302 }
3303 EXPORT_SYMBOL(cxgb4_port_chan);
3304
3305 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3306 {
3307 struct adapter *adap = netdev2adap(dev);
3308 u32 v1, v2, lp_count, hp_count;
3309
3310 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3311 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3312 if (is_t4(adap->chip)) {
3313 lp_count = G_LP_COUNT(v1);
3314 hp_count = G_HP_COUNT(v1);
3315 } else {
3316 lp_count = G_LP_COUNT_T5(v1);
3317 hp_count = G_HP_COUNT_T5(v2);
3318 }
3319 return lpfifo ? lp_count : hp_count;
3320 }
3321 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3322
3323 /**
3324 * cxgb4_port_viid - get the VI id of a port
3325 * @dev: the net device for the port
3326 *
3327 * Return the VI id of the given port.
3328 */
3329 unsigned int cxgb4_port_viid(const struct net_device *dev)
3330 {
3331 return netdev2pinfo(dev)->viid;
3332 }
3333 EXPORT_SYMBOL(cxgb4_port_viid);
3334
3335 /**
3336 * cxgb4_port_idx - get the index of a port
3337 * @dev: the net device for the port
3338 *
3339 * Return the index of the given port.
3340 */
3341 unsigned int cxgb4_port_idx(const struct net_device *dev)
3342 {
3343 return netdev2pinfo(dev)->port_id;
3344 }
3345 EXPORT_SYMBOL(cxgb4_port_idx);
3346
3347 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3348 struct tp_tcp_stats *v6)
3349 {
3350 struct adapter *adap = pci_get_drvdata(pdev);
3351
3352 spin_lock(&adap->stats_lock);
3353 t4_tp_get_tcp_stats(adap, v4, v6);
3354 spin_unlock(&adap->stats_lock);
3355 }
3356 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3357
3358 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3359 const unsigned int *pgsz_order)
3360 {
3361 struct adapter *adap = netdev2adap(dev);
3362
3363 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3364 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3365 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3366 HPZ3(pgsz_order[3]));
3367 }
3368 EXPORT_SYMBOL(cxgb4_iscsi_init);
3369
3370 int cxgb4_flush_eq_cache(struct net_device *dev)
3371 {
3372 struct adapter *adap = netdev2adap(dev);
3373 int ret;
3374
3375 ret = t4_fwaddrspace_write(adap, adap->mbox,
3376 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3377 return ret;
3378 }
3379 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3380
3381 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3382 {
3383 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3384 __be64 indices;
3385 int ret;
3386
3387 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3388 if (!ret) {
3389 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3390 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3391 }
3392 return ret;
3393 }
3394
3395 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3396 u16 size)
3397 {
3398 struct adapter *adap = netdev2adap(dev);
3399 u16 hw_pidx, hw_cidx;
3400 int ret;
3401
3402 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3403 if (ret)
3404 goto out;
3405
3406 if (pidx != hw_pidx) {
3407 u16 delta;
3408
3409 if (pidx >= hw_pidx)
3410 delta = pidx - hw_pidx;
3411 else
3412 delta = size - hw_pidx + pidx;
3413 wmb();
3414 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3415 QID(qid) | PIDX(delta));
3416 }
3417 out:
3418 return ret;
3419 }
3420 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3421
3422 void cxgb4_disable_db_coalescing(struct net_device *dev)
3423 {
3424 struct adapter *adap;
3425
3426 adap = netdev2adap(dev);
3427 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3428 F_NOCOALESCE);
3429 }
3430 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3431
3432 void cxgb4_enable_db_coalescing(struct net_device *dev)
3433 {
3434 struct adapter *adap;
3435
3436 adap = netdev2adap(dev);
3437 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3438 }
3439 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3440
3441 static struct pci_driver cxgb4_driver;
3442
3443 static void check_neigh_update(struct neighbour *neigh)
3444 {
3445 const struct device *parent;
3446 const struct net_device *netdev = neigh->dev;
3447
3448 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3449 netdev = vlan_dev_real_dev(netdev);
3450 parent = netdev->dev.parent;
3451 if (parent && parent->driver == &cxgb4_driver.driver)
3452 t4_l2t_update(dev_get_drvdata(parent), neigh);
3453 }
3454
3455 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3456 void *data)
3457 {
3458 switch (event) {
3459 case NETEVENT_NEIGH_UPDATE:
3460 check_neigh_update(data);
3461 break;
3462 case NETEVENT_REDIRECT:
3463 default:
3464 break;
3465 }
3466 return 0;
3467 }
3468
3469 static bool netevent_registered;
3470 static struct notifier_block cxgb4_netevent_nb = {
3471 .notifier_call = netevent_cb
3472 };
3473
3474 static void drain_db_fifo(struct adapter *adap, int usecs)
3475 {
3476 u32 v1, v2, lp_count, hp_count;
3477
3478 do {
3479 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3480 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3481 if (is_t4(adap->chip)) {
3482 lp_count = G_LP_COUNT(v1);
3483 hp_count = G_HP_COUNT(v1);
3484 } else {
3485 lp_count = G_LP_COUNT_T5(v1);
3486 hp_count = G_HP_COUNT_T5(v2);
3487 }
3488
3489 if (lp_count == 0 && hp_count == 0)
3490 break;
3491 set_current_state(TASK_UNINTERRUPTIBLE);
3492 schedule_timeout(usecs_to_jiffies(usecs));
3493 } while (1);
3494 }
3495
3496 static void disable_txq_db(struct sge_txq *q)
3497 {
3498 spin_lock_irq(&q->db_lock);
3499 q->db_disabled = 1;
3500 spin_unlock_irq(&q->db_lock);
3501 }
3502
3503 static void enable_txq_db(struct sge_txq *q)
3504 {
3505 spin_lock_irq(&q->db_lock);
3506 q->db_disabled = 0;
3507 spin_unlock_irq(&q->db_lock);
3508 }
3509
3510 static void disable_dbs(struct adapter *adap)
3511 {
3512 int i;
3513
3514 for_each_ethrxq(&adap->sge, i)
3515 disable_txq_db(&adap->sge.ethtxq[i].q);
3516 for_each_ofldrxq(&adap->sge, i)
3517 disable_txq_db(&adap->sge.ofldtxq[i].q);
3518 for_each_port(adap, i)
3519 disable_txq_db(&adap->sge.ctrlq[i].q);
3520 }
3521
3522 static void enable_dbs(struct adapter *adap)
3523 {
3524 int i;
3525
3526 for_each_ethrxq(&adap->sge, i)
3527 enable_txq_db(&adap->sge.ethtxq[i].q);
3528 for_each_ofldrxq(&adap->sge, i)
3529 enable_txq_db(&adap->sge.ofldtxq[i].q);
3530 for_each_port(adap, i)
3531 enable_txq_db(&adap->sge.ctrlq[i].q);
3532 }
3533
3534 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3535 {
3536 u16 hw_pidx, hw_cidx;
3537 int ret;
3538
3539 spin_lock_bh(&q->db_lock);
3540 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3541 if (ret)
3542 goto out;
3543 if (q->db_pidx != hw_pidx) {
3544 u16 delta;
3545
3546 if (q->db_pidx >= hw_pidx)
3547 delta = q->db_pidx - hw_pidx;
3548 else
3549 delta = q->size - hw_pidx + q->db_pidx;
3550 wmb();
3551 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3552 QID(q->cntxt_id) | PIDX(delta));
3553 }
3554 out:
3555 q->db_disabled = 0;
3556 spin_unlock_bh(&q->db_lock);
3557 if (ret)
3558 CH_WARN(adap, "DB drop recovery failed.\n");
3559 }
3560 static void recover_all_queues(struct adapter *adap)
3561 {
3562 int i;
3563
3564 for_each_ethrxq(&adap->sge, i)
3565 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3566 for_each_ofldrxq(&adap->sge, i)
3567 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3568 for_each_port(adap, i)
3569 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3570 }
3571
3572 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3573 {
3574 mutex_lock(&uld_mutex);
3575 if (adap->uld_handle[CXGB4_ULD_RDMA])
3576 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3577 cmd);
3578 mutex_unlock(&uld_mutex);
3579 }
3580
3581 static void process_db_full(struct work_struct *work)
3582 {
3583 struct adapter *adap;
3584
3585 adap = container_of(work, struct adapter, db_full_task);
3586
3587 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3588 drain_db_fifo(adap, dbfifo_drain_delay);
3589 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3590 DBFIFO_HP_INT | DBFIFO_LP_INT,
3591 DBFIFO_HP_INT | DBFIFO_LP_INT);
3592 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3593 }
3594
3595 static void process_db_drop(struct work_struct *work)
3596 {
3597 struct adapter *adap;
3598
3599 adap = container_of(work, struct adapter, db_drop_task);
3600
3601 if (is_t4(adap->chip)) {
3602 disable_dbs(adap);
3603 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3604 drain_db_fifo(adap, 1);
3605 recover_all_queues(adap);
3606 enable_dbs(adap);
3607 } else {
3608 u32 dropped_db = t4_read_reg(adap, 0x010ac);
3609 u16 qid = (dropped_db >> 15) & 0x1ffff;
3610 u16 pidx_inc = dropped_db & 0x1fff;
3611 unsigned int s_qpp;
3612 unsigned short udb_density;
3613 unsigned long qpshift;
3614 int page;
3615 u32 udb;
3616
3617 dev_warn(adap->pdev_dev,
3618 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
3619 dropped_db, qid,
3620 (dropped_db >> 14) & 1,
3621 (dropped_db >> 13) & 1,
3622 pidx_inc);
3623
3624 drain_db_fifo(adap, 1);
3625
3626 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
3627 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
3628 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
3629 qpshift = PAGE_SHIFT - ilog2(udb_density);
3630 udb = qid << qpshift;
3631 udb &= PAGE_MASK;
3632 page = udb / PAGE_SIZE;
3633 udb += (qid - (page * udb_density)) * 128;
3634
3635 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
3636
