]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge tag 'pm-extra-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95
96 /* Macros needed to support the PCI Device ID Table ...
97 */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103 * called for both.
104 */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 {PCI_VDEVICE(CHELSIO, (devid)), 4}
109
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 { 0, } \
112 }
113
114 #include "t4_pci_id_tbl.h"
115
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135
136 /*
137 * The driver uses the best interrupt scheme available on a platform in the
138 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
139 * of these schemes the driver may consider as follows:
140 *
141 * msi = 2: choose from among all three options
142 * msi = 1: only consider MSI and INTx interrupts
143 * msi = 0: force INTx interrupts
144 */
145 static int msi = 2;
146
147 module_param(msi, int, 0644);
148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
149
150 /*
151 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
152 * offset by 2 bytes in order to have the IP headers line up on 4-byte
153 * boundaries. This is a requirement for many architectures which will throw
154 * a machine check fault if an attempt is made to access one of the 4-byte IP
155 * header fields on a non-4-byte boundary. And it's a major performance issue
156 * even on some architectures which allow it like some implementations of the
157 * x86 ISA. However, some architectures don't mind this and for some very
158 * edge-case performance sensitive applications (like forwarding large volumes
159 * of small packets), setting this DMA offset to 0 will decrease the number of
160 * PCI-E Bus transfers enough to measurably affect performance.
161 */
162 static int rx_dma_offset = 2;
163
164 /* TX Queue select used to determine what algorithm to use for selecting TX
165 * queue. Select between the kernel provided function (select_queue=0) or user
166 * cxgb_select_queue function (select_queue=1)
167 *
168 * Default: select_queue=0
169 */
170 static int select_queue;
171 module_param(select_queue, int, 0644);
172 MODULE_PARM_DESC(select_queue,
173 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
174
175 static struct dentry *cxgb4_debugfs_root;
176
177 LIST_HEAD(adapter_list);
178 DEFINE_MUTEX(uld_mutex);
179
180 static void link_report(struct net_device *dev)
181 {
182 if (!netif_carrier_ok(dev))
183 netdev_info(dev, "link down\n");
184 else {
185 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
186
187 const char *s;
188 const struct port_info *p = netdev_priv(dev);
189
190 switch (p->link_cfg.speed) {
191 case 100:
192 s = "100Mbps";
193 break;
194 case 1000:
195 s = "1Gbps";
196 break;
197 case 10000:
198 s = "10Gbps";
199 break;
200 case 25000:
201 s = "25Gbps";
202 break;
203 case 40000:
204 s = "40Gbps";
205 break;
206 case 100000:
207 s = "100Gbps";
208 break;
209 default:
210 pr_info("%s: unsupported speed: %d\n",
211 dev->name, p->link_cfg.speed);
212 return;
213 }
214
215 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
216 fc[p->link_cfg.fc]);
217 }
218 }
219
220 #ifdef CONFIG_CHELSIO_T4_DCB
221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
223 {
224 struct port_info *pi = netdev_priv(dev);
225 struct adapter *adap = pi->adapter;
226 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
227 int i;
228
229 /* We use a simple mapping of Port TX Queue Index to DCB
230 * Priority when we're enabling DCB.
231 */
232 for (i = 0; i < pi->nqsets; i++, txq++) {
233 u32 name, value;
234 int err;
235
236 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
237 FW_PARAMS_PARAM_X_V(
238 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
239 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240 value = enable ? i : 0xffffffff;
241
242 /* Since we can be called while atomic (from "interrupt
243 * level") we need to issue the Set Parameters Commannd
244 * without sleeping (timeout < 0).
245 */
246 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247 &name, &value,
248 -FW_CMD_MAX_TIMEOUT);
249
250 if (err)
251 dev_err(adap->pdev_dev,
252 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
253 enable ? "set" : "unset", pi->port_id, i, -err);
254 else
255 txq->dcb_prio = value;
256 }
257 }
258
259 static int cxgb4_dcb_enabled(const struct net_device *dev)
260 {
261 struct port_info *pi = netdev_priv(dev);
262
263 if (!pi->dcb.enabled)
264 return 0;
265
266 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
267 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
268 }
269 #endif /* CONFIG_CHELSIO_T4_DCB */
270
271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
272 {
273 struct net_device *dev = adapter->port[port_id];
274
275 /* Skip changes from disabled ports. */
276 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
277 if (link_stat)
278 netif_carrier_on(dev);
279 else {
280 #ifdef CONFIG_CHELSIO_T4_DCB
281 if (cxgb4_dcb_enabled(dev)) {
282 cxgb4_dcb_state_init(dev);
283 dcb_tx_queue_prio_enable(dev, false);
284 }
285 #endif /* CONFIG_CHELSIO_T4_DCB */
286 netif_carrier_off(dev);
287 }
288
289 link_report(dev);
290 }
291 }
292
293 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
294 {
295 static const char *mod_str[] = {
296 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297 };
298
299 const struct net_device *dev = adap->port[port_id];
300 const struct port_info *pi = netdev_priv(dev);
301
302 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
303 netdev_info(dev, "port module unplugged\n");
304 else if (pi->mod_type < ARRAY_SIZE(mod_str))
305 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
307 netdev_info(dev, "%s: unsupported port module inserted\n",
308 dev->name);
309 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
310 netdev_info(dev, "%s: unknown port module inserted\n",
311 dev->name);
312 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
313 netdev_info(dev, "%s: transceiver module error\n", dev->name);
314 else
315 netdev_info(dev, "%s: unknown module type %d inserted\n",
316 dev->name, pi->mod_type);
317 }
318
319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
320 module_param(dbfifo_int_thresh, int, 0644);
321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
322
323 /*
324 * usecs to sleep while draining the dbfifo
325 */
326 static int dbfifo_drain_delay = 1000;
327 module_param(dbfifo_drain_delay, int, 0644);
328 MODULE_PARM_DESC(dbfifo_drain_delay,
329 "usecs to sleep while draining the dbfifo");
330
331 static inline int cxgb4_set_addr_hash(struct port_info *pi)
332 {
333 struct adapter *adap = pi->adapter;
334 u64 vec = 0;
335 bool ucast = false;
336 struct hash_mac_addr *entry;
337
338 /* Calculate the hash vector for the updated list and program it */
339 list_for_each_entry(entry, &adap->mac_hlist, list) {
340 ucast |= is_unicast_ether_addr(entry->addr);
341 vec |= (1ULL << hash_mac_addr(entry->addr));
342 }
343 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
344 vec, false);
345 }
346
347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
348 {
349 struct port_info *pi = netdev_priv(netdev);
350 struct adapter *adap = pi->adapter;
351 int ret;
352 u64 mhash = 0;
353 u64 uhash = 0;
354 bool free = false;
355 bool ucast = is_unicast_ether_addr(mac_addr);
356 const u8 *maclist[1] = {mac_addr};
357 struct hash_mac_addr *new_entry;
358
359 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
360 NULL, ucast ? &uhash : &mhash, false);
361 if (ret < 0)
362 goto out;
363 /* if hash != 0, then add the addr to hash addr list
364 * so on the end we will calculate the hash for the
365 * list and program it
366 */
367 if (uhash || mhash) {
368 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
369 if (!new_entry)
370 return -ENOMEM;
371 ether_addr_copy(new_entry->addr, mac_addr);
372 list_add_tail(&new_entry->list, &adap->mac_hlist);
373 ret = cxgb4_set_addr_hash(pi);
374 }
375 out:
376 return ret < 0 ? ret : 0;
377 }
378
379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
380 {
381 struct port_info *pi = netdev_priv(netdev);
382 struct adapter *adap = pi->adapter;
383 int ret;
384 const u8 *maclist[1] = {mac_addr};
385 struct hash_mac_addr *entry, *tmp;
386
387 /* If the MAC address to be removed is in the hash addr
388 * list, delete it from the list and update hash vector
389 */
390 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
391 if (ether_addr_equal(entry->addr, mac_addr)) {
392 list_del(&entry->list);
393 kfree(entry);
394 return cxgb4_set_addr_hash(pi);
395 }
396 }
397
398 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
399 return ret < 0 ? -EINVAL : 0;
400 }
401
402 /*
403 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
404 * If @mtu is -1 it is left unchanged.
405 */
406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
407 {
408 struct port_info *pi = netdev_priv(dev);
409 struct adapter *adapter = pi->adapter;
410
411 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
412 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413
414 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
415 (dev->flags & IFF_PROMISC) ? 1 : 0,
416 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417 sleep_ok);
418 }
419
420 /**
421 * link_start - enable a port
422 * @dev: the port to enable
423 *
424 * Performs the MAC and PHY actions needed to enable a port.
425 */
426 static int link_start(struct net_device *dev)
427 {
428 int ret;
429 struct port_info *pi = netdev_priv(dev);
430 unsigned int mb = pi->adapter->pf;
431
432 /*
433 * We do not set address filters and promiscuity here, the stack does
434 * that step explicitly.
435 */
436 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438 if (ret == 0) {
439 ret = t4_change_mac(pi->adapter, mb, pi->viid,
440 pi->xact_addr_filt, dev->dev_addr, true,
441 true);
442 if (ret >= 0) {
443 pi->xact_addr_filt = ret;
444 ret = 0;
445 }
446 }
447 if (ret == 0)
448 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449 &pi->link_cfg);
450 if (ret == 0) {
451 local_bh_disable();
452 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
453 true, CXGB4_DCB_ENABLED);
454 local_bh_enable();
455 }
456
457 return ret;
458 }
459
460 #ifdef CONFIG_CHELSIO_T4_DCB
461 /* Handle a Data Center Bridging update message from the firmware. */
462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
463 {
464 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465 struct net_device *dev = adap->port[adap->chan_map[port]];
466 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
467 int new_dcb_enabled;
468
469 cxgb4_dcb_handle_fw_update(adap, pcmd);
470 new_dcb_enabled = cxgb4_dcb_enabled(dev);
471
472 /* If the DCB has become enabled or disabled on the port then we're
473 * going to need to set up/tear down DCB Priority parameters for the
474 * TX Queues associated with the port.
475 */
476 if (new_dcb_enabled != old_dcb_enabled)
477 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
478 }
479 #endif /* CONFIG_CHELSIO_T4_DCB */
480
481 /* Response queue handler for the FW event queue.
482 */
483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
484 const struct pkt_gl *gl)
485 {
486 u8 opcode = ((const struct rss_header *)rsp)->opcode;
487
488 rsp++; /* skip RSS header */
489
490 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
491 */
492 if (unlikely(opcode == CPL_FW4_MSG &&
493 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
494 rsp++;
495 opcode = ((const struct rss_header *)rsp)->opcode;
496 rsp++;
497 if (opcode != CPL_SGE_EGR_UPDATE) {
498 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
499 , opcode);
500 goto out;
501 }
502 }
503
504 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
505 const struct cpl_sge_egr_update *p = (void *)rsp;
506 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507 struct sge_txq *txq;
508
509 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510 txq->restarts++;
511 if (txq->q_type == CXGB4_TXQ_ETH) {
512 struct sge_eth_txq *eq;
513
514 eq = container_of(txq, struct sge_eth_txq, q);
515 netif_tx_wake_queue(eq->txq);
516 } else {
517 struct sge_uld_txq *oq;
518
519 oq = container_of(txq, struct sge_uld_txq, q);
520 tasklet_schedule(&oq->qresume_tsk);
521 }
522 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
523 const struct cpl_fw6_msg *p = (void *)rsp;
524
525 #ifdef CONFIG_CHELSIO_T4_DCB
526 const struct fw_port_cmd *pcmd = (const void *)p->data;
527 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528 unsigned int action =
529 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530
531 if (cmd == FW_PORT_CMD &&
532 action == FW_PORT_ACTION_GET_PORT_INFO) {
533 int port = FW_PORT_CMD_PORTID_G(
534 be32_to_cpu(pcmd->op_to_portid));
535 struct net_device *dev =
536 q->adap->port[q->adap->chan_map[port]];
537 int state_input = ((pcmd->u.info.dcbxdis_pkd &
538 FW_PORT_CMD_DCBXDIS_F)
539 ? CXGB4_DCB_INPUT_FW_DISABLED
540 : CXGB4_DCB_INPUT_FW_ENABLED);
541
542 cxgb4_dcb_state_fsm(dev, state_input);
543 }
544
545 if (cmd == FW_PORT_CMD &&
546 action == FW_PORT_ACTION_L2_DCB_CFG)
547 dcb_rpl(q->adap, pcmd);
548 else
549 #endif
550 if (p->type == 0)
551 t4_handle_fw_rpl(q->adap, p->data);
552 } else if (opcode == CPL_L2T_WRITE_RPL) {
553 const struct cpl_l2t_write_rpl *p = (void *)rsp;
554
555 do_l2t_write_rpl(q->adap, p);
556 } else if (opcode == CPL_SET_TCB_RPL) {
557 const struct cpl_set_tcb_rpl *p = (void *)rsp;
558
559 filter_rpl(q->adap, p);
560 } else
561 dev_err(q->adap->pdev_dev,
562 "unexpected CPL %#x on FW event queue\n", opcode);
563 out:
564 return 0;
565 }
566
567 static void disable_msi(struct adapter *adapter)
568 {
569 if (adapter->flags & USING_MSIX) {
570 pci_disable_msix(adapter->pdev);
571 adapter->flags &= ~USING_MSIX;
572 } else if (adapter->flags & USING_MSI) {
573 pci_disable_msi(adapter->pdev);
574 adapter->flags &= ~USING_MSI;
575 }
576 }
577
578 /*
579 * Interrupt handler for non-data events used with MSI-X.
580 */
581 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
582 {
583 struct adapter *adap = cookie;
584 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585
586 if (v & PFSW_F) {
587 adap->swintr = 1;
588 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589 }
590 if (adap->flags & MASTER_PF)
591 t4_slow_intr_handler(adap);
592 return IRQ_HANDLED;
593 }
594
595 /*
596 * Name the MSI-X interrupts.
597 */
598 static void name_msix_vecs(struct adapter *adap)
599 {
600 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601
602 /* non-data interrupts */
603 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604
605 /* FW events */
606 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
607 adap->port[0]->name);
608
609 /* Ethernet queues */
610 for_each_port(adap, j) {
611 struct net_device *d = adap->port[j];
612 const struct port_info *pi = netdev_priv(d);
613
614 for (i = 0; i < pi->nqsets; i++, msi_idx++)
615 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
616 d->name, i);
617 }
618 }
619
620 static int request_msix_queue_irqs(struct adapter *adap)
621 {
622 struct sge *s = &adap->sge;
623 int err, ethqidx;
624 int msi_index = 2;
625
626 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
627 adap->msix_info[1].desc, &s->fw_evtq);
628 if (err)
629 return err;
630
631 for_each_ethrxq(s, ethqidx) {
632 err = request_irq(adap->msix_info[msi_index].vec,
633 t4_sge_intr_msix, 0,
634 adap->msix_info[msi_index].desc,
635 &s->ethrxq[ethqidx].rspq);
636 if (err)
637 goto unwind;
638 msi_index++;
639 }
640 return 0;
641
642 unwind:
643 while (--ethqidx >= 0)
644 free_irq(adap->msix_info[--msi_index].vec,
645 &s->ethrxq[ethqidx].rspq);
646 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
647 return err;
648 }
649
650 static void free_msix_queue_irqs(struct adapter *adap)
651 {
652 int i, msi_index = 2;
653 struct sge *s = &adap->sge;
654
655 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
656 for_each_ethrxq(s, i)
657 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 }
659
660 /**
661 * cxgb4_write_rss - write the RSS table for a given port
662 * @pi: the port
663 * @queues: array of queue indices for RSS
664 *
665 * Sets up the portion of the HW RSS table for the port's VI to distribute
666 * packets to the Rx queues in @queues.
667 * Should never be called before setting up sge eth rx queues
668 */
669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 {
671 u16 *rss;
672 int i, err;
673 struct adapter *adapter = pi->adapter;
674 const struct sge_eth_rxq *rxq;
675
676 rxq = &adapter->sge.ethrxq[pi->first_qset];
677 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
678 if (!rss)
679 return -ENOMEM;
680
681 /* map the queue indices to queue ids */
682 for (i = 0; i < pi->rss_size; i++, queues++)
683 rss[i] = rxq[*queues].rspq.abs_id;
684
685 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686 pi->rss_size, rss, pi->rss_size);
687 /* If Tunnel All Lookup isn't specified in the global RSS
688 * Configuration, then we need to specify a default Ingress
689 * Queue for any ingress packets which aren't hashed. We'll
690 * use our first ingress queue ...
691 */
692 if (!err)
693 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
694 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
695 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
696 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
697 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
698 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
699 rss[0]);
700 kfree(rss);
701 return err;
702 }
703
704 /**
705 * setup_rss - configure RSS
706 * @adap: the adapter
707 *
708 * Sets up RSS for each port.
709 */
710 static int setup_rss(struct adapter *adap)
711 {
712 int i, j, err;
713
714 for_each_port(adap, i) {
715 const struct port_info *pi = adap2pinfo(adap, i);
716
717 /* Fill default values with equal distribution */
718 for (j = 0; j < pi->rss_size; j++)
719 pi->rss[j] = j % pi->nqsets;
720
721 err = cxgb4_write_rss(pi, pi->rss);
722 if (err)
723 return err;
724 }
725 return 0;
726 }
727
728 /*
729 * Return the channel of the ingress queue with the given qid.
730 */
731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
732 {
733 qid -= p->ingr_start;
734 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
735 }
736
737 /*
738 * Wait until all NAPI handlers are descheduled.
739 */
740 static void quiesce_rx(struct adapter *adap)
741 {
742 int i;
743
744 for (i = 0; i < adap->sge.ingr_sz; i++) {
745 struct sge_rspq *q = adap->sge.ingr_map[i];
746
747 if (q && q->handler)
748 napi_disable(&q->napi);
749 }
750 }
751
752 /* Disable interrupt and napi handler */
753 static void disable_interrupts(struct adapter *adap)
754 {
755 if (adap->flags & FULL_INIT_DONE) {
756 t4_intr_disable(adap);
757 if (adap->flags & USING_MSIX) {
758 free_msix_queue_irqs(adap);
759 free_irq(adap->msix_info[0].vec, adap);
760 } else {
761 free_irq(adap->pdev->irq, adap);
762 }
763 quiesce_rx(adap);
764 }
765 }
766
767 /*
768 * Enable NAPI scheduling and interrupt generation for all Rx queues.
769 */
770 static void enable_rx(struct adapter *adap)
771 {
772 int i;
773
774 for (i = 0; i < adap->sge.ingr_sz; i++) {
775 struct sge_rspq *q = adap->sge.ingr_map[i];
776
777 if (!q)
778 continue;
779 if (q->handler)
780 napi_enable(&q->napi);
781
782 /* 0-increment GTS to start the timer and enable interrupts */
783 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
784 SEINTARM_V(q->intr_params) |
785 INGRESSQID_V(q->cntxt_id));
786 }
787 }
788
789
790 static int setup_fw_sge_queues(struct adapter *adap)
791 {
792 struct sge *s = &adap->sge;
793 int err = 0;
794
795 bitmap_zero(s->starving_fl, s->egr_sz);
796 bitmap_zero(s->txq_maperr, s->egr_sz);
797
798 if (adap->flags & USING_MSIX)
799 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
800 else {
801 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802 NULL, NULL, NULL, -1);
803 if (err)
804 return err;
805 adap->msi_idx = -((int)s->intrq.abs_id + 1);
806 }
807
808 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810 if (err)
811 t4_free_sge_resources(adap);
812 return err;
813 }
814
815 /**
816 * setup_sge_queues - configure SGE Tx/Rx/response queues
817 * @adap: the adapter
818 *
819 * Determines how many sets of SGE queues to use and initializes them.
