]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge tag 'defconfig-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137 {
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172 }
173
174 enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183 };
184
185 /* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191 struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216 CH_DEVICE(0xa000, 0), /* PE10K */
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
227 CH_DEVICE(0x400d, -1),
228 CH_DEVICE(0x400e, -1),
229 CH_DEVICE(0x4080, -1),
230 CH_DEVICE(0x4081, -1),
231 CH_DEVICE(0x4082, -1),
232 CH_DEVICE(0x4083, -1),
233 CH_DEVICE(0x4084, -1),
234 CH_DEVICE(0x4085, -1),
235 CH_DEVICE(0x4086, -1),
236 CH_DEVICE(0x4087, -1),
237 CH_DEVICE(0x4088, -1),
238 CH_DEVICE(0x4401, 4),
239 CH_DEVICE(0x4402, 4),
240 CH_DEVICE(0x4403, 4),
241 CH_DEVICE(0x4404, 4),
242 CH_DEVICE(0x4405, 4),
243 CH_DEVICE(0x4406, 4),
244 CH_DEVICE(0x4407, 4),
245 CH_DEVICE(0x4408, 4),
246 CH_DEVICE(0x4409, 4),
247 CH_DEVICE(0x440a, 4),
248 CH_DEVICE(0x440d, 4),
249 CH_DEVICE(0x440e, 4),
250 CH_DEVICE(0x4480, 4),
251 CH_DEVICE(0x4481, 4),
252 CH_DEVICE(0x4482, 4),
253 CH_DEVICE(0x4483, 4),
254 CH_DEVICE(0x4484, 4),
255 CH_DEVICE(0x4485, 4),
256 CH_DEVICE(0x4486, 4),
257 CH_DEVICE(0x4487, 4),
258 CH_DEVICE(0x4488, 4),
259 CH_DEVICE(0x5001, 4),
260 CH_DEVICE(0x5002, 4),
261 CH_DEVICE(0x5003, 4),
262 CH_DEVICE(0x5004, 4),
263 CH_DEVICE(0x5005, 4),
264 CH_DEVICE(0x5006, 4),
265 CH_DEVICE(0x5007, 4),
266 CH_DEVICE(0x5008, 4),
267 CH_DEVICE(0x5009, 4),
268 CH_DEVICE(0x500A, 4),
269 CH_DEVICE(0x500B, 4),
270 CH_DEVICE(0x500C, 4),
271 CH_DEVICE(0x500D, 4),
272 CH_DEVICE(0x500E, 4),
273 CH_DEVICE(0x500F, 4),
274 CH_DEVICE(0x5010, 4),
275 CH_DEVICE(0x5011, 4),
276 CH_DEVICE(0x5012, 4),
277 CH_DEVICE(0x5013, 4),
278 CH_DEVICE(0x5014, 4),
279 CH_DEVICE(0x5015, 4),
280 CH_DEVICE(0x5080, 4),
281 CH_DEVICE(0x5081, 4),
282 CH_DEVICE(0x5082, 4),
283 CH_DEVICE(0x5083, 4),
284 CH_DEVICE(0x5084, 4),
285 CH_DEVICE(0x5085, 4),
286 CH_DEVICE(0x5401, 4),
287 CH_DEVICE(0x5402, 4),
288 CH_DEVICE(0x5403, 4),
289 CH_DEVICE(0x5404, 4),
290 CH_DEVICE(0x5405, 4),
291 CH_DEVICE(0x5406, 4),
292 CH_DEVICE(0x5407, 4),
293 CH_DEVICE(0x5408, 4),
294 CH_DEVICE(0x5409, 4),
295 CH_DEVICE(0x540A, 4),
296 CH_DEVICE(0x540B, 4),
297 CH_DEVICE(0x540C, 4),
298 CH_DEVICE(0x540D, 4),
299 CH_DEVICE(0x540E, 4),
300 CH_DEVICE(0x540F, 4),
301 CH_DEVICE(0x5410, 4),
302 CH_DEVICE(0x5411, 4),
303 CH_DEVICE(0x5412, 4),
304 CH_DEVICE(0x5413, 4),
305 CH_DEVICE(0x5414, 4),
306 CH_DEVICE(0x5415, 4),
307 CH_DEVICE(0x5480, 4),
308 CH_DEVICE(0x5481, 4),
309 CH_DEVICE(0x5482, 4),
310 CH_DEVICE(0x5483, 4),
311 CH_DEVICE(0x5484, 4),
312 CH_DEVICE(0x5485, 4),
313 { 0, }
314 };
315
316 #define FW4_FNAME "cxgb4/t4fw.bin"
317 #define FW5_FNAME "cxgb4/t5fw.bin"
318 #define FW4_CFNAME "cxgb4/t4-config.txt"
319 #define FW5_CFNAME "cxgb4/t5-config.txt"
320
321 MODULE_DESCRIPTION(DRV_DESC);
322 MODULE_AUTHOR("Chelsio Communications");
323 MODULE_LICENSE("Dual BSD/GPL");
324 MODULE_VERSION(DRV_VERSION);
325 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
326 MODULE_FIRMWARE(FW4_FNAME);
327 MODULE_FIRMWARE(FW5_FNAME);
328
329 /*
330 * Normally we're willing to become the firmware's Master PF but will be happy
331 * if another PF has already become the Master and initialized the adapter.
332 * Setting "force_init" will cause this driver to forcibly establish itself as
333 * the Master PF and initialize the adapter.
334 */
335 static uint force_init;
336
337 module_param(force_init, uint, 0644);
338 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
339
340 /*
341 * Normally if the firmware we connect to has Configuration File support, we
342 * use that and only fall back to the old Driver-based initialization if the
343 * Configuration File fails for some reason. If force_old_init is set, then
344 * we'll always use the old Driver-based initialization sequence.
345 */
346 static uint force_old_init;
347
348 module_param(force_old_init, uint, 0644);
349 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
350
351 static int dflt_msg_enable = DFLT_MSG_ENABLE;
352
353 module_param(dflt_msg_enable, int, 0644);
354 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
355
356 /*
357 * The driver uses the best interrupt scheme available on a platform in the
358 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
359 * of these schemes the driver may consider as follows:
360 *
361 * msi = 2: choose from among all three options
362 * msi = 1: only consider MSI and INTx interrupts
363 * msi = 0: force INTx interrupts
364 */
365 static int msi = 2;
366
367 module_param(msi, int, 0644);
368 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
369
370 /*
371 * Queue interrupt hold-off timer values. Queues default to the first of these
372 * upon creation.
373 */
374 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
375
376 module_param_array(intr_holdoff, uint, NULL, 0644);
377 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
378 "0..4 in microseconds");
379
380 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
381
382 module_param_array(intr_cnt, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_cnt,
384 "thresholds 1..3 for queue interrupt packet counters");
385
386 /*
387 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
388 * offset by 2 bytes in order to have the IP headers line up on 4-byte
389 * boundaries. This is a requirement for many architectures which will throw
390 * a machine check fault if an attempt is made to access one of the 4-byte IP
391 * header fields on a non-4-byte boundary. And it's a major performance issue
392 * even on some architectures which allow it like some implementations of the
393 * x86 ISA. However, some architectures don't mind this and for some very
394 * edge-case performance sensitive applications (like forwarding large volumes
395 * of small packets), setting this DMA offset to 0 will decrease the number of
396 * PCI-E Bus transfers enough to measurably affect performance.
397 */
398 static int rx_dma_offset = 2;
399
400 static bool vf_acls;
401
402 #ifdef CONFIG_PCI_IOV
403 module_param(vf_acls, bool, 0644);
404 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
405
406 /* Configure the number of PCI-E Virtual Function which are to be instantiated
407 * on SR-IOV Capable Physical Functions.
408 */
409 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
410
411 module_param_array(num_vf, uint, NULL, 0644);
412 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
413 #endif
414
415 /* TX Queue select used to determine what algorithm to use for selecting TX
416 * queue. Select between the kernel provided function (select_queue=0) or user
417 * cxgb_select_queue function (select_queue=1)
418 *
419 * Default: select_queue=0
420 */
421 static int select_queue;
422 module_param(select_queue, int, 0644);
423 MODULE_PARM_DESC(select_queue,
424 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
425
426 /*
427 * The filter TCAM has a fixed portion and a variable portion. The fixed
428 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
429 * ports. The variable portion is 36 bits which can include things like Exact
430 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
431 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
432 * far exceed the 36-bit budget for this "compressed" header portion of the
433 * filter. Thus, we have a scarce resource which must be carefully managed.
434 *
435 * By default we set this up to mostly match the set of filter matching
436 * capabilities of T3 but with accommodations for some of T4's more
437 * interesting features:
438 *
439 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
440 * [Inner] VLAN (17), Port (3), FCoE (1) }
441 */
442 enum {
443 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
444 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
445 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
446 };
447
448 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
449
450 module_param(tp_vlan_pri_map, uint, 0644);
451 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
452
453 static struct dentry *cxgb4_debugfs_root;
454
455 static LIST_HEAD(adapter_list);
456 static DEFINE_MUTEX(uld_mutex);
457 /* Adapter list to be accessed from atomic context */
458 static LIST_HEAD(adap_rcu_list);
459 static DEFINE_SPINLOCK(adap_rcu_lock);
460 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
461 static const char *uld_str[] = { "RDMA", "iSCSI" };
462
463 static void link_report(struct net_device *dev)
464 {
465 if (!netif_carrier_ok(dev))
466 netdev_info(dev, "link down\n");
467 else {
468 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
469
470 const char *s = "10Mbps";
471 const struct port_info *p = netdev_priv(dev);
472
473 switch (p->link_cfg.speed) {
474 case 10000:
475 s = "10Gbps";
476 break;
477 case 1000:
478 s = "1000Mbps";
479 break;
480 case 100:
481 s = "100Mbps";
482 break;
483 case 40000:
484 s = "40Gbps";
485 break;
486 }
487
488 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
489 fc[p->link_cfg.fc]);
490 }
491 }
492
493 #ifdef CONFIG_CHELSIO_T4_DCB
494 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
495 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
496 {
497 struct port_info *pi = netdev_priv(dev);
498 struct adapter *adap = pi->adapter;
499 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
500 int i;
501
502 /* We use a simple mapping of Port TX Queue Index to DCB
503 * Priority when we're enabling DCB.
504 */
505 for (i = 0; i < pi->nqsets; i++, txq++) {
506 u32 name, value;
507 int err;
508
509 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
510 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
511 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
512 value = enable ? i : 0xffffffff;
513
514 /* Since we can be called while atomic (from "interrupt
515 * level") we need to issue the Set Parameters Commannd
516 * without sleeping (timeout < 0).
517 */
518 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
519 &name, &value);
520
521 if (err)
522 dev_err(adap->pdev_dev,
523 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
524 enable ? "set" : "unset", pi->port_id, i, -err);
525 else
526 txq->dcb_prio = value;
527 }
528 }
529 #endif /* CONFIG_CHELSIO_T4_DCB */
530
531 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
532 {
533 struct net_device *dev = adapter->port[port_id];
534
535 /* Skip changes from disabled ports. */
536 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
537 if (link_stat)
538 netif_carrier_on(dev);
539 else {
540 #ifdef CONFIG_CHELSIO_T4_DCB
541 cxgb4_dcb_state_init(dev);
542 dcb_tx_queue_prio_enable(dev, false);
543 #endif /* CONFIG_CHELSIO_T4_DCB */
544 netif_carrier_off(dev);
545 }
546
547 link_report(dev);
548 }
549 }
550
551 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
552 {
553 static const char *mod_str[] = {
554 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
555 };
556
557 const struct net_device *dev = adap->port[port_id];
558 const struct port_info *pi = netdev_priv(dev);
559
560 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
561 netdev_info(dev, "port module unplugged\n");
562 else if (pi->mod_type < ARRAY_SIZE(mod_str))
563 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
564 }
565
566 /*
567 * Configure the exact and hash address filters to handle a port's multicast
568 * and secondary unicast MAC addresses.
569 */
570 static int set_addr_filters(const struct net_device *dev, bool sleep)
571 {
572 u64 mhash = 0;
573 u64 uhash = 0;
574 bool free = true;
575 u16 filt_idx[7];
576 const u8 *addr[7];
577 int ret, naddr = 0;
578 const struct netdev_hw_addr *ha;
579 int uc_cnt = netdev_uc_count(dev);
580 int mc_cnt = netdev_mc_count(dev);
581 const struct port_info *pi = netdev_priv(dev);
582 unsigned int mb = pi->adapter->fn;
583
584 /* first do the secondary unicast addresses */
585 netdev_for_each_uc_addr(ha, dev) {
586 addr[naddr++] = ha->addr;
587 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
588 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
589 naddr, addr, filt_idx, &uhash, sleep);
590 if (ret < 0)
591 return ret;
592
593 free = false;
594 naddr = 0;
595 }
596 }
597
598 /* next set up the multicast addresses */
599 netdev_for_each_mc_addr(ha, dev) {
600 addr[naddr++] = ha->addr;
601 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
602 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
603 naddr, addr, filt_idx, &mhash, sleep);
604 if (ret < 0)
605 return ret;
606
607 free = false;
608 naddr = 0;
609 }
610 }
611
612 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
613 uhash | mhash, sleep);
614 }
615
616 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
617 module_param(dbfifo_int_thresh, int, 0644);
618 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
619
620 /*
621 * usecs to sleep while draining the dbfifo
622 */
623 static int dbfifo_drain_delay = 1000;
624 module_param(dbfifo_drain_delay, int, 0644);
625 MODULE_PARM_DESC(dbfifo_drain_delay,
626 "usecs to sleep while draining the dbfifo");
627
628 /*
629 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
630 * If @mtu is -1 it is left unchanged.
631 */
632 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
633 {
634 int ret;
635 struct port_info *pi = netdev_priv(dev);
636
637 ret = set_addr_filters(dev, sleep_ok);
638 if (ret == 0)
639 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
640 (dev->flags & IFF_PROMISC) ? 1 : 0,
641 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
642 sleep_ok);
643 return ret;
644 }
645
646 /**
647 * link_start - enable a port
648 * @dev: the port to enable
649 *
650 * Performs the MAC and PHY actions needed to enable a port.
651 */
652 static int link_start(struct net_device *dev)
653 {
654 int ret;
655 struct port_info *pi = netdev_priv(dev);
656 unsigned int mb = pi->adapter->fn;
657
658 /*
659 * We do not set address filters and promiscuity here, the stack does
660 * that step explicitly.
661 */
662 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
663 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
664 if (ret == 0) {
665 ret = t4_change_mac(pi->adapter, mb, pi->viid,
666 pi->xact_addr_filt, dev->dev_addr, true,
667 true);
668 if (ret >= 0) {
669 pi->xact_addr_filt = ret;
670 ret = 0;
671 }
672 }
673 if (ret == 0)
674 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
675 &pi->link_cfg);
676 if (ret == 0) {
677 local_bh_disable();
678 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
679 true, CXGB4_DCB_ENABLED);
680 local_bh_enable();
681 }
682
683 return ret;
684 }
685
686 int cxgb4_dcb_enabled(const struct net_device *dev)
687 {
688 #ifdef CONFIG_CHELSIO_T4_DCB
689 struct port_info *pi = netdev_priv(dev);
690
691 return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
692 #else
693 return 0;
694 #endif
695 }
696 EXPORT_SYMBOL(cxgb4_dcb_enabled);
697
698 #ifdef CONFIG_CHELSIO_T4_DCB
699 /* Handle a Data Center Bridging update message from the firmware. */
700 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
701 {
702 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
703 struct net_device *dev = adap->port[port];
704 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
705 int new_dcb_enabled;
706
707 cxgb4_dcb_handle_fw_update(adap, pcmd);
708 new_dcb_enabled = cxgb4_dcb_enabled(dev);
709
710 /* If the DCB has become enabled or disabled on the port then we're
711 * going to need to set up/tear down DCB Priority parameters for the
712 * TX Queues associated with the port.
713 */
714 if (new_dcb_enabled != old_dcb_enabled)
715 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
716 }
717 #endif /* CONFIG_CHELSIO_T4_DCB */
718
719 /* Clear a filter and release any of its resources that we own. This also
720 * clears the filter's "pending" status.
721 */
722 static void clear_filter(struct adapter *adap, struct filter_entry *f)
723 {
724 /* If the new or old filter have loopback rewriteing rules then we'll
725 * need to free any existing Layer Two Table (L2T) entries of the old
726 * filter rule. The firmware will handle freeing up any Source MAC
727 * Table (SMT) entries used for rewriting Source MAC Addresses in
728 * loopback rules.
729 */
730 if (f->l2t)
731 cxgb4_l2t_release(f->l2t);
732
733 /* The zeroing of the filter rule below clears the filter valid,
734 * pending, locked flags, l2t pointer, etc. so it's all we need for
735 * this operation.
