]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
ntb: ntb_test: ensure the link is up before trying to configure the mws
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 #include "cxgb4_ptp.h"
83
84 char cxgb4_driver_name[] = KBUILD_MODNAME;
85
86 #ifdef DRV_VERSION
87 #undef DRV_VERSION
88 #endif
89 #define DRV_VERSION "2.0.0-ko"
90 const char cxgb4_driver_version[] = DRV_VERSION;
91 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
92
93 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
94 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
95 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
96
97 /* Macros needed to support the PCI Device ID Table ...
98 */
99 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
100 static const struct pci_device_id cxgb4_pci_tbl[] = {
101 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
102
103 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
104 * called for both.
105 */
106 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
107
108 #define CH_PCI_ID_TABLE_ENTRY(devid) \
109 {PCI_VDEVICE(CHELSIO, (devid)), 4}
110
111 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
112 { 0, } \
113 }
114
115 #include "t4_pci_id_tbl.h"
116
117 #define FW4_FNAME "cxgb4/t4fw.bin"
118 #define FW5_FNAME "cxgb4/t5fw.bin"
119 #define FW6_FNAME "cxgb4/t6fw.bin"
120 #define FW4_CFNAME "cxgb4/t4-config.txt"
121 #define FW5_CFNAME "cxgb4/t5-config.txt"
122 #define FW6_CFNAME "cxgb4/t6-config.txt"
123 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
124 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
125 #define PHY_AQ1202_DEVICEID 0x4409
126 #define PHY_BCM84834_DEVICEID 0x4486
127
128 MODULE_DESCRIPTION(DRV_DESC);
129 MODULE_AUTHOR("Chelsio Communications");
130 MODULE_LICENSE("Dual BSD/GPL");
131 MODULE_VERSION(DRV_VERSION);
132 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
133 MODULE_FIRMWARE(FW4_FNAME);
134 MODULE_FIRMWARE(FW5_FNAME);
135 MODULE_FIRMWARE(FW6_FNAME);
136
137 /*
138 * The driver uses the best interrupt scheme available on a platform in the
139 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
140 * of these schemes the driver may consider as follows:
141 *
142 * msi = 2: choose from among all three options
143 * msi = 1: only consider MSI and INTx interrupts
144 * msi = 0: force INTx interrupts
145 */
146 static int msi = 2;
147
148 module_param(msi, int, 0644);
149 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
150
151 /*
152 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
153 * offset by 2 bytes in order to have the IP headers line up on 4-byte
154 * boundaries. This is a requirement for many architectures which will throw
155 * a machine check fault if an attempt is made to access one of the 4-byte IP
156 * header fields on a non-4-byte boundary. And it's a major performance issue
157 * even on some architectures which allow it like some implementations of the
158 * x86 ISA. However, some architectures don't mind this and for some very
159 * edge-case performance sensitive applications (like forwarding large volumes
160 * of small packets), setting this DMA offset to 0 will decrease the number of
161 * PCI-E Bus transfers enough to measurably affect performance.
162 */
163 static int rx_dma_offset = 2;
164
165 /* TX Queue select used to determine what algorithm to use for selecting TX
166 * queue. Select between the kernel provided function (select_queue=0) or user
167 * cxgb_select_queue function (select_queue=1)
168 *
169 * Default: select_queue=0
170 */
171 static int select_queue;
172 module_param(select_queue, int, 0644);
173 MODULE_PARM_DESC(select_queue,
174 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
175
176 static struct dentry *cxgb4_debugfs_root;
177
178 LIST_HEAD(adapter_list);
179 DEFINE_MUTEX(uld_mutex);
180
181 static void link_report(struct net_device *dev)
182 {
183 if (!netif_carrier_ok(dev))
184 netdev_info(dev, "link down\n");
185 else {
186 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
187
188 const char *s;
189 const struct port_info *p = netdev_priv(dev);
190
191 switch (p->link_cfg.speed) {
192 case 100:
193 s = "100Mbps";
194 break;
195 case 1000:
196 s = "1Gbps";
197 break;
198 case 10000:
199 s = "10Gbps";
200 break;
201 case 25000:
202 s = "25Gbps";
203 break;
204 case 40000:
205 s = "40Gbps";
206 break;
207 case 100000:
208 s = "100Gbps";
209 break;
210 default:
211 pr_info("%s: unsupported speed: %d\n",
212 dev->name, p->link_cfg.speed);
213 return;
214 }
215
216 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
217 fc[p->link_cfg.fc]);
218 }
219 }
220
221 #ifdef CONFIG_CHELSIO_T4_DCB
222 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
223 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
224 {
225 struct port_info *pi = netdev_priv(dev);
226 struct adapter *adap = pi->adapter;
227 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
228 int i;
229
230 /* We use a simple mapping of Port TX Queue Index to DCB
231 * Priority when we're enabling DCB.
232 */
233 for (i = 0; i < pi->nqsets; i++, txq++) {
234 u32 name, value;
235 int err;
236
237 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
238 FW_PARAMS_PARAM_X_V(
239 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
240 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
241 value = enable ? i : 0xffffffff;
242
243 /* Since we can be called while atomic (from "interrupt
244 * level") we need to issue the Set Parameters Commannd
245 * without sleeping (timeout < 0).
246 */
247 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
248 &name, &value,
249 -FW_CMD_MAX_TIMEOUT);
250
251 if (err)
252 dev_err(adap->pdev_dev,
253 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
254 enable ? "set" : "unset", pi->port_id, i, -err);
255 else
256 txq->dcb_prio = value;
257 }
258 }
259
260 static int cxgb4_dcb_enabled(const struct net_device *dev)
261 {
262 struct port_info *pi = netdev_priv(dev);
263
264 if (!pi->dcb.enabled)
265 return 0;
266
267 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
268 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
269 }
270 #endif /* CONFIG_CHELSIO_T4_DCB */
271
272 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
273 {
274 struct net_device *dev = adapter->port[port_id];
275
276 /* Skip changes from disabled ports. */
277 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
278 if (link_stat)
279 netif_carrier_on(dev);
280 else {
281 #ifdef CONFIG_CHELSIO_T4_DCB
282 if (cxgb4_dcb_enabled(dev)) {
283 cxgb4_dcb_state_init(dev);
284 dcb_tx_queue_prio_enable(dev, false);
285 }
286 #endif /* CONFIG_CHELSIO_T4_DCB */
287 netif_carrier_off(dev);
288 }
289
290 link_report(dev);
291 }
292 }
293
294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
295 {
296 static const char *mod_str[] = {
297 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
298 };
299
300 const struct net_device *dev = adap->port[port_id];
301 const struct port_info *pi = netdev_priv(dev);
302
303 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
304 netdev_info(dev, "port module unplugged\n");
305 else if (pi->mod_type < ARRAY_SIZE(mod_str))
306 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
307 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
308 netdev_info(dev, "%s: unsupported port module inserted\n",
309 dev->name);
310 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
311 netdev_info(dev, "%s: unknown port module inserted\n",
312 dev->name);
313 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
314 netdev_info(dev, "%s: transceiver module error\n", dev->name);
315 else
316 netdev_info(dev, "%s: unknown module type %d inserted\n",
317 dev->name, pi->mod_type);
318 }
319
320 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
321 module_param(dbfifo_int_thresh, int, 0644);
322 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
323
324 /*
325 * usecs to sleep while draining the dbfifo
326 */
327 static int dbfifo_drain_delay = 1000;
328 module_param(dbfifo_drain_delay, int, 0644);
329 MODULE_PARM_DESC(dbfifo_drain_delay,
330 "usecs to sleep while draining the dbfifo");
331
332 static inline int cxgb4_set_addr_hash(struct port_info *pi)
333 {
334 struct adapter *adap = pi->adapter;
335 u64 vec = 0;
336 bool ucast = false;
337 struct hash_mac_addr *entry;
338
339 /* Calculate the hash vector for the updated list and program it */
340 list_for_each_entry(entry, &adap->mac_hlist, list) {
341 ucast |= is_unicast_ether_addr(entry->addr);
342 vec |= (1ULL << hash_mac_addr(entry->addr));
343 }
344 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
345 vec, false);
346 }
347
348 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
349 {
350 struct port_info *pi = netdev_priv(netdev);
351 struct adapter *adap = pi->adapter;
352 int ret;
353 u64 mhash = 0;
354 u64 uhash = 0;
355 bool free = false;
356 bool ucast = is_unicast_ether_addr(mac_addr);
357 const u8 *maclist[1] = {mac_addr};
358 struct hash_mac_addr *new_entry;
359
360 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
361 NULL, ucast ? &uhash : &mhash, false);
362 if (ret < 0)
363 goto out;
364 /* if hash != 0, then add the addr to hash addr list
365 * so on the end we will calculate the hash for the
366 * list and program it
367 */
368 if (uhash || mhash) {
369 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
370 if (!new_entry)
371 return -ENOMEM;
372 ether_addr_copy(new_entry->addr, mac_addr);
373 list_add_tail(&new_entry->list, &adap->mac_hlist);
374 ret = cxgb4_set_addr_hash(pi);
375 }
376 out:
377 return ret < 0 ? ret : 0;
378 }
379
380 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
381 {
382 struct port_info *pi = netdev_priv(netdev);
383 struct adapter *adap = pi->adapter;
384 int ret;
385 const u8 *maclist[1] = {mac_addr};
386 struct hash_mac_addr *entry, *tmp;
387
388 /* If the MAC address to be removed is in the hash addr
389 * list, delete it from the list and update hash vector
390 */
391 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
392 if (ether_addr_equal(entry->addr, mac_addr)) {
393 list_del(&entry->list);
394 kfree(entry);
395 return cxgb4_set_addr_hash(pi);
396 }
397 }
398
399 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
400 return ret < 0 ? -EINVAL : 0;
401 }
402
403 /*
404 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405 * If @mtu is -1 it is left unchanged.
406 */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409 struct port_info *pi = netdev_priv(dev);
410 struct adapter *adapter = pi->adapter;
411
412 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
414
415 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
416 (dev->flags & IFF_PROMISC) ? 1 : 0,
417 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
418 sleep_ok);
419 }
420
421 /**
422 * link_start - enable a port
423 * @dev: the port to enable
424 *
425 * Performs the MAC and PHY actions needed to enable a port.
426 */
427 static int link_start(struct net_device *dev)
428 {
429 int ret;
430 struct port_info *pi = netdev_priv(dev);
431 unsigned int mb = pi->adapter->pf;
432
433 /*
434 * We do not set address filters and promiscuity here, the stack does
435 * that step explicitly.
436 */
437 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439 if (ret == 0) {
440 ret = t4_change_mac(pi->adapter, mb, pi->viid,
441 pi->xact_addr_filt, dev->dev_addr, true,
442 true);
443 if (ret >= 0) {
444 pi->xact_addr_filt = ret;
445 ret = 0;
446 }
447 }
448 if (ret == 0)
449 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450 &pi->link_cfg);
451 if (ret == 0) {
452 local_bh_disable();
453 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454 true, CXGB4_DCB_ENABLED);
455 local_bh_enable();
456 }
457
458 return ret;
459 }
460
461 #ifdef CONFIG_CHELSIO_T4_DCB
462 /* Handle a Data Center Bridging update message from the firmware. */
463 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
464 {
465 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
466 struct net_device *dev = adap->port[adap->chan_map[port]];
467 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
468 int new_dcb_enabled;
469
470 cxgb4_dcb_handle_fw_update(adap, pcmd);
471 new_dcb_enabled = cxgb4_dcb_enabled(dev);
472
473 /* If the DCB has become enabled or disabled on the port then we're
474 * going to need to set up/tear down DCB Priority parameters for the
475 * TX Queues associated with the port.
476 */
477 if (new_dcb_enabled != old_dcb_enabled)
478 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
479 }
480 #endif /* CONFIG_CHELSIO_T4_DCB */
481
482 /* Response queue handler for the FW event queue.
483 */
484 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
485 const struct pkt_gl *gl)
486 {
487 u8 opcode = ((const struct rss_header *)rsp)->opcode;
488
489 rsp++; /* skip RSS header */
490
491 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
492 */
493 if (unlikely(opcode == CPL_FW4_MSG &&
494 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
495 rsp++;
496 opcode = ((const struct rss_header *)rsp)->opcode;
497 rsp++;
498 if (opcode != CPL_SGE_EGR_UPDATE) {
499 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
500 , opcode);
501 goto out;
502 }
503 }
504
505 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
506 const struct cpl_sge_egr_update *p = (void *)rsp;
507 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
508 struct sge_txq *txq;
509
510 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
511 txq->restarts++;
512 if (txq->q_type == CXGB4_TXQ_ETH) {
513 struct sge_eth_txq *eq;
514
515 eq = container_of(txq, struct sge_eth_txq, q);
516 netif_tx_wake_queue(eq->txq);
517 } else {
518 struct sge_uld_txq *oq;
519
520 oq = container_of(txq, struct sge_uld_txq, q);
521 tasklet_schedule(&oq->qresume_tsk);
522 }
523 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
524 const struct cpl_fw6_msg *p = (void *)rsp;
525
526 #ifdef CONFIG_CHELSIO_T4_DCB
527 const struct fw_port_cmd *pcmd = (const void *)p->data;
528 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
529 unsigned int action =
530 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
531
532 if (cmd == FW_PORT_CMD &&
533 action == FW_PORT_ACTION_GET_PORT_INFO) {
534 int port = FW_PORT_CMD_PORTID_G(
535 be32_to_cpu(pcmd->op_to_portid));
536 struct net_device *dev =
537 q->adap->port[q->adap->chan_map[port]];
538 int state_input = ((pcmd->u.info.dcbxdis_pkd &
539 FW_PORT_CMD_DCBXDIS_F)
540 ? CXGB4_DCB_INPUT_FW_DISABLED
541 : CXGB4_DCB_INPUT_FW_ENABLED);
542
543 cxgb4_dcb_state_fsm(dev, state_input);
544 }
545
546 if (cmd == FW_PORT_CMD &&
547 action == FW_PORT_ACTION_L2_DCB_CFG)
548 dcb_rpl(q->adap, pcmd);
549 else
550 #endif
551 if (p->type == 0)
552 t4_handle_fw_rpl(q->adap, p->data);
553 } else if (opcode == CPL_L2T_WRITE_RPL) {
554 const struct cpl_l2t_write_rpl *p = (void *)rsp;
555
556 do_l2t_write_rpl(q->adap, p);
557 } else if (opcode == CPL_SET_TCB_RPL) {
558 const struct cpl_set_tcb_rpl *p = (void *)rsp;
559
560 filter_rpl(q->adap, p);
561 } else
562 dev_err(q->adap->pdev_dev,
563 "unexpected CPL %#x on FW event queue\n", opcode);
564 out:
565 return 0;
566 }
567
568 static void disable_msi(struct adapter *adapter)
569 {
570 if (adapter->flags & USING_MSIX) {
571 pci_disable_msix(adapter->pdev);
572 adapter->flags &= ~USING_MSIX;
573 } else if (adapter->flags & USING_MSI) {
574 pci_disable_msi(adapter->pdev);
575 adapter->flags &= ~USING_MSI;
576 }
577 }
578
579 /*
580 * Interrupt handler for non-data events used with MSI-X.
581 */
582 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
583 {
584 struct adapter *adap = cookie;
585 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
586
587 if (v & PFSW_F) {
588 adap->swintr = 1;
589 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
590 }
591 if (adap->flags & MASTER_PF)
592 t4_slow_intr_handler(adap);
593 return IRQ_HANDLED;
594 }
595
596 /*
597 * Name the MSI-X interrupts.
598 */
599 static void name_msix_vecs(struct adapter *adap)
600 {
601 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
602
603 /* non-data interrupts */
604 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
605
606 /* FW events */
607 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
608 adap->port[0]->name);
609
610 /* Ethernet queues */
611 for_each_port(adap, j) {
612 struct net_device *d = adap->port[j];
613 const struct port_info *pi = netdev_priv(d);
614
615 for (i = 0; i < pi->nqsets; i++, msi_idx++)
616 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
617 d->name, i);
618 }
619 }
620
621 static int request_msix_queue_irqs(struct adapter *adap)
622 {
623 struct sge *s = &adap->sge;
624 int err, ethqidx;
625 int msi_index = 2;
626
627 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
628 adap->msix_info[1].desc, &s->fw_evtq);
629 if (err)
630 return err;
631
632 for_each_ethrxq(s, ethqidx) {
633 err = request_irq(adap->msix_info[msi_index].vec,
634 t4_sge_intr_msix, 0,
635 adap->msix_info[msi_index].desc,
636 &s->ethrxq[ethqidx].rspq);
637 if (err)
638 goto unwind;
639 msi_index++;
640 }
641 return 0;
642
643 unwind:
644 while (--ethqidx >= 0)
645 free_irq(adap->msix_info[--msi_index].vec,
646 &s->ethrxq[ethqidx].rspq);
647 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
648 return err;
649 }
650
651 static void free_msix_queue_irqs(struct adapter *adap)
652 {
653 int i, msi_index = 2;
654 struct sge *s = &adap->sge;
655
656 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
657 for_each_ethrxq(s, i)
658 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
659 }
660
661 /**
662 * cxgb4_write_rss - write the RSS table for a given port
663 * @pi: the port
664 * @queues: array of queue indices for RSS
665 *
666 * Sets up the portion of the HW RSS table for the port's VI to distribute
667 * packets to the Rx queues in @queues.
668 * Should never be called before setting up sge eth rx queues
669 */
670 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671 {
672 u16 *rss;
673 int i, err;
674 struct adapter *adapter = pi->adapter;
675 const struct sge_eth_rxq *rxq;
676
677 rxq = &adapter->sge.ethrxq[pi->first_qset];
678 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
679 if (!rss)
680 return -ENOMEM;
681
682 /* map the queue indices to queue ids */
683 for (i = 0; i < pi->rss_size; i++, queues++)
684 rss[i] = rxq[*queues].rspq.abs_id;
685
686 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
687 pi->rss_size, rss, pi->rss_size);
688 /* If Tunnel All Lookup isn't specified in the global RSS
689 * Configuration, then we need to specify a default Ingress
690 * Queue for any ingress packets which aren't hashed. We'll
691 * use our first ingress queue ...
692 */
693 if (!err)
694 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
695 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
696 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
697 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
698 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
699 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
700 rss[0]);
701 kfree(rss);
702 return err;
703 }
704
705 /**
706 * setup_rss - configure RSS
707 * @adap: the adapter
708 *
709 * Sets up RSS for each port.
710 */
711 static int setup_rss(struct adapter *adap)
712 {
713 int i, j, err;
714
715 for_each_port(adap, i) {
716 const struct port_info *pi = adap2pinfo(adap, i);
717
718 /* Fill default values with equal distribution */
719 for (j = 0; j < pi->rss_size; j++)
720 pi->rss[j] = j % pi->nqsets;
721
722 err = cxgb4_write_rss(pi, pi->rss);
723 if (err)
724 return err;
725 }
726 return 0;
727 }
728
729 /*
730 * Return the channel of the ingress queue with the given qid.
731 */
732 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
733 {
734 qid -= p->ingr_start;
735 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
736 }
737
738 /*
739 * Wait until all NAPI handlers are descheduled.
740 */
741 static void quiesce_rx(struct adapter *adap)
742 {
743 int i;
744
745 for (i = 0; i < adap->sge.ingr_sz; i++) {
746 struct sge_rspq *q = adap->sge.ingr_map[i];
747
748 if (q && q->handler)
749 napi_disable(&q->napi);
750 }
751 }
752
753 /* Disable interrupt and napi handler */
754 static void disable_interrupts(struct adapter *adap)
755 {
756 if (adap->flags & FULL_INIT_DONE) {
757 t4_intr_disable(adap);
758 if (adap->flags & USING_MSIX) {
759 free_msix_queue_irqs(adap);
760 free_irq(adap->msix_info[0].vec, adap);
761 } else {
762 free_irq(adap->pdev->irq, adap);
763 }
764 quiesce_rx(adap);
765 }
766 }
767
768 /*
769 * Enable NAPI scheduling and interrupt generation for all Rx queues.