3637 /* Re-enable BAR2 WC */
3638 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3639 }
3640
3641 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3642 }
3643
3644 void t4_db_full(struct adapter *adap)
3645 {
3646 if (is_t4(adap->chip)) {
3647 t4_set_reg_field(adap, SGE_INT_ENABLE3,
3648 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3649 queue_work(workq, &adap->db_full_task);
3650 }
3651 }
3652
3653 void t4_db_dropped(struct adapter *adap)
3654 {
3655 if (is_t4(adap->chip))
3656 queue_work(workq, &adap->db_drop_task);
3657 }
3658
3659 static void uld_attach(struct adapter *adap, unsigned int uld)
3660 {
3661 void *handle;
3662 struct cxgb4_lld_info lli;
3663 unsigned short i;
3664
3665 lli.pdev = adap->pdev;
3666 lli.l2t = adap->l2t;
3667 lli.tids = &adap->tids;
3668 lli.ports = adap->port;
3669 lli.vr = &adap->vres;
3670 lli.mtus = adap->params.mtus;
3671 if (uld == CXGB4_ULD_RDMA) {
3672 lli.rxq_ids = adap->sge.rdma_rxq;
3673 lli.nrxq = adap->sge.rdmaqs;
3674 } else if (uld == CXGB4_ULD_ISCSI) {
3675 lli.rxq_ids = adap->sge.ofld_rxq;
3676 lli.nrxq = adap->sge.ofldqsets;
3677 }
3678 lli.ntxq = adap->sge.ofldqsets;
3679 lli.nchan = adap->params.nports;
3680 lli.nports = adap->params.nports;
3681 lli.wr_cred = adap->params.ofldq_wr_cred;
3682 lli.adapter_type = adap->params.rev;
3683 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3684 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3685 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3686 (adap->fn * 4));
3687 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3688 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3689 (adap->fn * 4));
3690 lli.filt_mode = adap->filter_mode;
3691 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3692 for (i = 0; i < NCHAN; i++)
3693 lli.tx_modq[i] = i;
3694 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3695 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3696 lli.fw_vers = adap->params.fw_vers;
3697 lli.dbfifo_int_thresh = dbfifo_int_thresh;
3698 lli.sge_pktshift = adap->sge.pktshift;
3699 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3700
3701 handle = ulds[uld].add(&lli);
3702 if (IS_ERR(handle)) {
3703 dev_warn(adap->pdev_dev,
3704 "could not attach to the %s driver, error %ld\n",
3705 uld_str[uld], PTR_ERR(handle));
3706 return;
3707 }
3708
3709 adap->uld_handle[uld] = handle;
3710
3711 if (!netevent_registered) {
3712 register_netevent_notifier(&cxgb4_netevent_nb);
3713 netevent_registered = true;
3714 }
3715
3716 if (adap->flags & FULL_INIT_DONE)
3717 ulds[uld].state_change(handle, CXGB4_STATE_UP);
3718 }
3719
3720 static void attach_ulds(struct adapter *adap)
3721 {
3722 unsigned int i;
3723
3724 mutex_lock(&uld_mutex);
3725 list_add_tail(&adap->list_node, &adapter_list);
3726 for (i = 0; i < CXGB4_ULD_MAX; i++)
3727 if (ulds[i].add)
3728 uld_attach(adap, i);
3729 mutex_unlock(&uld_mutex);
3730 }
3731
3732 static void detach_ulds(struct adapter *adap)
3733 {
3734 unsigned int i;
3735
3736 mutex_lock(&uld_mutex);
3737 list_del(&adap->list_node);
3738 for (i = 0; i < CXGB4_ULD_MAX; i++)
3739 if (adap->uld_handle[i]) {
3740 ulds[i].state_change(adap->uld_handle[i],
3741 CXGB4_STATE_DETACH);
3742 adap->uld_handle[i] = NULL;
3743 }
3744 if (netevent_registered && list_empty(&adapter_list)) {
3745 unregister_netevent_notifier(&cxgb4_netevent_nb);
3746 netevent_registered = false;
3747 }
3748 mutex_unlock(&uld_mutex);
3749 }
3750
3751 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3752 {
3753 unsigned int i;
3754
3755 mutex_lock(&uld_mutex);
3756 for (i = 0; i < CXGB4_ULD_MAX; i++)
3757 if (adap->uld_handle[i])
3758 ulds[i].state_change(adap->uld_handle[i], new_state);
3759 mutex_unlock(&uld_mutex);
3760 }
3761
3762 /**
3763 * cxgb4_register_uld - register an upper-layer driver
3764 * @type: the ULD type
3765 * @p: the ULD methods
3766 *
3767 * Registers an upper-layer driver with this driver and notifies the ULD
3768 * about any presently available devices that support its type. Returns
3769 * %-EBUSY if a ULD of the same type is already registered.
3770 */
3771 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
3772 {
3773 int ret = 0;
3774 struct adapter *adap;
3775
3776 if (type >= CXGB4_ULD_MAX)
3777 return -EINVAL;
3778 mutex_lock(&uld_mutex);
3779 if (ulds[type].add) {
3780 ret = -EBUSY;
3781 goto out;
3782 }
3783 ulds[type] = *p;
3784 list_for_each_entry(adap, &adapter_list, list_node)
3785 uld_attach(adap, type);
3786 out: mutex_unlock(&uld_mutex);
3787 return ret;
3788 }
3789 EXPORT_SYMBOL(cxgb4_register_uld);
3790
3791 /**
3792 * cxgb4_unregister_uld - unregister an upper-layer driver
3793 * @type: the ULD type
3794 *
3795 * Unregisters an existing upper-layer driver.
3796 */
3797 int cxgb4_unregister_uld(enum cxgb4_uld type)
3798 {
3799 struct adapter *adap;
3800
3801 if (type >= CXGB4_ULD_MAX)
3802 return -EINVAL;
3803 mutex_lock(&uld_mutex);
3804 list_for_each_entry(adap, &adapter_list, list_node)
3805 adap->uld_handle[type] = NULL;
3806 ulds[type].add = NULL;
3807 mutex_unlock(&uld_mutex);
3808 return 0;
3809 }
3810 EXPORT_SYMBOL(cxgb4_unregister_uld);
3811
3812 /**
3813 * cxgb_up - enable the adapter
3814 * @adap: adapter being enabled
3815 *
3816 * Called when the first port is enabled, this function performs the
3817 * actions necessary to make an adapter operational, such as completing
3818 * the initialization of HW modules, and enabling interrupts.
3819 *
3820 * Must be called with the rtnl lock held.
3821 */
3822 static int cxgb_up(struct adapter *adap)
3823 {
3824 int err;
3825
3826 err = setup_sge_queues(adap);
3827 if (err)
3828 goto out;
3829 err = setup_rss(adap);
3830 if (err)
3831 goto freeq;
3832
3833 if (adap->flags & USING_MSIX) {
3834 name_msix_vecs(adap);
3835 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
3836 adap->msix_info[0].desc, adap);
3837 if (err)
3838 goto irq_err;
3839
3840 err = request_msix_queue_irqs(adap);
3841 if (err) {
3842 free_irq(adap->msix_info[0].vec, adap);
3843 goto irq_err;
3844 }
3845 } else {
3846 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
3847 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
3848 adap->port[0]->name, adap);
3849 if (err)
3850 goto irq_err;
3851 }
3852 enable_rx(adap);
3853 t4_sge_start(adap);
3854 t4_intr_enable(adap);
3855 adap->flags |= FULL_INIT_DONE;
3856 notify_ulds(adap, CXGB4_STATE_UP);
3857 out:
3858 return err;
3859 irq_err:
3860 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
3861 freeq:
3862 t4_free_sge_resources(adap);
3863 goto out;
3864 }
3865
3866 static void cxgb_down(struct adapter *adapter)
3867 {
3868 t4_intr_disable(adapter);
3869 cancel_work_sync(&adapter->tid_release_task);
3870 cancel_work_sync(&adapter->db_full_task);
3871 cancel_work_sync(&adapter->db_drop_task);
3872 adapter->tid_release_task_busy = false;
3873 adapter->tid_release_head = NULL;
3874
3875 if (adapter->flags & USING_MSIX) {
3876 free_msix_queue_irqs(adapter);
3877 free_irq(adapter->msix_info[0].vec, adapter);
3878 } else
3879 free_irq(adapter->pdev->irq, adapter);
3880 quiesce_rx(adapter);
3881 t4_sge_stop(adapter);
3882 t4_free_sge_resources(adapter);
3883 adapter->flags &= ~FULL_INIT_DONE;
3884 }
3885
3886 /*
3887 * net_device operations
3888 */
3889 static int cxgb_open(struct net_device *dev)
3890 {
3891 int err;
3892 struct port_info *pi = netdev_priv(dev);
3893 struct adapter *adapter = pi->adapter;
3894
3895 netif_carrier_off(dev);
3896
3897 if (!(adapter->flags & FULL_INIT_DONE)) {
3898 err = cxgb_up(adapter);
3899 if (err < 0)
3900 return err;
3901 }
3902
3903 err = link_start(dev);
3904 if (!err)
3905 netif_tx_start_all_queues(dev);
3906 return err;
3907 }
3908
3909 static int cxgb_close(struct net_device *dev)
3910 {
3911 struct port_info *pi = netdev_priv(dev);
3912 struct adapter *adapter = pi->adapter;
3913
3914 netif_tx_stop_all_queues(dev);
3915 netif_carrier_off(dev);
3916 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
3917 }
3918
3919 /* Return an error number if the indicated filter isn't writable ...
3920 */
3921 static int writable_filter(struct filter_entry *f)
3922 {
3923 if (f->locked)
3924 return -EPERM;
3925 if (f->pending)
3926 return -EBUSY;
3927
3928 return 0;
3929 }
3930
3931 /* Delete the filter at the specified index (if valid). The checks for all
3932 * the common problems with doing this like the filter being locked, currently
3933 * pending in another operation, etc.
3934 */
3935 static int delete_filter(struct adapter *adapter, unsigned int fidx)
3936 {
3937 struct filter_entry *f;
3938 int ret;
3939
3940 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
3941 return -EINVAL;
3942
3943 f = &adapter->tids.ftid_tab[fidx];
3944 ret = writable_filter(f);
3945 if (ret)
3946 return ret;
3947 if (f->valid)
3948 return del_filter_wr(adapter, fidx);
3949
3950 return 0;
3951 }
3952
3953 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
3954 __be32 sip, __be16 sport, __be16 vlan,
3955 unsigned int queue, unsigned char port, unsigned char mask)
3956 {
3957 int ret;
3958 struct filter_entry *f;
3959 struct adapter *adap;
3960 int i;
3961 u8 *val;
3962
3963 adap = netdev2adap(dev);
3964
3965 /* Adjust stid to correct filter index */
3966 stid -= adap->tids.nstids;
3967 stid += adap->tids.nftids;
3968
3969 /* Check to make sure the filter requested is writable ...
