]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge tag 'sunxi-drivers-for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137 {
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172 }
173
174 enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183 };
184
185 /* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191 struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216 CH_DEVICE(0xa000, 0), /* PE10K */
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
227 CH_DEVICE(0x400d, -1),
228 CH_DEVICE(0x400e, -1),
229 CH_DEVICE(0x4080, -1),
230 CH_DEVICE(0x4081, -1),
231 CH_DEVICE(0x4082, -1),
232 CH_DEVICE(0x4083, -1),
233 CH_DEVICE(0x4084, -1),
234 CH_DEVICE(0x4085, -1),
235 CH_DEVICE(0x4086, -1),
236 CH_DEVICE(0x4087, -1),
237 CH_DEVICE(0x4088, -1),
238 CH_DEVICE(0x4401, 4),
239 CH_DEVICE(0x4402, 4),
240 CH_DEVICE(0x4403, 4),
241 CH_DEVICE(0x4404, 4),
242 CH_DEVICE(0x4405, 4),
243 CH_DEVICE(0x4406, 4),
244 CH_DEVICE(0x4407, 4),
245 CH_DEVICE(0x4408, 4),
246 CH_DEVICE(0x4409, 4),
247 CH_DEVICE(0x440a, 4),
248 CH_DEVICE(0x440d, 4),
249 CH_DEVICE(0x440e, 4),
250 CH_DEVICE(0x4480, 4),
251 CH_DEVICE(0x4481, 4),
252 CH_DEVICE(0x4482, 4),
253 CH_DEVICE(0x4483, 4),
254 CH_DEVICE(0x4484, 4),
255 CH_DEVICE(0x4485, 4),
256 CH_DEVICE(0x4486, 4),
257 CH_DEVICE(0x4487, 4),
258 CH_DEVICE(0x4488, 4),
259 CH_DEVICE(0x5001, 4),
260 CH_DEVICE(0x5002, 4),
261 CH_DEVICE(0x5003, 4),
262 CH_DEVICE(0x5004, 4),
263 CH_DEVICE(0x5005, 4),
264 CH_DEVICE(0x5006, 4),
265 CH_DEVICE(0x5007, 4),
266 CH_DEVICE(0x5008, 4),
267 CH_DEVICE(0x5009, 4),
268 CH_DEVICE(0x500A, 4),
269 CH_DEVICE(0x500B, 4),
270 CH_DEVICE(0x500C, 4),
271 CH_DEVICE(0x500D, 4),
272 CH_DEVICE(0x500E, 4),
273 CH_DEVICE(0x500F, 4),
274 CH_DEVICE(0x5010, 4),
275 CH_DEVICE(0x5011, 4),
276 CH_DEVICE(0x5012, 4),
277 CH_DEVICE(0x5013, 4),
278 CH_DEVICE(0x5014, 4),
279 CH_DEVICE(0x5015, 4),
280 CH_DEVICE(0x5080, 4),
281 CH_DEVICE(0x5081, 4),
282 CH_DEVICE(0x5082, 4),
283 CH_DEVICE(0x5083, 4),
284 CH_DEVICE(0x5084, 4),
285 CH_DEVICE(0x5085, 4),
286 CH_DEVICE(0x5401, 4),
287 CH_DEVICE(0x5402, 4),
288 CH_DEVICE(0x5403, 4),
289 CH_DEVICE(0x5404, 4),
290 CH_DEVICE(0x5405, 4),
291 CH_DEVICE(0x5406, 4),
292 CH_DEVICE(0x5407, 4),
293 CH_DEVICE(0x5408, 4),
294 CH_DEVICE(0x5409, 4),
295 CH_DEVICE(0x540A, 4),
296 CH_DEVICE(0x540B, 4),
297 CH_DEVICE(0x540C, 4),
298 CH_DEVICE(0x540D, 4),
299 CH_DEVICE(0x540E, 4),
300 CH_DEVICE(0x540F, 4),
301 CH_DEVICE(0x5410, 4),
302 CH_DEVICE(0x5411, 4),
303 CH_DEVICE(0x5412, 4),
304 CH_DEVICE(0x5413, 4),
305 CH_DEVICE(0x5414, 4),
306 CH_DEVICE(0x5415, 4),
307 CH_DEVICE(0x5480, 4),
308 CH_DEVICE(0x5481, 4),
309 CH_DEVICE(0x5482, 4),
310 CH_DEVICE(0x5483, 4),
311 CH_DEVICE(0x5484, 4),
312 CH_DEVICE(0x5485, 4),
313 { 0, }
314 };
315
316 #define FW4_FNAME "cxgb4/t4fw.bin"
317 #define FW5_FNAME "cxgb4/t5fw.bin"
318 #define FW4_CFNAME "cxgb4/t4-config.txt"
319 #define FW5_CFNAME "cxgb4/t5-config.txt"
320
321 MODULE_DESCRIPTION(DRV_DESC);
322 MODULE_AUTHOR("Chelsio Communications");
323 MODULE_LICENSE("Dual BSD/GPL");
324 MODULE_VERSION(DRV_VERSION);
325 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
326 MODULE_FIRMWARE(FW4_FNAME);
327 MODULE_FIRMWARE(FW5_FNAME);
328
329 /*
330 * Normally we're willing to become the firmware's Master PF but will be happy
331 * if another PF has already become the Master and initialized the adapter.
332 * Setting "force_init" will cause this driver to forcibly establish itself as
333 * the Master PF and initialize the adapter.
334 */
335 static uint force_init;
336
337 module_param(force_init, uint, 0644);
338 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
339
340 /*
341 * Normally if the firmware we connect to has Configuration File support, we
342 * use that and only fall back to the old Driver-based initialization if the
343 * Configuration File fails for some reason. If force_old_init is set, then
344 * we'll always use the old Driver-based initialization sequence.
345 */
346 static uint force_old_init;
347
348 module_param(force_old_init, uint, 0644);
349 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
350
351 static int dflt_msg_enable = DFLT_MSG_ENABLE;
352
353 module_param(dflt_msg_enable, int, 0644);
354 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
355
356 /*
357 * The driver uses the best interrupt scheme available on a platform in the
358 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
359 * of these schemes the driver may consider as follows:
360 *
361 * msi = 2: choose from among all three options
362 * msi = 1: only consider MSI and INTx interrupts
363 * msi = 0: force INTx interrupts
364 */
365 static int msi = 2;
366
367 module_param(msi, int, 0644);
368 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
369
370 /*
371 * Queue interrupt hold-off timer values. Queues default to the first of these
372 * upon creation.
373 */
374 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
375
376 module_param_array(intr_holdoff, uint, NULL, 0644);
377 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
378 "0..4 in microseconds");
379
380 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
381
382 module_param_array(intr_cnt, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_cnt,
384 "thresholds 1..3 for queue interrupt packet counters");
385
386 /*
387 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
388 * offset by 2 bytes in order to have the IP headers line up on 4-byte
389 * boundaries. This is a requirement for many architectures which will throw
390 * a machine check fault if an attempt is made to access one of the 4-byte IP
391 * header fields on a non-4-byte boundary. And it's a major performance issue
392 * even on some architectures which allow it like some implementations of the
393 * x86 ISA. However, some architectures don't mind this and for some very
394 * edge-case performance sensitive applications (like forwarding large volumes
395 * of small packets), setting this DMA offset to 0 will decrease the number of
396 * PCI-E Bus transfers enough to measurably affect performance.
397 */
398 static int rx_dma_offset = 2;
399
400 static bool vf_acls;
401
402 #ifdef CONFIG_PCI_IOV
403 module_param(vf_acls, bool, 0644);
404 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
405
406 /* Configure the number of PCI-E Virtual Function which are to be instantiated
407 * on SR-IOV Capable Physical Functions.
408 */
409 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
410
411 module_param_array(num_vf, uint, NULL, 0644);
412 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
413 #endif
414
415 /* TX Queue select used to determine what algorithm to use for selecting TX
416 * queue. Select between the kernel provided function (select_queue=0) or user
417 * cxgb_select_queue function (select_queue=1)
418 *
419 * Default: select_queue=0
420 */
421 static int select_queue;
422 module_param(select_queue, int, 0644);
423 MODULE_PARM_DESC(select_queue,
424 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
425
426 /*
427 * The filter TCAM has a fixed portion and a variable portion. The fixed
428 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
429 * ports. The variable portion is 36 bits which can include things like Exact
430 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
431 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
432 * far exceed the 36-bit budget for this "compressed" header portion of the
433 * filter. Thus, we have a scarce resource which must be carefully managed.
434 *
435 * By default we set this up to mostly match the set of filter matching
436 * capabilities of T3 but with accommodations for some of T4's more
437 * interesting features:
438 *
439 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
440 * [Inner] VLAN (17), Port (3), FCoE (1) }
441 */
442 enum {
443 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
444 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
445 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
446 };
447
448 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
449
450 module_param(tp_vlan_pri_map, uint, 0644);
451 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
452
453 static struct dentry *cxgb4_debugfs_root;
454
455 static LIST_HEAD(adapter_list);
456 static DEFINE_MUTEX(uld_mutex);
457 /* Adapter list to be accessed from atomic context */
458 static LIST_HEAD(adap_rcu_list);
459 static DEFINE_SPINLOCK(adap_rcu_lock);
460 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
461 static const char *uld_str[] = { "RDMA", "iSCSI" };
462
463 static void link_report(struct net_device *dev)
464 {
465 if (!netif_carrier_ok(dev))
466 netdev_info(dev, "link down\n");
467 else {
468 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
469
470 const char *s = "10Mbps";
471 const struct port_info *p = netdev_priv(dev);
472
473 switch (p->link_cfg.speed) {
474 case 10000:
475 s = "10Gbps";
476 break;
477 case 1000:
478 s = "1000Mbps";
479 break;
480 case 100:
481 s = "100Mbps";
482 break;
483 case 40000:
484 s = "40Gbps";
485 break;
486 }
487
488 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
489 fc[p->link_cfg.fc]);
490 }
491 }
492
493 #ifdef CONFIG_CHELSIO_T4_DCB
494 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
495 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
496 {
497 struct port_info *pi = netdev_priv(dev);
498 struct adapter *adap = pi->adapter;
499 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
500 int i;
501
502 /* We use a simple mapping of Port TX Queue Index to DCB
503 * Priority when we're enabling DCB.
504 */
505 for (i = 0; i < pi->nqsets; i++, txq++) {
506 u32 name, value;
507 int err;
508
509 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
510 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
511 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
512 value = enable ? i : 0xffffffff;
513
514 /* Since we can be called while atomic (from "interrupt
515 * level") we need to issue the Set Parameters Commannd
516 * without sleeping (timeout < 0).
517 */
518 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
519 &name, &value);
520
521 if (err)
522 dev_err(adap->pdev_dev,
523 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
524 enable ? "set" : "unset", pi->port_id, i, -err);
525 else
526 txq->dcb_prio = value;
527 }
528 }
529 #endif /* CONFIG_CHELSIO_T4_DCB */
530
531 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
532 {
533 struct net_device *dev = adapter->port[port_id];
534
535 /* Skip changes from disabled ports. */
536 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
537 if (link_stat)
538 netif_carrier_on(dev);
539 else {
540 #ifdef CONFIG_CHELSIO_T4_DCB
541 cxgb4_dcb_state_init(dev);
542 dcb_tx_queue_prio_enable(dev, false);
543 #endif /* CONFIG_CHELSIO_T4_DCB */
544 netif_carrier_off(dev);
545 }
546
547 link_report(dev);
548 }
549 }
550
551 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
552 {
553 static const char *mod_str[] = {
554 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
555 };
556
557 const struct net_device *dev = adap->port[port_id];
558 const struct port_info *pi = netdev_priv(dev);
559
560 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
561 netdev_info(dev, "port module unplugged\n");
562 else if (pi->mod_type < ARRAY_SIZE(mod_str))
563 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
564 }
565
566 /*
567 * Configure the exact and hash address filters to handle a port's multicast
568 * and secondary unicast MAC addresses.
569 */
570 static int set_addr_filters(const struct net_device *dev, bool sleep)
571 {
572 u64 mhash = 0;
573 u64 uhash = 0;
574 bool free = true;
575 u16 filt_idx[7];
576 const u8 *addr[7];
577 int ret, naddr = 0;
578 const struct netdev_hw_addr *ha;
579 int uc_cnt = netdev_uc_count(dev);
580 int mc_cnt = netdev_mc_count(dev);
581 const struct port_info *pi = netdev_priv(dev);
582 unsigned int mb = pi->adapter->fn;
583
584 /* first do the secondary unicast addresses */
585 netdev_for_each_uc_addr(ha, dev) {
586 addr[naddr++] = ha->addr;
587 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
588 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
589 naddr, addr, filt_idx, &uhash, sleep);
590 if (ret < 0)
591 return ret;
592
593 free = false;
594 naddr = 0;
595 }
596 }
597
598 /* next set up the multicast addresses */
599 netdev_for_each_mc_addr(ha, dev) {
600 addr[naddr++] = ha->addr;
601 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
602 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
603 naddr, addr, filt_idx, &mhash, sleep);
604 if (ret < 0)
605 return ret;
606
607 free = false;
608 naddr = 0;
609 }
610 }
611
612 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
613 uhash | mhash, sleep);
614 }
615
616 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
617 module_param(dbfifo_int_thresh, int, 0644);
618 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
619
620 /*
621 * usecs to sleep while draining the dbfifo
622 */
623 static int dbfifo_drain_delay = 1000;
624 module_param(dbfifo_drain_delay, int, 0644);
625 MODULE_PARM_DESC(dbfifo_drain_delay,
626 "usecs to sleep while draining the dbfifo");
627
628 /*
629 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
630 * If @mtu is -1 it is left unchanged.
631 */
632 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
633 {
634 int ret;
635 struct port_info *pi = netdev_priv(dev);
636
637 ret = set_addr_filters(dev, sleep_ok);
638 if (ret == 0)
639 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
640 (dev->flags & IFF_PROMISC) ? 1 : 0,
641 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
642 sleep_ok);
643 return ret;
644 }
645
646 /**
647 * link_start - enable a port
648 * @dev: the port to enable
649 *
650 * Performs the MAC and PHY actions needed to enable a port.
651 */
652 static int link_start(struct net_device *dev)
653 {
654 int ret;
655 struct port_info *pi = netdev_priv(dev);
656 unsigned int mb = pi->adapter->fn;
657
658 /*
659 * We do not set address filters and promiscuity here, the stack does
660 * that step explicitly.
661 */
662 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
663 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
664 if (ret == 0) {
665 ret = t4_change_mac(pi->adapter, mb, pi->viid,
666 pi->xact_addr_filt, dev->dev_addr, true,
667 true);
668 if (ret >= 0) {
669 pi->xact_addr_filt = ret;
670 ret = 0;
671 }
672 }
673 if (ret == 0)
674 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
675 &pi->link_cfg);
676 if (ret == 0) {
677 local_bh_disable();
678 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
679 true, CXGB4_DCB_ENABLED);
680 local_bh_enable();
681 }
682
683 return ret;
684 }
685
686 int cxgb4_dcb_enabled(const struct net_device *dev)
687 {
688 #ifdef CONFIG_CHELSIO_T4_DCB
689 struct port_info *pi = netdev_priv(dev);
690
691 return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
692 #else
693 return 0;
694 #endif
695 }
696 EXPORT_SYMBOL(cxgb4_dcb_enabled);
697
698 #ifdef CONFIG_CHELSIO_T4_DCB
699 /* Handle a Data Center Bridging update message from the firmware. */
700 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
701 {
702 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
703 struct net_device *dev = adap->port[port];
704 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
705 int new_dcb_enabled;
706
707 cxgb4_dcb_handle_fw_update(adap, pcmd);
708 new_dcb_enabled = cxgb4_dcb_enabled(dev);
709
710 /* If the DCB has become enabled or disabled on the port then we're
711 * going to need to set up/tear down DCB Priority parameters for the
712 * TX Queues associated with the port.
713 */
714 if (new_dcb_enabled != old_dcb_enabled)
715 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
716 }
717 #endif /* CONFIG_CHELSIO_T4_DCB */
718
719 /* Clear a filter and release any of its resources that we own. This also
720 * clears the filter's "pending" status.
721 */
722 static void clear_filter(struct adapter *adap, struct filter_entry *f)
723 {
724 /* If the new or old filter have loopback rewriteing rules then we'll
725 * need to free any existing Layer Two Table (L2T) entries of the old
726 * filter rule. The firmware will handle freeing up any Source MAC
727 * Table (SMT) entries used for rewriting Source MAC Addresses in
728 * loopback rules.
729 */
730 if (f->l2t)
731 cxgb4_l2t_release(f->l2t);
732
733 /* The zeroing of the filter rule below clears the filter valid,
734 * pending, locked flags, l2t pointer, etc. so it's all we need for
735 * this operation.
736 */
737 memset(f, 0, sizeof(*f));
738 }
739
740 /* Handle a filter write/deletion reply.
741 */
742 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
743 {
744 unsigned int idx = GET_TID(rpl);
745 unsigned int nidx = idx - adap->tids.ftid_base;
746 unsigned int ret;
747 struct filter_entry *f;
748
749 if (idx >= adap->tids.ftid_base && nidx <
750 (adap->tids.nftids + adap->tids.nsftids)) {
751 idx = nidx;
752 ret = GET_TCB_COOKIE(rpl->cookie);
753 f = &adap->tids.ftid_tab[idx];
754
755 if (ret == FW_FILTER_WR_FLT_DELETED) {
756 /* Clear the filter when we get confirmation from the
757 * hardware that the filter has been deleted.
758 */
759 clear_filter(adap, f);
760 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
761 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
762 idx);
763 clear_filter(adap, f);
764 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
765 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
766 f->pending = 0; /* asynchronous setup completed */
767 f->valid = 1;
768 } else {
769 /* Something went wrong. Issue a warning about the
770 * problem and clear everything out.
771 */
772 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
773 idx, ret);
774 clear_filter(adap, f);
775 }
776 }
777 }
778
779 /* Response queue handler for the FW event queue.
780 */
781 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
782 const struct pkt_gl *gl)
783 {
784 u8 opcode = ((const struct rss_header *)rsp)->opcode;
785
786 rsp++; /* skip RSS header */
787
788 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
789 */
790 if (unlikely(opcode == CPL_FW4_MSG &&
791 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
792 rsp++;
793 opcode = ((const struct rss_header *)rsp)->opcode;
794 rsp++;
795 if (opcode != CPL_SGE_EGR_UPDATE) {
796 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
797 , opcode);
798 goto out;
799 }
800 }
801
802 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
803 const struct cpl_sge_egr_update *p = (void *)rsp;
804 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
805 struct sge_txq *txq;
806
807 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
808 txq->restarts++;
809 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
810 struct sge_eth_txq *eq;
811
812 eq = container_of(txq, struct sge_eth_txq, q);
813 netif_tx_wake_queue(eq->txq);
814 } else {
815 struct sge_ofld_txq *oq;
816
817 oq = container_of(txq, struct sge_ofld_txq, q);
818 tasklet_schedule(&oq->qresume_tsk);
819 }
820 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
821 const struct cpl_fw6_msg *p = (void *)rsp;
822
823 #ifdef CONFIG_CHELSIO_T4_DCB
824 const struct fw_port_cmd *pcmd = (const void *)p->data;
825 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
826 unsigned int action =
827 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
828
829 if (cmd == FW_PORT_CMD &&
830 action == FW_PORT_ACTION_GET_PORT_INFO) {
831 int port = FW_PORT_CMD_PORTID_GET(
832 be32_to_cpu(pcmd->op_to_portid));
833 struct net_device *dev = q->adap->port[port];
834 int state_input = ((pcmd->u.info.dcbxdis_pkd &
835 FW_PORT_CMD_DCBXDIS)
836 ? CXGB4_DCB_INPUT_FW_DISABLED
837 : CXGB4_DCB_INPUT_FW_ENABLED);
838
839 cxgb4_dcb_state_fsm(dev, state_input);
840 }
841
842 if (cmd == FW_PORT_CMD &&
843 action == FW_PORT_ACTION_L2_DCB_CFG)
844 dcb_rpl(q->adap, pcmd);
845 else
846 #endif
847 if (p->type == 0)
848 t4_handle_fw_rpl(q->adap, p->data);
849 } else if (opcode == CPL_L2T_WRITE_RPL) {
850 const struct cpl_l2t_write_rpl *p = (void *)rsp;
851
852 do_l2t_write_rpl(q->adap, p);
853 } else if (opcode == CPL_SET_TCB_RPL) {
854 const struct cpl_set_tcb_rpl *p = (void *)rsp;
855
856 filter_rpl(q->adap, p);
857 } else
858 dev_err(q->adap->pdev_dev,
859 "unexpected CPL %#x on FW event queue\n", opcode);
860 out:
861 return 0;
862 }
863
864 /**
865 * uldrx_handler - response queue handler for ULD queues
866 * @q: the response queue that received the packet
867 * @rsp: the response queue descriptor holding the offload message
868 * @gl: the gather list of packet fragments
869 *
870 * Deliver an ingress offload packet to a ULD. All processing is done by
871 * the ULD, we just maintain statistics.
872 */
873 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
874 const struct pkt_gl *gl)
875 {
876 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
877
878 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
879 */
880 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
881 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
882 rsp += 2;
883
884 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
885 rxq->stats.nomem++;
886 return -1;
887 }
888 if (gl == NULL)
889 rxq->stats.imm++;
890 else if (gl == CXGB4_MSG_AN)
891 rxq->stats.an++;
892 else
893 rxq->stats.pkts++;
894 return 0;
895 }
896
897 static void disable_msi(struct adapter *adapter)
898 {
899 if (adapter->flags & USING_MSIX) {
900 pci_disable_msix(adapter->pdev);
901 adapter->flags &= ~USING_MSIX;
902 } else if (adapter->flags & USING_MSI) {
903 pci_disable_msi(adapter->pdev);
904 adapter->flags &= ~USING_MSI;
905 }
906 }
907
908 /*
909 * Interrupt handler for non-data events used with MSI-X.
910 */
911 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
912 {
913 struct adapter *adap = cookie;
914
915 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
916 if (v & PFSW) {
917 adap->swintr = 1;
918 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
919 }
920 t4_slow_intr_handler(adap);
921 return IRQ_HANDLED;
922 }
923
924 /*
925 * Name the MSI-X interrupts.
926 */
927 static void name_msix_vecs(struct adapter *adap)
928 {
929 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
930
931 /* non-data interrupts */
932 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
933
934 /* FW events */
935 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
936 adap->port[0]->name);
937
938 /* Ethernet queues */
939 for_each_port(adap, j) {
940 struct net_device *d = adap->port[j];
941 const struct port_info *pi = netdev_priv(d);
942
943 for (i = 0; i < pi->nqsets; i++, msi_idx++)
944 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
945 d->name, i);
946 }
947
948 /* offload queues */
949 for_each_ofldrxq(&adap->sge, i)
950 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
951 adap->port[0]->name, i);
952
953 for_each_rdmarxq(&adap->sge, i)
954 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
955 adap->port[0]->name, i);
956
957 for_each_rdmaciq(&adap->sge, i)
958 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
959 adap->port[0]->name, i);
960 }
961
962 static int request_msix_queue_irqs(struct adapter *adap)
963 {
964 struct sge *s = &adap->sge;
965 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
966 int msi_index = 2;
967
968 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
969 adap->msix_info[1].desc, &s->fw_evtq);
970 if (err)
971 return err;
972
973 for_each_ethrxq(s, ethqidx) {
974 err = request_irq(adap->msix_info[msi_index].vec,
975 t4_sge_intr_msix, 0,
976 adap->msix_info[msi_index].desc,
977 &s->ethrxq[ethqidx].rspq);
978 if (err)
979 goto unwind;
980 msi_index++;
981 }
982 for_each_ofldrxq(s, ofldqidx) {
983 err = request_irq(adap->msix_info[msi_index].vec,
984 t4_sge_intr_msix, 0,
985 adap->msix_info[msi_index].desc,
986 &s->ofldrxq[ofldqidx].rspq);
987 if (err)
988 goto unwind;
989 msi_index++;
990 }
991 for_each_rdmarxq(s, rdmaqidx) {
992 err = request_irq(adap->msix_info[msi_index].vec,
993 t4_sge_intr_msix, 0,
994 adap->msix_info[msi_index].desc,
995 &s->rdmarxq[rdmaqidx].rspq);
996 if (err)
997 goto unwind;
998 msi_index++;
999 }
1000 for_each_rdmaciq(s, rdmaciqqidx) {
1001 err = request_irq(adap->msix_info[msi_index].vec,
1002 t4_sge_intr_msix, 0,
1003 adap->msix_info[msi_index].desc,
1004 &s->rdmaciq[rdmaciqqidx].rspq);
1005 if (err)
1006 goto unwind;
1007 msi_index++;
1008 }
1009 return 0;
1010
1011 unwind:
1012 while (--rdmaciqqidx >= 0)
1013 free_irq(adap->msix_info[--msi_index].vec,
1014 &s->rdmaciq[rdmaciqqidx].rspq);
1015 while (--rdmaqidx >= 0)
1016 free_irq(adap->msix_info[--msi_index].vec,
1017 &s->rdmarxq[rdmaqidx].rspq);
1018 while (--ofldqidx >= 0)
1019 free_irq(adap->msix_info[--msi_index].vec,
1020 &s->ofldrxq[ofldqidx].rspq);
1021 while (--ethqidx >= 0)
1022 free_irq(adap->msix_info[--msi_index].vec,
1023 &s->ethrxq[ethqidx].rspq);
1024 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1025 return err;
1026 }
1027
1028 static void free_msix_queue_irqs(struct adapter *adap)
1029 {
1030 int i, msi_index = 2;
1031 struct sge *s = &adap->sge;
1032
1033 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1034 for_each_ethrxq(s, i)
1035 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1036 for_each_ofldrxq(s, i)
1037 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1038 for_each_rdmarxq(s, i)
1039 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1040 for_each_rdmaciq(s, i)
1041 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1042 }
1043
1044 /**
1045 * write_rss - write the RSS table for a given port
1046 * @pi: the port
1047 * @queues: array of queue indices for RSS
1048 *
1049 * Sets up the portion of the HW RSS table for the port's VI to distribute
1050 * packets to the Rx queues in @queues.