770 */
771 static void enable_rx(struct adapter *adap)
772 {
773 int i;
774
775 for (i = 0; i < adap->sge.ingr_sz; i++) {
776 struct sge_rspq *q = adap->sge.ingr_map[i];
777
778 if (!q)
779 continue;
780 if (q->handler)
781 napi_enable(&q->napi);
782
783 /* 0-increment GTS to start the timer and enable interrupts */
784 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
785 SEINTARM_V(q->intr_params) |
786 INGRESSQID_V(q->cntxt_id));
787 }
788 }
789
790
791 static int setup_fw_sge_queues(struct adapter *adap)
792 {
793 struct sge *s = &adap->sge;
794 int err = 0;
795
796 bitmap_zero(s->starving_fl, s->egr_sz);
797 bitmap_zero(s->txq_maperr, s->egr_sz);
798
799 if (adap->flags & USING_MSIX)
800 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
801 else {
802 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
803 NULL, NULL, NULL, -1);
804 if (err)
805 return err;
806 adap->msi_idx = -((int)s->intrq.abs_id + 1);
807 }
808
809 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
810 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
811 if (err)
812 t4_free_sge_resources(adap);
813 return err;
814 }
815
816 /**
817 * setup_sge_queues - configure SGE Tx/Rx/response queues
818 * @adap: the adapter
819 *
820 * Determines how many sets of SGE queues to use and initializes them.
821 * We support multiple queue sets per port if we have MSI-X, otherwise
822 * just one queue set per port.
823 */
824 static int setup_sge_queues(struct adapter *adap)
825 {
826 int err, i, j;
827 struct sge *s = &adap->sge;
828 struct sge_uld_rxq_info *rxq_info = NULL;
829 unsigned int cmplqid = 0;
830
831 if (is_uld(adap))
832 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
833
834 for_each_port(adap, i) {
835 struct net_device *dev = adap->port[i];
836 struct port_info *pi = netdev_priv(dev);
837 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
838 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
839
840 for (j = 0; j < pi->nqsets; j++, q++) {
841 if (adap->msi_idx > 0)
842 adap->msi_idx++;
843 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
844 adap->msi_idx, &q->fl,
845 t4_ethrx_handler,
846 NULL,
847 t4_get_tp_ch_map(adap,
848 pi->tx_chan));
849 if (err)
850 goto freeout;
851 q->rspq.idx = j;
852 memset(&q->stats, 0, sizeof(q->stats));
853 }
854 for (j = 0; j < pi->nqsets; j++, t++) {
855 err = t4_sge_alloc_eth_txq(adap, t, dev,
856 netdev_get_tx_queue(dev, j),
857 s->fw_evtq.cntxt_id);
858 if (err)
859 goto freeout;
860 }
861 }
862
863 for_each_port(adap, i) {
864 /* Note that cmplqid below is 0 if we don't
865 * have RDMA queues, and that's the right value.
866 */
867 if (rxq_info)
868 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
869
870 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
871 s->fw_evtq.cntxt_id, cmplqid);
872 if (err)
873 goto freeout;
874 }
875
876 if (!is_t4(adap->params.chip)) {
877 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
878 netdev_get_tx_queue(adap->port[0], 0)
879 , s->fw_evtq.cntxt_id);
880 if (err)
881 goto freeout;
882 }
883
884 t4_write_reg(adap, is_t4(adap->params.chip) ?
885 MPS_TRC_RSS_CONTROL_A :
886 MPS_T5_TRC_RSS_CONTROL_A,
887 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
888 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
889 return 0;
890 freeout:
891 t4_free_sge_resources(adap);
892 return err;
893 }
894
895 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
896 void *accel_priv, select_queue_fallback_t fallback)
897 {
898 int txq;
899
900 #ifdef CONFIG_CHELSIO_T4_DCB
901 /* If a Data Center Bridging has been successfully negotiated on this
902 * link then we'll use the skb's priority to map it to a TX Queue.
903 * The skb's priority is determined via the VLAN Tag Priority Code
904 * Point field.
905 */
906 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
907 u16 vlan_tci;
908 int err;
909
910 err = vlan_get_tag(skb, &vlan_tci);
911 if (unlikely(err)) {
912 if (net_ratelimit())
913 netdev_warn(dev,
914 "TX Packet without VLAN Tag on DCB Link\n");
915 txq = 0;
916 } else {
917 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
918 #ifdef CONFIG_CHELSIO_T4_FCOE
919 if (skb->protocol == htons(ETH_P_FCOE))
920 txq = skb->priority & 0x7;
921 #endif /* CONFIG_CHELSIO_T4_FCOE */
922 }
923 return txq;
924 }
925 #endif /* CONFIG_CHELSIO_T4_DCB */
926
927 if (select_queue) {
928 txq = (skb_rx_queue_recorded(skb)
929 ? skb_get_rx_queue(skb)
930 : smp_processor_id());
931
932 while (unlikely(txq >= dev->real_num_tx_queues))
933 txq -= dev->real_num_tx_queues;
934
935 return txq;
936 }
937
938 return fallback(dev, skb) % dev->real_num_tx_queues;
939 }
940
941 static int closest_timer(const struct sge *s, int time)
942 {
943 int i, delta, match = 0, min_delta = INT_MAX;
944
945 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
946 delta = time - s->timer_val[i];
947 if (delta < 0)
948 delta = -delta;
949 if (delta < min_delta) {
950 min_delta = delta;
951 match = i;
952 }
953 }
954 return match;
955 }
956
957 static int closest_thres(const struct sge *s, int thres)
958 {
959 int i, delta, match = 0, min_delta = INT_MAX;
960
961 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
962 delta = thres - s->counter_val[i];
963 if (delta < 0)
964 delta = -delta;
965 if (delta < min_delta) {
966 min_delta = delta;
967 match = i;
968 }
969 }
970 return match;
971 }
972
973 /**
974 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
975 * @q: the Rx queue
976 * @us: the hold-off time in us, or 0 to disable timer
977 * @cnt: the hold-off packet count, or 0 to disable counter
978 *
979 * Sets an Rx queue's interrupt hold-off time and packet count. At least
980 * one of the two needs to be enabled for the queue to generate interrupts.
981 */
982 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
983 unsigned int us, unsigned int cnt)
984 {
985 struct adapter *adap = q->adap;
986
987 if ((us | cnt) == 0)
988 cnt = 1;
989
990 if (cnt) {
991 int err;
992 u32 v, new_idx;
993
994 new_idx = closest_thres(&adap->sge, cnt);
995 if (q->desc && q->pktcnt_idx != new_idx) {
996 /* the queue has already been created, update it */
997 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
998 FW_PARAMS_PARAM_X_V(
999 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1000 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1001 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1002 &v, &new_idx);
1003 if (err)
1004 return err;
1005 }
1006 q->pktcnt_idx = new_idx;
1007 }
1008
1009 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1010 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1011 return 0;
1012 }
1013
1014 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1015 {
1016 const struct port_info *pi = netdev_priv(dev);
1017 netdev_features_t changed = dev->features ^ features;
1018 int err;
1019
1020 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1021 return 0;
1022
1023 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1024 -1, -1, -1,
1025 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1026 if (unlikely(err))
1027 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1028 return err;
1029 }
1030
1031 static int setup_debugfs(struct adapter *adap)
1032 {
1033 if (IS_ERR_OR_NULL(adap->debugfs_root))
1034 return -1;
1035
1036 #ifdef CONFIG_DEBUG_FS
1037 t4_setup_debugfs(adap);
1038 #endif
1039 return 0;
1040 }
1041
1042 /*
1043 * upper-layer driver support
1044 */
1045
1046 /*
1047 * Allocate an active-open TID and set it to the supplied value.
1048 */
1049 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1050 {
1051 int atid = -1;
1052
1053 spin_lock_bh(&t->atid_lock);
1054 if (t->afree) {
1055 union aopen_entry *p = t->afree;
1056
1057 atid = (p - t->atid_tab) + t->atid_base;
1058 t->afree = p->next;
1059 p->data = data;
1060 t->atids_in_use++;
1061 }
1062 spin_unlock_bh(&t->atid_lock);
1063 return atid;
1064 }
1065 EXPORT_SYMBOL(cxgb4_alloc_atid);
1066
1067 /*
1068 * Release an active-open TID.
1069 */
1070 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1071 {
1072 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1073
1074 spin_lock_bh(&t->atid_lock);
1075 p->next = t->afree;
1076 t->afree = p;
1077 t->atids_in_use--;
1078 spin_unlock_bh(&t->atid_lock);
1079 }
1080 EXPORT_SYMBOL(cxgb4_free_atid);
1081
1082 /*
1083 * Allocate a server TID and set it to the supplied value.
1084 */
1085 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1086 {
1087 int stid;
1088
1089 spin_lock_bh(&t->stid_lock);
1090 if (family == PF_INET) {
1091 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1092 if (stid < t->nstids)
1093 __set_bit(stid, t->stid_bmap);
1094 else
1095 stid = -1;
1096 } else {
1097 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1098 if (stid < 0)
1099 stid = -1;
1100 }
1101 if (stid >= 0) {
1102 t->stid_tab[stid].data = data;
1103 stid += t->stid_base;
1104 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1105 * This is equivalent to 4 TIDs. With CLIP enabled it
1106 * needs 2 TIDs.
1107 */
1108 if (family == PF_INET6) {
1109 t->stids_in_use += 2;
1110 t->v6_stids_in_use += 2;
1111 } else {
1112 t->stids_in_use++;
1113 }
1114 }
1115 spin_unlock_bh(&t->stid_lock);
1116 return stid;
1117 }
1118 EXPORT_SYMBOL(cxgb4_alloc_stid);
1119
1120 /* Allocate a server filter TID and set it to the supplied value.
1121 */
1122 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1123 {
1124 int stid;
1125
1126 spin_lock_bh(&t->stid_lock);
1127 if (family == PF_INET) {
1128 stid = find_next_zero_bit(t->stid_bmap,
1129 t->nstids + t->nsftids, t->nstids);
1130 if (stid < (t->nstids + t->nsftids))
1131 __set_bit(stid, t->stid_bmap);
1132 else
1133 stid = -1;
1134 } else {
1135 stid = -1;
1136 }
1137 if (stid >= 0) {
1138 t->stid_tab[stid].data = data;
1139 stid -= t->nstids;
1140 stid += t->sftid_base;
1141 t->sftids_in_use++;
1142 }
1143 spin_unlock_bh(&t->stid_lock);
1144 return stid;
1145 }
1146 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1147
1148 /* Release a server TID.
1149 */
1150 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1151 {
1152 /* Is it a server filter TID? */
1153 if (t->nsftids && (stid >= t->sftid_base)) {
1154 stid -= t->sftid_base;
1155 stid += t->nstids;
1156 } else {
1157 stid -= t->stid_base;
1158 }
1159
1160 spin_lock_bh(&t->stid_lock);
1161 if (family == PF_INET)
1162 __clear_bit(stid, t->stid_bmap);
1163 else
1164 bitmap_release_region(t->stid_bmap, stid, 1);
1165 t->stid_tab[stid].data = NULL;
1166 if (stid < t->nstids) {
1167 if (family == PF_INET6) {
1168 t->stids_in_use -= 2;
1169 t->v6_stids_in_use -= 2;
1170 } else {
1171 t->stids_in_use--;
1172 }
1173 } else {
1174 t->sftids_in_use--;
1175 }
1176
1177 spin_unlock_bh(&t->stid_lock);
1178 }
1179 EXPORT_SYMBOL(cxgb4_free_stid);
1180
1181 /*
1182 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1183 */
1184 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1185 unsigned int tid)
1186 {
1187 struct cpl_tid_release *req;
1188
1189 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1190 req = __skb_put(skb, sizeof(*req));
1191 INIT_TP_WR(req, tid);
1192 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1193 }
1194
1195 /*
1196 * Queue a TID release request and if necessary schedule a work queue to
1197 * process it.
1198 */
1199 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1200 unsigned int tid)
1201 {
1202 void **p = &t->tid_tab[tid];
1203 struct adapter *adap = container_of(t, struct adapter, tids);
1204
1205 spin_lock_bh(&adap->tid_release_lock);
1206 *p = adap->tid_release_head;
1207 /* Low 2 bits encode the Tx channel number */
1208 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1209 if (!adap->tid_release_task_busy) {
1210 adap->tid_release_task_busy = true;
1211 queue_work(adap->workq, &adap->tid_release_task);
1212 }
1213 spin_unlock_bh(&adap->tid_release_lock);
1214 }
1215
1216 /*
1217 * Process the list of pending TID release requests.
1218 */
1219 static void process_tid_release_list(struct work_struct *work)
1220 {
1221 struct sk_buff *skb;
1222 struct adapter *adap;
1223
1224 adap = container_of(work, struct adapter, tid_release_task);
1225
1226 spin_lock_bh(&adap->tid_release_lock);
1227 while (adap->tid_release_head) {
1228 void **p = adap->tid_release_head;
1229 unsigned int chan = (uintptr_t)p & 3;
1230 p = (void *)p - chan;
1231
1232 adap->tid_release_head = *p;
1233 *p = NULL;
1234 spin_unlock_bh(&adap->tid_release_lock);
1235
1236 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1237 GFP_KERNEL)))
1238 schedule_timeout_uninterruptible(1);
1239
1240 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1241 t4_ofld_send(adap, skb);
1242 spin_lock_bh(&adap->tid_release_lock);
1243 }
1244 adap->tid_release_task_busy = false;
1245 spin_unlock_bh(&adap->tid_release_lock);
1246 }
1247
1248 /*
1249 * Release a TID and inform HW. If we are unable to allocate the release
1250 * message we defer to a work queue.
1251 */
1252 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1253 unsigned short family)
1254 {
1255 struct sk_buff *skb;
1256 struct adapter *adap = container_of(t, struct adapter, tids);
1257
1258 WARN_ON(tid >= t->ntids);
1259
1260 if (t->tid_tab[tid]) {
1261 t->tid_tab[tid] = NULL;
1262 atomic_dec(&t->conns_in_use);
1263 if (t->hash_base && (tid >= t->hash_base)) {
1264 if (family == AF_INET6)
1265 atomic_sub(2, &t->hash_tids_in_use);
1266 else
1267 atomic_dec(&t->hash_tids_in_use);
1268 } else {
1269 if (family == AF_INET6)
1270 atomic_sub(2, &t->tids_in_use);
1271 else
1272 atomic_dec(&t->tids_in_use);
1273 }
1274 }
1275
1276 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1277 if (likely(skb)) {
1278 mk_tid_release(skb, chan, tid);
1279 t4_ofld_send(adap, skb);
1280 } else
1281 cxgb4_queue_tid_release(t, chan, tid);
1282 }
1283 EXPORT_SYMBOL(cxgb4_remove_tid);
1284
1285 /*
1286 * Allocate and initialize the TID tables. Returns 0 on success.
1287 */
1288 static int tid_init(struct tid_info *t)
1289 {
1290 struct adapter *adap = container_of(t, struct adapter, tids);
1291 unsigned int max_ftids = t->nftids + t->nsftids;
1292 unsigned int natids = t->natids;
1293 unsigned int stid_bmap_size;
1294 unsigned int ftid_bmap_size;
1295 size_t size;
1296
1297 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1298 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1299 size = t->ntids * sizeof(*t->tid_tab) +
1300 natids * sizeof(*t->atid_tab) +
1301 t->nstids * sizeof(*t->stid_tab) +
1302 t->nsftids * sizeof(*t->stid_tab) +
1303 stid_bmap_size * sizeof(long) +
1304 max_ftids * sizeof(*t->ftid_tab) +
1305 ftid_bmap_size * sizeof(long);
1306
1307 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1308 if (!t->tid_tab)
1309 return -ENOMEM;
1310
1311 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1312 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1313 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1314 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1315 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1316 spin_lock_init(&t->stid_lock);
1317 spin_lock_init(&t->atid_lock);
1318 spin_lock_init(&t->ftid_lock);
1319
1320 t->stids_in_use = 0;
1321 t->v6_stids_in_use = 0;
1322 t->sftids_in_use = 0;
1323 t->afree = NULL;
1324 t->atids_in_use = 0;
1325 atomic_set(&t->tids_in_use, 0);
1326 atomic_set(&t->conns_in_use, 0);
1327 atomic_set(&t->hash_tids_in_use, 0);
1328
1329 /* Setup the free list for atid_tab and clear the stid bitmap. */
1330 if (natids) {
1331 while (--natids)
1332 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1333 t->afree = t->atid_tab;
1334 }
1335
1336 if (is_offload(adap)) {
1337 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1338 /* Reserve stid 0 for T4/T5 adapters */
1339 if (!t->stid_base &&
1340 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1341 __set_bit(0, t->stid_bmap);
1342 }
1343
1344 bitmap_zero(t->ftid_bmap, t->nftids);
1345 return 0;
1346 }
1347
1348 /**
1349 * cxgb4_create_server - create an IP server
1350 * @dev: the device
1351 * @stid: the server TID
1352 * @sip: local IP address to bind server to
1353 * @sport: the server's TCP port
1354 * @queue: queue to direct messages from this server to
1355 *
1356 * Create an IP server for the given port and address.
1357 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1358 */
1359 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1360 __be32 sip, __be16 sport, __be16 vlan,
1361 unsigned int queue)
1362 {
1363 unsigned int chan;
1364 struct sk_buff *skb;
1365 struct adapter *adap;
1366 struct cpl_pass_open_req *req;
1367 int ret;
1368
1369 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1370 if (!skb)
1371 return -ENOMEM;
1372
1373 adap = netdev2adap(dev);
1374 req = __skb_put(skb, sizeof(*req));
1375 INIT_TP_WR(req, 0);
1376 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1377 req->local_port = sport;
1378 req->peer_port = htons(0);
1379 req->local_ip = sip;
1380 req->peer_ip = htonl(0);
1381 chan = rxq_to_chan(&adap->sge, queue);
1382 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1383 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1384 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1385 ret = t4_mgmt_tx(adap, skb);
1386 return net_xmit_eval(ret);
1387 }
1388 EXPORT_SYMBOL(cxgb4_create_server);
1389
1390 /* cxgb4_create_server6 - create an IPv6 server
1391 * @dev: the device
1392 * @stid: the server TID
1393 * @sip: local IPv6 address to bind server to
1394 * @sport: the server's TCP port
1395 * @queue: queue to direct messages from this server to
1396 *
1397 * Create an IPv6 server for the given port and address.
1398 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1399 */
1400 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1401 const struct in6_addr *sip, __be16 sport,
1402 unsigned int queue)
1403 {
1404 unsigned int chan;
1405 struct sk_buff *skb;
1406 struct adapter *adap;
1407 struct cpl_pass_open_req6 *req;
1408 int ret;
1409
1410 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1411 if (!skb)
1412 return -ENOMEM;
1413
1414 adap = netdev2adap(dev);
1415 req = __skb_put(skb, sizeof(*req));
1416 INIT_TP_WR(req, 0);
1417 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1418 req->local_port = sport;
1419 req->peer_port = htons(0);
1420 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1421 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1422 req->peer_ip_hi = cpu_to_be64(0);
1423 req->peer_ip_lo = cpu_to_be64(0);
1424 chan = rxq_to_chan(&adap->sge, queue);
1425 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1426 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1427 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1428 ret = t4_mgmt_tx(adap, skb);
1429 return net_xmit_eval(ret);
1430 }
1431 EXPORT_SYMBOL(cxgb4_create_server6);
1432
1433 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1434 unsigned int queue, bool ipv6)
1435 {
1436 struct sk_buff *skb;
1437 struct adapter *adap;
1438 struct cpl_close_listsvr_req *req;
1439 int ret;
1440
1441 adap = netdev2adap(dev);
1442
1443 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1444 if (!skb)
1445 return -ENOMEM;
1446
1447 req = __skb_put(skb, sizeof(*req));
1448 INIT_TP_WR(req, 0);
1449 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1450 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1451 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1452 ret = t4_mgmt_tx(adap, skb);
1453 return net_xmit_eval(ret);
1454 }
1455 EXPORT_SYMBOL(cxgb4_remove_server);
1456
1457 /**
1458 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1459 * @mtus: the HW MTU table
1460 * @mtu: the target MTU
1461 * @idx: index of selected entry in the MTU table
1462 *
1463 * Returns the index and the value in the HW MTU table that is closest to
1464 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1465 * table, in which case that smallest available value is selected.