3970 */
3971 f = &adap->tids.ftid_tab[stid];
3972 ret = writable_filter(f);
3973 if (ret)
3974 return ret;
3975
3976 /* Clear out any old resources being used by the filter before
3977 * we start constructing the new filter.
3978 */
3979 if (f->valid)
3980 clear_filter(adap, f);
3981
3982 /* Clear out filter specifications */
3983 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
3984 f->fs.val.lport = cpu_to_be16(sport);
3985 f->fs.mask.lport = ~0;
3986 val = (u8 *)&sip;
3987 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
3988 for (i = 0; i < 4; i++) {
3989 f->fs.val.lip[i] = val[i];
3990 f->fs.mask.lip[i] = ~0;
3991 }
3992 if (adap->filter_mode & F_PORT) {
3993 f->fs.val.iport = port;
3994 f->fs.mask.iport = mask;
3995 }
3996 }
3997
3998 f->fs.dirsteer = 1;
3999 f->fs.iq = queue;
4000 /* Mark filter as locked */
4001 f->locked = 1;
4002 f->fs.rpttid = 1;
4003
4004 ret = set_filter_wr(adap, stid);
4005 if (ret) {
4006 clear_filter(adap, f);
4007 return ret;
4008 }
4009
4010 return 0;
4011 }
4012 EXPORT_SYMBOL(cxgb4_create_server_filter);
4013
4014 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4015 unsigned int queue, bool ipv6)
4016 {
4017 int ret;
4018 struct filter_entry *f;
4019 struct adapter *adap;
4020
4021 adap = netdev2adap(dev);
4022
4023 /* Adjust stid to correct filter index */
4024 stid -= adap->tids.nstids;
4025 stid += adap->tids.nftids;
4026
4027 f = &adap->tids.ftid_tab[stid];
4028 /* Unlock the filter */
4029 f->locked = 0;
4030
4031 ret = delete_filter(adap, stid);
4032 if (ret)
4033 return ret;
4034
4035 return 0;
4036 }
4037 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4038
4039 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4040 struct rtnl_link_stats64 *ns)
4041 {
4042 struct port_stats stats;
4043 struct port_info *p = netdev_priv(dev);
4044 struct adapter *adapter = p->adapter;
4045
4046 spin_lock(&adapter->stats_lock);
4047 t4_get_port_stats(adapter, p->tx_chan, &stats);
4048 spin_unlock(&adapter->stats_lock);
4049
4050 ns->tx_bytes = stats.tx_octets;
4051 ns->tx_packets = stats.tx_frames;
4052 ns->rx_bytes = stats.rx_octets;
4053 ns->rx_packets = stats.rx_frames;
4054 ns->multicast = stats.rx_mcast_frames;
4055
4056 /* detailed rx_errors */
4057 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4058 stats.rx_runt;
4059 ns->rx_over_errors = 0;
4060 ns->rx_crc_errors = stats.rx_fcs_err;
4061 ns->rx_frame_errors = stats.rx_symbol_err;
4062 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4063 stats.rx_ovflow2 + stats.rx_ovflow3 +
4064 stats.rx_trunc0 + stats.rx_trunc1 +
4065 stats.rx_trunc2 + stats.rx_trunc3;
4066 ns->rx_missed_errors = 0;
4067
4068 /* detailed tx_errors */
4069 ns->tx_aborted_errors = 0;
4070 ns->tx_carrier_errors = 0;
4071 ns->tx_fifo_errors = 0;
4072 ns->tx_heartbeat_errors = 0;
4073 ns->tx_window_errors = 0;
4074
4075 ns->tx_errors = stats.tx_error_frames;
4076 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4077 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4078 return ns;
4079 }
4080
4081 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4082 {
4083 unsigned int mbox;
4084 int ret = 0, prtad, devad;
4085 struct port_info *pi = netdev_priv(dev);
4086 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4087
4088 switch (cmd) {
4089 case SIOCGMIIPHY:
4090 if (pi->mdio_addr < 0)
4091 return -EOPNOTSUPP;
4092 data->phy_id = pi->mdio_addr;
4093 break;
4094 case SIOCGMIIREG:
4095 case SIOCSMIIREG:
4096 if (mdio_phy_id_is_c45(data->phy_id)) {
4097 prtad = mdio_phy_id_prtad(data->phy_id);
4098 devad = mdio_phy_id_devad(data->phy_id);
4099 } else if (data->phy_id < 32) {
4100 prtad = data->phy_id;
4101 devad = 0;
4102 data->reg_num &= 0x1f;
4103 } else
4104 return -EINVAL;
4105
4106 mbox = pi->adapter->fn;
4107 if (cmd == SIOCGMIIREG)
4108 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4109 data->reg_num, &data->val_out);
4110 else
4111 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4112 data->reg_num, data->val_in);
4113 break;
4114 default:
4115 return -EOPNOTSUPP;
4116 }
4117 return ret;
4118 }
4119
4120 static void cxgb_set_rxmode(struct net_device *dev)
4121 {
4122 /* unfortunately we can't return errors to the stack */
4123 set_rxmode(dev, -1, false);
4124 }
4125
4126 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4127 {
4128 int ret;
4129 struct port_info *pi = netdev_priv(dev);
4130
4131 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4132 return -EINVAL;
4133 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4134 -1, -1, -1, true);
4135 if (!ret)
4136 dev->mtu = new_mtu;
4137 return ret;
4138 }
4139
4140 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4141 {
4142 int ret;
4143 struct sockaddr *addr = p;
4144 struct port_info *pi = netdev_priv(dev);
4145
4146 if (!is_valid_ether_addr(addr->sa_data))
4147 return -EADDRNOTAVAIL;
4148
4149 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4150 pi->xact_addr_filt, addr->sa_data, true, true);
4151 if (ret < 0)
4152 return ret;
4153
4154 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4155 pi->xact_addr_filt = ret;
4156 return 0;
4157 }
4158
4159 #ifdef CONFIG_NET_POLL_CONTROLLER
4160 static void cxgb_netpoll(struct net_device *dev)
4161 {
4162 struct port_info *pi = netdev_priv(dev);
4163 struct adapter *adap = pi->adapter;
4164
4165 if (adap->flags & USING_MSIX) {
4166 int i;
4167 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4168
4169 for (i = pi->nqsets; i; i--, rx++)
4170 t4_sge_intr_msix(0, &rx->rspq);
4171 } else
4172 t4_intr_handler(adap)(0, adap);
4173 }
4174 #endif
4175
4176 static const struct net_device_ops cxgb4_netdev_ops = {
4177 .ndo_open = cxgb_open,
4178 .ndo_stop = cxgb_close,
4179 .ndo_start_xmit = t4_eth_xmit,
4180 .ndo_get_stats64 = cxgb_get_stats,
4181 .ndo_set_rx_mode = cxgb_set_rxmode,
4182 .ndo_set_mac_address = cxgb_set_mac_addr,
4183 .ndo_set_features = cxgb_set_features,
4184 .ndo_validate_addr = eth_validate_addr,
4185 .ndo_do_ioctl = cxgb_ioctl,
4186 .ndo_change_mtu = cxgb_change_mtu,
4187 #ifdef CONFIG_NET_POLL_CONTROLLER
4188 .ndo_poll_controller = cxgb_netpoll,
4189 #endif
4190 };
4191
4192 void t4_fatal_err(struct adapter *adap)
4193 {
4194 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4195 t4_intr_disable(adap);
4196 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4197 }
4198
4199 static void setup_memwin(struct adapter *adap)
4200 {
4201 u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
4202
4203 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
4204 if (is_t4(adap->chip)) {
4205 mem_win0_base = bar0 + MEMWIN0_BASE;
4206 mem_win1_base = bar0 + MEMWIN1_BASE;
4207 mem_win2_base = bar0 + MEMWIN2_BASE;
4208 } else {
4209 /* For T5, only relative offset inside the PCIe BAR is passed */
4210 mem_win0_base = MEMWIN0_BASE;
4211 mem_win1_base = MEMWIN1_BASE_T5;
4212 mem_win2_base = MEMWIN2_BASE_T5;
4213 }
4214 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4215 mem_win0_base | BIR(0) |
4216 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4217 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4218 mem_win1_base | BIR(0) |
4219 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4220 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4221 mem_win2_base | BIR(0) |
4222 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4223 }
4224
4225 static void setup_memwin_rdma(struct adapter *adap)
4226 {
4227 if (adap->vres.ocq.size) {
4228 unsigned int start, sz_kb;
4229
4230 start = pci_resource_start(adap->pdev, 2) +
4231 OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4232 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4233 t4_write_reg(adap,
4234 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4235 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4236 t4_write_reg(adap,
4237 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4238 adap->vres.ocq.start);
4239 t4_read_reg(adap,
4240 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4241 }
4242 }
4243
4244 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4245 {
4246 u32 v;
4247 int ret;
4248
4249 /* get device capabilities */
4250 memset(c, 0, sizeof(*c));
4251 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4252 FW_CMD_REQUEST | FW_CMD_READ);
4253 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4254 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4255 if (ret < 0)
4256 return ret;
4257
4258 /* select capabilities we'll be using */
4259 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4260 if (!vf_acls)
4261 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4262 else
4263 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4264 } else if (vf_acls) {
4265 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4266 return ret;
4267 }
4268 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4269 FW_CMD_REQUEST | FW_CMD_WRITE);
4270 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4271 if (ret < 0)
4272 return ret;
4273
4274 ret = t4_config_glbl_rss(adap, adap->fn,
4275 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4276 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4277 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4278 if (ret < 0)
4279 return ret;
4280
4281 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4282 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4283 if (ret < 0)
4284 return ret;
4285
4286 t4_sge_init(adap);
4287
4288 /* tweak some settings */
4289 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4290 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4291 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4292 v = t4_read_reg(adap, TP_PIO_DATA);
4293 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4294
4295 /* first 4 Tx modulation queues point to consecutive Tx channels */
4296 adap->params.tp.tx_modq_map = 0xE4;
4297 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4298 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4299
4300 /* associate each Tx modulation queue with consecutive Tx channels */
4301 v = 0x84218421;
4302 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4303 &v, 1, A_TP_TX_SCHED_HDR);
4304 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4305 &v, 1, A_TP_TX_SCHED_FIFO);
4306 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4307 &v, 1, A_TP_TX_SCHED_PCMD);
4308
4309 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4310 if (is_offload(adap)) {
4311 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4312 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4313 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4314 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4315 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4316 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4317 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4318 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4319 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4320 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4321 }
4322
4323 /* get basic stuff going */
4324 return t4_early_init(adap, adap->fn);
4325 }
4326
4327 /*
4328 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4329 */
4330 #define MAX_ATIDS 8192U
4331
4332 /*
4333 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4334 *
4335 * If the firmware we're dealing with has Configuration File support, then
4336 * we use that to perform all configuration
4337 */
4338
4339 /*
4340 * Tweak configuration based on module parameters, etc. Most of these have
4341 * defaults assigned to them by Firmware Configuration Files (if we're using
4342 * them) but need to be explicitly set if we're using hard-coded
4343 * initialization. But even in the case of using Firmware Configuration
4344 * Files, we'd like to expose the ability to change these via module
4345 * parameters so these are essentially common tweaks/settings for
4346 * Configuration Files and hard-coded initialization ...