820 * We support multiple queue sets per port if we have MSI-X, otherwise
821 * just one queue set per port.
822 */
823 static int setup_sge_queues(struct adapter *adap)
824 {
825 int err, i, j;
826 struct sge *s = &adap->sge;
827 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
828 unsigned int cmplqid = 0;
829
830 for_each_port(adap, i) {
831 struct net_device *dev = adap->port[i];
832 struct port_info *pi = netdev_priv(dev);
833 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
834 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
835
836 for (j = 0; j < pi->nqsets; j++, q++) {
837 if (adap->msi_idx > 0)
838 adap->msi_idx++;
839 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
840 adap->msi_idx, &q->fl,
841 t4_ethrx_handler,
842 NULL,
843 t4_get_mps_bg_map(adap,
844 pi->tx_chan));
845 if (err)
846 goto freeout;
847 q->rspq.idx = j;
848 memset(&q->stats, 0, sizeof(q->stats));
849 }
850 for (j = 0; j < pi->nqsets; j++, t++) {
851 err = t4_sge_alloc_eth_txq(adap, t, dev,
852 netdev_get_tx_queue(dev, j),
853 s->fw_evtq.cntxt_id);
854 if (err)
855 goto freeout;
856 }
857 }
858
859 for_each_port(adap, i) {
860 /* Note that cmplqid below is 0 if we don't
861 * have RDMA queues, and that's the right value.
862 */
863 if (rxq_info)
864 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
865
866 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
867 s->fw_evtq.cntxt_id, cmplqid);
868 if (err)
869 goto freeout;
870 }
871
872 t4_write_reg(adap, is_t4(adap->params.chip) ?
873 MPS_TRC_RSS_CONTROL_A :
874 MPS_T5_TRC_RSS_CONTROL_A,
875 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
876 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
877 return 0;
878 freeout:
879 t4_free_sge_resources(adap);
880 return err;
881 }
882
883 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
884 void *accel_priv, select_queue_fallback_t fallback)
885 {
886 int txq;
887
888 #ifdef CONFIG_CHELSIO_T4_DCB
889 /* If a Data Center Bridging has been successfully negotiated on this
890 * link then we'll use the skb's priority to map it to a TX Queue.
891 * The skb's priority is determined via the VLAN Tag Priority Code
892 * Point field.
893 */
894 if (cxgb4_dcb_enabled(dev)) {
895 u16 vlan_tci;
896 int err;
897
898 err = vlan_get_tag(skb, &vlan_tci);
899 if (unlikely(err)) {
900 if (net_ratelimit())
901 netdev_warn(dev,
902 "TX Packet without VLAN Tag on DCB Link\n");
903 txq = 0;
904 } else {
905 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
906 #ifdef CONFIG_CHELSIO_T4_FCOE
907 if (skb->protocol == htons(ETH_P_FCOE))
908 txq = skb->priority & 0x7;
909 #endif /* CONFIG_CHELSIO_T4_FCOE */
910 }
911 return txq;
912 }
913 #endif /* CONFIG_CHELSIO_T4_DCB */
914
915 if (select_queue) {
916 txq = (skb_rx_queue_recorded(skb)
917 ? skb_get_rx_queue(skb)
918 : smp_processor_id());
919
920 while (unlikely(txq >= dev->real_num_tx_queues))
921 txq -= dev->real_num_tx_queues;
922
923 return txq;
924 }
925
926 return fallback(dev, skb) % dev->real_num_tx_queues;
927 }
928
929 static int closest_timer(const struct sge *s, int time)
930 {
931 int i, delta, match = 0, min_delta = INT_MAX;
932
933 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
934 delta = time - s->timer_val[i];
935 if (delta < 0)
936 delta = -delta;
937 if (delta < min_delta) {
938 min_delta = delta;
939 match = i;
940 }
941 }
942 return match;
943 }
944
945 static int closest_thres(const struct sge *s, int thres)
946 {
947 int i, delta, match = 0, min_delta = INT_MAX;
948
949 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
950 delta = thres - s->counter_val[i];
951 if (delta < 0)
952 delta = -delta;
953 if (delta < min_delta) {
954 min_delta = delta;
955 match = i;
956 }
957 }
958 return match;
959 }
960
961 /**
962 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
963 * @q: the Rx queue
964 * @us: the hold-off time in us, or 0 to disable timer
965 * @cnt: the hold-off packet count, or 0 to disable counter
966 *
967 * Sets an Rx queue's interrupt hold-off time and packet count. At least
968 * one of the two needs to be enabled for the queue to generate interrupts.
969 */
970 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
971 unsigned int us, unsigned int cnt)
972 {
973 struct adapter *adap = q->adap;
974
975 if ((us | cnt) == 0)
976 cnt = 1;
977
978 if (cnt) {
979 int err;
980 u32 v, new_idx;
981
982 new_idx = closest_thres(&adap->sge, cnt);
983 if (q->desc && q->pktcnt_idx != new_idx) {
984 /* the queue has already been created, update it */
985 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
986 FW_PARAMS_PARAM_X_V(
987 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
988 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
989 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
990 &v, &new_idx);
991 if (err)
992 return err;
993 }
994 q->pktcnt_idx = new_idx;
995 }
996
997 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
998 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
999 return 0;
1000 }
1001
1002 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1003 {
1004 const struct port_info *pi = netdev_priv(dev);
1005 netdev_features_t changed = dev->features ^ features;
1006 int err;
1007
1008 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1009 return 0;
1010
1011 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1012 -1, -1, -1,
1013 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1014 if (unlikely(err))
1015 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1016 return err;
1017 }
1018
1019 static int setup_debugfs(struct adapter *adap)
1020 {
1021 if (IS_ERR_OR_NULL(adap->debugfs_root))
1022 return -1;
1023
1024 #ifdef CONFIG_DEBUG_FS
1025 t4_setup_debugfs(adap);
1026 #endif
1027 return 0;
1028 }
1029
1030 /*
1031 * upper-layer driver support
1032 */
1033
1034 /*
1035 * Allocate an active-open TID and set it to the supplied value.
1036 */
1037 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1038 {
1039 int atid = -1;
1040
1041 spin_lock_bh(&t->atid_lock);
1042 if (t->afree) {
1043 union aopen_entry *p = t->afree;
1044
1045 atid = (p - t->atid_tab) + t->atid_base;
1046 t->afree = p->next;
1047 p->data = data;
1048 t->atids_in_use++;
1049 }
1050 spin_unlock_bh(&t->atid_lock);
1051 return atid;
1052 }
1053 EXPORT_SYMBOL(cxgb4_alloc_atid);
1054
1055 /*
1056 * Release an active-open TID.
1057 */
1058 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1059 {
1060 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1061
1062 spin_lock_bh(&t->atid_lock);
1063 p->next = t->afree;
1064 t->afree = p;
1065 t->atids_in_use--;
1066 spin_unlock_bh(&t->atid_lock);
1067 }
1068 EXPORT_SYMBOL(cxgb4_free_atid);
1069
1070 /*
1071 * Allocate a server TID and set it to the supplied value.
1072 */
1073 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1074 {
1075 int stid;
1076
1077 spin_lock_bh(&t->stid_lock);
1078 if (family == PF_INET) {
1079 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1080 if (stid < t->nstids)
1081 __set_bit(stid, t->stid_bmap);
1082 else
1083 stid = -1;
1084 } else {
1085 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1086 if (stid < 0)
1087 stid = -1;
1088 }
1089 if (stid >= 0) {
1090 t->stid_tab[stid].data = data;
1091 stid += t->stid_base;
1092 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1093 * This is equivalent to 4 TIDs. With CLIP enabled it
1094 * needs 2 TIDs.
1095 */
1096 if (family == PF_INET)
1097 t->stids_in_use++;
1098 else
1099 t->stids_in_use += 2;
1100 }
1101 spin_unlock_bh(&t->stid_lock);
1102 return stid;
1103 }
1104 EXPORT_SYMBOL(cxgb4_alloc_stid);
1105
1106 /* Allocate a server filter TID and set it to the supplied value.
1107 */
1108 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1109 {
1110 int stid;
1111
1112 spin_lock_bh(&t->stid_lock);
1113 if (family == PF_INET) {
1114 stid = find_next_zero_bit(t->stid_bmap,
1115 t->nstids + t->nsftids, t->nstids);
1116 if (stid < (t->nstids + t->nsftids))
1117 __set_bit(stid, t->stid_bmap);
1118 else
1119 stid = -1;
1120 } else {
1121 stid = -1;
1122 }
1123 if (stid >= 0) {
1124 t->stid_tab[stid].data = data;
1125 stid -= t->nstids;
1126 stid += t->sftid_base;
1127 t->sftids_in_use++;
1128 }
1129 spin_unlock_bh(&t->stid_lock);
1130 return stid;
1131 }
1132 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1133
1134 /* Release a server TID.
1135 */
1136 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1137 {
1138 /* Is it a server filter TID? */
1139 if (t->nsftids && (stid >= t->sftid_base)) {
1140 stid -= t->sftid_base;
1141 stid += t->nstids;
1142 } else {
1143 stid -= t->stid_base;
1144 }
1145
1146 spin_lock_bh(&t->stid_lock);
1147 if (family == PF_INET)
1148 __clear_bit(stid, t->stid_bmap);
1149 else
1150 bitmap_release_region(t->stid_bmap, stid, 1);
1151 t->stid_tab[stid].data = NULL;
1152 if (stid < t->nstids) {
1153 if (family == PF_INET)
1154 t->stids_in_use--;
1155 else
1156 t->stids_in_use -= 2;
1157 } else {
1158 t->sftids_in_use--;
1159 }
1160 spin_unlock_bh(&t->stid_lock);
1161 }
1162 EXPORT_SYMBOL(cxgb4_free_stid);
1163
1164 /*
1165 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1166 */
1167 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1168 unsigned int tid)
1169 {
1170 struct cpl_tid_release *req;
1171
1172 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1173 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1174 INIT_TP_WR(req, tid);
1175 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1176 }
1177
1178 /*
1179 * Queue a TID release request and if necessary schedule a work queue to
1180 * process it.
1181 */
1182 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1183 unsigned int tid)
1184 {
1185 void **p = &t->tid_tab[tid];
1186 struct adapter *adap = container_of(t, struct adapter, tids);
1187
1188 spin_lock_bh(&adap->tid_release_lock);
1189 *p = adap->tid_release_head;
1190 /* Low 2 bits encode the Tx channel number */
1191 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1192 if (!adap->tid_release_task_busy) {
1193 adap->tid_release_task_busy = true;
1194 queue_work(adap->workq, &adap->tid_release_task);
1195 }
1196 spin_unlock_bh(&adap->tid_release_lock);
1197 }
1198
1199 /*
1200 * Process the list of pending TID release requests.
1201 */
1202 static void process_tid_release_list(struct work_struct *work)
1203 {
1204 struct sk_buff *skb;
1205 struct adapter *adap;
1206
1207 adap = container_of(work, struct adapter, tid_release_task);
1208
1209 spin_lock_bh(&adap->tid_release_lock);
1210 while (adap->tid_release_head) {
1211 void **p = adap->tid_release_head;
1212 unsigned int chan = (uintptr_t)p & 3;
1213 p = (void *)p - chan;
1214
1215 adap->tid_release_head = *p;
1216 *p = NULL;
1217 spin_unlock_bh(&adap->tid_release_lock);
1218
1219 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1220 GFP_KERNEL)))
1221 schedule_timeout_uninterruptible(1);
1222
1223 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1224 t4_ofld_send(adap, skb);
1225 spin_lock_bh(&adap->tid_release_lock);
1226 }
1227 adap->tid_release_task_busy = false;
1228 spin_unlock_bh(&adap->tid_release_lock);
1229 }
1230
1231 /*
1232 * Release a TID and inform HW. If we are unable to allocate the release
1233 * message we defer to a work queue.
1234 */
1235 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1236 {
1237 struct sk_buff *skb;
1238 struct adapter *adap = container_of(t, struct adapter, tids);
1239
1240 WARN_ON(tid >= t->ntids);
1241
1242 if (t->tid_tab[tid]) {
1243 t->tid_tab[tid] = NULL;
1244 if (t->hash_base && (tid >= t->hash_base))
1245 atomic_dec(&t->hash_tids_in_use);
1246 else
1247 atomic_dec(&t->tids_in_use);
1248 }
1249
1250 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1251 if (likely(skb)) {
1252 mk_tid_release(skb, chan, tid);
1253 t4_ofld_send(adap, skb);
1254 } else
1255 cxgb4_queue_tid_release(t, chan, tid);
1256 }
1257 EXPORT_SYMBOL(cxgb4_remove_tid);
1258
1259 /*
1260 * Allocate and initialize the TID tables. Returns 0 on success.
1261 */
1262 static int tid_init(struct tid_info *t)
1263 {
1264 struct adapter *adap = container_of(t, struct adapter, tids);
1265 unsigned int max_ftids = t->nftids + t->nsftids;
1266 unsigned int natids = t->natids;
1267 unsigned int stid_bmap_size;
1268 unsigned int ftid_bmap_size;
1269 size_t size;
1270
1271 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1272 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1273 size = t->ntids * sizeof(*t->tid_tab) +
1274 natids * sizeof(*t->atid_tab) +
1275 t->nstids * sizeof(*t->stid_tab) +
1276 t->nsftids * sizeof(*t->stid_tab) +
1277 stid_bmap_size * sizeof(long) +
1278 max_ftids * sizeof(*t->ftid_tab) +
1279 ftid_bmap_size * sizeof(long);
1280
1281 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1282 if (!t->tid_tab)
1283 return -ENOMEM;
1284
1285 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1286 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1287 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1288 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1289 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1290 spin_lock_init(&t->stid_lock);
1291 spin_lock_init(&t->atid_lock);
1292 spin_lock_init(&t->ftid_lock);
1293
1294 t->stids_in_use = 0;
1295 t->sftids_in_use = 0;
1296 t->afree = NULL;
1297 t->atids_in_use = 0;
1298 atomic_set(&t->tids_in_use, 0);
1299 atomic_set(&t->hash_tids_in_use, 0);
1300
1301 /* Setup the free list for atid_tab and clear the stid bitmap. */
1302 if (natids) {
1303 while (--natids)
1304 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1305 t->afree = t->atid_tab;
1306 }
1307
1308 if (is_offload(adap)) {
1309 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1310 /* Reserve stid 0 for T4/T5 adapters */
1311 if (!t->stid_base &&
1312 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1313 __set_bit(0, t->stid_bmap);
1314 }
1315
1316 bitmap_zero(t->ftid_bmap, t->nftids);
1317 return 0;
1318 }
1319
1320 /**
1321 * cxgb4_create_server - create an IP server
1322 * @dev: the device
1323 * @stid: the server TID
1324 * @sip: local IP address to bind server to
1325 * @sport: the server's TCP port
1326 * @queue: queue to direct messages from this server to
1327 *
1328 * Create an IP server for the given port and address.
1329 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1330 */
1331 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1332 __be32 sip, __be16 sport, __be16 vlan,
1333 unsigned int queue)
1334 {
1335 unsigned int chan;
1336 struct sk_buff *skb;
1337 struct adapter *adap;
1338 struct cpl_pass_open_req *req;
1339 int ret;
1340
1341 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1342 if (!skb)
1343 return -ENOMEM;
1344
1345 adap = netdev2adap(dev);
1346 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1347 INIT_TP_WR(req, 0);
1348 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1349 req->local_port = sport;
1350 req->peer_port = htons(0);
1351 req->local_ip = sip;
1352 req->peer_ip = htonl(0);
1353 chan = rxq_to_chan(&adap->sge, queue);
1354 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1355 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1356 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1357 ret = t4_mgmt_tx(adap, skb);
1358 return net_xmit_eval(ret);
1359 }
1360 EXPORT_SYMBOL(cxgb4_create_server);
1361
1362 /* cxgb4_create_server6 - create an IPv6 server
1363 * @dev: the device
1364 * @stid: the server TID
1365 * @sip: local IPv6 address to bind server to
1366 * @sport: the server's TCP port
1367 * @queue: queue to direct messages from this server to
1368 *
1369 * Create an IPv6 server for the given port and address.
1370 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1371 */
1372 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1373 const struct in6_addr *sip, __be16 sport,
1374 unsigned int queue)
1375 {
1376 unsigned int chan;
1377 struct sk_buff *skb;
1378 struct adapter *adap;
1379 struct cpl_pass_open_req6 *req;
1380 int ret;
1381
1382 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1383 if (!skb)
1384 return -ENOMEM;
1385
1386 adap = netdev2adap(dev);
1387 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1388 INIT_TP_WR(req, 0);
1389 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1390 req->local_port = sport;
1391 req->peer_port = htons(0);
1392 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1393 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1394 req->peer_ip_hi = cpu_to_be64(0);
1395 req->peer_ip_lo = cpu_to_be64(0);
1396 chan = rxq_to_chan(&adap->sge, queue);
1397 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1398 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1399 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1400 ret = t4_mgmt_tx(adap, skb);
1401 return net_xmit_eval(ret);
1402 }
1403 EXPORT_SYMBOL(cxgb4_create_server6);
1404
1405 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1406 unsigned int queue, bool ipv6)
1407 {
1408 struct sk_buff *skb;
1409 struct adapter *adap;
1410 struct cpl_close_listsvr_req *req;
1411 int ret;
1412
1413 adap = netdev2adap(dev);
1414
1415 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1416 if (!skb)
1417 return -ENOMEM;
1418
1419 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1420 INIT_TP_WR(req, 0);
1421 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1422 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1423 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1424 ret = t4_mgmt_tx(adap, skb);
1425 return net_xmit_eval(ret);
1426 }
1427 EXPORT_SYMBOL(cxgb4_remove_server);
1428
1429 /**
1430 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1431 * @mtus: the HW MTU table
1432 * @mtu: the target MTU
1433 * @idx: index of selected entry in the MTU table
1434 *
1435 * Returns the index and the value in the HW MTU table that is closest to
1436 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1437 * table, in which case that smallest available value is selected.
1438 */
1439 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1440 unsigned int *idx)
1441 {
1442 unsigned int i = 0;
1443
1444 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1445 ++i;
1446 if (idx)
1447 *idx = i;
1448 return mtus[i];
1449 }
1450 EXPORT_SYMBOL(cxgb4_best_mtu);
1451
1452 /**
1453 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1454 * @mtus: the HW MTU table
1455 * @header_size: Header Size
1456 * @data_size_max: maximum Data Segment Size
1457 * @data_size_align: desired Data Segment Size Alignment (2^N)
1458 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1459 *
1460 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1461 * MTU Table based solely on a Maximum MTU parameter, we break that
1462 * parameter up into a Header Size and Maximum Data Segment Size, and
1463 * provide a desired Data Segment Size Alignment. If we find an MTU in
1464 * the Hardware MTU Table which will result in a Data Segment Size with
1465 * the requested alignment _and_ that MTU isn't "too far" from the
1466 * closest MTU, then we'll return that rather than the closest MTU.