736 */
737 memset(f, 0, sizeof(*f));
738 }
739
740 /* Handle a filter write/deletion reply.
741 */
742 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
743 {
744 unsigned int idx = GET_TID(rpl);
745 unsigned int nidx = idx - adap->tids.ftid_base;
746 unsigned int ret;
747 struct filter_entry *f;
748
749 if (idx >= adap->tids.ftid_base && nidx <
750 (adap->tids.nftids + adap->tids.nsftids)) {
751 idx = nidx;
752 ret = GET_TCB_COOKIE(rpl->cookie);
753 f = &adap->tids.ftid_tab[idx];
754
755 if (ret == FW_FILTER_WR_FLT_DELETED) {
756 /* Clear the filter when we get confirmation from the
757 * hardware that the filter has been deleted.
758 */
759 clear_filter(adap, f);
760 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
761 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
762 idx);
763 clear_filter(adap, f);
764 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
765 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
766 f->pending = 0; /* asynchronous setup completed */
767 f->valid = 1;
768 } else {
769 /* Something went wrong. Issue a warning about the
770 * problem and clear everything out.
771 */
772 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
773 idx, ret);
774 clear_filter(adap, f);
775 }
776 }
777 }
778
779 /* Response queue handler for the FW event queue.
780 */
781 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
782 const struct pkt_gl *gl)
783 {
784 u8 opcode = ((const struct rss_header *)rsp)->opcode;
785
786 rsp++; /* skip RSS header */
787
788 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
789 */
790 if (unlikely(opcode == CPL_FW4_MSG &&
791 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
792 rsp++;
793 opcode = ((const struct rss_header *)rsp)->opcode;
794 rsp++;
795 if (opcode != CPL_SGE_EGR_UPDATE) {
796 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
797 , opcode);
798 goto out;
799 }
800 }
801
802 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
803 const struct cpl_sge_egr_update *p = (void *)rsp;
804 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
805 struct sge_txq *txq;
806
807 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
808 txq->restarts++;
809 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
810 struct sge_eth_txq *eq;
811
812 eq = container_of(txq, struct sge_eth_txq, q);
813 netif_tx_wake_queue(eq->txq);
814 } else {
815 struct sge_ofld_txq *oq;
816
817 oq = container_of(txq, struct sge_ofld_txq, q);
818 tasklet_schedule(&oq->qresume_tsk);
819 }
820 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
821 const struct cpl_fw6_msg *p = (void *)rsp;
822
823 #ifdef CONFIG_CHELSIO_T4_DCB
824 const struct fw_port_cmd *pcmd = (const void *)p->data;
825 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
826 unsigned int action =
827 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
828
829 if (cmd == FW_PORT_CMD &&
830 action == FW_PORT_ACTION_GET_PORT_INFO) {
831 int port = FW_PORT_CMD_PORTID_GET(
832 be32_to_cpu(pcmd->op_to_portid));
833 struct net_device *dev = q->adap->port[port];
834 int state_input = ((pcmd->u.info.dcbxdis_pkd &
835 FW_PORT_CMD_DCBXDIS)
836 ? CXGB4_DCB_INPUT_FW_DISABLED
837 : CXGB4_DCB_INPUT_FW_ENABLED);
838
839 cxgb4_dcb_state_fsm(dev, state_input);
840 }
841
842 if (cmd == FW_PORT_CMD &&
843 action == FW_PORT_ACTION_L2_DCB_CFG)
844 dcb_rpl(q->adap, pcmd);
845 else
846 #endif
847 if (p->type == 0)
848 t4_handle_fw_rpl(q->adap, p->data);
849 } else if (opcode == CPL_L2T_WRITE_RPL) {
850 const struct cpl_l2t_write_rpl *p = (void *)rsp;
851
852 do_l2t_write_rpl(q->adap, p);
853 } else if (opcode == CPL_SET_TCB_RPL) {
854 const struct cpl_set_tcb_rpl *p = (void *)rsp;
855
856 filter_rpl(q->adap, p);
857 } else
858 dev_err(q->adap->pdev_dev,
859 "unexpected CPL %#x on FW event queue\n", opcode);
860 out:
861 return 0;
862 }
863
864 /**
865 * uldrx_handler - response queue handler for ULD queues
866 * @q: the response queue that received the packet
867 * @rsp: the response queue descriptor holding the offload message
868 * @gl: the gather list of packet fragments
869 *
870 * Deliver an ingress offload packet to a ULD. All processing is done by
871 * the ULD, we just maintain statistics.
872 */
873 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
874 const struct pkt_gl *gl)
875 {
876 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
877
878 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
879 */
880 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
881 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
882 rsp += 2;
883
884 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
885 rxq->stats.nomem++;
886 return -1;
887 }
888 if (gl == NULL)
889 rxq->stats.imm++;
890 else if (gl == CXGB4_MSG_AN)
891 rxq->stats.an++;
892 else
893 rxq->stats.pkts++;
894 return 0;
895 }
896
897 static void disable_msi(struct adapter *adapter)
898 {
899 if (adapter->flags & USING_MSIX) {
900 pci_disable_msix(adapter->pdev);
901 adapter->flags &= ~USING_MSIX;
902 } else if (adapter->flags & USING_MSI) {
903 pci_disable_msi(adapter->pdev);
904 adapter->flags &= ~USING_MSI;
905 }
906 }
907
908 /*
909 * Interrupt handler for non-data events used with MSI-X.
910 */
911 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
912 {
913 struct adapter *adap = cookie;
914
915 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
916 if (v & PFSW) {
917 adap->swintr = 1;
918 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
919 }
920 t4_slow_intr_handler(adap);
921 return IRQ_HANDLED;
922 }
923
924 /*
925 * Name the MSI-X interrupts.
926 */
927 static void name_msix_vecs(struct adapter *adap)
928 {
929 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
930
931 /* non-data interrupts */
932 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
933
934 /* FW events */
935 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
936 adap->port[0]->name);
937
938 /* Ethernet queues */
939 for_each_port(adap, j) {
940 struct net_device *d = adap->port[j];
941 const struct port_info *pi = netdev_priv(d);
942
943 for (i = 0; i < pi->nqsets; i++, msi_idx++)
944 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
945 d->name, i);
946 }
947
948 /* offload queues */
949 for_each_ofldrxq(&adap->sge, i)
950 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
951 adap->port[0]->name, i);
952
953 for_each_rdmarxq(&adap->sge, i)
954 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
955 adap->port[0]->name, i);
956
957 for_each_rdmaciq(&adap->sge, i)
958 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
959 adap->port[0]->name, i);
960 }
961
962 static int request_msix_queue_irqs(struct adapter *adap)
963 {
964 struct sge *s = &adap->sge;
965 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
966 int msi_index = 2;
967
968 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
969 adap->msix_info[1].desc, &s->fw_evtq);
970 if (err)
971 return err;
972
973 for_each_ethrxq(s, ethqidx) {
974 err = request_irq(adap->msix_info[msi_index].vec,
975 t4_sge_intr_msix, 0,
976 adap->msix_info[msi_index].desc,
977 &s->ethrxq[ethqidx].rspq);
978 if (err)
979 goto unwind;
980 msi_index++;
981 }
982 for_each_ofldrxq(s, ofldqidx) {
983 err = request_irq(adap->msix_info[msi_index].vec,
984 t4_sge_intr_msix, 0,
985 adap->msix_info[msi_index].desc,
986 &s->ofldrxq[ofldqidx].rspq);
987 if (err)
988 goto unwind;
989 msi_index++;
990 }
991 for_each_rdmarxq(s, rdmaqidx) {
992 err = request_irq(adap->msix_info[msi_index].vec,
993 t4_sge_intr_msix, 0,
994 adap->msix_info[msi_index].desc,
995 &s->rdmarxq[rdmaqidx].rspq);
996 if (err)
997 goto unwind;
998 msi_index++;
999 }
1000 for_each_rdmaciq(s, rdmaciqqidx) {
1001 err = request_irq(adap->msix_info[msi_index].vec,
1002 t4_sge_intr_msix, 0,
1003 adap->msix_info[msi_index].desc,
1004 &s->rdmaciq[rdmaciqqidx].rspq);
1005 if (err)
1006 goto unwind;
1007 msi_index++;
1008 }
1009 return 0;
1010
1011 unwind:
1012 while (--rdmaciqqidx >= 0)
1013 free_irq(adap->msix_info[--msi_index].vec,
1014 &s->rdmaciq[rdmaciqqidx].rspq);
1015 while (--rdmaqidx >= 0)
1016 free_irq(adap->msix_info[--msi_index].vec,
1017 &s->rdmarxq[rdmaqidx].rspq);
1018 while (--ofldqidx >= 0)
1019 free_irq(adap->msix_info[--msi_index].vec,
1020 &s->ofldrxq[ofldqidx].rspq);
1021 while (--ethqidx >= 0)
1022 free_irq(adap->msix_info[--msi_index].vec,
1023 &s->ethrxq[ethqidx].rspq);
1024 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1025 return err;
1026 }
1027
1028 static void free_msix_queue_irqs(struct adapter *adap)
1029 {
1030 int i, msi_index = 2;
1031 struct sge *s = &adap->sge;
1032
1033 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1034 for_each_ethrxq(s, i)
1035 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1036 for_each_ofldrxq(s, i)
1037 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1038 for_each_rdmarxq(s, i)
1039 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1040 for_each_rdmaciq(s, i)
1041 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1042 }
1043
1044 /**
1045 * write_rss - write the RSS table for a given port
1046 * @pi: the port
1047 * @queues: array of queue indices for RSS
1048 *
1049 * Sets up the portion of the HW RSS table for the port's VI to distribute
1050 * packets to the Rx queues in @queues.
1051 */
1052 static int write_rss(const struct port_info *pi, const u16 *queues)
1053 {
1054 u16 *rss;
1055 int i, err;
1056 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1057
1058 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1059 if (!rss)
1060 return -ENOMEM;
1061
1062 /* map the queue indices to queue ids */
1063 for (i = 0; i < pi->rss_size; i++, queues++)
1064 rss[i] = q[*queues].rspq.abs_id;
1065
1066 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1067 pi->rss_size, rss, pi->rss_size);
1068 kfree(rss);
1069 return err;
1070 }
1071
1072 /**
1073 * setup_rss - configure RSS
1074 * @adap: the adapter
1075 *
1076 * Sets up RSS for each port.
1077 */
1078 static int setup_rss(struct adapter *adap)
1079 {
1080 int i, err;
1081
1082 for_each_port(adap, i) {
1083 const struct port_info *pi = adap2pinfo(adap, i);
1084
1085 err = write_rss(pi, pi->rss);
1086 if (err)
1087 return err;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * Return the channel of the ingress queue with the given qid.
1094 */
1095 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1096 {
1097 qid -= p->ingr_start;
1098 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1099 }
1100
1101 /*
1102 * Wait until all NAPI handlers are descheduled.
1103 */
1104 static void quiesce_rx(struct adapter *adap)
1105 {
1106 int i;
1107
1108 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1109 struct sge_rspq *q = adap->sge.ingr_map[i];
1110
1111 if (q && q->handler)
1112 napi_disable(&q->napi);
1113 }
1114 }
1115
1116 /*
1117 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1118 */
1119 static void enable_rx(struct adapter *adap)
1120 {
1121 int i;
1122
1123 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1124 struct sge_rspq *q = adap->sge.ingr_map[i];
1125
1126 if (!q)
1127 continue;
1128 if (q->handler)
1129 napi_enable(&q->napi);
1130 /* 0-increment GTS to start the timer and enable interrupts */
1131 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1132 SEINTARM(q->intr_params) |
1133 INGRESSQID(q->cntxt_id));
1134 }
1135 }
1136
1137 /**
1138 * setup_sge_queues - configure SGE Tx/Rx/response queues
1139 * @adap: the adapter
1140 *
1141 * Determines how many sets of SGE queues to use and initializes them.
1142 * We support multiple queue sets per port if we have MSI-X, otherwise
1143 * just one queue set per port.
1144 */
1145 static int setup_sge_queues(struct adapter *adap)
1146 {
1147 int err, msi_idx, i, j;
1148 struct sge *s = &adap->sge;
1149
1150 bitmap_zero(s->starving_fl, MAX_EGRQ);
1151 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1152
1153 if (adap->flags & USING_MSIX)
1154 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1155 else {
1156 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1157 NULL, NULL);
1158 if (err)
1159 return err;
1160 msi_idx = -((int)s->intrq.abs_id + 1);
1161 }
1162
1163 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1164 msi_idx, NULL, fwevtq_handler);
1165 if (err) {
1166 freeout: t4_free_sge_resources(adap);
1167 return err;
1168 }
1169
1170 for_each_port(adap, i) {
1171 struct net_device *dev = adap->port[i];
1172 struct port_info *pi = netdev_priv(dev);
1173 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1174 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1175
1176 for (j = 0; j < pi->nqsets; j++, q++) {
1177 if (msi_idx > 0)
1178 msi_idx++;
1179 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1180 msi_idx, &q->fl,
1181 t4_ethrx_handler);
1182 if (err)
1183 goto freeout;
1184 q->rspq.idx = j;
1185 memset(&q->stats, 0, sizeof(q->stats));
1186 }
1187 for (j = 0; j < pi->nqsets; j++, t++) {
1188 err = t4_sge_alloc_eth_txq(adap, t, dev,
1189 netdev_get_tx_queue(dev, j),
1190 s->fw_evtq.cntxt_id);
1191 if (err)
1192 goto freeout;
1193 }
1194 }
1195
1196 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1197 for_each_ofldrxq(s, i) {
1198 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1199 struct net_device *dev = adap->port[i / j];
1200
1201 if (msi_idx > 0)
1202 msi_idx++;
1203 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1204 q->fl.size ? &q->fl : NULL,
1205 uldrx_handler);
1206 if (err)
1207 goto freeout;
1208 memset(&q->stats, 0, sizeof(q->stats));
1209 s->ofld_rxq[i] = q->rspq.abs_id;
1210 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1211 s->fw_evtq.cntxt_id);
1212 if (err)
1213 goto freeout;
1214 }
1215
1216 for_each_rdmarxq(s, i) {
1217 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1218
1219 if (msi_idx > 0)
1220 msi_idx++;
1221 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1222 msi_idx, q->fl.size ? &q->fl : NULL,
1223 uldrx_handler);
1224 if (err)
1225 goto freeout;
1226 memset(&q->stats, 0, sizeof(q->stats));
1227 s->rdma_rxq[i] = q->rspq.abs_id;
1228 }
1229
1230 for_each_rdmaciq(s, i) {
1231 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1232
1233 if (msi_idx > 0)
1234 msi_idx++;
1235 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1236 msi_idx, q->fl.size ? &q->fl : NULL,
1237 uldrx_handler);
1238 if (err)
1239 goto freeout;
1240 memset(&q->stats, 0, sizeof(q->stats));
1241 s->rdma_ciq[i] = q->rspq.abs_id;
1242 }
1243
1244 for_each_port(adap, i) {
1245 /*
1246 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1247 * have RDMA queues, and that's the right value.
1248 */
1249 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1250 s->fw_evtq.cntxt_id,
1251 s->rdmarxq[i].rspq.cntxt_id);
1252 if (err)
1253 goto freeout;
1254 }
1255
1256 t4_write_reg(adap, is_t4(adap->params.chip) ?
1257 MPS_TRC_RSS_CONTROL :
1258 MPS_T5_TRC_RSS_CONTROL,
1259 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1260 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1261 return 0;
1262 }
1263
1264 /*
1265 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1266 * The allocated memory is cleared.
1267 */
1268 void *t4_alloc_mem(size_t size)
1269 {
1270 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1271
1272 if (!p)
1273 p = vzalloc(size);
1274 return p;
1275 }
1276
1277 /*
1278 * Free memory allocated through alloc_mem().
1279 */
1280 static void t4_free_mem(void *addr)
1281 {
1282 if (is_vmalloc_addr(addr))
1283 vfree(addr);
1284 else
1285 kfree(addr);
1286 }
1287
1288 /* Send a Work Request to write the filter at a specified index. We construct
1289 * a Firmware Filter Work Request to have the work done and put the indicated
1290 * filter into "pending" mode which will prevent any further actions against
1291 * it till we get a reply from the firmware on the completion status of the
1292 * request.
1293 */
1294 static int set_filter_wr(struct adapter *adapter, int fidx)
1295 {
1296 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1297 struct sk_buff *skb;
1298 struct fw_filter_wr *fwr;
1299 unsigned int ftid;
1300
1301 /* If the new filter requires loopback Destination MAC and/or VLAN
1302 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1303 * the filter.