1051 */
1052 static int write_rss(const struct port_info *pi, const u16 *queues)
1053 {
1054 u16 *rss;
1055 int i, err;
1056 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1057
1058 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1059 if (!rss)
1060 return -ENOMEM;
1061
1062 /* map the queue indices to queue ids */
1063 for (i = 0; i < pi->rss_size; i++, queues++)
1064 rss[i] = q[*queues].rspq.abs_id;
1065
1066 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1067 pi->rss_size, rss, pi->rss_size);
1068 kfree(rss);
1069 return err;
1070 }
1071
1072 /**
1073 * setup_rss - configure RSS
1074 * @adap: the adapter
1075 *
1076 * Sets up RSS for each port.
1077 */
1078 static int setup_rss(struct adapter *adap)
1079 {
1080 int i, err;
1081
1082 for_each_port(adap, i) {
1083 const struct port_info *pi = adap2pinfo(adap, i);
1084
1085 err = write_rss(pi, pi->rss);
1086 if (err)
1087 return err;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * Return the channel of the ingress queue with the given qid.
1094 */
1095 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1096 {
1097 qid -= p->ingr_start;
1098 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1099 }
1100
1101 /*
1102 * Wait until all NAPI handlers are descheduled.
1103 */
1104 static void quiesce_rx(struct adapter *adap)
1105 {
1106 int i;
1107
1108 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1109 struct sge_rspq *q = adap->sge.ingr_map[i];
1110
1111 if (q && q->handler)
1112 napi_disable(&q->napi);
1113 }
1114 }
1115
1116 /*
1117 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1118 */
1119 static void enable_rx(struct adapter *adap)
1120 {
1121 int i;
1122
1123 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1124 struct sge_rspq *q = adap->sge.ingr_map[i];
1125
1126 if (!q)
1127 continue;
1128 if (q->handler)
1129 napi_enable(&q->napi);
1130 /* 0-increment GTS to start the timer and enable interrupts */
1131 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1132 SEINTARM(q->intr_params) |
1133 INGRESSQID(q->cntxt_id));
1134 }
1135 }
1136
1137 /**
1138 * setup_sge_queues - configure SGE Tx/Rx/response queues
1139 * @adap: the adapter
1140 *
1141 * Determines how many sets of SGE queues to use and initializes them.
1142 * We support multiple queue sets per port if we have MSI-X, otherwise
1143 * just one queue set per port.
1144 */
1145 static int setup_sge_queues(struct adapter *adap)
1146 {
1147 int err, msi_idx, i, j;
1148 struct sge *s = &adap->sge;
1149
1150 bitmap_zero(s->starving_fl, MAX_EGRQ);
1151 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1152
1153 if (adap->flags & USING_MSIX)
1154 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1155 else {
1156 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1157 NULL, NULL);
1158 if (err)
1159 return err;
1160 msi_idx = -((int)s->intrq.abs_id + 1);
1161 }
1162
1163 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1164 msi_idx, NULL, fwevtq_handler);
1165 if (err) {
1166 freeout: t4_free_sge_resources(adap);
1167 return err;
1168 }
1169
1170 for_each_port(adap, i) {
1171 struct net_device *dev = adap->port[i];
1172 struct port_info *pi = netdev_priv(dev);
1173 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1174 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1175
1176 for (j = 0; j < pi->nqsets; j++, q++) {
1177 if (msi_idx > 0)
1178 msi_idx++;
1179 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1180 msi_idx, &q->fl,
1181 t4_ethrx_handler);
1182 if (err)
1183 goto freeout;
1184 q->rspq.idx = j;
1185 memset(&q->stats, 0, sizeof(q->stats));
1186 }
1187 for (j = 0; j < pi->nqsets; j++, t++) {
1188 err = t4_sge_alloc_eth_txq(adap, t, dev,
1189 netdev_get_tx_queue(dev, j),
1190 s->fw_evtq.cntxt_id);
1191 if (err)
1192 goto freeout;
1193 }
1194 }
1195
1196 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1197 for_each_ofldrxq(s, i) {
1198 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1199 struct net_device *dev = adap->port[i / j];
1200
1201 if (msi_idx > 0)
1202 msi_idx++;
1203 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1204 q->fl.size ? &q->fl : NULL,
1205 uldrx_handler);
1206 if (err)
1207 goto freeout;
1208 memset(&q->stats, 0, sizeof(q->stats));
1209 s->ofld_rxq[i] = q->rspq.abs_id;
1210 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1211 s->fw_evtq.cntxt_id);
1212 if (err)
1213 goto freeout;
1214 }
1215
1216 for_each_rdmarxq(s, i) {
1217 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1218
1219 if (msi_idx > 0)
1220 msi_idx++;
1221 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1222 msi_idx, q->fl.size ? &q->fl : NULL,
1223 uldrx_handler);
1224 if (err)
1225 goto freeout;
1226 memset(&q->stats, 0, sizeof(q->stats));
1227 s->rdma_rxq[i] = q->rspq.abs_id;
1228 }
1229
1230 for_each_rdmaciq(s, i) {
1231 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1232
1233 if (msi_idx > 0)
1234 msi_idx++;
1235 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1236 msi_idx, q->fl.size ? &q->fl : NULL,
1237 uldrx_handler);
1238 if (err)
1239 goto freeout;
1240 memset(&q->stats, 0, sizeof(q->stats));
1241 s->rdma_ciq[i] = q->rspq.abs_id;
1242 }
1243
1244 for_each_port(adap, i) {
1245 /*
1246 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1247 * have RDMA queues, and that's the right value.
1248 */
1249 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1250 s->fw_evtq.cntxt_id,
1251 s->rdmarxq[i].rspq.cntxt_id);
1252 if (err)
1253 goto freeout;
1254 }
1255
1256 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1257 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1258 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1259 return 0;
1260 }
1261
1262 /*
1263 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1264 * The allocated memory is cleared.
1265 */
1266 void *t4_alloc_mem(size_t size)
1267 {
1268 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1269
1270 if (!p)
1271 p = vzalloc(size);
1272 return p;
1273 }
1274
1275 /*
1276 * Free memory allocated through alloc_mem().
1277 */
1278 static void t4_free_mem(void *addr)
1279 {
1280 if (is_vmalloc_addr(addr))
1281 vfree(addr);
1282 else
1283 kfree(addr);
1284 }
1285
1286 /* Send a Work Request to write the filter at a specified index. We construct
1287 * a Firmware Filter Work Request to have the work done and put the indicated
1288 * filter into "pending" mode which will prevent any further actions against
1289 * it till we get a reply from the firmware on the completion status of the
1290 * request.
1291 */
1292 static int set_filter_wr(struct adapter *adapter, int fidx)
1293 {
1294 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1295 struct sk_buff *skb;
1296 struct fw_filter_wr *fwr;
1297 unsigned int ftid;
1298
1299 /* If the new filter requires loopback Destination MAC and/or VLAN
1300 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1301 * the filter.
1302 */
1303 if (f->fs.newdmac || f->fs.newvlan) {
1304 /* allocate L2T entry for new filter */
1305 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1306 if (f->l2t == NULL)
1307 return -EAGAIN;
1308 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1309 f->fs.eport, f->fs.dmac)) {
1310 cxgb4_l2t_release(f->l2t);
1311 f->l2t = NULL;
1312 return -ENOMEM;
1313 }
1314 }
1315
1316 ftid = adapter->tids.ftid_base + fidx;
1317
1318 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1319 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1320 memset(fwr, 0, sizeof(*fwr));
1321
1322 /* It would be nice to put most of the following in t4_hw.c but most
1323 * of the work is translating the cxgbtool ch_filter_specification
1324 * into the Work Request and the definition of that structure is
1325 * currently in cxgbtool.h which isn't appropriate to pull into the
1326 * common code. We may eventually try to come up with a more neutral
1327 * filter specification structure but for now it's easiest to simply
1328 * put this fairly direct code in line ...
1329 */
1330 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1331 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1332 fwr->tid_to_iq =
1333 htonl(V_FW_FILTER_WR_TID(ftid) |
1334 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1335 V_FW_FILTER_WR_NOREPLY(0) |
1336 V_FW_FILTER_WR_IQ(f->fs.iq));
1337 fwr->del_filter_to_l2tix =
1338 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1339 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1340 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1341 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1342 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1343 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1344 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1345 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1346 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1347 f->fs.newvlan == VLAN_REWRITE) |
1348 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1349 f->fs.newvlan == VLAN_REWRITE) |
1350 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1351 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1352 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1353 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1354 fwr->ethtype = htons(f->fs.val.ethtype);
1355 fwr->ethtypem = htons(f->fs.mask.ethtype);
1356 fwr->frag_to_ovlan_vldm =
1357 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1358 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1359 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1360 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1361 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1362 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1363 fwr->smac_sel = 0;
1364 fwr->rx_chan_rx_rpl_iq =
1365 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1366 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1367 fwr->maci_to_matchtypem =
1368 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1369 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1370 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1371 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1372 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1373 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1374 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1375 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1376 fwr->ptcl = f->fs.val.proto;
1377 fwr->ptclm = f->fs.mask.proto;
1378 fwr->ttyp = f->fs.val.tos;
1379 fwr->ttypm = f->fs.mask.tos;
1380 fwr->ivlan = htons(f->fs.val.ivlan);
1381 fwr->ivlanm = htons(f->fs.mask.ivlan);
1382 fwr->ovlan = htons(f->fs.val.ovlan);
1383 fwr->ovlanm = htons(f->fs.mask.ovlan);
1384 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1385 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1386 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1387 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1388 fwr->lp = htons(f->fs.val.lport);
1389 fwr->lpm = htons(f->fs.mask.lport);
1390 fwr->fp = htons(f->fs.val.fport);
1391 fwr->fpm = htons(f->fs.mask.fport);
1392 if (f->fs.newsmac)
1393 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1394
1395 /* Mark the filter as "pending" and ship off the Filter Work Request.
1396 * When we get the Work Request Reply we'll clear the pending status.
1397 */
1398 f->pending = 1;
1399 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1400 t4_ofld_send(adapter, skb);
1401 return 0;
1402 }
1403
1404 /* Delete the filter at a specified index.
1405 */
1406 static int del_filter_wr(struct adapter *adapter, int fidx)
1407 {
1408 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1409 struct sk_buff *skb;
1410 struct fw_filter_wr *fwr;
1411 unsigned int len, ftid;
1412
1413 len = sizeof(*fwr);
1414 ftid = adapter->tids.ftid_base + fidx;
1415
1416 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1417 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1418 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1419
1420 /* Mark the filter as "pending" and ship off the Filter Work Request.
1421 * When we get the Work Request Reply we'll clear the pending status.
1422 */
1423 f->pending = 1;
1424 t4_mgmt_tx(adapter, skb);
1425 return 0;
1426 }
1427
1428 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1429 void *accel_priv, select_queue_fallback_t fallback)
1430 {
1431 int txq;
1432
1433 #ifdef CONFIG_CHELSIO_T4_DCB
1434 /* If a Data Center Bridging has been successfully negotiated on this
1435 * link then we'll use the skb's priority to map it to a TX Queue.
1436 * The skb's priority is determined via the VLAN Tag Priority Code
1437 * Point field.
1438 */
1439 if (cxgb4_dcb_enabled(dev)) {
1440 u16 vlan_tci;
1441 int err;
1442
1443 err = vlan_get_tag(skb, &vlan_tci);
1444 if (unlikely(err)) {
1445 if (net_ratelimit())
1446 netdev_warn(dev,
1447 "TX Packet without VLAN Tag on DCB Link\n");
1448 txq = 0;
1449 } else {
1450 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1451 }
1452 return txq;
1453 }
1454 #endif /* CONFIG_CHELSIO_T4_DCB */
1455
1456 if (select_queue) {
1457 txq = (skb_rx_queue_recorded(skb)
1458 ? skb_get_rx_queue(skb)
1459 : smp_processor_id());
1460
1461 while (unlikely(txq >= dev->real_num_tx_queues))
1462 txq -= dev->real_num_tx_queues;
1463
1464 return txq;
1465 }
1466
1467 return fallback(dev, skb) % dev->real_num_tx_queues;
1468 }
1469
1470 static inline int is_offload(const struct adapter *adap)
1471 {
1472 return adap->params.offload;
1473 }
1474
1475 /*
1476 * Implementation of ethtool operations.
1477 */
1478
1479 static u32 get_msglevel(struct net_device *dev)
1480 {
1481 return netdev2adap(dev)->msg_enable;
1482 }
1483
1484 static void set_msglevel(struct net_device *dev, u32 val)
1485 {
1486 netdev2adap(dev)->msg_enable = val;
1487 }
1488
1489 static char stats_strings[][ETH_GSTRING_LEN] = {
1490 "TxOctetsOK ",
1491 "TxFramesOK ",
1492 "TxBroadcastFrames ",
1493 "TxMulticastFrames ",
1494 "TxUnicastFrames ",
1495 "TxErrorFrames ",
1496
1497 "TxFrames64 ",
1498 "TxFrames65To127 ",
1499 "TxFrames128To255 ",
1500 "TxFrames256To511 ",
1501 "TxFrames512To1023 ",
1502 "TxFrames1024To1518 ",
1503 "TxFrames1519ToMax ",
1504
1505 "TxFramesDropped ",
1506 "TxPauseFrames ",
1507 "TxPPP0Frames ",
1508 "TxPPP1Frames ",
1509 "TxPPP2Frames ",
1510 "TxPPP3Frames ",
1511 "TxPPP4Frames ",
1512 "TxPPP5Frames ",
1513 "TxPPP6Frames ",
1514 "TxPPP7Frames ",
1515
1516 "RxOctetsOK ",
1517 "RxFramesOK ",
1518 "RxBroadcastFrames ",
1519 "RxMulticastFrames ",
1520 "RxUnicastFrames ",
1521
1522 "RxFramesTooLong ",
1523 "RxJabberErrors ",
1524 "RxFCSErrors ",
1525 "RxLengthErrors ",
1526 "RxSymbolErrors ",
1527 "RxRuntFrames ",
1528
1529 "RxFrames64 ",
1530 "RxFrames65To127 ",
1531 "RxFrames128To255 ",
1532 "RxFrames256To511 ",
1533 "RxFrames512To1023 ",
1534 "RxFrames1024To1518 ",
1535 "RxFrames1519ToMax ",
1536
1537 "RxPauseFrames ",
1538 "RxPPP0Frames ",
1539 "RxPPP1Frames ",
1540 "RxPPP2Frames ",
1541 "RxPPP3Frames ",
1542 "RxPPP4Frames ",
1543 "RxPPP5Frames ",
1544 "RxPPP6Frames ",
1545 "RxPPP7Frames ",
1546
1547 "RxBG0FramesDropped ",
1548 "RxBG1FramesDropped ",
1549 "RxBG2FramesDropped ",
1550 "RxBG3FramesDropped ",
1551 "RxBG0FramesTrunc ",
1552 "RxBG1FramesTrunc ",
1553 "RxBG2FramesTrunc ",
1554 "RxBG3FramesTrunc ",
1555
1556 "TSO ",
1557 "TxCsumOffload ",
1558 "RxCsumGood ",
1559 "VLANextractions ",
1560 "VLANinsertions ",
1561 "GROpackets ",
1562 "GROmerged ",
1563 "WriteCoalSuccess ",
1564 "WriteCoalFail ",
1565 };
1566
1567 static int get_sset_count(struct net_device *dev, int sset)
1568 {
1569 switch (sset) {
1570 case ETH_SS_STATS:
1571 return ARRAY_SIZE(stats_strings);
1572 default:
1573 return -EOPNOTSUPP;
1574 }
1575 }
1576
1577 #define T4_REGMAP_SIZE (160 * 1024)
1578 #define T5_REGMAP_SIZE (332 * 1024)
1579
1580 static int get_regs_len(struct net_device *dev)
1581 {
1582 struct adapter *adap = netdev2adap(dev);
1583 if (is_t4(adap->params.chip))
1584 return T4_REGMAP_SIZE;
1585 else
1586 return T5_REGMAP_SIZE;
1587 }
1588
1589 static int get_eeprom_len(struct net_device *dev)
1590 {
1591 return EEPROMSIZE;
1592 }
1593
1594 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1595 {
1596 struct adapter *adapter = netdev2adap(dev);
1597
1598 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1599 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1600 strlcpy(info->bus_info, pci_name(adapter->pdev),
1601 sizeof(info->bus_info));
1602
1603 if (adapter->params.fw_vers)
1604 snprintf(info->fw_version, sizeof(info->fw_version),
1605 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1606 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1607 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1608 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1609 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1610 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1611 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1612 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1613 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1614 }
1615
1616 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1617 {
1618 if (stringset == ETH_SS_STATS)
1619 memcpy(data, stats_strings, sizeof(stats_strings));
1620 }
1621
1622 /*
1623 * port stats maintained per queue of the port. They should be in the same
1624 * order as in stats_strings above.
1625 */
1626 struct queue_port_stats {
1627 u64 tso;
1628 u64 tx_csum;
1629 u64 rx_csum;
1630 u64 vlan_ex;
1631 u64 vlan_ins;
1632 u64 gro_pkts;
1633 u64 gro_merged;
1634 };
1635
1636 static void collect_sge_port_stats(const struct adapter *adap,
1637 const struct port_info *p, struct queue_port_stats *s)
1638 {
1639 int i;
1640 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1641 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1642
1643 memset(s, 0, sizeof(*s));
1644 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1645 s->tso += tx->tso;
1646 s->tx_csum += tx->tx_cso;
1647 s->rx_csum += rx->stats.rx_cso;
1648 s->vlan_ex += rx->stats.vlan_ex;
1649 s->vlan_ins += tx->vlan_ins;
1650 s->gro_pkts += rx->stats.lro_pkts;
1651 s->gro_merged += rx->stats.lro_merged;
1652 }
1653 }
1654
1655 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1656 u64 *data)
1657 {
1658 struct port_info *pi = netdev_priv(dev);
1659 struct adapter *adapter = pi->adapter;
1660 u32 val1, val2;
1661
1662 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1663
1664 data += sizeof(struct port_stats) / sizeof(u64);
1665 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1666 data += sizeof(struct queue_port_stats) / sizeof(u64);
1667 if (!is_t4(adapter->params.chip)) {
1668 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1669 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1670 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1671 *data = val1 - val2;
1672 data++;
1673 *data = val2;
1674 data++;
1675 } else {
1676 memset(data, 0, 2 * sizeof(u64));
1677 *data += 2;
1678 }
1679 }
1680
1681 /*
1682 * Return a version number to identify the type of adapter. The scheme is:
1683 * - bits 0..9: chip version
1684 * - bits 10..15: chip revision
1685 * - bits 16..23: register dump version
1686 */
1687 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1688 {
1689 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1690 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1691 }
1692
1693 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1694 unsigned int end)
1695 {
1696 u32 *p = buf + start;
1697
1698 for ( ; start <= end; start += sizeof(u32))
1699 *p++ = t4_read_reg(ap, start);
1700 }
1701
1702 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1703 void *buf)
1704 {
1705 static const unsigned int t4_reg_ranges[] = {
1706 0x1008, 0x1108,
1707 0x1180, 0x11b4,
1708 0x11fc, 0x123c,
1709 0x1300, 0x173c,
1710 0x1800, 0x18fc,
1711 0x3000, 0x30d8,
1712 0x30e0, 0x5924,
1713 0x5960, 0x59d4,
1714 0x5a00, 0x5af8,
1715 0x6000, 0x6098,
1716 0x6100, 0x6150,
1717 0x6200, 0x6208,
1718 0x6240, 0x6248,
1719 0x6280, 0x6338,
1720 0x6370, 0x638c,
1721 0x6400, 0x643c,
1722 0x6500, 0x6524,
1723 0x6a00, 0x6a38,
1724 0x6a60, 0x6a78,