1467 */
1468 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1469 unsigned short header_size,
1470 unsigned short data_size_max,
1471 unsigned short data_size_align,
1472 unsigned int *mtu_idxp)
1473 {
1474 unsigned short max_mtu = header_size + data_size_max;
1475 unsigned short data_size_align_mask = data_size_align - 1;
1476 int mtu_idx, aligned_mtu_idx;
1477
1478 /* Scan the MTU Table till we find an MTU which is larger than our
1479 * Maximum MTU or we reach the end of the table. Along the way,
1480 * record the last MTU found, if any, which will result in a Data
1481 * Segment Length matching the requested alignment.
1482 */
1483 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1484 unsigned short data_size = mtus[mtu_idx] - header_size;
1485
1486 /* If this MTU minus the Header Size would result in a
1487 * Data Segment Size of the desired alignment, remember it.
1488 */
1489 if ((data_size & data_size_align_mask) == 0)
1490 aligned_mtu_idx = mtu_idx;
1491
1492 /* If we're not at the end of the Hardware MTU Table and the
1493 * next element is larger than our Maximum MTU, drop out of
1494 * the loop.
1495 */
1496 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1497 break;
1498 }
1499
1500 /* If we fell out of the loop because we ran to the end of the table,
1501 * then we just have to use the last [largest] entry.
1502 */
1503 if (mtu_idx == NMTUS)
1504 mtu_idx--;
1505
1506 /* If we found an MTU which resulted in the requested Data Segment
1507 * Length alignment and that's "not far" from the largest MTU which is
1508 * less than or equal to the maximum MTU, then use that.
1509 */
1510 if (aligned_mtu_idx >= 0 &&
1511 mtu_idx - aligned_mtu_idx <= 1)
1512 mtu_idx = aligned_mtu_idx;
1513
1514 /* If the caller has passed in an MTU Index pointer, pass the
1515 * MTU Index back. Return the MTU value.
1516 */
1517 if (mtu_idxp)
1518 *mtu_idxp = mtu_idx;
1519 return mtus[mtu_idx];
1520 }
1521 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1522
1523 /**
1524 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1525 * @chip: chip type
1526 * @viid: VI id of the given port
1527 *
1528 * Return the SMT index for this VI.
1529 */
1530 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1531 {
1532 /* In T4/T5, SMT contains 256 SMAC entries organized in
1533 * 128 rows of 2 entries each.
1534 * In T6, SMT contains 256 SMAC entries in 256 rows.
1535 * TODO: The below code needs to be updated when we add support
1536 * for 256 VFs.
1537 */
1538 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1539 return ((viid & 0x7f) << 1);
1540 else
1541 return (viid & 0x7f);
1542 }
1543 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1544
1545 /**
1546 * cxgb4_port_chan - get the HW channel of a port
1547 * @dev: the net device for the port
1548 *
1549 * Return the HW Tx channel of the given port.
1550 */
1551 unsigned int cxgb4_port_chan(const struct net_device *dev)
1552 {
1553 return netdev2pinfo(dev)->tx_chan;
1554 }
1555 EXPORT_SYMBOL(cxgb4_port_chan);
1556
1557 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1558 {
1559 struct adapter *adap = netdev2adap(dev);
1560 u32 v1, v2, lp_count, hp_count;
1561
1562 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1563 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1564 if (is_t4(adap->params.chip)) {
1565 lp_count = LP_COUNT_G(v1);
1566 hp_count = HP_COUNT_G(v1);
1567 } else {
1568 lp_count = LP_COUNT_T5_G(v1);
1569 hp_count = HP_COUNT_T5_G(v2);
1570 }
1571 return lpfifo ? lp_count : hp_count;
1572 }
1573 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1574
1575 /**
1576 * cxgb4_port_viid - get the VI id of a port
1577 * @dev: the net device for the port
1578 *
1579 * Return the VI id of the given port.
1580 */
1581 unsigned int cxgb4_port_viid(const struct net_device *dev)
1582 {
1583 return netdev2pinfo(dev)->viid;
1584 }
1585 EXPORT_SYMBOL(cxgb4_port_viid);
1586
1587 /**
1588 * cxgb4_port_idx - get the index of a port
1589 * @dev: the net device for the port
1590 *
1591 * Return the index of the given port.
1592 */
1593 unsigned int cxgb4_port_idx(const struct net_device *dev)
1594 {
1595 return netdev2pinfo(dev)->port_id;
1596 }
1597 EXPORT_SYMBOL(cxgb4_port_idx);
1598
1599 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1600 struct tp_tcp_stats *v6)
1601 {
1602 struct adapter *adap = pci_get_drvdata(pdev);
1603
1604 spin_lock(&adap->stats_lock);
1605 t4_tp_get_tcp_stats(adap, v4, v6);
1606 spin_unlock(&adap->stats_lock);
1607 }
1608 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1609
1610 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1611 const unsigned int *pgsz_order)
1612 {
1613 struct adapter *adap = netdev2adap(dev);
1614
1615 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1616 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1617 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1618 HPZ3_V(pgsz_order[3]));
1619 }
1620 EXPORT_SYMBOL(cxgb4_iscsi_init);
1621
1622 int cxgb4_flush_eq_cache(struct net_device *dev)
1623 {
1624 struct adapter *adap = netdev2adap(dev);
1625
1626 return t4_sge_ctxt_flush(adap, adap->mbox);
1627 }
1628 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1629
1630 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1631 {
1632 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1633 __be64 indices;
1634 int ret;
1635
1636 spin_lock(&adap->win0_lock);
1637 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1638 sizeof(indices), (__be32 *)&indices,
1639 T4_MEMORY_READ);
1640 spin_unlock(&adap->win0_lock);
1641 if (!ret) {
1642 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1643 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1644 }
1645 return ret;
1646 }
1647
1648 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1649 u16 size)
1650 {
1651 struct adapter *adap = netdev2adap(dev);
1652 u16 hw_pidx, hw_cidx;
1653 int ret;
1654
1655 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1656 if (ret)
1657 goto out;
1658
1659 if (pidx != hw_pidx) {
1660 u16 delta;
1661 u32 val;
1662
1663 if (pidx >= hw_pidx)
1664 delta = pidx - hw_pidx;
1665 else
1666 delta = size - hw_pidx + pidx;
1667
1668 if (is_t4(adap->params.chip))
1669 val = PIDX_V(delta);
1670 else
1671 val = PIDX_T5_V(delta);
1672 wmb();
1673 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1674 QID_V(qid) | val);
1675 }
1676 out:
1677 return ret;
1678 }
1679 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1680
1681 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1682 {
1683 struct adapter *adap;
1684 u32 offset, memtype, memaddr;
1685 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1686 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1687 int ret;
1688
1689 adap = netdev2adap(dev);
1690
1691 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1692
1693 /* Figure out where the offset lands in the Memory Type/Address scheme.
1694 * This code assumes that the memory is laid out starting at offset 0
1695 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1696 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1697 * MC0, and some have both MC0 and MC1.
1698 */
1699 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1700 edc0_size = EDRAM0_SIZE_G(size) << 20;
1701 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1702 edc1_size = EDRAM1_SIZE_G(size) << 20;
1703 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1704 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1705
1706 edc0_end = edc0_size;
1707 edc1_end = edc0_end + edc1_size;
1708 mc0_end = edc1_end + mc0_size;
1709
1710 if (offset < edc0_end) {
1711 memtype = MEM_EDC0;
1712 memaddr = offset;
1713 } else if (offset < edc1_end) {
1714 memtype = MEM_EDC1;
1715 memaddr = offset - edc0_end;
1716 } else {
1717 if (offset < mc0_end) {
1718 memtype = MEM_MC0;
1719 memaddr = offset - edc1_end;
1720 } else if (is_t5(adap->params.chip)) {
1721 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1722 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1723 mc1_end = mc0_end + mc1_size;
1724 if (offset < mc1_end) {
1725 memtype = MEM_MC1;
1726 memaddr = offset - mc0_end;
1727 } else {
1728 /* offset beyond the end of any memory */
1729 goto err;
1730 }
1731 } else {
1732 /* T4/T6 only has a single memory channel */
1733 goto err;
1734 }
1735 }
1736
1737 spin_lock(&adap->win0_lock);
1738 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1739 spin_unlock(&adap->win0_lock);
1740 return ret;
1741
1742 err:
1743 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1744 stag, offset);
1745 return -EINVAL;
1746 }
1747 EXPORT_SYMBOL(cxgb4_read_tpte);
1748
1749 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1750 {
1751 u32 hi, lo;
1752 struct adapter *adap;
1753
1754 adap = netdev2adap(dev);
1755 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1756 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1757
1758 return ((u64)hi << 32) | (u64)lo;
1759 }
1760 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1761
1762 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1763 unsigned int qid,
1764 enum cxgb4_bar2_qtype qtype,
1765 int user,
1766 u64 *pbar2_qoffset,
1767 unsigned int *pbar2_qid)
1768 {
1769 return t4_bar2_sge_qregs(netdev2adap(dev),
1770 qid,
1771 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1772 ? T4_BAR2_QTYPE_EGRESS
1773 : T4_BAR2_QTYPE_INGRESS),
1774 user,
1775 pbar2_qoffset,
1776 pbar2_qid);
1777 }
1778 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1779
1780 static struct pci_driver cxgb4_driver;
1781
1782 static void check_neigh_update(struct neighbour *neigh)
1783 {
1784 const struct device *parent;
1785 const struct net_device *netdev = neigh->dev;
1786
1787 if (is_vlan_dev(netdev))
1788 netdev = vlan_dev_real_dev(netdev);
1789 parent = netdev->dev.parent;
1790 if (parent && parent->driver == &cxgb4_driver.driver)
1791 t4_l2t_update(dev_get_drvdata(parent), neigh);
1792 }
1793
1794 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1795 void *data)
1796 {
1797 switch (event) {
1798 case NETEVENT_NEIGH_UPDATE:
1799 check_neigh_update(data);
1800 break;
1801 case NETEVENT_REDIRECT:
1802 default:
1803 break;
1804 }
1805 return 0;
1806 }
1807
1808 static bool netevent_registered;
1809 static struct notifier_block cxgb4_netevent_nb = {
1810 .notifier_call = netevent_cb
1811 };
1812
1813 static void drain_db_fifo(struct adapter *adap, int usecs)
1814 {
1815 u32 v1, v2, lp_count, hp_count;
1816
1817 do {
1818 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1819 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1820 if (is_t4(adap->params.chip)) {
1821 lp_count = LP_COUNT_G(v1);
1822 hp_count = HP_COUNT_G(v1);
1823 } else {
1824 lp_count = LP_COUNT_T5_G(v1);
1825 hp_count = HP_COUNT_T5_G(v2);
1826 }
1827
1828 if (lp_count == 0 && hp_count == 0)
1829 break;
1830 set_current_state(TASK_UNINTERRUPTIBLE);
1831 schedule_timeout(usecs_to_jiffies(usecs));
1832 } while (1);
1833 }
1834
1835 static void disable_txq_db(struct sge_txq *q)
1836 {
1837 unsigned long flags;
1838
1839 spin_lock_irqsave(&q->db_lock, flags);
1840 q->db_disabled = 1;
1841 spin_unlock_irqrestore(&q->db_lock, flags);
1842 }
1843
1844 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1845 {
1846 spin_lock_irq(&q->db_lock);
1847 if (q->db_pidx_inc) {
1848 /* Make sure that all writes to the TX descriptors
1849 * are committed before we tell HW about them.
1850 */
1851 wmb();
1852 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1853 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1854 q->db_pidx_inc = 0;
1855 }
1856 q->db_disabled = 0;
1857 spin_unlock_irq(&q->db_lock);
1858 }
1859
1860 static void disable_dbs(struct adapter *adap)
1861 {
1862 int i;
1863
1864 for_each_ethrxq(&adap->sge, i)
1865 disable_txq_db(&adap->sge.ethtxq[i].q);
1866 if (is_offload(adap)) {
1867 struct sge_uld_txq_info *txq_info =
1868 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1869
1870 if (txq_info) {
1871 for_each_ofldtxq(&adap->sge, i) {
1872 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1873
1874 disable_txq_db(&txq->q);
1875 }
1876 }
1877 }
1878 for_each_port(adap, i)
1879 disable_txq_db(&adap->sge.ctrlq[i].q);
1880 }
1881
1882 static void enable_dbs(struct adapter *adap)
1883 {
1884 int i;
1885
1886 for_each_ethrxq(&adap->sge, i)
1887 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1888 if (is_offload(adap)) {
1889 struct sge_uld_txq_info *txq_info =
1890 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1891
1892 if (txq_info) {
1893 for_each_ofldtxq(&adap->sge, i) {
1894 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1895
1896 enable_txq_db(adap, &txq->q);
1897 }
1898 }
1899 }
1900 for_each_port(adap, i)
1901 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1902 }
1903
1904 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1905 {
1906 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1907
1908 if (adap->uld && adap->uld[type].handle)
1909 adap->uld[type].control(adap->uld[type].handle, cmd);
1910 }
1911
1912 static void process_db_full(struct work_struct *work)
1913 {
1914 struct adapter *adap;
1915
1916 adap = container_of(work, struct adapter, db_full_task);
1917
1918 drain_db_fifo(adap, dbfifo_drain_delay);
1919 enable_dbs(adap);
1920 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1921 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1922 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1923 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1924 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1925 else
1926 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1927 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1928 }
1929
1930 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1931 {
1932 u16 hw_pidx, hw_cidx;
1933 int ret;
1934
1935 spin_lock_irq(&q->db_lock);
1936 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1937 if (ret)
1938 goto out;
1939 if (q->db_pidx != hw_pidx) {
1940 u16 delta;
1941 u32 val;
1942
1943 if (q->db_pidx >= hw_pidx)
1944 delta = q->db_pidx - hw_pidx;
1945 else
1946 delta = q->size - hw_pidx + q->db_pidx;
1947
1948 if (is_t4(adap->params.chip))
1949 val = PIDX_V(delta);
1950 else
1951 val = PIDX_T5_V(delta);
1952 wmb();
1953 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1954 QID_V(q->cntxt_id) | val);
1955 }
1956 out:
1957 q->db_disabled = 0;
1958 q->db_pidx_inc = 0;
1959 spin_unlock_irq(&q->db_lock);
1960 if (ret)
1961 CH_WARN(adap, "DB drop recovery failed.\n");
1962 }
1963
1964 static void recover_all_queues(struct adapter *adap)
1965 {
1966 int i;
1967
1968 for_each_ethrxq(&adap->sge, i)
1969 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1970 if (is_offload(adap)) {
1971 struct sge_uld_txq_info *txq_info =
1972 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1973 if (txq_info) {
1974 for_each_ofldtxq(&adap->sge, i) {
1975 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1976
1977 sync_txq_pidx(adap, &txq->q);
1978 }
1979 }
1980 }
1981 for_each_port(adap, i)
1982 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
1983 }
1984
1985 static void process_db_drop(struct work_struct *work)
1986 {
1987 struct adapter *adap;
1988
1989 adap = container_of(work, struct adapter, db_drop_task);
1990
1991 if (is_t4(adap->params.chip)) {
1992 drain_db_fifo(adap, dbfifo_drain_delay);
1993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
1994 drain_db_fifo(adap, dbfifo_drain_delay);
1995 recover_all_queues(adap);
1996 drain_db_fifo(adap, dbfifo_drain_delay);
1997 enable_dbs(adap);
1998 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1999 } else if (is_t5(adap->params.chip)) {
2000 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2001 u16 qid = (dropped_db >> 15) & 0x1ffff;
2002 u16 pidx_inc = dropped_db & 0x1fff;
2003 u64 bar2_qoffset;
2004 unsigned int bar2_qid;
2005 int ret;
2006
2007 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2008 0, &bar2_qoffset, &bar2_qid);
2009 if (ret)
2010 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2011 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2012 else
2013 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2014 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2015
2016 /* Re-enable BAR2 WC */
2017 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2018 }
2019
2020 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2021 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2022 }
2023
2024 void t4_db_full(struct adapter *adap)
2025 {
2026 if (is_t4(adap->params.chip)) {
2027 disable_dbs(adap);
2028 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2029 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2030 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2031 queue_work(adap->workq, &adap->db_full_task);
2032 }
2033 }
2034
2035 void t4_db_dropped(struct adapter *adap)
2036 {
2037 if (is_t4(adap->params.chip)) {
2038 disable_dbs(adap);
2039 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2040 }
2041 queue_work(adap->workq, &adap->db_drop_task);
2042 }
2043
2044 void t4_register_netevent_notifier(void)
2045 {
2046 if (!netevent_registered) {
2047 register_netevent_notifier(&cxgb4_netevent_nb);
2048 netevent_registered = true;
2049 }
2050 }
2051
2052 static void detach_ulds(struct adapter *adap)
2053 {
2054 unsigned int i;
2055
2056 mutex_lock(&uld_mutex);
2057 list_del(&adap->list_node);
2058 for (i = 0; i < CXGB4_ULD_MAX; i++)
2059 if (adap->uld && adap->uld[i].handle) {
2060 adap->uld[i].state_change(adap->uld[i].handle,
2061 CXGB4_STATE_DETACH);
2062 adap->uld[i].handle = NULL;
2063 }
2064 if (netevent_registered && list_empty(&adapter_list)) {
2065 unregister_netevent_notifier(&cxgb4_netevent_nb);
2066 netevent_registered = false;
2067 }
2068 mutex_unlock(&uld_mutex);
2069 }
2070
2071 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2072 {
2073 unsigned int i;
2074
2075 mutex_lock(&uld_mutex);
2076 for (i = 0; i < CXGB4_ULD_MAX; i++)
2077 if (adap->uld && adap->uld[i].handle)
2078 adap->uld[i].state_change(adap->uld[i].handle,
2079 new_state);
2080 mutex_unlock(&uld_mutex);
2081 }
2082
2083 #if IS_ENABLED(CONFIG_IPV6)
2084 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2085 unsigned long event, void *data)
2086 {
2087 struct inet6_ifaddr *ifa = data;
2088 struct net_device *event_dev = ifa->idev->dev;
2089 const struct device *parent = NULL;
2090 #if IS_ENABLED(CONFIG_BONDING)
2091 struct adapter *adap;
2092 #endif
2093 if (is_vlan_dev(event_dev))
2094 event_dev = vlan_dev_real_dev(event_dev);
2095 #if IS_ENABLED(CONFIG_BONDING)
2096 if (event_dev->flags & IFF_MASTER) {
2097 list_for_each_entry(adap, &adapter_list, list_node) {
2098 switch (event) {
2099 case NETDEV_UP:
2100 cxgb4_clip_get(adap->port[0],
2101 (const u32 *)ifa, 1);
2102 break;
2103 case NETDEV_DOWN:
2104 cxgb4_clip_release(adap->port[0],
2105 (const u32 *)ifa, 1);
2106 break;
2107 default:
2108 break;
2109 }
2110 }
2111 return NOTIFY_OK;
2112 }
2113 #endif
2114
2115 if (event_dev)
2116 parent = event_dev->dev.parent;
2117
2118 if (parent && parent->driver == &cxgb4_driver.driver) {
2119 switch (event) {
2120 case NETDEV_UP:
2121 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2122 break;
2123 case NETDEV_DOWN:
2124 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2125 break;
2126 default:
2127 break;
2128 }
2129 }
2130 return NOTIFY_OK;
2131 }
2132
2133 static bool inet6addr_registered;
2134 static struct notifier_block cxgb4_inet6addr_notifier = {
2135 .notifier_call = cxgb4_inet6addr_handler
2136 };
2137
2138 static void update_clip(const struct adapter *adap)
2139 {
2140 int i;
2141 struct net_device *dev;
2142 int ret;
2143
2144 rcu_read_lock();
2145
2146 for (i = 0; i < MAX_NPORTS; i++) {
2147 dev = adap->port[i];
2148 ret = 0;
2149
2150 if (dev)
2151 ret = cxgb4_update_root_dev_clip(dev);
2152
2153 if (ret < 0)
2154 break;
2155 }
2156 rcu_read_unlock();
2157 }
2158 #endif /* IS_ENABLED(CONFIG_IPV6) */
2159
2160 /**
2161 * cxgb_up - enable the adapter
2162 * @adap: adapter being enabled
2163 *
2164 * Called when the first port is enabled, this function performs the
2165 * actions necessary to make an adapter operational, such as completing
2166 * the initialization of HW modules, and enabling interrupts.