1304 */
1305 if (f->fs.newdmac || f->fs.newvlan) {
1306 /* allocate L2T entry for new filter */
1307 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1308 if (f->l2t == NULL)
1309 return -EAGAIN;
1310 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1311 f->fs.eport, f->fs.dmac)) {
1312 cxgb4_l2t_release(f->l2t);
1313 f->l2t = NULL;
1314 return -ENOMEM;
1315 }
1316 }
1317
1318 ftid = adapter->tids.ftid_base + fidx;
1319
1320 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1321 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1322 memset(fwr, 0, sizeof(*fwr));
1323
1324 /* It would be nice to put most of the following in t4_hw.c but most
1325 * of the work is translating the cxgbtool ch_filter_specification
1326 * into the Work Request and the definition of that structure is
1327 * currently in cxgbtool.h which isn't appropriate to pull into the
1328 * common code. We may eventually try to come up with a more neutral
1329 * filter specification structure but for now it's easiest to simply
1330 * put this fairly direct code in line ...
1331 */
1332 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1333 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1334 fwr->tid_to_iq =
1335 htonl(V_FW_FILTER_WR_TID(ftid) |
1336 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1337 V_FW_FILTER_WR_NOREPLY(0) |
1338 V_FW_FILTER_WR_IQ(f->fs.iq));
1339 fwr->del_filter_to_l2tix =
1340 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1341 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1342 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1343 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1344 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1345 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1346 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1347 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1348 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1349 f->fs.newvlan == VLAN_REWRITE) |
1350 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1351 f->fs.newvlan == VLAN_REWRITE) |
1352 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1353 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1354 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1355 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1356 fwr->ethtype = htons(f->fs.val.ethtype);
1357 fwr->ethtypem = htons(f->fs.mask.ethtype);
1358 fwr->frag_to_ovlan_vldm =
1359 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1360 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1361 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1362 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1363 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1364 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1365 fwr->smac_sel = 0;
1366 fwr->rx_chan_rx_rpl_iq =
1367 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1368 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1369 fwr->maci_to_matchtypem =
1370 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1371 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1372 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1373 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1374 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1375 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1376 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1377 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1378 fwr->ptcl = f->fs.val.proto;
1379 fwr->ptclm = f->fs.mask.proto;
1380 fwr->ttyp = f->fs.val.tos;
1381 fwr->ttypm = f->fs.mask.tos;
1382 fwr->ivlan = htons(f->fs.val.ivlan);
1383 fwr->ivlanm = htons(f->fs.mask.ivlan);
1384 fwr->ovlan = htons(f->fs.val.ovlan);
1385 fwr->ovlanm = htons(f->fs.mask.ovlan);
1386 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1387 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1388 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1389 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1390 fwr->lp = htons(f->fs.val.lport);
1391 fwr->lpm = htons(f->fs.mask.lport);
1392 fwr->fp = htons(f->fs.val.fport);
1393 fwr->fpm = htons(f->fs.mask.fport);
1394 if (f->fs.newsmac)
1395 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1396
1397 /* Mark the filter as "pending" and ship off the Filter Work Request.
1398 * When we get the Work Request Reply we'll clear the pending status.
1399 */
1400 f->pending = 1;
1401 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1402 t4_ofld_send(adapter, skb);
1403 return 0;
1404 }
1405
1406 /* Delete the filter at a specified index.
1407 */
1408 static int del_filter_wr(struct adapter *adapter, int fidx)
1409 {
1410 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1411 struct sk_buff *skb;
1412 struct fw_filter_wr *fwr;
1413 unsigned int len, ftid;
1414
1415 len = sizeof(*fwr);
1416 ftid = adapter->tids.ftid_base + fidx;
1417
1418 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1419 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1420 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1421
1422 /* Mark the filter as "pending" and ship off the Filter Work Request.
1423 * When we get the Work Request Reply we'll clear the pending status.
1424 */
1425 f->pending = 1;
1426 t4_mgmt_tx(adapter, skb);
1427 return 0;
1428 }
1429
1430 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1431 void *accel_priv, select_queue_fallback_t fallback)
1432 {
1433 int txq;
1434
1435 #ifdef CONFIG_CHELSIO_T4_DCB
1436 /* If a Data Center Bridging has been successfully negotiated on this
1437 * link then we'll use the skb's priority to map it to a TX Queue.
1438 * The skb's priority is determined via the VLAN Tag Priority Code
1439 * Point field.
1440 */
1441 if (cxgb4_dcb_enabled(dev)) {
1442 u16 vlan_tci;
1443 int err;
1444
1445 err = vlan_get_tag(skb, &vlan_tci);
1446 if (unlikely(err)) {
1447 if (net_ratelimit())
1448 netdev_warn(dev,
1449 "TX Packet without VLAN Tag on DCB Link\n");
1450 txq = 0;
1451 } else {
1452 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1453 }
1454 return txq;
1455 }
1456 #endif /* CONFIG_CHELSIO_T4_DCB */
1457
1458 if (select_queue) {
1459 txq = (skb_rx_queue_recorded(skb)
1460 ? skb_get_rx_queue(skb)
1461 : smp_processor_id());
1462
1463 while (unlikely(txq >= dev->real_num_tx_queues))
1464 txq -= dev->real_num_tx_queues;
1465
1466 return txq;
1467 }
1468
1469 return fallback(dev, skb) % dev->real_num_tx_queues;
1470 }
1471
1472 static inline int is_offload(const struct adapter *adap)
1473 {
1474 return adap->params.offload;
1475 }
1476
1477 /*
1478 * Implementation of ethtool operations.
1479 */
1480
1481 static u32 get_msglevel(struct net_device *dev)
1482 {
1483 return netdev2adap(dev)->msg_enable;
1484 }
1485
1486 static void set_msglevel(struct net_device *dev, u32 val)
1487 {
1488 netdev2adap(dev)->msg_enable = val;
1489 }
1490
1491 static char stats_strings[][ETH_GSTRING_LEN] = {
1492 "TxOctetsOK ",
1493 "TxFramesOK ",
1494 "TxBroadcastFrames ",
1495 "TxMulticastFrames ",
1496 "TxUnicastFrames ",
1497 "TxErrorFrames ",
1498
1499 "TxFrames64 ",
1500 "TxFrames65To127 ",
1501 "TxFrames128To255 ",
1502 "TxFrames256To511 ",
1503 "TxFrames512To1023 ",
1504 "TxFrames1024To1518 ",
1505 "TxFrames1519ToMax ",
1506
1507 "TxFramesDropped ",
1508 "TxPauseFrames ",
1509 "TxPPP0Frames ",
1510 "TxPPP1Frames ",
1511 "TxPPP2Frames ",
1512 "TxPPP3Frames ",
1513 "TxPPP4Frames ",
1514 "TxPPP5Frames ",
1515 "TxPPP6Frames ",
1516 "TxPPP7Frames ",
1517
1518 "RxOctetsOK ",
1519 "RxFramesOK ",
1520 "RxBroadcastFrames ",
1521 "RxMulticastFrames ",
1522 "RxUnicastFrames ",
1523
1524 "RxFramesTooLong ",
1525 "RxJabberErrors ",
1526 "RxFCSErrors ",
1527 "RxLengthErrors ",
1528 "RxSymbolErrors ",
1529 "RxRuntFrames ",
1530
1531 "RxFrames64 ",
1532 "RxFrames65To127 ",
1533 "RxFrames128To255 ",
1534 "RxFrames256To511 ",
1535 "RxFrames512To1023 ",
1536 "RxFrames1024To1518 ",
1537 "RxFrames1519ToMax ",
1538
1539 "RxPauseFrames ",
1540 "RxPPP0Frames ",
1541 "RxPPP1Frames ",
1542 "RxPPP2Frames ",
1543 "RxPPP3Frames ",
1544 "RxPPP4Frames ",
1545 "RxPPP5Frames ",
1546 "RxPPP6Frames ",
1547 "RxPPP7Frames ",
1548
1549 "RxBG0FramesDropped ",
1550 "RxBG1FramesDropped ",
1551 "RxBG2FramesDropped ",
1552 "RxBG3FramesDropped ",
1553 "RxBG0FramesTrunc ",
1554 "RxBG1FramesTrunc ",
1555 "RxBG2FramesTrunc ",
1556 "RxBG3FramesTrunc ",
1557
1558 "TSO ",
1559 "TxCsumOffload ",
1560 "RxCsumGood ",
1561 "VLANextractions ",
1562 "VLANinsertions ",
1563 "GROpackets ",
1564 "GROmerged ",
1565 "WriteCoalSuccess ",
1566 "WriteCoalFail ",
1567 };
1568
1569 static int get_sset_count(struct net_device *dev, int sset)
1570 {
1571 switch (sset) {
1572 case ETH_SS_STATS:
1573 return ARRAY_SIZE(stats_strings);
1574 default:
1575 return -EOPNOTSUPP;
1576 }
1577 }
1578
1579 #define T4_REGMAP_SIZE (160 * 1024)
1580 #define T5_REGMAP_SIZE (332 * 1024)
1581
1582 static int get_regs_len(struct net_device *dev)
1583 {
1584 struct adapter *adap = netdev2adap(dev);
1585 if (is_t4(adap->params.chip))
1586 return T4_REGMAP_SIZE;
1587 else
1588 return T5_REGMAP_SIZE;
1589 }
1590
1591 static int get_eeprom_len(struct net_device *dev)
1592 {
1593 return EEPROMSIZE;
1594 }
1595
1596 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1597 {
1598 struct adapter *adapter = netdev2adap(dev);
1599
1600 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1601 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1602 strlcpy(info->bus_info, pci_name(adapter->pdev),
1603 sizeof(info->bus_info));
1604
1605 if (adapter->params.fw_vers)
1606 snprintf(info->fw_version, sizeof(info->fw_version),
1607 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1608 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1609 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1610 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1611 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1612 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1613 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1614 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1615 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1616 }
1617
1618 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1619 {
1620 if (stringset == ETH_SS_STATS)
1621 memcpy(data, stats_strings, sizeof(stats_strings));
1622 }
1623
1624 /*
1625 * port stats maintained per queue of the port. They should be in the same
1626 * order as in stats_strings above.
1627 */
1628 struct queue_port_stats {
1629 u64 tso;
1630 u64 tx_csum;
1631 u64 rx_csum;
1632 u64 vlan_ex;
1633 u64 vlan_ins;
1634 u64 gro_pkts;
1635 u64 gro_merged;
1636 };
1637
1638 static void collect_sge_port_stats(const struct adapter *adap,
1639 const struct port_info *p, struct queue_port_stats *s)
1640 {
1641 int i;
1642 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1643 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1644
1645 memset(s, 0, sizeof(*s));
1646 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1647 s->tso += tx->tso;
1648 s->tx_csum += tx->tx_cso;
1649 s->rx_csum += rx->stats.rx_cso;
1650 s->vlan_ex += rx->stats.vlan_ex;
1651 s->vlan_ins += tx->vlan_ins;
1652 s->gro_pkts += rx->stats.lro_pkts;
1653 s->gro_merged += rx->stats.lro_merged;
1654 }
1655 }
1656
1657 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1658 u64 *data)
1659 {
1660 struct port_info *pi = netdev_priv(dev);
1661 struct adapter *adapter = pi->adapter;
1662 u32 val1, val2;
1663
1664 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1665
1666 data += sizeof(struct port_stats) / sizeof(u64);
1667 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1668 data += sizeof(struct queue_port_stats) / sizeof(u64);
1669 if (!is_t4(adapter->params.chip)) {
1670 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1671 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1672 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1673 *data = val1 - val2;
1674 data++;
1675 *data = val2;
1676 data++;
1677 } else {
1678 memset(data, 0, 2 * sizeof(u64));
1679 *data += 2;
1680 }
1681 }
1682
1683 /*
1684 * Return a version number to identify the type of adapter. The scheme is:
1685 * - bits 0..9: chip version
1686 * - bits 10..15: chip revision
1687 * - bits 16..23: register dump version
1688 */
1689 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1690 {
1691 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1692 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1693 }
1694
1695 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1696 unsigned int end)
1697 {
1698 u32 *p = buf + start;
1699
1700 for ( ; start <= end; start += sizeof(u32))