1725 0x6b00, 0x6b84,
1726 0x6bf0, 0x6c84,
1727 0x6cf0, 0x6d84,
1728 0x6df0, 0x6e84,
1729 0x6ef0, 0x6f84,
1730 0x6ff0, 0x7084,
1731 0x70f0, 0x7184,
1732 0x71f0, 0x7284,
1733 0x72f0, 0x7384,
1734 0x73f0, 0x7450,
1735 0x7500, 0x7530,
1736 0x7600, 0x761c,
1737 0x7680, 0x76cc,
1738 0x7700, 0x7798,
1739 0x77c0, 0x77fc,
1740 0x7900, 0x79fc,
1741 0x7b00, 0x7c38,
1742 0x7d00, 0x7efc,
1743 0x8dc0, 0x8e1c,
1744 0x8e30, 0x8e78,
1745 0x8ea0, 0x8f6c,
1746 0x8fc0, 0x9074,
1747 0x90fc, 0x90fc,
1748 0x9400, 0x9458,
1749 0x9600, 0x96bc,
1750 0x9800, 0x9808,
1751 0x9820, 0x983c,
1752 0x9850, 0x9864,
1753 0x9c00, 0x9c6c,
1754 0x9c80, 0x9cec,
1755 0x9d00, 0x9d6c,
1756 0x9d80, 0x9dec,
1757 0x9e00, 0x9e6c,
1758 0x9e80, 0x9eec,
1759 0x9f00, 0x9f6c,
1760 0x9f80, 0x9fec,
1761 0xd004, 0xd03c,
1762 0xdfc0, 0xdfe0,
1763 0xe000, 0xea7c,
1764 0xf000, 0x11190,
1765 0x19040, 0x1906c,
1766 0x19078, 0x19080,
1767 0x1908c, 0x19124,
1768 0x19150, 0x191b0,
1769 0x191d0, 0x191e8,
1770 0x19238, 0x1924c,
1771 0x193f8, 0x19474,
1772 0x19490, 0x194f8,
1773 0x19800, 0x19f30,
1774 0x1a000, 0x1a06c,
1775 0x1a0b0, 0x1a120,
1776 0x1a128, 0x1a138,
1777 0x1a190, 0x1a1c4,
1778 0x1a1fc, 0x1a1fc,
1779 0x1e040, 0x1e04c,
1780 0x1e284, 0x1e28c,
1781 0x1e2c0, 0x1e2c0,
1782 0x1e2e0, 0x1e2e0,
1783 0x1e300, 0x1e384,
1784 0x1e3c0, 0x1e3c8,
1785 0x1e440, 0x1e44c,
1786 0x1e684, 0x1e68c,
1787 0x1e6c0, 0x1e6c0,
1788 0x1e6e0, 0x1e6e0,
1789 0x1e700, 0x1e784,
1790 0x1e7c0, 0x1e7c8,
1791 0x1e840, 0x1e84c,
1792 0x1ea84, 0x1ea8c,
1793 0x1eac0, 0x1eac0,
1794 0x1eae0, 0x1eae0,
1795 0x1eb00, 0x1eb84,
1796 0x1ebc0, 0x1ebc8,
1797 0x1ec40, 0x1ec4c,
1798 0x1ee84, 0x1ee8c,
1799 0x1eec0, 0x1eec0,
1800 0x1eee0, 0x1eee0,
1801 0x1ef00, 0x1ef84,
1802 0x1efc0, 0x1efc8,
1803 0x1f040, 0x1f04c,
1804 0x1f284, 0x1f28c,
1805 0x1f2c0, 0x1f2c0,
1806 0x1f2e0, 0x1f2e0,
1807 0x1f300, 0x1f384,
1808 0x1f3c0, 0x1f3c8,
1809 0x1f440, 0x1f44c,
1810 0x1f684, 0x1f68c,
1811 0x1f6c0, 0x1f6c0,
1812 0x1f6e0, 0x1f6e0,
1813 0x1f700, 0x1f784,
1814 0x1f7c0, 0x1f7c8,
1815 0x1f840, 0x1f84c,
1816 0x1fa84, 0x1fa8c,
1817 0x1fac0, 0x1fac0,
1818 0x1fae0, 0x1fae0,
1819 0x1fb00, 0x1fb84,
1820 0x1fbc0, 0x1fbc8,
1821 0x1fc40, 0x1fc4c,
1822 0x1fe84, 0x1fe8c,
1823 0x1fec0, 0x1fec0,
1824 0x1fee0, 0x1fee0,
1825 0x1ff00, 0x1ff84,
1826 0x1ffc0, 0x1ffc8,
1827 0x20000, 0x2002c,
1828 0x20100, 0x2013c,
1829 0x20190, 0x201c8,
1830 0x20200, 0x20318,
1831 0x20400, 0x20528,
1832 0x20540, 0x20614,
1833 0x21000, 0x21040,
1834 0x2104c, 0x21060,
1835 0x210c0, 0x210ec,
1836 0x21200, 0x21268,
1837 0x21270, 0x21284,
1838 0x212fc, 0x21388,
1839 0x21400, 0x21404,
1840 0x21500, 0x21518,
1841 0x2152c, 0x2153c,
1842 0x21550, 0x21554,
1843 0x21600, 0x21600,
1844 0x21608, 0x21628,
1845 0x21630, 0x2163c,
1846 0x21700, 0x2171c,
1847 0x21780, 0x2178c,
1848 0x21800, 0x21c38,
1849 0x21c80, 0x21d7c,
1850 0x21e00, 0x21e04,
1851 0x22000, 0x2202c,
1852 0x22100, 0x2213c,
1853 0x22190, 0x221c8,
1854 0x22200, 0x22318,
1855 0x22400, 0x22528,
1856 0x22540, 0x22614,
1857 0x23000, 0x23040,
1858 0x2304c, 0x23060,
1859 0x230c0, 0x230ec,
1860 0x23200, 0x23268,
1861 0x23270, 0x23284,
1862 0x232fc, 0x23388,
1863 0x23400, 0x23404,
1864 0x23500, 0x23518,
1865 0x2352c, 0x2353c,
1866 0x23550, 0x23554,
1867 0x23600, 0x23600,
1868 0x23608, 0x23628,
1869 0x23630, 0x2363c,
1870 0x23700, 0x2371c,
1871 0x23780, 0x2378c,
1872 0x23800, 0x23c38,
1873 0x23c80, 0x23d7c,
1874 0x23e00, 0x23e04,
1875 0x24000, 0x2402c,
1876 0x24100, 0x2413c,
1877 0x24190, 0x241c8,
1878 0x24200, 0x24318,
1879 0x24400, 0x24528,
1880 0x24540, 0x24614,
1881 0x25000, 0x25040,
1882 0x2504c, 0x25060,
1883 0x250c0, 0x250ec,
1884 0x25200, 0x25268,
1885 0x25270, 0x25284,
1886 0x252fc, 0x25388,
1887 0x25400, 0x25404,
1888 0x25500, 0x25518,
1889 0x2552c, 0x2553c,
1890 0x25550, 0x25554,
1891 0x25600, 0x25600,
1892 0x25608, 0x25628,
1893 0x25630, 0x2563c,
1894 0x25700, 0x2571c,
1895 0x25780, 0x2578c,
1896 0x25800, 0x25c38,
1897 0x25c80, 0x25d7c,
1898 0x25e00, 0x25e04,
1899 0x26000, 0x2602c,
1900 0x26100, 0x2613c,
1901 0x26190, 0x261c8,
1902 0x26200, 0x26318,
1903 0x26400, 0x26528,
1904 0x26540, 0x26614,
1905 0x27000, 0x27040,
1906 0x2704c, 0x27060,
1907 0x270c0, 0x270ec,
1908 0x27200, 0x27268,
1909 0x27270, 0x27284,
1910 0x272fc, 0x27388,
1911 0x27400, 0x27404,
1912 0x27500, 0x27518,
1913 0x2752c, 0x2753c,
1914 0x27550, 0x27554,
1915 0x27600, 0x27600,
1916 0x27608, 0x27628,
1917 0x27630, 0x2763c,
1918 0x27700, 0x2771c,
1919 0x27780, 0x2778c,
1920 0x27800, 0x27c38,
1921 0x27c80, 0x27d7c,
1922 0x27e00, 0x27e04
1923 };
1924
1925 static const unsigned int t5_reg_ranges[] = {
1926 0x1008, 0x1148,
1927 0x1180, 0x11b4,
1928 0x11fc, 0x123c,
1929 0x1280, 0x173c,
1930 0x1800, 0x18fc,
1931 0x3000, 0x3028,
1932 0x3060, 0x30d8,
1933 0x30e0, 0x30fc,
1934 0x3140, 0x357c,
1935 0x35a8, 0x35cc,
1936 0x35ec, 0x35ec,
1937 0x3600, 0x5624,
1938 0x56cc, 0x575c,
1939 0x580c, 0x5814,
1940 0x5890, 0x58bc,
1941 0x5940, 0x59dc,
1942 0x59fc, 0x5a18,
1943 0x5a60, 0x5a9c,
1944 0x5b9c, 0x5bfc,
1945 0x6000, 0x6040,
1946 0x6058, 0x614c,
1947 0x7700, 0x7798,
1948 0x77c0, 0x78fc,
1949 0x7b00, 0x7c54,
1950 0x7d00, 0x7efc,
1951 0x8dc0, 0x8de0,
1952 0x8df8, 0x8e84,
1953 0x8ea0, 0x8f84,
1954 0x8fc0, 0x90f8,
1955 0x9400, 0x9470,
1956 0x9600, 0x96f4,
1957 0x9800, 0x9808,
1958 0x9820, 0x983c,
1959 0x9850, 0x9864,
1960 0x9c00, 0x9c6c,
1961 0x9c80, 0x9cec,
1962 0x9d00, 0x9d6c,
1963 0x9d80, 0x9dec,
1964 0x9e00, 0x9e6c,
1965 0x9e80, 0x9eec,
1966 0x9f00, 0x9f6c,
1967 0x9f80, 0xa020,
1968 0xd004, 0xd03c,
1969 0xdfc0, 0xdfe0,
1970 0xe000, 0x11088,
1971 0x1109c, 0x1117c,
1972 0x11190, 0x11204,
1973 0x19040, 0x1906c,
1974 0x19078, 0x19080,
1975 0x1908c, 0x19124,
1976 0x19150, 0x191b0,
1977 0x191d0, 0x191e8,
1978 0x19238, 0x19290,
1979 0x193f8, 0x19474,
1980 0x19490, 0x194cc,
1981 0x194f0, 0x194f8,
1982 0x19c00, 0x19c60,
1983 0x19c94, 0x19e10,
1984 0x19e50, 0x19f34,
1985 0x19f40, 0x19f50,
1986 0x19f90, 0x19fe4,
1987 0x1a000, 0x1a06c,
1988 0x1a0b0, 0x1a120,
1989 0x1a128, 0x1a138,
1990 0x1a190, 0x1a1c4,
1991 0x1a1fc, 0x1a1fc,
1992 0x1e008, 0x1e00c,
1993 0x1e040, 0x1e04c,
1994 0x1e284, 0x1e290,
1995 0x1e2c0, 0x1e2c0,
1996 0x1e2e0, 0x1e2e0,
1997 0x1e300, 0x1e384,
1998 0x1e3c0, 0x1e3c8,
1999 0x1e408, 0x1e40c,
2000 0x1e440, 0x1e44c,
2001 0x1e684, 0x1e690,
2002 0x1e6c0, 0x1e6c0,
2003 0x1e6e0, 0x1e6e0,
2004 0x1e700, 0x1e784,
2005 0x1e7c0, 0x1e7c8,
2006 0x1e808, 0x1e80c,
2007 0x1e840, 0x1e84c,
2008 0x1ea84, 0x1ea90,
2009 0x1eac0, 0x1eac0,
2010 0x1eae0, 0x1eae0,
2011 0x1eb00, 0x1eb84,
2012 0x1ebc0, 0x1ebc8,
2013 0x1ec08, 0x1ec0c,
2014 0x1ec40, 0x1ec4c,
2015 0x1ee84, 0x1ee90,
2016 0x1eec0, 0x1eec0,
2017 0x1eee0, 0x1eee0,
2018 0x1ef00, 0x1ef84,
2019 0x1efc0, 0x1efc8,
2020 0x1f008, 0x1f00c,
2021 0x1f040, 0x1f04c,
2022 0x1f284, 0x1f290,
2023 0x1f2c0, 0x1f2c0,
2024 0x1f2e0, 0x1f2e0,
2025 0x1f300, 0x1f384,
2026 0x1f3c0, 0x1f3c8,
2027 0x1f408, 0x1f40c,
2028 0x1f440, 0x1f44c,
2029 0x1f684, 0x1f690,
2030 0x1f6c0, 0x1f6c0,
2031 0x1f6e0, 0x1f6e0,
2032 0x1f700, 0x1f784,
2033 0x1f7c0, 0x1f7c8,
2034 0x1f808, 0x1f80c,
2035 0x1f840, 0x1f84c,
2036 0x1fa84, 0x1fa90,
2037 0x1fac0, 0x1fac0,
2038 0x1fae0, 0x1fae0,
2039 0x1fb00, 0x1fb84,
2040 0x1fbc0, 0x1fbc8,
2041 0x1fc08, 0x1fc0c,
2042 0x1fc40, 0x1fc4c,
2043 0x1fe84, 0x1fe90,
2044 0x1fec0, 0x1fec0,
2045 0x1fee0, 0x1fee0,
2046 0x1ff00, 0x1ff84,
2047 0x1ffc0, 0x1ffc8,
2048 0x30000, 0x30030,
2049 0x30100, 0x30144,
2050 0x30190, 0x301d0,
2051 0x30200, 0x30318,
2052 0x30400, 0x3052c,
2053 0x30540, 0x3061c,
2054 0x30800, 0x30834,
2055 0x308c0, 0x30908,
2056 0x30910, 0x309ac,
2057 0x30a00, 0x30a04,
2058 0x30a0c, 0x30a2c,
2059 0x30a44, 0x30a50,
2060 0x30a74, 0x30c24,
2061 0x30d08, 0x30d14,
2062 0x30d1c, 0x30d20,
2063 0x30d3c, 0x30d50,
2064 0x31200, 0x3120c,
2065 0x31220, 0x31220,
2066 0x31240, 0x31240,
2067 0x31600, 0x31600,
2068 0x31608, 0x3160c,
2069 0x31a00, 0x31a1c,
2070 0x31e04, 0x31e20,
2071 0x31e38, 0x31e3c,
2072 0x31e80, 0x31e80,
2073 0x31e88, 0x31ea8,
2074 0x31eb0, 0x31eb4,
2075 0x31ec8, 0x31ed4,
2076 0x31fb8, 0x32004,
2077 0x32208, 0x3223c,
2078 0x32600, 0x32630,
2079 0x32a00, 0x32abc,
2080 0x32b00, 0x32b70,
2081 0x33000, 0x33048,
2082 0x33060, 0x3309c,
2083 0x330f0, 0x33148,
2084 0x33160, 0x3319c,
2085 0x331f0, 0x332e4,
2086 0x332f8, 0x333e4,
2087 0x333f8, 0x33448,
2088 0x33460, 0x3349c,
2089 0x334f0, 0x33548,
2090 0x33560, 0x3359c,
2091 0x335f0, 0x336e4,
2092 0x336f8, 0x337e4,
2093 0x337f8, 0x337fc,
2094 0x33814, 0x33814,
2095 0x3382c, 0x3382c,
2096 0x33880, 0x3388c,
2097 0x338e8, 0x338ec,
2098 0x33900, 0x33948,
2099 0x33960, 0x3399c,
2100 0x339f0, 0x33ae4,
2101 0x33af8, 0x33b10,
2102 0x33b28, 0x33b28,
2103 0x33b3c, 0x33b50,
2104 0x33bf0, 0x33c10,
2105 0x33c28, 0x33c28,
2106 0x33c3c, 0x33c50,
2107 0x33cf0, 0x33cfc,
2108 0x34000, 0x34030,
2109 0x34100, 0x34144,
2110 0x34190, 0x341d0,
2111 0x34200, 0x34318,
2112 0x34400, 0x3452c,
2113 0x34540, 0x3461c,
2114 0x34800, 0x34834,
2115 0x348c0, 0x34908,
2116 0x34910, 0x349ac,
2117 0x34a00, 0x34a04,
2118 0x34a0c, 0x34a2c,
2119 0x34a44, 0x34a50,
2120 0x34a74, 0x34c24,
2121 0x34d08, 0x34d14,
2122 0x34d1c, 0x34d20,
2123 0x34d3c, 0x34d50,
2124 0x35200, 0x3520c,
2125 0x35220, 0x35220,
2126 0x35240, 0x35240,
2127 0x35600, 0x35600,
2128 0x35608, 0x3560c,
2129 0x35a00, 0x35a1c,
2130 0x35e04, 0x35e20,
2131 0x35e38, 0x35e3c,
2132 0x35e80, 0x35e80,
2133 0x35e88, 0x35ea8,
2134 0x35eb0, 0x35eb4,
2135 0x35ec8, 0x35ed4,
2136 0x35fb8, 0x36004,
2137 0x36208, 0x3623c,
2138 0x36600, 0x36630,
2139 0x36a00, 0x36abc,
2140 0x36b00, 0x36b70,
2141 0x37000, 0x37048,
2142 0x37060, 0x3709c,
2143 0x370f0, 0x37148,
2144 0x37160, 0x3719c,
2145 0x371f0, 0x372e4,
2146 0x372f8, 0x373e4,
2147 0x373f8, 0x37448,
2148 0x37460, 0x3749c,
2149 0x374f0, 0x37548,
2150 0x37560, 0x3759c,
2151 0x375f0, 0x376e4,
2152 0x376f8, 0x377e4,
2153 0x377f8, 0x377fc,
2154 0x37814, 0x37814,
2155 0x3782c, 0x3782c,
2156 0x37880, 0x3788c,
2157 0x378e8, 0x378ec,
2158 0x37900, 0x37948,
2159 0x37960, 0x3799c,
2160 0x379f0, 0x37ae4,
2161 0x37af8, 0x37b10,
2162 0x37b28, 0x37b28,
2163 0x37b3c, 0x37b50,
2164 0x37bf0, 0x37c10,
2165 0x37c28, 0x37c28,
2166 0x37c3c, 0x37c50,
2167 0x37cf0, 0x37cfc,
2168 0x38000, 0x38030,
2169 0x38100, 0x38144,
2170 0x38190, 0x381d0,
2171 0x38200, 0x38318,
2172 0x38400, 0x3852c,
2173 0x38540, 0x3861c,
2174 0x38800, 0x38834,
2175 0x388c0, 0x38908,
2176 0x38910, 0x389ac,
2177 0x38a00, 0x38a04,
2178 0x38a0c, 0x38a2c,
2179 0x38a44, 0x38a50,
2180 0x38a74, 0x38c24,
2181 0x38d08, 0x38d14,
2182 0x38d1c, 0x38d20,
2183 0x38d3c, 0x38d50,
2184 0x39200, 0x3920c,
2185 0x39220, 0x39220,
2186 0x39240, 0x39240,
2187 0x39600, 0x39600,
2188 0x39608, 0x3960c,
2189 0x39a00, 0x39a1c,
2190 0x39e04, 0x39e20,
2191 0x39e38, 0x39e3c,
2192 0x39e80, 0x39e80,
2193 0x39e88, 0x39ea8,
2194 0x39eb0, 0x39eb4,
2195 0x39ec8, 0x39ed4,
2196 0x39fb8, 0x3a004,
2197 0x3a208, 0x3a23c,
2198 0x3a600, 0x3a630,
2199 0x3aa00, 0x3aabc,
2200 0x3ab00, 0x3ab70,
2201 0x3b000, 0x3b048,
2202 0x3b060, 0x3b09c,
2203 0x3b0f0, 0x3b148,
2204 0x3b160, 0x3b19c,
2205 0x3b1f0, 0x3b2e4,
2206 0x3b2f8, 0x3b3e4,
2207 0x3b3f8, 0x3b448,
2208 0x3b460, 0x3b49c,
2209 0x3b4f0, 0x3b548,
2210 0x3b560, 0x3b59c,
2211 0x3b5f0, 0x3b6e4,
2212 0x3b6f8, 0x3b7e4,
2213 0x3b7f8, 0x3b7fc,
2214 0x3b814, 0x3b814,
2215 0x3b82c, 0x3b82c,
2216 0x3b880, 0x3b88c,
2217 0x3b8e8, 0x3b8ec,
2218 0x3b900, 0x3b948,
2219 0x3b960, 0x3b99c,
2220 0x3b9f0, 0x3bae4,
2221 0x3baf8, 0x3bb10,
2222 0x3bb28, 0x3bb28,
2223 0x3bb3c, 0x3bb50,
2224 0x3bbf0, 0x3bc10,
2225 0x3bc28, 0x3bc28,
2226 0x3bc3c, 0x3bc50,
2227 0x3bcf0, 0x3bcfc,
2228 0x3c000, 0x3c030,
2229 0x3c100, 0x3c144,
2230 0x3c190, 0x3c1d0,
2231 0x3c200, 0x3c318,
2232 0x3c400, 0x3c52c,
2233 0x3c540, 0x3c61c,
2234 0x3c800, 0x3c834,
2235 0x3c8c0, 0x3c908,
2236 0x3c910, 0x3c9ac,
2237 0x3ca00, 0x3ca04,
2238 0x3ca0c, 0x3ca2c,
2239 0x3ca44, 0x3ca50,
2240 0x3ca74, 0x3cc24,
2241 0x3cd08, 0x3cd14,
2242 0x3cd1c, 0x3cd20,
2243 0x3cd3c, 0x3cd50,
2244 0x3d200, 0x3d20c,
2245 0x3d220, 0x3d220,
2246 0x3d240, 0x3d240,
2247 0x3d600, 0x3d600,
2248 0x3d608, 0x3d60c,
2249 0x3da00, 0x3da1c,
2250 0x3de04, 0x3de20,
2251 0x3de38, 0x3de3c,
2252 0x3de80, 0x3de80,
2253 0x3de88, 0x3dea8,
2254 0x3deb0, 0x3deb4,
2255 0x3dec8, 0x3ded4,
2256 0x3dfb8, 0x3e004,
2257 0x3e208, 0x3e23c,
2258 0x3e600, 0x3e630,
2259 0x3ea00, 0x3eabc,
2260 0x3eb00, 0x3eb70,
2261 0x3f000, 0x3f048,
2262 0x3f060, 0x3f09c,
2263 0x3f0f0, 0x3f148,
2264 0x3f160, 0x3f19c,
2265 0x3f1f0, 0x3f2e4,
2266 0x3f2f8, 0x3f3e4,
2267 0x3f3f8, 0x3f448,
2268 0x3f460, 0x3f49c,
2269 0x3f4f0, 0x3f548,
2270 0x3f560, 0x3f59c,
2271 0x3f5f0, 0x3f6e4,
2272 0x3f6f8, 0x3f7e4,
2273 0x3f7f8, 0x3f7fc,
2274 0x3f814, 0x3f814,
2275 0x3f82c, 0x3f82c,
2276 0x3f880, 0x3f88c,
2277 0x3f8e8, 0x3f8ec,
2278 0x3f900, 0x3f948,
2279 0x3f960, 0x3f99c,
2280 0x3f9f0, 0x3fae4,
2281 0x3faf8, 0x3fb10,
2282 0x3fb28, 0x3fb28,
2283 0x3fb3c, 0x3fb50,
2284 0x3fbf0, 0x3fc10,
2285 0x3fc28, 0x3fc28,
2286 0x3fc3c, 0x3fc50,
2287 0x3fcf0, 0x3fcfc,
2288 0x40000, 0x4000c,
2289 0x40040, 0x40068,
2290 0x40080, 0x40144,
2291 0x40180, 0x4018c,
2292 0x40200, 0x40298,
2293 0x402ac, 0x4033c,
2294 0x403f8, 0x403fc,
2295 0x41304, 0x413c4,
2296 0x41400, 0x4141c,
2297 0x41480, 0x414d0,
2298 0x44000, 0x44078,
2299 0x440c0, 0x44278,
2300 0x442c0, 0x44478,
2301 0x444c0, 0x44678,
2302 0x446c0, 0x44878,
2303 0x448c0, 0x449fc,
2304 0x45000, 0x45068,
2305 0x45080, 0x45084,
2306 0x450a0, 0x450b0,
2307 0x45200, 0x45268,
2308 0x45280, 0x45284,
2309 0x452a0, 0x452b0,
2310 0x460c0, 0x460e4,
2311 0x47000, 0x4708c,
2312 0x47200, 0x47250,
2313 0x47400, 0x47420,
2314 0x47600, 0x47618,
2315 0x47800, 0x47814,
2316 0x48000, 0x4800c,
2317 0x48040, 0x48068,
2318 0x48080, 0x48144,
2319 0x48180, 0x4818c,
2320 0x48200, 0x48298,
2321 0x482ac, 0x4833c,
2322 0x483f8, 0x483fc,
2323 0x49304, 0x493c4,
2324 0x49400, 0x4941c,
2325 0x49480, 0x494d0,
2326 0x4c000, 0x4c078,
2327 0x4c0c0, 0x4c278,
2328 0x4c2c0, 0x4c478,
2329 0x4c4c0, 0x4c678,
2330 0x4c6c0, 0x4c878,
2331 0x4c8c0, 0x4c9fc,
2332 0x4d000, 0x4d068,
2333 0x4d080, 0x4d084,
2334 0x4d0a0, 0x4d0b0,
2335 0x4d200, 0x4d268,
2336 0x4d280, 0x4d284,
2337 0x4d2a0, 0x4d2b0,
2338 0x4e0c0, 0x4e0e4,
2339 0x4f000, 0x4f08c,
2340 0x4f200, 0x4f250,
2341 0x4f400, 0x4f420,
2342 0x4f600, 0x4f618,
2343 0x4f800, 0x4f814,
2344 0x50000, 0x500cc,
2345 0x50400, 0x50400,
2346 0x50800, 0x508cc,
2347 0x50c00, 0x50c00,
2348 0x51000, 0x5101c,
2349 0x51300, 0x51308,
2350 };
2351
2352 int i;
2353 struct adapter *ap = netdev2adap(dev);
2354 static const unsigned int *reg_ranges;
2355 int arr_size = 0, buf_size = 0;
2356
2357 if (is_t4(ap->params.chip)) {
2358 reg_ranges = &t4_reg_ranges[0];
2359 arr_size = ARRAY_SIZE(t4_reg_ranges);
2360 buf_size = T4_REGMAP_SIZE;
2361 } else {
2362 reg_ranges = &t5_reg_ranges[0];
2363 arr_size = ARRAY_SIZE(t5_reg_ranges);
2364 buf_size = T5_REGMAP_SIZE;
2365 }
2366
2367 regs->version = mk_adap_vers(ap);
2368
2369 memset(buf, 0, buf_size);
2370 for (i = 0; i < arr_size; i += 2)
2371 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2372 }
2373
2374 static int restart_autoneg(struct net_device *dev)
2375 {
2376 struct port_info *p = netdev_priv(dev);
2377
2378 if (!netif_running(dev))
2379 return -EAGAIN;
2380 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2381 return -EINVAL;
2382 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2383 return 0;
2384 }
2385
2386 static int identify_port(struct net_device *dev,
2387 enum ethtool_phys_id_state state)
2388 {
2389 unsigned int val;
2390 struct adapter *adap = netdev2adap(dev);
2391
2392 if (state == ETHTOOL_ID_ACTIVE)
2393 val = 0xffff;
2394 else if (state == ETHTOOL_ID_INACTIVE)
2395 val = 0;
2396 else
2397 return -EINVAL;
2398
2399 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2400 }
2401
2402 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2403 {
2404 unsigned int v = 0;
2405
2406 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2407 type == FW_PORT_TYPE_BT_XAUI) {
2408 v |= SUPPORTED_TP;
2409 if (caps & FW_PORT_CAP_SPEED_100M)
2410 v |= SUPPORTED_100baseT_Full;
2411 if (caps & FW_PORT_CAP_SPEED_1G)
2412 v |= SUPPORTED_1000baseT_Full;
2413 if (caps & FW_PORT_CAP_SPEED_10G)
2414 v |= SUPPORTED_10000baseT_Full;
2415 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2416 v |= SUPPORTED_Backplane;
2417 if (caps & FW_PORT_CAP_SPEED_1G)
2418 v |= SUPPORTED_1000baseKX_Full;
2419 if (caps & FW_PORT_CAP_SPEED_10G)
2420 v |= SUPPORTED_10000baseKX4_Full;
2421 } else if (type == FW_PORT_TYPE_KR)
2422 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2423 else if (type == FW_PORT_TYPE_BP_AP)
2424 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2425 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2426 else if (type == FW_PORT_TYPE_BP4_AP)
2427 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2428 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2429 SUPPORTED_10000baseKX4_Full;
2430 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2431 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2432 v |= SUPPORTED_FIBRE;
2433 else if (type == FW_PORT_TYPE_BP40_BA)
2434 v |= SUPPORTED_40000baseSR4_Full;
2435
2436 if (caps & FW_PORT_CAP_ANEG)
2437 v |= SUPPORTED_Autoneg;
2438 return v;
2439 }
2440
2441 static unsigned int to_fw_linkcaps(unsigned int caps)
2442 {
2443 unsigned int v = 0;
2444
2445 if (caps & ADVERTISED_100baseT_Full)
2446 v |= FW_PORT_CAP_SPEED_100M;
2447 if (caps & ADVERTISED_1000baseT_Full)
2448 v |= FW_PORT_CAP_SPEED_1G;
2449 if (caps & ADVERTISED_10000baseT_Full)
2450 v |= FW_PORT_CAP_SPEED_10G;
2451 if (caps & ADVERTISED_40000baseSR4_Full)
2452 v |= FW_PORT_CAP_SPEED_40G;
2453 return v;
2454 }
2455
2456 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2457 {
2458 const struct port_info *p = netdev_priv(dev);
2459
2460 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2461 p->port_type == FW_PORT_TYPE_BT_XFI ||
2462 p->port_type == FW_PORT_TYPE_BT_XAUI)
2463 cmd->port = PORT_TP;
2464 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2465 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2466 cmd->port = PORT_FIBRE;
2467 else if (p->port_type == FW_PORT_TYPE_SFP ||
2468 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2469 p->port_type == FW_PORT_TYPE_QSFP) {
2470 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2471 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2472 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2473 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2474 cmd->port = PORT_FIBRE;
2475 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2476 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2477 cmd->port = PORT_DA;
2478 else
2479 cmd->port = PORT_OTHER;
2480 } else
2481 cmd->port = PORT_OTHER;
2482
2483 if (p->mdio_addr >= 0) {
2484 cmd->phy_address = p->mdio_addr;
2485 cmd->transceiver = XCVR_EXTERNAL;
2486 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2487 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2488 } else {
2489 cmd->phy_address = 0; /* not really, but no better option */
2490 cmd->transceiver = XCVR_INTERNAL;
2491 cmd->mdio_support = 0;
2492 }
2493
2494 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2495 cmd->advertising = from_fw_linkcaps(p->port_type,
2496 p->link_cfg.advertising);
2497 ethtool_cmd_speed_set(cmd,
2498 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2499 cmd->duplex = DUPLEX_FULL;
2500 cmd->autoneg = p->link_cfg.autoneg;
2501 cmd->maxtxpkt = 0;
2502 cmd->maxrxpkt = 0;
2503 return 0;
2504 }
2505
2506 static unsigned int speed_to_caps(int speed)
2507 {
2508 if (speed == 100)
2509 return FW_PORT_CAP_SPEED_100M;
2510 if (speed == 1000)
2511 return FW_PORT_CAP_SPEED_1G;
2512 if (speed == 10000)
2513 return FW_PORT_CAP_SPEED_10G;
2514 if (speed == 40000)
2515 return FW_PORT_CAP_SPEED_40G;
2516 return 0;
2517 }
2518
2519 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2520 {
2521 unsigned int cap;
2522 struct port_info *p = netdev_priv(dev);
2523 struct link_config *lc = &p->link_cfg;
2524 u32 speed = ethtool_cmd_speed(cmd);
2525
2526 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2527 return -EINVAL;
2528
2529 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2530 /*
2531 * PHY offers a single speed. See if that's what's
2532 * being requested.