2167 *
2168 * Must be called with the rtnl lock held.
2169 */
2170 static int cxgb_up(struct adapter *adap)
2171 {
2172 int err;
2173
2174 err = setup_sge_queues(adap);
2175 if (err)
2176 goto out;
2177 err = setup_rss(adap);
2178 if (err)
2179 goto freeq;
2180
2181 if (adap->flags & USING_MSIX) {
2182 name_msix_vecs(adap);
2183 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2184 adap->msix_info[0].desc, adap);
2185 if (err)
2186 goto irq_err;
2187 err = request_msix_queue_irqs(adap);
2188 if (err) {
2189 free_irq(adap->msix_info[0].vec, adap);
2190 goto irq_err;
2191 }
2192 } else {
2193 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2194 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2195 adap->port[0]->name, adap);
2196 if (err)
2197 goto irq_err;
2198 }
2199 enable_rx(adap);
2200 t4_sge_start(adap);
2201 t4_intr_enable(adap);
2202 adap->flags |= FULL_INIT_DONE;
2203 notify_ulds(adap, CXGB4_STATE_UP);
2204 #if IS_ENABLED(CONFIG_IPV6)
2205 update_clip(adap);
2206 #endif
2207 /* Initialize hash mac addr list*/
2208 INIT_LIST_HEAD(&adap->mac_hlist);
2209 out:
2210 return err;
2211 irq_err:
2212 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2213 freeq:
2214 t4_free_sge_resources(adap);
2215 goto out;
2216 }
2217
2218 static void cxgb_down(struct adapter *adapter)
2219 {
2220 cancel_work_sync(&adapter->tid_release_task);
2221 cancel_work_sync(&adapter->db_full_task);
2222 cancel_work_sync(&adapter->db_drop_task);
2223 adapter->tid_release_task_busy = false;
2224 adapter->tid_release_head = NULL;
2225
2226 t4_sge_stop(adapter);
2227 t4_free_sge_resources(adapter);
2228 adapter->flags &= ~FULL_INIT_DONE;
2229 }
2230
2231 /*
2232 * net_device operations
2233 */
2234 static int cxgb_open(struct net_device *dev)
2235 {
2236 int err;
2237 struct port_info *pi = netdev_priv(dev);
2238 struct adapter *adapter = pi->adapter;
2239
2240 netif_carrier_off(dev);
2241
2242 if (!(adapter->flags & FULL_INIT_DONE)) {
2243 err = cxgb_up(adapter);
2244 if (err < 0)
2245 return err;
2246 }
2247
2248 err = link_start(dev);
2249 if (!err)
2250 netif_tx_start_all_queues(dev);
2251 return err;
2252 }
2253
2254 static int cxgb_close(struct net_device *dev)
2255 {
2256 struct port_info *pi = netdev_priv(dev);
2257 struct adapter *adapter = pi->adapter;
2258
2259 netif_tx_stop_all_queues(dev);
2260 netif_carrier_off(dev);
2261 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2262 }
2263
2264 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2265 __be32 sip, __be16 sport, __be16 vlan,
2266 unsigned int queue, unsigned char port, unsigned char mask)
2267 {
2268 int ret;
2269 struct filter_entry *f;
2270 struct adapter *adap;
2271 int i;
2272 u8 *val;
2273
2274 adap = netdev2adap(dev);
2275
2276 /* Adjust stid to correct filter index */
2277 stid -= adap->tids.sftid_base;
2278 stid += adap->tids.nftids;
2279
2280 /* Check to make sure the filter requested is writable ...
2281 */
2282 f = &adap->tids.ftid_tab[stid];
2283 ret = writable_filter(f);
2284 if (ret)
2285 return ret;
2286
2287 /* Clear out any old resources being used by the filter before
2288 * we start constructing the new filter.
2289 */
2290 if (f->valid)
2291 clear_filter(adap, f);
2292
2293 /* Clear out filter specifications */
2294 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2295 f->fs.val.lport = cpu_to_be16(sport);
2296 f->fs.mask.lport = ~0;
2297 val = (u8 *)&sip;
2298 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2299 for (i = 0; i < 4; i++) {
2300 f->fs.val.lip[i] = val[i];
2301 f->fs.mask.lip[i] = ~0;
2302 }
2303 if (adap->params.tp.vlan_pri_map & PORT_F) {
2304 f->fs.val.iport = port;
2305 f->fs.mask.iport = mask;
2306 }
2307 }
2308
2309 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2310 f->fs.val.proto = IPPROTO_TCP;
2311 f->fs.mask.proto = ~0;
2312 }
2313
2314 f->fs.dirsteer = 1;
2315 f->fs.iq = queue;
2316 /* Mark filter as locked */
2317 f->locked = 1;
2318 f->fs.rpttid = 1;
2319
2320 /* Save the actual tid. We need this to get the corresponding
2321 * filter entry structure in filter_rpl.
2322 */
2323 f->tid = stid + adap->tids.ftid_base;
2324 ret = set_filter_wr(adap, stid);
2325 if (ret) {
2326 clear_filter(adap, f);
2327 return ret;
2328 }
2329
2330 return 0;
2331 }
2332 EXPORT_SYMBOL(cxgb4_create_server_filter);
2333
2334 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2335 unsigned int queue, bool ipv6)
2336 {
2337 struct filter_entry *f;
2338 struct adapter *adap;
2339
2340 adap = netdev2adap(dev);
2341
2342 /* Adjust stid to correct filter index */
2343 stid -= adap->tids.sftid_base;
2344 stid += adap->tids.nftids;
2345
2346 f = &adap->tids.ftid_tab[stid];
2347 /* Unlock the filter */
2348 f->locked = 0;
2349
2350 return delete_filter(adap, stid);
2351 }
2352 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2353
2354 static void cxgb_get_stats(struct net_device *dev,
2355 struct rtnl_link_stats64 *ns)
2356 {
2357 struct port_stats stats;
2358 struct port_info *p = netdev_priv(dev);
2359 struct adapter *adapter = p->adapter;
2360
2361 /* Block retrieving statistics during EEH error
2362 * recovery. Otherwise, the recovery might fail
2363 * and the PCI device will be removed permanently
2364 */
2365 spin_lock(&adapter->stats_lock);
2366 if (!netif_device_present(dev)) {
2367 spin_unlock(&adapter->stats_lock);
2368 return;
2369 }
2370 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2371 &p->stats_base);
2372 spin_unlock(&adapter->stats_lock);
2373
2374 ns->tx_bytes = stats.tx_octets;
2375 ns->tx_packets = stats.tx_frames;
2376 ns->rx_bytes = stats.rx_octets;
2377 ns->rx_packets = stats.rx_frames;
2378 ns->multicast = stats.rx_mcast_frames;
2379
2380 /* detailed rx_errors */
2381 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2382 stats.rx_runt;
2383 ns->rx_over_errors = 0;
2384 ns->rx_crc_errors = stats.rx_fcs_err;
2385 ns->rx_frame_errors = stats.rx_symbol_err;
2386 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2387 stats.rx_ovflow2 + stats.rx_ovflow3 +
2388 stats.rx_trunc0 + stats.rx_trunc1 +
2389 stats.rx_trunc2 + stats.rx_trunc3;
2390 ns->rx_missed_errors = 0;
2391
2392 /* detailed tx_errors */
2393 ns->tx_aborted_errors = 0;
2394 ns->tx_carrier_errors = 0;
2395 ns->tx_fifo_errors = 0;
2396 ns->tx_heartbeat_errors = 0;
2397 ns->tx_window_errors = 0;
2398
2399 ns->tx_errors = stats.tx_error_frames;
2400 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2401 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2402 }
2403
2404 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2405 {
2406 unsigned int mbox;
2407 int ret = 0, prtad, devad;
2408 struct port_info *pi = netdev_priv(dev);
2409 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2410
2411 switch (cmd) {
2412 case SIOCGMIIPHY:
2413 if (pi->mdio_addr < 0)
2414 return -EOPNOTSUPP;
2415 data->phy_id = pi->mdio_addr;
2416 break;
2417 case SIOCGMIIREG:
2418 case SIOCSMIIREG:
2419 if (mdio_phy_id_is_c45(data->phy_id)) {
2420 prtad = mdio_phy_id_prtad(data->phy_id);
2421 devad = mdio_phy_id_devad(data->phy_id);
2422 } else if (data->phy_id < 32) {
2423 prtad = data->phy_id;
2424 devad = 0;
2425 data->reg_num &= 0x1f;
2426 } else
2427 return -EINVAL;
2428
2429 mbox = pi->adapter->pf;
2430 if (cmd == SIOCGMIIREG)
2431 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2432 data->reg_num, &data->val_out);
2433 else
2434 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2435 data->reg_num, data->val_in);
2436 break;
2437 case SIOCGHWTSTAMP:
2438 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2439 sizeof(pi->tstamp_config)) ?
2440 -EFAULT : 0;
2441 case SIOCSHWTSTAMP:
2442 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2443 sizeof(pi->tstamp_config)))
2444 return -EFAULT;
2445
2446 switch (pi->tstamp_config.rx_filter) {
2447 case HWTSTAMP_FILTER_NONE:
2448 pi->rxtstamp = false;
2449 break;
2450 case HWTSTAMP_FILTER_ALL:
2451 pi->rxtstamp = true;
2452 break;
2453 default:
2454 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2455 return -ERANGE;
2456 }
2457
2458 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2459 sizeof(pi->tstamp_config)) ?
2460 -EFAULT : 0;
2461 default:
2462 return -EOPNOTSUPP;
2463 }
2464 return ret;
2465 }
2466
2467 static void cxgb_set_rxmode(struct net_device *dev)
2468 {
2469 /* unfortunately we can't return errors to the stack */
2470 set_rxmode(dev, -1, false);
2471 }
2472
2473 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2474 {
2475 int ret;
2476 struct port_info *pi = netdev_priv(dev);
2477
2478 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2479 -1, -1, -1, true);
2480 if (!ret)
2481 dev->mtu = new_mtu;
2482 return ret;
2483 }
2484
2485 #ifdef CONFIG_PCI_IOV
2486 static int dummy_open(struct net_device *dev)
2487 {
2488 /* Turn carrier off since we don't have to transmit anything on this
2489 * interface.
2490 */
2491 netif_carrier_off(dev);
2492 return 0;
2493 }
2494
2495 /* Fill MAC address that will be assigned by the FW */
2496 static void fill_vf_station_mac_addr(struct adapter *adap)
2497 {
2498 unsigned int i;
2499 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2500 int err;
2501 u8 *na;
2502 u16 a, b;
2503
2504 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2505 if (!err) {
2506 na = adap->params.vpd.na;
2507 for (i = 0; i < ETH_ALEN; i++)
2508 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2509 hex2val(na[2 * i + 1]));
2510 a = (hw_addr[0] << 8) | hw_addr[1];
2511 b = (hw_addr[1] << 8) | hw_addr[2];
2512 a ^= b;
2513 a |= 0x0200; /* locally assigned Ethernet MAC address */
2514 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2515 macaddr[0] = a >> 8;
2516 macaddr[1] = a & 0xff;
2517
2518 for (i = 2; i < 5; i++)
2519 macaddr[i] = hw_addr[i + 1];
2520
2521 for (i = 0; i < adap->num_vfs; i++) {
2522 macaddr[5] = adap->pf * 16 + i;
2523 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2524 }
2525 }
2526 }
2527
2528 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2529 {
2530 struct port_info *pi = netdev_priv(dev);
2531 struct adapter *adap = pi->adapter;
2532 int ret;
2533
2534 /* verify MAC addr is valid */
2535 if (!is_valid_ether_addr(mac)) {
2536 dev_err(pi->adapter->pdev_dev,
2537 "Invalid Ethernet address %pM for VF %d\n",
2538 mac, vf);
2539 return -EINVAL;
2540 }
2541
2542 dev_info(pi->adapter->pdev_dev,
2543 "Setting MAC %pM on VF %d\n", mac, vf);
2544 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2545 if (!ret)
2546 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2547 return ret;
2548 }
2549
2550 static int cxgb_get_vf_config(struct net_device *dev,
2551 int vf, struct ifla_vf_info *ivi)
2552 {
2553 struct port_info *pi = netdev_priv(dev);
2554 struct adapter *adap = pi->adapter;
2555
2556 if (vf >= adap->num_vfs)
2557 return -EINVAL;
2558 ivi->vf = vf;
2559 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2560 return 0;
2561 }
2562
2563 static int cxgb_get_phys_port_id(struct net_device *dev,
2564 struct netdev_phys_item_id *ppid)
2565 {
2566 struct port_info *pi = netdev_priv(dev);
2567 unsigned int phy_port_id;
2568
2569 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2570 ppid->id_len = sizeof(phy_port_id);
2571 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2572 return 0;
2573 }
2574
2575 #endif
2576
2577 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2578 {
2579 int ret;
2580 struct sockaddr *addr = p;
2581 struct port_info *pi = netdev_priv(dev);
2582
2583 if (!is_valid_ether_addr(addr->sa_data))
2584 return -EADDRNOTAVAIL;
2585
2586 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2587 pi->xact_addr_filt, addr->sa_data, true, true);
2588 if (ret < 0)
2589 return ret;
2590
2591 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2592 pi->xact_addr_filt = ret;
2593 return 0;
2594 }
2595
2596 #ifdef CONFIG_NET_POLL_CONTROLLER
2597 static void cxgb_netpoll(struct net_device *dev)
2598 {
2599 struct port_info *pi = netdev_priv(dev);
2600 struct adapter *adap = pi->adapter;
2601
2602 if (adap->flags & USING_MSIX) {
2603 int i;
2604 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2605
2606 for (i = pi->nqsets; i; i--, rx++)
2607 t4_sge_intr_msix(0, &rx->rspq);
2608 } else
2609 t4_intr_handler(adap)(0, adap);
2610 }
2611 #endif
2612
2613 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2614 {
2615 struct port_info *pi = netdev_priv(dev);
2616 struct adapter *adap = pi->adapter;
2617 struct sched_class *e;
2618 struct ch_sched_params p;
2619 struct ch_sched_queue qe;
2620 u32 req_rate;
2621 int err = 0;
2622
2623 if (!can_sched(dev))
2624 return -ENOTSUPP;
2625
2626 if (index < 0 || index > pi->nqsets - 1)
2627 return -EINVAL;
2628
2629 if (!(adap->flags & FULL_INIT_DONE)) {
2630 dev_err(adap->pdev_dev,
2631 "Failed to rate limit on queue %d. Link Down?\n",
2632 index);
2633 return -EINVAL;
2634 }
2635
2636 /* Convert from Mbps to Kbps */
2637 req_rate = rate << 10;
2638
2639 /* Max rate is 10 Gbps */
2640 if (req_rate >= SCHED_MAX_RATE_KBPS) {
2641 dev_err(adap->pdev_dev,
2642 "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2643 rate, SCHED_MAX_RATE_KBPS);
2644 return -ERANGE;
2645 }
2646
2647 /* First unbind the queue from any existing class */
2648 memset(&qe, 0, sizeof(qe));
2649 qe.queue = index;
2650 qe.class = SCHED_CLS_NONE;
2651
2652 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2653 if (err) {
2654 dev_err(adap->pdev_dev,
2655 "Unbinding Queue %d on port %d fail. Err: %d\n",
2656 index, pi->port_id, err);
2657 return err;
2658 }
2659
2660 /* Queue already unbound */
2661 if (!req_rate)
2662 return 0;
2663
2664 /* Fetch any available unused or matching scheduling class */
2665 memset(&p, 0, sizeof(p));
2666 p.type = SCHED_CLASS_TYPE_PACKET;
2667 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2668 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2669 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2670 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2671 p.u.params.channel = pi->tx_chan;
2672 p.u.params.class = SCHED_CLS_NONE;
2673 p.u.params.minrate = 0;
2674 p.u.params.maxrate = req_rate;
2675 p.u.params.weight = 0;
2676 p.u.params.pktsize = dev->mtu;
2677
2678 e = cxgb4_sched_class_alloc(dev, &p);
2679 if (!e)
2680 return -ENOMEM;
2681
2682 /* Bind the queue to a scheduling class */
2683 memset(&qe, 0, sizeof(qe));
2684 qe.queue = index;
2685 qe.class = e->idx;
2686
2687 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2688 if (err)
2689 dev_err(adap->pdev_dev,
2690 "Queue rate limiting failed. Err: %d\n", err);
2691 return err;
2692 }
2693
2694 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2695 struct tc_to_netdev *tc)
2696 {
2697 struct port_info *pi = netdev2pinfo(dev);
2698 struct adapter *adap = netdev2adap(dev);
2699
2700 if (!(adap->flags & FULL_INIT_DONE)) {
2701 dev_err(adap->pdev_dev,
2702 "Failed to setup tc on port %d. Link Down?\n",
2703 pi->port_id);
2704 return -EINVAL;
2705 }
2706
2707 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2708 tc->type == TC_SETUP_CLSU32) {
2709 switch (tc->cls_u32->command) {
2710 case TC_CLSU32_NEW_KNODE:
2711 case TC_CLSU32_REPLACE_KNODE:
2712 return cxgb4_config_knode(dev, proto, tc->cls_u32);
2713 case TC_CLSU32_DELETE_KNODE:
2714 return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2715 default:
2716 return -EOPNOTSUPP;
2717 }
2718 }
2719
2720 return -EOPNOTSUPP;
2721 }
2722
2723 static const struct net_device_ops cxgb4_netdev_ops = {
2724 .ndo_open = cxgb_open,
2725 .ndo_stop = cxgb_close,
2726 .ndo_start_xmit = t4_eth_xmit,
2727 .ndo_select_queue = cxgb_select_queue,
2728 .ndo_get_stats64 = cxgb_get_stats,
2729 .ndo_set_rx_mode = cxgb_set_rxmode,
2730 .ndo_set_mac_address = cxgb_set_mac_addr,
2731 .ndo_set_features = cxgb_set_features,
2732 .ndo_validate_addr = eth_validate_addr,
2733 .ndo_do_ioctl = cxgb_ioctl,
2734 .ndo_change_mtu = cxgb_change_mtu,
2735 #ifdef CONFIG_NET_POLL_CONTROLLER
2736 .ndo_poll_controller = cxgb_netpoll,
2737 #endif
2738 #ifdef CONFIG_CHELSIO_T4_FCOE
2739 .ndo_fcoe_enable = cxgb_fcoe_enable,
2740 .ndo_fcoe_disable = cxgb_fcoe_disable,
2741 #endif /* CONFIG_CHELSIO_T4_FCOE */
2742 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
2743 .ndo_setup_tc = cxgb_setup_tc,
2744 };
2745
2746 #ifdef CONFIG_PCI_IOV
2747 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2748 .ndo_open = dummy_open,
2749 .ndo_set_vf_mac = cxgb_set_vf_mac,
2750 .ndo_get_vf_config = cxgb_get_vf_config,
2751 .ndo_get_phys_port_id = cxgb_get_phys_port_id,
2752 };
2753 #endif
2754
2755 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2756 {
2757 struct adapter *adapter = netdev2adap(dev);
2758
2759 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2760 strlcpy(info->version, cxgb4_driver_version,
2761 sizeof(info->version));
2762 strlcpy(info->bus_info, pci_name(adapter->pdev),
2763 sizeof(info->bus_info));
2764 }
2765
2766 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2767 .get_drvinfo = get_drvinfo,
2768 };
2769
2770 void t4_fatal_err(struct adapter *adap)
2771 {
2772 int port;
2773
2774 /* Disable the SGE since ULDs are going to free resources that
2775 * could be exposed to the adapter. RDMA MWs for example...