4347 */
4348 static int adap_init0_tweaks(struct adapter *adapter)
4349 {
4350 /*
4351 * Fix up various Host-Dependent Parameters like Page Size, Cache
4352 * Line Size, etc. The firmware default is for a 4KB Page Size and
4353 * 64B Cache Line Size ...
4354 */
4355 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4356
4357 /*
4358 * Process module parameters which affect early initialization.
4359 */
4360 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4361 dev_err(&adapter->pdev->dev,
4362 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4363 rx_dma_offset);
4364 rx_dma_offset = 2;
4365 }
4366 t4_set_reg_field(adapter, SGE_CONTROL,
4367 PKTSHIFT_MASK,
4368 PKTSHIFT(rx_dma_offset));
4369
4370 /*
4371 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4372 * adds the pseudo header itself.
4373 */
4374 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4375 CSUM_HAS_PSEUDO_HDR, 0);
4376
4377 return 0;
4378 }
4379
4380 /*
4381 * Attempt to initialize the adapter via a Firmware Configuration File.
4382 */
4383 static int adap_init0_config(struct adapter *adapter, int reset)
4384 {
4385 struct fw_caps_config_cmd caps_cmd;
4386 const struct firmware *cf;
4387 unsigned long mtype = 0, maddr = 0;
4388 u32 finiver, finicsum, cfcsum;
4389 int ret, using_flash;
4390 char *fw_config_file, fw_config_file_path[256];
4391
4392 /*
4393 * Reset device if necessary.
4394 */
4395 if (reset) {
4396 ret = t4_fw_reset(adapter, adapter->mbox,
4397 PIORSTMODE | PIORST);
4398 if (ret < 0)
4399 goto bye;
4400 }
4401
4402 /*
4403 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4404 * then use that. Otherwise, use the configuration file stored
4405 * in the adapter flash ...
4406 */
4407 switch (CHELSIO_CHIP_VERSION(adapter->chip)) {
4408 case CHELSIO_T4:
4409 fw_config_file = FW_CFNAME;
4410 break;
4411 case CHELSIO_T5:
4412 fw_config_file = FW5_CFNAME;
4413 break;
4414 default:
4415 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4416 adapter->pdev->device);
4417 ret = -EINVAL;
4418 goto bye;
4419 }
4420
4421 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4422 if (ret < 0) {
4423 using_flash = 1;
4424 mtype = FW_MEMTYPE_CF_FLASH;
4425 maddr = t4_flash_cfg_addr(adapter);
4426 } else {
4427 u32 params[7], val[7];
4428
4429 using_flash = 0;
4430 if (cf->size >= FLASH_CFG_MAX_SIZE)
4431 ret = -ENOMEM;
4432 else {
4433 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4434 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4435 ret = t4_query_params(adapter, adapter->mbox,
4436 adapter->fn, 0, 1, params, val);
4437 if (ret == 0) {
4438 /*
4439 * For t4_memory_write() below addresses and
4440 * sizes have to be in terms of multiples of 4
4441 * bytes. So, if the Configuration File isn't
4442 * a multiple of 4 bytes in length we'll have
4443 * to write that out separately since we can't
4444 * guarantee that the bytes following the
4445 * residual byte in the buffer returned by
4446 * request_firmware() are zeroed out ...
4447 */
4448 size_t resid = cf->size & 0x3;
4449 size_t size = cf->size & ~0x3;
4450 __be32 *data = (__be32 *)cf->data;
4451
4452 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4453 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4454
4455 ret = t4_memory_write(adapter, mtype, maddr,
4456 size, data);
4457 if (ret == 0 && resid != 0) {
4458 union {
4459 __be32 word;
4460 char buf[4];
4461 } last;
4462 int i;
4463
4464 last.word = data[size >> 2];
4465 for (i = resid; i < 4; i++)
4466 last.buf[i] = 0;
4467 ret = t4_memory_write(adapter, mtype,
4468 maddr + size,
4469 4, &last.word);
4470 }
4471 }
4472 }
4473
4474 release_firmware(cf);
4475 if (ret)
4476 goto bye;
4477 }
4478
4479 /*
4480 * Issue a Capability Configuration command to the firmware to get it
4481 * to parse the Configuration File. We don't use t4_fw_config_file()
4482 * because we want the ability to modify various features after we've
4483 * processed the configuration file ...
4484 */
4485 memset(&caps_cmd, 0, sizeof(caps_cmd));
4486 caps_cmd.op_to_write =
4487 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4488 FW_CMD_REQUEST |
4489 FW_CMD_READ);
4490 caps_cmd.cfvalid_to_len16 =
4491 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4492 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4493 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4494 FW_LEN16(caps_cmd));
4495 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4496 &caps_cmd);
4497 if (ret < 0)
4498 goto bye;
4499
4500 finiver = ntohl(caps_cmd.finiver);
4501 finicsum = ntohl(caps_cmd.finicsum);
4502 cfcsum = ntohl(caps_cmd.cfcsum);
4503 if (finicsum != cfcsum)
4504 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4505 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4506 finicsum, cfcsum);
4507
4508 /*
4509 * And now tell the firmware to use the configuration we just loaded.
4510 */
4511 caps_cmd.op_to_write =
4512 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4513 FW_CMD_REQUEST |
4514 FW_CMD_WRITE);
4515 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4516 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4517 NULL);
4518 if (ret < 0)
4519 goto bye;
4520
4521 /*
4522 * Tweak configuration based on system architecture, module
4523 * parameters, etc.
4524 */
4525 ret = adap_init0_tweaks(adapter);
4526 if (ret < 0)
4527 goto bye;
4528
4529 /*
4530 * And finally tell the firmware to initialize itself using the
4531 * parameters from the Configuration File.
4532 */
4533 ret = t4_fw_initialize(adapter, adapter->mbox);
4534 if (ret < 0)
4535 goto bye;
4536
4537 sprintf(fw_config_file_path, "/lib/firmware/%s", fw_config_file);
4538 /*
4539 * Return successfully and note that we're operating with parameters
4540 * not supplied by the driver, rather than from hard-wired
4541 * initialization constants burried in the driver.
4542 */
4543 adapter->flags |= USING_SOFT_PARAMS;
4544 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4545 "Configuration File %s, version %#x, computed checksum %#x\n",
4546 (using_flash
4547 ? "in device FLASH"
4548 : fw_config_file_path),
4549 finiver, cfcsum);
4550 return 0;
4551
4552 /*
4553 * Something bad happened. Return the error ... (If the "error"
4554 * is that there's no Configuration File on the adapter we don't
4555 * want to issue a warning since this is fairly common.)
4556 */
4557 bye:
4558 if (ret != -ENOENT)
4559 dev_warn(adapter->pdev_dev, "Configuration file error %d\n",
4560 -ret);
4561 return ret;
4562 }
4563
4564 /*
4565 * Attempt to initialize the adapter via hard-coded, driver supplied
4566 * parameters ...
4567 */
4568 static int adap_init0_no_config(struct adapter *adapter, int reset)
4569 {
4570 struct sge *s = &adapter->sge;
4571 struct fw_caps_config_cmd caps_cmd;
4572 u32 v;
4573 int i, ret;
4574
4575 /*
4576 * Reset device if necessary
4577 */
4578 if (reset) {
4579 ret = t4_fw_reset(adapter, adapter->mbox,
4580 PIORSTMODE | PIORST);
4581 if (ret < 0)
4582 goto bye;
4583 }
4584
4585 /*
4586 * Get device capabilities and select which we'll be using.
4587 */
4588 memset(&caps_cmd, 0, sizeof(caps_cmd));
4589 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4590 FW_CMD_REQUEST | FW_CMD_READ);
4591 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4592 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4593 &caps_cmd);
4594 if (ret < 0)
4595 goto bye;
4596
4597 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4598 if (!vf_acls)
4599 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4600 else
4601 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4602 } else if (vf_acls) {
4603 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
4604 goto bye;
4605 }
4606 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4607 FW_CMD_REQUEST | FW_CMD_WRITE);
4608 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4609 NULL);
4610 if (ret < 0)
4611 goto bye;
4612
4613 /*
4614 * Tweak configuration based on system architecture, module
4615 * parameters, etc.
4616 */
4617 ret = adap_init0_tweaks(adapter);
4618 if (ret < 0)
4619 goto bye;
4620
4621 /*
4622 * Select RSS Global Mode we want to use. We use "Basic Virtual"
4623 * mode which maps each Virtual Interface to its own section of
4624 * the RSS Table and we turn on all map and hash enables ...
4625 */
4626 adapter->flags |= RSS_TNLALLLOOKUP;
4627 ret = t4_config_glbl_rss(adapter, adapter->mbox,
4628 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4629 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4630 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
4631 ((adapter->flags & RSS_TNLALLLOOKUP) ?