2533 */
2534 if (cmd->autoneg == AUTONEG_DISABLE &&
2535 (lc->supported & speed_to_caps(speed)))
2536 return 0;
2537 return -EINVAL;
2538 }
2539
2540 if (cmd->autoneg == AUTONEG_DISABLE) {
2541 cap = speed_to_caps(speed);
2542
2543 if (!(lc->supported & cap) ||
2544 (speed == 1000) ||
2545 (speed == 10000) ||
2546 (speed == 40000))
2547 return -EINVAL;
2548 lc->requested_speed = cap;
2549 lc->advertising = 0;
2550 } else {
2551 cap = to_fw_linkcaps(cmd->advertising);
2552 if (!(lc->supported & cap))
2553 return -EINVAL;
2554 lc->requested_speed = 0;
2555 lc->advertising = cap | FW_PORT_CAP_ANEG;
2556 }
2557 lc->autoneg = cmd->autoneg;
2558
2559 if (netif_running(dev))
2560 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2561 lc);
2562 return 0;
2563 }
2564
2565 static void get_pauseparam(struct net_device *dev,
2566 struct ethtool_pauseparam *epause)
2567 {
2568 struct port_info *p = netdev_priv(dev);
2569
2570 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2571 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2572 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2573 }
2574
2575 static int set_pauseparam(struct net_device *dev,
2576 struct ethtool_pauseparam *epause)
2577 {
2578 struct port_info *p = netdev_priv(dev);
2579 struct link_config *lc = &p->link_cfg;
2580
2581 if (epause->autoneg == AUTONEG_DISABLE)
2582 lc->requested_fc = 0;
2583 else if (lc->supported & FW_PORT_CAP_ANEG)
2584 lc->requested_fc = PAUSE_AUTONEG;
2585 else
2586 return -EINVAL;
2587
2588 if (epause->rx_pause)
2589 lc->requested_fc |= PAUSE_RX;
2590 if (epause->tx_pause)
2591 lc->requested_fc |= PAUSE_TX;
2592 if (netif_running(dev))
2593 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2594 lc);
2595 return 0;
2596 }
2597
2598 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2599 {
2600 const struct port_info *pi = netdev_priv(dev);
2601 const struct sge *s = &pi->adapter->sge;
2602
2603 e->rx_max_pending = MAX_RX_BUFFERS;
2604 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2605 e->rx_jumbo_max_pending = 0;
2606 e->tx_max_pending = MAX_TXQ_ENTRIES;
2607
2608 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2609 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2610 e->rx_jumbo_pending = 0;
2611 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2612 }
2613
2614 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2615 {
2616 int i;
2617 const struct port_info *pi = netdev_priv(dev);
2618 struct adapter *adapter = pi->adapter;
2619 struct sge *s = &adapter->sge;
2620
2621 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2622 e->tx_pending > MAX_TXQ_ENTRIES ||
2623 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2624 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2625 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2626 return -EINVAL;
2627
2628 if (adapter->flags & FULL_INIT_DONE)
2629 return -EBUSY;
2630
2631 for (i = 0; i < pi->nqsets; ++i) {
2632 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2633 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2634 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2635 }
2636 return 0;
2637 }
2638
2639 static int closest_timer(const struct sge *s, int time)
2640 {
2641 int i, delta, match = 0, min_delta = INT_MAX;
2642
2643 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2644 delta = time - s->timer_val[i];
2645 if (delta < 0)
2646 delta = -delta;
2647 if (delta < min_delta) {
2648 min_delta = delta;
2649 match = i;
2650 }
2651 }
2652 return match;
2653 }
2654
2655 static int closest_thres(const struct sge *s, int thres)
2656 {
2657 int i, delta, match = 0, min_delta = INT_MAX;
2658
2659 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2660 delta = thres - s->counter_val[i];
2661 if (delta < 0)
2662 delta = -delta;
2663 if (delta < min_delta) {
2664 min_delta = delta;
2665 match = i;
2666 }
2667 }
2668 return match;
2669 }
2670
2671 /*
2672 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2673 */
2674 static unsigned int qtimer_val(const struct adapter *adap,
2675 const struct sge_rspq *q)
2676 {
2677 unsigned int idx = q->intr_params >> 1;
2678
2679 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2680 }
2681
2682 /**
2683 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
2684 * @q: the Rx queue
2685 * @us: the hold-off time in us, or 0 to disable timer
2686 * @cnt: the hold-off packet count, or 0 to disable counter
2687 *
2688 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2689 * one of the two needs to be enabled for the queue to generate interrupts.
2690 */
2691 static int set_rspq_intr_params(struct sge_rspq *q,
2692 unsigned int us, unsigned int cnt)
2693 {
2694 struct adapter *adap = q->adap;
2695
2696 if ((us | cnt) == 0)
2697 cnt = 1;
2698
2699 if (cnt) {
2700 int err;
2701 u32 v, new_idx;
2702
2703 new_idx = closest_thres(&adap->sge, cnt);
2704 if (q->desc && q->pktcnt_idx != new_idx) {
2705 /* the queue has already been created, update it */
2706 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2707 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2708 FW_PARAMS_PARAM_YZ(q->cntxt_id);
2709 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2710 &new_idx);
2711 if (err)
2712 return err;
2713 }
2714 q->pktcnt_idx = new_idx;
2715 }
2716
2717 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2718 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2719 return 0;
2720 }
2721
2722 /**
2723 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2724 * @dev: the network device
2725 * @us: the hold-off time in us, or 0 to disable timer
2726 * @cnt: the hold-off packet count, or 0 to disable counter
2727 *
2728 * Set the RX interrupt hold-off parameters for a network device.
2729 */
2730 static int set_rx_intr_params(struct net_device *dev,
2731 unsigned int us, unsigned int cnt)
2732 {
2733 int i, err;
2734 struct port_info *pi = netdev_priv(dev);
2735 struct adapter *adap = pi->adapter;
2736 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2737
2738 for (i = 0; i < pi->nqsets; i++, q++) {
2739 err = set_rspq_intr_params(&q->rspq, us, cnt);
2740 if (err)
2741 return err;
2742 }
2743 return 0;
2744 }
2745
2746 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2747 {
2748 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2749 c->rx_max_coalesced_frames);
2750 }
2751
2752 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2753 {
2754 const struct port_info *pi = netdev_priv(dev);
2755 const struct adapter *adap = pi->adapter;
2756 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2757
2758 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2759 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2760 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2761 return 0;
2762 }
2763
2764 /**
2765 * eeprom_ptov - translate a physical EEPROM address to virtual
2766 * @phys_addr: the physical EEPROM address
2767 * @fn: the PCI function number
2768 * @sz: size of function-specific area
2769 *
2770 * Translate a physical EEPROM address to virtual. The first 1K is
2771 * accessed through virtual addresses starting at 31K, the rest is
2772 * accessed through virtual addresses starting at 0.
2773 *
2774 * The mapping is as follows:
2775 * [0..1K) -> [31K..32K)
2776 * [1K..1K+A) -> [31K-A..31K)
2777 * [1K+A..ES) -> [0..ES-A-1K)
2778 *
2779 * where A = @fn * @sz, and ES = EEPROM size.
2780 */
2781 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2782 {
2783 fn *= sz;
2784 if (phys_addr < 1024)
2785 return phys_addr + (31 << 10);
2786 if (phys_addr < 1024 + fn)
2787 return 31744 - fn + phys_addr - 1024;
2788 if (phys_addr < EEPROMSIZE)
2789 return phys_addr - 1024 - fn;
2790 return -EINVAL;
2791 }
2792
2793 /*
2794 * The next two routines implement eeprom read/write from physical addresses.
2795 */
2796 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2797 {
2798 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2799
2800 if (vaddr >= 0)
2801 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2802 return vaddr < 0 ? vaddr : 0;
2803 }
2804
2805 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2806 {
2807 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2808
2809 if (vaddr >= 0)
2810 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2811 return vaddr < 0 ? vaddr : 0;
2812 }
2813
2814 #define EEPROM_MAGIC 0x38E2F10C
2815
2816 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2817 u8 *data)
2818 {
2819 int i, err = 0;
2820 struct adapter *adapter = netdev2adap(dev);
2821
2822 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2823 if (!buf)
2824 return -ENOMEM;
2825
2826 e->magic = EEPROM_MAGIC;
2827 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2828 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2829
2830 if (!err)
2831 memcpy(data, buf + e->offset, e->len);
2832 kfree(buf);
2833 return err;
2834 }
2835
2836 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2837 u8 *data)
2838 {
2839 u8 *buf;
2840 int err = 0;
2841 u32 aligned_offset, aligned_len, *p;
2842 struct adapter *adapter = netdev2adap(dev);
2843
2844 if (eeprom->magic != EEPROM_MAGIC)
2845 return -EINVAL;
2846
2847 aligned_offset = eeprom->offset & ~3;
2848 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2849
2850 if (adapter->fn > 0) {
2851 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2852
2853 if (aligned_offset < start ||
2854 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2855 return -EPERM;
2856 }
2857
2858 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2859 /*
2860 * RMW possibly needed for first or last words.
2861 */
2862 buf = kmalloc(aligned_len, GFP_KERNEL);
2863 if (!buf)
2864 return -ENOMEM;
2865 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2866 if (!err && aligned_len > 4)
2867 err = eeprom_rd_phys(adapter,
2868 aligned_offset + aligned_len - 4,
2869 (u32 *)&buf[aligned_len - 4]);
2870 if (err)
2871 goto out;
2872 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2873 } else
2874 buf = data;
2875
2876 err = t4_seeprom_wp(adapter, false);
2877 if (err)
2878 goto out;
2879
2880 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2881 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2882 aligned_offset += 4;
2883 }
2884
2885 if (!err)
2886 err = t4_seeprom_wp(adapter, true);
2887 out:
2888 if (buf != data)
2889 kfree(buf);
2890 return err;
2891 }
2892
2893 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2894 {
2895 int ret;
2896 const struct firmware *fw;
2897 struct adapter *adap = netdev2adap(netdev);
2898
2899 ef->data[sizeof(ef->data) - 1] = '\0';
2900 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2901 if (ret < 0)
2902 return ret;
2903
2904 ret = t4_load_fw(adap, fw->data, fw->size);
2905 release_firmware(fw);
2906 if (!ret)
2907 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2908 return ret;
2909 }
2910
2911 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2912 #define BCAST_CRC 0xa0ccc1a6
2913
2914 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2915 {
2916 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2917 wol->wolopts = netdev2adap(dev)->wol;
2918 memset(&wol->sopass, 0, sizeof(wol->sopass));
2919 }
2920
2921 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2922 {
2923 int err = 0;
2924 struct port_info *pi = netdev_priv(dev);
2925
2926 if (wol->wolopts & ~WOL_SUPPORTED)
2927 return -EINVAL;
2928 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2929 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2930 if (wol->wolopts & WAKE_BCAST) {
2931 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2932 ~0ULL, 0, false);
2933 if (!err)
2934 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2935 ~6ULL, ~0ULL, BCAST_CRC, true);
2936 } else
2937 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2938 return err;
2939 }
2940
2941 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2942 {
2943 const struct port_info *pi = netdev_priv(dev);
2944 netdev_features_t changed = dev->features ^ features;
2945 int err;
2946
2947 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2948 return 0;
2949
2950 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2951 -1, -1, -1,
2952 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2953 if (unlikely(err))
2954 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2955 return err;
2956 }
2957
2958 static u32 get_rss_table_size(struct net_device *dev)
2959 {
2960 const struct port_info *pi = netdev_priv(dev);
2961
2962 return pi->rss_size;
2963 }
2964
2965 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
2966 {
2967 const struct port_info *pi = netdev_priv(dev);
2968 unsigned int n = pi->rss_size;
2969
2970 while (n--)
2971 p[n] = pi->rss[n];
2972 return 0;
2973 }
2974
2975 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
2976 {
2977 unsigned int i;
2978 struct port_info *pi = netdev_priv(dev);
2979
2980 for (i = 0; i < pi->rss_size; i++)
2981 pi->rss[i] = p[i];
2982 if (pi->adapter->flags & FULL_INIT_DONE)
2983 return write_rss(pi, pi->rss);
2984 return 0;
2985 }
2986
2987 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2988 u32 *rules)
2989 {
2990 const struct port_info *pi = netdev_priv(dev);
2991
2992 switch (info->cmd) {
2993 case ETHTOOL_GRXFH: {
2994 unsigned int v = pi->rss_mode;
2995
2996 info->data = 0;
2997 switch (info->flow_type) {
2998 case TCP_V4_FLOW:
2999 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3000 info->data = RXH_IP_SRC | RXH_IP_DST |
3001 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3002 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3003 info->data = RXH_IP_SRC | RXH_IP_DST;
3004 break;
3005 case UDP_V4_FLOW:
3006 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3007 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3008 info->data = RXH_IP_SRC | RXH_IP_DST |
3009 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3010 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3011 info->data = RXH_IP_SRC | RXH_IP_DST;
3012 break;
3013 case SCTP_V4_FLOW:
3014 case AH_ESP_V4_FLOW:
3015 case IPV4_FLOW:
3016 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3017 info->data = RXH_IP_SRC | RXH_IP_DST;
3018 break;
3019 case TCP_V6_FLOW:
3020 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3021 info->data = RXH_IP_SRC | RXH_IP_DST |
3022 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3023 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3024 info->data = RXH_IP_SRC | RXH_IP_DST;
3025 break;
3026 case UDP_V6_FLOW:
3027 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3028 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3029 info->data = RXH_IP_SRC | RXH_IP_DST |
3030 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3031 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3032 info->data = RXH_IP_SRC | RXH_IP_DST;
3033 break;
3034 case SCTP_V6_FLOW:
3035 case AH_ESP_V6_FLOW:
3036 case IPV6_FLOW:
3037 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3038 info->data = RXH_IP_SRC | RXH_IP_DST;
3039 break;
3040 }
3041 return 0;
3042 }
3043 case ETHTOOL_GRXRINGS:
3044 info->data = pi->nqsets;
3045 return 0;
3046 }
3047 return -EOPNOTSUPP;
3048 }
3049
3050 static const struct ethtool_ops cxgb_ethtool_ops = {
3051 .get_settings = get_settings,
3052 .set_settings = set_settings,
3053 .get_drvinfo = get_drvinfo,
3054 .get_msglevel = get_msglevel,
3055 .set_msglevel = set_msglevel,
3056 .get_ringparam = get_sge_param,
3057 .set_ringparam = set_sge_param,
3058 .get_coalesce = get_coalesce,
3059 .set_coalesce = set_coalesce,
3060 .get_eeprom_len = get_eeprom_len,
3061 .get_eeprom = get_eeprom,
3062 .set_eeprom = set_eeprom,
3063 .get_pauseparam = get_pauseparam,
3064 .set_pauseparam = set_pauseparam,
3065 .get_link = ethtool_op_get_link,
3066 .get_strings = get_strings,
3067 .set_phys_id = identify_port,
3068 .nway_reset = restart_autoneg,
3069 .get_sset_count = get_sset_count,
3070 .get_ethtool_stats = get_stats,
3071 .get_regs_len = get_regs_len,
3072 .get_regs = get_regs,
3073 .get_wol = get_wol,
3074 .set_wol = set_wol,
3075 .get_rxnfc = get_rxnfc,
3076 .get_rxfh_indir_size = get_rss_table_size,
3077 .get_rxfh = get_rss_table,
3078 .set_rxfh = set_rss_table,
3079 .flash_device = set_flash,
3080 };
3081
3082 /*
3083 * debugfs support
3084 */
3085 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3086 loff_t *ppos)
3087 {
3088 loff_t pos = *ppos;
3089 loff_t avail = file_inode(file)->i_size;
3090 unsigned int mem = (uintptr_t)file->private_data & 3;
3091 struct adapter *adap = file->private_data - mem;
3092 __be32 *data;
3093 int ret;
3094
3095 if (pos < 0)
3096 return -EINVAL;
3097 if (pos >= avail)
3098 return 0;
3099 if (count > avail - pos)
3100 count = avail - pos;
3101
3102 data = t4_alloc_mem(count);
3103 if (!data)
3104 return -ENOMEM;
3105
3106 spin_lock(&adap->win0_lock);
3107 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3108 spin_unlock(&adap->win0_lock);
3109 if (ret) {
3110 t4_free_mem(data);
3111 return ret;
3112 }
3113 ret = copy_to_user(buf, data, count);
3114
3115 t4_free_mem(data);
3116 if (ret)
3117 return -EFAULT;
3118
3119 *ppos = pos + count;
3120 return count;
3121 }
3122
3123 static const struct file_operations mem_debugfs_fops = {
3124 .owner = THIS_MODULE,
3125 .open = simple_open,
3126 .read = mem_read,
3127 .llseek = default_llseek,
3128 };
3129
3130 static void add_debugfs_mem(struct adapter *adap, const char *name,
3131 unsigned int idx, unsigned int size_mb)
3132 {
3133 struct dentry *de;
3134
3135 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3136 (void *)adap + idx, &mem_debugfs_fops);
3137 if (de && de->d_inode)
3138 de->d_inode->i_size = size_mb << 20;
3139 }
3140
3141 static int setup_debugfs(struct adapter *adap)
3142 {
3143 int i;
3144 u32 size;
3145
3146 if (IS_ERR_OR_NULL(adap->debugfs_root))
3147 return -1;
3148
3149 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3150 if (i & EDRAM0_ENABLE) {
3151 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3152 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3153 }
3154 if (i & EDRAM1_ENABLE) {
3155 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3156 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3157 }
3158 if (is_t4(adap->params.chip)) {
3159 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3160 if (i & EXT_MEM_ENABLE)
3161 add_debugfs_mem(adap, "mc", MEM_MC,
3162 EXT_MEM_SIZE_GET(size));
3163 } else {
3164 if (i & EXT_MEM_ENABLE) {
3165 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3166 add_debugfs_mem(adap, "mc0", MEM_MC0,
3167 EXT_MEM_SIZE_GET(size));
3168 }
3169 if (i & EXT_MEM1_ENABLE) {
3170 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3171 add_debugfs_mem(adap, "mc1", MEM_MC1,
3172 EXT_MEM_SIZE_GET(size));
3173 }
3174 }
3175 if (adap->l2t)
3176 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3177 &t4_l2t_fops);
3178 return 0;
3179 }
3180
3181 /*
3182 * upper-layer driver support
3183 */
3184
3185 /*
3186 * Allocate an active-open TID and set it to the supplied value.
3187 */
3188 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3189 {
3190 int atid = -1;
3191
3192 spin_lock_bh(&t->atid_lock);
3193 if (t->afree) {
3194 union aopen_entry *p = t->afree;
3195
3196 atid = (p - t->atid_tab) + t->atid_base;
3197 t->afree = p->next;
3198 p->data = data;
3199 t->atids_in_use++;
3200 }
3201 spin_unlock_bh(&t->atid_lock);
3202 return atid;
3203 }
3204 EXPORT_SYMBOL(cxgb4_alloc_atid);
3205
3206 /*
3207 * Release an active-open TID.
3208 */
3209 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3210 {
3211 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3212
3213 spin_lock_bh(&t->atid_lock);
3214 p->next = t->afree;
3215 t->afree = p;
3216 t->atids_in_use--;
3217 spin_unlock_bh(&t->atid_lock);
3218 }
3219 EXPORT_SYMBOL(cxgb4_free_atid);
3220
3221 /*
3222 * Allocate a server TID and set it to the supplied value.
3223 */
3224 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3225 {
3226 int stid;
3227
3228 spin_lock_bh(&t->stid_lock);
3229 if (family == PF_INET) {
3230 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3231 if (stid < t->nstids)
3232 __set_bit(stid, t->stid_bmap);
3233 else
3234 stid = -1;
3235 } else {
3236 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3237 if (stid < 0)
3238 stid = -1;
3239 }
3240 if (stid >= 0) {
3241 t->stid_tab[stid].data = data;
3242 stid += t->stid_base;
3243 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3244 * This is equivalent to 4 TIDs. With CLIP enabled it
3245 * needs 2 TIDs.
3246 */
3247 if (family == PF_INET)
3248 t->stids_in_use++;
3249 else
3250 t->stids_in_use += 4;
3251 }
3252 spin_unlock_bh(&t->stid_lock);
3253 return stid;
3254 }
3255 EXPORT_SYMBOL(cxgb4_alloc_stid);
3256
3257 /* Allocate a server filter TID and set it to the supplied value.
3258 */
3259 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3260 {
3261 int stid;
3262
3263 spin_lock_bh(&t->stid_lock);
3264 if (family == PF_INET) {
3265 stid = find_next_zero_bit(t->stid_bmap,
3266 t->nstids + t->nsftids, t->nstids);
3267 if (stid < (t->nstids + t->nsftids))
3268 __set_bit(stid, t->stid_bmap);
3269 else
3270 stid = -1;
3271 } else {
3272 stid = -1;
3273 }
3274 if (stid >= 0) {
3275 t->stid_tab[stid].data = data;
3276 stid -= t->nstids;
3277 stid += t->sftid_base;
3278 t->stids_in_use++;
3279 }
3280 spin_unlock_bh(&t->stid_lock);
3281 return stid;
3282 }
3283 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3284
3285 /* Release a server TID.
3286 */
3287 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3288 {
3289 /* Is it a server filter TID? */
3290 if (t->nsftids && (stid >= t->sftid_base)) {
3291 stid -= t->sftid_base;
3292 stid += t->nstids;
3293 } else {
3294 stid -= t->stid_base;
3295 }
3296
3297 spin_lock_bh(&t->stid_lock);
3298 if (family == PF_INET)
3299 __clear_bit(stid, t->stid_bmap);
3300 else
3301 bitmap_release_region(t->stid_bmap, stid, 2);
3302 t->stid_tab[stid].data = NULL;
3303 if (family == PF_INET)
3304 t->stids_in_use--;
3305 else
3306 t->stids_in_use -= 4;
3307 spin_unlock_bh(&t->stid_lock);
3308 }
3309 EXPORT_SYMBOL(cxgb4_free_stid);
3310
3311 /*
3312 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3313 */
3314 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3315 unsigned int tid)
3316 {
3317 struct cpl_tid_release *req;
3318
3319 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3320 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3321 INIT_TP_WR(req, tid);
3322 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3323 }
3324
3325 /*
3326 * Queue a TID release request and if necessary schedule a work queue to
3327 * process it.
3328 */
3329 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3330 unsigned int tid)
3331 {
3332 void **p = &t->tid_tab[tid];
3333 struct adapter *adap = container_of(t, struct adapter, tids);
3334
3335 spin_lock_bh(&adap->tid_release_lock);
3336 *p = adap->tid_release_head;
3337 /* Low 2 bits encode the Tx channel number */
3338 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3339 if (!adap->tid_release_task_busy) {
3340 adap->tid_release_task_busy = true;
3341 queue_work(adap->workq, &adap->tid_release_task);
3342 }
3343 spin_unlock_bh(&adap->tid_release_lock);
3344 }
3345
3346 /*
3347 * Process the list of pending TID release requests.
3348 */
3349 static void process_tid_release_list(struct work_struct *work)
3350 {
3351 struct sk_buff *skb;
3352 struct adapter *adap;
3353
3354 adap = container_of(work, struct adapter, tid_release_task);
3355
3356 spin_lock_bh(&adap->tid_release_lock);
3357 while (adap->tid_release_head) {
3358 void **p = adap->tid_release_head;
3359 unsigned int chan = (uintptr_t)p & 3;
3360 p = (void *)p - chan;
3361
3362 adap->tid_release_head = *p;
3363 *p = NULL;
3364 spin_unlock_bh(&adap->tid_release_lock);
3365
3366 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3367 GFP_KERNEL)))
3368 schedule_timeout_uninterruptible(1);
3369
3370 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3371 t4_ofld_send(adap, skb);
3372 spin_lock_bh(&adap->tid_release_lock);
3373 }
3374 adap->tid_release_task_busy = false;
3375 spin_unlock_bh(&adap->tid_release_lock);
3376 }
3377
3378 /*
3379 * Release a TID and inform HW. If we are unable to allocate the release
3380 * message we defer to a work queue.
3381 */
3382 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3383 {
3384 void *old;
3385 struct sk_buff *skb;
3386 struct adapter *adap = container_of(t, struct adapter, tids);
3387
3388 old = t->tid_tab[tid];
3389 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3390 if (likely(skb)) {
3391 t->tid_tab[tid] = NULL;
3392 mk_tid_release(skb, chan, tid);
3393 t4_ofld_send(adap, skb);
3394 } else
3395 cxgb4_queue_tid_release(t, chan, tid);
3396 if (old)
3397 atomic_dec(&t->tids_in_use);
3398 }
3399 EXPORT_SYMBOL(cxgb4_remove_tid);
3400
3401 /*
3402 * Allocate and initialize the TID tables. Returns 0 on success.