1466 */
1467 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1468 unsigned int *idx)
1469 {
1470 unsigned int i = 0;
1471
1472 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1473 ++i;
1474 if (idx)
1475 *idx = i;
1476 return mtus[i];
1477 }
1478 EXPORT_SYMBOL(cxgb4_best_mtu);
1479
1480 /**
1481 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1482 * @mtus: the HW MTU table
1483 * @header_size: Header Size
1484 * @data_size_max: maximum Data Segment Size
1485 * @data_size_align: desired Data Segment Size Alignment (2^N)
1486 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1487 *
1488 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1489 * MTU Table based solely on a Maximum MTU parameter, we break that
1490 * parameter up into a Header Size and Maximum Data Segment Size, and
1491 * provide a desired Data Segment Size Alignment. If we find an MTU in
1492 * the Hardware MTU Table which will result in a Data Segment Size with
1493 * the requested alignment _and_ that MTU isn't "too far" from the
1494 * closest MTU, then we'll return that rather than the closest MTU.
1495 */
1496 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1497 unsigned short header_size,
1498 unsigned short data_size_max,
1499 unsigned short data_size_align,
1500 unsigned int *mtu_idxp)
1501 {
1502 unsigned short max_mtu = header_size + data_size_max;
1503 unsigned short data_size_align_mask = data_size_align - 1;
1504 int mtu_idx, aligned_mtu_idx;
1505
1506 /* Scan the MTU Table till we find an MTU which is larger than our
1507 * Maximum MTU or we reach the end of the table. Along the way,
1508 * record the last MTU found, if any, which will result in a Data
1509 * Segment Length matching the requested alignment.
1510 */
1511 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1512 unsigned short data_size = mtus[mtu_idx] - header_size;
1513
1514 /* If this MTU minus the Header Size would result in a
1515 * Data Segment Size of the desired alignment, remember it.
1516 */
1517 if ((data_size & data_size_align_mask) == 0)
1518 aligned_mtu_idx = mtu_idx;
1519
1520 /* If we're not at the end of the Hardware MTU Table and the
1521 * next element is larger than our Maximum MTU, drop out of
1522 * the loop.
1523 */
1524 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1525 break;
1526 }
1527
1528 /* If we fell out of the loop because we ran to the end of the table,
1529 * then we just have to use the last [largest] entry.
1530 */
1531 if (mtu_idx == NMTUS)
1532 mtu_idx--;
1533
1534 /* If we found an MTU which resulted in the requested Data Segment
1535 * Length alignment and that's "not far" from the largest MTU which is
1536 * less than or equal to the maximum MTU, then use that.
1537 */
1538 if (aligned_mtu_idx >= 0 &&
1539 mtu_idx - aligned_mtu_idx <= 1)
1540 mtu_idx = aligned_mtu_idx;
1541
1542 /* If the caller has passed in an MTU Index pointer, pass the
1543 * MTU Index back. Return the MTU value.
1544 */
1545 if (mtu_idxp)
1546 *mtu_idxp = mtu_idx;
1547 return mtus[mtu_idx];
1548 }
1549 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1550
1551 /**
1552 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1553 * @chip: chip type
1554 * @viid: VI id of the given port
1555 *
1556 * Return the SMT index for this VI.
1557 */
1558 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1559 {
1560 /* In T4/T5, SMT contains 256 SMAC entries organized in
1561 * 128 rows of 2 entries each.
1562 * In T6, SMT contains 256 SMAC entries in 256 rows.
1563 * TODO: The below code needs to be updated when we add support
1564 * for 256 VFs.
1565 */
1566 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1567 return ((viid & 0x7f) << 1);
1568 else
1569 return (viid & 0x7f);
1570 }
1571 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1572
1573 /**
1574 * cxgb4_port_chan - get the HW channel of a port
1575 * @dev: the net device for the port
1576 *
1577 * Return the HW Tx channel of the given port.
1578 */
1579 unsigned int cxgb4_port_chan(const struct net_device *dev)
1580 {
1581 return netdev2pinfo(dev)->tx_chan;
1582 }
1583 EXPORT_SYMBOL(cxgb4_port_chan);
1584
1585 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1586 {
1587 struct adapter *adap = netdev2adap(dev);
1588 u32 v1, v2, lp_count, hp_count;
1589
1590 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1591 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1592 if (is_t4(adap->params.chip)) {
1593 lp_count = LP_COUNT_G(v1);
1594 hp_count = HP_COUNT_G(v1);
1595 } else {
1596 lp_count = LP_COUNT_T5_G(v1);
1597 hp_count = HP_COUNT_T5_G(v2);
1598 }
1599 return lpfifo ? lp_count : hp_count;
1600 }
1601 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1602
1603 /**
1604 * cxgb4_port_viid - get the VI id of a port
1605 * @dev: the net device for the port
1606 *
1607 * Return the VI id of the given port.
1608 */
1609 unsigned int cxgb4_port_viid(const struct net_device *dev)
1610 {
1611 return netdev2pinfo(dev)->viid;
1612 }
1613 EXPORT_SYMBOL(cxgb4_port_viid);
1614
1615 /**
1616 * cxgb4_port_idx - get the index of a port
1617 * @dev: the net device for the port
1618 *
1619 * Return the index of the given port.
1620 */
1621 unsigned int cxgb4_port_idx(const struct net_device *dev)
1622 {
1623 return netdev2pinfo(dev)->port_id;
1624 }
1625 EXPORT_SYMBOL(cxgb4_port_idx);
1626
1627 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1628 struct tp_tcp_stats *v6)
1629 {
1630 struct adapter *adap = pci_get_drvdata(pdev);
1631
1632 spin_lock(&adap->stats_lock);
1633 t4_tp_get_tcp_stats(adap, v4, v6);
1634 spin_unlock(&adap->stats_lock);
1635 }
1636 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1637
1638 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1639 const unsigned int *pgsz_order)
1640 {
1641 struct adapter *adap = netdev2adap(dev);
1642
1643 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1644 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1645 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1646 HPZ3_V(pgsz_order[3]));
1647 }
1648 EXPORT_SYMBOL(cxgb4_iscsi_init);
1649
1650 int cxgb4_flush_eq_cache(struct net_device *dev)
1651 {
1652 struct adapter *adap = netdev2adap(dev);
1653
1654 return t4_sge_ctxt_flush(adap, adap->mbox);
1655 }
1656 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1657
1658 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1659 {
1660 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1661 __be64 indices;
1662 int ret;
1663
1664 spin_lock(&adap->win0_lock);
1665 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1666 sizeof(indices), (__be32 *)&indices,
1667 T4_MEMORY_READ);
1668 spin_unlock(&adap->win0_lock);
1669 if (!ret) {
1670 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1671 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1672 }
1673 return ret;
1674 }
1675
1676 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1677 u16 size)
1678 {
1679 struct adapter *adap = netdev2adap(dev);
1680 u16 hw_pidx, hw_cidx;
1681 int ret;
1682
1683 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1684 if (ret)
1685 goto out;
1686
1687 if (pidx != hw_pidx) {
1688 u16 delta;
1689 u32 val;
1690
1691 if (pidx >= hw_pidx)
1692 delta = pidx - hw_pidx;
1693 else
1694 delta = size - hw_pidx + pidx;
1695
1696 if (is_t4(adap->params.chip))
1697 val = PIDX_V(delta);
1698 else
1699 val = PIDX_T5_V(delta);
1700 wmb();
1701 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1702 QID_V(qid) | val);
1703 }
1704 out:
1705 return ret;
1706 }
1707 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1708
1709 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1710 {
1711 struct adapter *adap;
1712 u32 offset, memtype, memaddr;
1713 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1714 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1715 int ret;
1716
1717 adap = netdev2adap(dev);
1718
1719 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1720
1721 /* Figure out where the offset lands in the Memory Type/Address scheme.
1722 * This code assumes that the memory is laid out starting at offset 0
1723 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1724 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1725 * MC0, and some have both MC0 and MC1.
1726 */
1727 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1728 edc0_size = EDRAM0_SIZE_G(size) << 20;
1729 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1730 edc1_size = EDRAM1_SIZE_G(size) << 20;
1731 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1732 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1733
1734 edc0_end = edc0_size;
1735 edc1_end = edc0_end + edc1_size;
1736 mc0_end = edc1_end + mc0_size;
1737
1738 if (offset < edc0_end) {
1739 memtype = MEM_EDC0;
1740 memaddr = offset;
1741 } else if (offset < edc1_end) {
1742 memtype = MEM_EDC1;
1743 memaddr = offset - edc0_end;
1744 } else {
1745 if (offset < mc0_end) {
1746 memtype = MEM_MC0;
1747 memaddr = offset - edc1_end;
1748 } else if (is_t5(adap->params.chip)) {
1749 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1750 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1751 mc1_end = mc0_end + mc1_size;
1752 if (offset < mc1_end) {
1753 memtype = MEM_MC1;
1754 memaddr = offset - mc0_end;
1755 } else {
1756 /* offset beyond the end of any memory */
1757 goto err;
1758 }
1759 } else {
1760 /* T4/T6 only has a single memory channel */
1761 goto err;
1762 }
1763 }
1764
1765 spin_lock(&adap->win0_lock);
1766 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1767 spin_unlock(&adap->win0_lock);
1768 return ret;
1769
1770 err:
1771 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1772 stag, offset);
1773 return -EINVAL;
1774 }
1775 EXPORT_SYMBOL(cxgb4_read_tpte);
1776
1777 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1778 {
1779 u32 hi, lo;
1780 struct adapter *adap;
1781
1782 adap = netdev2adap(dev);
1783 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1784 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1785
1786 return ((u64)hi << 32) | (u64)lo;
1787 }
1788 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1789
1790 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1791 unsigned int qid,
1792 enum cxgb4_bar2_qtype qtype,
1793 int user,
1794 u64 *pbar2_qoffset,
1795 unsigned int *pbar2_qid)
1796 {
1797 return t4_bar2_sge_qregs(netdev2adap(dev),
1798 qid,
1799 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1800 ? T4_BAR2_QTYPE_EGRESS
1801 : T4_BAR2_QTYPE_INGRESS),
1802 user,
1803 pbar2_qoffset,
1804 pbar2_qid);
1805 }
1806 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1807
1808 static struct pci_driver cxgb4_driver;
1809
1810 static void check_neigh_update(struct neighbour *neigh)
1811 {
1812 const struct device *parent;
1813 const struct net_device *netdev = neigh->dev;
1814
1815 if (is_vlan_dev(netdev))
1816 netdev = vlan_dev_real_dev(netdev);
1817 parent = netdev->dev.parent;
1818 if (parent && parent->driver == &cxgb4_driver.driver)
1819 t4_l2t_update(dev_get_drvdata(parent), neigh);
1820 }
1821
1822 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1823 void *data)
1824 {
1825 switch (event) {
1826 case NETEVENT_NEIGH_UPDATE:
1827 check_neigh_update(data);
1828 break;
1829 case NETEVENT_REDIRECT:
1830 default:
1831 break;
1832 }
1833 return 0;
1834 }
1835
1836 static bool netevent_registered;
1837 static struct notifier_block cxgb4_netevent_nb = {
1838 .notifier_call = netevent_cb
1839 };
1840
1841 static void drain_db_fifo(struct adapter *adap, int usecs)
1842 {
1843 u32 v1, v2, lp_count, hp_count;
1844
1845 do {
1846 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1847 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1848 if (is_t4(adap->params.chip)) {
1849 lp_count = LP_COUNT_G(v1);
1850 hp_count = HP_COUNT_G(v1);
1851 } else {
1852 lp_count = LP_COUNT_T5_G(v1);
1853 hp_count = HP_COUNT_T5_G(v2);
1854 }
1855
1856 if (lp_count == 0 && hp_count == 0)
1857 break;
1858 set_current_state(TASK_UNINTERRUPTIBLE);
1859 schedule_timeout(usecs_to_jiffies(usecs));
1860 } while (1);
1861 }
1862
1863 static void disable_txq_db(struct sge_txq *q)
1864 {
1865 unsigned long flags;
1866
1867 spin_lock_irqsave(&q->db_lock, flags);
1868 q->db_disabled = 1;
1869 spin_unlock_irqrestore(&q->db_lock, flags);
1870 }
1871
1872 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1873 {
1874 spin_lock_irq(&q->db_lock);
1875 if (q->db_pidx_inc) {
1876 /* Make sure that all writes to the TX descriptors
1877 * are committed before we tell HW about them.
1878 */
1879 wmb();
1880 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1881 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1882 q->db_pidx_inc = 0;
1883 }
1884 q->db_disabled = 0;
1885 spin_unlock_irq(&q->db_lock);
1886 }
1887
1888 static void disable_dbs(struct adapter *adap)
1889 {
1890 int i;
1891
1892 for_each_ethrxq(&adap->sge, i)
1893 disable_txq_db(&adap->sge.ethtxq[i].q);
1894 if (is_offload(adap)) {
1895 struct sge_uld_txq_info *txq_info =
1896 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1897
1898 if (txq_info) {
1899 for_each_ofldtxq(&adap->sge, i) {
1900 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1901
1902 disable_txq_db(&txq->q);
1903 }
1904 }
1905 }
1906 for_each_port(adap, i)
1907 disable_txq_db(&adap->sge.ctrlq[i].q);
1908 }
1909
1910 static void enable_dbs(struct adapter *adap)
1911 {
1912 int i;
1913
1914 for_each_ethrxq(&adap->sge, i)
1915 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1916 if (is_offload(adap)) {
1917 struct sge_uld_txq_info *txq_info =
1918 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1919
1920 if (txq_info) {
1921 for_each_ofldtxq(&adap->sge, i) {
1922 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1923
1924 enable_txq_db(adap, &txq->q);
1925 }
1926 }
1927 }
1928 for_each_port(adap, i)
1929 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1930 }
1931
1932 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1933 {
1934 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1935
1936 if (adap->uld && adap->uld[type].handle)
1937 adap->uld[type].control(adap->uld[type].handle, cmd);
1938 }
1939
1940 static void process_db_full(struct work_struct *work)
1941 {
1942 struct adapter *adap;
1943
1944 adap = container_of(work, struct adapter, db_full_task);
1945
1946 drain_db_fifo(adap, dbfifo_drain_delay);
1947 enable_dbs(adap);
1948 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1949 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1950 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1951 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1952 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1953 else
1954 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1955 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1956 }
1957
1958 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1959 {
1960 u16 hw_pidx, hw_cidx;
1961 int ret;
1962
1963 spin_lock_irq(&q->db_lock);
1964 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1965 if (ret)
1966 goto out;
1967 if (q->db_pidx != hw_pidx) {
1968 u16 delta;
1969 u32 val;
1970
1971 if (q->db_pidx >= hw_pidx)
1972 delta = q->db_pidx - hw_pidx;
1973 else
1974 delta = q->size - hw_pidx + q->db_pidx;
1975
1976 if (is_t4(adap->params.chip))
1977 val = PIDX_V(delta);
1978 else
1979 val = PIDX_T5_V(delta);
1980 wmb();
1981 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1982 QID_V(q->cntxt_id) | val);
1983 }
1984 out:
1985 q->db_disabled = 0;
1986 q->db_pidx_inc = 0;
1987 spin_unlock_irq(&q->db_lock);
1988 if (ret)
1989 CH_WARN(adap, "DB drop recovery failed.\n");
1990 }
1991
1992 static void recover_all_queues(struct adapter *adap)
1993 {
1994 int i;
1995
1996 for_each_ethrxq(&adap->sge, i)
1997 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1998 if (is_offload(adap)) {
1999 struct sge_uld_txq_info *txq_info =
2000 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2001 if (txq_info) {
2002 for_each_ofldtxq(&adap->sge, i) {
2003 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2004
2005 sync_txq_pidx(adap, &txq->q);
2006 }
2007 }
2008 }
2009 for_each_port(adap, i)
2010 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2011 }
2012
2013 static void process_db_drop(struct work_struct *work)
2014 {
2015 struct adapter *adap;
2016
2017 adap = container_of(work, struct adapter, db_drop_task);
2018
2019 if (is_t4(adap->params.chip)) {
2020 drain_db_fifo(adap, dbfifo_drain_delay);
2021 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2022 drain_db_fifo(adap, dbfifo_drain_delay);
2023 recover_all_queues(adap);
2024 drain_db_fifo(adap, dbfifo_drain_delay);
2025 enable_dbs(adap);
2026 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2027 } else if (is_t5(adap->params.chip)) {
2028 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2029 u16 qid = (dropped_db >> 15) & 0x1ffff;
2030 u16 pidx_inc = dropped_db & 0x1fff;
2031 u64 bar2_qoffset;
2032 unsigned int bar2_qid;
2033 int ret;
2034
2035 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2036 0, &bar2_qoffset, &bar2_qid);
2037 if (ret)
2038 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2039 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2040 else
2041 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2042 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2043
2044 /* Re-enable BAR2 WC */
2045 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2046 }
2047
2048 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2049 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2050 }
2051
2052 void t4_db_full(struct adapter *adap)
2053 {
2054 if (is_t4(adap->params.chip)) {
2055 disable_dbs(adap);
2056 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2057 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2058 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2059 queue_work(adap->workq, &adap->db_full_task);
2060 }
2061 }
2062
2063 void t4_db_dropped(struct adapter *adap)
2064 {
2065 if (is_t4(adap->params.chip)) {
2066 disable_dbs(adap);
2067 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2068 }
2069 queue_work(adap->workq, &adap->db_drop_task);
2070 }
2071
2072 void t4_register_netevent_notifier(void)
2073 {
2074 if (!netevent_registered) {
2075 register_netevent_notifier(&cxgb4_netevent_nb);
2076 netevent_registered = true;
2077 }
2078 }
2079
2080 static void detach_ulds(struct adapter *adap)
2081 {
2082 unsigned int i;
2083
2084 mutex_lock(&uld_mutex);
2085 list_del(&adap->list_node);
2086
2087 for (i = 0; i < CXGB4_ULD_MAX; i++)
2088 if (adap->uld && adap->uld[i].handle)
2089 adap->uld[i].state_change(adap->uld[i].handle,
2090 CXGB4_STATE_DETACH);
2091
2092 if (netevent_registered && list_empty(&adapter_list)) {
2093 unregister_netevent_notifier(&cxgb4_netevent_nb);
2094 netevent_registered = false;
2095 }
2096 mutex_unlock(&uld_mutex);
2097 }
2098
2099 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2100 {
2101 unsigned int i;
2102
2103 mutex_lock(&uld_mutex);
2104 for (i = 0; i < CXGB4_ULD_MAX; i++)
2105 if (adap->uld && adap->uld[i].handle)
2106 adap->uld[i].state_change(adap->uld[i].handle,
2107 new_state);
2108 mutex_unlock(&uld_mutex);
2109 }
2110
2111 #if IS_ENABLED(CONFIG_IPV6)
2112 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2113 unsigned long event, void *data)
2114 {
2115 struct inet6_ifaddr *ifa = data;
2116 struct net_device *event_dev = ifa->idev->dev;
2117 const struct device *parent = NULL;
2118 #if IS_ENABLED(CONFIG_BONDING)
2119 struct adapter *adap;
2120 #endif
2121 if (is_vlan_dev(event_dev))
2122 event_dev = vlan_dev_real_dev(event_dev);
2123 #if IS_ENABLED(CONFIG_BONDING)
2124 if (event_dev->flags & IFF_MASTER) {
2125 list_for_each_entry(adap, &adapter_list, list_node) {
2126 switch (event) {
2127 case NETDEV_UP:
2128 cxgb4_clip_get(adap->port[0],
2129 (const u32 *)ifa, 1);
2130 break;
2131 case NETDEV_DOWN:
2132 cxgb4_clip_release(adap->port[0],
2133 (const u32 *)ifa, 1);
2134 break;
2135 default:
2136 break;
2137 }
2138 }
2139 return NOTIFY_OK;
2140 }
2141 #endif
2142
2143 if (event_dev)
2144 parent = event_dev->dev.parent;
2145
2146 if (parent && parent->driver == &cxgb4_driver.driver) {
2147 switch (event) {
2148 case NETDEV_UP:
2149 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2150 break;
2151 case NETDEV_DOWN:
2152 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2153 break;
2154 default:
2155 break;
2156 }
2157 }
2158 return NOTIFY_OK;
2159 }
2160
2161 static bool inet6addr_registered;
2162 static struct notifier_block cxgb4_inet6addr_notifier = {
2163 .notifier_call = cxgb4_inet6addr_handler
2164 };
2165
2166 static void update_clip(const struct adapter *adap)
2167 {
2168 int i;
2169 struct net_device *dev;
2170 int ret;
2171
2172 rcu_read_lock();
2173
2174 for (i = 0; i < MAX_NPORTS; i++) {
2175 dev = adap->port[i];
2176 ret = 0;
2177
2178 if (dev)
2179 ret = cxgb4_update_root_dev_clip(dev);
2180
2181 if (ret < 0)
2182 break;
2183 }
2184 rcu_read_unlock();
2185 }
2186 #endif /* IS_ENABLED(CONFIG_IPV6) */
2187
2188 /**
2189 * cxgb_up - enable the adapter
2190 * @adap: adapter being enabled
2191 *
2192 * Called when the first port is enabled, this function performs the
2193 * actions necessary to make an adapter operational, such as completing
2194 * the initialization of HW modules, and enabling interrupts.