4632 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
4633 if (ret < 0)
4634 goto bye;
4635
4636 /*
4637 * Set up our own fundamental resource provisioning ...
4638 */
4639 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
4640 PFRES_NEQ, PFRES_NETHCTRL,
4641 PFRES_NIQFLINT, PFRES_NIQ,
4642 PFRES_TC, PFRES_NVI,
4643 FW_PFVF_CMD_CMASK_MASK,
4644 pfvfres_pmask(adapter, adapter->fn, 0),
4645 PFRES_NEXACTF,
4646 PFRES_R_CAPS, PFRES_WX_CAPS);
4647 if (ret < 0)
4648 goto bye;
4649
4650 /*
4651 * Perform low level SGE initialization. We need to do this before we
4652 * send the firmware the INITIALIZE command because that will cause
4653 * any other PF Drivers which are waiting for the Master
4654 * Initialization to proceed forward.
4655 */
4656 for (i = 0; i < SGE_NTIMERS - 1; i++)
4657 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
4658 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
4659 s->counter_val[0] = 1;
4660 for (i = 1; i < SGE_NCOUNTERS; i++)
4661 s->counter_val[i] = min(intr_cnt[i - 1],
4662 THRESHOLD_0_GET(THRESHOLD_0_MASK));
4663 t4_sge_init(adapter);
4664
4665 #ifdef CONFIG_PCI_IOV
4666 /*
4667 * Provision resource limits for Virtual Functions. We currently
4668 * grant them all the same static resource limits except for the Port
4669 * Access Rights Mask which we're assigning based on the PF. All of
4670 * the static provisioning stuff for both the PF and VF really needs
4671 * to be managed in a persistent manner for each device which the
4672 * firmware controls.
4673 */
4674 {
4675 int pf, vf;
4676
4677 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
4678 if (num_vf[pf] <= 0)
4679 continue;
4680
4681 /* VF numbering starts at 1! */
4682 for (vf = 1; vf <= num_vf[pf]; vf++) {
4683 ret = t4_cfg_pfvf(adapter, adapter->mbox,
4684 pf, vf,
4685 VFRES_NEQ, VFRES_NETHCTRL,
4686 VFRES_NIQFLINT, VFRES_NIQ,
4687 VFRES_TC, VFRES_NVI,
4688 FW_PFVF_CMD_CMASK_MASK,
4689 pfvfres_pmask(
4690 adapter, pf, vf),
4691 VFRES_NEXACTF,
4692 VFRES_R_CAPS, VFRES_WX_CAPS);
4693 if (ret < 0)
4694 dev_warn(adapter->pdev_dev,
4695 "failed to "\
4696 "provision pf/vf=%d/%d; "
4697 "err=%d\n", pf, vf, ret);
4698 }
4699 }
4700 }
4701 #endif
4702
4703 /*
4704 * Set up the default filter mode. Later we'll want to implement this
4705 * via a firmware command, etc. ... This needs to be done before the
4706 * firmare initialization command ... If the selected set of fields
4707 * isn't equal to the default value, we'll need to make sure that the
4708 * field selections will fit in the 36-bit budget.
4709 */
4710 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
4711 int j, bits = 0;
4712
4713 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
4714 switch (tp_vlan_pri_map & (1 << j)) {
4715 case 0:
4716 /* compressed filter field not enabled */
4717 break;
4718 case FCOE_MASK:
4719 bits += 1;
4720 break;
4721 case PORT_MASK:
4722 bits += 3;
4723 break;
4724 case VNIC_ID_MASK:
4725 bits += 17;
4726 break;
4727 case VLAN_MASK:
4728 bits += 17;
4729 break;
4730 case TOS_MASK:
4731 bits += 8;
4732 break;
4733 case PROTOCOL_MASK:
4734 bits += 8;
4735 break;
4736 case ETHERTYPE_MASK:
4737 bits += 16;
4738 break;
4739 case MACMATCH_MASK:
4740 bits += 9;
4741 break;
4742 case MPSHITTYPE_MASK:
4743 bits += 3;
4744 break;
4745 case FRAGMENTATION_MASK:
4746 bits += 1;
4747 break;
4748 }
4749
4750 if (bits > 36) {
4751 dev_err(adapter->pdev_dev,
4752 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
4753 " using %#x\n", tp_vlan_pri_map, bits,
4754 TP_VLAN_PRI_MAP_DEFAULT);
4755 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
4756 }
4757 }
4758 v = tp_vlan_pri_map;
4759 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
4760 &v, 1, TP_VLAN_PRI_MAP);
4761
4762 /*
4763 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
4764 * to support any of the compressed filter fields above. Newer
4765 * versions of the firmware do this automatically but it doesn't hurt
4766 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
4767 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
4768 * since the firmware automatically turns this on and off when we have
4769 * a non-zero number of filters active (since it does have a
4770 * performance impact).
4771 */
4772 if (tp_vlan_pri_map)
4773 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
4774 FIVETUPLELOOKUP_MASK,
4775 FIVETUPLELOOKUP_MASK);
4776
4777 /*
4778 * Tweak some settings.
4779 */
4780 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
4781 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
4782 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
4783 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
4784
4785 /*
4786 * Get basic stuff going by issuing the Firmware Initialize command.
4787 * Note that this _must_ be after all PFVF commands ...
4788 */
4789 ret = t4_fw_initialize(adapter, adapter->mbox);
4790 if (ret < 0)
4791 goto bye;
4792
4793 /*
4794 * Return successfully!
4795 */
4796 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
4797 "driver parameters\n");
4798 return 0;
4799
4800 /*
4801 * Something bad happened. Return the error ...
4802 */
4803 bye:
4804 return ret;
4805 }
4806
4807 /*
4808 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4809 */
4810 static int adap_init0(struct adapter *adap)
4811 {
4812 int ret;
4813 u32 v, port_vec;
4814 enum dev_state state;
4815 u32 params[7], val[7];
4816 struct fw_caps_config_cmd caps_cmd;
4817 int reset = 1, j;
4818
4819 /*
4820 * Contact FW, advertising Master capability (and potentially forcing
4821 * ourselves as the Master PF if our module parameter force_init is
4822 * set).
4823 */
4824 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
4825 force_init ? MASTER_MUST : MASTER_MAY,
4826 &state);
4827 if (ret < 0) {
4828 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4829 ret);
4830 return ret;
4831 }
4832 if (ret == adap->mbox)
4833 adap->flags |= MASTER_PF;
4834 if (force_init && state == DEV_STATE_INIT)
4835 state = DEV_STATE_UNINIT;
4836
4837 /*
4838 * If we're the Master PF Driver and the device is uninitialized,
4839 * then let's consider upgrading the firmware ... (We always want
4840 * to check the firmware version number in order to A. get it for
4841 * later reporting and B. to warn if the currently loaded firmware
4842 * is excessively mismatched relative to the driver.)
4843 */
4844 ret = t4_check_fw_version(adap);
4845
4846 /* The error code -EFAULT is returned by t4_check_fw_version() if
4847 * firmware on adapter < supported firmware. If firmware on adapter
4848 * is too old (not supported by driver) and we're the MASTER_PF set
4849 * adapter state to DEV_STATE_UNINIT to force firmware upgrade
4850 * and reinitialization.
4851 */
4852 if ((adap->flags & MASTER_PF) && ret == -EFAULT)
4853 state = DEV_STATE_UNINIT;
4854 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4855 if (ret == -EINVAL || ret == -EFAULT || ret > 0) {
4856 if (upgrade_fw(adap) >= 0) {
4857 /*
4858 * Note that the chip was reset as part of the
4859 * firmware upgrade so we don't reset it again
4860 * below and grab the new firmware version.
4861 */
4862 reset = 0;
4863 ret = t4_check_fw_version(adap);
4864 } else
4865 if (ret == -EFAULT) {
4866 /*
4867 * Firmware is old but still might
4868 * work if we force reinitialization
4869 * of the adapter. Ignoring FW upgrade
4870 * failure.
4871 */
4872 dev_warn(adap->pdev_dev,
4873 "Ignoring firmware upgrade "
4874 "failure, and forcing driver "
4875 "to reinitialize the "
4876 "adapter.\n");
4877 ret = 0;
4878 }
4879 }
4880 if (ret < 0)
4881 return ret;
4882 }
4883
4884 /*
4885 * Grab VPD parameters. This should be done after we establish a
4886 * connection to the firmware since some of the VPD parameters
4887 * (notably the Core Clock frequency) are retrieved via requests to
4888 * the firmware. On the other hand, we need these fairly early on
4889 * so we do this right after getting ahold of the firmware.
4890 */
4891 ret = get_vpd_params(adap, &adap->params.vpd);
4892 if (ret < 0)
4893 goto bye;
4894
4895 /*
4896 * Find out what ports are available to us. Note that we need to do
4897 * this before calling adap_init0_no_config() since it needs nports
4898 * and portvec ...
4899 */
4900 v =
4901 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4902 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
4903 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
4904 if (ret < 0)
4905 goto bye;
4906
4907 adap->params.nports = hweight32(port_vec);
4908 adap->params.portvec = port_vec;
4909
4910 /*
4911 * If the firmware is initialized already (and we're not forcing a
4912 * master initialization), note that we're living with existing
4913 * adapter parameters. Otherwise, it's time to try initializing the
4914 * adapter ...
4915 */
4916 if (state == DEV_STATE_INIT) {
4917 dev_info(adap->pdev_dev, "Coming up as %s: "\
4918 "Adapter already initialized\n",
4919 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4920 adap->flags |= USING_SOFT_PARAMS;
4921 } else {
4922 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4923 "Initializing adapter\n");
4924
4925 /*
4926 * If the firmware doesn't support Configuration
4927 * Files warn user and exit,
4928 */
4929 if (ret < 0)
4930 dev_warn(adap->pdev_dev, "Firmware doesn't support "
4931 "configuration file.\n");
4932 if (force_old_init)
4933 ret = adap_init0_no_config(adap, reset);
4934 else {
4935 /*
4936 * Find out whether we're dealing with a version of
4937 * the firmware which has configuration file support.