1701 *p++ = t4_read_reg(ap, start);
1702 }
1703
1704 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1705 void *buf)
1706 {
1707 static const unsigned int t4_reg_ranges[] = {
1708 0x1008, 0x1108,
1709 0x1180, 0x11b4,
1710 0x11fc, 0x123c,
1711 0x1300, 0x173c,
1712 0x1800, 0x18fc,
1713 0x3000, 0x30d8,
1714 0x30e0, 0x5924,
1715 0x5960, 0x59d4,
1716 0x5a00, 0x5af8,
1717 0x6000, 0x6098,
1718 0x6100, 0x6150,
1719 0x6200, 0x6208,
1720 0x6240, 0x6248,
1721 0x6280, 0x6338,
1722 0x6370, 0x638c,
1723 0x6400, 0x643c,
1724 0x6500, 0x6524,
1725 0x6a00, 0x6a38,
1726 0x6a60, 0x6a78,
1727 0x6b00, 0x6b84,
1728 0x6bf0, 0x6c84,
1729 0x6cf0, 0x6d84,
1730 0x6df0, 0x6e84,
1731 0x6ef0, 0x6f84,
1732 0x6ff0, 0x7084,
1733 0x70f0, 0x7184,
1734 0x71f0, 0x7284,
1735 0x72f0, 0x7384,
1736 0x73f0, 0x7450,
1737 0x7500, 0x7530,
1738 0x7600, 0x761c,
1739 0x7680, 0x76cc,
1740 0x7700, 0x7798,
1741 0x77c0, 0x77fc,
1742 0x7900, 0x79fc,
1743 0x7b00, 0x7c38,
1744 0x7d00, 0x7efc,
1745 0x8dc0, 0x8e1c,
1746 0x8e30, 0x8e78,
1747 0x8ea0, 0x8f6c,
1748 0x8fc0, 0x9074,
1749 0x90fc, 0x90fc,
1750 0x9400, 0x9458,
1751 0x9600, 0x96bc,
1752 0x9800, 0x9808,
1753 0x9820, 0x983c,
1754 0x9850, 0x9864,
1755 0x9c00, 0x9c6c,
1756 0x9c80, 0x9cec,
1757 0x9d00, 0x9d6c,
1758 0x9d80, 0x9dec,
1759 0x9e00, 0x9e6c,
1760 0x9e80, 0x9eec,
1761 0x9f00, 0x9f6c,
1762 0x9f80, 0x9fec,
1763 0xd004, 0xd03c,
1764 0xdfc0, 0xdfe0,
1765 0xe000, 0xea7c,
1766 0xf000, 0x11110,
1767 0x11118, 0x11190,
1768 0x19040, 0x1906c,
1769 0x19078, 0x19080,
1770 0x1908c, 0x19124,
1771 0x19150, 0x191b0,
1772 0x191d0, 0x191e8,
1773 0x19238, 0x1924c,
1774 0x193f8, 0x19474,
1775 0x19490, 0x194f8,
1776 0x19800, 0x19f30,
1777 0x1a000, 0x1a06c,
1778 0x1a0b0, 0x1a120,
1779 0x1a128, 0x1a138,
1780 0x1a190, 0x1a1c4,
1781 0x1a1fc, 0x1a1fc,
1782 0x1e040, 0x1e04c,
1783 0x1e284, 0x1e28c,
1784 0x1e2c0, 0x1e2c0,
1785 0x1e2e0, 0x1e2e0,
1786 0x1e300, 0x1e384,
1787 0x1e3c0, 0x1e3c8,
1788 0x1e440, 0x1e44c,
1789 0x1e684, 0x1e68c,
1790 0x1e6c0, 0x1e6c0,
1791 0x1e6e0, 0x1e6e0,
1792 0x1e700, 0x1e784,
1793 0x1e7c0, 0x1e7c8,
1794 0x1e840, 0x1e84c,
1795 0x1ea84, 0x1ea8c,
1796 0x1eac0, 0x1eac0,
1797 0x1eae0, 0x1eae0,
1798 0x1eb00, 0x1eb84,
1799 0x1ebc0, 0x1ebc8,
1800 0x1ec40, 0x1ec4c,
1801 0x1ee84, 0x1ee8c,
1802 0x1eec0, 0x1eec0,
1803 0x1eee0, 0x1eee0,
1804 0x1ef00, 0x1ef84,
1805 0x1efc0, 0x1efc8,
1806 0x1f040, 0x1f04c,
1807 0x1f284, 0x1f28c,
1808 0x1f2c0, 0x1f2c0,
1809 0x1f2e0, 0x1f2e0,
1810 0x1f300, 0x1f384,
1811 0x1f3c0, 0x1f3c8,
1812 0x1f440, 0x1f44c,
1813 0x1f684, 0x1f68c,
1814 0x1f6c0, 0x1f6c0,
1815 0x1f6e0, 0x1f6e0,
1816 0x1f700, 0x1f784,
1817 0x1f7c0, 0x1f7c8,
1818 0x1f840, 0x1f84c,
1819 0x1fa84, 0x1fa8c,
1820 0x1fac0, 0x1fac0,
1821 0x1fae0, 0x1fae0,
1822 0x1fb00, 0x1fb84,
1823 0x1fbc0, 0x1fbc8,
1824 0x1fc40, 0x1fc4c,
1825 0x1fe84, 0x1fe8c,
1826 0x1fec0, 0x1fec0,
1827 0x1fee0, 0x1fee0,
1828 0x1ff00, 0x1ff84,
1829 0x1ffc0, 0x1ffc8,
1830 0x20000, 0x2002c,
1831 0x20100, 0x2013c,
1832 0x20190, 0x201c8,
1833 0x20200, 0x20318,
1834 0x20400, 0x20528,
1835 0x20540, 0x20614,
1836 0x21000, 0x21040,
1837 0x2104c, 0x21060,
1838 0x210c0, 0x210ec,
1839 0x21200, 0x21268,
1840 0x21270, 0x21284,
1841 0x212fc, 0x21388,
1842 0x21400, 0x21404,
1843 0x21500, 0x21518,
1844 0x2152c, 0x2153c,
1845 0x21550, 0x21554,
1846 0x21600, 0x21600,
1847 0x21608, 0x21628,
1848 0x21630, 0x2163c,
1849 0x21700, 0x2171c,
1850 0x21780, 0x2178c,
1851 0x21800, 0x21c38,
1852 0x21c80, 0x21d7c,
1853 0x21e00, 0x21e04,
1854 0x22000, 0x2202c,
1855 0x22100, 0x2213c,
1856 0x22190, 0x221c8,
1857 0x22200, 0x22318,
1858 0x22400, 0x22528,
1859 0x22540, 0x22614,
1860 0x23000, 0x23040,
1861 0x2304c, 0x23060,
1862 0x230c0, 0x230ec,
1863 0x23200, 0x23268,
1864 0x23270, 0x23284,
1865 0x232fc, 0x23388,
1866 0x23400, 0x23404,
1867 0x23500, 0x23518,
1868 0x2352c, 0x2353c,
1869 0x23550, 0x23554,
1870 0x23600, 0x23600,
1871 0x23608, 0x23628,
1872 0x23630, 0x2363c,
1873 0x23700, 0x2371c,
1874 0x23780, 0x2378c,
1875 0x23800, 0x23c38,
1876 0x23c80, 0x23d7c,
1877 0x23e00, 0x23e04,
1878 0x24000, 0x2402c,
1879 0x24100, 0x2413c,
1880 0x24190, 0x241c8,
1881 0x24200, 0x24318,
1882 0x24400, 0x24528,
1883 0x24540, 0x24614,
1884 0x25000, 0x25040,
1885 0x2504c, 0x25060,
1886 0x250c0, 0x250ec,
1887 0x25200, 0x25268,
1888 0x25270, 0x25284,
1889 0x252fc, 0x25388,
1890 0x25400, 0x25404,
1891 0x25500, 0x25518,
1892 0x2552c, 0x2553c,
1893 0x25550, 0x25554,
1894 0x25600, 0x25600,
1895 0x25608, 0x25628,
1896 0x25630, 0x2563c,
1897 0x25700, 0x2571c,
1898 0x25780, 0x2578c,
1899 0x25800, 0x25c38,
1900 0x25c80, 0x25d7c,
1901 0x25e00, 0x25e04,
1902 0x26000, 0x2602c,
1903 0x26100, 0x2613c,
1904 0x26190, 0x261c8,
1905 0x26200, 0x26318,
1906 0x26400, 0x26528,
1907 0x26540, 0x26614,
1908 0x27000, 0x27040,
1909 0x2704c, 0x27060,
1910 0x270c0, 0x270ec,
1911 0x27200, 0x27268,
1912 0x27270, 0x27284,
1913 0x272fc, 0x27388,
1914 0x27400, 0x27404,
1915 0x27500, 0x27518,
1916 0x2752c, 0x2753c,
1917 0x27550, 0x27554,
1918 0x27600, 0x27600,
1919 0x27608, 0x27628,
1920 0x27630, 0x2763c,
1921 0x27700, 0x2771c,
1922 0x27780, 0x2778c,
1923 0x27800, 0x27c38,
1924 0x27c80, 0x27d7c,
1925 0x27e00, 0x27e04
1926 };
1927
1928 static const unsigned int t5_reg_ranges[] = {
1929 0x1008, 0x1148,
1930 0x1180, 0x11b4,
1931 0x11fc, 0x123c,
1932 0x1280, 0x173c,
1933 0x1800, 0x18fc,
1934 0x3000, 0x3028,
1935 0x3060, 0x30d8,
1936 0x30e0, 0x30fc,
1937 0x3140, 0x357c,
1938 0x35a8, 0x35cc,
1939 0x35ec, 0x35ec,
1940 0x3600, 0x5624,
1941 0x56cc, 0x575c,
1942 0x580c, 0x5814,
1943 0x5890, 0x58bc,
1944 0x5940, 0x59dc,
1945 0x59fc, 0x5a18,
1946 0x5a60, 0x5a9c,
1947 0x5b9c, 0x5bfc,
1948 0x6000, 0x6040,
1949 0x6058, 0x614c,
1950 0x7700, 0x7798,
1951 0x77c0, 0x78fc,
1952 0x7b00, 0x7c54,
1953 0x7d00, 0x7efc,
1954 0x8dc0, 0x8de0,
1955 0x8df8, 0x8e84,
1956 0x8ea0, 0x8f84,
1957 0x8fc0, 0x90f8,
1958 0x9400, 0x9470,
1959 0x9600, 0x96f4,
1960 0x9800, 0x9808,
1961 0x9820, 0x983c,
1962 0x9850, 0x9864,
1963 0x9c00, 0x9c6c,
1964 0x9c80, 0x9cec,
1965 0x9d00, 0x9d6c,
1966 0x9d80, 0x9dec,
1967 0x9e00, 0x9e6c,
1968 0x9e80, 0x9eec,
1969 0x9f00, 0x9f6c,
1970 0x9f80, 0xa020,
1971 0xd004, 0xd03c,
1972 0xdfc0, 0xdfe0,
1973 0xe000, 0x11088,
1974 0x1109c, 0x11110,
1975 0x11118, 0x1117c,
1976 0x11190, 0x11204,
1977 0x19040, 0x1906c,
1978 0x19078, 0x19080,
1979 0x1908c, 0x19124,
1980 0x19150, 0x191b0,
1981 0x191d0, 0x191e8,
1982 0x19238, 0x19290,
1983 0x193f8, 0x19474,
1984 0x19490, 0x194cc,
1985 0x194f0, 0x194f8,
1986 0x19c00, 0x19c60,
1987 0x19c94, 0x19e10,
1988 0x19e50, 0x19f34,
1989 0x19f40, 0x19f50,
1990 0x19f90, 0x19fe4,
1991 0x1a000, 0x1a06c,
1992 0x1a0b0, 0x1a120,
1993 0x1a128, 0x1a138,
1994 0x1a190, 0x1a1c4,
1995 0x1a1fc, 0x1a1fc,
1996 0x1e008, 0x1e00c,
1997 0x1e040, 0x1e04c,
1998 0x1e284, 0x1e290,
1999 0x1e2c0, 0x1e2c0,
2000 0x1e2e0, 0x1e2e0,
2001 0x1e300, 0x1e384,
2002 0x1e3c0, 0x1e3c8,
2003 0x1e408, 0x1e40c,
2004 0x1e440, 0x1e44c,
2005 0x1e684, 0x1e690,
2006 0x1e6c0, 0x1e6c0,
2007 0x1e6e0, 0x1e6e0,
2008 0x1e700, 0x1e784,
2009 0x1e7c0, 0x1e7c8,
2010 0x1e808, 0x1e80c,
2011 0x1e840, 0x1e84c,
2012 0x1ea84, 0x1ea90,
2013 0x1eac0, 0x1eac0,
2014 0x1eae0, 0x1eae0,
2015 0x1eb00, 0x1eb84,
2016 0x1ebc0, 0x1ebc8,
2017 0x1ec08, 0x1ec0c,
2018 0x1ec40, 0x1ec4c,
2019 0x1ee84, 0x1ee90,
2020 0x1eec0, 0x1eec0,
2021 0x1eee0, 0x1eee0,
2022 0x1ef00, 0x1ef84,
2023 0x1efc0, 0x1efc8,
2024 0x1f008, 0x1f00c,
2025 0x1f040, 0x1f04c,
2026 0x1f284, 0x1f290,
2027 0x1f2c0, 0x1f2c0,
2028 0x1f2e0, 0x1f2e0,
2029 0x1f300, 0x1f384,
2030 0x1f3c0, 0x1f3c8,
2031 0x1f408, 0x1f40c,
2032 0x1f440, 0x1f44c,
2033 0x1f684, 0x1f690,
2034 0x1f6c0, 0x1f6c0,
2035 0x1f6e0, 0x1f6e0,
2036 0x1f700, 0x1f784,
2037 0x1f7c0, 0x1f7c8,
2038 0x1f808, 0x1f80c,
2039 0x1f840, 0x1f84c,
2040 0x1fa84, 0x1fa90,
2041 0x1fac0, 0x1fac0,
2042 0x1fae0, 0x1fae0,
2043 0x1fb00, 0x1fb84,
2044 0x1fbc0, 0x1fbc8,
2045 0x1fc08, 0x1fc0c,
2046 0x1fc40, 0x1fc4c,
2047 0x1fe84, 0x1fe90,
2048 0x1fec0, 0x1fec0,
2049 0x1fee0, 0x1fee0,
2050 0x1ff00, 0x1ff84,
2051 0x1ffc0, 0x1ffc8,
2052 0x30000, 0x30030,
2053 0x30100, 0x30144,
2054 0x30190, 0x301d0,
2055 0x30200, 0x30318,
2056 0x30400, 0x3052c,
2057 0x30540, 0x3061c,
2058 0x30800, 0x30834,
2059 0x308c0, 0x30908,
2060 0x30910, 0x309ac,
2061 0x30a00, 0x30a04,
2062 0x30a0c, 0x30a2c,
2063 0x30a44, 0x30a50,
2064 0x30a74, 0x30c24,
2065 0x30d08, 0x30d14,
2066 0x30d1c, 0x30d20,
2067 0x30d3c, 0x30d50,
2068 0x31200, 0x3120c,
2069 0x31220, 0x31220,
2070 0x31240, 0x31240,
2071 0x31600, 0x31600,
2072 0x31608, 0x3160c,
2073 0x31a00, 0x31a1c,
2074 0x31e04, 0x31e20,
2075 0x31e38, 0x31e3c,
2076 0x31e80, 0x31e80,
2077 0x31e88, 0x31ea8,
2078 0x31eb0, 0x31eb4,
2079 0x31ec8, 0x31ed4,
2080 0x31fb8, 0x32004,
2081 0x32208, 0x3223c,
2082 0x32600, 0x32630,
2083 0x32a00, 0x32abc,
2084 0x32b00, 0x32b70,
2085 0x33000, 0x33048,
2086 0x33060, 0x3309c,
2087 0x330f0, 0x33148,
2088 0x33160, 0x3319c,
2089 0x331f0, 0x332e4,
2090 0x332f8, 0x333e4,
2091 0x333f8, 0x33448,
2092 0x33460, 0x3349c,
2093 0x334f0, 0x33548,
2094 0x33560, 0x3359c,
2095 0x335f0, 0x336e4,
2096 0x336f8, 0x337e4,
2097 0x337f8, 0x337fc,
2098 0x33814, 0x33814,
2099 0x3382c, 0x3382c,
2100 0x33880, 0x3388c,
2101 0x338e8, 0x338ec,
2102 0x33900, 0x33948,
2103 0x33960, 0x3399c,
2104 0x339f0, 0x33ae4,
2105 0x33af8, 0x33b10,
2106 0x33b28, 0x33b28,
2107 0x33b3c, 0x33b50,
2108 0x33bf0, 0x33c10,
2109 0x33c28, 0x33c28,
2110 0x33c3c, 0x33c50,
2111 0x33cf0, 0x33cfc,
2112 0x34000, 0x34030,
2113 0x34100, 0x34144,
2114 0x34190, 0x341d0,
2115 0x34200, 0x34318,
2116 0x34400, 0x3452c,
2117 0x34540, 0x3461c,
2118 0x34800, 0x34834,
2119 0x348c0, 0x34908,
2120 0x34910, 0x349ac,
2121 0x34a00, 0x34a04,
2122 0x34a0c, 0x34a2c,
2123 0x34a44, 0x34a50,
2124 0x34a74, 0x34c24,
2125 0x34d08, 0x34d14,
2126 0x34d1c, 0x34d20,
2127 0x34d3c, 0x34d50,
2128 0x35200, 0x3520c,
2129 0x35220, 0x35220,
2130 0x35240, 0x35240,
2131 0x35600, 0x35600,
2132 0x35608, 0x3560c,
2133 0x35a00, 0x35a1c,
2134 0x35e04, 0x35e20,
2135 0x35e38, 0x35e3c,
2136 0x35e80, 0x35e80,
2137 0x35e88, 0x35ea8,
2138 0x35eb0, 0x35eb4,
2139 0x35ec8, 0x35ed4,
2140 0x35fb8, 0x36004,
2141 0x36208, 0x3623c,
2142 0x36600, 0x36630,
2143 0x36a00, 0x36abc,
2144 0x36b00, 0x36b70,
2145 0x37000, 0x37048,
2146 0x37060, 0x3709c,
2147 0x370f0, 0x37148,
2148 0x37160, 0x3719c,
2149 0x371f0, 0x372e4,
2150 0x372f8, 0x373e4,
2151 0x373f8, 0x37448,
2152 0x37460, 0x3749c,
2153 0x374f0, 0x37548,
2154 0x37560, 0x3759c,
2155 0x375f0, 0x376e4,
2156 0x376f8, 0x377e4,
2157 0x377f8, 0x377fc,
2158 0x37814, 0x37814,
2159 0x3782c, 0x3782c,
2160 0x37880, 0x3788c,
2161 0x378e8, 0x378ec,
2162 0x37900, 0x37948,
2163 0x37960, 0x3799c,
2164 0x379f0, 0x37ae4,
2165 0x37af8, 0x37b10,
2166 0x37b28, 0x37b28,
2167 0x37b3c, 0x37b50,
2168 0x37bf0, 0x37c10,
2169 0x37c28, 0x37c28,
2170 0x37c3c, 0x37c50,
2171 0x37cf0, 0x37cfc,
2172 0x38000, 0x38030,
2173 0x38100, 0x38144,
2174 0x38190, 0x381d0,
2175 0x38200, 0x38318,
2176 0x38400, 0x3852c,
2177 0x38540, 0x3861c,
2178 0x38800, 0x38834,
2179 0x388c0, 0x38908,
2180 0x38910, 0x389ac,
2181 0x38a00, 0x38a04,
2182 0x38a0c, 0x38a2c,
2183 0x38a44, 0x38a50,
2184 0x38a74, 0x38c24,
2185 0x38d08, 0x38d14,
2186 0x38d1c, 0x38d20,
2187 0x38d3c, 0x38d50,
2188 0x39200, 0x3920c,
2189 0x39220, 0x39220,
2190 0x39240, 0x39240,
2191 0x39600, 0x39600,
2192 0x39608, 0x3960c,
2193 0x39a00, 0x39a1c,
2194 0x39e04, 0x39e20,
2195 0x39e38, 0x39e3c,
2196 0x39e80, 0x39e80,
2197 0x39e88, 0x39ea8,
2198 0x39eb0, 0x39eb4,
2199 0x39ec8, 0x39ed4,
2200 0x39fb8, 0x3a004,
2201 0x3a208, 0x3a23c,
2202 0x3a600, 0x3a630,
2203 0x3aa00, 0x3aabc,
2204 0x3ab00, 0x3ab70,
2205 0x3b000, 0x3b048,
2206 0x3b060, 0x3b09c,
2207 0x3b0f0, 0x3b148,
2208 0x3b160, 0x3b19c,
2209 0x3b1f0, 0x3b2e4,
2210 0x3b2f8, 0x3b3e4,
2211 0x3b3f8, 0x3b448,
2212 0x3b460, 0x3b49c,
2213 0x3b4f0, 0x3b548,
2214 0x3b560, 0x3b59c,
2215 0x3b5f0, 0x3b6e4,
2216 0x3b6f8, 0x3b7e4,
2217 0x3b7f8, 0x3b7fc,
2218 0x3b814, 0x3b814,
2219 0x3b82c, 0x3b82c,
2220 0x3b880, 0x3b88c,
2221 0x3b8e8, 0x3b8ec,
2222 0x3b900, 0x3b948,
2223 0x3b960, 0x3b99c,
2224 0x3b9f0, 0x3bae4,
2225 0x3baf8, 0x3bb10,
2226 0x3bb28, 0x3bb28,
2227 0x3bb3c, 0x3bb50,
2228 0x3bbf0, 0x3bc10,
2229 0x3bc28, 0x3bc28,
2230 0x3bc3c, 0x3bc50,
2231 0x3bcf0, 0x3bcfc,
2232 0x3c000, 0x3c030,
2233 0x3c100, 0x3c144,
2234 0x3c190, 0x3c1d0,
2235 0x3c200, 0x3c318,
2236 0x3c400, 0x3c52c,
2237 0x3c540, 0x3c61c,
2238 0x3c800, 0x3c834,
2239 0x3c8c0, 0x3c908,
2240 0x3c910, 0x3c9ac,
2241 0x3ca00, 0x3ca04,
2242 0x3ca0c, 0x3ca2c,
2243 0x3ca44, 0x3ca50,
2244 0x3ca74, 0x3cc24,
2245 0x3cd08, 0x3cd14,
2246 0x3cd1c, 0x3cd20,
2247 0x3cd3c, 0x3cd50,
2248 0x3d200, 0x3d20c,
2249 0x3d220, 0x3d220,
2250 0x3d240, 0x3d240,
2251 0x3d600, 0x3d600,
2252 0x3d608, 0x3d60c,
2253 0x3da00, 0x3da1c,
2254 0x3de04, 0x3de20,
2255 0x3de38, 0x3de3c,
2256 0x3de80, 0x3de80,
2257 0x3de88, 0x3dea8,