3403 */
3404 static int tid_init(struct tid_info *t)
3405 {
3406 size_t size;
3407 unsigned int stid_bmap_size;
3408 unsigned int natids = t->natids;
3409 struct adapter *adap = container_of(t, struct adapter, tids);
3410
3411 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3412 size = t->ntids * sizeof(*t->tid_tab) +
3413 natids * sizeof(*t->atid_tab) +
3414 t->nstids * sizeof(*t->stid_tab) +
3415 t->nsftids * sizeof(*t->stid_tab) +
3416 stid_bmap_size * sizeof(long) +
3417 t->nftids * sizeof(*t->ftid_tab) +
3418 t->nsftids * sizeof(*t->ftid_tab);
3419
3420 t->tid_tab = t4_alloc_mem(size);
3421 if (!t->tid_tab)
3422 return -ENOMEM;
3423
3424 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3425 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3426 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3427 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3428 spin_lock_init(&t->stid_lock);
3429 spin_lock_init(&t->atid_lock);
3430
3431 t->stids_in_use = 0;
3432 t->afree = NULL;
3433 t->atids_in_use = 0;
3434 atomic_set(&t->tids_in_use, 0);
3435
3436 /* Setup the free list for atid_tab and clear the stid bitmap. */
3437 if (natids) {
3438 while (--natids)
3439 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3440 t->afree = t->atid_tab;
3441 }
3442 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3443 /* Reserve stid 0 for T4/T5 adapters */
3444 if (!t->stid_base &&
3445 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3446 __set_bit(0, t->stid_bmap);
3447
3448 return 0;
3449 }
3450
3451 int cxgb4_clip_get(const struct net_device *dev,
3452 const struct in6_addr *lip)
3453 {
3454 struct adapter *adap;
3455 struct fw_clip_cmd c;
3456
3457 adap = netdev2adap(dev);
3458 memset(&c, 0, sizeof(c));
3459 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3460 FW_CMD_REQUEST | FW_CMD_WRITE);
3461 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3462 c.ip_hi = *(__be64 *)(lip->s6_addr);
3463 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3464 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3465 }
3466 EXPORT_SYMBOL(cxgb4_clip_get);
3467
3468 int cxgb4_clip_release(const struct net_device *dev,
3469 const struct in6_addr *lip)
3470 {
3471 struct adapter *adap;
3472 struct fw_clip_cmd c;
3473
3474 adap = netdev2adap(dev);
3475 memset(&c, 0, sizeof(c));
3476 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3477 FW_CMD_REQUEST | FW_CMD_READ);
3478 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3479 c.ip_hi = *(__be64 *)(lip->s6_addr);
3480 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3481 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3482 }
3483 EXPORT_SYMBOL(cxgb4_clip_release);
3484
3485 /**
3486 * cxgb4_create_server - create an IP server
3487 * @dev: the device
3488 * @stid: the server TID
3489 * @sip: local IP address to bind server to
3490 * @sport: the server's TCP port
3491 * @queue: queue to direct messages from this server to
3492 *
3493 * Create an IP server for the given port and address.
3494 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3495 */
3496 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3497 __be32 sip, __be16 sport, __be16 vlan,
3498 unsigned int queue)
3499 {
3500 unsigned int chan;
3501 struct sk_buff *skb;
3502 struct adapter *adap;
3503 struct cpl_pass_open_req *req;
3504 int ret;
3505
3506 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3507 if (!skb)
3508 return -ENOMEM;
3509
3510 adap = netdev2adap(dev);
3511 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3512 INIT_TP_WR(req, 0);
3513 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3514 req->local_port = sport;
3515 req->peer_port = htons(0);
3516 req->local_ip = sip;
3517 req->peer_ip = htonl(0);
3518 chan = rxq_to_chan(&adap->sge, queue);
3519 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3520 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3521 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3522 ret = t4_mgmt_tx(adap, skb);
3523 return net_xmit_eval(ret);
3524 }
3525 EXPORT_SYMBOL(cxgb4_create_server);
3526
3527 /* cxgb4_create_server6 - create an IPv6 server
3528 * @dev: the device
3529 * @stid: the server TID
3530 * @sip: local IPv6 address to bind server to
3531 * @sport: the server's TCP port
3532 * @queue: queue to direct messages from this server to
3533 *
3534 * Create an IPv6 server for the given port and address.
3535 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3536 */
3537 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3538 const struct in6_addr *sip, __be16 sport,
3539 unsigned int queue)
3540 {
3541 unsigned int chan;
3542 struct sk_buff *skb;
3543 struct adapter *adap;
3544 struct cpl_pass_open_req6 *req;
3545 int ret;
3546
3547 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3548 if (!skb)
3549 return -ENOMEM;
3550
3551 adap = netdev2adap(dev);
3552 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3553 INIT_TP_WR(req, 0);
3554 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3555 req->local_port = sport;
3556 req->peer_port = htons(0);
3557 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3558 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3559 req->peer_ip_hi = cpu_to_be64(0);
3560 req->peer_ip_lo = cpu_to_be64(0);
3561 chan = rxq_to_chan(&adap->sge, queue);
3562 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3563 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3564 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3565 ret = t4_mgmt_tx(adap, skb);
3566 return net_xmit_eval(ret);
3567 }
3568 EXPORT_SYMBOL(cxgb4_create_server6);
3569
3570 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3571 unsigned int queue, bool ipv6)
3572 {
3573 struct sk_buff *skb;
3574 struct adapter *adap;
3575 struct cpl_close_listsvr_req *req;
3576 int ret;
3577
3578 adap = netdev2adap(dev);
3579
3580 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3581 if (!skb)
3582 return -ENOMEM;
3583
3584 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3585 INIT_TP_WR(req, 0);
3586 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3587 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3588 LISTSVR_IPV6(0)) | QUEUENO(queue));
3589 ret = t4_mgmt_tx(adap, skb);
3590 return net_xmit_eval(ret);
3591 }
3592 EXPORT_SYMBOL(cxgb4_remove_server);
3593
3594 /**
3595 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3596 * @mtus: the HW MTU table
3597 * @mtu: the target MTU
3598 * @idx: index of selected entry in the MTU table
3599 *
3600 * Returns the index and the value in the HW MTU table that is closest to
3601 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3602 * table, in which case that smallest available value is selected.
3603 */
3604 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3605 unsigned int *idx)
3606 {
3607 unsigned int i = 0;
3608
3609 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3610 ++i;
3611 if (idx)
3612 *idx = i;
3613 return mtus[i];
3614 }
3615 EXPORT_SYMBOL(cxgb4_best_mtu);
3616
3617 /**
3618 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3619 * @mtus: the HW MTU table
3620 * @header_size: Header Size
3621 * @data_size_max: maximum Data Segment Size
3622 * @data_size_align: desired Data Segment Size Alignment (2^N)
3623 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3624 *
3625 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3626 * MTU Table based solely on a Maximum MTU parameter, we break that
3627 * parameter up into a Header Size and Maximum Data Segment Size, and
3628 * provide a desired Data Segment Size Alignment. If we find an MTU in
3629 * the Hardware MTU Table which will result in a Data Segment Size with
3630 * the requested alignment _and_ that MTU isn't "too far" from the
3631 * closest MTU, then we'll return that rather than the closest MTU.
3632 */
3633 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3634 unsigned short header_size,
3635 unsigned short data_size_max,
3636 unsigned short data_size_align,
3637 unsigned int *mtu_idxp)
3638 {
3639 unsigned short max_mtu = header_size + data_size_max;
3640 unsigned short data_size_align_mask = data_size_align - 1;
3641 int mtu_idx, aligned_mtu_idx;
3642
3643 /* Scan the MTU Table till we find an MTU which is larger than our
3644 * Maximum MTU or we reach the end of the table. Along the way,
3645 * record the last MTU found, if any, which will result in a Data
3646 * Segment Length matching the requested alignment.
3647 */
3648 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3649 unsigned short data_size = mtus[mtu_idx] - header_size;
3650
3651 /* If this MTU minus the Header Size would result in a
3652 * Data Segment Size of the desired alignment, remember it.
3653 */
3654 if ((data_size & data_size_align_mask) == 0)
3655 aligned_mtu_idx = mtu_idx;
3656
3657 /* If we're not at the end of the Hardware MTU Table and the
3658 * next element is larger than our Maximum MTU, drop out of
3659 * the loop.
3660 */
3661 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3662 break;
3663 }
3664
3665 /* If we fell out of the loop because we ran to the end of the table,
3666 * then we just have to use the last [largest] entry.
3667 */
3668 if (mtu_idx == NMTUS)
3669 mtu_idx--;
3670
3671 /* If we found an MTU which resulted in the requested Data Segment
3672 * Length alignment and that's "not far" from the largest MTU which is
3673 * less than or equal to the maximum MTU, then use that.
3674 */
3675 if (aligned_mtu_idx >= 0 &&
3676 mtu_idx - aligned_mtu_idx <= 1)
3677 mtu_idx = aligned_mtu_idx;
3678
3679 /* If the caller has passed in an MTU Index pointer, pass the
3680 * MTU Index back. Return the MTU value.
3681 */
3682 if (mtu_idxp)
3683 *mtu_idxp = mtu_idx;
3684 return mtus[mtu_idx];
3685 }
3686 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3687
3688 /**
3689 * cxgb4_port_chan - get the HW channel of a port
3690 * @dev: the net device for the port
3691 *
3692 * Return the HW Tx channel of the given port.
3693 */
3694 unsigned int cxgb4_port_chan(const struct net_device *dev)
3695 {
3696 return netdev2pinfo(dev)->tx_chan;
3697 }
3698 EXPORT_SYMBOL(cxgb4_port_chan);
3699
3700 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3701 {
3702 struct adapter *adap = netdev2adap(dev);
3703 u32 v1, v2, lp_count, hp_count;
3704
3705 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3706 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3707 if (is_t4(adap->params.chip)) {
3708 lp_count = G_LP_COUNT(v1);
3709 hp_count = G_HP_COUNT(v1);
3710 } else {
3711 lp_count = G_LP_COUNT_T5(v1);
3712 hp_count = G_HP_COUNT_T5(v2);
3713 }
3714 return lpfifo ? lp_count : hp_count;
3715 }
3716 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3717
3718 /**
3719 * cxgb4_port_viid - get the VI id of a port
3720 * @dev: the net device for the port
3721 *
3722 * Return the VI id of the given port.
3723 */
3724 unsigned int cxgb4_port_viid(const struct net_device *dev)
3725 {
3726 return netdev2pinfo(dev)->viid;
3727 }
3728 EXPORT_SYMBOL(cxgb4_port_viid);
3729
3730 /**
3731 * cxgb4_port_idx - get the index of a port
3732 * @dev: the net device for the port
3733 *
3734 * Return the index of the given port.
3735 */
3736 unsigned int cxgb4_port_idx(const struct net_device *dev)
3737 {
3738 return netdev2pinfo(dev)->port_id;
3739 }
3740 EXPORT_SYMBOL(cxgb4_port_idx);
3741
3742 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3743 struct tp_tcp_stats *v6)
3744 {
3745 struct adapter *adap = pci_get_drvdata(pdev);
3746
3747 spin_lock(&adap->stats_lock);
3748 t4_tp_get_tcp_stats(adap, v4, v6);
3749 spin_unlock(&adap->stats_lock);
3750 }
3751 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3752
3753 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3754 const unsigned int *pgsz_order)
3755 {
3756 struct adapter *adap = netdev2adap(dev);
3757
3758 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3759 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3760 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3761 HPZ3(pgsz_order[3]));
3762 }
3763 EXPORT_SYMBOL(cxgb4_iscsi_init);
3764
3765 int cxgb4_flush_eq_cache(struct net_device *dev)
3766 {
3767 struct adapter *adap = netdev2adap(dev);
3768 int ret;
3769
3770 ret = t4_fwaddrspace_write(adap, adap->mbox,
3771 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3772 return ret;
3773 }
3774 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3775
3776 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3777 {
3778 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3779 __be64 indices;
3780 int ret;
3781
3782 spin_lock(&adap->win0_lock);
3783 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3784 sizeof(indices), (__be32 *)&indices,
3785 T4_MEMORY_READ);
3786 spin_unlock(&adap->win0_lock);
3787 if (!ret) {
3788 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3789 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3790 }
3791 return ret;
3792 }
3793
3794 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3795 u16 size)
3796 {
3797 struct adapter *adap = netdev2adap(dev);
3798 u16 hw_pidx, hw_cidx;
3799 int ret;
3800
3801 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3802 if (ret)
3803 goto out;
3804
3805 if (pidx != hw_pidx) {
3806 u16 delta;
3807
3808 if (pidx >= hw_pidx)
3809 delta = pidx - hw_pidx;
3810 else
3811 delta = size - hw_pidx + pidx;
3812 wmb();
3813 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3814 QID(qid) | PIDX(delta));
3815 }
3816 out:
3817 return ret;
3818 }
3819 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3820
3821 void cxgb4_disable_db_coalescing(struct net_device *dev)
3822 {
3823 struct adapter *adap;
3824
3825 adap = netdev2adap(dev);
3826 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3827 F_NOCOALESCE);
3828 }
3829 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3830
3831 void cxgb4_enable_db_coalescing(struct net_device *dev)
3832 {
3833 struct adapter *adap;
3834
3835 adap = netdev2adap(dev);
3836 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3837 }
3838 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3839
3840 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3841 {
3842 struct adapter *adap;
3843 u32 offset, memtype, memaddr;
3844 u32 edc0_size, edc1_size, mc0_size, mc1_size;
3845 u32 edc0_end, edc1_end, mc0_end, mc1_end;
3846 int ret;
3847
3848 adap = netdev2adap(dev);
3849
3850 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3851
3852 /* Figure out where the offset lands in the Memory Type/Address scheme.
3853 * This code assumes that the memory is laid out starting at offset 0
3854 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3855 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
3856 * MC0, and some have both MC0 and MC1.
3857 */
3858 edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3859 edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3860 mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3861
3862 edc0_end = edc0_size;
3863 edc1_end = edc0_end + edc1_size;
3864 mc0_end = edc1_end + mc0_size;
3865
3866 if (offset < edc0_end) {
3867 memtype = MEM_EDC0;
3868 memaddr = offset;
3869 } else if (offset < edc1_end) {
3870 memtype = MEM_EDC1;
3871 memaddr = offset - edc0_end;
3872 } else {
3873 if (offset < mc0_end) {
3874 memtype = MEM_MC0;
3875 memaddr = offset - edc1_end;
3876 } else if (is_t4(adap->params.chip)) {
3877 /* T4 only has a single memory channel */
3878 goto err;
3879 } else {
3880 mc1_size = EXT_MEM_SIZE_GET(
3881 t4_read_reg(adap,
3882 MA_EXT_MEMORY1_BAR)) << 20;
3883 mc1_end = mc0_end + mc1_size;
3884 if (offset < mc1_end) {
3885 memtype = MEM_MC1;
3886 memaddr = offset - mc0_end;
3887 } else {
3888 /* offset beyond the end of any memory */
3889 goto err;
3890 }
3891 }
3892 }
3893
3894 spin_lock(&adap->win0_lock);
3895 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3896 spin_unlock(&adap->win0_lock);
3897 return ret;
3898
3899 err:
3900 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3901 stag, offset);
3902 return -EINVAL;
3903 }
3904 EXPORT_SYMBOL(cxgb4_read_tpte);
3905
3906 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3907 {
3908 u32 hi, lo;
3909 struct adapter *adap;
3910
3911 adap = netdev2adap(dev);
3912 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3913 hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3914
3915 return ((u64)hi << 32) | (u64)lo;
3916 }
3917 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3918
3919 static struct pci_driver cxgb4_driver;
3920
3921 static void check_neigh_update(struct neighbour *neigh)
3922 {
3923 const struct device *parent;
3924 const struct net_device *netdev = neigh->dev;
3925
3926 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3927 netdev = vlan_dev_real_dev(netdev);
3928 parent = netdev->dev.parent;
3929 if (parent && parent->driver == &cxgb4_driver.driver)
3930 t4_l2t_update(dev_get_drvdata(parent), neigh);
3931 }
3932
3933 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3934 void *data)
3935 {
3936 switch (event) {
3937 case NETEVENT_NEIGH_UPDATE:
3938 check_neigh_update(data);
3939 break;
3940 case NETEVENT_REDIRECT:
3941 default:
3942 break;
3943 }
3944 return 0;
3945 }
3946
3947 static bool netevent_registered;
3948 static struct notifier_block cxgb4_netevent_nb = {
3949 .notifier_call = netevent_cb
3950 };
3951
3952 static void drain_db_fifo(struct adapter *adap, int usecs)
3953 {
3954 u32 v1, v2, lp_count, hp_count;
3955
3956 do {
3957 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3958 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3959 if (is_t4(adap->params.chip)) {
3960 lp_count = G_LP_COUNT(v1);
3961 hp_count = G_HP_COUNT(v1);
3962 } else {
3963 lp_count = G_LP_COUNT_T5(v1);
3964 hp_count = G_HP_COUNT_T5(v2);
3965 }
3966
3967 if (lp_count == 0 && hp_count == 0)
3968 break;
3969 set_current_state(TASK_UNINTERRUPTIBLE);
3970 schedule_timeout(usecs_to_jiffies(usecs));
3971 } while (1);
3972 }
3973
3974 static void disable_txq_db(struct sge_txq *q)
3975 {
3976 unsigned long flags;
3977
3978 spin_lock_irqsave(&q->db_lock, flags);
3979 q->db_disabled = 1;
3980 spin_unlock_irqrestore(&q->db_lock, flags);
3981 }
3982
3983 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3984 {
3985 spin_lock_irq(&q->db_lock);
3986 if (q->db_pidx_inc) {
3987 /* Make sure that all writes to the TX descriptors
3988 * are committed before we tell HW about them.
3989 */
3990 wmb();
3991 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3992 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3993 q->db_pidx_inc = 0;
3994 }
3995 q->db_disabled = 0;
3996 spin_unlock_irq(&q->db_lock);
3997 }
3998
3999 static void disable_dbs(struct adapter *adap)
4000 {
4001 int i;
4002
4003 for_each_ethrxq(&adap->sge, i)
4004 disable_txq_db(&adap->sge.ethtxq[i].q);
4005 for_each_ofldrxq(&adap->sge, i)
4006 disable_txq_db(&adap->sge.ofldtxq[i].q);
4007 for_each_port(adap, i)
4008 disable_txq_db(&adap->sge.ctrlq[i].q);
4009 }
4010
4011 static void enable_dbs(struct adapter *adap)
4012 {
4013 int i;
4014
4015 for_each_ethrxq(&adap->sge, i)
4016 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4017 for_each_ofldrxq(&adap->sge, i)
4018 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4019 for_each_port(adap, i)
4020 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4021 }
4022
4023 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4024 {
4025 if (adap->uld_handle[CXGB4_ULD_RDMA])
4026 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4027 cmd);
4028 }
4029
4030 static void process_db_full(struct work_struct *work)
4031 {
4032 struct adapter *adap;
4033
4034 adap = container_of(work, struct adapter, db_full_task);
4035
4036 drain_db_fifo(adap, dbfifo_drain_delay);
4037 enable_dbs(adap);
4038 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4039 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4040 DBFIFO_HP_INT | DBFIFO_LP_INT,
4041 DBFIFO_HP_INT | DBFIFO_LP_INT);
4042 }
4043
4044 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4045 {
4046 u16 hw_pidx, hw_cidx;
4047 int ret;
4048
4049 spin_lock_irq(&q->db_lock);
4050 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4051 if (ret)
4052 goto out;
4053 if (q->db_pidx != hw_pidx) {
4054 u16 delta;
4055
4056 if (q->db_pidx >= hw_pidx)
4057 delta = q->db_pidx - hw_pidx;
4058 else
4059 delta = q->size - hw_pidx + q->db_pidx;
4060 wmb();
4061 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4062 QID(q->cntxt_id) | PIDX(delta));
4063 }
4064 out:
4065 q->db_disabled = 0;
4066 q->db_pidx_inc = 0;
4067 spin_unlock_irq(&q->db_lock);
4068 if (ret)
4069 CH_WARN(adap, "DB drop recovery failed.\n");
4070 }
4071 static void recover_all_queues(struct adapter *adap)
4072 {
4073 int i;
4074
4075 for_each_ethrxq(&adap->sge, i)
4076 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4077 for_each_ofldrxq(&adap->sge, i)
4078 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4079 for_each_port(adap, i)
4080 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4081 }
4082
4083 static void process_db_drop(struct work_struct *work)
4084 {
4085 struct adapter *adap;
4086
4087 adap = container_of(work, struct adapter, db_drop_task);
4088
4089 if (is_t4(adap->params.chip)) {
4090 drain_db_fifo(adap, dbfifo_drain_delay);
4091 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4092 drain_db_fifo(adap, dbfifo_drain_delay);
4093 recover_all_queues(adap);
4094 drain_db_fifo(adap, dbfifo_drain_delay);
4095 enable_dbs(adap);
4096 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4097 } else {
4098 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4099 u16 qid = (dropped_db >> 15) & 0x1ffff;
4100 u16 pidx_inc = dropped_db & 0x1fff;
4101 unsigned int s_qpp;
4102 unsigned short udb_density;
4103 unsigned long qpshift;
4104 int page;
4105 u32 udb;
4106
4107 dev_warn(adap->pdev_dev,
4108 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4109 dropped_db, qid,
4110 (dropped_db >> 14) & 1,
4111 (dropped_db >> 13) & 1,
4112 pidx_inc);
4113
4114 drain_db_fifo(adap, 1);
4115
4116 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4117 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4118 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4119 qpshift = PAGE_SHIFT - ilog2(udb_density);
4120 udb = qid << qpshift;
4121 udb &= PAGE_MASK;
4122 page = udb / PAGE_SIZE;
4123 udb += (qid - (page * udb_density)) * 128;
4124
4125 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4126
4127 /* Re-enable BAR2 WC */
4128 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4129 }
4130
4131 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4132 }
4133
4134 void t4_db_full(struct adapter *adap)
4135 {
4136 if (is_t4(adap->params.chip)) {
4137 disable_dbs(adap);
4138 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4139 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4140 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4141 queue_work(adap->workq, &adap->db_full_task);
4142 }
4143 }
4144
4145 void t4_db_dropped(struct adapter *adap)
4146 {
4147 if (is_t4(adap->params.chip)) {
4148 disable_dbs(adap);
4149 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4150 }
4151 queue_work(adap->workq, &adap->db_drop_task);
4152 }
4153
4154 static void uld_attach(struct adapter *adap, unsigned int uld)
4155 {
4156 void *handle;
4157 struct cxgb4_lld_info lli;
4158 unsigned short i;
4159
4160 lli.pdev = adap->pdev;
4161 lli.pf = adap->fn;
4162 lli.l2t = adap->l2t;
4163 lli.tids = &adap->tids;
4164 lli.ports = adap->port;
4165 lli.vr = &adap->vres;
4166 lli.mtus = adap->params.mtus;
4167 if (uld == CXGB4_ULD_RDMA) {
4168 lli.rxq_ids = adap->sge.rdma_rxq;
4169 lli.ciq_ids = adap->sge.rdma_ciq;
4170 lli.nrxq = adap->sge.rdmaqs;
4171 lli.nciq = adap->sge.rdmaciqs;
4172 } else if (uld == CXGB4_ULD_ISCSI) {
4173 lli.rxq_ids = adap->sge.ofld_rxq;
4174 lli.nrxq = adap->sge.ofldqsets;
4175 }
4176 lli.ntxq = adap->sge.ofldqsets;
4177 lli.nchan = adap->params.nports;
4178 lli.nports = adap->params.nports;
4179 lli.wr_cred = adap->params.ofldq_wr_cred;
4180 lli.adapter_type = adap->params.chip;
4181 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4182 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4183 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4184 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4185 (adap->fn * 4));
4186 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4187 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4188 (adap->fn * 4));
4189 lli.filt_mode = adap->params.tp.vlan_pri_map;
4190 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4191 for (i = 0; i < NCHAN; i++)
4192 lli.tx_modq[i] = i;
4193 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4194 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4195 lli.fw_vers = adap->params.fw_vers;
4196 lli.dbfifo_int_thresh = dbfifo_int_thresh;
4197 lli.sge_ingpadboundary = adap->sge.fl_align;
4198 lli.sge_egrstatuspagesize = adap->sge.stat_len;
4199 lli.sge_pktshift = adap->sge.pktshift;
4200 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4201 lli.max_ordird_qp = adap->params.max_ordird_qp;
4202 lli.max_ird_adapter = adap->params.max_ird_adapter;
4203 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4204
4205 handle = ulds[uld].add(&lli);
4206 if (IS_ERR(handle)) {
4207 dev_warn(adap->pdev_dev,
4208 "could not attach to the %s driver, error %ld\n",
4209 uld_str[uld], PTR_ERR(handle));
4210 return;
4211 }
4212
4213 adap->uld_handle[uld] = handle;
4214
4215 if (!netevent_registered) {
4216 register_netevent_notifier(&cxgb4_netevent_nb);
4217 netevent_registered = true;
4218 }
4219
4220 if (adap->flags & FULL_INIT_DONE)
4221 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4222 }
4223
4224 static void attach_ulds(struct adapter *adap)
4225 {
4226 unsigned int i;
4227
4228 spin_lock(&adap_rcu_lock);
4229 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4230 spin_unlock(&adap_rcu_lock);
4231
4232 mutex_lock(&uld_mutex);
4233 list_add_tail(&adap->list_node, &adapter_list);
4234 for (i = 0; i < CXGB4_ULD_MAX; i++)
4235 if (ulds[i].add)
4236 uld_attach(adap, i);
4237 mutex_unlock(&uld_mutex);
4238 }
4239
4240 static void detach_ulds(struct adapter *adap)
4241 {
4242 unsigned int i;
4243
4244 mutex_lock(&uld_mutex);
4245 list_del(&adap->list_node);
4246 for (i = 0; i < CXGB4_ULD_MAX; i++)
4247 if (adap->uld_handle[i]) {
4248 ulds[i].state_change(adap->uld_handle[i],
4249 CXGB4_STATE_DETACH);
4250 adap->uld_handle[i] = NULL;
4251 }
4252 if (netevent_registered && list_empty(&adapter_list)) {
4253 unregister_netevent_notifier(&cxgb4_netevent_nb);
4254 netevent_registered = false;
4255 }
4256 mutex_unlock(&uld_mutex);
4257
4258 spin_lock(&adap_rcu_lock);
4259 list_del_rcu(&adap->rcu_node);
4260 spin_unlock(&adap_rcu_lock);
4261 }
4262
4263 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4264 {
4265 unsigned int i;
4266
4267 mutex_lock(&uld_mutex);
4268 for (i = 0; i < CXGB4_ULD_MAX; i++)
4269 if (adap->uld_handle[i])
4270 ulds[i].state_change(adap->uld_handle[i], new_state);
4271 mutex_unlock(&uld_mutex);
4272 }
4273
4274 /**
4275 * cxgb4_register_uld - register an upper-layer driver
4276 * @type: the ULD type
4277 * @p: the ULD methods
4278 *
4279 * Registers an upper-layer driver with this driver and notifies the ULD
4280 * about any presently available devices that support its type. Returns
4281 * %-EBUSY if a ULD of the same type is already registered.