4938 */
4939 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4940 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4941 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
4942 params, val);
4943
4944 /*
4945 * If the firmware doesn't support Configuration
4946 * Files, use the old Driver-based, hard-wired
4947 * initialization. Otherwise, try using the
4948 * Configuration File support and fall back to the
4949 * Driver-based initialization if there's no
4950 * Configuration File found.
4951 */
4952 if (ret < 0)
4953 ret = adap_init0_no_config(adap, reset);
4954 else {
4955 /*
4956 * The firmware provides us with a memory
4957 * buffer where we can load a Configuration
4958 * File from the host if we want to override
4959 * the Configuration File in flash.
4960 */
4961
4962 ret = adap_init0_config(adap, reset);
4963 if (ret == -ENOENT) {
4964 dev_info(adap->pdev_dev,
4965 "No Configuration File present "
4966 "on adapter. Using hard-wired "
4967 "configuration parameters.\n");
4968 ret = adap_init0_no_config(adap, reset);
4969 }
4970 }
4971 }
4972 if (ret < 0) {
4973 dev_err(adap->pdev_dev,
4974 "could not initialize adapter, error %d\n",
4975 -ret);
4976 goto bye;
4977 }
4978 }
4979
4980 /*
4981 * If we're living with non-hard-coded parameters (either from a
4982 * Firmware Configuration File or values programmed by a different PF
4983 * Driver), give the SGE code a chance to pull in anything that it
4984 * needs ... Note that this must be called after we retrieve our VPD
4985 * parameters in order to know how to convert core ticks to seconds.
4986 */
4987 if (adap->flags & USING_SOFT_PARAMS) {
4988 ret = t4_sge_init(adap);
4989 if (ret < 0)
4990 goto bye;
4991 }
4992
4993 if (is_bypass_device(adap->pdev->device))
4994 adap->params.bypass = 1;
4995
4996 /*
4997 * Grab some of our basic fundamental operating parameters.
4998 */
4999 #define FW_PARAM_DEV(param) \
5000 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5001 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5002
5003 #define FW_PARAM_PFVF(param) \
5004 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5005 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5006 FW_PARAMS_PARAM_Y(0) | \
5007 FW_PARAMS_PARAM_Z(0)
5008
5009 params[0] = FW_PARAM_PFVF(EQ_START);
5010 params[1] = FW_PARAM_PFVF(L2T_START);
5011 params[2] = FW_PARAM_PFVF(L2T_END);
5012 params[3] = FW_PARAM_PFVF(FILTER_START);
5013 params[4] = FW_PARAM_PFVF(FILTER_END);
5014 params[5] = FW_PARAM_PFVF(IQFLINT_START);
5015 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5016 if (ret < 0)
5017 goto bye;
5018 adap->sge.egr_start = val[0];
5019 adap->l2t_start = val[1];
5020 adap->l2t_end = val[2];
5021 adap->tids.ftid_base = val[3];
5022 adap->tids.nftids = val[4] - val[3] + 1;
5023 adap->sge.ingr_start = val[5];
5024
5025 /* query params related to active filter region */
5026 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5027 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5028 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5029 /* If Active filter size is set we enable establishing
5030 * offload connection through firmware work request
5031 */
5032 if ((val[0] != val[1]) && (ret >= 0)) {
5033 adap->flags |= FW_OFLD_CONN;
5034 adap->tids.aftid_base = val[0];
5035 adap->tids.aftid_end = val[1];
5036 }
5037
5038 /* If we're running on newer firmware, let it know that we're
5039 * prepared to deal with encapsulated CPL messages. Older
5040 * firmware won't understand this and we'll just get
5041 * unencapsulated messages ...
5042 */
5043 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5044 val[0] = 1;
5045 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5046
5047 /*
5048 * Get device capabilities so we can determine what resources we need
5049 * to manage.
5050 */
5051 memset(&caps_cmd, 0, sizeof(caps_cmd));
5052 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5053 FW_CMD_REQUEST | FW_CMD_READ);
5054 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5055 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5056 &caps_cmd);
5057 if (ret < 0)
5058 goto bye;
5059
5060 if (caps_cmd.ofldcaps) {
5061 /* query offload-related parameters */
5062 params[0] = FW_PARAM_DEV(NTID);
5063 params[1] = FW_PARAM_PFVF(SERVER_START);
5064 params[2] = FW_PARAM_PFVF(SERVER_END);
5065 params[3] = FW_PARAM_PFVF(TDDP_START);
5066 params[4] = FW_PARAM_PFVF(TDDP_END);
5067 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5068 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5069 params, val);
5070 if (ret < 0)
5071 goto bye;
5072 adap->tids.ntids = val[0];
5073 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5074 adap->tids.stid_base = val[1];
5075 adap->tids.nstids = val[2] - val[1] + 1;
5076 /*
5077 * Setup server filter region. Divide the availble filter
5078 * region into two parts. Regular filters get 1/3rd and server
5079 * filters get 2/3rd part. This is only enabled if workarond
5080 * path is enabled.
5081 * 1. For regular filters.
5082 * 2. Server filter: This are special filters which are used
5083 * to redirect SYN packets to offload queue.
5084 */
5085 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5086 adap->tids.sftid_base = adap->tids.ftid_base +
5087 DIV_ROUND_UP(adap->tids.nftids, 3);
5088 adap->tids.nsftids = adap->tids.nftids -
5089 DIV_ROUND_UP(adap->tids.nftids, 3);
5090 adap->tids.nftids = adap->tids.sftid_base -
5091 adap->tids.ftid_base;
5092 }
5093 adap->vres.ddp.start = val[3];
5094 adap->vres.ddp.size = val[4] - val[3] + 1;
5095 adap->params.ofldq_wr_cred = val[5];
5096
5097 adap->params.offload = 1;
5098 }
5099 if (caps_cmd.rdmacaps) {
5100 params[0] = FW_PARAM_PFVF(STAG_START);
5101 params[1] = FW_PARAM_PFVF(STAG_END);
5102 params[2] = FW_PARAM_PFVF(RQ_START);
5103 params[3] = FW_PARAM_PFVF(RQ_END);
5104 params[4] = FW_PARAM_PFVF(PBL_START);
5105 params[5] = FW_PARAM_PFVF(PBL_END);
5106 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5107 params, val);
5108 if (ret < 0)
5109 goto bye;
5110 adap->vres.stag.start = val[0];
5111 adap->vres.stag.size = val[1] - val[0] + 1;
5112 adap->vres.rq.start = val[2];
5113 adap->vres.rq.size = val[3] - val[2] + 1;
5114 adap->vres.pbl.start = val[4];
5115 adap->vres.pbl.size = val[5] - val[4] + 1;
5116
5117 params[0] = FW_PARAM_PFVF(SQRQ_START);
5118 params[1] = FW_PARAM_PFVF(SQRQ_END);
5119 params[2] = FW_PARAM_PFVF(CQ_START);
5120 params[3] = FW_PARAM_PFVF(CQ_END);
5121 params[4] = FW_PARAM_PFVF(OCQ_START);
5122 params[5] = FW_PARAM_PFVF(OCQ_END);
5123 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5124 if (ret < 0)
5125 goto bye;
5126 adap->vres.qp.start = val[0];
5127 adap->vres.qp.size = val[1] - val[0] + 1;
5128 adap->vres.cq.start = val[2];
5129 adap->vres.cq.size = val[3] - val[2] + 1;
5130 adap->vres.ocq.start = val[4];
5131 adap->vres.ocq.size = val[5] - val[4] + 1;
5132 }
5133 if (caps_cmd.iscsicaps) {
5134 params[0] = FW_PARAM_PFVF(ISCSI_START);
5135 params[1] = FW_PARAM_PFVF(ISCSI_END);
5136 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5137 params, val);
5138 if (ret < 0)
5139 goto bye;
5140 adap->vres.iscsi.start = val[0];
5141 adap->vres.iscsi.size = val[1] - val[0] + 1;
5142 }
5143 #undef FW_PARAM_PFVF
5144 #undef FW_PARAM_DEV
5145
5146 /*
5147 * These are finalized by FW initialization, load their values now.
5148 */
5149 v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
5150 adap->params.tp.tre = TIMERRESOLUTION_GET(v);
5151 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
5152 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5153 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5154 adap->params.b_wnd);
5155
5156 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5157 for (j = 0; j < NCHAN; j++)
5158 adap->params.tp.tx_modq[j] = j;
5159
5160 t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5161 &adap->filter_mode, 1,
5162 TP_VLAN_PRI_MAP);
5163
5164 adap->flags |= FW_OK;
5165 return 0;
5166
5167 /*
5168 * Something bad happened. If a command timed out or failed with EIO
5169 * FW does not operate within its spec or something catastrophic
5170 * happened to HW/FW, stop issuing commands.
5171 */
5172 bye:
5173 if (ret != -ETIMEDOUT && ret != -EIO)
5174 t4_fw_bye(adap, adap->mbox);
5175 return ret;
5176 }
5177
5178 /* EEH callbacks */
5179
5180 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5181 pci_channel_state_t state)
5182 {
5183 int i;
5184 struct adapter *adap = pci_get_drvdata(pdev);
5185
5186 if (!adap)
5187 goto out;
5188
5189 rtnl_lock();
5190 adap->flags &= ~FW_OK;
5191 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5192 for_each_port(adap, i) {
5193 struct net_device *dev = adap->port[i];
5194
5195 netif_device_detach(dev);
5196 netif_carrier_off(dev);
5197 }
5198 if (adap->flags & FULL_INIT_DONE)
5199 cxgb_down(adap);
5200 rtnl_unlock();
5201 pci_disable_device(pdev);
5202 out: return state == pci_channel_io_perm_failure ?