2258 0x3deb0, 0x3deb4,
2259 0x3dec8, 0x3ded4,
2260 0x3dfb8, 0x3e004,
2261 0x3e208, 0x3e23c,
2262 0x3e600, 0x3e630,
2263 0x3ea00, 0x3eabc,
2264 0x3eb00, 0x3eb70,
2265 0x3f000, 0x3f048,
2266 0x3f060, 0x3f09c,
2267 0x3f0f0, 0x3f148,
2268 0x3f160, 0x3f19c,
2269 0x3f1f0, 0x3f2e4,
2270 0x3f2f8, 0x3f3e4,
2271 0x3f3f8, 0x3f448,
2272 0x3f460, 0x3f49c,
2273 0x3f4f0, 0x3f548,
2274 0x3f560, 0x3f59c,
2275 0x3f5f0, 0x3f6e4,
2276 0x3f6f8, 0x3f7e4,
2277 0x3f7f8, 0x3f7fc,
2278 0x3f814, 0x3f814,
2279 0x3f82c, 0x3f82c,
2280 0x3f880, 0x3f88c,
2281 0x3f8e8, 0x3f8ec,
2282 0x3f900, 0x3f948,
2283 0x3f960, 0x3f99c,
2284 0x3f9f0, 0x3fae4,
2285 0x3faf8, 0x3fb10,
2286 0x3fb28, 0x3fb28,
2287 0x3fb3c, 0x3fb50,
2288 0x3fbf0, 0x3fc10,
2289 0x3fc28, 0x3fc28,
2290 0x3fc3c, 0x3fc50,
2291 0x3fcf0, 0x3fcfc,
2292 0x40000, 0x4000c,
2293 0x40040, 0x40068,
2294 0x40080, 0x40144,
2295 0x40180, 0x4018c,
2296 0x40200, 0x40298,
2297 0x402ac, 0x4033c,
2298 0x403f8, 0x403fc,
2299 0x41304, 0x413c4,
2300 0x41400, 0x4141c,
2301 0x41480, 0x414d0,
2302 0x44000, 0x44078,
2303 0x440c0, 0x44278,
2304 0x442c0, 0x44478,
2305 0x444c0, 0x44678,
2306 0x446c0, 0x44878,
2307 0x448c0, 0x449fc,
2308 0x45000, 0x45068,
2309 0x45080, 0x45084,
2310 0x450a0, 0x450b0,
2311 0x45200, 0x45268,
2312 0x45280, 0x45284,
2313 0x452a0, 0x452b0,
2314 0x460c0, 0x460e4,
2315 0x47000, 0x4708c,
2316 0x47200, 0x47250,
2317 0x47400, 0x47420,
2318 0x47600, 0x47618,
2319 0x47800, 0x47814,
2320 0x48000, 0x4800c,
2321 0x48040, 0x48068,
2322 0x48080, 0x48144,
2323 0x48180, 0x4818c,
2324 0x48200, 0x48298,
2325 0x482ac, 0x4833c,
2326 0x483f8, 0x483fc,
2327 0x49304, 0x493c4,
2328 0x49400, 0x4941c,
2329 0x49480, 0x494d0,
2330 0x4c000, 0x4c078,
2331 0x4c0c0, 0x4c278,
2332 0x4c2c0, 0x4c478,
2333 0x4c4c0, 0x4c678,
2334 0x4c6c0, 0x4c878,
2335 0x4c8c0, 0x4c9fc,
2336 0x4d000, 0x4d068,
2337 0x4d080, 0x4d084,
2338 0x4d0a0, 0x4d0b0,
2339 0x4d200, 0x4d268,
2340 0x4d280, 0x4d284,
2341 0x4d2a0, 0x4d2b0,
2342 0x4e0c0, 0x4e0e4,
2343 0x4f000, 0x4f08c,
2344 0x4f200, 0x4f250,
2345 0x4f400, 0x4f420,
2346 0x4f600, 0x4f618,
2347 0x4f800, 0x4f814,
2348 0x50000, 0x500cc,
2349 0x50400, 0x50400,
2350 0x50800, 0x508cc,
2351 0x50c00, 0x50c00,
2352 0x51000, 0x5101c,
2353 0x51300, 0x51308,
2354 };
2355
2356 int i;
2357 struct adapter *ap = netdev2adap(dev);
2358 static const unsigned int *reg_ranges;
2359 int arr_size = 0, buf_size = 0;
2360
2361 if (is_t4(ap->params.chip)) {
2362 reg_ranges = &t4_reg_ranges[0];
2363 arr_size = ARRAY_SIZE(t4_reg_ranges);
2364 buf_size = T4_REGMAP_SIZE;
2365 } else {
2366 reg_ranges = &t5_reg_ranges[0];
2367 arr_size = ARRAY_SIZE(t5_reg_ranges);
2368 buf_size = T5_REGMAP_SIZE;
2369 }
2370
2371 regs->version = mk_adap_vers(ap);
2372
2373 memset(buf, 0, buf_size);
2374 for (i = 0; i < arr_size; i += 2)
2375 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2376 }
2377
2378 static int restart_autoneg(struct net_device *dev)
2379 {
2380 struct port_info *p = netdev_priv(dev);
2381
2382 if (!netif_running(dev))
2383 return -EAGAIN;
2384 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2385 return -EINVAL;
2386 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2387 return 0;
2388 }
2389
2390 static int identify_port(struct net_device *dev,
2391 enum ethtool_phys_id_state state)
2392 {
2393 unsigned int val;
2394 struct adapter *adap = netdev2adap(dev);
2395
2396 if (state == ETHTOOL_ID_ACTIVE)
2397 val = 0xffff;
2398 else if (state == ETHTOOL_ID_INACTIVE)
2399 val = 0;
2400 else
2401 return -EINVAL;
2402
2403 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2404 }
2405
2406 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2407 {
2408 unsigned int v = 0;
2409
2410 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2411 type == FW_PORT_TYPE_BT_XAUI) {
2412 v |= SUPPORTED_TP;
2413 if (caps & FW_PORT_CAP_SPEED_100M)
2414 v |= SUPPORTED_100baseT_Full;
2415 if (caps & FW_PORT_CAP_SPEED_1G)
2416 v |= SUPPORTED_1000baseT_Full;
2417 if (caps & FW_PORT_CAP_SPEED_10G)
2418 v |= SUPPORTED_10000baseT_Full;
2419 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2420 v |= SUPPORTED_Backplane;
2421 if (caps & FW_PORT_CAP_SPEED_1G)
2422 v |= SUPPORTED_1000baseKX_Full;
2423 if (caps & FW_PORT_CAP_SPEED_10G)
2424 v |= SUPPORTED_10000baseKX4_Full;
2425 } else if (type == FW_PORT_TYPE_KR)
2426 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2427 else if (type == FW_PORT_TYPE_BP_AP)
2428 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2429 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2430 else if (type == FW_PORT_TYPE_BP4_AP)
2431 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2432 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2433 SUPPORTED_10000baseKX4_Full;
2434 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2435 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2436 v |= SUPPORTED_FIBRE;
2437 else if (type == FW_PORT_TYPE_BP40_BA)
2438 v |= SUPPORTED_40000baseSR4_Full;
2439
2440 if (caps & FW_PORT_CAP_ANEG)
2441 v |= SUPPORTED_Autoneg;
2442 return v;
2443 }
2444
2445 static unsigned int to_fw_linkcaps(unsigned int caps)
2446 {
2447 unsigned int v = 0;
2448
2449 if (caps & ADVERTISED_100baseT_Full)
2450 v |= FW_PORT_CAP_SPEED_100M;
2451 if (caps & ADVERTISED_1000baseT_Full)
2452 v |= FW_PORT_CAP_SPEED_1G;
2453 if (caps & ADVERTISED_10000baseT_Full)
2454 v |= FW_PORT_CAP_SPEED_10G;
2455 if (caps & ADVERTISED_40000baseSR4_Full)
2456 v |= FW_PORT_CAP_SPEED_40G;
2457 return v;
2458 }
2459
2460 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2461 {
2462 const struct port_info *p = netdev_priv(dev);
2463
2464 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2465 p->port_type == FW_PORT_TYPE_BT_XFI ||
2466 p->port_type == FW_PORT_TYPE_BT_XAUI)
2467 cmd->port = PORT_TP;
2468 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2469 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2470 cmd->port = PORT_FIBRE;
2471 else if (p->port_type == FW_PORT_TYPE_SFP ||
2472 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2473 p->port_type == FW_PORT_TYPE_QSFP) {
2474 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2475 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2476 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2477 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2478 cmd->port = PORT_FIBRE;
2479 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2480 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2481 cmd->port = PORT_DA;
2482 else
2483 cmd->port = PORT_OTHER;
2484 } else
2485 cmd->port = PORT_OTHER;
2486
2487 if (p->mdio_addr >= 0) {
2488 cmd->phy_address = p->mdio_addr;
2489 cmd->transceiver = XCVR_EXTERNAL;
2490 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2491 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2492 } else {
2493 cmd->phy_address = 0; /* not really, but no better option */
2494 cmd->transceiver = XCVR_INTERNAL;
2495 cmd->mdio_support = 0;
2496 }
2497
2498 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2499 cmd->advertising = from_fw_linkcaps(p->port_type,
2500 p->link_cfg.advertising);
2501 ethtool_cmd_speed_set(cmd,
2502 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2503 cmd->duplex = DUPLEX_FULL;
2504 cmd->autoneg = p->link_cfg.autoneg;
2505 cmd->maxtxpkt = 0;
2506 cmd->maxrxpkt = 0;
2507 return 0;
2508 }
2509
2510 static unsigned int speed_to_caps(int speed)
2511 {
2512 if (speed == 100)
2513 return FW_PORT_CAP_SPEED_100M;
2514 if (speed == 1000)
2515 return FW_PORT_CAP_SPEED_1G;
2516 if (speed == 10000)
2517 return FW_PORT_CAP_SPEED_10G;
2518 if (speed == 40000)
2519 return FW_PORT_CAP_SPEED_40G;
2520 return 0;
2521 }
2522
2523 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2524 {
2525 unsigned int cap;
2526 struct port_info *p = netdev_priv(dev);
2527 struct link_config *lc = &p->link_cfg;
2528 u32 speed = ethtool_cmd_speed(cmd);
2529
2530 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2531 return -EINVAL;
2532
2533 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2534 /*
2535 * PHY offers a single speed. See if that's what's
2536 * being requested.
2537 */
2538 if (cmd->autoneg == AUTONEG_DISABLE &&
2539 (lc->supported & speed_to_caps(speed)))
2540 return 0;
2541 return -EINVAL;
2542 }
2543
2544 if (cmd->autoneg == AUTONEG_DISABLE) {
2545 cap = speed_to_caps(speed);
2546
2547 if (!(lc->supported & cap) ||
2548 (speed == 1000) ||
2549 (speed == 10000) ||
2550 (speed == 40000))
2551 return -EINVAL;
2552 lc->requested_speed = cap;
2553 lc->advertising = 0;
2554 } else {
2555 cap = to_fw_linkcaps(cmd->advertising);
2556 if (!(lc->supported & cap))
2557 return -EINVAL;
2558 lc->requested_speed = 0;
2559 lc->advertising = cap | FW_PORT_CAP_ANEG;
2560 }
2561 lc->autoneg = cmd->autoneg;
2562
2563 if (netif_running(dev))
2564 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2565 lc);
2566 return 0;
2567 }
2568
2569 static void get_pauseparam(struct net_device *dev,
2570 struct ethtool_pauseparam *epause)
2571 {
2572 struct port_info *p = netdev_priv(dev);
2573
2574 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2575 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2576 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2577 }
2578
2579 static int set_pauseparam(struct net_device *dev,
2580 struct ethtool_pauseparam *epause)
2581 {
2582 struct port_info *p = netdev_priv(dev);
2583 struct link_config *lc = &p->link_cfg;
2584
2585 if (epause->autoneg == AUTONEG_DISABLE)
2586 lc->requested_fc = 0;
2587 else if (lc->supported & FW_PORT_CAP_ANEG)
2588 lc->requested_fc = PAUSE_AUTONEG;
2589 else
2590 return -EINVAL;
2591
2592 if (epause->rx_pause)
2593 lc->requested_fc |= PAUSE_RX;
2594 if (epause->tx_pause)
2595 lc->requested_fc |= PAUSE_TX;
2596 if (netif_running(dev))
2597 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2598 lc);
2599 return 0;
2600 }
2601
2602 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2603 {
2604 const struct port_info *pi = netdev_priv(dev);
2605 const struct sge *s = &pi->adapter->sge;
2606
2607 e->rx_max_pending = MAX_RX_BUFFERS;
2608 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2609 e->rx_jumbo_max_pending = 0;
2610 e->tx_max_pending = MAX_TXQ_ENTRIES;
2611
2612 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2613 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2614 e->rx_jumbo_pending = 0;
2615 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2616 }
2617
2618 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2619 {
2620 int i;
2621 const struct port_info *pi = netdev_priv(dev);
2622 struct adapter *adapter = pi->adapter;
2623 struct sge *s = &adapter->sge;
2624
2625 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2626 e->tx_pending > MAX_TXQ_ENTRIES ||
2627 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2628 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2629 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2630 return -EINVAL;
2631
2632 if (adapter->flags & FULL_INIT_DONE)
2633 return -EBUSY;
2634
2635 for (i = 0; i < pi->nqsets; ++i) {
2636 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2637 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2638 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2639 }
2640 return 0;
2641 }
2642
2643 static int closest_timer(const struct sge *s, int time)
2644 {
2645 int i, delta, match = 0, min_delta = INT_MAX;
2646
2647 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2648 delta = time - s->timer_val[i];
2649 if (delta < 0)
2650 delta = -delta;
2651 if (delta < min_delta) {
2652 min_delta = delta;
2653 match = i;
2654 }
2655 }
2656 return match;
2657 }
2658
2659 static int closest_thres(const struct sge *s, int thres)
2660 {
2661 int i, delta, match = 0, min_delta = INT_MAX;
2662
2663 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2664 delta = thres - s->counter_val[i];
2665 if (delta < 0)
2666 delta = -delta;
2667 if (delta < min_delta) {
2668 min_delta = delta;
2669 match = i;
2670 }
2671 }
2672 return match;
2673 }
2674
2675 /*
2676 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2677 */
2678 static unsigned int qtimer_val(const struct adapter *adap,
2679 const struct sge_rspq *q)
2680 {
2681 unsigned int idx = q->intr_params >> 1;
2682
2683 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2684 }
2685
2686 /**
2687 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
2688 * @q: the Rx queue
2689 * @us: the hold-off time in us, or 0 to disable timer
2690 * @cnt: the hold-off packet count, or 0 to disable counter
2691 *
2692 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2693 * one of the two needs to be enabled for the queue to generate interrupts.