2776 */
2777 t4_shutdown_adapter(adap);
2778 for_each_port(adap, port) {
2779 struct net_device *dev = adap->port[port];
2780
2781 /* If we get here in very early initialization the network
2782 * devices may not have been set up yet.
2783 */
2784 if (!dev)
2785 continue;
2786
2787 netif_tx_stop_all_queues(dev);
2788 netif_carrier_off(dev);
2789 }
2790 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2791 }
2792
2793 static void setup_memwin(struct adapter *adap)
2794 {
2795 u32 nic_win_base = t4_get_util_window(adap);
2796
2797 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2798 }
2799
2800 static void setup_memwin_rdma(struct adapter *adap)
2801 {
2802 if (adap->vres.ocq.size) {
2803 u32 start;
2804 unsigned int sz_kb;
2805
2806 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2807 start &= PCI_BASE_ADDRESS_MEM_MASK;
2808 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2809 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2810 t4_write_reg(adap,
2811 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2812 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2813 t4_write_reg(adap,
2814 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2815 adap->vres.ocq.start);
2816 t4_read_reg(adap,
2817 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2818 }
2819 }
2820
2821 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2822 {
2823 u32 v;
2824 int ret;
2825
2826 /* get device capabilities */
2827 memset(c, 0, sizeof(*c));
2828 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2829 FW_CMD_REQUEST_F | FW_CMD_READ_F);
2830 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2831 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2832 if (ret < 0)
2833 return ret;
2834
2835 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2836 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2837 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2838 if (ret < 0)
2839 return ret;
2840
2841 ret = t4_config_glbl_rss(adap, adap->pf,
2842 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2843 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2844 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2845 if (ret < 0)
2846 return ret;
2847
2848 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2849 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2850 FW_CMD_CAP_PF);
2851 if (ret < 0)
2852 return ret;
2853
2854 t4_sge_init(adap);
2855
2856 /* tweak some settings */
2857 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2858 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2859 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2860 v = t4_read_reg(adap, TP_PIO_DATA_A);
2861 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2862
2863 /* first 4 Tx modulation queues point to consecutive Tx channels */
2864 adap->params.tp.tx_modq_map = 0xE4;
2865 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2866 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2867
2868 /* associate each Tx modulation queue with consecutive Tx channels */
2869 v = 0x84218421;
2870 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2871 &v, 1, TP_TX_SCHED_HDR_A);
2872 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2873 &v, 1, TP_TX_SCHED_FIFO_A);
2874 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2875 &v, 1, TP_TX_SCHED_PCMD_A);
2876
2877 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2878 if (is_offload(adap)) {
2879 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2880 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2881 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2882 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2883 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2884 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2885 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2886 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2887 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2888 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2889 }
2890
2891 /* get basic stuff going */
2892 return t4_early_init(adap, adap->pf);
2893 }
2894
2895 /*
2896 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
2897 */
2898 #define MAX_ATIDS 8192U
2899
2900 /*
2901 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2902 *
2903 * If the firmware we're dealing with has Configuration File support, then
2904 * we use that to perform all configuration
2905 */
2906
2907 /*
2908 * Tweak configuration based on module parameters, etc. Most of these have
2909 * defaults assigned to them by Firmware Configuration Files (if we're using
2910 * them) but need to be explicitly set if we're using hard-coded
2911 * initialization. But even in the case of using Firmware Configuration
2912 * Files, we'd like to expose the ability to change these via module
2913 * parameters so these are essentially common tweaks/settings for
2914 * Configuration Files and hard-coded initialization ...
2915 */
2916 static int adap_init0_tweaks(struct adapter *adapter)
2917 {
2918 /*
2919 * Fix up various Host-Dependent Parameters like Page Size, Cache
2920 * Line Size, etc. The firmware default is for a 4KB Page Size and
2921 * 64B Cache Line Size ...
2922 */
2923 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2924
2925 /*
2926 * Process module parameters which affect early initialization.
2927 */
2928 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2929 dev_err(&adapter->pdev->dev,
2930 "Ignoring illegal rx_dma_offset=%d, using 2\n",
2931 rx_dma_offset);
2932 rx_dma_offset = 2;
2933 }
2934 t4_set_reg_field(adapter, SGE_CONTROL_A,
2935 PKTSHIFT_V(PKTSHIFT_M),
2936 PKTSHIFT_V(rx_dma_offset));
2937
2938 /*
2939 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2940 * adds the pseudo header itself.
2941 */
2942 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2943 CSUM_HAS_PSEUDO_HDR_F, 0);
2944
2945 return 0;
2946 }
2947
2948 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2949 * unto themselves and they contain their own firmware to perform their
2950 * tasks ...
2951 */
2952 static int phy_aq1202_version(const u8 *phy_fw_data,
2953 size_t phy_fw_size)
2954 {
2955 int offset;
2956
2957 /* At offset 0x8 you're looking for the primary image's
2958 * starting offset which is 3 Bytes wide
2959 *
2960 * At offset 0xa of the primary image, you look for the offset
2961 * of the DRAM segment which is 3 Bytes wide.
2962 *
2963 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2964 * wide
2965 */
2966 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
2967 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2968 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
2969
2970 offset = le24(phy_fw_data + 0x8) << 12;
2971 offset = le24(phy_fw_data + offset + 0xa);
2972 return be16(phy_fw_data + offset + 0x27e);
2973
2974 #undef be16
2975 #undef le16
2976 #undef le24
2977 }
2978
2979 static struct info_10gbt_phy_fw {
2980 unsigned int phy_fw_id; /* PCI Device ID */
2981 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
2982 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2983 int phy_flash; /* Has FLASH for PHY Firmware */
2984 } phy_info_array[] = {
2985 {
2986 PHY_AQ1202_DEVICEID,
2987 PHY_AQ1202_FIRMWARE,
2988 phy_aq1202_version,
2989 1,
2990 },
2991 {
2992 PHY_BCM84834_DEVICEID,
2993 PHY_BCM84834_FIRMWARE,
2994 NULL,
2995 0,
2996 },
2997 { 0, NULL, NULL },
2998 };
2999
3000 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3001 {
3002 int i;
3003
3004 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3005 if (phy_info_array[i].phy_fw_id == devid)
3006 return &phy_info_array[i];
3007 }
3008 return NULL;
3009 }
3010
3011 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3012 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3013 * we return a negative error number. If we transfer new firmware we return 1
3014 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3015 */
3016 static int adap_init0_phy(struct adapter *adap)
3017 {
3018 const struct firmware *phyf;
3019 int ret;
3020 struct info_10gbt_phy_fw *phy_info;
3021
3022 /* Use the device ID to determine which PHY file to flash.
3023 */
3024 phy_info = find_phy_info(adap->pdev->device);
3025 if (!phy_info) {
3026 dev_warn(adap->pdev_dev,
3027 "No PHY Firmware file found for this PHY\n");
3028 return -EOPNOTSUPP;
3029 }
3030
3031 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3032 * use that. The adapter firmware provides us with a memory buffer
3033 * where we can load a PHY firmware file from the host if we want to
3034 * override the PHY firmware File in flash.
3035 */
3036 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3037 adap->pdev_dev);
3038 if (ret < 0) {
3039 /* For adapters without FLASH attached to PHY for their
3040 * firmware, it's obviously a fatal error if we can't get the
3041 * firmware to the adapter. For adapters with PHY firmware
3042 * FLASH storage, it's worth a warning if we can't find the
3043 * PHY Firmware but we'll neuter the error ...
3044 */
3045 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3046 "/lib/firmware/%s, error %d\n",
3047 phy_info->phy_fw_file, -ret);
3048 if (phy_info->phy_flash) {
3049 int cur_phy_fw_ver = 0;
3050
3051 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3052 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3053 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3054 ret = 0;
3055 }
3056
3057 return ret;
3058 }
3059
3060 /* Load PHY Firmware onto adapter.
3061 */
3062 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3063 phy_info->phy_fw_version,
3064 (u8 *)phyf->data, phyf->size);
3065 if (ret < 0)
3066 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3067 -ret);
3068 else if (ret > 0) {
3069 int new_phy_fw_ver = 0;
3070
3071 if (phy_info->phy_fw_version)
3072 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3073 phyf->size);
3074 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3075 "Firmware /lib/firmware/%s, version %#x\n",
3076 phy_info->phy_fw_file, new_phy_fw_ver);
3077 }
3078
3079 release_firmware(phyf);
3080
3081 return ret;
3082 }
3083
3084 /*
3085 * Attempt to initialize the adapter via a Firmware Configuration File.
3086 */
3087 static int adap_init0_config(struct adapter *adapter, int reset)
3088 {
3089 struct fw_caps_config_cmd caps_cmd;
3090 const struct firmware *cf;
3091 unsigned long mtype = 0, maddr = 0;
3092 u32 finiver, finicsum, cfcsum;
3093 int ret;
3094 int config_issued = 0;
3095 char *fw_config_file, fw_config_file_path[256];
3096 char *config_name = NULL;
3097
3098 /*
3099 * Reset device if necessary.
3100 */
3101 if (reset) {
3102 ret = t4_fw_reset(adapter, adapter->mbox,
3103 PIORSTMODE_F | PIORST_F);
3104 if (ret < 0)
3105 goto bye;
3106 }
3107
3108 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3109 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3110 * to be performed after any global adapter RESET above since some
3111 * PHYs only have local RAM copies of the PHY firmware.
3112 */
3113 if (is_10gbt_device(adapter->pdev->device)) {
3114 ret = adap_init0_phy(adapter);
3115 if (ret < 0)
3116 goto bye;
3117 }
3118 /*
3119 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3120 * then use that. Otherwise, use the configuration file stored
3121 * in the adapter flash ...
3122 */
3123 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3124 case CHELSIO_T4:
3125 fw_config_file = FW4_CFNAME;
3126 break;
3127 case CHELSIO_T5:
3128 fw_config_file = FW5_CFNAME;
3129 break;
3130 case CHELSIO_T6:
3131 fw_config_file = FW6_CFNAME;
3132 break;
3133 default:
3134 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3135 adapter->pdev->device);
3136 ret = -EINVAL;
3137 goto bye;
3138 }
3139
3140 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3141 if (ret < 0) {
3142 config_name = "On FLASH";
3143 mtype = FW_MEMTYPE_CF_FLASH;
3144 maddr = t4_flash_cfg_addr(adapter);
3145 } else {
3146 u32 params[7], val[7];
3147
3148 sprintf(fw_config_file_path,
3149 "/lib/firmware/%s", fw_config_file);
3150 config_name = fw_config_file_path;
3151
3152 if (cf->size >= FLASH_CFG_MAX_SIZE)
3153 ret = -ENOMEM;
3154 else {
3155 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3156 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3157 ret = t4_query_params(adapter, adapter->mbox,
3158 adapter->pf, 0, 1, params, val);
3159 if (ret == 0) {
3160 /*
3161 * For t4_memory_rw() below addresses and
3162 * sizes have to be in terms of multiples of 4
3163 * bytes. So, if the Configuration File isn't
3164 * a multiple of 4 bytes in length we'll have
3165 * to write that out separately since we can't
3166 * guarantee that the bytes following the
3167 * residual byte in the buffer returned by
3168 * request_firmware() are zeroed out ...
3169 */
3170 size_t resid = cf->size & 0x3;
3171 size_t size = cf->size & ~0x3;
3172 __be32 *data = (__be32 *)cf->data;
3173
3174 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3175 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3176
3177 spin_lock(&adapter->win0_lock);
3178 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3179 size, data, T4_MEMORY_WRITE);
3180 if (ret == 0 && resid != 0) {
3181 union {
3182 __be32 word;
3183 char buf[4];
3184 } last;
3185 int i;
3186
3187 last.word = data[size >> 2];
3188 for (i = resid; i < 4; i++)
3189 last.buf[i] = 0;
3190 ret = t4_memory_rw(adapter, 0, mtype,
3191 maddr + size,
3192 4, &last.word,
3193 T4_MEMORY_WRITE);
3194 }
3195 spin_unlock(&adapter->win0_lock);
3196 }
3197 }
3198
3199 release_firmware(cf);
3200 if (ret)
3201 goto bye;
3202 }
3203
3204 /*
3205 * Issue a Capability Configuration command to the firmware to get it
3206 * to parse the Configuration File. We don't use t4_fw_config_file()
3207 * because we want the ability to modify various features after we've
3208 * processed the configuration file ...
3209 */
3210 memset(&caps_cmd, 0, sizeof(caps_cmd));
3211 caps_cmd.op_to_write =
3212 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3213 FW_CMD_REQUEST_F |
3214 FW_CMD_READ_F);
3215 caps_cmd.cfvalid_to_len16 =
3216 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3217 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3218 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3219 FW_LEN16(caps_cmd));
3220 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3221 &caps_cmd);
3222
3223 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3224 * Configuration File in FLASH), our last gasp effort is to use the
3225 * Firmware Configuration File which is embedded in the firmware. A
3226 * very few early versions of the firmware didn't have one embedded
3227 * but we can ignore those.
3228 */
3229 if (ret == -ENOENT) {
3230 memset(&caps_cmd, 0, sizeof(caps_cmd));
3231 caps_cmd.op_to_write =
3232 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3233 FW_CMD_REQUEST_F |
3234 FW_CMD_READ_F);
3235 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3236 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3237 sizeof(caps_cmd), &caps_cmd);
3238 config_name = "Firmware Default";
3239 }
3240
3241 config_issued = 1;
3242 if (ret < 0)
3243 goto bye;
3244
3245 finiver = ntohl(caps_cmd.finiver);
3246 finicsum = ntohl(caps_cmd.finicsum);
3247 cfcsum = ntohl(caps_cmd.cfcsum);
3248 if (finicsum != cfcsum)
3249 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3250 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3251 finicsum, cfcsum);
3252
3253 /*
3254 * And now tell the firmware to use the configuration we just loaded.
3255 */
3256 caps_cmd.op_to_write =
3257 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3258 FW_CMD_REQUEST_F |
3259 FW_CMD_WRITE_F);
3260 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3261 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3262 NULL);
3263 if (ret < 0)
3264 goto bye;
3265
3266 /*
3267 * Tweak configuration based on system architecture, module
3268 * parameters, etc.
3269 */
3270 ret = adap_init0_tweaks(adapter);
3271 if (ret < 0)
3272 goto bye;
3273
3274 /*
3275 * And finally tell the firmware to initialize itself using the
3276 * parameters from the Configuration File.
3277 */
3278 ret = t4_fw_initialize(adapter, adapter->mbox);
3279 if (ret < 0)
3280 goto bye;
3281
3282 /* Emit Firmware Configuration File information and return
3283 * successfully.
3284 */
3285 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3286 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3287 config_name, finiver, cfcsum);
3288 return 0;
3289
3290 /*
3291 * Something bad happened. Return the error ... (If the "error"
3292 * is that there's no Configuration File on the adapter we don't
3293 * want to issue a warning since this is fairly common.)
3294 */
3295 bye:
3296 if (config_issued && ret != -ENOENT)
3297 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3298 config_name, -ret);
3299 return ret;
3300 }
3301
3302 static struct fw_info fw_info_array[] = {
3303 {
3304 .chip = CHELSIO_T4,
3305 .fs_name = FW4_CFNAME,
3306 .fw_mod_name = FW4_FNAME,
3307 .fw_hdr = {
3308 .chip = FW_HDR_CHIP_T4,
3309 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3310 .intfver_nic = FW_INTFVER(T4, NIC),
3311 .intfver_vnic = FW_INTFVER(T4, VNIC),
3312 .intfver_ri = FW_INTFVER(T4, RI),
3313 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3314 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3315 },
3316 }, {
3317 .chip = CHELSIO_T5,
3318 .fs_name = FW5_CFNAME,
3319 .fw_mod_name = FW5_FNAME,
3320 .fw_hdr = {
3321 .chip = FW_HDR_CHIP_T5,
3322 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3323 .intfver_nic = FW_INTFVER(T5, NIC),
3324 .intfver_vnic = FW_INTFVER(T5, VNIC),
3325 .intfver_ri = FW_INTFVER(T5, RI),
3326 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3327 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3328 },
3329 }, {
3330 .chip = CHELSIO_T6,
3331 .fs_name = FW6_CFNAME,
3332 .fw_mod_name = FW6_FNAME,
3333 .fw_hdr = {
3334 .chip = FW_HDR_CHIP_T6,
3335 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3336 .intfver_nic = FW_INTFVER(T6, NIC),
3337 .intfver_vnic = FW_INTFVER(T6, VNIC),
3338 .intfver_ofld = FW_INTFVER(T6, OFLD),
3339 .intfver_ri = FW_INTFVER(T6, RI),
3340 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3341 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3342 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3343 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3344 },
3345 }
3346
3347 };
3348
3349 static struct fw_info *find_fw_info(int chip)
3350 {
3351 int i;
3352
3353 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3354 if (fw_info_array[i].chip == chip)
3355 return &fw_info_array[i];
3356 }
3357 return NULL;
3358 }
3359
3360 /*
3361 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3362 */
3363 static int adap_init0(struct adapter *adap)
3364 {
3365 int ret;
3366 u32 v, port_vec;
3367 enum dev_state state;
3368 u32 params[7], val[7];
3369 struct fw_caps_config_cmd caps_cmd;
3370 int reset = 1;
3371
3372 /* Grab Firmware Device Log parameters as early as possible so we have
3373 * access to it for debugging, etc.
3374 */
3375 ret = t4_init_devlog_params(adap);
3376 if (ret < 0)
3377 return ret;
3378
3379 /* Contact FW, advertising Master capability */
3380 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3381 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3382 if (ret < 0) {
3383 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3384 ret);
3385 return ret;
3386 }
3387 if (ret == adap->mbox)
3388 adap->flags |= MASTER_PF;
3389
3390 /*
3391 * If we're the Master PF Driver and the device is uninitialized,
3392 * then let's consider upgrading the firmware ... (We always want
3393 * to check the firmware version number in order to A. get it for
3394 * later reporting and B. to warn if the currently loaded firmware
3395 * is excessively mismatched relative to the driver.)