5203 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5204 }
5205
5206 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5207 {
5208 int i, ret;
5209 struct fw_caps_config_cmd c;
5210 struct adapter *adap = pci_get_drvdata(pdev);
5211
5212 if (!adap) {
5213 pci_restore_state(pdev);
5214 pci_save_state(pdev);
5215 return PCI_ERS_RESULT_RECOVERED;
5216 }
5217
5218 if (pci_enable_device(pdev)) {
5219 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
5220 return PCI_ERS_RESULT_DISCONNECT;
5221 }
5222
5223 pci_set_master(pdev);
5224 pci_restore_state(pdev);
5225 pci_save_state(pdev);
5226 pci_cleanup_aer_uncorrect_error_status(pdev);
5227
5228 if (t4_wait_dev_ready(adap) < 0)
5229 return PCI_ERS_RESULT_DISCONNECT;
5230 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
5231 return PCI_ERS_RESULT_DISCONNECT;
5232 adap->flags |= FW_OK;
5233 if (adap_init1(adap, &c))
5234 return PCI_ERS_RESULT_DISCONNECT;
5235
5236 for_each_port(adap, i) {
5237 struct port_info *p = adap2pinfo(adap, i);
5238
5239 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5240 NULL, NULL);
5241 if (ret < 0)
5242 return PCI_ERS_RESULT_DISCONNECT;
5243 p->viid = ret;
5244 p->xact_addr_filt = -1;
5245 }
5246
5247 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5248 adap->params.b_wnd);
5249 setup_memwin(adap);
5250 if (cxgb_up(adap))
5251 return PCI_ERS_RESULT_DISCONNECT;
5252 return PCI_ERS_RESULT_RECOVERED;
5253 }
5254
5255 static void eeh_resume(struct pci_dev *pdev)
5256 {
5257 int i;
5258 struct adapter *adap = pci_get_drvdata(pdev);
5259
5260 if (!adap)
5261 return;
5262
5263 rtnl_lock();
5264 for_each_port(adap, i) {
5265 struct net_device *dev = adap->port[i];
5266
5267 if (netif_running(dev)) {
5268 link_start(dev);
5269 cxgb_set_rxmode(dev);
5270 }
5271 netif_device_attach(dev);
5272 }
5273 rtnl_unlock();
5274 }
5275
5276 static const struct pci_error_handlers cxgb4_eeh = {
5277 .error_detected = eeh_err_detected,
5278 .slot_reset = eeh_slot_reset,
5279 .resume = eeh_resume,
5280 };
5281
5282 static inline bool is_10g_port(const struct link_config *lc)
5283 {
5284 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
5285 }
5286
5287 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
5288 unsigned int size, unsigned int iqe_size)
5289 {
5290 q->intr_params = QINTR_TIMER_IDX(timer_idx) |
5291 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
5292 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
5293 q->iqe_len = iqe_size;
5294 q->size = size;
5295 }
5296
5297 /*
5298 * Perform default configuration of DMA queues depending on the number and type
5299 * of ports we found and the number of available CPUs. Most settings can be
5300 * modified by the admin prior to actual use.
5301 */
5302 static void cfg_queues(struct adapter *adap)
5303 {
5304 struct sge *s = &adap->sge;
5305 int i, q10g = 0, n10g = 0, qidx = 0;
5306
5307 for_each_port(adap, i)
5308 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
5309
5310 /*
5311 * We default to 1 queue per non-10G port and up to # of cores queues
5312 * per 10G port.
5313 */
5314 if (n10g)
5315 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5316 if (q10g > netif_get_num_default_rss_queues())
5317 q10g = netif_get_num_default_rss_queues();
5318
5319 for_each_port(adap, i) {
5320 struct port_info *pi = adap2pinfo(adap, i);
5321
5322 pi->first_qset = qidx;
5323 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
5324 qidx += pi->nqsets;
5325 }
5326
5327 s->ethqsets = qidx;
5328 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5329
5330 if (is_offload(adap)) {
5331 /*
5332 * For offload we use 1 queue/channel if all ports are up to 1G,
5333 * otherwise we divide all available queues amongst the channels
5334 * capped by the number of available cores.
5335 */
5336 if (n10g) {
5337 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5338 num_online_cpus());
5339 s->ofldqsets = roundup(i, adap->params.nports);
5340 } else
5341 s->ofldqsets = adap->params.nports;
5342 /* For RDMA one Rx queue per channel suffices */
5343 s->rdmaqs = adap->params.nports;
5344 }
5345
5346 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5347 struct sge_eth_rxq *r = &s->ethrxq[i];
5348
5349 init_rspq(&r->rspq, 0, 0, 1024, 64);
5350 r->fl.size = 72;
5351 }
5352
5353 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5354 s->ethtxq[i].q.size = 1024;
5355
5356 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5357 s->ctrlq[i].q.size = 512;
5358
5359 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5360 s->ofldtxq[i].q.size = 1024;
5361
5362 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5363 struct sge_ofld_rxq *r = &s->ofldrxq[i];
5364
5365 init_rspq(&r->rspq, 0, 0, 1024, 64);
5366 r->rspq.uld = CXGB4_ULD_ISCSI;
5367 r->fl.size = 72;
5368 }
5369
5370 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5371 struct sge_ofld_rxq *r = &s->rdmarxq[i];
5372
5373 init_rspq(&r->rspq, 0, 0, 511, 64);
5374 r->rspq.uld = CXGB4_ULD_RDMA;
5375 r->fl.size = 72;
5376 }
5377
5378 init_rspq(&s->fw_evtq, 6, 0, 512, 64);
5379 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
5380 }
5381
5382 /*
5383 * Reduce the number of Ethernet queues across all ports to at most n.
5384 * n provides at least one queue per port.
5385 */
5386 static void reduce_ethqs(struct adapter *adap, int n)
5387 {
5388 int i;
5389 struct port_info *pi;
5390
5391 while (n < adap->sge.ethqsets)
5392 for_each_port(adap, i) {
5393 pi = adap2pinfo(adap, i);
5394 if (pi->nqsets > 1) {
5395 pi->nqsets--;
5396 adap->sge.ethqsets--;
5397 if (adap->sge.ethqsets <= n)
5398 break;
5399 }
5400 }
5401
5402 n = 0;
5403 for_each_port(adap, i) {
5404 pi = adap2pinfo(adap, i);
5405 pi->first_qset = n;
5406 n += pi->nqsets;
5407 }
5408 }
5409
5410 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5411 #define EXTRA_VECS 2
5412
5413 static int enable_msix(struct adapter *adap)
5414 {
5415 int ofld_need = 0;
5416 int i, err, want, need;
5417 struct sge *s = &adap->sge;
5418 unsigned int nchan = adap->params.nports;
5419 struct msix_entry entries[MAX_INGQ + 1];
5420
5421 for (i = 0; i < ARRAY_SIZE(entries); ++i)
5422 entries[i].entry = i;
5423
5424 want = s->max_ethqsets + EXTRA_VECS;
5425 if (is_offload(adap)) {
5426 want += s->rdmaqs + s->ofldqsets;
5427 /* need nchan for each possible ULD */
5428 ofld_need = 2 * nchan;
5429 }
5430 need = adap->params.nports + EXTRA_VECS + ofld_need;
5431
5432 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
5433 want = err;
5434
5435 if (!err) {
5436 /*
5437 * Distribute available vectors to the various queue groups.
5438 * Every group gets its minimum requirement and NIC gets top
5439 * priority for leftovers.
5440 */
5441 i = want - EXTRA_VECS - ofld_need;
5442 if (i < s->max_ethqsets) {
5443 s->max_ethqsets = i;
5444 if (i < s->ethqsets)
5445 reduce_ethqs(adap, i);
5446 }
5447 if (is_offload(adap)) {
5448 i = want - EXTRA_VECS - s->max_ethqsets;
5449 i -= ofld_need - nchan;
5450 s->ofldqsets = (i / nchan) * nchan; /* round down */
5451 }
5452 for (i = 0; i < want; ++i)
5453 adap->msix_info[i].vec = entries[i].vector;
5454 } else if (err > 0)
5455 dev_info(adap->pdev_dev,
5456 "only %d MSI-X vectors left, not using MSI-X\n", err);
5457 return err;
5458 }
5459
5460 #undef EXTRA_VECS
5461
5462 static int init_rss(struct adapter *adap)
5463 {
5464 unsigned int i, j;
5465
5466 for_each_port(adap, i) {
5467 struct port_info *pi = adap2pinfo(adap, i);
5468
5469 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5470 if (!pi->rss)
5471 return -ENOMEM;
5472 for (j = 0; j < pi->rss_size; j++)
5473 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
5474 }
5475 return 0;
5476 }
5477
5478 static void print_port_info(const struct net_device *dev)
5479 {
5480 static const char *base[] = {
5481 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
5482 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
5483 };
5484
5485 char buf[80];
5486 char *bufp = buf;
5487 const char *spd = "";
5488 const struct port_info *pi = netdev_priv(dev);
5489 const struct adapter *adap = pi->adapter;
5490
5491 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5492 spd = " 2.5 GT/s";
5493 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5494 spd = " 5 GT/s";
5495
5496 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
5497 bufp += sprintf(bufp, "100/");
5498 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
5499 bufp += sprintf(bufp, "1000/");
5500 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
5501 bufp += sprintf(bufp, "10G/");
5502 if (bufp != buf)
5503 --bufp;
5504 sprintf(bufp, "BASE-%s", base[pi->port_type]);
5505
5506 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
5507 adap->params.vpd.id,
5508 CHELSIO_CHIP_RELEASE(adap->params.rev), buf,
5509 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
5510 (adap->flags & USING_MSIX) ? " MSI-X" :
5511 (adap->flags & USING_MSI) ? " MSI" : "");
5512 netdev_info(dev, "S/N: %s, E/C: %s\n",
5513 adap->params.vpd.sn, adap->params.vpd.ec);
5514 }
5515
5516 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
5517 {
5518 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
5519 }
5520
5521 /*
5522 * Free the following resources:
5523 * - memory used for tables
5524 * - MSI/MSI-X
5525 * - net devices
5526 * - resources FW is holding for us
5527 */
5528 static void free_some_resources(struct adapter *adapter)
5529 {
5530 unsigned int i;
5531
5532 t4_free_mem(adapter->l2t);
5533 t4_free_mem(adapter->tids.tid_tab);
5534 disable_msi(adapter);
5535
5536 for_each_port(adapter, i)
5537 if (adapter->port[i]) {
5538 kfree(adap2pinfo(adapter, i)->rss);
5539 free_netdev(adapter->port[i]);
5540 }
5541 if (adapter->flags & FW_OK)
5542 t4_fw_bye(adapter, adapter->fn);
5543 }
5544
5545 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5546 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5547 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5548 #define SEGMENT_SIZE 128
5549
5550 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5551 {
5552 int func, i, err, s_qpp, qpp, num_seg;
5553 struct port_info *pi;
5554 bool highdma = false;
5555 struct adapter *adapter = NULL;
5556
5557 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5558
5559 err = pci_request_regions(pdev, KBUILD_MODNAME);
5560 if (err) {
5561 /* Just info, some other driver may have claimed the device. */
5562 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5563 return err;
5564 }
5565
5566 /* We control everything through one PF */
5567 func = PCI_FUNC(pdev->devfn);
5568 if (func != ent->driver_data) {
5569 pci_save_state(pdev); /* to restore SR-IOV later */
5570 goto sriov;
5571 }
5572
5573 err = pci_enable_device(pdev);
5574 if (err) {
5575 dev_err(&pdev->dev, "cannot enable PCI device\n");
5576 goto out_release_regions;
5577 }
5578
5579 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5580 highdma = true;
5581 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5582 if (err) {
5583 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5584 "coherent allocations\n");
5585 goto out_disable_device;
5586 }
5587 } else {
5588 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5589 if (err) {
5590 dev_err(&pdev->dev, "no usable DMA configuration\n");
5591 goto out_disable_device;
5592 }
5593 }
5594
5595 pci_enable_pcie_error_reporting(pdev);
5596 enable_pcie_relaxed_ordering(pdev);
5597 pci_set_master(pdev);
5598 pci_save_state(pdev);
5599
5600 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5601 if (!adapter) {
5602 err = -ENOMEM;
5603 goto out_disable_device;
5604 }
5605
5606 adapter->regs = pci_ioremap_bar(pdev, 0);
5607 if (!adapter->regs) {
5608 dev_err(&pdev->dev, "cannot map device registers\n");
5609 err = -ENOMEM;
5610 goto out_free_adapter;
5611 }
5612
5613 adapter->pdev = pdev;
5614 adapter->pdev_dev = &pdev->dev;
5615 adapter->mbox = func;
5616 adapter->fn = func;
5617 adapter->msg_enable = dflt_msg_enable;
5618 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5619
5620 spin_lock_init(&adapter->stats_lock);
5621 spin_lock_init(&adapter->tid_release_lock);
5622
5623 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5624 INIT_WORK(&adapter->db_full_task, process_db_full);
5625 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5626
5627 err = t4_prep_adapter(adapter);
5628 if (err)
5629 goto out_unmap_bar0;
5630
5631 if (!is_t4(adapter->chip)) {
5632 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
5633 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
5634 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
5635 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5636
5637 /* Each segment size is 128B. Write coalescing is enabled only
5638 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5639 * queue is less no of segments that can be accommodated in
5640 * a page size.