4282 */
4283 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4284 {
4285 int ret = 0;
4286 struct adapter *adap;
4287
4288 if (type >= CXGB4_ULD_MAX)
4289 return -EINVAL;
4290 mutex_lock(&uld_mutex);
4291 if (ulds[type].add) {
4292 ret = -EBUSY;
4293 goto out;
4294 }
4295 ulds[type] = *p;
4296 list_for_each_entry(adap, &adapter_list, list_node)
4297 uld_attach(adap, type);
4298 out: mutex_unlock(&uld_mutex);
4299 return ret;
4300 }
4301 EXPORT_SYMBOL(cxgb4_register_uld);
4302
4303 /**
4304 * cxgb4_unregister_uld - unregister an upper-layer driver
4305 * @type: the ULD type
4306 *
4307 * Unregisters an existing upper-layer driver.
4308 */
4309 int cxgb4_unregister_uld(enum cxgb4_uld type)
4310 {
4311 struct adapter *adap;
4312
4313 if (type >= CXGB4_ULD_MAX)
4314 return -EINVAL;
4315 mutex_lock(&uld_mutex);
4316 list_for_each_entry(adap, &adapter_list, list_node)
4317 adap->uld_handle[type] = NULL;
4318 ulds[type].add = NULL;
4319 mutex_unlock(&uld_mutex);
4320 return 0;
4321 }
4322 EXPORT_SYMBOL(cxgb4_unregister_uld);
4323
4324 /* Check if netdev on which event is occured belongs to us or not. Return
4325 * success (true) if it belongs otherwise failure (false).
4326 * Called with rcu_read_lock() held.
4327 */
4328 static bool cxgb4_netdev(const struct net_device *netdev)
4329 {
4330 struct adapter *adap;
4331 int i;
4332
4333 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4334 for (i = 0; i < MAX_NPORTS; i++)
4335 if (adap->port[i] == netdev)
4336 return true;
4337 return false;
4338 }
4339
4340 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4341 unsigned long event)
4342 {
4343 int ret = NOTIFY_DONE;
4344
4345 rcu_read_lock();
4346 if (cxgb4_netdev(event_dev)) {
4347 switch (event) {
4348 case NETDEV_UP:
4349 ret = cxgb4_clip_get(event_dev,
4350 (const struct in6_addr *)ifa->addr.s6_addr);
4351 if (ret < 0) {
4352 rcu_read_unlock();
4353 return ret;
4354 }
4355 ret = NOTIFY_OK;
4356 break;
4357 case NETDEV_DOWN:
4358 cxgb4_clip_release(event_dev,
4359 (const struct in6_addr *)ifa->addr.s6_addr);
4360 ret = NOTIFY_OK;
4361 break;
4362 default:
4363 break;
4364 }
4365 }
4366 rcu_read_unlock();
4367 return ret;
4368 }
4369
4370 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4371 unsigned long event, void *data)
4372 {
4373 struct inet6_ifaddr *ifa = data;
4374 struct net_device *event_dev;
4375 int ret = NOTIFY_DONE;
4376 struct bonding *bond = netdev_priv(ifa->idev->dev);
4377 struct list_head *iter;
4378 struct slave *slave;
4379 struct pci_dev *first_pdev = NULL;
4380
4381 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4382 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4383 ret = clip_add(event_dev, ifa, event);
4384 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4385 /* It is possible that two different adapters are bonded in one
4386 * bond. We need to find such different adapters and add clip
4387 * in all of them only once.
4388 */
4389 read_lock(&bond->lock);
4390 bond_for_each_slave(bond, slave, iter) {
4391 if (!first_pdev) {
4392 ret = clip_add(slave->dev, ifa, event);
4393 /* If clip_add is success then only initialize
4394 * first_pdev since it means it is our device
4395 */
4396 if (ret == NOTIFY_OK)
4397 first_pdev = to_pci_dev(
4398 slave->dev->dev.parent);
4399 } else if (first_pdev !=
4400 to_pci_dev(slave->dev->dev.parent))
4401 ret = clip_add(slave->dev, ifa, event);
4402 }
4403 read_unlock(&bond->lock);
4404 } else
4405 ret = clip_add(ifa->idev->dev, ifa, event);
4406
4407 return ret;
4408 }
4409
4410 static struct notifier_block cxgb4_inet6addr_notifier = {
4411 .notifier_call = cxgb4_inet6addr_handler
4412 };
4413
4414 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4415 * a physical device.
4416 * The physical device reference is needed to send the actul CLIP command.
4417 */
4418 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4419 {
4420 struct inet6_dev *idev = NULL;
4421 struct inet6_ifaddr *ifa;
4422 int ret = 0;
4423
4424 idev = __in6_dev_get(root_dev);
4425 if (!idev)
4426 return ret;
4427
4428 read_lock_bh(&idev->lock);
4429 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4430 ret = cxgb4_clip_get(dev,
4431 (const struct in6_addr *)ifa->addr.s6_addr);
4432 if (ret < 0)
4433 break;
4434 }
4435 read_unlock_bh(&idev->lock);
4436
4437 return ret;
4438 }
4439
4440 static int update_root_dev_clip(struct net_device *dev)
4441 {
4442 struct net_device *root_dev = NULL;
4443 int i, ret = 0;
4444
4445 /* First populate the real net device's IPv6 addresses */
4446 ret = update_dev_clip(dev, dev);
4447 if (ret)
4448 return ret;
4449
4450 /* Parse all bond and vlan devices layered on top of the physical dev */
4451 for (i = 0; i < VLAN_N_VID; i++) {
4452 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4453 if (!root_dev)
4454 continue;
4455
4456 ret = update_dev_clip(root_dev, dev);
4457 if (ret)
4458 break;
4459 }
4460 return ret;
4461 }
4462
4463 static void update_clip(const struct adapter *adap)
4464 {
4465 int i;
4466 struct net_device *dev;
4467 int ret;
4468
4469 rcu_read_lock();
4470
4471 for (i = 0; i < MAX_NPORTS; i++) {
4472 dev = adap->port[i];
4473 ret = 0;
4474
4475 if (dev)
4476 ret = update_root_dev_clip(dev);
4477
4478 if (ret < 0)
4479 break;
4480 }
4481 rcu_read_unlock();
4482 }
4483
4484 /**
4485 * cxgb_up - enable the adapter
4486 * @adap: adapter being enabled
4487 *
4488 * Called when the first port is enabled, this function performs the
4489 * actions necessary to make an adapter operational, such as completing
4490 * the initialization of HW modules, and enabling interrupts.
4491 *
4492 * Must be called with the rtnl lock held.
4493 */
4494 static int cxgb_up(struct adapter *adap)
4495 {
4496 int err;
4497
4498 err = setup_sge_queues(adap);
4499 if (err)
4500 goto out;
4501 err = setup_rss(adap);
4502 if (err)
4503 goto freeq;
4504
4505 if (adap->flags & USING_MSIX) {
4506 name_msix_vecs(adap);
4507 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4508 adap->msix_info[0].desc, adap);
4509 if (err)
4510 goto irq_err;
4511
4512 err = request_msix_queue_irqs(adap);
4513 if (err) {
4514 free_irq(adap->msix_info[0].vec, adap);
4515 goto irq_err;
4516 }
4517 } else {
4518 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4519 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4520 adap->port[0]->name, adap);
4521 if (err)
4522 goto irq_err;
4523 }
4524 enable_rx(adap);
4525 t4_sge_start(adap);
4526 t4_intr_enable(adap);
4527 adap->flags |= FULL_INIT_DONE;
4528 notify_ulds(adap, CXGB4_STATE_UP);
4529 update_clip(adap);
4530 out:
4531 return err;
4532 irq_err:
4533 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4534 freeq:
4535 t4_free_sge_resources(adap);
4536 goto out;
4537 }
4538
4539 static void cxgb_down(struct adapter *adapter)
4540 {
4541 t4_intr_disable(adapter);
4542 cancel_work_sync(&adapter->tid_release_task);
4543 cancel_work_sync(&adapter->db_full_task);
4544 cancel_work_sync(&adapter->db_drop_task);
4545 adapter->tid_release_task_busy = false;
4546 adapter->tid_release_head = NULL;
4547
4548 if (adapter->flags & USING_MSIX) {
4549 free_msix_queue_irqs(adapter);
4550 free_irq(adapter->msix_info[0].vec, adapter);
4551 } else
4552 free_irq(adapter->pdev->irq, adapter);
4553 quiesce_rx(adapter);
4554 t4_sge_stop(adapter);
4555 t4_free_sge_resources(adapter);
4556 adapter->flags &= ~FULL_INIT_DONE;
4557 }
4558
4559 /*
4560 * net_device operations
4561 */
4562 static int cxgb_open(struct net_device *dev)
4563 {
4564 int err;
4565 struct port_info *pi = netdev_priv(dev);
4566 struct adapter *adapter = pi->adapter;
4567
4568 netif_carrier_off(dev);
4569
4570 if (!(adapter->flags & FULL_INIT_DONE)) {
4571 err = cxgb_up(adapter);
4572 if (err < 0)
4573 return err;
4574 }
4575
4576 err = link_start(dev);
4577 if (!err)
4578 netif_tx_start_all_queues(dev);
4579 return err;
4580 }
4581
4582 static int cxgb_close(struct net_device *dev)
4583 {
4584 struct port_info *pi = netdev_priv(dev);
4585 struct adapter *adapter = pi->adapter;
4586
4587 netif_tx_stop_all_queues(dev);
4588 netif_carrier_off(dev);
4589 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4590 }
4591
4592 /* Return an error number if the indicated filter isn't writable ...
4593 */
4594 static int writable_filter(struct filter_entry *f)
4595 {
4596 if (f->locked)
4597 return -EPERM;
4598 if (f->pending)
4599 return -EBUSY;
4600
4601 return 0;
4602 }
4603
4604 /* Delete the filter at the specified index (if valid). The checks for all
4605 * the common problems with doing this like the filter being locked, currently
4606 * pending in another operation, etc.
4607 */
4608 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4609 {
4610 struct filter_entry *f;
4611 int ret;
4612
4613 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4614 return -EINVAL;
4615
4616 f = &adapter->tids.ftid_tab[fidx];
4617 ret = writable_filter(f);
4618 if (ret)
4619 return ret;
4620 if (f->valid)
4621 return del_filter_wr(adapter, fidx);
4622
4623 return 0;
4624 }
4625
4626 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4627 __be32 sip, __be16 sport, __be16 vlan,
4628 unsigned int queue, unsigned char port, unsigned char mask)
4629 {
4630 int ret;
4631 struct filter_entry *f;
4632 struct adapter *adap;
4633 int i;
4634 u8 *val;
4635
4636 adap = netdev2adap(dev);
4637
4638 /* Adjust stid to correct filter index */
4639 stid -= adap->tids.sftid_base;
4640 stid += adap->tids.nftids;
4641
4642 /* Check to make sure the filter requested is writable ...
4643 */
4644 f = &adap->tids.ftid_tab[stid];
4645 ret = writable_filter(f);
4646 if (ret)
4647 return ret;
4648
4649 /* Clear out any old resources being used by the filter before
4650 * we start constructing the new filter.
4651 */
4652 if (f->valid)
4653 clear_filter(adap, f);
4654
4655 /* Clear out filter specifications */
4656 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4657 f->fs.val.lport = cpu_to_be16(sport);
4658 f->fs.mask.lport = ~0;
4659 val = (u8 *)&sip;
4660 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4661 for (i = 0; i < 4; i++) {
4662 f->fs.val.lip[i] = val[i];
4663 f->fs.mask.lip[i] = ~0;
4664 }
4665 if (adap->params.tp.vlan_pri_map & F_PORT) {
4666 f->fs.val.iport = port;
4667 f->fs.mask.iport = mask;
4668 }
4669 }
4670
4671 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4672 f->fs.val.proto = IPPROTO_TCP;
4673 f->fs.mask.proto = ~0;
4674 }
4675
4676 f->fs.dirsteer = 1;
4677 f->fs.iq = queue;
4678 /* Mark filter as locked */
4679 f->locked = 1;
4680 f->fs.rpttid = 1;
4681
4682 ret = set_filter_wr(adap, stid);
4683 if (ret) {
4684 clear_filter(adap, f);
4685 return ret;
4686 }
4687
4688 return 0;
4689 }
4690 EXPORT_SYMBOL(cxgb4_create_server_filter);
4691
4692 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4693 unsigned int queue, bool ipv6)
4694 {
4695 int ret;
4696 struct filter_entry *f;
4697 struct adapter *adap;
4698
4699 adap = netdev2adap(dev);
4700
4701 /* Adjust stid to correct filter index */
4702 stid -= adap->tids.sftid_base;
4703 stid += adap->tids.nftids;
4704
4705 f = &adap->tids.ftid_tab[stid];
4706 /* Unlock the filter */
4707 f->locked = 0;
4708
4709 ret = delete_filter(adap, stid);
4710 if (ret)
4711 return ret;
4712
4713 return 0;
4714 }
4715 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4716
4717 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4718 struct rtnl_link_stats64 *ns)
4719 {
4720 struct port_stats stats;
4721 struct port_info *p = netdev_priv(dev);
4722 struct adapter *adapter = p->adapter;
4723
4724 /* Block retrieving statistics during EEH error
4725 * recovery. Otherwise, the recovery might fail
4726 * and the PCI device will be removed permanently
4727 */
4728 spin_lock(&adapter->stats_lock);
4729 if (!netif_device_present(dev)) {
4730 spin_unlock(&adapter->stats_lock);
4731 return ns;
4732 }
4733 t4_get_port_stats(adapter, p->tx_chan, &stats);
4734 spin_unlock(&adapter->stats_lock);
4735
4736 ns->tx_bytes = stats.tx_octets;
4737 ns->tx_packets = stats.tx_frames;
4738 ns->rx_bytes = stats.rx_octets;
4739 ns->rx_packets = stats.rx_frames;
4740 ns->multicast = stats.rx_mcast_frames;
4741
4742 /* detailed rx_errors */
4743 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4744 stats.rx_runt;
4745 ns->rx_over_errors = 0;
4746 ns->rx_crc_errors = stats.rx_fcs_err;
4747 ns->rx_frame_errors = stats.rx_symbol_err;
4748 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4749 stats.rx_ovflow2 + stats.rx_ovflow3 +
4750 stats.rx_trunc0 + stats.rx_trunc1 +
4751 stats.rx_trunc2 + stats.rx_trunc3;
4752 ns->rx_missed_errors = 0;
4753
4754 /* detailed tx_errors */
4755 ns->tx_aborted_errors = 0;
4756 ns->tx_carrier_errors = 0;
4757 ns->tx_fifo_errors = 0;
4758 ns->tx_heartbeat_errors = 0;
4759 ns->tx_window_errors = 0;
4760
4761 ns->tx_errors = stats.tx_error_frames;
4762 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4763 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4764 return ns;
4765 }
4766
4767 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4768 {
4769 unsigned int mbox;
4770 int ret = 0, prtad, devad;
4771 struct port_info *pi = netdev_priv(dev);
4772 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4773
4774 switch (cmd) {
4775 case SIOCGMIIPHY:
4776 if (pi->mdio_addr < 0)
4777 return -EOPNOTSUPP;
4778 data->phy_id = pi->mdio_addr;
4779 break;
4780 case SIOCGMIIREG:
4781 case SIOCSMIIREG:
4782 if (mdio_phy_id_is_c45(data->phy_id)) {
4783 prtad = mdio_phy_id_prtad(data->phy_id);
4784 devad = mdio_phy_id_devad(data->phy_id);
4785 } else if (data->phy_id < 32) {
4786 prtad = data->phy_id;
4787 devad = 0;
4788 data->reg_num &= 0x1f;
4789 } else
4790 return -EINVAL;
4791
4792 mbox = pi->adapter->fn;
4793 if (cmd == SIOCGMIIREG)
4794 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4795 data->reg_num, &data->val_out);
4796 else
4797 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4798 data->reg_num, data->val_in);
4799 break;
4800 default:
4801 return -EOPNOTSUPP;
4802 }
4803 return ret;
4804 }
4805
4806 static void cxgb_set_rxmode(struct net_device *dev)
4807 {
4808 /* unfortunately we can't return errors to the stack */
4809 set_rxmode(dev, -1, false);
4810 }
4811
4812 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4813 {
4814 int ret;
4815 struct port_info *pi = netdev_priv(dev);
4816
4817 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4818 return -EINVAL;
4819 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4820 -1, -1, -1, true);
4821 if (!ret)
4822 dev->mtu = new_mtu;
4823 return ret;
4824 }
4825
4826 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4827 {
4828 int ret;
4829 struct sockaddr *addr = p;
4830 struct port_info *pi = netdev_priv(dev);
4831
4832 if (!is_valid_ether_addr(addr->sa_data))
4833 return -EADDRNOTAVAIL;
4834
4835 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4836 pi->xact_addr_filt, addr->sa_data, true, true);
4837 if (ret < 0)
4838 return ret;
4839
4840 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4841 pi->xact_addr_filt = ret;
4842 return 0;
4843 }
4844
4845 #ifdef CONFIG_NET_POLL_CONTROLLER
4846 static void cxgb_netpoll(struct net_device *dev)
4847 {
4848 struct port_info *pi = netdev_priv(dev);
4849 struct adapter *adap = pi->adapter;
4850
4851 if (adap->flags & USING_MSIX) {
4852 int i;
4853 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4854
4855 for (i = pi->nqsets; i; i--, rx++)
4856 t4_sge_intr_msix(0, &rx->rspq);
4857 } else
4858 t4_intr_handler(adap)(0, adap);
4859 }
4860 #endif
4861
4862 static const struct net_device_ops cxgb4_netdev_ops = {
4863 .ndo_open = cxgb_open,
4864 .ndo_stop = cxgb_close,
4865 .ndo_start_xmit = t4_eth_xmit,
4866 .ndo_select_queue = cxgb_select_queue,
4867 .ndo_get_stats64 = cxgb_get_stats,
4868 .ndo_set_rx_mode = cxgb_set_rxmode,
4869 .ndo_set_mac_address = cxgb_set_mac_addr,
4870 .ndo_set_features = cxgb_set_features,
4871 .ndo_validate_addr = eth_validate_addr,
4872 .ndo_do_ioctl = cxgb_ioctl,
4873 .ndo_change_mtu = cxgb_change_mtu,
4874 #ifdef CONFIG_NET_POLL_CONTROLLER
4875 .ndo_poll_controller = cxgb_netpoll,
4876 #endif
4877 };
4878
4879 void t4_fatal_err(struct adapter *adap)
4880 {
4881 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4882 t4_intr_disable(adap);
4883 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4884 }
4885
4886 /* Return the specified PCI-E Configuration Space register from our Physical
4887 * Function. We try first via a Firmware LDST Command since we prefer to let
4888 * the firmware own all of these registers, but if that fails we go for it
4889 * directly ourselves.
4890 */
4891 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4892 {
4893 struct fw_ldst_cmd ldst_cmd;
4894 u32 val;
4895 int ret;
4896
4897 /* Construct and send the Firmware LDST Command to retrieve the
4898 * specified PCI-E Configuration Space register.
4899 */
4900 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4901 ldst_cmd.op_to_addrspace =
4902 htonl(FW_CMD_OP(FW_LDST_CMD) |
4903 FW_CMD_REQUEST |
4904 FW_CMD_READ |
4905 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4906 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4907 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4908 ldst_cmd.u.pcie.ctrl_to_fn =
4909 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4910 ldst_cmd.u.pcie.r = reg;
4911 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4912 &ldst_cmd);
4913
4914 /* If the LDST Command suucceeded, exctract the returned register
4915 * value. Otherwise read it directly ourself.
4916 */
4917 if (ret == 0)
4918 val = ntohl(ldst_cmd.u.pcie.data[0]);
4919 else
4920 t4_hw_pci_read_cfg4(adap, reg, &val);
4921
4922 return val;
4923 }
4924
4925 static void setup_memwin(struct adapter *adap)
4926 {
4927 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4928
4929 if (is_t4(adap->params.chip)) {
4930 u32 bar0;
4931
4932 /* Truncation intentional: we only read the bottom 32-bits of
4933 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
4934 * mechanism to read BAR0 instead of using
4935 * pci_resource_start() because we could be operating from
4936 * within a Virtual Machine which is trapping our accesses to
4937 * our Configuration Space and we need to set up the PCI-E
4938 * Memory Window decoders with the actual addresses which will
4939 * be coming across the PCI-E link.
4940 */
4941 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4942 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4943 adap->t4_bar0 = bar0;
4944
4945 mem_win0_base = bar0 + MEMWIN0_BASE;
4946 mem_win1_base = bar0 + MEMWIN1_BASE;
4947 mem_win2_base = bar0 + MEMWIN2_BASE;
4948 mem_win2_aperture = MEMWIN2_APERTURE;
4949 } else {
4950 /* For T5, only relative offset inside the PCIe BAR is passed */
4951 mem_win0_base = MEMWIN0_BASE;
4952 mem_win1_base = MEMWIN1_BASE;
4953 mem_win2_base = MEMWIN2_BASE_T5;
4954 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4955 }
4956 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4957 mem_win0_base | BIR(0) |
4958 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4959 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4960 mem_win1_base | BIR(0) |
4961 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4962 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4963 mem_win2_base | BIR(0) |
4964 WINDOW(ilog2(mem_win2_aperture) - 10));
4965 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4966 }
4967
4968 static void setup_memwin_rdma(struct adapter *adap)
4969 {
4970 if (adap->vres.ocq.size) {
4971 u32 start;
4972 unsigned int sz_kb;
4973
4974 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4975 start &= PCI_BASE_ADDRESS_MEM_MASK;
4976 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4977 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4978 t4_write_reg(adap,
4979 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4980 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4981 t4_write_reg(adap,
4982 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4983 adap->vres.ocq.start);
4984 t4_read_reg(adap,
4985 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4986 }
4987 }
4988
4989 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4990 {
4991 u32 v;
4992 int ret;
4993
4994 /* get device capabilities */
4995 memset(c, 0, sizeof(*c));
4996 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4997 FW_CMD_REQUEST | FW_CMD_READ);
4998 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4999 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5000 if (ret < 0)
5001 return ret;
5002
5003 /* select capabilities we'll be using */
5004 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5005 if (!vf_acls)
5006 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5007 else
5008 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5009 } else if (vf_acls) {
5010 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5011 return ret;
5012 }
5013 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5014 FW_CMD_REQUEST | FW_CMD_WRITE);
5015 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5016 if (ret < 0)
5017 return ret;
5018
5019 ret = t4_config_glbl_rss(adap, adap->fn,
5020 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5021 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5022 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5023 if (ret < 0)
5024 return ret;
5025
5026 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5027 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5028 if (ret < 0)
5029 return ret;
5030
5031 t4_sge_init(adap);
5032
5033 /* tweak some settings */
5034 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5035 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5036 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5037 v = t4_read_reg(adap, TP_PIO_DATA);
5038 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5039
5040 /* first 4 Tx modulation queues point to consecutive Tx channels */
5041 adap->params.tp.tx_modq_map = 0xE4;
5042 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5043 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5044
5045 /* associate each Tx modulation queue with consecutive Tx channels */
5046 v = 0x84218421;
5047 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5048 &v, 1, A_TP_TX_SCHED_HDR);
5049 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5050 &v, 1, A_TP_TX_SCHED_FIFO);
5051 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5052 &v, 1, A_TP_TX_SCHED_PCMD);
5053
5054 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5055 if (is_offload(adap)) {
5056 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5057 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5058 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5059 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5060 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5061 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5062 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5063 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5064 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5065 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5066 }
5067
5068 /* get basic stuff going */
5069 return t4_early_init(adap, adap->fn);
5070 }
5071
5072 /*
5073 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
5074 */
5075 #define MAX_ATIDS 8192U
5076
5077 /*
5078 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5079 *
5080 * If the firmware we're dealing with has Configuration File support, then
5081 * we use that to perform all configuration
5082 */
5083
5084 /*
5085 * Tweak configuration based on module parameters, etc. Most of these have
5086 * defaults assigned to them by Firmware Configuration Files (if we're using
5087 * them) but need to be explicitly set if we're using hard-coded
5088 * initialization. But even in the case of using Firmware Configuration
5089 * Files, we'd like to expose the ability to change these via module
5090 * parameters so these are essentially common tweaks/settings for
5091 * Configuration Files and hard-coded initialization ...
5092 */
5093 static int adap_init0_tweaks(struct adapter *adapter)
5094 {
5095 /*
5096 * Fix up various Host-Dependent Parameters like Page Size, Cache
5097 * Line Size, etc. The firmware default is for a 4KB Page Size and
5098 * 64B Cache Line Size ...
5099 */
5100 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5101
5102 /*
5103 * Process module parameters which affect early initialization.
5104 */
5105 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5106 dev_err(&adapter->pdev->dev,
5107 "Ignoring illegal rx_dma_offset=%d, using 2\n",
5108 rx_dma_offset);
5109 rx_dma_offset = 2;
5110 }
5111 t4_set_reg_field(adapter, SGE_CONTROL,
5112 PKTSHIFT_MASK,
5113 PKTSHIFT(rx_dma_offset));
5114
5115 /*
5116 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5117 * adds the pseudo header itself.
5118 */
5119 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5120 CSUM_HAS_PSEUDO_HDR, 0);
5121
5122 return 0;
5123 }
5124
5125 /*
5126 * Attempt to initialize the adapter via a Firmware Configuration File.
5127 */
5128 static int adap_init0_config(struct adapter *adapter, int reset)
5129 {
5130 struct fw_caps_config_cmd caps_cmd;
5131 const struct firmware *cf;
5132 unsigned long mtype = 0, maddr = 0;
5133 u32 finiver, finicsum, cfcsum;
5134 int ret;
5135 int config_issued = 0;
5136 char *fw_config_file, fw_config_file_path[256];
5137 char *config_name = NULL;
5138
5139 /*
5140 * Reset device if necessary.
5141 */
5142 if (reset) {
5143 ret = t4_fw_reset(adapter, adapter->mbox,
5144 PIORSTMODE | PIORST);
5145 if (ret < 0)
5146 goto bye;
5147 }
5148
5149 /*
5150 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5151 * then use that. Otherwise, use the configuration file stored
5152 * in the adapter flash ...