3396 */
3397 t4_get_fw_version(adap, &adap->params.fw_vers);
3398 t4_get_bs_version(adap, &adap->params.bs_vers);
3399 t4_get_tp_version(adap, &adap->params.tp_vers);
3400 t4_get_exprom_version(adap, &adap->params.er_vers);
3401
3402 ret = t4_check_fw_version(adap);
3403 /* If firmware is too old (not supported by driver) force an update. */
3404 if (ret)
3405 state = DEV_STATE_UNINIT;
3406 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3407 struct fw_info *fw_info;
3408 struct fw_hdr *card_fw;
3409 const struct firmware *fw;
3410 const u8 *fw_data = NULL;
3411 unsigned int fw_size = 0;
3412
3413 /* This is the firmware whose headers the driver was compiled
3414 * against
3415 */
3416 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3417 if (fw_info == NULL) {
3418 dev_err(adap->pdev_dev,
3419 "unable to get firmware info for chip %d.\n",
3420 CHELSIO_CHIP_VERSION(adap->params.chip));
3421 return -EINVAL;
3422 }
3423
3424 /* allocate memory to read the header of the firmware on the
3425 * card
3426 */
3427 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3428
3429 /* Get FW from from /lib/firmware/ */
3430 ret = request_firmware(&fw, fw_info->fw_mod_name,
3431 adap->pdev_dev);
3432 if (ret < 0) {
3433 dev_err(adap->pdev_dev,
3434 "unable to load firmware image %s, error %d\n",
3435 fw_info->fw_mod_name, ret);
3436 } else {
3437 fw_data = fw->data;
3438 fw_size = fw->size;
3439 }
3440
3441 /* upgrade FW logic */
3442 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3443 state, &reset);
3444
3445 /* Cleaning up */
3446 release_firmware(fw);
3447 kvfree(card_fw);
3448
3449 if (ret < 0)
3450 goto bye;
3451 }
3452
3453 /*
3454 * Grab VPD parameters. This should be done after we establish a
3455 * connection to the firmware since some of the VPD parameters
3456 * (notably the Core Clock frequency) are retrieved via requests to
3457 * the firmware. On the other hand, we need these fairly early on
3458 * so we do this right after getting ahold of the firmware.
3459 */
3460 ret = t4_get_vpd_params(adap, &adap->params.vpd);
3461 if (ret < 0)
3462 goto bye;
3463
3464 /*
3465 * Find out what ports are available to us. Note that we need to do
3466 * this before calling adap_init0_no_config() since it needs nports
3467 * and portvec ...
3468 */
3469 v =
3470 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3471 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3472 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3473 if (ret < 0)
3474 goto bye;
3475
3476 adap->params.nports = hweight32(port_vec);
3477 adap->params.portvec = port_vec;
3478
3479 /* If the firmware is initialized already, emit a simply note to that
3480 * effect. Otherwise, it's time to try initializing the adapter.
3481 */
3482 if (state == DEV_STATE_INIT) {
3483 dev_info(adap->pdev_dev, "Coming up as %s: "\
3484 "Adapter already initialized\n",
3485 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3486 } else {
3487 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3488 "Initializing adapter\n");
3489
3490 /* Find out whether we're dealing with a version of the
3491 * firmware which has configuration file support.
3492 */
3493 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3494 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3495 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3496 params, val);
3497
3498 /* If the firmware doesn't support Configuration Files,
3499 * return an error.
3500 */
3501 if (ret < 0) {
3502 dev_err(adap->pdev_dev, "firmware doesn't support "
3503 "Firmware Configuration Files\n");
3504 goto bye;
3505 }
3506
3507 /* The firmware provides us with a memory buffer where we can
3508 * load a Configuration File from the host if we want to
3509 * override the Configuration File in flash.
3510 */
3511 ret = adap_init0_config(adap, reset);
3512 if (ret == -ENOENT) {
3513 dev_err(adap->pdev_dev, "no Configuration File "
3514 "present on adapter.\n");
3515 goto bye;
3516 }
3517 if (ret < 0) {
3518 dev_err(adap->pdev_dev, "could not initialize "
3519 "adapter, error %d\n", -ret);
3520 goto bye;
3521 }
3522 }
3523
3524 /* Give the SGE code a chance to pull in anything that it needs ...
3525 * Note that this must be called after we retrieve our VPD parameters
3526 * in order to know how to convert core ticks to seconds, etc.
3527 */
3528 ret = t4_sge_init(adap);
3529 if (ret < 0)
3530 goto bye;
3531
3532 if (is_bypass_device(adap->pdev->device))
3533 adap->params.bypass = 1;
3534
3535 /*
3536 * Grab some of our basic fundamental operating parameters.
3537 */
3538 #define FW_PARAM_DEV(param) \
3539 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3540 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3541
3542 #define FW_PARAM_PFVF(param) \
3543 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3544 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3545 FW_PARAMS_PARAM_Y_V(0) | \
3546 FW_PARAMS_PARAM_Z_V(0)
3547
3548 params[0] = FW_PARAM_PFVF(EQ_START);
3549 params[1] = FW_PARAM_PFVF(L2T_START);
3550 params[2] = FW_PARAM_PFVF(L2T_END);
3551 params[3] = FW_PARAM_PFVF(FILTER_START);
3552 params[4] = FW_PARAM_PFVF(FILTER_END);
3553 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3554 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3555 if (ret < 0)
3556 goto bye;
3557 adap->sge.egr_start = val[0];
3558 adap->l2t_start = val[1];
3559 adap->l2t_end = val[2];
3560 adap->tids.ftid_base = val[3];
3561 adap->tids.nftids = val[4] - val[3] + 1;
3562 adap->sge.ingr_start = val[5];
3563
3564 /* qids (ingress/egress) returned from firmware can be anywhere
3565 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3566 * Hence driver needs to allocate memory for this range to
3567 * store the queue info. Get the highest IQFLINT/EQ index returned
3568 * in FW_EQ_*_CMD.alloc command.
3569 */
3570 params[0] = FW_PARAM_PFVF(EQ_END);
3571 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3572 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3573 if (ret < 0)
3574 goto bye;
3575 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3576 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3577
3578 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3579 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3580 if (!adap->sge.egr_map) {
3581 ret = -ENOMEM;
3582 goto bye;
3583 }
3584
3585 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3586 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3587 if (!adap->sge.ingr_map) {
3588 ret = -ENOMEM;
3589 goto bye;
3590 }
3591
3592 /* Allocate the memory for the vaious egress queue bitmaps
3593 * ie starving_fl, txq_maperr and blocked_fl.
3594 */
3595 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3596 sizeof(long), GFP_KERNEL);
3597 if (!adap->sge.starving_fl) {
3598 ret = -ENOMEM;
3599 goto bye;
3600 }
3601
3602 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3603 sizeof(long), GFP_KERNEL);
3604 if (!adap->sge.txq_maperr) {
3605 ret = -ENOMEM;
3606 goto bye;
3607 }
3608
3609 #ifdef CONFIG_DEBUG_FS
3610 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3611 sizeof(long), GFP_KERNEL);
3612 if (!adap->sge.blocked_fl) {
3613 ret = -ENOMEM;
3614 goto bye;
3615 }
3616 #endif
3617
3618 params[0] = FW_PARAM_PFVF(CLIP_START);
3619 params[1] = FW_PARAM_PFVF(CLIP_END);
3620 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3621 if (ret < 0)
3622 goto bye;
3623 adap->clipt_start = val[0];
3624 adap->clipt_end = val[1];
3625
3626 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3627 * Classes supported by the hardware/firmware so we hard code it here
3628 * for now.
3629 */
3630 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3631
3632 /* query params related to active filter region */
3633 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3634 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3635 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3636 /* If Active filter size is set we enable establishing
3637 * offload connection through firmware work request
3638 */
3639 if ((val[0] != val[1]) && (ret >= 0)) {
3640 adap->flags |= FW_OFLD_CONN;
3641 adap->tids.aftid_base = val[0];
3642 adap->tids.aftid_end = val[1];
3643 }
3644
3645 /* If we're running on newer firmware, let it know that we're
3646 * prepared to deal with encapsulated CPL messages. Older
3647 * firmware won't understand this and we'll just get
3648 * unencapsulated messages ...
3649 */
3650 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3651 val[0] = 1;
3652 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3653
3654 /*
3655 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3656 * capability. Earlier versions of the firmware didn't have the
3657 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3658 * permission to use ULPTX MEMWRITE DSGL.
3659 */
3660 if (is_t4(adap->params.chip)) {
3661 adap->params.ulptx_memwrite_dsgl = false;
3662 } else {
3663 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3664 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3665 1, params, val);
3666 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3667 }
3668
3669 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3670 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3671 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3672 1, params, val);
3673 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3674
3675 /*
3676 * Get device capabilities so we can determine what resources we need
3677 * to manage.
3678 */
3679 memset(&caps_cmd, 0, sizeof(caps_cmd));
3680 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3681 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3682 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3683 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3684 &caps_cmd);
3685 if (ret < 0)
3686 goto bye;
3687
3688 if (caps_cmd.ofldcaps) {
3689 /* query offload-related parameters */
3690 params[0] = FW_PARAM_DEV(NTID);
3691 params[1] = FW_PARAM_PFVF(SERVER_START);
3692 params[2] = FW_PARAM_PFVF(SERVER_END);
3693 params[3] = FW_PARAM_PFVF(TDDP_START);
3694 params[4] = FW_PARAM_PFVF(TDDP_END);
3695 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3696 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3697 params, val);
3698 if (ret < 0)
3699 goto bye;
3700 adap->tids.ntids = val[0];
3701 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3702 adap->tids.stid_base = val[1];
3703 adap->tids.nstids = val[2] - val[1] + 1;
3704 /*
3705 * Setup server filter region. Divide the available filter
3706 * region into two parts. Regular filters get 1/3rd and server
3707 * filters get 2/3rd part. This is only enabled if workarond
3708 * path is enabled.
3709 * 1. For regular filters.
3710 * 2. Server filter: This are special filters which are used
3711 * to redirect SYN packets to offload queue.
3712 */
3713 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3714 adap->tids.sftid_base = adap->tids.ftid_base +
3715 DIV_ROUND_UP(adap->tids.nftids, 3);
3716 adap->tids.nsftids = adap->tids.nftids -
3717 DIV_ROUND_UP(adap->tids.nftids, 3);
3718 adap->tids.nftids = adap->tids.sftid_base -
3719 adap->tids.ftid_base;
3720 }
3721 adap->vres.ddp.start = val[3];
3722 adap->vres.ddp.size = val[4] - val[3] + 1;
3723 adap->params.ofldq_wr_cred = val[5];
3724
3725 adap->params.offload = 1;
3726 adap->num_ofld_uld += 1;
3727 }
3728 if (caps_cmd.rdmacaps) {
3729 params[0] = FW_PARAM_PFVF(STAG_START);
3730 params[1] = FW_PARAM_PFVF(STAG_END);
3731 params[2] = FW_PARAM_PFVF(RQ_START);
3732 params[3] = FW_PARAM_PFVF(RQ_END);
3733 params[4] = FW_PARAM_PFVF(PBL_START);
3734 params[5] = FW_PARAM_PFVF(PBL_END);
3735 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3736 params, val);
3737 if (ret < 0)
3738 goto bye;
3739 adap->vres.stag.start = val[0];
3740 adap->vres.stag.size = val[1] - val[0] + 1;
3741 adap->vres.rq.start = val[2];
3742 adap->vres.rq.size = val[3] - val[2] + 1;
3743 adap->vres.pbl.start = val[4];
3744 adap->vres.pbl.size = val[5] - val[4] + 1;
3745
3746 params[0] = FW_PARAM_PFVF(SQRQ_START);
3747 params[1] = FW_PARAM_PFVF(SQRQ_END);
3748 params[2] = FW_PARAM_PFVF(CQ_START);
3749 params[3] = FW_PARAM_PFVF(CQ_END);
3750 params[4] = FW_PARAM_PFVF(OCQ_START);
3751 params[5] = FW_PARAM_PFVF(OCQ_END);
3752 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3753 val);
3754 if (ret < 0)
3755 goto bye;
3756 adap->vres.qp.start = val[0];
3757 adap->vres.qp.size = val[1] - val[0] + 1;
3758 adap->vres.cq.start = val[2];
3759 adap->vres.cq.size = val[3] - val[2] + 1;
3760 adap->vres.ocq.start = val[4];
3761 adap->vres.ocq.size = val[5] - val[4] + 1;
3762
3763 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3764 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3765 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3766 val);
3767 if (ret < 0) {
3768 adap->params.max_ordird_qp = 8;
3769 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3770 ret = 0;
3771 } else {
3772 adap->params.max_ordird_qp = val[0];
3773 adap->params.max_ird_adapter = val[1];
3774 }
3775 dev_info(adap->pdev_dev,
3776 "max_ordird_qp %d max_ird_adapter %d\n",
3777 adap->params.max_ordird_qp,
3778 adap->params.max_ird_adapter);
3779 adap->num_ofld_uld += 2;
3780 }
3781 if (caps_cmd.iscsicaps) {
3782 params[0] = FW_PARAM_PFVF(ISCSI_START);
3783 params[1] = FW_PARAM_PFVF(ISCSI_END);
3784 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3785 params, val);
3786 if (ret < 0)
3787 goto bye;
3788 adap->vres.iscsi.start = val[0];
3789 adap->vres.iscsi.size = val[1] - val[0] + 1;
3790 /* LIO target and cxgb4i initiaitor */
3791 adap->num_ofld_uld += 2;
3792 }
3793 if (caps_cmd.cryptocaps) {
3794 /* Should query params here...TODO */
3795 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
3796 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3797 params, val);
3798 if (ret < 0) {
3799 if (ret != -EINVAL)
3800 goto bye;
3801 } else {
3802 adap->vres.ncrypto_fc = val[0];
3803 }
3804 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3805 adap->num_uld += 1;
3806 }
3807 #undef FW_PARAM_PFVF
3808 #undef FW_PARAM_DEV
3809
3810 /* The MTU/MSS Table is initialized by now, so load their values. If
3811 * we're initializing the adapter, then we'll make any modifications
3812 * we want to the MTU/MSS Table and also initialize the congestion
3813 * parameters.
3814 */
3815 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3816 if (state != DEV_STATE_INIT) {
3817 int i;
3818
3819 /* The default MTU Table contains values 1492 and 1500.
3820 * However, for TCP, it's better to have two values which are
3821 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3822 * This allows us to have a TCP Data Payload which is a
3823 * multiple of 8 regardless of what combination of TCP Options
3824 * are in use (always a multiple of 4 bytes) which is
3825 * important for performance reasons. For instance, if no
3826 * options are in use, then we have a 20-byte IP header and a
3827 * 20-byte TCP header. In this case, a 1500-byte MSS would
3828 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3829 * which is not a multiple of 8. So using an MSS of 1488 in
3830 * this case results in a TCP Data Payload of 1448 bytes which
3831 * is a multiple of 8. On the other hand, if 12-byte TCP Time
3832 * Stamps have been negotiated, then an MTU of 1500 bytes
3833 * results in a TCP Data Payload of 1448 bytes which, as
3834 * above, is a multiple of 8 bytes ...
3835 */
3836 for (i = 0; i < NMTUS; i++)
3837 if (adap->params.mtus[i] == 1492) {
3838 adap->params.mtus[i] = 1488;
3839 break;
3840 }
3841
3842 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3843 adap->params.b_wnd);
3844 }
3845 t4_init_sge_params(adap);
3846 adap->flags |= FW_OK;
3847 t4_init_tp_params(adap);
3848 return 0;
3849
3850 /*
3851 * Something bad happened. If a command timed out or failed with EIO
3852 * FW does not operate within its spec or something catastrophic
3853 * happened to HW/FW, stop issuing commands.
3854 */
3855 bye:
3856 kfree(adap->sge.egr_map);
3857 kfree(adap->sge.ingr_map);
3858 kfree(adap->sge.starving_fl);
3859 kfree(adap->sge.txq_maperr);
3860 #ifdef CONFIG_DEBUG_FS
3861 kfree(adap->sge.blocked_fl);
3862 #endif
3863 if (ret != -ETIMEDOUT && ret != -EIO)
3864 t4_fw_bye(adap, adap->mbox);
3865 return ret;
3866 }
3867
3868 /* EEH callbacks */
3869
3870 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3871 pci_channel_state_t state)
3872 {
3873 int i;
3874 struct adapter *adap = pci_get_drvdata(pdev);
3875
3876 if (!adap)
3877 goto out;
3878
3879 rtnl_lock();
3880 adap->flags &= ~FW_OK;
3881 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3882 spin_lock(&adap->stats_lock);
3883 for_each_port(adap, i) {
3884 struct net_device *dev = adap->port[i];
3885
3886 netif_device_detach(dev);
3887 netif_carrier_off(dev);
3888 }
3889 spin_unlock(&adap->stats_lock);
3890 disable_interrupts(adap);
3891 if (adap->flags & FULL_INIT_DONE)
3892 cxgb_down(adap);
3893 rtnl_unlock();
3894 if ((adap->flags & DEV_ENABLED)) {
3895 pci_disable_device(pdev);
3896 adap->flags &= ~DEV_ENABLED;
3897 }
3898 out: return state == pci_channel_io_perm_failure ?
3899 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3900 }
3901
3902 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3903 {
3904 int i, ret;
3905 struct fw_caps_config_cmd c;
3906 struct adapter *adap = pci_get_drvdata(pdev);
3907
3908 if (!adap) {
3909 pci_restore_state(pdev);
3910 pci_save_state(pdev);
3911 return PCI_ERS_RESULT_RECOVERED;
3912 }
3913
3914 if (!(adap->flags & DEV_ENABLED)) {
3915 if (pci_enable_device(pdev)) {
3916 dev_err(&pdev->dev, "Cannot reenable PCI "
3917 "device after reset\n");
3918 return PCI_ERS_RESULT_DISCONNECT;
3919 }
3920 adap->flags |= DEV_ENABLED;
3921 }
3922
3923 pci_set_master(pdev);
3924 pci_restore_state(pdev);
3925 pci_save_state(pdev);
3926 pci_cleanup_aer_uncorrect_error_status(pdev);
3927
3928 if (t4_wait_dev_ready(adap->regs) < 0)
3929 return PCI_ERS_RESULT_DISCONNECT;
3930 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3931 return PCI_ERS_RESULT_DISCONNECT;
3932 adap->flags |= FW_OK;
3933 if (adap_init1(adap, &c))
3934 return PCI_ERS_RESULT_DISCONNECT;
3935
3936 for_each_port(adap, i) {
3937 struct port_info *p = adap2pinfo(adap, i);
3938
3939 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3940 NULL, NULL);
3941 if (ret < 0)
3942 return PCI_ERS_RESULT_DISCONNECT;
3943 p->viid = ret;
3944 p->xact_addr_filt = -1;
3945 }
3946
3947 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3948 adap->params.b_wnd);
3949 setup_memwin(adap);
3950 if (cxgb_up(adap))
3951 return PCI_ERS_RESULT_DISCONNECT;
3952 return PCI_ERS_RESULT_RECOVERED;
3953 }
3954
3955 static void eeh_resume(struct pci_dev *pdev)
3956 {
3957 int i;
3958 struct adapter *adap = pci_get_drvdata(pdev);
3959
3960 if (!adap)
3961 return;
3962
3963 rtnl_lock();
3964 for_each_port(adap, i) {
3965 struct net_device *dev = adap->port[i];
3966
3967 if (netif_running(dev)) {
3968 link_start(dev);
3969 cxgb_set_rxmode(dev);
3970 }
3971 netif_device_attach(dev);
3972 }
3973 rtnl_unlock();
3974 }
3975
3976 static const struct pci_error_handlers cxgb4_eeh = {
3977 .error_detected = eeh_err_detected,
3978 .slot_reset = eeh_slot_reset,
3979 .resume = eeh_resume,
3980 };
3981
3982 /* Return true if the Link Configuration supports "High Speeds" (those greater
3983 * than 1Gb/s).