5641 */
5642 if (qpp > num_seg) {
5643 dev_err(&pdev->dev,
5644 "Incorrect number of egress queues per page\n");
5645 err = -EINVAL;
5646 goto out_unmap_bar0;
5647 }
5648 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5649 pci_resource_len(pdev, 2));
5650 if (!adapter->bar2) {
5651 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5652 err = -ENOMEM;
5653 goto out_unmap_bar0;
5654 }
5655 }
5656
5657 setup_memwin(adapter);
5658 err = adap_init0(adapter);
5659 setup_memwin_rdma(adapter);
5660 if (err)
5661 goto out_unmap_bar;
5662
5663 for_each_port(adapter, i) {
5664 struct net_device *netdev;
5665
5666 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5667 MAX_ETH_QSETS);
5668 if (!netdev) {
5669 err = -ENOMEM;
5670 goto out_free_dev;
5671 }
5672
5673 SET_NETDEV_DEV(netdev, &pdev->dev);
5674
5675 adapter->port[i] = netdev;
5676 pi = netdev_priv(netdev);
5677 pi->adapter = adapter;
5678 pi->xact_addr_filt = -1;
5679 pi->port_id = i;
5680 netdev->irq = pdev->irq;
5681
5682 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5683 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5684 NETIF_F_RXCSUM | NETIF_F_RXHASH |
5685 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5686 if (highdma)
5687 netdev->hw_features |= NETIF_F_HIGHDMA;
5688 netdev->features |= netdev->hw_features;
5689 netdev->vlan_features = netdev->features & VLAN_FEAT;
5690
5691 netdev->priv_flags |= IFF_UNICAST_FLT;
5692
5693 netdev->netdev_ops = &cxgb4_netdev_ops;
5694 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
5695 }
5696
5697 pci_set_drvdata(pdev, adapter);
5698
5699 if (adapter->flags & FW_OK) {
5700 err = t4_port_init(adapter, func, func, 0);
5701 if (err)
5702 goto out_free_dev;
5703 }
5704
5705 /*
5706 * Configure queues and allocate tables now, they can be needed as
5707 * soon as the first register_netdev completes.
5708 */
5709 cfg_queues(adapter);
5710
5711 adapter->l2t = t4_init_l2t();
5712 if (!adapter->l2t) {
5713 /* We tolerate a lack of L2T, giving up some functionality */
5714 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5715 adapter->params.offload = 0;
5716 }
5717
5718 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5719 dev_warn(&pdev->dev, "could not allocate TID table, "
5720 "continuing\n");
5721 adapter->params.offload = 0;
5722 }
5723
5724 /* See what interrupts we'll be using */
5725 if (msi > 1 && enable_msix(adapter) == 0)
5726 adapter->flags |= USING_MSIX;
5727 else if (msi > 0 && pci_enable_msi(pdev) == 0)
5728 adapter->flags |= USING_MSI;
5729
5730 err = init_rss(adapter);
5731 if (err)
5732 goto out_free_dev;
5733
5734 /*
5735 * The card is now ready to go. If any errors occur during device
5736 * registration we do not fail the whole card but rather proceed only
5737 * with the ports we manage to register successfully. However we must
5738 * register at least one net device.
5739 */
5740 for_each_port(adapter, i) {
5741 pi = adap2pinfo(adapter, i);
5742 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5743 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5744
5745 err = register_netdev(adapter->port[i]);
5746 if (err)
5747 break;
5748 adapter->chan_map[pi->tx_chan] = i;
5749 print_port_info(adapter->port[i]);
5750 }
5751 if (i == 0) {
5752 dev_err(&pdev->dev, "could not register any net devices\n");
5753 goto out_free_dev;
5754 }
5755 if (err) {
5756 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5757 err = 0;
5758 }
5759
5760 if (cxgb4_debugfs_root) {
5761 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5762 cxgb4_debugfs_root);
5763 setup_debugfs(adapter);
5764 }
5765
5766 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5767 pdev->needs_freset = 1;
5768
5769 if (is_offload(adapter))
5770 attach_ulds(adapter);
5771
5772 sriov:
5773 #ifdef CONFIG_PCI_IOV
5774 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5775 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5776 dev_info(&pdev->dev,
5777 "instantiated %u virtual functions\n",
5778 num_vf[func]);
5779 #endif
5780 return 0;
5781
5782 out_free_dev:
5783 free_some_resources(adapter);
5784 out_unmap_bar:
5785 if (!is_t4(adapter->chip))
5786 iounmap(adapter->bar2);
5787 out_unmap_bar0:
5788 iounmap(adapter->regs);
5789 out_free_adapter:
5790 kfree(adapter);
5791 out_disable_device:
5792 pci_disable_pcie_error_reporting(pdev);
5793 pci_disable_device(pdev);
5794 out_release_regions:
5795 pci_release_regions(pdev);
5796 pci_set_drvdata(pdev, NULL);
5797 return err;
5798 }
5799
5800 static void remove_one(struct pci_dev *pdev)
5801 {
5802 struct adapter *adapter = pci_get_drvdata(pdev);
5803
5804 #ifdef CONFIG_PCI_IOV
5805 pci_disable_sriov(pdev);
5806
5807 #endif
5808
5809 if (adapter) {
5810 int i;
5811
5812 if (is_offload(adapter))
5813 detach_ulds(adapter);
5814
5815 for_each_port(adapter, i)
5816 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5817 unregister_netdev(adapter->port[i]);
5818
5819 if (adapter->debugfs_root)
5820 debugfs_remove_recursive(adapter->debugfs_root);
5821
5822 /* If we allocated filters, free up state associated with any
5823 * valid filters ...
5824 */
5825 if (adapter->tids.ftid_tab) {
5826 struct filter_entry *f = &adapter->tids.ftid_tab[0];
5827 for (i = 0; i < (adapter->tids.nftids +
5828 adapter->tids.nsftids); i++, f++)
5829 if (f->valid)
5830 clear_filter(adapter, f);
5831 }
5832
5833 if (adapter->flags & FULL_INIT_DONE)
5834 cxgb_down(adapter);
5835
5836 free_some_resources(adapter);
5837 iounmap(adapter->regs);
5838 if (!is_t4(adapter->chip))
5839 iounmap(adapter->bar2);
5840 kfree(adapter);
5841 pci_disable_pcie_error_reporting(pdev);
5842 pci_disable_device(pdev);
5843 pci_release_regions(pdev);
5844 pci_set_drvdata(pdev, NULL);
5845 } else
5846 pci_release_regions(pdev);
5847 }
5848
5849 static struct pci_driver cxgb4_driver = {
5850 .name = KBUILD_MODNAME,
5851 .id_table = cxgb4_pci_tbl,
5852 .probe = init_one,
5853 .remove = remove_one,
5854 .err_handler = &cxgb4_eeh,
5855 };
5856
5857 static int __init cxgb4_init_module(void)
5858 {
5859 int ret;
5860
5861 workq = create_singlethread_workqueue("cxgb4");
5862 if (!workq)
5863 return -ENOMEM;
5864
5865 /* Debugfs support is optional, just warn if this fails */
5866 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5867 if (!cxgb4_debugfs_root)
5868 pr_warn("could not create debugfs entry, continuing\n");
5869
5870 ret = pci_register_driver(&cxgb4_driver);
5871 if (ret < 0)
5872 debugfs_remove(cxgb4_debugfs_root);
5873 return ret;
5874 }
5875
5876 static void __exit cxgb4_cleanup_module(void)
5877 {
5878 pci_unregister_driver(&cxgb4_driver);
5879 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5880 flush_workqueue(workq);
5881 destroy_workqueue(workq);
5882 }
5883
5884 module_init(cxgb4_init_module);
5885 module_exit(cxgb4_cleanup_module);