5153 */
5154 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5155 case CHELSIO_T4:
5156 fw_config_file = FW4_CFNAME;
5157 break;
5158 case CHELSIO_T5:
5159 fw_config_file = FW5_CFNAME;
5160 break;
5161 default:
5162 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5163 adapter->pdev->device);
5164 ret = -EINVAL;
5165 goto bye;
5166 }
5167
5168 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5169 if (ret < 0) {
5170 config_name = "On FLASH";
5171 mtype = FW_MEMTYPE_CF_FLASH;
5172 maddr = t4_flash_cfg_addr(adapter);
5173 } else {
5174 u32 params[7], val[7];
5175
5176 sprintf(fw_config_file_path,
5177 "/lib/firmware/%s", fw_config_file);
5178 config_name = fw_config_file_path;
5179
5180 if (cf->size >= FLASH_CFG_MAX_SIZE)
5181 ret = -ENOMEM;
5182 else {
5183 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5184 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5185 ret = t4_query_params(adapter, adapter->mbox,
5186 adapter->fn, 0, 1, params, val);
5187 if (ret == 0) {
5188 /*
5189 * For t4_memory_rw() below addresses and
5190 * sizes have to be in terms of multiples of 4
5191 * bytes. So, if the Configuration File isn't
5192 * a multiple of 4 bytes in length we'll have
5193 * to write that out separately since we can't
5194 * guarantee that the bytes following the
5195 * residual byte in the buffer returned by
5196 * request_firmware() are zeroed out ...
5197 */
5198 size_t resid = cf->size & 0x3;
5199 size_t size = cf->size & ~0x3;
5200 __be32 *data = (__be32 *)cf->data;
5201
5202 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5203 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5204
5205 spin_lock(&adapter->win0_lock);
5206 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5207 size, data, T4_MEMORY_WRITE);
5208 if (ret == 0 && resid != 0) {
5209 union {
5210 __be32 word;
5211 char buf[4];
5212 } last;
5213 int i;
5214
5215 last.word = data[size >> 2];
5216 for (i = resid; i < 4; i++)
5217 last.buf[i] = 0;
5218 ret = t4_memory_rw(adapter, 0, mtype,
5219 maddr + size,
5220 4, &last.word,
5221 T4_MEMORY_WRITE);
5222 }
5223 spin_unlock(&adapter->win0_lock);
5224 }
5225 }
5226
5227 release_firmware(cf);
5228 if (ret)
5229 goto bye;
5230 }
5231
5232 /*
5233 * Issue a Capability Configuration command to the firmware to get it
5234 * to parse the Configuration File. We don't use t4_fw_config_file()
5235 * because we want the ability to modify various features after we've
5236 * processed the configuration file ...
5237 */
5238 memset(&caps_cmd, 0, sizeof(caps_cmd));
5239 caps_cmd.op_to_write =
5240 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5241 FW_CMD_REQUEST |
5242 FW_CMD_READ);
5243 caps_cmd.cfvalid_to_len16 =
5244 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5245 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5246 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5247 FW_LEN16(caps_cmd));
5248 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5249 &caps_cmd);
5250
5251 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5252 * Configuration File in FLASH), our last gasp effort is to use the
5253 * Firmware Configuration File which is embedded in the firmware. A
5254 * very few early versions of the firmware didn't have one embedded
5255 * but we can ignore those.
5256 */
5257 if (ret == -ENOENT) {
5258 memset(&caps_cmd, 0, sizeof(caps_cmd));
5259 caps_cmd.op_to_write =
5260 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5261 FW_CMD_REQUEST |
5262 FW_CMD_READ);
5263 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5264 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5265 sizeof(caps_cmd), &caps_cmd);
5266 config_name = "Firmware Default";
5267 }
5268
5269 config_issued = 1;
5270 if (ret < 0)
5271 goto bye;
5272
5273 finiver = ntohl(caps_cmd.finiver);
5274 finicsum = ntohl(caps_cmd.finicsum);
5275 cfcsum = ntohl(caps_cmd.cfcsum);
5276 if (finicsum != cfcsum)
5277 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5278 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5279 finicsum, cfcsum);
5280
5281 /*
5282 * And now tell the firmware to use the configuration we just loaded.
5283 */
5284 caps_cmd.op_to_write =
5285 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5286 FW_CMD_REQUEST |
5287 FW_CMD_WRITE);
5288 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5289 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5290 NULL);
5291 if (ret < 0)
5292 goto bye;
5293
5294 /*
5295 * Tweak configuration based on system architecture, module
5296 * parameters, etc.
5297 */
5298 ret = adap_init0_tweaks(adapter);
5299 if (ret < 0)
5300 goto bye;
5301
5302 /*
5303 * And finally tell the firmware to initialize itself using the
5304 * parameters from the Configuration File.
5305 */
5306 ret = t4_fw_initialize(adapter, adapter->mbox);
5307 if (ret < 0)
5308 goto bye;
5309
5310 /*
5311 * Return successfully and note that we're operating with parameters
5312 * not supplied by the driver, rather than from hard-wired
5313 * initialization constants burried in the driver.
5314 */
5315 adapter->flags |= USING_SOFT_PARAMS;
5316 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5317 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5318 config_name, finiver, cfcsum);
5319 return 0;
5320
5321 /*
5322 * Something bad happened. Return the error ... (If the "error"
5323 * is that there's no Configuration File on the adapter we don't
5324 * want to issue a warning since this is fairly common.)
5325 */
5326 bye:
5327 if (config_issued && ret != -ENOENT)
5328 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5329 config_name, -ret);
5330 return ret;
5331 }
5332
5333 /*
5334 * Attempt to initialize the adapter via hard-coded, driver supplied
5335 * parameters ...
5336 */
5337 static int adap_init0_no_config(struct adapter *adapter, int reset)
5338 {
5339 struct sge *s = &adapter->sge;
5340 struct fw_caps_config_cmd caps_cmd;
5341 u32 v;
5342 int i, ret;
5343
5344 /*
5345 * Reset device if necessary
5346 */
5347 if (reset) {
5348 ret = t4_fw_reset(adapter, adapter->mbox,
5349 PIORSTMODE | PIORST);
5350 if (ret < 0)
5351 goto bye;
5352 }
5353
5354 /*
5355 * Get device capabilities and select which we'll be using.
5356 */
5357 memset(&caps_cmd, 0, sizeof(caps_cmd));
5358 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5359 FW_CMD_REQUEST | FW_CMD_READ);
5360 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5361 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5362 &caps_cmd);
5363 if (ret < 0)
5364 goto bye;
5365
5366 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5367 if (!vf_acls)
5368 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5369 else
5370 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5371 } else if (vf_acls) {
5372 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5373 goto bye;
5374 }
5375 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5376 FW_CMD_REQUEST | FW_CMD_WRITE);
5377 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5378 NULL);
5379 if (ret < 0)
5380 goto bye;
5381
5382 /*
5383 * Tweak configuration based on system architecture, module
5384 * parameters, etc.
5385 */
5386 ret = adap_init0_tweaks(adapter);
5387 if (ret < 0)
5388 goto bye;
5389
5390 /*
5391 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5392 * mode which maps each Virtual Interface to its own section of
5393 * the RSS Table and we turn on all map and hash enables ...
5394 */
5395 adapter->flags |= RSS_TNLALLLOOKUP;
5396 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5397 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5398 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5399 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5400 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5401 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5402 if (ret < 0)
5403 goto bye;
5404
5405 /*
5406 * Set up our own fundamental resource provisioning ...
5407 */
5408 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5409 PFRES_NEQ, PFRES_NETHCTRL,
5410 PFRES_NIQFLINT, PFRES_NIQ,
5411 PFRES_TC, PFRES_NVI,
5412 FW_PFVF_CMD_CMASK_MASK,
5413 pfvfres_pmask(adapter, adapter->fn, 0),
5414 PFRES_NEXACTF,
5415 PFRES_R_CAPS, PFRES_WX_CAPS);
5416 if (ret < 0)
5417 goto bye;
5418
5419 /*
5420 * Perform low level SGE initialization. We need to do this before we
5421 * send the firmware the INITIALIZE command because that will cause
5422 * any other PF Drivers which are waiting for the Master
5423 * Initialization to proceed forward.
5424 */
5425 for (i = 0; i < SGE_NTIMERS - 1; i++)
5426 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5427 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5428 s->counter_val[0] = 1;
5429 for (i = 1; i < SGE_NCOUNTERS; i++)
5430 s->counter_val[i] = min(intr_cnt[i - 1],
5431 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5432 t4_sge_init(adapter);
5433
5434 #ifdef CONFIG_PCI_IOV
5435 /*
5436 * Provision resource limits for Virtual Functions. We currently
5437 * grant them all the same static resource limits except for the Port
5438 * Access Rights Mask which we're assigning based on the PF. All of
5439 * the static provisioning stuff for both the PF and VF really needs
5440 * to be managed in a persistent manner for each device which the
5441 * firmware controls.
5442 */
5443 {
5444 int pf, vf;
5445
5446 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5447 if (num_vf[pf] <= 0)
5448 continue;
5449
5450 /* VF numbering starts at 1! */
5451 for (vf = 1; vf <= num_vf[pf]; vf++) {
5452 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5453 pf, vf,
5454 VFRES_NEQ, VFRES_NETHCTRL,
5455 VFRES_NIQFLINT, VFRES_NIQ,
5456 VFRES_TC, VFRES_NVI,
5457 FW_PFVF_CMD_CMASK_MASK,
5458 pfvfres_pmask(
5459 adapter, pf, vf),
5460 VFRES_NEXACTF,
5461 VFRES_R_CAPS, VFRES_WX_CAPS);
5462 if (ret < 0)
5463 dev_warn(adapter->pdev_dev,
5464 "failed to "\
5465 "provision pf/vf=%d/%d; "
5466 "err=%d\n", pf, vf, ret);
5467 }
5468 }
5469 }
5470 #endif
5471
5472 /*
5473 * Set up the default filter mode. Later we'll want to implement this
5474 * via a firmware command, etc. ... This needs to be done before the
5475 * firmare initialization command ... If the selected set of fields
5476 * isn't equal to the default value, we'll need to make sure that the
5477 * field selections will fit in the 36-bit budget.
5478 */
5479 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5480 int j, bits = 0;
5481
5482 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5483 switch (tp_vlan_pri_map & (1 << j)) {
5484 case 0:
5485 /* compressed filter field not enabled */
5486 break;
5487 case FCOE_MASK:
5488 bits += 1;
5489 break;
5490 case PORT_MASK:
5491 bits += 3;
5492 break;
5493 case VNIC_ID_MASK:
5494 bits += 17;
5495 break;
5496 case VLAN_MASK:
5497 bits += 17;
5498 break;
5499 case TOS_MASK:
5500 bits += 8;
5501 break;
5502 case PROTOCOL_MASK:
5503 bits += 8;
5504 break;
5505 case ETHERTYPE_MASK:
5506 bits += 16;
5507 break;
5508 case MACMATCH_MASK:
5509 bits += 9;
5510 break;
5511 case MPSHITTYPE_MASK:
5512 bits += 3;
5513 break;
5514 case FRAGMENTATION_MASK:
5515 bits += 1;
5516 break;
5517 }
5518
5519 if (bits > 36) {
5520 dev_err(adapter->pdev_dev,
5521 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5522 " using %#x\n", tp_vlan_pri_map, bits,
5523 TP_VLAN_PRI_MAP_DEFAULT);
5524 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5525 }
5526 }
5527 v = tp_vlan_pri_map;
5528 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5529 &v, 1, TP_VLAN_PRI_MAP);
5530
5531 /*
5532 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5533 * to support any of the compressed filter fields above. Newer
5534 * versions of the firmware do this automatically but it doesn't hurt
5535 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5536 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5537 * since the firmware automatically turns this on and off when we have
5538 * a non-zero number of filters active (since it does have a
5539 * performance impact).
5540 */
5541 if (tp_vlan_pri_map)
5542 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5543 FIVETUPLELOOKUP_MASK,
5544 FIVETUPLELOOKUP_MASK);
5545
5546 /*
5547 * Tweak some settings.
5548 */
5549 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5550 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5551 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5552 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5553
5554 /*
5555 * Get basic stuff going by issuing the Firmware Initialize command.
5556 * Note that this _must_ be after all PFVF commands ...
5557 */
5558 ret = t4_fw_initialize(adapter, adapter->mbox);
5559 if (ret < 0)
5560 goto bye;
5561
5562 /*
5563 * Return successfully!
5564 */
5565 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5566 "driver parameters\n");
5567 return 0;
5568
5569 /*
5570 * Something bad happened. Return the error ...
5571 */
5572 bye:
5573 return ret;
5574 }
5575
5576 static struct fw_info fw_info_array[] = {
5577 {
5578 .chip = CHELSIO_T4,
5579 .fs_name = FW4_CFNAME,
5580 .fw_mod_name = FW4_FNAME,
5581 .fw_hdr = {
5582 .chip = FW_HDR_CHIP_T4,
5583 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5584 .intfver_nic = FW_INTFVER(T4, NIC),
5585 .intfver_vnic = FW_INTFVER(T4, VNIC),
5586 .intfver_ri = FW_INTFVER(T4, RI),
5587 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5588 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5589 },
5590 }, {
5591 .chip = CHELSIO_T5,
5592 .fs_name = FW5_CFNAME,
5593 .fw_mod_name = FW5_FNAME,
5594 .fw_hdr = {
5595 .chip = FW_HDR_CHIP_T5,
5596 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5597 .intfver_nic = FW_INTFVER(T5, NIC),
5598 .intfver_vnic = FW_INTFVER(T5, VNIC),
5599 .intfver_ri = FW_INTFVER(T5, RI),
5600 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5601 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5602 },
5603 }
5604 };
5605
5606 static struct fw_info *find_fw_info(int chip)
5607 {
5608 int i;
5609
5610 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5611 if (fw_info_array[i].chip == chip)
5612 return &fw_info_array[i];
5613 }
5614 return NULL;
5615 }
5616
5617 /*
5618 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5619 */
5620 static int adap_init0(struct adapter *adap)
5621 {
5622 int ret;
5623 u32 v, port_vec;
5624 enum dev_state state;
5625 u32 params[7], val[7];
5626 struct fw_caps_config_cmd caps_cmd;
5627 int reset = 1;
5628
5629 /*
5630 * Contact FW, advertising Master capability (and potentially forcing
5631 * ourselves as the Master PF if our module parameter force_init is
5632 * set).
5633 */
5634 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5635 force_init ? MASTER_MUST : MASTER_MAY,
5636 &state);
5637 if (ret < 0) {
5638 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5639 ret);
5640 return ret;
5641 }
5642 if (ret == adap->mbox)
5643 adap->flags |= MASTER_PF;
5644 if (force_init && state == DEV_STATE_INIT)
5645 state = DEV_STATE_UNINIT;
5646
5647 /*
5648 * If we're the Master PF Driver and the device is uninitialized,
5649 * then let's consider upgrading the firmware ... (We always want
5650 * to check the firmware version number in order to A. get it for
5651 * later reporting and B. to warn if the currently loaded firmware
5652 * is excessively mismatched relative to the driver.)
5653 */
5654 t4_get_fw_version(adap, &adap->params.fw_vers);
5655 t4_get_tp_version(adap, &adap->params.tp_vers);
5656 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5657 struct fw_info *fw_info;
5658 struct fw_hdr *card_fw;
5659 const struct firmware *fw;
5660 const u8 *fw_data = NULL;
5661 unsigned int fw_size = 0;
5662
5663 /* This is the firmware whose headers the driver was compiled
5664 * against
5665 */
5666 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5667 if (fw_info == NULL) {
5668 dev_err(adap->pdev_dev,
5669 "unable to get firmware info for chip %d.\n",
5670 CHELSIO_CHIP_VERSION(adap->params.chip));
5671 return -EINVAL;
5672 }
5673
5674 /* allocate memory to read the header of the firmware on the
5675 * card
5676 */
5677 card_fw = t4_alloc_mem(sizeof(*card_fw));
5678
5679 /* Get FW from from /lib/firmware/ */
5680 ret = request_firmware(&fw, fw_info->fw_mod_name,
5681 adap->pdev_dev);
5682 if (ret < 0) {
5683 dev_err(adap->pdev_dev,
5684 "unable to load firmware image %s, error %d\n",
5685 fw_info->fw_mod_name, ret);
5686 } else {
5687 fw_data = fw->data;
5688 fw_size = fw->size;
5689 }
5690
5691 /* upgrade FW logic */
5692 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5693 state, &reset);
5694
5695 /* Cleaning up */
5696 if (fw != NULL)
5697 release_firmware(fw);
5698 t4_free_mem(card_fw);
5699
5700 if (ret < 0)
5701 goto bye;
5702 }
5703
5704 /*
5705 * Grab VPD parameters. This should be done after we establish a
5706 * connection to the firmware since some of the VPD parameters
5707 * (notably the Core Clock frequency) are retrieved via requests to
5708 * the firmware. On the other hand, we need these fairly early on
5709 * so we do this right after getting ahold of the firmware.
5710 */
5711 ret = get_vpd_params(adap, &adap->params.vpd);
5712 if (ret < 0)
5713 goto bye;
5714
5715 /*
5716 * Find out what ports are available to us. Note that we need to do
5717 * this before calling adap_init0_no_config() since it needs nports
5718 * and portvec ...
5719 */
5720 v =
5721 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5722 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5723 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5724 if (ret < 0)
5725 goto bye;
5726
5727 adap->params.nports = hweight32(port_vec);
5728 adap->params.portvec = port_vec;
5729
5730 /*
5731 * If the firmware is initialized already (and we're not forcing a
5732 * master initialization), note that we're living with existing
5733 * adapter parameters. Otherwise, it's time to try initializing the
5734 * adapter ...
5735 */
5736 if (state == DEV_STATE_INIT) {
5737 dev_info(adap->pdev_dev, "Coming up as %s: "\
5738 "Adapter already initialized\n",
5739 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5740 adap->flags |= USING_SOFT_PARAMS;
5741 } else {
5742 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5743 "Initializing adapter\n");
5744
5745 /*
5746 * If the firmware doesn't support Configuration
5747 * Files warn user and exit,
5748 */
5749 if (ret < 0)
5750 dev_warn(adap->pdev_dev, "Firmware doesn't support "
5751 "configuration file.\n");
5752 if (force_old_init)
5753 ret = adap_init0_no_config(adap, reset);
5754 else {
5755 /*
5756 * Find out whether we're dealing with a version of
5757 * the firmware which has configuration file support.
5758 */
5759 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5760 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5761 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5762 params, val);
5763
5764 /*
5765 * If the firmware doesn't support Configuration
5766 * Files, use the old Driver-based, hard-wired
5767 * initialization. Otherwise, try using the
5768 * Configuration File support and fall back to the
5769 * Driver-based initialization if there's no
5770 * Configuration File found.
5771 */
5772 if (ret < 0)
5773 ret = adap_init0_no_config(adap, reset);
5774 else {
5775 /*
5776 * The firmware provides us with a memory
5777 * buffer where we can load a Configuration
5778 * File from the host if we want to override
5779 * the Configuration File in flash.
5780 */
5781
5782 ret = adap_init0_config(adap, reset);
5783 if (ret == -ENOENT) {
5784 dev_info(adap->pdev_dev,
5785 "No Configuration File present "
5786 "on adapter. Using hard-wired "
5787 "configuration parameters.\n");
5788 ret = adap_init0_no_config(adap, reset);
5789 }
5790 }
5791 }
5792 if (ret < 0) {
5793 dev_err(adap->pdev_dev,
5794 "could not initialize adapter, error %d\n",
5795 -ret);
5796 goto bye;
5797 }
5798 }
5799
5800 /*
5801 * If we're living with non-hard-coded parameters (either from a
5802 * Firmware Configuration File or values programmed by a different PF
5803 * Driver), give the SGE code a chance to pull in anything that it
5804 * needs ... Note that this must be called after we retrieve our VPD
5805 * parameters in order to know how to convert core ticks to seconds.
5806 */
5807 if (adap->flags & USING_SOFT_PARAMS) {
5808 ret = t4_sge_init(adap);
5809 if (ret < 0)
5810 goto bye;
5811 }
5812
5813 if (is_bypass_device(adap->pdev->device))
5814 adap->params.bypass = 1;
5815
5816 /*
5817 * Grab some of our basic fundamental operating parameters.
5818 */
5819 #define FW_PARAM_DEV(param) \
5820 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5821 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5822
5823 #define FW_PARAM_PFVF(param) \
5824 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5825 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5826 FW_PARAMS_PARAM_Y(0) | \
5827 FW_PARAMS_PARAM_Z(0)
5828
5829 params[0] = FW_PARAM_PFVF(EQ_START);
5830 params[1] = FW_PARAM_PFVF(L2T_START);
5831 params[2] = FW_PARAM_PFVF(L2T_END);
5832 params[3] = FW_PARAM_PFVF(FILTER_START);
5833 params[4] = FW_PARAM_PFVF(FILTER_END);
5834 params[5] = FW_PARAM_PFVF(IQFLINT_START);
5835 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5836 if (ret < 0)
5837 goto bye;
5838 adap->sge.egr_start = val[0];
5839 adap->l2t_start = val[1];
5840 adap->l2t_end = val[2];
5841 adap->tids.ftid_base = val[3];
5842 adap->tids.nftids = val[4] - val[3] + 1;
5843 adap->sge.ingr_start = val[5];
5844
5845 /* query params related to active filter region */
5846 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5847 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5848 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5849 /* If Active filter size is set we enable establishing
5850 * offload connection through firmware work request
5851 */
5852 if ((val[0] != val[1]) && (ret >= 0)) {
5853 adap->flags |= FW_OFLD_CONN;
5854 adap->tids.aftid_base = val[0];
5855 adap->tids.aftid_end = val[1];
5856 }
5857
5858 /* If we're running on newer firmware, let it know that we're
5859 * prepared to deal with encapsulated CPL messages. Older
5860 * firmware won't understand this and we'll just get
5861 * unencapsulated messages ...
5862 */
5863 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5864 val[0] = 1;
5865 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5866
5867 /*
5868 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5869 * capability. Earlier versions of the firmware didn't have the
5870 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5871 * permission to use ULPTX MEMWRITE DSGL.
5872 */
5873 if (is_t4(adap->params.chip)) {
5874 adap->params.ulptx_memwrite_dsgl = false;
5875 } else {
5876 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5877 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5878 1, params, val);
5879 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5880 }
5881
5882 /*
5883 * Get device capabilities so we can determine what resources we need
5884 * to manage.
5885 */
5886 memset(&caps_cmd, 0, sizeof(caps_cmd));
5887 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5888 FW_CMD_REQUEST | FW_CMD_READ);
5889 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5890 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5891 &caps_cmd);
5892 if (ret < 0)
5893 goto bye;
5894
5895 if (caps_cmd.ofldcaps) {
5896 /* query offload-related parameters */
5897 params[0] = FW_PARAM_DEV(NTID);
5898 params[1] = FW_PARAM_PFVF(SERVER_START);
5899 params[2] = FW_PARAM_PFVF(SERVER_END);
5900 params[3] = FW_PARAM_PFVF(TDDP_START);
5901 params[4] = FW_PARAM_PFVF(TDDP_END);
5902 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5903 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5904 params, val);
5905 if (ret < 0)
5906 goto bye;
5907 adap->tids.ntids = val[0];
5908 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5909 adap->tids.stid_base = val[1];
5910 adap->tids.nstids = val[2] - val[1] + 1;
5911 /*
5912 * Setup server filter region. Divide the availble filter
5913 * region into two parts. Regular filters get 1/3rd and server
5914 * filters get 2/3rd part. This is only enabled if workarond
5915 * path is enabled.
5916 * 1. For regular filters.
5917 * 2. Server filter: This are special filters which are used
5918 * to redirect SYN packets to offload queue.
5919 */
5920 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5921 adap->tids.sftid_base = adap->tids.ftid_base +
5922 DIV_ROUND_UP(adap->tids.nftids, 3);
5923 adap->tids.nsftids = adap->tids.nftids -
5924 DIV_ROUND_UP(adap->tids.nftids, 3);
5925 adap->tids.nftids = adap->tids.sftid_base -
5926 adap->tids.ftid_base;
5927 }
5928 adap->vres.ddp.start = val[3];
5929 adap->vres.ddp.size = val[4] - val[3] + 1;
5930 adap->params.ofldq_wr_cred = val[5];
5931
5932 adap->params.offload = 1;
5933 }
5934 if (caps_cmd.rdmacaps) {
5935 params[0] = FW_PARAM_PFVF(STAG_START);
5936 params[1] = FW_PARAM_PFVF(STAG_END);
5937 params[2] = FW_PARAM_PFVF(RQ_START);
5938 params[3] = FW_PARAM_PFVF(RQ_END);
5939 params[4] = FW_PARAM_PFVF(PBL_START);
5940 params[5] = FW_PARAM_PFVF(PBL_END);
5941 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5942 params, val);
5943 if (ret < 0)
5944 goto bye;
5945 adap->vres.stag.start = val[0];
5946 adap->vres.stag.size = val[1] - val[0] + 1;
5947 adap->vres.rq.start = val[2];
5948 adap->vres.rq.size = val[3] - val[2] + 1;
5949 adap->vres.pbl.start = val[4];
5950 adap->vres.pbl.size = val[5] - val[4] + 1;
5951
5952 params[0] = FW_PARAM_PFVF(SQRQ_START);
5953 params[1] = FW_PARAM_PFVF(SQRQ_END);
5954 params[2] = FW_PARAM_PFVF(CQ_START);
5955 params[3] = FW_PARAM_PFVF(CQ_END);
5956 params[4] = FW_PARAM_PFVF(OCQ_START);
5957 params[5] = FW_PARAM_PFVF(OCQ_END);
5958 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5959 if (ret < 0)
5960 goto bye;
5961 adap->vres.qp.start = val[0];
5962 adap->vres.qp.size = val[1] - val[0] + 1;
5963 adap->vres.cq.start = val[2];
5964 adap->vres.cq.size = val[3] - val[2] + 1;
5965 adap->vres.ocq.start = val[4];
5966 adap->vres.ocq.size = val[5] - val[4] + 1;
5967
5968 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5969 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5970 ret = t4_query_params(adap, 0, 0, 0, 2, params, val);
5971 if (ret < 0) {
5972 adap->params.max_ordird_qp = 8;
5973 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5974 ret = 0;
5975 } else {
5976 adap->params.max_ordird_qp = val[0];
5977 adap->params.max_ird_adapter = val[1];
5978 }
5979 dev_info(adap->pdev_dev,
5980 "max_ordird_qp %d max_ird_adapter %d\n",
5981 adap->params.max_ordird_qp,
5982 adap->params.max_ird_adapter);
5983 }
5984 if (caps_cmd.iscsicaps) {
5985 params[0] = FW_PARAM_PFVF(ISCSI_START);
5986 params[1] = FW_PARAM_PFVF(ISCSI_END);
5987 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5988 params, val);
5989 if (ret < 0)
5990 goto bye;
5991 adap->vres.iscsi.start = val[0];
5992 adap->vres.iscsi.size = val[1] - val[0] + 1;
5993 }
5994 #undef FW_PARAM_PFVF
5995 #undef FW_PARAM_DEV
5996
5997 /* The MTU/MSS Table is initialized by now, so load their values. If
5998 * we're initializing the adapter, then we'll make any modifications
5999 * we want to the MTU/MSS Table and also initialize the congestion
6000 * parameters.