2195 *
2196 * Must be called with the rtnl lock held.
2197 */
2198 static int cxgb_up(struct adapter *adap)
2199 {
2200 int err;
2201
2202 mutex_lock(&uld_mutex);
2203 err = setup_sge_queues(adap);
2204 if (err)
2205 goto rel_lock;
2206 err = setup_rss(adap);
2207 if (err)
2208 goto freeq;
2209
2210 if (adap->flags & USING_MSIX) {
2211 name_msix_vecs(adap);
2212 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2213 adap->msix_info[0].desc, adap);
2214 if (err)
2215 goto irq_err;
2216 err = request_msix_queue_irqs(adap);
2217 if (err) {
2218 free_irq(adap->msix_info[0].vec, adap);
2219 goto irq_err;
2220 }
2221 } else {
2222 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2223 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2224 adap->port[0]->name, adap);
2225 if (err)
2226 goto irq_err;
2227 }
2228
2229 enable_rx(adap);
2230 t4_sge_start(adap);
2231 t4_intr_enable(adap);
2232 adap->flags |= FULL_INIT_DONE;
2233 mutex_unlock(&uld_mutex);
2234
2235 notify_ulds(adap, CXGB4_STATE_UP);
2236 #if IS_ENABLED(CONFIG_IPV6)
2237 update_clip(adap);
2238 #endif
2239 /* Initialize hash mac addr list*/
2240 INIT_LIST_HEAD(&adap->mac_hlist);
2241 return err;
2242
2243 irq_err:
2244 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2245 freeq:
2246 t4_free_sge_resources(adap);
2247 rel_lock:
2248 mutex_unlock(&uld_mutex);
2249 return err;
2250 }
2251
2252 static void cxgb_down(struct adapter *adapter)
2253 {
2254 cancel_work_sync(&adapter->tid_release_task);
2255 cancel_work_sync(&adapter->db_full_task);
2256 cancel_work_sync(&adapter->db_drop_task);
2257 adapter->tid_release_task_busy = false;
2258 adapter->tid_release_head = NULL;
2259
2260 t4_sge_stop(adapter);
2261 t4_free_sge_resources(adapter);
2262 adapter->flags &= ~FULL_INIT_DONE;
2263 }
2264
2265 /*
2266 * net_device operations
2267 */
2268 static int cxgb_open(struct net_device *dev)
2269 {
2270 int err;
2271 struct port_info *pi = netdev_priv(dev);
2272 struct adapter *adapter = pi->adapter;
2273
2274 netif_carrier_off(dev);
2275
2276 if (!(adapter->flags & FULL_INIT_DONE)) {
2277 err = cxgb_up(adapter);
2278 if (err < 0)
2279 return err;
2280 }
2281
2282 /* It's possible that the basic port information could have
2283 * changed since we first read it.
2284 */
2285 err = t4_update_port_info(pi);
2286 if (err < 0)
2287 return err;
2288
2289 err = link_start(dev);
2290 if (!err)
2291 netif_tx_start_all_queues(dev);
2292 return err;
2293 }
2294
2295 static int cxgb_close(struct net_device *dev)
2296 {
2297 struct port_info *pi = netdev_priv(dev);
2298 struct adapter *adapter = pi->adapter;
2299
2300 netif_tx_stop_all_queues(dev);
2301 netif_carrier_off(dev);
2302 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2303 }
2304
2305 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2306 __be32 sip, __be16 sport, __be16 vlan,
2307 unsigned int queue, unsigned char port, unsigned char mask)
2308 {
2309 int ret;
2310 struct filter_entry *f;
2311 struct adapter *adap;
2312 int i;
2313 u8 *val;
2314
2315 adap = netdev2adap(dev);
2316
2317 /* Adjust stid to correct filter index */
2318 stid -= adap->tids.sftid_base;
2319 stid += adap->tids.nftids;
2320
2321 /* Check to make sure the filter requested is writable ...
2322 */
2323 f = &adap->tids.ftid_tab[stid];
2324 ret = writable_filter(f);
2325 if (ret)
2326 return ret;
2327
2328 /* Clear out any old resources being used by the filter before
2329 * we start constructing the new filter.
2330 */
2331 if (f->valid)
2332 clear_filter(adap, f);
2333
2334 /* Clear out filter specifications */
2335 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2336 f->fs.val.lport = cpu_to_be16(sport);
2337 f->fs.mask.lport = ~0;
2338 val = (u8 *)&sip;
2339 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2340 for (i = 0; i < 4; i++) {
2341 f->fs.val.lip[i] = val[i];
2342 f->fs.mask.lip[i] = ~0;
2343 }
2344 if (adap->params.tp.vlan_pri_map & PORT_F) {
2345 f->fs.val.iport = port;
2346 f->fs.mask.iport = mask;
2347 }
2348 }
2349
2350 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2351 f->fs.val.proto = IPPROTO_TCP;
2352 f->fs.mask.proto = ~0;
2353 }
2354
2355 f->fs.dirsteer = 1;
2356 f->fs.iq = queue;
2357 /* Mark filter as locked */
2358 f->locked = 1;
2359 f->fs.rpttid = 1;
2360
2361 /* Save the actual tid. We need this to get the corresponding
2362 * filter entry structure in filter_rpl.
2363 */
2364 f->tid = stid + adap->tids.ftid_base;
2365 ret = set_filter_wr(adap, stid);
2366 if (ret) {
2367 clear_filter(adap, f);
2368 return ret;
2369 }
2370
2371 return 0;
2372 }
2373 EXPORT_SYMBOL(cxgb4_create_server_filter);
2374
2375 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2376 unsigned int queue, bool ipv6)
2377 {
2378 struct filter_entry *f;
2379 struct adapter *adap;
2380
2381 adap = netdev2adap(dev);
2382
2383 /* Adjust stid to correct filter index */
2384 stid -= adap->tids.sftid_base;
2385 stid += adap->tids.nftids;
2386
2387 f = &adap->tids.ftid_tab[stid];
2388 /* Unlock the filter */
2389 f->locked = 0;
2390
2391 return delete_filter(adap, stid);
2392 }
2393 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2394
2395 static void cxgb_get_stats(struct net_device *dev,
2396 struct rtnl_link_stats64 *ns)
2397 {
2398 struct port_stats stats;
2399 struct port_info *p = netdev_priv(dev);
2400 struct adapter *adapter = p->adapter;
2401
2402 /* Block retrieving statistics during EEH error
2403 * recovery. Otherwise, the recovery might fail
2404 * and the PCI device will be removed permanently
2405 */
2406 spin_lock(&adapter->stats_lock);
2407 if (!netif_device_present(dev)) {
2408 spin_unlock(&adapter->stats_lock);
2409 return;
2410 }
2411 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2412 &p->stats_base);
2413 spin_unlock(&adapter->stats_lock);
2414
2415 ns->tx_bytes = stats.tx_octets;
2416 ns->tx_packets = stats.tx_frames;
2417 ns->rx_bytes = stats.rx_octets;
2418 ns->rx_packets = stats.rx_frames;
2419 ns->multicast = stats.rx_mcast_frames;
2420
2421 /* detailed rx_errors */
2422 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2423 stats.rx_runt;
2424 ns->rx_over_errors = 0;
2425 ns->rx_crc_errors = stats.rx_fcs_err;
2426 ns->rx_frame_errors = stats.rx_symbol_err;
2427 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2428 stats.rx_ovflow2 + stats.rx_ovflow3 +
2429 stats.rx_trunc0 + stats.rx_trunc1 +
2430 stats.rx_trunc2 + stats.rx_trunc3;
2431 ns->rx_missed_errors = 0;
2432
2433 /* detailed tx_errors */
2434 ns->tx_aborted_errors = 0;
2435 ns->tx_carrier_errors = 0;
2436 ns->tx_fifo_errors = 0;
2437 ns->tx_heartbeat_errors = 0;
2438 ns->tx_window_errors = 0;
2439
2440 ns->tx_errors = stats.tx_error_frames;
2441 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2442 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2443 }
2444
2445 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2446 {
2447 unsigned int mbox;
2448 int ret = 0, prtad, devad;
2449 struct port_info *pi = netdev_priv(dev);
2450 struct adapter *adapter = pi->adapter;
2451 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2452
2453 switch (cmd) {
2454 case SIOCGMIIPHY:
2455 if (pi->mdio_addr < 0)
2456 return -EOPNOTSUPP;
2457 data->phy_id = pi->mdio_addr;
2458 break;
2459 case SIOCGMIIREG:
2460 case SIOCSMIIREG:
2461 if (mdio_phy_id_is_c45(data->phy_id)) {
2462 prtad = mdio_phy_id_prtad(data->phy_id);
2463 devad = mdio_phy_id_devad(data->phy_id);
2464 } else if (data->phy_id < 32) {
2465 prtad = data->phy_id;
2466 devad = 0;
2467 data->reg_num &= 0x1f;
2468 } else
2469 return -EINVAL;
2470
2471 mbox = pi->adapter->pf;
2472 if (cmd == SIOCGMIIREG)
2473 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2474 data->reg_num, &data->val_out);
2475 else
2476 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2477 data->reg_num, data->val_in);
2478 break;
2479 case SIOCGHWTSTAMP:
2480 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2481 sizeof(pi->tstamp_config)) ?
2482 -EFAULT : 0;
2483 case SIOCSHWTSTAMP:
2484 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2485 sizeof(pi->tstamp_config)))
2486 return -EFAULT;
2487
2488 if (!is_t4(adapter->params.chip)) {
2489 switch (pi->tstamp_config.tx_type) {
2490 case HWTSTAMP_TX_OFF:
2491 case HWTSTAMP_TX_ON:
2492 break;
2493 default:
2494 return -ERANGE;
2495 }
2496
2497 switch (pi->tstamp_config.rx_filter) {
2498 case HWTSTAMP_FILTER_NONE:
2499 pi->rxtstamp = false;
2500 break;
2501 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2502 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2503 cxgb4_ptprx_timestamping(pi, pi->port_id,
2504 PTP_TS_L4);
2505 break;
2506 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2507 cxgb4_ptprx_timestamping(pi, pi->port_id,
2508 PTP_TS_L2_L4);
2509 break;
2510 case HWTSTAMP_FILTER_ALL:
2511 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2512 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2513 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2514 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2515 pi->rxtstamp = true;
2516 break;
2517 default:
2518 pi->tstamp_config.rx_filter =
2519 HWTSTAMP_FILTER_NONE;
2520 return -ERANGE;
2521 }
2522
2523 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2524 (pi->tstamp_config.rx_filter ==
2525 HWTSTAMP_FILTER_NONE)) {
2526 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2527 pi->ptp_enable = false;
2528 }
2529
2530 if (pi->tstamp_config.rx_filter !=
2531 HWTSTAMP_FILTER_NONE) {
2532 if (cxgb4_ptp_redirect_rx_packet(adapter,
2533 pi) >= 0)
2534 pi->ptp_enable = true;
2535 }
2536 } else {
2537 /* For T4 Adapters */
2538 switch (pi->tstamp_config.rx_filter) {
2539 case HWTSTAMP_FILTER_NONE:
2540 pi->rxtstamp = false;
2541 break;
2542 case HWTSTAMP_FILTER_ALL:
2543 pi->rxtstamp = true;
2544 break;
2545 default:
2546 pi->tstamp_config.rx_filter =
2547 HWTSTAMP_FILTER_NONE;
2548 return -ERANGE;
2549 }
2550 }
2551 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2552 sizeof(pi->tstamp_config)) ?
2553 -EFAULT : 0;
2554 default:
2555 return -EOPNOTSUPP;
2556 }
2557 return ret;
2558 }
2559
2560 static void cxgb_set_rxmode(struct net_device *dev)
2561 {
2562 /* unfortunately we can't return errors to the stack */
2563 set_rxmode(dev, -1, false);
2564 }
2565
2566 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2567 {
2568 int ret;
2569 struct port_info *pi = netdev_priv(dev);
2570
2571 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2572 -1, -1, -1, true);
2573 if (!ret)
2574 dev->mtu = new_mtu;
2575 return ret;
2576 }
2577
2578 #ifdef CONFIG_PCI_IOV
2579 static int dummy_open(struct net_device *dev)
2580 {
2581 /* Turn carrier off since we don't have to transmit anything on this
2582 * interface.
2583 */
2584 netif_carrier_off(dev);
2585 return 0;
2586 }
2587
2588 /* Fill MAC address that will be assigned by the FW */
2589 static void fill_vf_station_mac_addr(struct adapter *adap)
2590 {
2591 unsigned int i;
2592 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2593 int err;
2594 u8 *na;
2595 u16 a, b;
2596
2597 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2598 if (!err) {
2599 na = adap->params.vpd.na;
2600 for (i = 0; i < ETH_ALEN; i++)
2601 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2602 hex2val(na[2 * i + 1]));
2603 a = (hw_addr[0] << 8) | hw_addr[1];
2604 b = (hw_addr[1] << 8) | hw_addr[2];
2605 a ^= b;
2606 a |= 0x0200; /* locally assigned Ethernet MAC address */
2607 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2608 macaddr[0] = a >> 8;
2609 macaddr[1] = a & 0xff;
2610
2611 for (i = 2; i < 5; i++)
2612 macaddr[i] = hw_addr[i + 1];
2613
2614 for (i = 0; i < adap->num_vfs; i++) {
2615 macaddr[5] = adap->pf * 16 + i;
2616 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2617 }
2618 }
2619 }
2620
2621 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2622 {
2623 struct port_info *pi = netdev_priv(dev);
2624 struct adapter *adap = pi->adapter;
2625 int ret;
2626
2627 /* verify MAC addr is valid */
2628 if (!is_valid_ether_addr(mac)) {
2629 dev_err(pi->adapter->pdev_dev,
2630 "Invalid Ethernet address %pM for VF %d\n",
2631 mac, vf);
2632 return -EINVAL;
2633 }
2634
2635 dev_info(pi->adapter->pdev_dev,
2636 "Setting MAC %pM on VF %d\n", mac, vf);
2637 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2638 if (!ret)
2639 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2640 return ret;
2641 }
2642
2643 static int cxgb_get_vf_config(struct net_device *dev,
2644 int vf, struct ifla_vf_info *ivi)
2645 {
2646 struct port_info *pi = netdev_priv(dev);
2647 struct adapter *adap = pi->adapter;
2648
2649 if (vf >= adap->num_vfs)
2650 return -EINVAL;
2651 ivi->vf = vf;
2652 ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2653 ivi->min_tx_rate = 0;
2654 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2655 return 0;
2656 }
2657
2658 static int cxgb_get_phys_port_id(struct net_device *dev,
2659 struct netdev_phys_item_id *ppid)
2660 {
2661 struct port_info *pi = netdev_priv(dev);
2662 unsigned int phy_port_id;
2663
2664 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2665 ppid->id_len = sizeof(phy_port_id);
2666 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2667 return 0;
2668 }
2669
2670 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
2671 int max_tx_rate)
2672 {
2673 struct port_info *pi = netdev_priv(dev);
2674 struct adapter *adap = pi->adapter;
2675 struct fw_port_cmd port_cmd, port_rpl;
2676 u32 link_status, speed = 0;
2677 u32 fw_pfvf, fw_class;
2678 int class_id = vf;
2679 int link_ok, ret;
2680 u16 pktsize;
2681
2682 if (vf >= adap->num_vfs)
2683 return -EINVAL;
2684
2685 if (min_tx_rate) {
2686 dev_err(adap->pdev_dev,
2687 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2688 min_tx_rate, vf);
2689 return -EINVAL;
2690 }
2691 /* Retrieve link details for VF port */
2692 memset(&port_cmd, 0, sizeof(port_cmd));
2693 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2694 FW_CMD_REQUEST_F |
2695 FW_CMD_READ_F |
2696 FW_PORT_CMD_PORTID_V(pi->port_id));
2697 port_cmd.action_to_len16 =
2698 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
2699 FW_LEN16(port_cmd));
2700 ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
2701 &port_rpl);
2702 if (ret != FW_SUCCESS) {
2703 dev_err(adap->pdev_dev,
2704 "Failed to get link status for VF %d\n", vf);
2705 return -EINVAL;
2706 }
2707 link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
2708 link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0;
2709 if (!link_ok) {
2710 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2711 return -EINVAL;
2712 }
2713 /* Determine link speed */
2714 if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
2715 speed = 100;
2716 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
2717 speed = 1000;
2718 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
2719 speed = 10000;
2720 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
2721 speed = 25000;
2722 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
2723 speed = 40000;
2724 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
2725 speed = 100000;
2726
2727 if (max_tx_rate > speed) {
2728 dev_err(adap->pdev_dev,
2729 "Max tx rate %d for VF %d can't be > link-speed %u",
2730 max_tx_rate, vf, speed);
2731 return -EINVAL;
2732 }
2733 pktsize = be16_to_cpu(port_rpl.u.info.mtu);
2734 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2735 pktsize = pktsize - sizeof(struct ethhdr) - 4;
2736 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2737 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2738 /* configure Traffic Class for rate-limiting */
2739 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2740 SCHED_CLASS_LEVEL_CL_RL,
2741 SCHED_CLASS_MODE_CLASS,
2742 SCHED_CLASS_RATEUNIT_BITS,
2743 SCHED_CLASS_RATEMODE_ABS,
2744 pi->port_id, class_id, 0,
2745 max_tx_rate * 1000, 0, pktsize);
2746 if (ret) {
2747 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2748 ret);
2749 return -EINVAL;
2750 }
2751 dev_info(adap->pdev_dev,
2752 "Class %d with MSS %u configured with rate %u\n",
2753 class_id, pktsize, max_tx_rate);
2754
2755 /* bind VF to configured Traffic Class */
2756 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2757 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2758 fw_class = class_id;
2759 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2760 &fw_class);
2761 if (ret) {
2762 dev_err(adap->pdev_dev,
2763 "Err %d in binding VF %d to Traffic Class %d\n",
2764 ret, vf, class_id);
2765 return -EINVAL;
2766 }
2767 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2768 adap->pf, vf, class_id);
2769 adap->vfinfo[vf].tx_rate = max_tx_rate;
2770 return 0;
2771 }
2772
2773 #endif
2774
2775 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2776 {
2777 int ret;
2778 struct sockaddr *addr = p;
2779 struct port_info *pi = netdev_priv(dev);
2780
2781 if (!is_valid_ether_addr(addr->sa_data))
2782 return -EADDRNOTAVAIL;
2783
2784 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2785 pi->xact_addr_filt, addr->sa_data, true, true);
2786 if (ret < 0)
2787 return ret;
2788
2789 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2790 pi->xact_addr_filt = ret;
2791 return 0;
2792 }
2793
2794 #ifdef CONFIG_NET_POLL_CONTROLLER
2795 static void cxgb_netpoll(struct net_device *dev)
2796 {
2797 struct port_info *pi = netdev_priv(dev);
2798 struct adapter *adap = pi->adapter;
2799
2800 if (adap->flags & USING_MSIX) {
2801 int i;
2802 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2803
2804 for (i = pi->nqsets; i; i--, rx++)
2805 t4_sge_intr_msix(0, &rx->rspq);
2806 } else
2807 t4_intr_handler(adap)(0, adap);
2808 }
2809 #endif
2810
2811 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2812 {
2813 struct port_info *pi = netdev_priv(dev);
2814 struct adapter *adap = pi->adapter;
2815 struct sched_class *e;
2816 struct ch_sched_params p;
2817 struct ch_sched_queue qe;
2818 u32 req_rate;
2819 int err = 0;
2820
2821 if (!can_sched(dev))
2822 return -ENOTSUPP;
2823
2824 if (index < 0 || index > pi->nqsets - 1)
2825 return -EINVAL;
2826
2827 if (!(adap->flags & FULL_INIT_DONE)) {
2828 dev_err(adap->pdev_dev,
2829 "Failed to rate limit on queue %d. Link Down?\n",
2830 index);
2831 return -EINVAL;
2832 }
2833
2834 /* Convert from Mbps to Kbps */
2835 req_rate = rate << 10;
2836
2837 /* Max rate is 10 Gbps */
2838 if (req_rate >= SCHED_MAX_RATE_KBPS) {
2839 dev_err(adap->pdev_dev,
2840 "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2841 rate, SCHED_MAX_RATE_KBPS);
2842 return -ERANGE;
2843 }
2844
2845 /* First unbind the queue from any existing class */
2846 memset(&qe, 0, sizeof(qe));
2847 qe.queue = index;
2848 qe.class = SCHED_CLS_NONE;
2849
2850 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2851 if (err) {
2852 dev_err(adap->pdev_dev,
2853 "Unbinding Queue %d on port %d fail. Err: %d\n",
2854 index, pi->port_id, err);
2855 return err;
2856 }
2857
2858 /* Queue already unbound */
2859 if (!req_rate)
2860 return 0;
2861
2862 /* Fetch any available unused or matching scheduling class */
2863 memset(&p, 0, sizeof(p));
2864 p.type = SCHED_CLASS_TYPE_PACKET;
2865 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2866 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2867 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2868 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2869 p.u.params.channel = pi->tx_chan;
2870 p.u.params.class = SCHED_CLS_NONE;
2871 p.u.params.minrate = 0;
2872 p.u.params.maxrate = req_rate;
2873 p.u.params.weight = 0;
2874 p.u.params.pktsize = dev->mtu;
2875
2876 e = cxgb4_sched_class_alloc(dev, &p);
2877 if (!e)
2878 return -ENOMEM;
2879
2880 /* Bind the queue to a scheduling class */
2881 memset(&qe, 0, sizeof(qe));
2882 qe.queue = index;
2883 qe.class = e->idx;
2884
2885 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2886 if (err)
2887 dev_err(adap->pdev_dev,
2888 "Queue rate limiting failed. Err: %d\n", err);
2889 return err;
2890 }
2891
2892 static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
2893 __be16 proto, struct tc_to_netdev *tc)
2894 {
2895 struct port_info *pi = netdev2pinfo(dev);
2896 struct adapter *adap = netdev2adap(dev);
2897
2898 if (chain_index)
2899 return -EOPNOTSUPP;
2900
2901 if (!(adap->flags & FULL_INIT_DONE)) {
2902 dev_err(adap->pdev_dev,
2903 "Failed to setup tc on port %d. Link Down?\n",
2904 pi->port_id);
2905 return -EINVAL;
2906 }
2907
2908 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2909 tc->type == TC_SETUP_CLSU32) {
2910 switch (tc->cls_u32->command) {
2911 case TC_CLSU32_NEW_KNODE:
2912 case TC_CLSU32_REPLACE_KNODE:
2913 return cxgb4_config_knode(dev, proto, tc->cls_u32);
2914 case TC_CLSU32_DELETE_KNODE:
2915 return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2916 default:
2917 return -EOPNOTSUPP;
2918 }
2919 }
2920
2921 return -EOPNOTSUPP;
2922 }
2923
2924 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2925 netdev_features_t features)
2926 {
2927 /* Disable GRO, if RX_CSUM is disabled */
2928 if (!(features & NETIF_F_RXCSUM))
2929 features &= ~NETIF_F_GRO;
2930
2931 return features;
2932 }
2933
2934 static const struct net_device_ops cxgb4_netdev_ops = {
2935 .ndo_open = cxgb_open,
2936 .ndo_stop = cxgb_close,
2937 .ndo_start_xmit = t4_eth_xmit,
2938 .ndo_select_queue = cxgb_select_queue,
2939 .ndo_get_stats64 = cxgb_get_stats,
2940 .ndo_set_rx_mode = cxgb_set_rxmode,
2941 .ndo_set_mac_address = cxgb_set_mac_addr,
2942 .ndo_set_features = cxgb_set_features,
2943 .ndo_validate_addr = eth_validate_addr,
2944 .ndo_do_ioctl = cxgb_ioctl,
2945 .ndo_change_mtu = cxgb_change_mtu,
2946 #ifdef CONFIG_NET_POLL_CONTROLLER
2947 .ndo_poll_controller = cxgb_netpoll,
2948 #endif
2949 #ifdef CONFIG_CHELSIO_T4_FCOE
2950 .ndo_fcoe_enable = cxgb_fcoe_enable,
2951 .ndo_fcoe_disable = cxgb_fcoe_disable,
2952 #endif /* CONFIG_CHELSIO_T4_FCOE */
2953 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
2954 .ndo_setup_tc = cxgb_setup_tc,
2955 .ndo_fix_features = cxgb_fix_features,
2956 };
2957
2958 #ifdef CONFIG_PCI_IOV
2959 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2960 .ndo_open = dummy_open,
2961 .ndo_set_vf_mac = cxgb_set_vf_mac,
2962 .ndo_get_vf_config = cxgb_get_vf_config,
2963 .ndo_set_vf_rate = cxgb_set_vf_rate,
2964 .ndo_get_phys_port_id = cxgb_get_phys_port_id,
2965 };
2966 #endif
2967
2968 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2969 {
2970 struct adapter *adapter = netdev2adap(dev);
2971
2972 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2973 strlcpy(info->version, cxgb4_driver_version,
2974 sizeof(info->version));
2975 strlcpy(info->bus_info, pci_name(adapter->pdev),
2976 sizeof(info->bus_info));
2977 }
2978
2979 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2980 .get_drvinfo = get_drvinfo,
2981 };
2982
2983 void t4_fatal_err(struct adapter *adap)
2984 {
2985 int port;
2986
2987 if (pci_channel_offline(adap->pdev))
2988 return;
2989
2990 /* Disable the SGE since ULDs are going to free resources that
2991 * could be exposed to the adapter. RDMA MWs for example...