3984 */
3985 static inline bool is_x_10g_port(const struct link_config *lc)
3986 {
3987 unsigned int speeds, high_speeds;
3988
3989 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3990 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3991
3992 return high_speeds != 0;
3993 }
3994
3995 /*
3996 * Perform default configuration of DMA queues depending on the number and type
3997 * of ports we found and the number of available CPUs. Most settings can be
3998 * modified by the admin prior to actual use.
3999 */
4000 static void cfg_queues(struct adapter *adap)
4001 {
4002 struct sge *s = &adap->sge;
4003 int i = 0, n10g = 0, qidx = 0;
4004 #ifndef CONFIG_CHELSIO_T4_DCB
4005 int q10g = 0;
4006 #endif
4007
4008 /* Reduce memory usage in kdump environment, disable all offload.
4009 */
4010 if (is_kdump_kernel()) {
4011 adap->params.offload = 0;
4012 adap->params.crypto = 0;
4013 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4014 adap->params.offload = 0;
4015 adap->params.crypto = 0;
4016 }
4017
4018 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4019 #ifdef CONFIG_CHELSIO_T4_DCB
4020 /* For Data Center Bridging support we need to be able to support up
4021 * to 8 Traffic Priorities; each of which will be assigned to its
4022 * own TX Queue in order to prevent Head-Of-Line Blocking.
4023 */
4024 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4025 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4026 MAX_ETH_QSETS, adap->params.nports * 8);
4027 BUG_ON(1);
4028 }
4029
4030 for_each_port(adap, i) {
4031 struct port_info *pi = adap2pinfo(adap, i);
4032
4033 pi->first_qset = qidx;
4034 pi->nqsets = 8;
4035 qidx += pi->nqsets;
4036 }
4037 #else /* !CONFIG_CHELSIO_T4_DCB */
4038 /*
4039 * We default to 1 queue per non-10G port and up to # of cores queues
4040 * per 10G port.
4041 */
4042 if (n10g)
4043 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4044 if (q10g > netif_get_num_default_rss_queues())
4045 q10g = netif_get_num_default_rss_queues();
4046
4047 for_each_port(adap, i) {
4048 struct port_info *pi = adap2pinfo(adap, i);
4049
4050 pi->first_qset = qidx;
4051 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4052 qidx += pi->nqsets;
4053 }
4054 #endif /* !CONFIG_CHELSIO_T4_DCB */
4055
4056 s->ethqsets = qidx;
4057 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4058
4059 if (is_uld(adap)) {
4060 /*
4061 * For offload we use 1 queue/channel if all ports are up to 1G,
4062 * otherwise we divide all available queues amongst the channels
4063 * capped by the number of available cores.
4064 */
4065 if (n10g) {
4066 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4067 s->ofldqsets = roundup(i, adap->params.nports);
4068 } else {
4069 s->ofldqsets = adap->params.nports;
4070 }
4071 }
4072
4073 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4074 struct sge_eth_rxq *r = &s->ethrxq[i];
4075
4076 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4077 r->fl.size = 72;
4078 }
4079
4080 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4081 s->ethtxq[i].q.size = 1024;
4082
4083 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4084 s->ctrlq[i].q.size = 512;
4085
4086 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4087 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4088 }
4089
4090 /*
4091 * Reduce the number of Ethernet queues across all ports to at most n.
4092 * n provides at least one queue per port.
4093 */
4094 static void reduce_ethqs(struct adapter *adap, int n)
4095 {
4096 int i;
4097 struct port_info *pi;
4098
4099 while (n < adap->sge.ethqsets)
4100 for_each_port(adap, i) {
4101 pi = adap2pinfo(adap, i);
4102 if (pi->nqsets > 1) {
4103 pi->nqsets--;
4104 adap->sge.ethqsets--;
4105 if (adap->sge.ethqsets <= n)
4106 break;
4107 }
4108 }
4109
4110 n = 0;
4111 for_each_port(adap, i) {
4112 pi = adap2pinfo(adap, i);
4113 pi->first_qset = n;
4114 n += pi->nqsets;
4115 }
4116 }
4117
4118 static int get_msix_info(struct adapter *adap)
4119 {
4120 struct uld_msix_info *msix_info;
4121 unsigned int max_ingq = 0;
4122
4123 if (is_offload(adap))
4124 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4125 if (is_pci_uld(adap))
4126 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4127
4128 if (!max_ingq)
4129 goto out;
4130
4131 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4132 if (!msix_info)
4133 return -ENOMEM;
4134
4135 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4136 sizeof(long), GFP_KERNEL);
4137 if (!adap->msix_bmap_ulds.msix_bmap) {
4138 kfree(msix_info);
4139 return -ENOMEM;
4140 }
4141 spin_lock_init(&adap->msix_bmap_ulds.lock);
4142 adap->msix_info_ulds = msix_info;
4143 out:
4144 return 0;
4145 }
4146
4147 static void free_msix_info(struct adapter *adap)
4148 {
4149 if (!(adap->num_uld && adap->num_ofld_uld))
4150 return;
4151
4152 kfree(adap->msix_info_ulds);
4153 kfree(adap->msix_bmap_ulds.msix_bmap);
4154 }
4155
4156 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4157 #define EXTRA_VECS 2
4158
4159 static int enable_msix(struct adapter *adap)
4160 {
4161 int ofld_need = 0, uld_need = 0;
4162 int i, j, want, need, allocated;
4163 struct sge *s = &adap->sge;
4164 unsigned int nchan = adap->params.nports;
4165 struct msix_entry *entries;
4166 int max_ingq = MAX_INGQ;
4167
4168 if (is_pci_uld(adap))
4169 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4170 if (is_offload(adap))
4171 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4172 entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4173 GFP_KERNEL);
4174 if (!entries)
4175 return -ENOMEM;
4176
4177 /* map for msix */
4178 if (get_msix_info(adap)) {
4179 adap->params.offload = 0;
4180 adap->params.crypto = 0;
4181 }
4182
4183 for (i = 0; i < max_ingq + 1; ++i)
4184 entries[i].entry = i;
4185
4186 want = s->max_ethqsets + EXTRA_VECS;
4187 if (is_offload(adap)) {
4188 want += adap->num_ofld_uld * s->ofldqsets;
4189 ofld_need = adap->num_ofld_uld * nchan;
4190 }
4191 if (is_pci_uld(adap)) {
4192 want += adap->num_uld * s->ofldqsets;
4193 uld_need = adap->num_uld * nchan;
4194 }
4195 #ifdef CONFIG_CHELSIO_T4_DCB
4196 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4197 * each port.
4198 */
4199 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4200 #else
4201 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4202 #endif
4203 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4204 if (allocated < 0) {
4205 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4206 " not using MSI-X\n");
4207 kfree(entries);
4208 return allocated;
4209 }
4210
4211 /* Distribute available vectors to the various queue groups.
4212 * Every group gets its minimum requirement and NIC gets top
4213 * priority for leftovers.
4214 */
4215 i = allocated - EXTRA_VECS - ofld_need - uld_need;
4216 if (i < s->max_ethqsets) {
4217 s->max_ethqsets = i;
4218 if (i < s->ethqsets)
4219 reduce_ethqs(adap, i);
4220 }
4221 if (is_uld(adap)) {
4222 if (allocated < want)
4223 s->nqs_per_uld = nchan;
4224 else
4225 s->nqs_per_uld = s->ofldqsets;
4226 }
4227
4228 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4229 adap->msix_info[i].vec = entries[i].vector;
4230 if (is_uld(adap)) {
4231 for (j = 0 ; i < allocated; ++i, j++) {
4232 adap->msix_info_ulds[j].vec = entries[i].vector;
4233 adap->msix_info_ulds[j].idx = i;
4234 }
4235 adap->msix_bmap_ulds.mapsize = j;
4236 }
4237 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4238 "nic %d per uld %d\n",
4239 allocated, s->max_ethqsets, s->nqs_per_uld);
4240
4241 kfree(entries);
4242 return 0;
4243 }
4244
4245 #undef EXTRA_VECS
4246
4247 static int init_rss(struct adapter *adap)
4248 {
4249 unsigned int i;
4250 int err;
4251
4252 err = t4_init_rss_mode(adap, adap->mbox);
4253 if (err)
4254 return err;
4255
4256 for_each_port(adap, i) {
4257 struct port_info *pi = adap2pinfo(adap, i);
4258
4259 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4260 if (!pi->rss)
4261 return -ENOMEM;
4262 }
4263 return 0;
4264 }
4265
4266 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4267 enum pci_bus_speed *speed,
4268 enum pcie_link_width *width)
4269 {
4270 u32 lnkcap1, lnkcap2;
4271 int err1, err2;
4272
4273 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4274
4275 *speed = PCI_SPEED_UNKNOWN;
4276 *width = PCIE_LNK_WIDTH_UNKNOWN;
4277
4278 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4279 &lnkcap1);
4280 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4281 &lnkcap2);
4282 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4283 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4284 *speed = PCIE_SPEED_8_0GT;
4285 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4286 *speed = PCIE_SPEED_5_0GT;
4287 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4288 *speed = PCIE_SPEED_2_5GT;
4289 }
4290 if (!err1) {
4291 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4292 if (!lnkcap2) { /* pre-r3.0 */
4293 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4294 *speed = PCIE_SPEED_5_0GT;
4295 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4296 *speed = PCIE_SPEED_2_5GT;
4297 }
4298 }
4299
4300 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4301 return err1 ? err1 : err2 ? err2 : -EINVAL;
4302 return 0;
4303 }
4304
4305 static void cxgb4_check_pcie_caps(struct adapter *adap)
4306 {
4307 enum pcie_link_width width, width_cap;
4308 enum pci_bus_speed speed, speed_cap;
4309
4310 #define PCIE_SPEED_STR(speed) \
4311 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4312 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4313 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4314 "Unknown")
4315
4316 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4317 dev_warn(adap->pdev_dev,
4318 "Unable to determine PCIe device BW capabilities\n");
4319 return;
4320 }
4321
4322 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4323 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4324 dev_warn(adap->pdev_dev,
4325 "Unable to determine PCI Express bandwidth.\n");
4326 return;
4327 }
4328
4329 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4330 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4331 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4332 width, width_cap);
4333 if (speed < speed_cap || width < width_cap)
4334 dev_info(adap->pdev_dev,
4335 "A slot with more lanes and/or higher speed is "
4336 "suggested for optimal performance.\n");
4337 }
4338
4339 /* Dump basic information about the adapter */
4340 static void print_adapter_info(struct adapter *adapter)
4341 {
4342 /* Device information */
4343 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4344 adapter->params.vpd.id,
4345 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4346 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4347 adapter->params.vpd.sn, adapter->params.vpd.pn);
4348
4349 /* Firmware Version */
4350 if (!adapter->params.fw_vers)
4351 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4352 else
4353 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4354 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4355 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4356 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4357 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4358
4359 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4360 * Firmware, so dev_info() is more appropriate here.)
4361 */
4362 if (!adapter->params.bs_vers)
4363 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4364 else
4365 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4366 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4367 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4368 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4369 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4370
4371 /* TP Microcode Version */
4372 if (!adapter->params.tp_vers)
4373 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4374 else
4375 dev_info(adapter->pdev_dev,
4376 "TP Microcode version: %u.%u.%u.%u\n",
4377 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4378 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4379 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4380 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4381
4382 /* Expansion ROM version */
4383 if (!adapter->params.er_vers)
4384 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4385 else
4386 dev_info(adapter->pdev_dev,
4387 "Expansion ROM version: %u.%u.%u.%u\n",
4388 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4389 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4390 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4391 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4392
4393 /* Software/Hardware configuration */
4394 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4395 is_offload(adapter) ? "R" : "",
4396 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4397 (adapter->flags & USING_MSI) ? "MSI" : ""),
4398 is_offload(adapter) ? "Offload" : "non-Offload");
4399 }
4400
4401 static void print_port_info(const struct net_device *dev)
4402 {
4403 char buf[80];
4404 char *bufp = buf;
4405 const char *spd = "";
4406 const struct port_info *pi = netdev_priv(dev);
4407 const struct adapter *adap = pi->adapter;
4408
4409 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4410 spd = " 2.5 GT/s";
4411 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4412 spd = " 5 GT/s";
4413 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4414 spd = " 8 GT/s";
4415
4416 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4417 bufp += sprintf(bufp, "100M/");
4418 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4419 bufp += sprintf(bufp, "1G/");
4420 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4421 bufp += sprintf(bufp, "10G/");
4422 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4423 bufp += sprintf(bufp, "25G/");
4424 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4425 bufp += sprintf(bufp, "40G/");
4426 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4427 bufp += sprintf(bufp, "100G/");
4428 if (bufp != buf)
4429 --bufp;
4430 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4431
4432 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4433 dev->name, adap->params.vpd.id, adap->name, buf);
4434 }
4435
4436 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4437 {
4438 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4439 }
4440
4441 /*
4442 * Free the following resources:
4443 * - memory used for tables
4444 * - MSI/MSI-X
4445 * - net devices
4446 * - resources FW is holding for us
4447 */
4448 static void free_some_resources(struct adapter *adapter)
4449 {
4450 unsigned int i;
4451
4452 kvfree(adapter->l2t);
4453 t4_cleanup_sched(adapter);
4454 kvfree(adapter->tids.tid_tab);
4455 cxgb4_cleanup_tc_u32(adapter);
4456 kfree(adapter->sge.egr_map);
4457 kfree(adapter->sge.ingr_map);
4458 kfree(adapter->sge.starving_fl);
4459 kfree(adapter->sge.txq_maperr);
4460 #ifdef CONFIG_DEBUG_FS
4461 kfree(adapter->sge.blocked_fl);
4462 #endif
4463 disable_msi(adapter);
4464
4465 for_each_port(adapter, i)
4466 if (adapter->port[i]) {
4467 struct port_info *pi = adap2pinfo(adapter, i);
4468
4469 if (pi->viid != 0)
4470 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4471 0, pi->viid);
4472 kfree(adap2pinfo(adapter, i)->rss);
4473 free_netdev(adapter->port[i]);
4474 }
4475 if (adapter->flags & FW_OK)
4476 t4_fw_bye(adapter, adapter->pf);
4477 }
4478
4479 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4480 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4481 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4482 #define SEGMENT_SIZE 128
4483
4484 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4485 {
4486 u16 device_id;
4487
4488 /* Retrieve adapter's device ID */
4489 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4490
4491 switch (device_id >> 12) {
4492 case CHELSIO_T4:
4493 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4494 case CHELSIO_T5:
4495 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4496 case CHELSIO_T6:
4497 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4498 default:
4499 dev_err(&pdev->dev, "Device %d is not supported\n",
4500 device_id);
4501 }
4502 return -EINVAL;
4503 }
4504
4505 #ifdef CONFIG_PCI_IOV
4506 static void dummy_setup(struct net_device *dev)
4507 {
4508 dev->type = ARPHRD_NONE;
4509 dev->mtu = 0;
4510 dev->hard_header_len = 0;
4511 dev->addr_len = 0;
4512 dev->tx_queue_len = 0;
4513 dev->flags |= IFF_NOARP;
4514 dev->priv_flags |= IFF_NO_QUEUE;
4515
4516 /* Initialize the device structure. */
4517 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4518 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4519 dev->destructor = free_netdev;
4520 }
4521
4522 static int config_mgmt_dev(struct pci_dev *pdev)
4523 {
4524 struct adapter *adap = pci_get_drvdata(pdev);
4525 struct net_device *netdev;
4526 struct port_info *pi;
4527 char name[IFNAMSIZ];
4528 int err;
4529
4530 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4531 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4532 dummy_setup);
4533 if (!netdev)
4534 return -ENOMEM;
4535
4536 pi = netdev_priv(netdev);
4537 pi->adapter = adap;
4538 pi->port_id = adap->pf % adap->params.nports;
4539 SET_NETDEV_DEV(netdev, &pdev->dev);
4540
4541 adap->port[0] = netdev;
4542
4543 err = register_netdev(adap->port[0]);
4544 if (err) {
4545 pr_info("Unable to register VF mgmt netdev %s\n", name);
4546 free_netdev(adap->port[0]);
4547 adap->port[0] = NULL;
4548 return err;
4549 }
4550 return 0;
4551 }
4552
4553 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4554 {
4555 struct adapter *adap = pci_get_drvdata(pdev);
4556 int err = 0;
4557 int current_vfs = pci_num_vf(pdev);
4558 u32 pcie_fw;
4559
4560 pcie_fw = readl(adap->regs + PCIE_FW_A);
4561 /* Check if cxgb4 is the MASTER and fw is initialized */
4562 if (!(pcie_fw & PCIE_FW_INIT_F) ||
4563 !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4564 PCIE_FW_MASTER_G(pcie_fw) != 4) {
4565 dev_warn(&pdev->dev,
4566 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4567 return -EOPNOTSUPP;
4568 }
4569
4570 /* If any of the VF's is already assigned to Guest OS, then
4571 * SRIOV for the same cannot be modified
4572 */
4573 if (current_vfs && pci_vfs_assigned(pdev)) {
4574 dev_err(&pdev->dev,
4575 "Cannot modify SR-IOV while VFs are assigned\n");
4576 num_vfs = current_vfs;
4577 return num_vfs;
4578 }
4579
4580 /* Disable SRIOV when zero is passed.