2694 */
2695 static int set_rspq_intr_params(struct sge_rspq *q,
2696 unsigned int us, unsigned int cnt)
2697 {
2698 struct adapter *adap = q->adap;
2699
2700 if ((us | cnt) == 0)
2701 cnt = 1;
2702
2703 if (cnt) {
2704 int err;
2705 u32 v, new_idx;
2706
2707 new_idx = closest_thres(&adap->sge, cnt);
2708 if (q->desc && q->pktcnt_idx != new_idx) {
2709 /* the queue has already been created, update it */
2710 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2711 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2712 FW_PARAMS_PARAM_YZ(q->cntxt_id);
2713 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2714 &new_idx);
2715 if (err)
2716 return err;
2717 }
2718 q->pktcnt_idx = new_idx;
2719 }
2720
2721 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2722 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2723 return 0;
2724 }
2725
2726 /**
2727 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2728 * @dev: the network device
2729 * @us: the hold-off time in us, or 0 to disable timer
2730 * @cnt: the hold-off packet count, or 0 to disable counter
2731 *
2732 * Set the RX interrupt hold-off parameters for a network device.
2733 */
2734 static int set_rx_intr_params(struct net_device *dev,
2735 unsigned int us, unsigned int cnt)
2736 {
2737 int i, err;
2738 struct port_info *pi = netdev_priv(dev);
2739 struct adapter *adap = pi->adapter;
2740 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2741
2742 for (i = 0; i < pi->nqsets; i++, q++) {
2743 err = set_rspq_intr_params(&q->rspq, us, cnt);
2744 if (err)
2745 return err;
2746 }
2747 return 0;
2748 }
2749
2750 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2751 {
2752 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2753 c->rx_max_coalesced_frames);
2754 }
2755
2756 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2757 {
2758 const struct port_info *pi = netdev_priv(dev);
2759 const struct adapter *adap = pi->adapter;
2760 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2761
2762 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2763 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2764 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2765 return 0;
2766 }
2767
2768 /**
2769 * eeprom_ptov - translate a physical EEPROM address to virtual
2770 * @phys_addr: the physical EEPROM address
2771 * @fn: the PCI function number
2772 * @sz: size of function-specific area
2773 *
2774 * Translate a physical EEPROM address to virtual. The first 1K is
2775 * accessed through virtual addresses starting at 31K, the rest is
2776 * accessed through virtual addresses starting at 0.
2777 *
2778 * The mapping is as follows:
2779 * [0..1K) -> [31K..32K)
2780 * [1K..1K+A) -> [31K-A..31K)
2781 * [1K+A..ES) -> [0..ES-A-1K)
2782 *
2783 * where A = @fn * @sz, and ES = EEPROM size.
2784 */
2785 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2786 {
2787 fn *= sz;
2788 if (phys_addr < 1024)
2789 return phys_addr + (31 << 10);
2790 if (phys_addr < 1024 + fn)
2791 return 31744 - fn + phys_addr - 1024;
2792 if (phys_addr < EEPROMSIZE)
2793 return phys_addr - 1024 - fn;
2794 return -EINVAL;
2795 }
2796
2797 /*
2798 * The next two routines implement eeprom read/write from physical addresses.
2799 */
2800 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2801 {
2802 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2803
2804 if (vaddr >= 0)
2805 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2806 return vaddr < 0 ? vaddr : 0;
2807 }
2808
2809 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2810 {
2811 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2812
2813 if (vaddr >= 0)
2814 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2815 return vaddr < 0 ? vaddr : 0;
2816 }
2817
2818 #define EEPROM_MAGIC 0x38E2F10C
2819
2820 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2821 u8 *data)
2822 {
2823 int i, err = 0;
2824 struct adapter *adapter = netdev2adap(dev);
2825
2826 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2827 if (!buf)
2828 return -ENOMEM;
2829
2830 e->magic = EEPROM_MAGIC;
2831 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2832 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2833
2834 if (!err)
2835 memcpy(data, buf + e->offset, e->len);
2836 kfree(buf);
2837 return err;
2838 }
2839
2840 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2841 u8 *data)
2842 {
2843 u8 *buf;
2844 int err = 0;
2845 u32 aligned_offset, aligned_len, *p;
2846 struct adapter *adapter = netdev2adap(dev);
2847
2848 if (eeprom->magic != EEPROM_MAGIC)
2849 return -EINVAL;
2850
2851 aligned_offset = eeprom->offset & ~3;
2852 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2853
2854 if (adapter->fn > 0) {
2855 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2856
2857 if (aligned_offset < start ||
2858 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2859 return -EPERM;
2860 }
2861
2862 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2863 /*
2864 * RMW possibly needed for first or last words.
2865 */
2866 buf = kmalloc(aligned_len, GFP_KERNEL);
2867 if (!buf)
2868 return -ENOMEM;
2869 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2870 if (!err && aligned_len > 4)
2871 err = eeprom_rd_phys(adapter,
2872 aligned_offset + aligned_len - 4,
2873 (u32 *)&buf[aligned_len - 4]);
2874 if (err)
2875 goto out;
2876 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2877 } else
2878 buf = data;
2879
2880 err = t4_seeprom_wp(adapter, false);
2881 if (err)
2882 goto out;
2883
2884 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2885 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2886 aligned_offset += 4;
2887 }
2888
2889 if (!err)
2890 err = t4_seeprom_wp(adapter, true);
2891 out:
2892 if (buf != data)
2893 kfree(buf);
2894 return err;
2895 }
2896
2897 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2898 {
2899 int ret;
2900 const struct firmware *fw;
2901 struct adapter *adap = netdev2adap(netdev);
2902
2903 ef->data[sizeof(ef->data) - 1] = '\0';
2904 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2905 if (ret < 0)
2906 return ret;
2907
2908 ret = t4_load_fw(adap, fw->data, fw->size);
2909 release_firmware(fw);
2910 if (!ret)
2911 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2912 return ret;
2913 }
2914
2915 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2916 #define BCAST_CRC 0xa0ccc1a6
2917
2918 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2919 {
2920 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2921 wol->wolopts = netdev2adap(dev)->wol;
2922 memset(&wol->sopass, 0, sizeof(wol->sopass));
2923 }
2924
2925 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2926 {
2927 int err = 0;
2928 struct port_info *pi = netdev_priv(dev);
2929
2930 if (wol->wolopts & ~WOL_SUPPORTED)
2931 return -EINVAL;
2932 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2933 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2934 if (wol->wolopts & WAKE_BCAST) {
2935 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2936 ~0ULL, 0, false);
2937 if (!err)
2938 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2939 ~6ULL, ~0ULL, BCAST_CRC, true);
2940 } else
2941 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2942 return err;
2943 }
2944
2945 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2946 {
2947 const struct port_info *pi = netdev_priv(dev);
2948 netdev_features_t changed = dev->features ^ features;
2949 int err;
2950
2951 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2952 return 0;
2953
2954 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2955 -1, -1, -1,
2956 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2957 if (unlikely(err))
2958 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2959 return err;
2960 }
2961
2962 static u32 get_rss_table_size(struct net_device *dev)
2963 {
2964 const struct port_info *pi = netdev_priv(dev);
2965
2966 return pi->rss_size;
2967 }
2968
2969 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
2970 {
2971 const struct port_info *pi = netdev_priv(dev);
2972 unsigned int n = pi->rss_size;
2973
2974 while (n--)
2975 p[n] = pi->rss[n];
2976 return 0;
2977 }
2978
2979 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
2980 {
2981 unsigned int i;
2982 struct port_info *pi = netdev_priv(dev);
2983
2984 for (i = 0; i < pi->rss_size; i++)
2985 pi->rss[i] = p[i];
2986 if (pi->adapter->flags & FULL_INIT_DONE)
2987 return write_rss(pi, pi->rss);
2988 return 0;
2989 }
2990
2991 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2992 u32 *rules)
2993 {
2994 const struct port_info *pi = netdev_priv(dev);
2995
2996 switch (info->cmd) {
2997 case ETHTOOL_GRXFH: {
2998 unsigned int v = pi->rss_mode;
2999
3000 info->data = 0;
3001 switch (info->flow_type) {
3002 case TCP_V4_FLOW:
3003 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3004 info->data = RXH_IP_SRC | RXH_IP_DST |
3005 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3006 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3007 info->data = RXH_IP_SRC | RXH_IP_DST;
3008 break;
3009 case UDP_V4_FLOW:
3010 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3011 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3012 info->data = RXH_IP_SRC | RXH_IP_DST |
3013 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3014 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3015 info->data = RXH_IP_SRC | RXH_IP_DST;
3016 break;
3017 case SCTP_V4_FLOW:
3018 case AH_ESP_V4_FLOW:
3019 case IPV4_FLOW:
3020 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3021 info->data = RXH_IP_SRC | RXH_IP_DST;
3022 break;
3023 case TCP_V6_FLOW:
3024 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3025 info->data = RXH_IP_SRC | RXH_IP_DST |
3026 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3027 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3028 info->data = RXH_IP_SRC | RXH_IP_DST;
3029 break;
3030 case UDP_V6_FLOW:
3031 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3032 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3033 info->data = RXH_IP_SRC | RXH_IP_DST |
3034 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3035 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3036 info->data = RXH_IP_SRC | RXH_IP_DST;
3037 break;
3038 case SCTP_V6_FLOW:
3039 case AH_ESP_V6_FLOW:
3040 case IPV6_FLOW:
3041 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3042 info->data = RXH_IP_SRC | RXH_IP_DST;
3043 break;
3044 }
3045 return 0;
3046 }
3047 case ETHTOOL_GRXRINGS:
3048 info->data = pi->nqsets;
3049 return 0;
3050 }
3051 return -EOPNOTSUPP;
3052 }
3053
3054 static const struct ethtool_ops cxgb_ethtool_ops = {
3055 .get_settings = get_settings,
3056 .set_settings = set_settings,
3057 .get_drvinfo = get_drvinfo,
3058 .get_msglevel = get_msglevel,
3059 .set_msglevel = set_msglevel,
3060 .get_ringparam = get_sge_param,
3061 .set_ringparam = set_sge_param,
3062 .get_coalesce = get_coalesce,
3063 .set_coalesce = set_coalesce,
3064 .get_eeprom_len = get_eeprom_len,
3065 .get_eeprom = get_eeprom,
3066 .set_eeprom = set_eeprom,
3067 .get_pauseparam = get_pauseparam,
3068 .set_pauseparam = set_pauseparam,
3069 .get_link = ethtool_op_get_link,
3070 .get_strings = get_strings,
3071 .set_phys_id = identify_port,
3072 .nway_reset = restart_autoneg,
3073 .get_sset_count = get_sset_count,
3074 .get_ethtool_stats = get_stats,
3075 .get_regs_len = get_regs_len,
3076 .get_regs = get_regs,
3077 .get_wol = get_wol,
3078 .set_wol = set_wol,
3079 .get_rxnfc = get_rxnfc,
3080 .get_rxfh_indir_size = get_rss_table_size,
3081 .get_rxfh = get_rss_table,
3082 .set_rxfh = set_rss_table,
3083 .flash_device = set_flash,
3084 };
3085
3086 /*
3087 * debugfs support
3088 */
3089 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3090 loff_t *ppos)
3091 {
3092 loff_t pos = *ppos;
3093 loff_t avail = file_inode(file)->i_size;
3094 unsigned int mem = (uintptr_t)file->private_data & 3;
3095 struct adapter *adap = file->private_data - mem;
3096 __be32 *data;
3097 int ret;
3098
3099 if (pos < 0)
3100 return -EINVAL;
3101 if (pos >= avail)
3102 return 0;
3103 if (count > avail - pos)
3104 count = avail - pos;
3105
3106 data = t4_alloc_mem(count);
3107 if (!data)
3108 return -ENOMEM;
3109
3110 spin_lock(&adap->win0_lock);
3111 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3112 spin_unlock(&adap->win0_lock);
3113 if (ret) {
3114 t4_free_mem(data);
3115 return ret;
3116 }
3117 ret = copy_to_user(buf, data, count);
3118
3119 t4_free_mem(data);
3120 if (ret)
3121 return -EFAULT;
3122
3123 *ppos = pos + count;
3124 return count;
3125 }
3126
3127 static const struct file_operations mem_debugfs_fops = {
3128 .owner = THIS_MODULE,
3129 .open = simple_open,
3130 .read = mem_read,
3131 .llseek = default_llseek,
3132 };
3133
3134 static void add_debugfs_mem(struct adapter *adap, const char *name,
3135 unsigned int idx, unsigned int size_mb)
3136 {
3137 struct dentry *de;
3138
3139 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3140 (void *)adap + idx, &mem_debugfs_fops);
3141 if (de && de->d_inode)
3142 de->d_inode->i_size = size_mb << 20;
3143 }
3144
3145 static int setup_debugfs(struct adapter *adap)
3146 {
3147 int i;
3148 u32 size;
3149
3150 if (IS_ERR_OR_NULL(adap->debugfs_root))
3151 return -1;
3152
3153 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3154 if (i & EDRAM0_ENABLE) {
3155 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3156 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3157 }
3158 if (i & EDRAM1_ENABLE) {
3159 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3160 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3161 }
3162 if (is_t4(adap->params.chip)) {
3163 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3164 if (i & EXT_MEM_ENABLE)
3165 add_debugfs_mem(adap, "mc", MEM_MC,
3166 EXT_MEM_SIZE_GET(size));
3167 } else {
3168 if (i & EXT_MEM_ENABLE) {
3169 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3170 add_debugfs_mem(adap, "mc0", MEM_MC0,
3171 EXT_MEM_SIZE_GET(size));
3172 }
3173 if (i & EXT_MEM1_ENABLE) {
3174 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3175 add_debugfs_mem(adap, "mc1", MEM_MC1,
3176 EXT_MEM_SIZE_GET(size));
3177 }
3178 }
3179 if (adap->l2t)
3180 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3181 &t4_l2t_fops);
3182 return 0;
3183 }
3184
3185 /*
3186 * upper-layer driver support
3187 */
3188
3189 /*
3190 * Allocate an active-open TID and set it to the supplied value.
3191 */
3192 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3193 {
3194 int atid = -1;
3195
3196 spin_lock_bh(&t->atid_lock);
3197 if (t->afree) {
3198 union aopen_entry *p = t->afree;
3199
3200 atid = (p - t->atid_tab) + t->atid_base;
3201 t->afree = p->next;
3202 p->data = data;
3203 t->atids_in_use++;
3204 }
3205 spin_unlock_bh(&t->atid_lock);
3206 return atid;
3207 }
3208 EXPORT_SYMBOL(cxgb4_alloc_atid);
3209
3210 /*
3211 * Release an active-open TID.
3212 */
3213 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3214 {
3215 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3216
3217 spin_lock_bh(&t->atid_lock);
3218 p->next = t->afree;
3219 t->afree = p;
3220 t->atids_in_use--;
3221 spin_unlock_bh(&t->atid_lock);
3222 }
3223 EXPORT_SYMBOL(cxgb4_free_atid);
3224
3225 /*
3226 * Allocate a server TID and set it to the supplied value.
3227 */
3228 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3229 {
3230 int stid;
3231
3232 spin_lock_bh(&t->stid_lock);
3233 if (family == PF_INET) {
3234 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3235 if (stid < t->nstids)
3236 __set_bit(stid, t->stid_bmap);
3237 else
3238 stid = -1;
3239 } else {
3240 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3241 if (stid < 0)
3242 stid = -1;
3243 }
3244 if (stid >= 0) {
3245 t->stid_tab[stid].data = data;
3246 stid += t->stid_base;
3247 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3248 * This is equivalent to 4 TIDs. With CLIP enabled it
3249 * needs 2 TIDs.
3250 */
3251 if (family == PF_INET)
3252 t->stids_in_use++;
3253 else
3254 t->stids_in_use += 4;
3255 }
3256 spin_unlock_bh(&t->stid_lock);
3257 return stid;
3258 }
3259 EXPORT_SYMBOL(cxgb4_alloc_stid);
3260
3261 /* Allocate a server filter TID and set it to the supplied value.
3262 */
3263 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3264 {
3265 int stid;
3266
3267 spin_lock_bh(&t->stid_lock);
3268 if (family == PF_INET) {
3269 stid = find_next_zero_bit(t->stid_bmap,
3270 t->nstids + t->nsftids, t->nstids);
3271 if (stid < (t->nstids + t->nsftids))
3272 __set_bit(stid, t->stid_bmap);
3273 else
3274 stid = -1;
3275 } else {
3276 stid = -1;
3277 }
3278 if (stid >= 0) {
3279 t->stid_tab[stid].data = data;
3280 stid -= t->nstids;
3281 stid += t->sftid_base;
3282 t->stids_in_use++;
3283 }
3284 spin_unlock_bh(&t->stid_lock);
3285 return stid;
3286 }
3287 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3288
3289 /* Release a server TID.