2992 */
2993 t4_shutdown_adapter(adap);
2994 for_each_port(adap, port) {
2995 struct net_device *dev = adap->port[port];
2996
2997 /* If we get here in very early initialization the network
2998 * devices may not have been set up yet.
2999 */
3000 if (!dev)
3001 continue;
3002
3003 netif_tx_stop_all_queues(dev);
3004 netif_carrier_off(dev);
3005 }
3006 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3007 }
3008
3009 static void setup_memwin(struct adapter *adap)
3010 {
3011 u32 nic_win_base = t4_get_util_window(adap);
3012
3013 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3014 }
3015
3016 static void setup_memwin_rdma(struct adapter *adap)
3017 {
3018 if (adap->vres.ocq.size) {
3019 u32 start;
3020 unsigned int sz_kb;
3021
3022 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3023 start &= PCI_BASE_ADDRESS_MEM_MASK;
3024 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3025 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3026 t4_write_reg(adap,
3027 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3028 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3029 t4_write_reg(adap,
3030 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3031 adap->vres.ocq.start);
3032 t4_read_reg(adap,
3033 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3034 }
3035 }
3036
3037 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3038 {
3039 u32 v;
3040 int ret;
3041
3042 /* get device capabilities */
3043 memset(c, 0, sizeof(*c));
3044 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3045 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3046 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3047 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3048 if (ret < 0)
3049 return ret;
3050
3051 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3052 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3053 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3054 if (ret < 0)
3055 return ret;
3056
3057 ret = t4_config_glbl_rss(adap, adap->pf,
3058 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3059 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3060 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3061 if (ret < 0)
3062 return ret;
3063
3064 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3065 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3066 FW_CMD_CAP_PF);
3067 if (ret < 0)
3068 return ret;
3069
3070 t4_sge_init(adap);
3071
3072 /* tweak some settings */
3073 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3074 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3075 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3076 v = t4_read_reg(adap, TP_PIO_DATA_A);
3077 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3078
3079 /* first 4 Tx modulation queues point to consecutive Tx channels */
3080 adap->params.tp.tx_modq_map = 0xE4;
3081 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3082 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3083
3084 /* associate each Tx modulation queue with consecutive Tx channels */
3085 v = 0x84218421;
3086 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3087 &v, 1, TP_TX_SCHED_HDR_A);
3088 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3089 &v, 1, TP_TX_SCHED_FIFO_A);
3090 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3091 &v, 1, TP_TX_SCHED_PCMD_A);
3092
3093 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3094 if (is_offload(adap)) {
3095 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3096 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3097 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3098 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3099 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3100 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3101 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3102 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3103 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3104 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3105 }
3106
3107 /* get basic stuff going */
3108 return t4_early_init(adap, adap->pf);
3109 }
3110
3111 /*
3112 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3113 */
3114 #define MAX_ATIDS 8192U
3115
3116 /*
3117 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3118 *
3119 * If the firmware we're dealing with has Configuration File support, then
3120 * we use that to perform all configuration
3121 */
3122
3123 /*
3124 * Tweak configuration based on module parameters, etc. Most of these have
3125 * defaults assigned to them by Firmware Configuration Files (if we're using
3126 * them) but need to be explicitly set if we're using hard-coded
3127 * initialization. But even in the case of using Firmware Configuration
3128 * Files, we'd like to expose the ability to change these via module
3129 * parameters so these are essentially common tweaks/settings for
3130 * Configuration Files and hard-coded initialization ...
3131 */
3132 static int adap_init0_tweaks(struct adapter *adapter)
3133 {
3134 /*
3135 * Fix up various Host-Dependent Parameters like Page Size, Cache
3136 * Line Size, etc. The firmware default is for a 4KB Page Size and
3137 * 64B Cache Line Size ...
3138 */
3139 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3140
3141 /*
3142 * Process module parameters which affect early initialization.
3143 */
3144 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3145 dev_err(&adapter->pdev->dev,
3146 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3147 rx_dma_offset);
3148 rx_dma_offset = 2;
3149 }
3150 t4_set_reg_field(adapter, SGE_CONTROL_A,
3151 PKTSHIFT_V(PKTSHIFT_M),
3152 PKTSHIFT_V(rx_dma_offset));
3153
3154 /*
3155 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3156 * adds the pseudo header itself.
3157 */
3158 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3159 CSUM_HAS_PSEUDO_HDR_F, 0);
3160
3161 return 0;
3162 }
3163
3164 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3165 * unto themselves and they contain their own firmware to perform their
3166 * tasks ...
3167 */
3168 static int phy_aq1202_version(const u8 *phy_fw_data,
3169 size_t phy_fw_size)
3170 {
3171 int offset;
3172
3173 /* At offset 0x8 you're looking for the primary image's
3174 * starting offset which is 3 Bytes wide
3175 *
3176 * At offset 0xa of the primary image, you look for the offset
3177 * of the DRAM segment which is 3 Bytes wide.
3178 *
3179 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3180 * wide
3181 */
3182 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3183 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3184 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3185
3186 offset = le24(phy_fw_data + 0x8) << 12;
3187 offset = le24(phy_fw_data + offset + 0xa);
3188 return be16(phy_fw_data + offset + 0x27e);
3189
3190 #undef be16
3191 #undef le16
3192 #undef le24
3193 }
3194
3195 static struct info_10gbt_phy_fw {
3196 unsigned int phy_fw_id; /* PCI Device ID */
3197 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3198 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3199 int phy_flash; /* Has FLASH for PHY Firmware */
3200 } phy_info_array[] = {
3201 {
3202 PHY_AQ1202_DEVICEID,
3203 PHY_AQ1202_FIRMWARE,
3204 phy_aq1202_version,
3205 1,
3206 },
3207 {
3208 PHY_BCM84834_DEVICEID,
3209 PHY_BCM84834_FIRMWARE,
3210 NULL,
3211 0,
3212 },
3213 { 0, NULL, NULL },
3214 };
3215
3216 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3217 {
3218 int i;
3219
3220 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3221 if (phy_info_array[i].phy_fw_id == devid)
3222 return &phy_info_array[i];
3223 }
3224 return NULL;
3225 }
3226
3227 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3228 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3229 * we return a negative error number. If we transfer new firmware we return 1
3230 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3231 */
3232 static int adap_init0_phy(struct adapter *adap)
3233 {
3234 const struct firmware *phyf;
3235 int ret;
3236 struct info_10gbt_phy_fw *phy_info;
3237
3238 /* Use the device ID to determine which PHY file to flash.
3239 */
3240 phy_info = find_phy_info(adap->pdev->device);
3241 if (!phy_info) {
3242 dev_warn(adap->pdev_dev,
3243 "No PHY Firmware file found for this PHY\n");
3244 return -EOPNOTSUPP;
3245 }
3246
3247 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3248 * use that. The adapter firmware provides us with a memory buffer
3249 * where we can load a PHY firmware file from the host if we want to
3250 * override the PHY firmware File in flash.
3251 */
3252 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3253 adap->pdev_dev);
3254 if (ret < 0) {
3255 /* For adapters without FLASH attached to PHY for their
3256 * firmware, it's obviously a fatal error if we can't get the
3257 * firmware to the adapter. For adapters with PHY firmware
3258 * FLASH storage, it's worth a warning if we can't find the
3259 * PHY Firmware but we'll neuter the error ...
3260 */
3261 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3262 "/lib/firmware/%s, error %d\n",
3263 phy_info->phy_fw_file, -ret);
3264 if (phy_info->phy_flash) {
3265 int cur_phy_fw_ver = 0;
3266
3267 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3268 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3269 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3270 ret = 0;
3271 }
3272
3273 return ret;
3274 }
3275
3276 /* Load PHY Firmware onto adapter.
3277 */
3278 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3279 phy_info->phy_fw_version,
3280 (u8 *)phyf->data, phyf->size);
3281 if (ret < 0)
3282 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3283 -ret);
3284 else if (ret > 0) {
3285 int new_phy_fw_ver = 0;
3286
3287 if (phy_info->phy_fw_version)
3288 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3289 phyf->size);
3290 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3291 "Firmware /lib/firmware/%s, version %#x\n",
3292 phy_info->phy_fw_file, new_phy_fw_ver);
3293 }
3294
3295 release_firmware(phyf);
3296
3297 return ret;
3298 }
3299
3300 /*
3301 * Attempt to initialize the adapter via a Firmware Configuration File.
3302 */
3303 static int adap_init0_config(struct adapter *adapter, int reset)
3304 {
3305 struct fw_caps_config_cmd caps_cmd;
3306 const struct firmware *cf;
3307 unsigned long mtype = 0, maddr = 0;
3308 u32 finiver, finicsum, cfcsum;
3309 int ret;
3310 int config_issued = 0;
3311 char *fw_config_file, fw_config_file_path[256];
3312 char *config_name = NULL;
3313
3314 /*
3315 * Reset device if necessary.
3316 */
3317 if (reset) {
3318 ret = t4_fw_reset(adapter, adapter->mbox,
3319 PIORSTMODE_F | PIORST_F);
3320 if (ret < 0)
3321 goto bye;
3322 }
3323
3324 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3325 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3326 * to be performed after any global adapter RESET above since some
3327 * PHYs only have local RAM copies of the PHY firmware.
3328 */
3329 if (is_10gbt_device(adapter->pdev->device)) {
3330 ret = adap_init0_phy(adapter);
3331 if (ret < 0)
3332 goto bye;
3333 }
3334 /*
3335 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3336 * then use that. Otherwise, use the configuration file stored
3337 * in the adapter flash ...
3338 */
3339 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3340 case CHELSIO_T4:
3341 fw_config_file = FW4_CFNAME;
3342 break;
3343 case CHELSIO_T5:
3344 fw_config_file = FW5_CFNAME;
3345 break;
3346 case CHELSIO_T6:
3347 fw_config_file = FW6_CFNAME;
3348 break;
3349 default:
3350 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3351 adapter->pdev->device);
3352 ret = -EINVAL;
3353 goto bye;
3354 }
3355
3356 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3357 if (ret < 0) {
3358 config_name = "On FLASH";
3359 mtype = FW_MEMTYPE_CF_FLASH;
3360 maddr = t4_flash_cfg_addr(adapter);
3361 } else {
3362 u32 params[7], val[7];
3363
3364 sprintf(fw_config_file_path,
3365 "/lib/firmware/%s", fw_config_file);
3366 config_name = fw_config_file_path;
3367
3368 if (cf->size >= FLASH_CFG_MAX_SIZE)
3369 ret = -ENOMEM;
3370 else {
3371 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3372 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3373 ret = t4_query_params(adapter, adapter->mbox,
3374 adapter->pf, 0, 1, params, val);
3375 if (ret == 0) {
3376 /*
3377 * For t4_memory_rw() below addresses and
3378 * sizes have to be in terms of multiples of 4
3379 * bytes. So, if the Configuration File isn't
3380 * a multiple of 4 bytes in length we'll have
3381 * to write that out separately since we can't
3382 * guarantee that the bytes following the
3383 * residual byte in the buffer returned by
3384 * request_firmware() are zeroed out ...
3385 */
3386 size_t resid = cf->size & 0x3;
3387 size_t size = cf->size & ~0x3;
3388 __be32 *data = (__be32 *)cf->data;
3389
3390 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3391 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3392
3393 spin_lock(&adapter->win0_lock);
3394 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3395 size, data, T4_MEMORY_WRITE);
3396 if (ret == 0 && resid != 0) {
3397 union {
3398 __be32 word;
3399 char buf[4];
3400 } last;
3401 int i;
3402
3403 last.word = data[size >> 2];
3404 for (i = resid; i < 4; i++)
3405 last.buf[i] = 0;
3406 ret = t4_memory_rw(adapter, 0, mtype,
3407 maddr + size,
3408 4, &last.word,
3409 T4_MEMORY_WRITE);
3410 }
3411 spin_unlock(&adapter->win0_lock);
3412 }
3413 }
3414
3415 release_firmware(cf);
3416 if (ret)
3417 goto bye;
3418 }
3419
3420 /*
3421 * Issue a Capability Configuration command to the firmware to get it
3422 * to parse the Configuration File. We don't use t4_fw_config_file()
3423 * because we want the ability to modify various features after we've
3424 * processed the configuration file ...
3425 */
3426 memset(&caps_cmd, 0, sizeof(caps_cmd));
3427 caps_cmd.op_to_write =
3428 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3429 FW_CMD_REQUEST_F |
3430 FW_CMD_READ_F);
3431 caps_cmd.cfvalid_to_len16 =
3432 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3433 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3434 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3435 FW_LEN16(caps_cmd));
3436 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3437 &caps_cmd);
3438
3439 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3440 * Configuration File in FLASH), our last gasp effort is to use the
3441 * Firmware Configuration File which is embedded in the firmware. A
3442 * very few early versions of the firmware didn't have one embedded
3443 * but we can ignore those.
3444 */
3445 if (ret == -ENOENT) {
3446 memset(&caps_cmd, 0, sizeof(caps_cmd));
3447 caps_cmd.op_to_write =
3448 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3449 FW_CMD_REQUEST_F |
3450 FW_CMD_READ_F);
3451 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3452 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3453 sizeof(caps_cmd), &caps_cmd);
3454 config_name = "Firmware Default";
3455 }
3456
3457 config_issued = 1;
3458 if (ret < 0)
3459 goto bye;
3460
3461 finiver = ntohl(caps_cmd.finiver);
3462 finicsum = ntohl(caps_cmd.finicsum);
3463 cfcsum = ntohl(caps_cmd.cfcsum);
3464 if (finicsum != cfcsum)
3465 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3466 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3467 finicsum, cfcsum);
3468
3469 /*
3470 * And now tell the firmware to use the configuration we just loaded.
3471 */
3472 caps_cmd.op_to_write =
3473 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3474 FW_CMD_REQUEST_F |
3475 FW_CMD_WRITE_F);
3476 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3477 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3478 NULL);
3479 if (ret < 0)
3480 goto bye;
3481
3482 /*
3483 * Tweak configuration based on system architecture, module
3484 * parameters, etc.
3485 */
3486 ret = adap_init0_tweaks(adapter);
3487 if (ret < 0)
3488 goto bye;
3489
3490 /*
3491 * And finally tell the firmware to initialize itself using the
3492 * parameters from the Configuration File.
3493 */
3494 ret = t4_fw_initialize(adapter, adapter->mbox);
3495 if (ret < 0)
3496 goto bye;
3497
3498 /* Emit Firmware Configuration File information and return
3499 * successfully.
3500 */
3501 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3502 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3503 config_name, finiver, cfcsum);
3504 return 0;
3505
3506 /*
3507 * Something bad happened. Return the error ... (If the "error"
3508 * is that there's no Configuration File on the adapter we don't
3509 * want to issue a warning since this is fairly common.)