6001 */
6002 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6003 if (state != DEV_STATE_INIT) {
6004 int i;
6005
6006 /* The default MTU Table contains values 1492 and 1500.
6007 * However, for TCP, it's better to have two values which are
6008 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6009 * This allows us to have a TCP Data Payload which is a
6010 * multiple of 8 regardless of what combination of TCP Options
6011 * are in use (always a multiple of 4 bytes) which is
6012 * important for performance reasons. For instance, if no
6013 * options are in use, then we have a 20-byte IP header and a
6014 * 20-byte TCP header. In this case, a 1500-byte MSS would
6015 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6016 * which is not a multiple of 8. So using an MSS of 1488 in
6017 * this case results in a TCP Data Payload of 1448 bytes which
6018 * is a multiple of 8. On the other hand, if 12-byte TCP Time
6019 * Stamps have been negotiated, then an MTU of 1500 bytes
6020 * results in a TCP Data Payload of 1448 bytes which, as
6021 * above, is a multiple of 8 bytes ...
6022 */
6023 for (i = 0; i < NMTUS; i++)
6024 if (adap->params.mtus[i] == 1492) {
6025 adap->params.mtus[i] = 1488;
6026 break;
6027 }
6028
6029 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6030 adap->params.b_wnd);
6031 }
6032 t4_init_tp_params(adap);
6033 adap->flags |= FW_OK;
6034 return 0;
6035
6036 /*
6037 * Something bad happened. If a command timed out or failed with EIO
6038 * FW does not operate within its spec or something catastrophic
6039 * happened to HW/FW, stop issuing commands.
6040 */
6041 bye:
6042 if (ret != -ETIMEDOUT && ret != -EIO)
6043 t4_fw_bye(adap, adap->mbox);
6044 return ret;
6045 }
6046
6047 /* EEH callbacks */
6048
6049 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6050 pci_channel_state_t state)
6051 {
6052 int i;
6053 struct adapter *adap = pci_get_drvdata(pdev);
6054
6055 if (!adap)
6056 goto out;
6057
6058 rtnl_lock();
6059 adap->flags &= ~FW_OK;
6060 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6061 spin_lock(&adap->stats_lock);
6062 for_each_port(adap, i) {
6063 struct net_device *dev = adap->port[i];
6064
6065 netif_device_detach(dev);
6066 netif_carrier_off(dev);
6067 }
6068 spin_unlock(&adap->stats_lock);
6069 if (adap->flags & FULL_INIT_DONE)
6070 cxgb_down(adap);
6071 rtnl_unlock();
6072 if ((adap->flags & DEV_ENABLED)) {
6073 pci_disable_device(pdev);
6074 adap->flags &= ~DEV_ENABLED;
6075 }
6076 out: return state == pci_channel_io_perm_failure ?
6077 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6078 }
6079
6080 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6081 {
6082 int i, ret;
6083 struct fw_caps_config_cmd c;
6084 struct adapter *adap = pci_get_drvdata(pdev);
6085
6086 if (!adap) {
6087 pci_restore_state(pdev);
6088 pci_save_state(pdev);
6089 return PCI_ERS_RESULT_RECOVERED;
6090 }
6091
6092 if (!(adap->flags & DEV_ENABLED)) {
6093 if (pci_enable_device(pdev)) {
6094 dev_err(&pdev->dev, "Cannot reenable PCI "
6095 "device after reset\n");
6096 return PCI_ERS_RESULT_DISCONNECT;
6097 }
6098 adap->flags |= DEV_ENABLED;
6099 }
6100
6101 pci_set_master(pdev);
6102 pci_restore_state(pdev);
6103 pci_save_state(pdev);
6104 pci_cleanup_aer_uncorrect_error_status(pdev);
6105
6106 if (t4_wait_dev_ready(adap) < 0)
6107 return PCI_ERS_RESULT_DISCONNECT;
6108 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6109 return PCI_ERS_RESULT_DISCONNECT;
6110 adap->flags |= FW_OK;
6111 if (adap_init1(adap, &c))
6112 return PCI_ERS_RESULT_DISCONNECT;
6113
6114 for_each_port(adap, i) {
6115 struct port_info *p = adap2pinfo(adap, i);
6116
6117 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6118 NULL, NULL);
6119 if (ret < 0)
6120 return PCI_ERS_RESULT_DISCONNECT;
6121 p->viid = ret;
6122 p->xact_addr_filt = -1;
6123 }
6124
6125 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6126 adap->params.b_wnd);
6127 setup_memwin(adap);
6128 if (cxgb_up(adap))
6129 return PCI_ERS_RESULT_DISCONNECT;
6130 return PCI_ERS_RESULT_RECOVERED;
6131 }
6132
6133 static void eeh_resume(struct pci_dev *pdev)
6134 {
6135 int i;
6136 struct adapter *adap = pci_get_drvdata(pdev);
6137
6138 if (!adap)
6139 return;
6140
6141 rtnl_lock();
6142 for_each_port(adap, i) {
6143 struct net_device *dev = adap->port[i];
6144
6145 if (netif_running(dev)) {
6146 link_start(dev);
6147 cxgb_set_rxmode(dev);
6148 }
6149 netif_device_attach(dev);
6150 }
6151 rtnl_unlock();
6152 }
6153
6154 static const struct pci_error_handlers cxgb4_eeh = {
6155 .error_detected = eeh_err_detected,
6156 .slot_reset = eeh_slot_reset,
6157 .resume = eeh_resume,
6158 };
6159
6160 static inline bool is_x_10g_port(const struct link_config *lc)
6161 {
6162 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6163 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6164 }
6165
6166 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6167 unsigned int us, unsigned int cnt,
6168 unsigned int size, unsigned int iqe_size)
6169 {
6170 q->adap = adap;
6171 set_rspq_intr_params(q, us, cnt);
6172 q->iqe_len = iqe_size;
6173 q->size = size;
6174 }
6175
6176 /*
6177 * Perform default configuration of DMA queues depending on the number and type
6178 * of ports we found and the number of available CPUs. Most settings can be
6179 * modified by the admin prior to actual use.
6180 */
6181 static void cfg_queues(struct adapter *adap)
6182 {
6183 struct sge *s = &adap->sge;
6184 int i, n10g = 0, qidx = 0;
6185 #ifndef CONFIG_CHELSIO_T4_DCB
6186 int q10g = 0;
6187 #endif
6188 int ciq_size;
6189
6190 for_each_port(adap, i)
6191 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6192 #ifdef CONFIG_CHELSIO_T4_DCB
6193 /* For Data Center Bridging support we need to be able to support up
6194 * to 8 Traffic Priorities; each of which will be assigned to its
6195 * own TX Queue in order to prevent Head-Of-Line Blocking.
6196 */
6197 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6198 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6199 MAX_ETH_QSETS, adap->params.nports * 8);
6200 BUG_ON(1);
6201 }
6202
6203 for_each_port(adap, i) {
6204 struct port_info *pi = adap2pinfo(adap, i);
6205
6206 pi->first_qset = qidx;
6207 pi->nqsets = 8;
6208 qidx += pi->nqsets;
6209 }
6210 #else /* !CONFIG_CHELSIO_T4_DCB */
6211 /*
6212 * We default to 1 queue per non-10G port and up to # of cores queues
6213 * per 10G port.
6214 */
6215 if (n10g)
6216 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6217 if (q10g > netif_get_num_default_rss_queues())
6218 q10g = netif_get_num_default_rss_queues();
6219
6220 for_each_port(adap, i) {
6221 struct port_info *pi = adap2pinfo(adap, i);
6222
6223 pi->first_qset = qidx;
6224 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6225 qidx += pi->nqsets;
6226 }
6227 #endif /* !CONFIG_CHELSIO_T4_DCB */
6228
6229 s->ethqsets = qidx;
6230 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6231
6232 if (is_offload(adap)) {
6233 /*
6234 * For offload we use 1 queue/channel if all ports are up to 1G,
6235 * otherwise we divide all available queues amongst the channels
6236 * capped by the number of available cores.
6237 */
6238 if (n10g) {
6239 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6240 num_online_cpus());
6241 s->ofldqsets = roundup(i, adap->params.nports);
6242 } else
6243 s->ofldqsets = adap->params.nports;
6244 /* For RDMA one Rx queue per channel suffices */
6245 s->rdmaqs = adap->params.nports;
6246 s->rdmaciqs = adap->params.nports;
6247 }
6248
6249 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6250 struct sge_eth_rxq *r = &s->ethrxq[i];
6251
6252 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6253 r->fl.size = 72;
6254 }
6255
6256 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6257 s->ethtxq[i].q.size = 1024;
6258
6259 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6260 s->ctrlq[i].q.size = 512;
6261
6262 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6263 s->ofldtxq[i].q.size = 1024;
6264
6265 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6266 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6267
6268 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6269 r->rspq.uld = CXGB4_ULD_ISCSI;
6270 r->fl.size = 72;
6271 }
6272
6273 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6274 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6275
6276 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6277 r->rspq.uld = CXGB4_ULD_RDMA;
6278 r->fl.size = 72;
6279 }
6280
6281 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6282 if (ciq_size > SGE_MAX_IQ_SIZE) {
6283 CH_WARN(adap, "CIQ size too small for available IQs\n");
6284 ciq_size = SGE_MAX_IQ_SIZE;
6285 }
6286
6287 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6288 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6289
6290 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6291 r->rspq.uld = CXGB4_ULD_RDMA;
6292 }
6293
6294 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6295 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6296 }
6297
6298 /*
6299 * Reduce the number of Ethernet queues across all ports to at most n.
6300 * n provides at least one queue per port.
6301 */
6302 static void reduce_ethqs(struct adapter *adap, int n)
6303 {
6304 int i;
6305 struct port_info *pi;
6306
6307 while (n < adap->sge.ethqsets)
6308 for_each_port(adap, i) {
6309 pi = adap2pinfo(adap, i);
6310 if (pi->nqsets > 1) {
6311 pi->nqsets--;
6312 adap->sge.ethqsets--;
6313 if (adap->sge.ethqsets <= n)
6314 break;
6315 }
6316 }
6317
6318 n = 0;
6319 for_each_port(adap, i) {
6320 pi = adap2pinfo(adap, i);
6321 pi->first_qset = n;
6322 n += pi->nqsets;
6323 }
6324 }
6325
6326 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6327 #define EXTRA_VECS 2
6328
6329 static int enable_msix(struct adapter *adap)
6330 {
6331 int ofld_need = 0;
6332 int i, want, need;
6333 struct sge *s = &adap->sge;
6334 unsigned int nchan = adap->params.nports;
6335 struct msix_entry entries[MAX_INGQ + 1];
6336
6337 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6338 entries[i].entry = i;
6339
6340 want = s->max_ethqsets + EXTRA_VECS;
6341 if (is_offload(adap)) {
6342 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6343 /* need nchan for each possible ULD */
6344 ofld_need = 3 * nchan;
6345 }
6346 #ifdef CONFIG_CHELSIO_T4_DCB
6347 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6348 * each port.
6349 */
6350 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6351 #else
6352 need = adap->params.nports + EXTRA_VECS + ofld_need;
6353 #endif
6354 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6355 if (want < 0)
6356 return want;
6357
6358 /*
6359 * Distribute available vectors to the various queue groups.
6360 * Every group gets its minimum requirement and NIC gets top
6361 * priority for leftovers.
6362 */
6363 i = want - EXTRA_VECS - ofld_need;
6364 if (i < s->max_ethqsets) {
6365 s->max_ethqsets = i;
6366 if (i < s->ethqsets)
6367 reduce_ethqs(adap, i);
6368 }
6369 if (is_offload(adap)) {
6370 i = want - EXTRA_VECS - s->max_ethqsets;
6371 i -= ofld_need - nchan;
6372 s->ofldqsets = (i / nchan) * nchan; /* round down */
6373 }
6374 for (i = 0; i < want; ++i)
6375 adap->msix_info[i].vec = entries[i].vector;
6376
6377 return 0;
6378 }
6379
6380 #undef EXTRA_VECS
6381
6382 static int init_rss(struct adapter *adap)
6383 {
6384 unsigned int i, j;
6385
6386 for_each_port(adap, i) {
6387 struct port_info *pi = adap2pinfo(adap, i);
6388
6389 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6390 if (!pi->rss)
6391 return -ENOMEM;
6392 for (j = 0; j < pi->rss_size; j++)
6393 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6394 }
6395 return 0;
6396 }
6397
6398 static void print_port_info(const struct net_device *dev)
6399 {
6400 char buf[80];
6401 char *bufp = buf;
6402 const char *spd = "";
6403 const struct port_info *pi = netdev_priv(dev);
6404 const struct adapter *adap = pi->adapter;
6405
6406 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6407 spd = " 2.5 GT/s";
6408 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6409 spd = " 5 GT/s";
6410 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6411 spd = " 8 GT/s";
6412
6413 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6414 bufp += sprintf(bufp, "100/");
6415 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6416 bufp += sprintf(bufp, "1000/");
6417 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6418 bufp += sprintf(bufp, "10G/");
6419 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6420 bufp += sprintf(bufp, "40G/");
6421 if (bufp != buf)
6422 --bufp;
6423 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6424
6425 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6426 adap->params.vpd.id,
6427 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6428 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6429 (adap->flags & USING_MSIX) ? " MSI-X" :
6430 (adap->flags & USING_MSI) ? " MSI" : "");
6431 netdev_info(dev, "S/N: %s, P/N: %s\n",
6432 adap->params.vpd.sn, adap->params.vpd.pn);
6433 }
6434
6435 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6436 {
6437 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6438 }
6439
6440 /*
6441 * Free the following resources:
6442 * - memory used for tables
6443 * - MSI/MSI-X
6444 * - net devices
6445 * - resources FW is holding for us
6446 */
6447 static void free_some_resources(struct adapter *adapter)
6448 {
6449 unsigned int i;
6450
6451 t4_free_mem(adapter->l2t);
6452 t4_free_mem(adapter->tids.tid_tab);
6453 disable_msi(adapter);
6454
6455 for_each_port(adapter, i)
6456 if (adapter->port[i]) {
6457 kfree(adap2pinfo(adapter, i)->rss);
6458 free_netdev(adapter->port[i]);
6459 }
6460 if (adapter->flags & FW_OK)
6461 t4_fw_bye(adapter, adapter->fn);
6462 }
6463
6464 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6465 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6466 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6467 #define SEGMENT_SIZE 128
6468
6469 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6470 {
6471 int func, i, err, s_qpp, qpp, num_seg;
6472 struct port_info *pi;
6473 bool highdma = false;
6474 struct adapter *adapter = NULL;
6475
6476 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6477
6478 err = pci_request_regions(pdev, KBUILD_MODNAME);
6479 if (err) {
6480 /* Just info, some other driver may have claimed the device. */
6481 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6482 return err;
6483 }
6484
6485 err = pci_enable_device(pdev);
6486 if (err) {
6487 dev_err(&pdev->dev, "cannot enable PCI device\n");
6488 goto out_release_regions;
6489 }
6490
6491 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6492 highdma = true;
6493 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6494 if (err) {
6495 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6496 "coherent allocations\n");
6497 goto out_disable_device;
6498 }
6499 } else {
6500 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6501 if (err) {
6502 dev_err(&pdev->dev, "no usable DMA configuration\n");
6503 goto out_disable_device;
6504 }
6505 }
6506
6507 pci_enable_pcie_error_reporting(pdev);
6508 enable_pcie_relaxed_ordering(pdev);
6509 pci_set_master(pdev);
6510 pci_save_state(pdev);
6511
6512 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6513 if (!adapter) {
6514 err = -ENOMEM;
6515 goto out_disable_device;
6516 }
6517
6518 adapter->workq = create_singlethread_workqueue("cxgb4");
6519 if (!adapter->workq) {
6520 err = -ENOMEM;
6521 goto out_free_adapter;
6522 }
6523
6524 /* PCI device has been enabled */
6525 adapter->flags |= DEV_ENABLED;
6526
6527 adapter->regs = pci_ioremap_bar(pdev, 0);
6528 if (!adapter->regs) {
6529 dev_err(&pdev->dev, "cannot map device registers\n");
6530 err = -ENOMEM;
6531 goto out_free_adapter;
6532 }
6533
6534 /* We control everything through one PF */
6535 func = SOURCEPF_GET(readl(adapter->regs + PL_WHOAMI));
6536 if (func != ent->driver_data) {
6537 pci_save_state(pdev); /* to restore SR-IOV later */
6538 goto sriov;
6539 }
6540
6541 adapter->pdev = pdev;
6542 adapter->pdev_dev = &pdev->dev;
6543 adapter->mbox = func;
6544 adapter->fn = func;
6545 adapter->msg_enable = dflt_msg_enable;
6546 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6547
6548 spin_lock_init(&adapter->stats_lock);
6549 spin_lock_init(&adapter->tid_release_lock);
6550
6551 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6552 INIT_WORK(&adapter->db_full_task, process_db_full);
6553 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6554
6555 err = t4_prep_adapter(adapter);
6556 if (err)
6557 goto out_unmap_bar0;
6558
6559 if (!is_t4(adapter->params.chip)) {
6560 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6561 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6562 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6563 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6564
6565 /* Each segment size is 128B. Write coalescing is enabled only
6566 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6567 * queue is less no of segments that can be accommodated in
6568 * a page size.
6569 */
6570 if (qpp > num_seg) {
6571 dev_err(&pdev->dev,
6572 "Incorrect number of egress queues per page\n");
6573 err = -EINVAL;
6574 goto out_unmap_bar0;
6575 }
6576 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6577 pci_resource_len(pdev, 2));
6578 if (!adapter->bar2) {
6579 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6580 err = -ENOMEM;
6581 goto out_unmap_bar0;
6582 }
6583 }
6584
6585 setup_memwin(adapter);
6586 err = adap_init0(adapter);
6587 setup_memwin_rdma(adapter);
6588 if (err)
6589 goto out_unmap_bar;
6590
6591 for_each_port(adapter, i) {
6592 struct net_device *netdev;
6593
6594 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6595 MAX_ETH_QSETS);
6596 if (!netdev) {
6597 err = -ENOMEM;
6598 goto out_free_dev;
6599 }
6600
6601 SET_NETDEV_DEV(netdev, &pdev->dev);
6602
6603 adapter->port[i] = netdev;
6604 pi = netdev_priv(netdev);
6605 pi->adapter = adapter;
6606 pi->xact_addr_filt = -1;
6607 pi->port_id = i;
6608 netdev->irq = pdev->irq;
6609
6610 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6611 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6612 NETIF_F_RXCSUM | NETIF_F_RXHASH |
6613 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6614 if (highdma)
6615 netdev->hw_features |= NETIF_F_HIGHDMA;
6616 netdev->features |= netdev->hw_features;
6617 netdev->vlan_features = netdev->features & VLAN_FEAT;
6618
6619 netdev->priv_flags |= IFF_UNICAST_FLT;
6620
6621 netdev->netdev_ops = &cxgb4_netdev_ops;
6622 #ifdef CONFIG_CHELSIO_T4_DCB
6623 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6624 cxgb4_dcb_state_init(netdev);
6625 #endif
6626 netdev->ethtool_ops = &cxgb_ethtool_ops;
6627 }
6628
6629 pci_set_drvdata(pdev, adapter);
6630
6631 if (adapter->flags & FW_OK) {
6632 err = t4_port_init(adapter, func, func, 0);
6633 if (err)
6634 goto out_free_dev;
6635 }
6636
6637 /*
6638 * Configure queues and allocate tables now, they can be needed as
6639 * soon as the first register_netdev completes.
6640 */
6641 cfg_queues(adapter);
6642
6643 adapter->l2t = t4_init_l2t();
6644 if (!adapter->l2t) {
6645 /* We tolerate a lack of L2T, giving up some functionality */
6646 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6647 adapter->params.offload = 0;
6648 }
6649
6650 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6651 dev_warn(&pdev->dev, "could not allocate TID table, "
6652 "continuing\n");
6653 adapter->params.offload = 0;
6654 }
6655
6656 /* See what interrupts we'll be using */
6657 if (msi > 1 && enable_msix(adapter) == 0)
6658 adapter->flags |= USING_MSIX;
6659 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6660 adapter->flags |= USING_MSI;
6661
6662 err = init_rss(adapter);
6663 if (err)
6664 goto out_free_dev;
6665
6666 /*
6667 * The card is now ready to go. If any errors occur during device
6668 * registration we do not fail the whole card but rather proceed only
6669 * with the ports we manage to register successfully. However we must
6670 * register at least one net device.
6671 */
6672 for_each_port(adapter, i) {
6673 pi = adap2pinfo(adapter, i);
6674 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6675 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6676
6677 err = register_netdev(adapter->port[i]);
6678 if (err)
6679 break;
6680 adapter->chan_map[pi->tx_chan] = i;
6681 print_port_info(adapter->port[i]);
6682 }
6683 if (i == 0) {
6684 dev_err(&pdev->dev, "could not register any net devices\n");
6685 goto out_free_dev;
6686 }
6687 if (err) {
6688 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6689 err = 0;
6690 }
6691
6692 if (cxgb4_debugfs_root) {
6693 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6694 cxgb4_debugfs_root);
6695 setup_debugfs(adapter);
6696 }
6697
6698 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6699 pdev->needs_freset = 1;
6700
6701 if (is_offload(adapter))
6702 attach_ulds(adapter);
6703
6704 sriov:
6705 #ifdef CONFIG_PCI_IOV
6706 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6707 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6708 dev_info(&pdev->dev,
6709 "instantiated %u virtual functions\n",
6710 num_vf[func]);
6711 #endif
6712 return 0;
6713
6714 out_free_dev:
6715 free_some_resources(adapter);
6716 out_unmap_bar:
6717 if (!is_t4(adapter->params.chip))
6718 iounmap(adapter->bar2);
6719 out_unmap_bar0:
6720 iounmap(adapter->regs);
6721 out_free_adapter:
6722 if (adapter->workq)
6723 destroy_workqueue(adapter->workq);
6724
6725 kfree(adapter);
6726 out_disable_device:
6727 pci_disable_pcie_error_reporting(pdev);
6728 pci_disable_device(pdev);
6729 out_release_regions:
6730 pci_release_regions(pdev);
6731 return err;
6732 }
6733
6734 static void remove_one(struct pci_dev *pdev)
6735 {
6736 struct adapter *adapter = pci_get_drvdata(pdev);
6737
6738 #ifdef CONFIG_PCI_IOV
6739 pci_disable_sriov(pdev);
6740
6741 #endif
6742
6743 if (adapter) {
6744 int i;
6745
6746 /* Tear down per-adapter Work Queue first since it can contain
6747 * references to our adapter data structure.
6748 */
6749 destroy_workqueue(adapter->workq);
6750
6751 if (is_offload(adapter))
6752 detach_ulds(adapter);
6753
6754 for_each_port(adapter, i)
6755 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6756 unregister_netdev(adapter->port[i]);
6757
6758 debugfs_remove_recursive(adapter->debugfs_root);
6759
6760 /* If we allocated filters, free up state associated with any
6761 * valid filters ...
6762 */
6763 if (adapter->tids.ftid_tab) {
6764 struct filter_entry *f = &adapter->tids.ftid_tab[0];
6765 for (i = 0; i < (adapter->tids.nftids +
6766 adapter->tids.nsftids); i++, f++)
6767 if (f->valid)
6768 clear_filter(adapter, f);
6769 }
6770
6771 if (adapter->flags & FULL_INIT_DONE)
6772 cxgb_down(adapter);
6773
6774 free_some_resources(adapter);
6775 iounmap(adapter->regs);
6776 if (!is_t4(adapter->params.chip))
6777 iounmap(adapter->bar2);
6778 pci_disable_pcie_error_reporting(pdev);
6779 if ((adapter->flags & DEV_ENABLED)) {
6780 pci_disable_device(pdev);
6781 adapter->flags &= ~DEV_ENABLED;
6782 }
6783 pci_release_regions(pdev);
6784 synchronize_rcu();
6785 kfree(adapter);
6786 } else
6787 pci_release_regions(pdev);
6788 }
6789
6790 static struct pci_driver cxgb4_driver = {
6791 .name = KBUILD_MODNAME,
6792 .id_table = cxgb4_pci_tbl,
6793 .probe = init_one,
6794 .remove = remove_one,
6795 .shutdown = remove_one,
6796 .err_handler = &cxgb4_eeh,
6797 };
6798
6799 static int __init cxgb4_init_module(void)
6800 {
6801 int ret;
6802
6803 /* Debugfs support is optional, just warn if this fails */
6804 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6805 if (!cxgb4_debugfs_root)
6806 pr_warn("could not create debugfs entry, continuing\n");
6807
6808 ret = pci_register_driver(&cxgb4_driver);
6809 if (ret < 0)
6810 debugfs_remove(cxgb4_debugfs_root);
6811
6812 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6813
6814 return ret;
6815 }
6816
6817 static void __exit cxgb4_cleanup_module(void)
6818 {
6819 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6820 pci_unregister_driver(&cxgb4_driver);
6821 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6822 }
6823
6824 module_init(cxgb4_init_module);
6825 module_exit(cxgb4_cleanup_module);