4581 * One needs to disable SRIOV before modifying it, else
4582 * stack throws the below warning:
4583 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4584 */
4585 if (!num_vfs) {
4586 pci_disable_sriov(pdev);
4587 if (adap->port[0]) {
4588 unregister_netdev(adap->port[0]);
4589 adap->port[0] = NULL;
4590 }
4591 /* free VF resources */
4592 kfree(adap->vfinfo);
4593 adap->vfinfo = NULL;
4594 adap->num_vfs = 0;
4595 return num_vfs;
4596 }
4597
4598 if (num_vfs != current_vfs) {
4599 err = pci_enable_sriov(pdev, num_vfs);
4600 if (err)
4601 return err;
4602
4603 adap->num_vfs = num_vfs;
4604 err = config_mgmt_dev(pdev);
4605 if (err)
4606 return err;
4607 }
4608
4609 adap->vfinfo = kcalloc(adap->num_vfs,
4610 sizeof(struct vf_info), GFP_KERNEL);
4611 if (adap->vfinfo)
4612 fill_vf_station_mac_addr(adap);
4613 return num_vfs;
4614 }
4615 #endif
4616
4617 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4618 {
4619 int func, i, err, s_qpp, qpp, num_seg;
4620 struct port_info *pi;
4621 bool highdma = false;
4622 struct adapter *adapter = NULL;
4623 struct net_device *netdev;
4624 void __iomem *regs;
4625 u32 whoami, pl_rev;
4626 enum chip_type chip;
4627 static int adap_idx = 1;
4628 #ifdef CONFIG_PCI_IOV
4629 u32 v, port_vec;
4630 #endif
4631
4632 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4633
4634 err = pci_request_regions(pdev, KBUILD_MODNAME);
4635 if (err) {
4636 /* Just info, some other driver may have claimed the device. */
4637 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4638 return err;
4639 }
4640
4641 err = pci_enable_device(pdev);
4642 if (err) {
4643 dev_err(&pdev->dev, "cannot enable PCI device\n");
4644 goto out_release_regions;
4645 }
4646
4647 regs = pci_ioremap_bar(pdev, 0);
4648 if (!regs) {
4649 dev_err(&pdev->dev, "cannot map device registers\n");
4650 err = -ENOMEM;
4651 goto out_disable_device;
4652 }
4653
4654 err = t4_wait_dev_ready(regs);
4655 if (err < 0)
4656 goto out_unmap_bar0;
4657
4658 /* We control everything through one PF */
4659 whoami = readl(regs + PL_WHOAMI_A);
4660 pl_rev = REV_G(readl(regs + PL_REV_A));
4661 chip = get_chip_type(pdev, pl_rev);
4662 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4663 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4664 if (func != ent->driver_data) {
4665 #ifndef CONFIG_PCI_IOV
4666 iounmap(regs);
4667 #endif
4668 pci_disable_device(pdev);
4669 pci_save_state(pdev); /* to restore SR-IOV later */
4670 goto sriov;
4671 }
4672
4673 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4674 highdma = true;
4675 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4676 if (err) {
4677 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4678 "coherent allocations\n");
4679 goto out_unmap_bar0;
4680 }
4681 } else {
4682 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4683 if (err) {
4684 dev_err(&pdev->dev, "no usable DMA configuration\n");
4685 goto out_unmap_bar0;
4686 }
4687 }
4688
4689 pci_enable_pcie_error_reporting(pdev);
4690 enable_pcie_relaxed_ordering(pdev);
4691 pci_set_master(pdev);
4692 pci_save_state(pdev);
4693
4694 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4695 if (!adapter) {
4696 err = -ENOMEM;
4697 goto out_unmap_bar0;
4698 }
4699 adap_idx++;
4700
4701 adapter->workq = create_singlethread_workqueue("cxgb4");
4702 if (!adapter->workq) {
4703 err = -ENOMEM;
4704 goto out_free_adapter;
4705 }
4706
4707 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4708 (sizeof(struct mbox_cmd) *
4709 T4_OS_LOG_MBOX_CMDS),
4710 GFP_KERNEL);
4711 if (!adapter->mbox_log) {
4712 err = -ENOMEM;
4713 goto out_free_adapter;
4714 }
4715 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4716
4717 /* PCI device has been enabled */
4718 adapter->flags |= DEV_ENABLED;
4719
4720 adapter->regs = regs;
4721 adapter->pdev = pdev;
4722 adapter->pdev_dev = &pdev->dev;
4723 adapter->name = pci_name(pdev);
4724 adapter->mbox = func;
4725 adapter->pf = func;
4726 adapter->msg_enable = DFLT_MSG_ENABLE;
4727 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4728
4729 spin_lock_init(&adapter->stats_lock);
4730 spin_lock_init(&adapter->tid_release_lock);
4731 spin_lock_init(&adapter->win0_lock);
4732 spin_lock_init(&adapter->mbox_lock);
4733
4734 INIT_LIST_HEAD(&adapter->mlist.list);
4735
4736 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4737 INIT_WORK(&adapter->db_full_task, process_db_full);
4738 INIT_WORK(&adapter->db_drop_task, process_db_drop);
4739
4740 err = t4_prep_adapter(adapter);
4741 if (err)
4742 goto out_free_adapter;
4743
4744
4745 if (!is_t4(adapter->params.chip)) {
4746 s_qpp = (QUEUESPERPAGEPF0_S +
4747 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4748 adapter->pf);
4749 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4750 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4751 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4752
4753 /* Each segment size is 128B. Write coalescing is enabled only
4754 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4755 * queue is less no of segments that can be accommodated in
4756 * a page size.
4757 */
4758 if (qpp > num_seg) {
4759 dev_err(&pdev->dev,
4760 "Incorrect number of egress queues per page\n");
4761 err = -EINVAL;
4762 goto out_free_adapter;
4763 }
4764 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4765 pci_resource_len(pdev, 2));
4766 if (!adapter->bar2) {
4767 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4768 err = -ENOMEM;
4769 goto out_free_adapter;
4770 }
4771 }
4772
4773 setup_memwin(adapter);
4774 err = adap_init0(adapter);
4775 #ifdef CONFIG_DEBUG_FS
4776 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4777 #endif
4778 setup_memwin_rdma(adapter);
4779 if (err)
4780 goto out_unmap_bar;
4781
4782 /* configure SGE_STAT_CFG_A to read WC stats */
4783 if (!is_t4(adapter->params.chip))
4784 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4785 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4786 T6_STATMODE_V(0)));
4787
4788 for_each_port(adapter, i) {
4789 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4790 MAX_ETH_QSETS);
4791 if (!netdev) {
4792 err = -ENOMEM;
4793 goto out_free_dev;
4794 }
4795
4796 SET_NETDEV_DEV(netdev, &pdev->dev);
4797
4798 adapter->port[i] = netdev;
4799 pi = netdev_priv(netdev);
4800 pi->adapter = adapter;
4801 pi->xact_addr_filt = -1;
4802 pi->port_id = i;
4803 netdev->irq = pdev->irq;
4804
4805 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4806 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4807 NETIF_F_RXCSUM | NETIF_F_RXHASH |
4808 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4809 NETIF_F_HW_TC;
4810 if (highdma)
4811 netdev->hw_features |= NETIF_F_HIGHDMA;
4812 netdev->features |= netdev->hw_features;
4813 netdev->vlan_features = netdev->features & VLAN_FEAT;
4814
4815 netdev->priv_flags |= IFF_UNICAST_FLT;
4816
4817 /* MTU range: 81 - 9600 */
4818 netdev->min_mtu = 81;
4819 netdev->max_mtu = MAX_MTU;
4820
4821 netdev->netdev_ops = &cxgb4_netdev_ops;
4822 #ifdef CONFIG_CHELSIO_T4_DCB
4823 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4824 cxgb4_dcb_state_init(netdev);
4825 #endif
4826 cxgb4_set_ethtool_ops(netdev);
4827 }
4828
4829 pci_set_drvdata(pdev, adapter);
4830
4831 if (adapter->flags & FW_OK) {
4832 err = t4_port_init(adapter, func, func, 0);
4833 if (err)
4834 goto out_free_dev;
4835 } else if (adapter->params.nports == 1) {
4836 /* If we don't have a connection to the firmware -- possibly
4837 * because of an error -- grab the raw VPD parameters so we
4838 * can set the proper MAC Address on the debug network
4839 * interface that we've created.
4840 */
4841 u8 hw_addr[ETH_ALEN];
4842 u8 *na = adapter->params.vpd.na;
4843
4844 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4845 if (!err) {
4846 for (i = 0; i < ETH_ALEN; i++)
4847 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4848 hex2val(na[2 * i + 1]));
4849 t4_set_hw_addr(adapter, 0, hw_addr);
4850 }
4851 }
4852
4853 /* Configure queues and allocate tables now, they can be needed as
4854 * soon as the first register_netdev completes.
4855 */
4856 cfg_queues(adapter);
4857
4858 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4859 if (!adapter->l2t) {
4860 /* We tolerate a lack of L2T, giving up some functionality */
4861 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4862 adapter->params.offload = 0;
4863 }
4864
4865 #if IS_ENABLED(CONFIG_IPV6)
4866 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4867 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4868 /* CLIP functionality is not present in hardware,
4869 * hence disable all offload features
4870 */
4871 dev_warn(&pdev->dev,
4872 "CLIP not enabled in hardware, continuing\n");
4873 adapter->params.offload = 0;
4874 } else {
4875 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4876 adapter->clipt_end);
4877 if (!adapter->clipt) {
4878 /* We tolerate a lack of clip_table, giving up
4879 * some functionality
4880 */
4881 dev_warn(&pdev->dev,
4882 "could not allocate Clip table, continuing\n");
4883 adapter->params.offload = 0;
4884 }
4885 }
4886 #endif
4887
4888 for_each_port(adapter, i) {
4889 pi = adap2pinfo(adapter, i);
4890 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4891 if (!pi->sched_tbl)
4892 dev_warn(&pdev->dev,
4893 "could not activate scheduling on port %d\n",
4894 i);
4895 }
4896
4897 if (tid_init(&adapter->tids) < 0) {
4898 dev_warn(&pdev->dev, "could not allocate TID table, "
4899 "continuing\n");
4900 adapter->params.offload = 0;
4901 } else {
4902 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
4903 if (!adapter->tc_u32)
4904 dev_warn(&pdev->dev,
4905 "could not offload tc u32, continuing\n");
4906 }
4907
4908 if (is_offload(adapter)) {
4909 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4910 u32 hash_base, hash_reg;
4911
4912 if (chip <= CHELSIO_T5) {
4913 hash_reg = LE_DB_TID_HASHBASE_A;
4914 hash_base = t4_read_reg(adapter, hash_reg);
4915 adapter->tids.hash_base = hash_base / 4;
4916 } else {
4917 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4918 hash_base = t4_read_reg(adapter, hash_reg);
4919 adapter->tids.hash_base = hash_base;
4920 }
4921 }
4922 }
4923
4924 /* See what interrupts we'll be using */
4925 if (msi > 1 && enable_msix(adapter) == 0)
4926 adapter->flags |= USING_MSIX;
4927 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4928 adapter->flags |= USING_MSI;
4929 if (msi > 1)
4930 free_msix_info(adapter);
4931 }
4932
4933 /* check for PCI Express bandwidth capabiltites */
4934 cxgb4_check_pcie_caps(adapter);
4935
4936 err = init_rss(adapter);
4937 if (err)
4938 goto out_free_dev;
4939
4940 /*
4941 * The card is now ready to go. If any errors occur during device
4942 * registration we do not fail the whole card but rather proceed only
4943 * with the ports we manage to register successfully. However we must
4944 * register at least one net device.
4945 */
4946 for_each_port(adapter, i) {
4947 pi = adap2pinfo(adapter, i);
4948 adapter->port[i]->dev_port = pi->lport;
4949 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4950 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4951
4952 err = register_netdev(adapter->port[i]);
4953 if (err)
4954 break;
4955 adapter->chan_map[pi->tx_chan] = i;
4956 print_port_info(adapter->port[i]);
4957 }
4958 if (i == 0) {
4959 dev_err(&pdev->dev, "could not register any net devices\n");
4960 goto out_free_dev;
4961 }
4962 if (err) {
4963 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4964 err = 0;
4965 }
4966
4967 if (cxgb4_debugfs_root) {
4968 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4969 cxgb4_debugfs_root);
4970 setup_debugfs(adapter);
4971 }
4972
4973 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4974 pdev->needs_freset = 1;
4975
4976 if (is_uld(adapter)) {
4977 mutex_lock(&uld_mutex);
4978 list_add_tail(&adapter->list_node, &adapter_list);
4979 mutex_unlock(&uld_mutex);
4980 }
4981
4982 print_adapter_info(adapter);
4983 setup_fw_sge_queues(adapter);
4984 return 0;
4985
4986 sriov:
4987 #ifdef CONFIG_PCI_IOV
4988 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4989 if (!adapter) {
4990 err = -ENOMEM;
4991 goto free_pci_region;
4992 }
4993
4994 adapter->pdev = pdev;
4995 adapter->pdev_dev = &pdev->dev;
4996 adapter->name = pci_name(pdev);
4997 adapter->mbox = func;
4998 adapter->pf = func;
4999 adapter->regs = regs;
5000 adapter->adap_idx = adap_idx;
5001 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5002 (sizeof(struct mbox_cmd) *
5003 T4_OS_LOG_MBOX_CMDS),
5004 GFP_KERNEL);
5005 if (!adapter->mbox_log) {
5006 err = -ENOMEM;
5007 goto free_adapter;
5008 }
5009 spin_lock_init(&adapter->mbox_lock);
5010 INIT_LIST_HEAD(&adapter->mlist.list);
5011
5012 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5013 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5014 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5015 &v, &port_vec);
5016 if (err < 0) {
5017 dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5018 goto free_adapter;
5019 }
5020
5021 adapter->params.nports = hweight32(port_vec);
5022 pci_set_drvdata(pdev, adapter);
5023 return 0;
5024
5025 free_adapter:
5026 kfree(adapter);
5027 free_pci_region:
5028 iounmap(regs);
5029 pci_disable_sriov(pdev);
5030 pci_release_regions(pdev);
5031 return err;
5032 #else
5033 return 0;
5034 #endif
5035
5036 out_free_dev:
5037 free_some_resources(adapter);
5038 if (adapter->flags & USING_MSIX)
5039 free_msix_info(adapter);
5040 if (adapter->num_uld || adapter->num_ofld_uld)
5041 t4_uld_mem_free(adapter);
5042 out_unmap_bar:
5043 if (!is_t4(adapter->params.chip))
5044 iounmap(adapter->bar2);
5045 out_free_adapter:
5046 if (adapter->workq)
5047 destroy_workqueue(adapter->workq);
5048
5049 kfree(adapter->mbox_log);
5050 kfree(adapter);
5051 out_unmap_bar0:
5052 iounmap(regs);
5053 out_disable_device:
5054 pci_disable_pcie_error_reporting(pdev);
5055 pci_disable_device(pdev);
5056 out_release_regions:
5057 pci_release_regions(pdev);
5058 return err;
5059 }
5060
5061 static void remove_one(struct pci_dev *pdev)
5062 {
5063 struct adapter *adapter = pci_get_drvdata(pdev);
5064
5065 if (!adapter) {
5066 pci_release_regions(pdev);
5067 return;
5068 }
5069
5070 if (adapter->pf == 4) {
5071 int i;
5072
5073 /* Tear down per-adapter Work Queue first since it can contain
5074 * references to our adapter data structure.
5075 */
5076 destroy_workqueue(adapter->workq);
5077
5078 if (is_uld(adapter))
5079 detach_ulds(adapter);
5080
5081 disable_interrupts(adapter);
5082
5083 for_each_port(adapter, i)
5084 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5085 unregister_netdev(adapter->port[i]);
5086
5087 debugfs_remove_recursive(adapter->debugfs_root);
5088
5089 /* If we allocated filters, free up state associated with any
5090 * valid filters ...
5091 */
5092 clear_all_filters(adapter);
5093
5094 if (adapter->flags & FULL_INIT_DONE)
5095 cxgb_down(adapter);
5096
5097 if (adapter->flags & USING_MSIX)
5098 free_msix_info(adapter);
5099 if (adapter->num_uld || adapter->num_ofld_uld)
5100 t4_uld_mem_free(adapter);
5101 free_some_resources(adapter);
5102 #if IS_ENABLED(CONFIG_IPV6)
5103 t4_cleanup_clip_tbl(adapter);
5104 #endif
5105 iounmap(adapter->regs);
5106 if (!is_t4(adapter->params.chip))
5107 iounmap(adapter->bar2);
5108 pci_disable_pcie_error_reporting(pdev);
5109 if ((adapter->flags & DEV_ENABLED)) {
5110 pci_disable_device(pdev);
5111 adapter->flags &= ~DEV_ENABLED;
5112 }
5113 pci_release_regions(pdev);
5114 kfree(adapter->mbox_log);
5115 synchronize_rcu();
5116 kfree(adapter);
5117 }
5118 #ifdef CONFIG_PCI_IOV
5119 else {
5120 if (adapter->port[0])
5121 unregister_netdev(adapter->port[0]);
5122 iounmap(adapter->regs);
5123 kfree(adapter->vfinfo);
5124 kfree(adapter);
5125 pci_disable_sriov(pdev);
5126 pci_release_regions(pdev);
5127 }
5128 #endif
5129 }
5130
5131 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5132 * delivery. This is essentially a stripped down version of the PCI remove()
5133 * function where we do the minimal amount of work necessary to shutdown any
5134 * further activity.
5135 */
5136 static void shutdown_one(struct pci_dev *pdev)
5137 {
5138 struct adapter *adapter = pci_get_drvdata(pdev);
5139
5140 /* As with remove_one() above (see extended comment), we only want do
5141 * do cleanup on PCI Devices which went all the way through init_one()
5142 * ...
5143 */
5144 if (!adapter) {
5145 pci_release_regions(pdev);
5146 return;
5147 }
5148
5149 if (adapter->pf == 4) {
5150 int i;
5151
5152 for_each_port(adapter, i)
5153 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5154 cxgb_close(adapter->port[i]);
5155
5156 t4_uld_clean_up(adapter);
5157 disable_interrupts(adapter);
5158 disable_msi(adapter);
5159
5160 t4_sge_stop(adapter);
5161 if (adapter->flags & FW_OK)
5162 t4_fw_bye(adapter, adapter->mbox);
5163 }
5164 #ifdef CONFIG_PCI_IOV
5165 else {
5166 if (adapter->port[0])
5167 unregister_netdev(adapter->port[0]);
5168 iounmap(adapter->regs);
5169 kfree(adapter->vfinfo);
5170 kfree(adapter);
5171 pci_disable_sriov(pdev);
5172 pci_release_regions(pdev);
5173 }
5174 #endif
5175 }
5176
5177 static struct pci_driver cxgb4_driver = {
5178 .name = KBUILD_MODNAME,
5179 .id_table = cxgb4_pci_tbl,
5180 .probe = init_one,
5181 .remove = remove_one,
5182 .shutdown = shutdown_one,
5183 #ifdef CONFIG_PCI_IOV
5184 .sriov_configure = cxgb4_iov_configure,
5185 #endif
5186 .err_handler = &cxgb4_eeh,
5187 };
5188
5189 static int __init cxgb4_init_module(void)
5190 {
5191 int ret;
5192
5193 /* Debugfs support is optional, just warn if this fails */
5194 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5195 if (!cxgb4_debugfs_root)
5196 pr_warn("could not create debugfs entry, continuing\n");
5197
5198 ret = pci_register_driver(&cxgb4_driver);
5199 if (ret < 0)
5200 debugfs_remove(cxgb4_debugfs_root);
5201
5202 #if IS_ENABLED(CONFIG_IPV6)
5203 if (!inet6addr_registered) {
5204 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5205 inet6addr_registered = true;
5206 }
5207 #endif
5208
5209 return ret;
5210 }
5211
5212 static void __exit cxgb4_cleanup_module(void)
5213 {
5214 #if IS_ENABLED(CONFIG_IPV6)
5215 if (inet6addr_registered) {
5216 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5217 inet6addr_registered = false;
5218 }
5219 #endif
5220 pci_unregister_driver(&cxgb4_driver);
5221 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5222 }
5223
5224 module_init(cxgb4_init_module);
5225 module_exit(cxgb4_cleanup_module);