3510 */
3511 bye:
3512 if (config_issued && ret != -ENOENT)
3513 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3514 config_name, -ret);
3515 return ret;
3516 }
3517
3518 static struct fw_info fw_info_array[] = {
3519 {
3520 .chip = CHELSIO_T4,
3521 .fs_name = FW4_CFNAME,
3522 .fw_mod_name = FW4_FNAME,
3523 .fw_hdr = {
3524 .chip = FW_HDR_CHIP_T4,
3525 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3526 .intfver_nic = FW_INTFVER(T4, NIC),
3527 .intfver_vnic = FW_INTFVER(T4, VNIC),
3528 .intfver_ri = FW_INTFVER(T4, RI),
3529 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3530 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3531 },
3532 }, {
3533 .chip = CHELSIO_T5,
3534 .fs_name = FW5_CFNAME,
3535 .fw_mod_name = FW5_FNAME,
3536 .fw_hdr = {
3537 .chip = FW_HDR_CHIP_T5,
3538 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3539 .intfver_nic = FW_INTFVER(T5, NIC),
3540 .intfver_vnic = FW_INTFVER(T5, VNIC),
3541 .intfver_ri = FW_INTFVER(T5, RI),
3542 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3543 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3544 },
3545 }, {
3546 .chip = CHELSIO_T6,
3547 .fs_name = FW6_CFNAME,
3548 .fw_mod_name = FW6_FNAME,
3549 .fw_hdr = {
3550 .chip = FW_HDR_CHIP_T6,
3551 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3552 .intfver_nic = FW_INTFVER(T6, NIC),
3553 .intfver_vnic = FW_INTFVER(T6, VNIC),
3554 .intfver_ofld = FW_INTFVER(T6, OFLD),
3555 .intfver_ri = FW_INTFVER(T6, RI),
3556 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3557 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3558 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3559 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3560 },
3561 }
3562
3563 };
3564
3565 static struct fw_info *find_fw_info(int chip)
3566 {
3567 int i;
3568
3569 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3570 if (fw_info_array[i].chip == chip)
3571 return &fw_info_array[i];
3572 }
3573 return NULL;
3574 }
3575
3576 /*
3577 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3578 */
3579 static int adap_init0(struct adapter *adap)
3580 {
3581 int ret;
3582 u32 v, port_vec;
3583 enum dev_state state;
3584 u32 params[7], val[7];
3585 struct fw_caps_config_cmd caps_cmd;
3586 int reset = 1;
3587
3588 /* Grab Firmware Device Log parameters as early as possible so we have
3589 * access to it for debugging, etc.
3590 */
3591 ret = t4_init_devlog_params(adap);
3592 if (ret < 0)
3593 return ret;
3594
3595 /* Contact FW, advertising Master capability */
3596 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3597 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3598 if (ret < 0) {
3599 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3600 ret);
3601 return ret;
3602 }
3603 if (ret == adap->mbox)
3604 adap->flags |= MASTER_PF;
3605
3606 /*
3607 * If we're the Master PF Driver and the device is uninitialized,
3608 * then let's consider upgrading the firmware ... (We always want
3609 * to check the firmware version number in order to A. get it for
3610 * later reporting and B. to warn if the currently loaded firmware
3611 * is excessively mismatched relative to the driver.)
3612 */
3613 t4_get_fw_version(adap, &adap->params.fw_vers);
3614 t4_get_bs_version(adap, &adap->params.bs_vers);
3615 t4_get_tp_version(adap, &adap->params.tp_vers);
3616 t4_get_exprom_version(adap, &adap->params.er_vers);
3617
3618 ret = t4_check_fw_version(adap);
3619 /* If firmware is too old (not supported by driver) force an update. */
3620 if (ret)
3621 state = DEV_STATE_UNINIT;
3622 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3623 struct fw_info *fw_info;
3624 struct fw_hdr *card_fw;
3625 const struct firmware *fw;
3626 const u8 *fw_data = NULL;
3627 unsigned int fw_size = 0;
3628
3629 /* This is the firmware whose headers the driver was compiled
3630 * against
3631 */
3632 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3633 if (fw_info == NULL) {
3634 dev_err(adap->pdev_dev,
3635 "unable to get firmware info for chip %d.\n",
3636 CHELSIO_CHIP_VERSION(adap->params.chip));
3637 return -EINVAL;
3638 }
3639
3640 /* allocate memory to read the header of the firmware on the
3641 * card
3642 */
3643 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3644
3645 /* Get FW from from /lib/firmware/ */
3646 ret = request_firmware(&fw, fw_info->fw_mod_name,
3647 adap->pdev_dev);
3648 if (ret < 0) {
3649 dev_err(adap->pdev_dev,
3650 "unable to load firmware image %s, error %d\n",
3651 fw_info->fw_mod_name, ret);
3652 } else {
3653 fw_data = fw->data;
3654 fw_size = fw->size;
3655 }
3656
3657 /* upgrade FW logic */
3658 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3659 state, &reset);
3660
3661 /* Cleaning up */
3662 release_firmware(fw);
3663 kvfree(card_fw);
3664
3665 if (ret < 0)
3666 goto bye;
3667 }
3668
3669 /*
3670 * Grab VPD parameters. This should be done after we establish a
3671 * connection to the firmware since some of the VPD parameters
3672 * (notably the Core Clock frequency) are retrieved via requests to
3673 * the firmware. On the other hand, we need these fairly early on
3674 * so we do this right after getting ahold of the firmware.
3675 */
3676 ret = t4_get_vpd_params(adap, &adap->params.vpd);
3677 if (ret < 0)
3678 goto bye;
3679
3680 /*
3681 * Find out what ports are available to us. Note that we need to do
3682 * this before calling adap_init0_no_config() since it needs nports
3683 * and portvec ...
3684 */
3685 v =
3686 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3687 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3688 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3689 if (ret < 0)
3690 goto bye;
3691
3692 adap->params.nports = hweight32(port_vec);
3693 adap->params.portvec = port_vec;
3694
3695 /* If the firmware is initialized already, emit a simply note to that
3696 * effect. Otherwise, it's time to try initializing the adapter.
3697 */
3698 if (state == DEV_STATE_INIT) {
3699 dev_info(adap->pdev_dev, "Coming up as %s: "\
3700 "Adapter already initialized\n",
3701 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3702 } else {
3703 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3704 "Initializing adapter\n");
3705
3706 /* Find out whether we're dealing with a version of the
3707 * firmware which has configuration file support.
3708 */
3709 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3710 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3711 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3712 params, val);
3713
3714 /* If the firmware doesn't support Configuration Files,
3715 * return an error.
3716 */
3717 if (ret < 0) {
3718 dev_err(adap->pdev_dev, "firmware doesn't support "
3719 "Firmware Configuration Files\n");
3720 goto bye;
3721 }
3722
3723 /* The firmware provides us with a memory buffer where we can
3724 * load a Configuration File from the host if we want to
3725 * override the Configuration File in flash.
3726 */
3727 ret = adap_init0_config(adap, reset);
3728 if (ret == -ENOENT) {
3729 dev_err(adap->pdev_dev, "no Configuration File "
3730 "present on adapter.\n");
3731 goto bye;
3732 }
3733 if (ret < 0) {
3734 dev_err(adap->pdev_dev, "could not initialize "
3735 "adapter, error %d\n", -ret);
3736 goto bye;
3737 }
3738 }
3739
3740 /* Give the SGE code a chance to pull in anything that it needs ...
3741 * Note that this must be called after we retrieve our VPD parameters
3742 * in order to know how to convert core ticks to seconds, etc.
3743 */
3744 ret = t4_sge_init(adap);
3745 if (ret < 0)
3746 goto bye;
3747
3748 if (is_bypass_device(adap->pdev->device))
3749 adap->params.bypass = 1;
3750
3751 /*
3752 * Grab some of our basic fundamental operating parameters.
3753 */
3754 #define FW_PARAM_DEV(param) \
3755 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3756 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3757
3758 #define FW_PARAM_PFVF(param) \
3759 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3760 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3761 FW_PARAMS_PARAM_Y_V(0) | \
3762 FW_PARAMS_PARAM_Z_V(0)
3763
3764 params[0] = FW_PARAM_PFVF(EQ_START);
3765 params[1] = FW_PARAM_PFVF(L2T_START);
3766 params[2] = FW_PARAM_PFVF(L2T_END);
3767 params[3] = FW_PARAM_PFVF(FILTER_START);
3768 params[4] = FW_PARAM_PFVF(FILTER_END);
3769 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3770 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3771 if (ret < 0)
3772 goto bye;
3773 adap->sge.egr_start = val[0];
3774 adap->l2t_start = val[1];
3775 adap->l2t_end = val[2];
3776 adap->tids.ftid_base = val[3];
3777 adap->tids.nftids = val[4] - val[3] + 1;
3778 adap->sge.ingr_start = val[5];
3779
3780 /* qids (ingress/egress) returned from firmware can be anywhere
3781 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3782 * Hence driver needs to allocate memory for this range to
3783 * store the queue info. Get the highest IQFLINT/EQ index returned
3784 * in FW_EQ_*_CMD.alloc command.
3785 */
3786 params[0] = FW_PARAM_PFVF(EQ_END);
3787 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3788 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3789 if (ret < 0)
3790 goto bye;
3791 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3792 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3793
3794 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3795 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3796 if (!adap->sge.egr_map) {
3797 ret = -ENOMEM;
3798 goto bye;
3799 }
3800
3801 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3802 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3803 if (!adap->sge.ingr_map) {
3804 ret = -ENOMEM;
3805 goto bye;
3806 }
3807
3808 /* Allocate the memory for the vaious egress queue bitmaps
3809 * ie starving_fl, txq_maperr and blocked_fl.
3810 */
3811 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3812 sizeof(long), GFP_KERNEL);
3813 if (!adap->sge.starving_fl) {
3814 ret = -ENOMEM;
3815 goto bye;
3816 }
3817
3818 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3819 sizeof(long), GFP_KERNEL);
3820 if (!adap->sge.txq_maperr) {
3821 ret = -ENOMEM;
3822 goto bye;
3823 }
3824
3825 #ifdef CONFIG_DEBUG_FS
3826 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3827 sizeof(long), GFP_KERNEL);
3828 if (!adap->sge.blocked_fl) {
3829 ret = -ENOMEM;
3830 goto bye;
3831 }
3832 #endif
3833
3834 params[0] = FW_PARAM_PFVF(CLIP_START);
3835 params[1] = FW_PARAM_PFVF(CLIP_END);
3836 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3837 if (ret < 0)
3838 goto bye;
3839 adap->clipt_start = val[0];
3840 adap->clipt_end = val[1];
3841
3842 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3843 * Classes supported by the hardware/firmware so we hard code it here
3844 * for now.
3845 */
3846 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3847
3848 /* query params related to active filter region */
3849 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3850 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3851 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3852 /* If Active filter size is set we enable establishing
3853 * offload connection through firmware work request
3854 */
3855 if ((val[0] != val[1]) && (ret >= 0)) {
3856 adap->flags |= FW_OFLD_CONN;
3857 adap->tids.aftid_base = val[0];
3858 adap->tids.aftid_end = val[1];
3859 }
3860
3861 /* If we're running on newer firmware, let it know that we're
3862 * prepared to deal with encapsulated CPL messages. Older
3863 * firmware won't understand this and we'll just get
3864 * unencapsulated messages ...
3865 */
3866 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3867 val[0] = 1;
3868 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3869
3870 /*
3871 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3872 * capability. Earlier versions of the firmware didn't have the
3873 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3874 * permission to use ULPTX MEMWRITE DSGL.
3875 */
3876 if (is_t4(adap->params.chip)) {
3877 adap->params.ulptx_memwrite_dsgl = false;
3878 } else {
3879 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3880 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3881 1, params, val);
3882 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3883 }
3884
3885 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3886 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3887 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3888 1, params, val);
3889 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3890
3891 /*
3892 * Get device capabilities so we can determine what resources we need
3893 * to manage.
3894 */
3895 memset(&caps_cmd, 0, sizeof(caps_cmd));
3896 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3897 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3898 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3899 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3900 &caps_cmd);
3901 if (ret < 0)
3902 goto bye;
3903
3904 if (caps_cmd.ofldcaps) {
3905 /* query offload-related parameters */
3906 params[0] = FW_PARAM_DEV(NTID);
3907 params[1] = FW_PARAM_PFVF(SERVER_START);
3908 params[2] = FW_PARAM_PFVF(SERVER_END);
3909 params[3] = FW_PARAM_PFVF(TDDP_START);
3910 params[4] = FW_PARAM_PFVF(TDDP_END);
3911 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3912 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3913 params, val);
3914 if (ret < 0)
3915 goto bye;
3916 adap->tids.ntids = val[0];
3917 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3918 adap->tids.stid_base = val[1];
3919 adap->tids.nstids = val[2] - val[1] + 1;
3920 /*
3921 * Setup server filter region. Divide the available filter
3922 * region into two parts. Regular filters get 1/3rd and server
3923 * filters get 2/3rd part. This is only enabled if workarond
3924 * path is enabled.
3925 * 1. For regular filters.
3926 * 2. Server filter: This are special filters which are used
3927 * to redirect SYN packets to offload queue.
3928 */
3929 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3930 adap->tids.sftid_base = adap->tids.ftid_base +
3931 DIV_ROUND_UP(adap->tids.nftids, 3);
3932 adap->tids.nsftids = adap->tids.nftids -
3933 DIV_ROUND_UP(adap->tids.nftids, 3);
3934 adap->tids.nftids = adap->tids.sftid_base -
3935 adap->tids.ftid_base;
3936 }
3937 adap->vres.ddp.start = val[3];
3938 adap->vres.ddp.size = val[4] - val[3] + 1;
3939 adap->params.ofldq_wr_cred = val[5];
3940
3941 adap->params.offload = 1;
3942 adap->num_ofld_uld += 1;
3943 }
3944 if (caps_cmd.rdmacaps) {
3945 params[0] = FW_PARAM_PFVF(STAG_START);
3946 params[1] = FW_PARAM_PFVF(STAG_END);
3947 params[2] = FW_PARAM_PFVF(RQ_START);
3948 params[3] = FW_PARAM_PFVF(RQ_END);
3949 params[4] = FW_PARAM_PFVF(PBL_START);
3950 params[5] = FW_PARAM_PFVF(PBL_END);
3951 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3952 params, val);
3953 if (ret < 0)
3954 goto bye;
3955 adap->vres.stag.start = val[0];
3956 adap->vres.stag.size = val[1] - val[0] + 1;
3957 adap->vres.rq.start = val[2];
3958 adap->vres.rq.size = val[3] - val[2] + 1;
3959 adap->vres.pbl.start = val[4];
3960 adap->vres.pbl.size = val[5] - val[4] + 1;
3961
3962 params[0] = FW_PARAM_PFVF(SQRQ_START);
3963 params[1] = FW_PARAM_PFVF(SQRQ_END);
3964 params[2] = FW_PARAM_PFVF(CQ_START);
3965 params[3] = FW_PARAM_PFVF(CQ_END);
3966 params[4] = FW_PARAM_PFVF(OCQ_START);
3967 params[5] = FW_PARAM_PFVF(OCQ_END);
3968 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3969 val);
3970 if (ret < 0)
3971 goto bye;
3972 adap->vres.qp.start = val[0];
3973 adap->vres.qp.size = val[1] - val[0] + 1;
3974 adap->vres.cq.start = val[2];
3975 adap->vres.cq.size = val[3] - val[2] + 1;
3976 adap->vres.ocq.start = val[4];
3977 adap->vres.ocq.size = val[5] - val[4] + 1;
3978
3979 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3980 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3981 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3982 val);
3983 if (ret < 0) {
3984 adap->params.max_ordird_qp = 8;
3985 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3986 ret = 0;
3987 } else {
3988 adap->params.max_ordird_qp = val[0];
3989 adap->params.max_ird_adapter = val[1];
3990 }
3991 dev_info(adap->pdev_dev,
3992 "max_ordird_qp %d max_ird_adapter %d\n",
3993 adap->params.max_ordird_qp,
3994 adap->params.max_ird_adapter);
3995 adap->num_ofld_uld += 2;
3996 }
3997 if (caps_cmd.iscsicaps) {
3998 params[0] = FW_PARAM_PFVF(ISCSI_START);
3999 params[1] = FW_PARAM_PFVF(ISCSI_END);
4000 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4001 params, val);
4002 if (ret < 0)
4003 goto bye;
4004 adap->vres.iscsi.start = val[0];
4005 adap->vres.iscsi.size = val[1] - val[0] + 1;
4006 /* LIO target and cxgb4i initiaitor */
4007 adap->num_ofld_uld += 2;
4008 }
4009 if (caps_cmd.cryptocaps) {
4010 /* Should query params here...TODO */
4011 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4012 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4013 params, val);
4014 if (ret < 0) {
4015 if (ret != -EINVAL)
4016 goto bye;
4017 } else {
4018 adap->vres.ncrypto_fc = val[0];
4019 }
4020 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4021 adap->num_uld += 1;
4022 }
4023 #undef FW_PARAM_PFVF
4024 #undef FW_PARAM_DEV
4025
4026 /* The MTU/MSS Table is initialized by now, so load their values. If
4027 * we're initializing the adapter, then we'll make any modifications
4028 * we want to the MTU/MSS Table and also initialize the congestion
4029 * parameters.
4030 */
4031 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4032 if (state != DEV_STATE_INIT) {
4033 int i;
4034
4035 /* The default MTU Table contains values 1492 and 1500.
4036 * However, for TCP, it's better to have two values which are
4037 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4038 * This allows us to have a TCP Data Payload which is a
4039 * multiple of 8 regardless of what combination of TCP Options
4040 * are in use (always a multiple of 4 bytes) which is
4041 * important for performance reasons. For instance, if no
4042 * options are in use, then we have a 20-byte IP header and a
4043 * 20-byte TCP header. In this case, a 1500-byte MSS would
4044 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4045 * which is not a multiple of 8. So using an MSS of 1488 in
4046 * this case results in a TCP Data Payload of 1448 bytes which
4047 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4048 * Stamps have been negotiated, then an MTU of 1500 bytes
4049 * results in a TCP Data Payload of 1448 bytes which, as
4050 * above, is a multiple of 8 bytes ...
4051 */
4052 for (i = 0; i < NMTUS; i++)
4053 if (adap->params.mtus[i] == 1492) {
4054 adap->params.mtus[i] = 1488;
4055 break;
4056 }
4057
4058 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4059 adap->params.b_wnd);
4060 }
4061 t4_init_sge_params(adap);
4062 adap->flags |= FW_OK;
4063 t4_init_tp_params(adap);
4064 return 0;
4065
4066 /*
4067 * Something bad happened. If a command timed out or failed with EIO
4068 * FW does not operate within its spec or something catastrophic
4069 * happened to HW/FW, stop issuing commands.
4070 */
4071 bye:
4072 kfree(adap->sge.egr_map);
4073 kfree(adap->sge.ingr_map);
4074 kfree(adap->sge.starving_fl);
4075 kfree(adap->sge.txq_maperr);
4076 #ifdef CONFIG_DEBUG_FS
4077 kfree(adap->sge.blocked_fl);
4078 #endif
4079 if (ret != -ETIMEDOUT && ret != -EIO)
4080 t4_fw_bye(adap, adap->mbox);
4081 return ret;
4082 }
4083
4084 /* EEH callbacks */
4085
4086 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4087 pci_channel_state_t state)
4088 {
4089 int i;
4090 struct adapter *adap = pci_get_drvdata(pdev);
4091
4092 if (!adap)
4093 goto out;
4094
4095 rtnl_lock();
4096 adap->flags &= ~FW_OK;
4097 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4098 spin_lock(&adap->stats_lock);
4099 for_each_port(adap, i) {
4100 struct net_device *dev = adap->port[i];
4101 if (dev) {
4102 netif_device_detach(dev);
4103 netif_carrier_off(dev);
4104 }
4105 }
4106 spin_unlock(&adap->stats_lock);
4107 disable_interrupts(adap);
4108 if (adap->flags & FULL_INIT_DONE)
4109 cxgb_down(adap);
4110 rtnl_unlock();
4111 if ((adap->flags & DEV_ENABLED)) {
4112 pci_disable_device(pdev);
4113 adap->flags &= ~DEV_ENABLED;
4114 }
4115 out: return state == pci_channel_io_perm_failure ?