3290 */
3291 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3292 {
3293 /* Is it a server filter TID? */
3294 if (t->nsftids && (stid >= t->sftid_base)) {
3295 stid -= t->sftid_base;
3296 stid += t->nstids;
3297 } else {
3298 stid -= t->stid_base;
3299 }
3300
3301 spin_lock_bh(&t->stid_lock);
3302 if (family == PF_INET)
3303 __clear_bit(stid, t->stid_bmap);
3304 else
3305 bitmap_release_region(t->stid_bmap, stid, 2);
3306 t->stid_tab[stid].data = NULL;
3307 if (family == PF_INET)
3308 t->stids_in_use--;
3309 else
3310 t->stids_in_use -= 4;
3311 spin_unlock_bh(&t->stid_lock);
3312 }
3313 EXPORT_SYMBOL(cxgb4_free_stid);
3314
3315 /*
3316 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3317 */
3318 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3319 unsigned int tid)
3320 {
3321 struct cpl_tid_release *req;
3322
3323 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3324 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3325 INIT_TP_WR(req, tid);
3326 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3327 }
3328
3329 /*
3330 * Queue a TID release request and if necessary schedule a work queue to
3331 * process it.
3332 */
3333 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3334 unsigned int tid)
3335 {
3336 void **p = &t->tid_tab[tid];
3337 struct adapter *adap = container_of(t, struct adapter, tids);
3338
3339 spin_lock_bh(&adap->tid_release_lock);
3340 *p = adap->tid_release_head;
3341 /* Low 2 bits encode the Tx channel number */
3342 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3343 if (!adap->tid_release_task_busy) {
3344 adap->tid_release_task_busy = true;
3345 queue_work(adap->workq, &adap->tid_release_task);
3346 }
3347 spin_unlock_bh(&adap->tid_release_lock);
3348 }
3349
3350 /*
3351 * Process the list of pending TID release requests.
3352 */
3353 static void process_tid_release_list(struct work_struct *work)
3354 {
3355 struct sk_buff *skb;
3356 struct adapter *adap;
3357
3358 adap = container_of(work, struct adapter, tid_release_task);
3359
3360 spin_lock_bh(&adap->tid_release_lock);
3361 while (adap->tid_release_head) {
3362 void **p = adap->tid_release_head;
3363 unsigned int chan = (uintptr_t)p & 3;
3364 p = (void *)p - chan;
3365
3366 adap->tid_release_head = *p;
3367 *p = NULL;
3368 spin_unlock_bh(&adap->tid_release_lock);
3369
3370 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3371 GFP_KERNEL)))
3372 schedule_timeout_uninterruptible(1);
3373
3374 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3375 t4_ofld_send(adap, skb);
3376 spin_lock_bh(&adap->tid_release_lock);
3377 }
3378 adap->tid_release_task_busy = false;
3379 spin_unlock_bh(&adap->tid_release_lock);
3380 }
3381
3382 /*
3383 * Release a TID and inform HW. If we are unable to allocate the release
3384 * message we defer to a work queue.
3385 */
3386 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3387 {
3388 void *old;
3389 struct sk_buff *skb;
3390 struct adapter *adap = container_of(t, struct adapter, tids);
3391
3392 old = t->tid_tab[tid];
3393 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3394 if (likely(skb)) {
3395 t->tid_tab[tid] = NULL;
3396 mk_tid_release(skb, chan, tid);
3397 t4_ofld_send(adap, skb);
3398 } else
3399 cxgb4_queue_tid_release(t, chan, tid);
3400 if (old)
3401 atomic_dec(&t->tids_in_use);
3402 }
3403 EXPORT_SYMBOL(cxgb4_remove_tid);
3404
3405 /*
3406 * Allocate and initialize the TID tables. Returns 0 on success.
3407 */
3408 static int tid_init(struct tid_info *t)
3409 {
3410 size_t size;
3411 unsigned int stid_bmap_size;
3412 unsigned int natids = t->natids;
3413 struct adapter *adap = container_of(t, struct adapter, tids);
3414
3415 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3416 size = t->ntids * sizeof(*t->tid_tab) +
3417 natids * sizeof(*t->atid_tab) +
3418 t->nstids * sizeof(*t->stid_tab) +
3419 t->nsftids * sizeof(*t->stid_tab) +
3420 stid_bmap_size * sizeof(long) +
3421 t->nftids * sizeof(*t->ftid_tab) +
3422 t->nsftids * sizeof(*t->ftid_tab);
3423
3424 t->tid_tab = t4_alloc_mem(size);
3425 if (!t->tid_tab)
3426 return -ENOMEM;
3427
3428 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3429 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3430 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3431 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3432 spin_lock_init(&t->stid_lock);
3433 spin_lock_init(&t->atid_lock);
3434
3435 t->stids_in_use = 0;
3436 t->afree = NULL;
3437 t->atids_in_use = 0;
3438 atomic_set(&t->tids_in_use, 0);
3439
3440 /* Setup the free list for atid_tab and clear the stid bitmap. */
3441 if (natids) {
3442 while (--natids)
3443 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3444 t->afree = t->atid_tab;
3445 }
3446 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3447 /* Reserve stid 0 for T4/T5 adapters */
3448 if (!t->stid_base &&
3449 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3450 __set_bit(0, t->stid_bmap);
3451
3452 return 0;
3453 }
3454
3455 int cxgb4_clip_get(const struct net_device *dev,
3456 const struct in6_addr *lip)
3457 {
3458 struct adapter *adap;
3459 struct fw_clip_cmd c;
3460
3461 adap = netdev2adap(dev);
3462 memset(&c, 0, sizeof(c));
3463 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3464 FW_CMD_REQUEST | FW_CMD_WRITE);
3465 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3466 c.ip_hi = *(__be64 *)(lip->s6_addr);
3467 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3468 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3469 }
3470 EXPORT_SYMBOL(cxgb4_clip_get);
3471
3472 int cxgb4_clip_release(const struct net_device *dev,
3473 const struct in6_addr *lip)
3474 {
3475 struct adapter *adap;
3476 struct fw_clip_cmd c;
3477
3478 adap = netdev2adap(dev);
3479 memset(&c, 0, sizeof(c));
3480 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3481 FW_CMD_REQUEST | FW_CMD_READ);
3482 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3483 c.ip_hi = *(__be64 *)(lip->s6_addr);
3484 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3485 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3486 }
3487 EXPORT_SYMBOL(cxgb4_clip_release);
3488
3489 /**
3490 * cxgb4_create_server - create an IP server
3491 * @dev: the device
3492 * @stid: the server TID
3493 * @sip: local IP address to bind server to
3494 * @sport: the server's TCP port
3495 * @queue: queue to direct messages from this server to
3496 *
3497 * Create an IP server for the given port and address.
3498 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3499 */
3500 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3501 __be32 sip, __be16 sport, __be16 vlan,
3502 unsigned int queue)
3503 {
3504 unsigned int chan;
3505 struct sk_buff *skb;
3506 struct adapter *adap;
3507 struct cpl_pass_open_req *req;
3508 int ret;
3509
3510 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3511 if (!skb)
3512 return -ENOMEM;
3513
3514 adap = netdev2adap(dev);
3515 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3516 INIT_TP_WR(req, 0);
3517 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3518 req->local_port = sport;
3519 req->peer_port = htons(0);
3520 req->local_ip = sip;
3521 req->peer_ip = htonl(0);
3522 chan = rxq_to_chan(&adap->sge, queue);
3523 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3524 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3525 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3526 ret = t4_mgmt_tx(adap, skb);
3527 return net_xmit_eval(ret);
3528 }
3529 EXPORT_SYMBOL(cxgb4_create_server);
3530
3531 /* cxgb4_create_server6 - create an IPv6 server
3532 * @dev: the device
3533 * @stid: the server TID
3534 * @sip: local IPv6 address to bind server to
3535 * @sport: the server's TCP port
3536 * @queue: queue to direct messages from this server to
3537 *
3538 * Create an IPv6 server for the given port and address.
3539 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3540 */
3541 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3542 const struct in6_addr *sip, __be16 sport,
3543 unsigned int queue)
3544 {
3545 unsigned int chan;
3546 struct sk_buff *skb;
3547 struct adapter *adap;
3548 struct cpl_pass_open_req6 *req;
3549 int ret;
3550
3551 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3552 if (!skb)
3553 return -ENOMEM;
3554
3555 adap = netdev2adap(dev);
3556 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3557 INIT_TP_WR(req, 0);
3558 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3559 req->local_port = sport;
3560 req->peer_port = htons(0);
3561 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3562 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3563 req->peer_ip_hi = cpu_to_be64(0);
3564 req->peer_ip_lo = cpu_to_be64(0);
3565 chan = rxq_to_chan(&adap->sge, queue);
3566 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3567 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3568 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3569 ret = t4_mgmt_tx(adap, skb);
3570 return net_xmit_eval(ret);
3571 }
3572 EXPORT_SYMBOL(cxgb4_create_server6);
3573
3574 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3575 unsigned int queue, bool ipv6)
3576 {
3577 struct sk_buff *skb;
3578 struct adapter *adap;
3579 struct cpl_close_listsvr_req *req;
3580 int ret;
3581
3582 adap = netdev2adap(dev);
3583
3584 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3585 if (!skb)
3586 return -ENOMEM;
3587
3588 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3589 INIT_TP_WR(req, 0);
3590 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3591 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3592 LISTSVR_IPV6(0)) | QUEUENO(queue));
3593 ret = t4_mgmt_tx(adap, skb);
3594 return net_xmit_eval(ret);
3595 }
3596 EXPORT_SYMBOL(cxgb4_remove_server);
3597
3598 /**
3599 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3600 * @mtus: the HW MTU table
3601 * @mtu: the target MTU
3602 * @idx: index of selected entry in the MTU table
3603 *
3604 * Returns the index and the value in the HW MTU table that is closest to
3605 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3606 * table, in which case that smallest available value is selected.
3607 */
3608 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3609 unsigned int *idx)
3610 {
3611 unsigned int i = 0;
3612
3613 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3614 ++i;
3615 if (idx)
3616 *idx = i;
3617 return mtus[i];
3618 }
3619 EXPORT_SYMBOL(cxgb4_best_mtu);
3620
3621 /**
3622 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3623 * @mtus: the HW MTU table
3624 * @header_size: Header Size
3625 * @data_size_max: maximum Data Segment Size
3626 * @data_size_align: desired Data Segment Size Alignment (2^N)
3627 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3628 *
3629 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3630 * MTU Table based solely on a Maximum MTU parameter, we break that
3631 * parameter up into a Header Size and Maximum Data Segment Size, and
3632 * provide a desired Data Segment Size Alignment. If we find an MTU in
3633 * the Hardware MTU Table which will result in a Data Segment Size with
3634 * the requested alignment _and_ that MTU isn't "too far" from the
3635 * closest MTU, then we'll return that rather than the closest MTU.
3636 */
3637 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3638 unsigned short header_size,
3639 unsigned short data_size_max,
3640 unsigned short data_size_align,
3641 unsigned int *mtu_idxp)
3642 {
3643 unsigned short max_mtu = header_size + data_size_max;
3644 unsigned short data_size_align_mask = data_size_align - 1;
3645 int mtu_idx, aligned_mtu_idx;
3646
3647 /* Scan the MTU Table till we find an MTU which is larger than our
3648 * Maximum MTU or we reach the end of the table. Along the way,
3649 * record the last MTU found, if any, which will result in a Data
3650 * Segment Length matching the requested alignment.
3651 */
3652 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3653 unsigned short data_size = mtus[mtu_idx] - header_size;
3654
3655 /* If this MTU minus the Header Size would result in a
3656 * Data Segment Size of the desired alignment, remember it.
3657 */
3658 if ((data_size & data_size_align_mask) == 0)
3659 aligned_mtu_idx = mtu_idx;
3660
3661 /* If we're not at the end of the Hardware MTU Table and the
3662 * next element is larger than our Maximum MTU, drop out of
3663 * the loop.
3664 */
3665 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3666 break;
3667 }
3668
3669 /* If we fell out of the loop because we ran to the end of the table,
3670 * then we just have to use the last [largest] entry.
3671 */
3672 if (mtu_idx == NMTUS)
3673 mtu_idx--;
3674
3675 /* If we found an MTU which resulted in the requested Data Segment
3676 * Length alignment and that's "not far" from the largest MTU which is
3677 * less than or equal to the maximum MTU, then use that.
3678 */
3679 if (aligned_mtu_idx >= 0 &&
3680 mtu_idx - aligned_mtu_idx <= 1)
3681 mtu_idx = aligned_mtu_idx;
3682
3683 /* If the caller has passed in an MTU Index pointer, pass the
3684 * MTU Index back. Return the MTU value.
3685 */
3686 if (mtu_idxp)
3687 *mtu_idxp = mtu_idx;
3688 return mtus[mtu_idx];
3689 }
3690 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3691
3692 /**
3693 * cxgb4_port_chan - get the HW channel of a port
3694 * @dev: the net device for the port
3695 *
3696 * Return the HW Tx channel of the given port.
3697 */
3698 unsigned int cxgb4_port_chan(const struct net_device *dev)
3699 {
3700 return netdev2pinfo(dev)->tx_chan;
3701 }
3702 EXPORT_SYMBOL(cxgb4_port_chan);
3703
3704 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3705 {
3706 struct adapter *adap = netdev2adap(dev);
3707 u32 v1, v2, lp_count, hp_count;
3708
3709 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3710 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3711 if (is_t4(adap->params.chip)) {
3712 lp_count = G_LP_COUNT(v1);
3713 hp_count = G_HP_COUNT(v1);
3714 } else {
3715 lp_count = G_LP_COUNT_T5(v1);
3716 hp_count = G_HP_COUNT_T5(v2);
3717 }
3718 return lpfifo ? lp_count : hp_count;
3719 }
3720 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3721
3722 /**
3723 * cxgb4_port_viid - get the VI id of a port
3724 * @dev: the net device for the port
3725 *
3726 * Return the VI id of the given port.
3727 */
3728 unsigned int cxgb4_port_viid(const struct net_device *dev)
3729 {
3730 return netdev2pinfo(dev)->viid;
3731 }
3732 EXPORT_SYMBOL(cxgb4_port_viid);
3733
3734 /**
3735 * cxgb4_port_idx - get the index of a port
3736 * @dev: the net device for the port
3737 *
3738 * Return the index of the given port.
3739 */
3740 unsigned int cxgb4_port_idx(const struct net_device *dev)
3741 {
3742 return netdev2pinfo(dev)->port_id;
3743 }
3744 EXPORT_SYMBOL(cxgb4_port_idx);
3745
3746 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3747 struct tp_tcp_stats *v6)
3748 {
3749 struct adapter *adap = pci_get_drvdata(pdev);
3750
3751 spin_lock(&adap->stats_lock);
3752 t4_tp_get_tcp_stats(adap, v4, v6);
3753 spin_unlock(&adap->stats_lock);
3754 }
3755 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3756
3757 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3758 const unsigned int *pgsz_order)
3759 {
3760 struct adapter *adap = netdev2adap(dev);
3761
3762 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3763 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3764 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3765 HPZ3(pgsz_order[3]));
3766 }
3767 EXPORT_SYMBOL(cxgb4_iscsi_init);
3768
3769 int cxgb4_flush_eq_cache(struct net_device *dev)
3770 {
3771 struct adapter *adap = netdev2adap(dev);
3772 int ret;
3773
3774 ret = t4_fwaddrspace_write(adap, adap->mbox,
3775 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3776 return ret;
3777 }
3778 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3779
3780 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3781 {
3782 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3783 __be64 indices;
3784 int ret;
3785
3786 spin_lock(&adap->win0_lock);
3787 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3788 sizeof(indices), (__be32 *)&indices,
3789 T4_MEMORY_READ);
3790 spin_unlock(&adap->win0_lock);
3791 if (!ret) {
3792 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3793 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3794 }
3795 return ret;
3796 }
3797
3798 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3799 u16 size)
3800 {
3801 struct adapter *adap = netdev2adap(dev);
3802 u16 hw_pidx, hw_cidx;
3803 int ret;
3804
3805 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3806 if (ret)
3807 goto out;
3808
3809 if (pidx != hw_pidx) {
3810 u16 delta;
3811
3812 if (pidx >= hw_pidx)
3813 delta = pidx - hw_pidx;
3814 else
3815 delta = size - hw_pidx + pidx;
3816 wmb();
3817 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3818 QID(qid) | PIDX(delta));
3819 }
3820 out:
3821 return ret;
3822 }
3823 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3824
3825 void cxgb4_disable_db_coalescing(struct net_device *dev)
3826 {
3827 struct adapter *adap;
3828
3829 adap = netdev2adap(dev);
3830 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3831 F_NOCOALESCE);
3832 }
3833 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3834
3835 void cxgb4_enable_db_coalescing(struct net_device *dev)
3836 {
3837 struct adapter *adap;
3838
3839 adap = netdev2adap(dev);
3840 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3841 }
3842 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3843
3844 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3845 {
3846 struct adapter *adap;
3847 u32 offset, memtype, memaddr;
3848 u32 edc0_size, edc1_size, mc0_size, mc1_size;
3849 u32 edc0_end, edc1_end, mc0_end, mc1_end;
3850 int ret;
3851
3852 adap = netdev2adap(dev);
3853
3854 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3855
3856 /* Figure out where the offset lands in the Memory Type/Address scheme.