4116 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4117 }
4118
4119 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4120 {
4121 int i, ret;
4122 struct fw_caps_config_cmd c;
4123 struct adapter *adap = pci_get_drvdata(pdev);
4124
4125 if (!adap) {
4126 pci_restore_state(pdev);
4127 pci_save_state(pdev);
4128 return PCI_ERS_RESULT_RECOVERED;
4129 }
4130
4131 if (!(adap->flags & DEV_ENABLED)) {
4132 if (pci_enable_device(pdev)) {
4133 dev_err(&pdev->dev, "Cannot reenable PCI "
4134 "device after reset\n");
4135 return PCI_ERS_RESULT_DISCONNECT;
4136 }
4137 adap->flags |= DEV_ENABLED;
4138 }
4139
4140 pci_set_master(pdev);
4141 pci_restore_state(pdev);
4142 pci_save_state(pdev);
4143 pci_cleanup_aer_uncorrect_error_status(pdev);
4144
4145 if (t4_wait_dev_ready(adap->regs) < 0)
4146 return PCI_ERS_RESULT_DISCONNECT;
4147 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4148 return PCI_ERS_RESULT_DISCONNECT;
4149 adap->flags |= FW_OK;
4150 if (adap_init1(adap, &c))
4151 return PCI_ERS_RESULT_DISCONNECT;
4152
4153 for_each_port(adap, i) {
4154 struct port_info *p = adap2pinfo(adap, i);
4155
4156 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4157 NULL, NULL);
4158 if (ret < 0)
4159 return PCI_ERS_RESULT_DISCONNECT;
4160 p->viid = ret;
4161 p->xact_addr_filt = -1;
4162 }
4163
4164 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4165 adap->params.b_wnd);
4166 setup_memwin(adap);
4167 if (cxgb_up(adap))
4168 return PCI_ERS_RESULT_DISCONNECT;
4169 return PCI_ERS_RESULT_RECOVERED;
4170 }
4171
4172 static void eeh_resume(struct pci_dev *pdev)
4173 {
4174 int i;
4175 struct adapter *adap = pci_get_drvdata(pdev);
4176
4177 if (!adap)
4178 return;
4179
4180 rtnl_lock();
4181 for_each_port(adap, i) {
4182 struct net_device *dev = adap->port[i];
4183 if (dev) {
4184 if (netif_running(dev)) {
4185 link_start(dev);
4186 cxgb_set_rxmode(dev);
4187 }
4188 netif_device_attach(dev);
4189 }
4190 }
4191 rtnl_unlock();
4192 }
4193
4194 static const struct pci_error_handlers cxgb4_eeh = {
4195 .error_detected = eeh_err_detected,
4196 .slot_reset = eeh_slot_reset,
4197 .resume = eeh_resume,
4198 };
4199
4200 /* Return true if the Link Configuration supports "High Speeds" (those greater
4201 * than 1Gb/s).
4202 */
4203 static inline bool is_x_10g_port(const struct link_config *lc)
4204 {
4205 unsigned int speeds, high_speeds;
4206
4207 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4208 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4209
4210 return high_speeds != 0;
4211 }
4212
4213 /*
4214 * Perform default configuration of DMA queues depending on the number and type
4215 * of ports we found and the number of available CPUs. Most settings can be
4216 * modified by the admin prior to actual use.
4217 */
4218 static void cfg_queues(struct adapter *adap)
4219 {
4220 struct sge *s = &adap->sge;
4221 int i = 0, n10g = 0, qidx = 0;
4222 #ifndef CONFIG_CHELSIO_T4_DCB
4223 int q10g = 0;
4224 #endif
4225
4226 /* Reduce memory usage in kdump environment, disable all offload.
4227 */
4228 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4229 adap->params.offload = 0;
4230 adap->params.crypto = 0;
4231 }
4232
4233 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4234 #ifdef CONFIG_CHELSIO_T4_DCB
4235 /* For Data Center Bridging support we need to be able to support up
4236 * to 8 Traffic Priorities; each of which will be assigned to its
4237 * own TX Queue in order to prevent Head-Of-Line Blocking.
4238 */
4239 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4240 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4241 MAX_ETH_QSETS, adap->params.nports * 8);
4242 BUG_ON(1);
4243 }
4244
4245 for_each_port(adap, i) {
4246 struct port_info *pi = adap2pinfo(adap, i);
4247
4248 pi->first_qset = qidx;
4249 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4250 qidx += pi->nqsets;
4251 }
4252 #else /* !CONFIG_CHELSIO_T4_DCB */
4253 /*
4254 * We default to 1 queue per non-10G port and up to # of cores queues
4255 * per 10G port.
4256 */
4257 if (n10g)
4258 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4259 if (q10g > netif_get_num_default_rss_queues())
4260 q10g = netif_get_num_default_rss_queues();
4261
4262 if (is_kdump_kernel())
4263 q10g = 1;
4264
4265 for_each_port(adap, i) {
4266 struct port_info *pi = adap2pinfo(adap, i);
4267
4268 pi->first_qset = qidx;
4269 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4270 qidx += pi->nqsets;
4271 }
4272 #endif /* !CONFIG_CHELSIO_T4_DCB */
4273
4274 s->ethqsets = qidx;
4275 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4276
4277 if (is_uld(adap)) {
4278 /*
4279 * For offload we use 1 queue/channel if all ports are up to 1G,
4280 * otherwise we divide all available queues amongst the channels
4281 * capped by the number of available cores.
4282 */
4283 if (n10g) {
4284 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4285 s->ofldqsets = roundup(i, adap->params.nports);
4286 } else {
4287 s->ofldqsets = adap->params.nports;
4288 }
4289 }
4290
4291 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4292 struct sge_eth_rxq *r = &s->ethrxq[i];
4293
4294 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4295 r->fl.size = 72;
4296 }
4297
4298 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4299 s->ethtxq[i].q.size = 1024;
4300
4301 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4302 s->ctrlq[i].q.size = 512;
4303
4304 if (!is_t4(adap->params.chip))
4305 s->ptptxq.q.size = 8;
4306
4307 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4308 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4309 }
4310
4311 /*
4312 * Reduce the number of Ethernet queues across all ports to at most n.
4313 * n provides at least one queue per port.
4314 */
4315 static void reduce_ethqs(struct adapter *adap, int n)
4316 {
4317 int i;
4318 struct port_info *pi;
4319
4320 while (n < adap->sge.ethqsets)
4321 for_each_port(adap, i) {
4322 pi = adap2pinfo(adap, i);
4323 if (pi->nqsets > 1) {
4324 pi->nqsets--;
4325 adap->sge.ethqsets--;
4326 if (adap->sge.ethqsets <= n)
4327 break;
4328 }
4329 }
4330
4331 n = 0;
4332 for_each_port(adap, i) {
4333 pi = adap2pinfo(adap, i);
4334 pi->first_qset = n;
4335 n += pi->nqsets;
4336 }
4337 }
4338
4339 static int get_msix_info(struct adapter *adap)
4340 {
4341 struct uld_msix_info *msix_info;
4342 unsigned int max_ingq = 0;
4343
4344 if (is_offload(adap))
4345 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4346 if (is_pci_uld(adap))
4347 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4348
4349 if (!max_ingq)
4350 goto out;
4351
4352 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4353 if (!msix_info)
4354 return -ENOMEM;
4355
4356 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4357 sizeof(long), GFP_KERNEL);
4358 if (!adap->msix_bmap_ulds.msix_bmap) {
4359 kfree(msix_info);
4360 return -ENOMEM;
4361 }
4362 spin_lock_init(&adap->msix_bmap_ulds.lock);
4363 adap->msix_info_ulds = msix_info;
4364 out:
4365 return 0;
4366 }
4367
4368 static void free_msix_info(struct adapter *adap)
4369 {
4370 if (!(adap->num_uld && adap->num_ofld_uld))
4371 return;
4372
4373 kfree(adap->msix_info_ulds);
4374 kfree(adap->msix_bmap_ulds.msix_bmap);
4375 }
4376
4377 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4378 #define EXTRA_VECS 2
4379
4380 static int enable_msix(struct adapter *adap)
4381 {
4382 int ofld_need = 0, uld_need = 0;
4383 int i, j, want, need, allocated;
4384 struct sge *s = &adap->sge;
4385 unsigned int nchan = adap->params.nports;
4386 struct msix_entry *entries;
4387 int max_ingq = MAX_INGQ;
4388
4389 if (is_pci_uld(adap))
4390 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4391 if (is_offload(adap))
4392 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4393 entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4394 GFP_KERNEL);
4395 if (!entries)
4396 return -ENOMEM;
4397
4398 /* map for msix */
4399 if (get_msix_info(adap)) {
4400 adap->params.offload = 0;
4401 adap->params.crypto = 0;
4402 }
4403
4404 for (i = 0; i < max_ingq + 1; ++i)
4405 entries[i].entry = i;
4406
4407 want = s->max_ethqsets + EXTRA_VECS;
4408 if (is_offload(adap)) {
4409 want += adap->num_ofld_uld * s->ofldqsets;
4410 ofld_need = adap->num_ofld_uld * nchan;
4411 }
4412 if (is_pci_uld(adap)) {
4413 want += adap->num_uld * s->ofldqsets;
4414 uld_need = adap->num_uld * nchan;
4415 }
4416 #ifdef CONFIG_CHELSIO_T4_DCB
4417 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4418 * each port.
4419 */
4420 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4421 #else
4422 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4423 #endif
4424 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4425 if (allocated < 0) {
4426 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4427 " not using MSI-X\n");
4428 kfree(entries);
4429 return allocated;
4430 }
4431
4432 /* Distribute available vectors to the various queue groups.
4433 * Every group gets its minimum requirement and NIC gets top
4434 * priority for leftovers.
4435 */
4436 i = allocated - EXTRA_VECS - ofld_need - uld_need;
4437 if (i < s->max_ethqsets) {
4438 s->max_ethqsets = i;
4439 if (i < s->ethqsets)
4440 reduce_ethqs(adap, i);
4441 }
4442 if (is_uld(adap)) {
4443 if (allocated < want)
4444 s->nqs_per_uld = nchan;
4445 else
4446 s->nqs_per_uld = s->ofldqsets;
4447 }
4448
4449 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4450 adap->msix_info[i].vec = entries[i].vector;
4451 if (is_uld(adap)) {
4452 for (j = 0 ; i < allocated; ++i, j++) {
4453 adap->msix_info_ulds[j].vec = entries[i].vector;
4454 adap->msix_info_ulds[j].idx = i;
4455 }
4456 adap->msix_bmap_ulds.mapsize = j;
4457 }
4458 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4459 "nic %d per uld %d\n",
4460 allocated, s->max_ethqsets, s->nqs_per_uld);
4461
4462 kfree(entries);
4463 return 0;
4464 }
4465
4466 #undef EXTRA_VECS
4467
4468 static int init_rss(struct adapter *adap)
4469 {
4470 unsigned int i;
4471 int err;
4472
4473 err = t4_init_rss_mode(adap, adap->mbox);
4474 if (err)
4475 return err;
4476
4477 for_each_port(adap, i) {
4478 struct port_info *pi = adap2pinfo(adap, i);
4479
4480 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4481 if (!pi->rss)
4482 return -ENOMEM;
4483 }
4484 return 0;
4485 }
4486
4487 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4488 enum pci_bus_speed *speed,
4489 enum pcie_link_width *width)
4490 {
4491 u32 lnkcap1, lnkcap2;
4492 int err1, err2;
4493
4494 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4495
4496 *speed = PCI_SPEED_UNKNOWN;
4497 *width = PCIE_LNK_WIDTH_UNKNOWN;
4498
4499 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4500 &lnkcap1);
4501 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4502 &lnkcap2);
4503 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4504 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4505 *speed = PCIE_SPEED_8_0GT;
4506 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4507 *speed = PCIE_SPEED_5_0GT;
4508 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4509 *speed = PCIE_SPEED_2_5GT;
4510 }
4511 if (!err1) {
4512 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4513 if (!lnkcap2) { /* pre-r3.0 */
4514 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4515 *speed = PCIE_SPEED_5_0GT;
4516 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4517 *speed = PCIE_SPEED_2_5GT;
4518 }
4519 }
4520
4521 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4522 return err1 ? err1 : err2 ? err2 : -EINVAL;
4523 return 0;
4524 }
4525
4526 static void cxgb4_check_pcie_caps(struct adapter *adap)
4527 {
4528 enum pcie_link_width width, width_cap;
4529 enum pci_bus_speed speed, speed_cap;
4530
4531 #define PCIE_SPEED_STR(speed) \
4532 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4533 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4534 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4535 "Unknown")
4536
4537 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4538 dev_warn(adap->pdev_dev,
4539 "Unable to determine PCIe device BW capabilities\n");
4540 return;
4541 }
4542
4543 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4544 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4545 dev_warn(adap->pdev_dev,
4546 "Unable to determine PCI Express bandwidth.\n");
4547 return;
4548 }
4549
4550 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4551 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4552 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4553 width, width_cap);
4554 if (speed < speed_cap || width < width_cap)
4555 dev_info(adap->pdev_dev,
4556 "A slot with more lanes and/or higher speed is "
4557 "suggested for optimal performance.\n");
4558 }
4559
4560 /* Dump basic information about the adapter */
4561 static void print_adapter_info(struct adapter *adapter)
4562 {
4563 /* Device information */
4564 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4565 adapter->params.vpd.id,
4566 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4567 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4568 adapter->params.vpd.sn, adapter->params.vpd.pn);
4569
4570 /* Firmware Version */
4571 if (!adapter->params.fw_vers)
4572 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4573 else
4574 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4575 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4576 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4577 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4578 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4579
4580 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4581 * Firmware, so dev_info() is more appropriate here.)
4582 */
4583 if (!adapter->params.bs_vers)
4584 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4585 else
4586 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4587 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4588 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4589 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4590 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4591
4592 /* TP Microcode Version */
4593 if (!adapter->params.tp_vers)
4594 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4595 else
4596 dev_info(adapter->pdev_dev,
4597 "TP Microcode version: %u.%u.%u.%u\n",
4598 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4599 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4600 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4601 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4602
4603 /* Expansion ROM version */
4604 if (!adapter->params.er_vers)
4605 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4606 else
4607 dev_info(adapter->pdev_dev,
4608 "Expansion ROM version: %u.%u.%u.%u\n",
4609 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4610 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4611 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4612 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4613
4614 /* Software/Hardware configuration */
4615 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4616 is_offload(adapter) ? "R" : "",
4617 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4618 (adapter->flags & USING_MSI) ? "MSI" : ""),
4619 is_offload(adapter) ? "Offload" : "non-Offload");
4620 }
4621
4622 static void print_port_info(const struct net_device *dev)
4623 {
4624 char buf[80];
4625 char *bufp = buf;
4626 const char *spd = "";
4627 const struct port_info *pi = netdev_priv(dev);
4628 const struct adapter *adap = pi->adapter;
4629
4630 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4631 spd = " 2.5 GT/s";
4632 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4633 spd = " 5 GT/s";
4634 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4635 spd = " 8 GT/s";
4636
4637 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4638 bufp += sprintf(bufp, "100M/");
4639 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4640 bufp += sprintf(bufp, "1G/");
4641 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4642 bufp += sprintf(bufp, "10G/");
4643 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4644 bufp += sprintf(bufp, "25G/");
4645 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4646 bufp += sprintf(bufp, "40G/");
4647 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4648 bufp += sprintf(bufp, "100G/");
4649 if (bufp != buf)
4650 --bufp;
4651 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4652
4653 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4654 dev->name, adap->params.vpd.id, adap->name, buf);
4655 }
4656
4657 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4658 {
4659 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4660 }
4661
4662 /*
4663 * Free the following resources:
4664 * - memory used for tables
4665 * - MSI/MSI-X
4666 * - net devices
4667 * - resources FW is holding for us
4668 */
4669 static void free_some_resources(struct adapter *adapter)
4670 {
4671 unsigned int i;
4672
4673 kvfree(adapter->l2t);
4674 t4_cleanup_sched(adapter);
4675 kvfree(adapter->tids.tid_tab);
4676 cxgb4_cleanup_tc_u32(adapter);
4677 kfree(adapter->sge.egr_map);
4678 kfree(adapter->sge.ingr_map);
4679 kfree(adapter->sge.starving_fl);
4680 kfree(adapter->sge.txq_maperr);
4681 #ifdef CONFIG_DEBUG_FS
4682 kfree(adapter->sge.blocked_fl);
4683 #endif
4684 disable_msi(adapter);
4685
4686 for_each_port(adapter, i)
4687 if (adapter->port[i]) {
4688 struct port_info *pi = adap2pinfo(adapter, i);
4689
4690 if (pi->viid != 0)
4691 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4692 0, pi->viid);
4693 kfree(adap2pinfo(adapter, i)->rss);
4694 free_netdev(adapter->port[i]);
4695 }
4696 if (adapter->flags & FW_OK)
4697 t4_fw_bye(adapter, adapter->pf);
4698 }
4699
4700 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4701 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4702 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4703 #define SEGMENT_SIZE 128
4704
4705 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4706 {
4707 u16 device_id;
4708
4709 /* Retrieve adapter's device ID */
4710 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4711
4712 switch (device_id >> 12) {
4713 case CHELSIO_T4:
4714 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4715 case CHELSIO_T5:
4716 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4717 case CHELSIO_T6:
4718 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4719 default:
4720 dev_err(&pdev->dev, "Device %d is not supported\n",
4721 device_id);
4722 }
4723 return -EINVAL;
4724 }
4725
4726 #ifdef CONFIG_PCI_IOV
4727 static void dummy_setup(struct net_device *dev)
4728 {
4729 dev->type = ARPHRD_NONE;
4730 dev->mtu = 0;
4731 dev->hard_header_len = 0;
4732 dev->addr_len = 0;
4733 dev->tx_queue_len = 0;
4734 dev->flags |= IFF_NOARP;
4735 dev->priv_flags |= IFF_NO_QUEUE;
4736
4737 /* Initialize the device structure. */
4738 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4739 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4740 dev->needs_free_netdev = true;
4741 }
4742
4743 static int config_mgmt_dev(struct pci_dev *pdev)
4744 {
4745 struct adapter *adap = pci_get_drvdata(pdev);
4746 struct net_device *netdev;
4747 struct port_info *pi;
4748 char name[IFNAMSIZ];
4749 int err;
4750
4751 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4752 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4753 dummy_setup);
4754 if (!netdev)
4755 return -ENOMEM;
4756
4757 pi = netdev_priv(netdev);
4758 pi->adapter = adap;
4759 pi->port_id = adap->pf % adap->params.nports;
4760 SET_NETDEV_DEV(netdev, &pdev->dev);
4761
4762 adap->port[0] = netdev;
4763
4764 err = register_netdev(adap->port[0]);
4765 if (err) {
4766 pr_info("Unable to register VF mgmt netdev %s\n", name);
4767 free_netdev(adap->port[0]);
4768 adap->port[0] = NULL;
4769 return err;
4770 }
4771 return 0;
4772 }
4773
4774 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4775 {
4776 struct adapter *adap = pci_get_drvdata(pdev);
4777 int err = 0;
4778 int current_vfs = pci_num_vf(pdev);
4779 u32 pcie_fw;
4780
4781 pcie_fw = readl(adap->regs + PCIE_FW_A);
4782 /* Check if cxgb4 is the MASTER and fw is initialized */
4783 if (!(pcie_fw & PCIE_FW_INIT_F) ||
4784 !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4785 PCIE_FW_MASTER_G(pcie_fw) != 4) {
4786 dev_warn(&pdev->dev,
4787 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4788 return -EOPNOTSUPP;
4789 }
4790
4791 /* If any of the VF's is already assigned to Guest OS, then
4792 * SRIOV for the same cannot be modified
4793 */
4794 if (current_vfs && pci_vfs_assigned(pdev)) {
4795 dev_err(&pdev->dev,
4796 "Cannot modify SR-IOV while VFs are assigned\n");
4797 num_vfs = current_vfs;
4798 return num_vfs;
4799 }
4800
4801 /* Disable SRIOV when zero is passed.
4802 * One needs to disable SRIOV before modifying it, else
4803 * stack throws the below warning:
4804 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4805 */
4806 if (!num_vfs) {
4807 pci_disable_sriov(pdev);
4808 if (adap->port[0]) {
4809 unregister_netdev(adap->port[0]);
4810 adap->port[0] = NULL;
4811 }
4812 /* free VF resources */
4813 kfree(adap->vfinfo);
4814 adap->vfinfo = NULL;
4815 adap->num_vfs = 0;
4816 return num_vfs;
4817 }
4818
4819 if (num_vfs != current_vfs) {
4820 err = pci_enable_sriov(pdev, num_vfs);
4821 if (err)
4822 return err;
4823
4824 adap->num_vfs = num_vfs;
4825 err = config_mgmt_dev(pdev);
4826 if (err)
4827 return err;
4828 }
4829
4830 adap->vfinfo = kcalloc(adap->num_vfs,
4831 sizeof(struct vf_info), GFP_KERNEL);
4832 if (adap->vfinfo)
4833 fill_vf_station_mac_addr(adap);
4834 return num_vfs;
4835 }
4836 #endif
4837
4838 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4839 {
4840 int func, i, err, s_qpp, qpp, num_seg;
4841 struct port_info *pi;
4842 bool highdma = false;
4843 struct adapter *adapter = NULL;
4844 struct net_device *netdev;
4845 void __iomem *regs;
4846 u32 whoami, pl_rev;
4847 enum chip_type chip;
4848 static int adap_idx = 1;
4849 #ifdef CONFIG_PCI_IOV
4850 u32 v, port_vec;
4851 #endif
4852
4853 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4854
4855 err = pci_request_regions(pdev, KBUILD_MODNAME);
4856 if (err) {
4857 /* Just info, some other driver may have claimed the device. */
4858 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4859 return err;
4860 }
4861
4862 err = pci_enable_device(pdev);
4863 if (err) {
4864 dev_err(&pdev->dev, "cannot enable PCI device\n");
4865 goto out_release_regions;
4866 }
4867
4868 regs = pci_ioremap_bar(pdev, 0);
4869 if (!regs) {
4870 dev_err(&pdev->dev, "cannot map device registers\n");
4871 err = -ENOMEM;
4872 goto out_disable_device;
4873 }
4874
4875 err = t4_wait_dev_ready(regs);
4876 if (err < 0)
4877 goto out_unmap_bar0;
4878
4879 /* We control everything through one PF */
4880 whoami = readl(regs + PL_WHOAMI_A);
4881 pl_rev = REV_G(readl(regs + PL_REV_A));
4882 chip = get_chip_type(pdev, pl_rev);
4883 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4884 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4885 if (func != ent->driver_data) {
4886 #ifndef CONFIG_PCI_IOV
4887 iounmap(regs);
4888 #endif
4889 pci_disable_device(pdev);
4890 pci_save_state(pdev); /* to restore SR-IOV later */
4891 goto sriov;
4892 }
4893
4894 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4895 highdma = true;
4896 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4897 if (err) {
4898 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4899 "coherent allocations\n");
4900 goto out_unmap_bar0;
4901 }
4902 } else {
4903 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4904 if (err) {
4905 dev_err(&pdev->dev, "no usable DMA configuration\n");
4906 goto out_unmap_bar0;
4907 }
4908 }
4909
4910 pci_enable_pcie_error_reporting(pdev);
4911 enable_pcie_relaxed_ordering(pdev);
4912 pci_set_master(pdev);
4913 pci_save_state(pdev);
4914
4915 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4916 if (!adapter) {
4917 err = -ENOMEM;
4918 goto out_unmap_bar0;
4919 }
4920 adap_idx++;
4921
4922 adapter->workq = create_singlethread_workqueue("cxgb4");
4923 if (!adapter->workq) {
4924 err = -ENOMEM;
4925 goto out_free_adapter;
4926 }
4927
4928 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4929 (sizeof(struct mbox_cmd) *
4930 T4_OS_LOG_MBOX_CMDS),
4931 GFP_KERNEL);
4932 if (!adapter->mbox_log) {
4933 err = -ENOMEM;
4934 goto out_free_adapter;
4935 }
4936 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4937
4938 /* PCI device has been enabled */
4939 adapter->flags |= DEV_ENABLED;
4940
4941 adapter->regs = regs;
4942 adapter->pdev = pdev;
4943 adapter->pdev_dev = &pdev->dev;
4944 adapter->name = pci_name(pdev);
4945 adapter->mbox = func;
4946 adapter->pf = func;
4947 adapter->msg_enable = DFLT_MSG_ENABLE;
4948 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4949
4950 spin_lock_init(&adapter->stats_lock);
4951 spin_lock_init(&adapter->tid_release_lock);
4952 spin_lock_init(&adapter->win0_lock);
4953 spin_lock_init(&adapter->mbox_lock);
4954
4955 INIT_LIST_HEAD(&adapter->mlist.list);
4956
4957 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4958 INIT_WORK(&adapter->db_full_task, process_db_full);
4959 INIT_WORK(&adapter->db_drop_task, process_db_drop);
4960
4961 err = t4_prep_adapter(adapter);
4962 if (err)
4963 goto out_free_adapter;
4964
4965
4966 if (!is_t4(adapter->params.chip)) {
4967 s_qpp = (QUEUESPERPAGEPF0_S +
4968 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4969 adapter->pf);
4970 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4971 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4972 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4973
4974 /* Each segment size is 128B. Write coalescing is enabled only
4975 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4976 * queue is less no of segments that can be accommodated in
4977 * a page size.
4978 */
4979 if (qpp > num_seg) {
4980 dev_err(&pdev->dev,
4981 "Incorrect number of egress queues per page\n");
4982 err = -EINVAL;
4983 goto out_free_adapter;
4984 }
4985 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4986 pci_resource_len(pdev, 2));
4987 if (!adapter->bar2) {
4988 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4989 err = -ENOMEM;
4990 goto out_free_adapter;
4991 }
4992 }
4993
4994 setup_memwin(adapter);
4995 err = adap_init0(adapter);
4996 #ifdef CONFIG_DEBUG_FS
4997 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4998 #endif
4999 setup_memwin_rdma(adapter);
5000 if (err)
5001 goto out_unmap_bar;
5002
5003 /* configure SGE_STAT_CFG_A to read WC stats */
5004 if (!is_t4(adapter->params.chip))
5005 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5006 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5007 T6_STATMODE_V(0)));
5008
5009 for_each_port(adapter, i) {
5010 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5011 MAX_ETH_QSETS);
5012 if (!netdev) {
5013 err = -ENOMEM;
5014 goto out_free_dev;
5015 }
5016
5017 SET_NETDEV_DEV(netdev, &pdev->dev);
5018
5019 adapter->port[i] = netdev;
5020 pi = netdev_priv(netdev);
5021 pi->adapter = adapter;
5022 pi->xact_addr_filt = -1;
5023 pi->port_id = i;
5024 netdev->irq = pdev->irq;
5025
5026 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5027 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5028 NETIF_F_RXCSUM | NETIF_F_RXHASH |
5029 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5030 NETIF_F_HW_TC;
5031 if (highdma)
5032 netdev->hw_features |= NETIF_F_HIGHDMA;
5033 netdev->features |= netdev->hw_features;
5034 netdev->vlan_features = netdev->features & VLAN_FEAT;
5035
5036 netdev->priv_flags |= IFF_UNICAST_FLT;
5037
5038 /* MTU range: 81 - 9600 */
5039 netdev->min_mtu = 81;
5040 netdev->max_mtu = MAX_MTU;
5041
5042 netdev->netdev_ops = &cxgb4_netdev_ops;
5043 #ifdef CONFIG_CHELSIO_T4_DCB
5044 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5045 cxgb4_dcb_state_init(netdev);
5046 #endif
5047 cxgb4_set_ethtool_ops(netdev);
5048 }
5049
5050 pci_set_drvdata(pdev, adapter);
5051
5052 if (adapter->flags & FW_OK) {
5053 err = t4_port_init(adapter, func, func, 0);
5054 if (err)
5055 goto out_free_dev;
5056 } else if (adapter->params.nports == 1) {
5057 /* If we don't have a connection to the firmware -- possibly
5058 * because of an error -- grab the raw VPD parameters so we
5059 * can set the proper MAC Address on the debug network
5060 * interface that we've created.
5061 */
5062 u8 hw_addr[ETH_ALEN];
5063 u8 *na = adapter->params.vpd.na;
5064
5065 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5066 if (!err) {
5067 for (i = 0; i < ETH_ALEN; i++)
5068 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5069 hex2val(na[2 * i + 1]));
5070 t4_set_hw_addr(adapter, 0, hw_addr);
5071 }
5072 }
5073
5074 /* Configure queues and allocate tables now, they can be needed as
5075 * soon as the first register_netdev completes.
5076 */
5077 cfg_queues(adapter);
5078
5079 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5080 if (!adapter->l2t) {
5081 /* We tolerate a lack of L2T, giving up some functionality */
5082 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5083 adapter->params.offload = 0;
5084 }
5085
5086 #if IS_ENABLED(CONFIG_IPV6)
5087 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5088 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5089 /* CLIP functionality is not present in hardware,
5090 * hence disable all offload features
5091 */
5092 dev_warn(&pdev->dev,
5093 "CLIP not enabled in hardware, continuing\n");
5094 adapter->params.offload = 0;
5095 } else {
5096 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5097 adapter->clipt_end);
5098 if (!adapter->clipt) {
5099 /* We tolerate a lack of clip_table, giving up
5100 * some functionality
5101 */
5102 dev_warn(&pdev->dev,
5103 "could not allocate Clip table, continuing\n");
5104 adapter->params.offload = 0;
5105 }
5106 }
5107 #endif
5108
5109 for_each_port(adapter, i) {
5110 pi = adap2pinfo(adapter, i);
5111 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5112 if (!pi->sched_tbl)
5113 dev_warn(&pdev->dev,
5114 "could not activate scheduling on port %d\n",
5115 i);
5116 }
5117
5118 if (tid_init(&adapter->tids) < 0) {
5119 dev_warn(&pdev->dev, "could not allocate TID table, "
5120 "continuing\n");
5121 adapter->params.offload = 0;
5122 } else {
5123 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5124 if (!adapter->tc_u32)
5125 dev_warn(&pdev->dev,
5126 "could not offload tc u32, continuing\n");
5127 }
5128
5129 if (is_offload(adapter)) {
5130 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5131 u32 hash_base, hash_reg;
5132
5133 if (chip <= CHELSIO_T5) {
5134 hash_reg = LE_DB_TID_HASHBASE_A;
5135 hash_base = t4_read_reg(adapter, hash_reg);
5136 adapter->tids.hash_base = hash_base / 4;
5137 } else {
5138 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5139 hash_base = t4_read_reg(adapter, hash_reg);
5140 adapter->tids.hash_base = hash_base;
5141 }
5142 }
5143 }
5144
5145 /* See what interrupts we'll be using */
5146 if (msi > 1 && enable_msix(adapter) == 0)
5147 adapter->flags |= USING_MSIX;
5148 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5149 adapter->flags |= USING_MSI;
5150 if (msi > 1)
5151 free_msix_info(adapter);
5152 }
5153
5154 /* check for PCI Express bandwidth capabiltites */
5155 cxgb4_check_pcie_caps(adapter);
5156
5157 err = init_rss(adapter);
5158 if (err)
5159 goto out_free_dev;
5160
5161 /*
5162 * The card is now ready to go. If any errors occur during device
5163 * registration we do not fail the whole card but rather proceed only
5164 * with the ports we manage to register successfully. However we must
5165 * register at least one net device.
5166 */
5167 for_each_port(adapter, i) {
5168 pi = adap2pinfo(adapter, i);
5169 adapter->port[i]->dev_port = pi->lport;
5170 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5171 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5172
5173 netif_carrier_off(adapter->port[i]);
5174
5175 err = register_netdev(adapter->port[i]);
5176 if (err)
5177 break;
5178 adapter->chan_map[pi->tx_chan] = i;
5179 print_port_info(adapter->port[i]);
5180 }
5181 if (i == 0) {
5182 dev_err(&pdev->dev, "could not register any net devices\n");
5183 goto out_free_dev;
5184 }
5185 if (err) {
5186 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5187 err = 0;
5188 }
5189
5190 if (cxgb4_debugfs_root) {
5191 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5192 cxgb4_debugfs_root);
5193 setup_debugfs(adapter);
5194 }
5195
5196 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5197 pdev->needs_freset = 1;
5198
5199 if (is_uld(adapter)) {
5200 mutex_lock(&uld_mutex);
5201 list_add_tail(&adapter->list_node, &adapter_list);
5202 mutex_unlock(&uld_mutex);
5203 }
5204
5205 if (!is_t4(adapter->params.chip))
5206 cxgb4_ptp_init(adapter);
5207
5208 print_adapter_info(adapter);
5209 setup_fw_sge_queues(adapter);
5210 return 0;
5211
5212 sriov:
5213 #ifdef CONFIG_PCI_IOV
5214 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5215 if (!adapter) {
5216 err = -ENOMEM;
5217 goto free_pci_region;
5218 }
5219
5220 adapter->pdev = pdev;
5221 adapter->pdev_dev = &pdev->dev;
5222 adapter->name = pci_name(pdev);
5223 adapter->mbox = func;
5224 adapter->pf = func;
5225 adapter->regs = regs;
5226 adapter->adap_idx = adap_idx;
5227 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5228 (sizeof(struct mbox_cmd) *
5229 T4_OS_LOG_MBOX_CMDS),
5230 GFP_KERNEL);
5231 if (!adapter->mbox_log) {
5232 err = -ENOMEM;
5233 goto free_adapter;
5234 }
5235 spin_lock_init(&adapter->mbox_lock);
5236 INIT_LIST_HEAD(&adapter->mlist.list);
5237
5238 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5239 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5240 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5241 &v, &port_vec);
5242 if (err < 0) {
5243 dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5244 goto free_mbox_log;
5245 }
5246
5247 adapter->params.nports = hweight32(port_vec);
5248 pci_set_drvdata(pdev, adapter);
5249 return 0;
5250
5251 free_mbox_log:
5252 kfree(adapter->mbox_log);
5253 free_adapter:
5254 kfree(adapter);
5255 free_pci_region:
5256 iounmap(regs);
5257 pci_disable_sriov(pdev);
5258 pci_release_regions(pdev);
5259 return err;
5260 #else
5261 return 0;
5262 #endif
5263
5264 out_free_dev:
5265 free_some_resources(adapter);
5266 if (adapter->flags & USING_MSIX)
5267 free_msix_info(adapter);
5268 if (adapter->num_uld || adapter->num_ofld_uld)
5269 t4_uld_mem_free(adapter);
5270 out_unmap_bar:
5271 if (!is_t4(adapter->params.chip))
5272 iounmap(adapter->bar2);
5273 out_free_adapter:
5274 if (adapter->workq)
5275 destroy_workqueue(adapter->workq);
5276
5277 kfree(adapter->mbox_log);
5278 kfree(adapter);
5279 out_unmap_bar0:
5280 iounmap(regs);
5281 out_disable_device:
5282 pci_disable_pcie_error_reporting(pdev);
5283 pci_disable_device(pdev);
5284 out_release_regions:
5285 pci_release_regions(pdev);
5286 return err;
5287 }
5288
5289 static void remove_one(struct pci_dev *pdev)
5290 {
5291 struct adapter *adapter = pci_get_drvdata(pdev);
5292
5293 if (!adapter) {
5294 pci_release_regions(pdev);
5295 return;
5296 }
5297
5298 if (adapter->pf == 4) {
5299 int i;
5300
5301 /* Tear down per-adapter Work Queue first since it can contain
5302 * references to our adapter data structure.
5303 */
5304 destroy_workqueue(adapter->workq);
5305
5306 if (is_uld(adapter)) {
5307 detach_ulds(adapter);
5308 t4_uld_clean_up(adapter);
5309 }
5310
5311 disable_interrupts(adapter);
5312
5313 for_each_port(adapter, i)
5314 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5315 unregister_netdev(adapter->port[i]);
5316
5317 debugfs_remove_recursive(adapter->debugfs_root);
5318
5319 if (!is_t4(adapter->params.chip))
5320 cxgb4_ptp_stop(adapter);
5321
5322 /* If we allocated filters, free up state associated with any
5323 * valid filters ...
5324 */
5325 clear_all_filters(adapter);
5326
5327 if (adapter->flags & FULL_INIT_DONE)
5328 cxgb_down(adapter);
5329
5330 if (adapter->flags & USING_MSIX)
5331 free_msix_info(adapter);
5332 if (adapter->num_uld || adapter->num_ofld_uld)
5333 t4_uld_mem_free(adapter);
5334 free_some_resources(adapter);
5335 #if IS_ENABLED(CONFIG_IPV6)
5336 t4_cleanup_clip_tbl(adapter);
5337 #endif
5338 iounmap(adapter->regs);
5339 if (!is_t4(adapter->params.chip))
5340 iounmap(adapter->bar2);
5341 pci_disable_pcie_error_reporting(pdev);
5342 if ((adapter->flags & DEV_ENABLED)) {
5343 pci_disable_device(pdev);
5344 adapter->flags &= ~DEV_ENABLED;
5345 }
5346 pci_release_regions(pdev);
5347 kfree(adapter->mbox_log);
5348 synchronize_rcu();
5349 kfree(adapter);
5350 }
5351 #ifdef CONFIG_PCI_IOV
5352 else {
5353 if (adapter->port[0])
5354 unregister_netdev(adapter->port[0]);
5355 iounmap(adapter->regs);
5356 kfree(adapter->vfinfo);
5357 kfree(adapter->mbox_log);
5358 kfree(adapter);
5359 pci_disable_sriov(pdev);
5360 pci_release_regions(pdev);
5361 }
5362 #endif
5363 }
5364
5365 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5366 * delivery. This is essentially a stripped down version of the PCI remove()
5367 * function where we do the minimal amount of work necessary to shutdown any
5368 * further activity.
5369 */
5370 static void shutdown_one(struct pci_dev *pdev)
5371 {
5372 struct adapter *adapter = pci_get_drvdata(pdev);
5373
5374 /* As with remove_one() above (see extended comment), we only want do
5375 * do cleanup on PCI Devices which went all the way through init_one()
5376 * ...
5377 */
5378 if (!adapter) {
5379 pci_release_regions(pdev);
5380 return;
5381 }
5382
5383 if (adapter->pf == 4) {
5384 int i;
5385
5386 for_each_port(adapter, i)
5387 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5388 cxgb_close(adapter->port[i]);
5389
5390 if (is_uld(adapter)) {
5391 detach_ulds(adapter);
5392 t4_uld_clean_up(adapter);
5393 }
5394
5395 disable_interrupts(adapter);
5396 disable_msi(adapter);
5397
5398 t4_sge_stop(adapter);
5399 if (adapter->flags & FW_OK)
5400 t4_fw_bye(adapter, adapter->mbox);
5401 }
5402 #ifdef CONFIG_PCI_IOV
5403 else {
5404 if (adapter->port[0])
5405 unregister_netdev(adapter->port[0]);
5406 iounmap(adapter->regs);
5407 kfree(adapter->vfinfo);
5408 kfree(adapter->mbox_log);
5409 kfree(adapter);
5410 pci_disable_sriov(pdev);
5411 pci_release_regions(pdev);
5412 }
5413 #endif
5414 }
5415
5416 static struct pci_driver cxgb4_driver = {
5417 .name = KBUILD_MODNAME,
5418 .id_table = cxgb4_pci_tbl,
5419 .probe = init_one,
5420 .remove = remove_one,
5421 .shutdown = shutdown_one,
5422 #ifdef CONFIG_PCI_IOV
5423 .sriov_configure = cxgb4_iov_configure,
5424 #endif
5425 .err_handler = &cxgb4_eeh,
5426 };
5427
5428 static int __init cxgb4_init_module(void)
5429 {
5430 int ret;
5431
5432 /* Debugfs support is optional, just warn if this fails */
5433 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5434 if (!cxgb4_debugfs_root)
5435 pr_warn("could not create debugfs entry, continuing\n");
5436
5437 ret = pci_register_driver(&cxgb4_driver);
5438 if (ret < 0)
5439 debugfs_remove(cxgb4_debugfs_root);
5440
5441 #if IS_ENABLED(CONFIG_IPV6)
5442 if (!inet6addr_registered) {
5443 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5444 inet6addr_registered = true;
5445 }
5446 #endif
5447
5448 return ret;
5449 }
5450
5451 static void __exit cxgb4_cleanup_module(void)
5452 {
5453 #if IS_ENABLED(CONFIG_IPV6)
5454 if (inet6addr_registered) {
5455 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5456 inet6addr_registered = false;
5457 }
5458 #endif
5459 pci_unregister_driver(&cxgb4_driver);
5460 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5461 }
5462
5463 module_init(cxgb4_init_module);
5464 module_exit(cxgb4_cleanup_module);