3857 * This code assumes that the memory is laid out starting at offset 0
3858 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3859 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
3860 * MC0, and some have both MC0 and MC1.
3861 */
3862 edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3863 edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3864 mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3865
3866 edc0_end = edc0_size;
3867 edc1_end = edc0_end + edc1_size;
3868 mc0_end = edc1_end + mc0_size;
3869
3870 if (offset < edc0_end) {
3871 memtype = MEM_EDC0;
3872 memaddr = offset;
3873 } else if (offset < edc1_end) {
3874 memtype = MEM_EDC1;
3875 memaddr = offset - edc0_end;
3876 } else {
3877 if (offset < mc0_end) {
3878 memtype = MEM_MC0;
3879 memaddr = offset - edc1_end;
3880 } else if (is_t4(adap->params.chip)) {
3881 /* T4 only has a single memory channel */
3882 goto err;
3883 } else {
3884 mc1_size = EXT_MEM_SIZE_GET(
3885 t4_read_reg(adap,
3886 MA_EXT_MEMORY1_BAR)) << 20;
3887 mc1_end = mc0_end + mc1_size;
3888 if (offset < mc1_end) {
3889 memtype = MEM_MC1;
3890 memaddr = offset - mc0_end;
3891 } else {
3892 /* offset beyond the end of any memory */
3893 goto err;
3894 }
3895 }
3896 }
3897
3898 spin_lock(&adap->win0_lock);
3899 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3900 spin_unlock(&adap->win0_lock);
3901 return ret;
3902
3903 err:
3904 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3905 stag, offset);
3906 return -EINVAL;
3907 }
3908 EXPORT_SYMBOL(cxgb4_read_tpte);
3909
3910 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3911 {
3912 u32 hi, lo;
3913 struct adapter *adap;
3914
3915 adap = netdev2adap(dev);
3916 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3917 hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3918
3919 return ((u64)hi << 32) | (u64)lo;
3920 }
3921 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3922
3923 static struct pci_driver cxgb4_driver;
3924
3925 static void check_neigh_update(struct neighbour *neigh)
3926 {
3927 const struct device *parent;
3928 const struct net_device *netdev = neigh->dev;
3929
3930 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3931 netdev = vlan_dev_real_dev(netdev);
3932 parent = netdev->dev.parent;
3933 if (parent && parent->driver == &cxgb4_driver.driver)
3934 t4_l2t_update(dev_get_drvdata(parent), neigh);
3935 }
3936
3937 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3938 void *data)
3939 {
3940 switch (event) {
3941 case NETEVENT_NEIGH_UPDATE:
3942 check_neigh_update(data);
3943 break;
3944 case NETEVENT_REDIRECT:
3945 default:
3946 break;
3947 }
3948 return 0;
3949 }
3950
3951 static bool netevent_registered;
3952 static struct notifier_block cxgb4_netevent_nb = {
3953 .notifier_call = netevent_cb
3954 };
3955
3956 static void drain_db_fifo(struct adapter *adap, int usecs)
3957 {
3958 u32 v1, v2, lp_count, hp_count;
3959
3960 do {
3961 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3962 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3963 if (is_t4(adap->params.chip)) {
3964 lp_count = G_LP_COUNT(v1);
3965 hp_count = G_HP_COUNT(v1);
3966 } else {
3967 lp_count = G_LP_COUNT_T5(v1);
3968 hp_count = G_HP_COUNT_T5(v2);
3969 }
3970
3971 if (lp_count == 0 && hp_count == 0)
3972 break;
3973 set_current_state(TASK_UNINTERRUPTIBLE);
3974 schedule_timeout(usecs_to_jiffies(usecs));
3975 } while (1);
3976 }
3977
3978 static void disable_txq_db(struct sge_txq *q)
3979 {
3980 unsigned long flags;
3981
3982 spin_lock_irqsave(&q->db_lock, flags);
3983 q->db_disabled = 1;
3984 spin_unlock_irqrestore(&q->db_lock, flags);
3985 }
3986
3987 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3988 {
3989 spin_lock_irq(&q->db_lock);
3990 if (q->db_pidx_inc) {
3991 /* Make sure that all writes to the TX descriptors
3992 * are committed before we tell HW about them.
3993 */
3994 wmb();
3995 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3996 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3997 q->db_pidx_inc = 0;
3998 }
3999 q->db_disabled = 0;
4000 spin_unlock_irq(&q->db_lock);
4001 }
4002
4003 static void disable_dbs(struct adapter *adap)
4004 {
4005 int i;
4006
4007 for_each_ethrxq(&adap->sge, i)
4008 disable_txq_db(&adap->sge.ethtxq[i].q);
4009 for_each_ofldrxq(&adap->sge, i)
4010 disable_txq_db(&adap->sge.ofldtxq[i].q);
4011 for_each_port(adap, i)
4012 disable_txq_db(&adap->sge.ctrlq[i].q);
4013 }
4014
4015 static void enable_dbs(struct adapter *adap)
4016 {
4017 int i;
4018
4019 for_each_ethrxq(&adap->sge, i)
4020 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4021 for_each_ofldrxq(&adap->sge, i)
4022 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4023 for_each_port(adap, i)
4024 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4025 }
4026
4027 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4028 {
4029 if (adap->uld_handle[CXGB4_ULD_RDMA])
4030 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4031 cmd);
4032 }
4033
4034 static void process_db_full(struct work_struct *work)
4035 {
4036 struct adapter *adap;
4037
4038 adap = container_of(work, struct adapter, db_full_task);
4039
4040 drain_db_fifo(adap, dbfifo_drain_delay);
4041 enable_dbs(adap);
4042 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4043 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4044 DBFIFO_HP_INT | DBFIFO_LP_INT,
4045 DBFIFO_HP_INT | DBFIFO_LP_INT);
4046 }
4047
4048 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4049 {
4050 u16 hw_pidx, hw_cidx;
4051 int ret;
4052
4053 spin_lock_irq(&q->db_lock);
4054 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4055 if (ret)
4056 goto out;
4057 if (q->db_pidx != hw_pidx) {
4058 u16 delta;
4059
4060 if (q->db_pidx >= hw_pidx)
4061 delta = q->db_pidx - hw_pidx;
4062 else
4063 delta = q->size - hw_pidx + q->db_pidx;
4064 wmb();
4065 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4066 QID(q->cntxt_id) | PIDX(delta));
4067 }
4068 out:
4069 q->db_disabled = 0;
4070 q->db_pidx_inc = 0;
4071 spin_unlock_irq(&q->db_lock);
4072 if (ret)
4073 CH_WARN(adap, "DB drop recovery failed.\n");
4074 }
4075 static void recover_all_queues(struct adapter *adap)
4076 {
4077 int i;
4078
4079 for_each_ethrxq(&adap->sge, i)
4080 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4081 for_each_ofldrxq(&adap->sge, i)
4082 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4083 for_each_port(adap, i)
4084 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4085 }
4086
4087 static void process_db_drop(struct work_struct *work)
4088 {
4089 struct adapter *adap;
4090
4091 adap = container_of(work, struct adapter, db_drop_task);
4092
4093 if (is_t4(adap->params.chip)) {
4094 drain_db_fifo(adap, dbfifo_drain_delay);
4095 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4096 drain_db_fifo(adap, dbfifo_drain_delay);
4097 recover_all_queues(adap);
4098 drain_db_fifo(adap, dbfifo_drain_delay);
4099 enable_dbs(adap);
4100 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4101 } else {
4102 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4103 u16 qid = (dropped_db >> 15) & 0x1ffff;
4104 u16 pidx_inc = dropped_db & 0x1fff;
4105 unsigned int s_qpp;
4106 unsigned short udb_density;
4107 unsigned long qpshift;
4108 int page;
4109 u32 udb;
4110
4111 dev_warn(adap->pdev_dev,
4112 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4113 dropped_db, qid,
4114 (dropped_db >> 14) & 1,
4115 (dropped_db >> 13) & 1,
4116 pidx_inc);
4117
4118 drain_db_fifo(adap, 1);
4119
4120 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4121 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4122 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4123 qpshift = PAGE_SHIFT - ilog2(udb_density);
4124 udb = qid << qpshift;
4125 udb &= PAGE_MASK;
4126 page = udb / PAGE_SIZE;
4127 udb += (qid - (page * udb_density)) * 128;
4128
4129 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4130
4131 /* Re-enable BAR2 WC */
4132 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4133 }
4134
4135 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4136 }
4137
4138 void t4_db_full(struct adapter *adap)
4139 {
4140 if (is_t4(adap->params.chip)) {
4141 disable_dbs(adap);
4142 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4143 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4144 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4145 queue_work(adap->workq, &adap->db_full_task);
4146 }
4147 }
4148
4149 void t4_db_dropped(struct adapter *adap)
4150 {
4151 if (is_t4(adap->params.chip)) {
4152 disable_dbs(adap);
4153 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4154 }
4155 queue_work(adap->workq, &adap->db_drop_task);
4156 }
4157
4158 static void uld_attach(struct adapter *adap, unsigned int uld)
4159 {
4160 void *handle;
4161 struct cxgb4_lld_info lli;
4162 unsigned short i;
4163
4164 lli.pdev = adap->pdev;
4165 lli.pf = adap->fn;
4166 lli.l2t = adap->l2t;
4167 lli.tids = &adap->tids;
4168 lli.ports = adap->port;
4169 lli.vr = &adap->vres;
4170 lli.mtus = adap->params.mtus;
4171 if (uld == CXGB4_ULD_RDMA) {
4172 lli.rxq_ids = adap->sge.rdma_rxq;
4173 lli.ciq_ids = adap->sge.rdma_ciq;
4174 lli.nrxq = adap->sge.rdmaqs;
4175 lli.nciq = adap->sge.rdmaciqs;
4176 } else if (uld == CXGB4_ULD_ISCSI) {
4177 lli.rxq_ids = adap->sge.ofld_rxq;
4178 lli.nrxq = adap->sge.ofldqsets;
4179 }
4180 lli.ntxq = adap->sge.ofldqsets;
4181 lli.nchan = adap->params.nports;
4182 lli.nports = adap->params.nports;
4183 lli.wr_cred = adap->params.ofldq_wr_cred;
4184 lli.adapter_type = adap->params.chip;
4185 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4186 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4187 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4188 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4189 (adap->fn * 4));
4190 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4191 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4192 (adap->fn * 4));
4193 lli.filt_mode = adap->params.tp.vlan_pri_map;
4194 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4195 for (i = 0; i < NCHAN; i++)
4196 lli.tx_modq[i] = i;
4197 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4198 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4199 lli.fw_vers = adap->params.fw_vers;
4200 lli.dbfifo_int_thresh = dbfifo_int_thresh;
4201 lli.sge_ingpadboundary = adap->sge.fl_align;
4202 lli.sge_egrstatuspagesize = adap->sge.stat_len;
4203 lli.sge_pktshift = adap->sge.pktshift;
4204 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4205 lli.max_ordird_qp = adap->params.max_ordird_qp;
4206 lli.max_ird_adapter = adap->params.max_ird_adapter;
4207 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4208
4209 handle = ulds[uld].add(&lli);
4210 if (IS_ERR(handle)) {
4211 dev_warn(adap->pdev_dev,
4212 "could not attach to the %s driver, error %ld\n",
4213 uld_str[uld], PTR_ERR(handle));
4214 return;
4215 }
4216
4217 adap->uld_handle[uld] = handle;
4218
4219 if (!netevent_registered) {
4220 register_netevent_notifier(&cxgb4_netevent_nb);
4221 netevent_registered = true;
4222 }
4223
4224 if (adap->flags & FULL_INIT_DONE)
4225 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4226 }
4227
4228 static void attach_ulds(struct adapter *adap)
4229 {
4230 unsigned int i;
4231
4232 spin_lock(&adap_rcu_lock);
4233 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4234 spin_unlock(&adap_rcu_lock);
4235
4236 mutex_lock(&uld_mutex);
4237 list_add_tail(&adap->list_node, &adapter_list);
4238 for (i = 0; i < CXGB4_ULD_MAX; i++)
4239 if (ulds[i].add)
4240 uld_attach(adap, i);
4241 mutex_unlock(&uld_mutex);
4242 }
4243
4244 static void detach_ulds(struct adapter *adap)
4245 {
4246 unsigned int i;
4247
4248 mutex_lock(&uld_mutex);
4249 list_del(&adap->list_node);
4250 for (i = 0; i < CXGB4_ULD_MAX; i++)
4251 if (adap->uld_handle[i]) {
4252 ulds[i].state_change(adap->uld_handle[i],
4253 CXGB4_STATE_DETACH);
4254 adap->uld_handle[i] = NULL;
4255 }
4256 if (netevent_registered && list_empty(&adapter_list)) {
4257 unregister_netevent_notifier(&cxgb4_netevent_nb);
4258 netevent_registered = false;
4259 }
4260 mutex_unlock(&uld_mutex);
4261
4262 spin_lock(&adap_rcu_lock);
4263 list_del_rcu(&adap->rcu_node);
4264 spin_unlock(&adap_rcu_lock);
4265 }
4266
4267 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4268 {
4269 unsigned int i;
4270
4271 mutex_lock(&uld_mutex);
4272 for (i = 0; i < CXGB4_ULD_MAX; i++)
4273 if (adap->uld_handle[i])
4274 ulds[i].state_change(adap->uld_handle[i], new_state);
4275 mutex_unlock(&uld_mutex);
4276 }
4277
4278 /**
4279 * cxgb4_register_uld - register an upper-layer driver
4280 * @type: the ULD type
4281 * @p: the ULD methods
4282 *
4283 * Registers an upper-layer driver with this driver and notifies the ULD
4284 * about any presently available devices that support its type. Returns
4285 * %-EBUSY if a ULD of the same type is already registered.
4286 */
4287 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4288 {
4289 int ret = 0;
4290 struct adapter *adap;
4291
4292 if (type >= CXGB4_ULD_MAX)
4293 return -EINVAL;
4294 mutex_lock(&uld_mutex);
4295 if (ulds[type].add) {
4296 ret = -EBUSY;
4297 goto out;
4298 }
4299 ulds[type] = *p;
4300 list_for_each_entry(adap, &adapter_list, list_node)
4301 uld_attach(adap, type);
4302 out: mutex_unlock(&uld_mutex);
4303 return ret;
4304 }
4305 EXPORT_SYMBOL(cxgb4_register_uld);
4306
4307 /**
4308 * cxgb4_unregister_uld - unregister an upper-layer driver
4309 * @type: the ULD type
4310 *
4311 * Unregisters an existing upper-layer driver.
4312 */
4313 int cxgb4_unregister_uld(enum cxgb4_uld type)
4314 {
4315 struct adapter *adap;
4316
4317 if (type >= CXGB4_ULD_MAX)
4318 return -EINVAL;
4319 mutex_lock(&uld_mutex);
4320 list_for_each_entry(adap, &adapter_list, list_node)
4321 adap->uld_handle[type] = NULL;
4322 ulds[type].add = NULL;
4323 mutex_unlock(&uld_mutex);
4324 return 0;
4325 }
4326 EXPORT_SYMBOL(cxgb4_unregister_uld);
4327
4328 /* Check if netdev on which event is occured belongs to us or not. Return
4329 * success (true) if it belongs otherwise failure (false).
4330 * Called with rcu_read_lock() held.
4331 */
4332 static bool cxgb4_netdev(const struct net_device *netdev)
4333 {
4334 struct adapter *adap;
4335 int i;
4336
4337 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4338 for (i = 0; i < MAX_NPORTS; i++)
4339 if (adap->port[i] == netdev)
4340 return true;
4341 return false;
4342 }
4343
4344 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4345 unsigned long event)
4346 {
4347 int ret = NOTIFY_DONE;
4348
4349 rcu_read_lock();
4350 if (cxgb4_netdev(event_dev)) {
4351 switch (event) {
4352 case NETDEV_UP:
4353 ret = cxgb4_clip_get(event_dev,
4354 (const struct in6_addr *)ifa->addr.s6_addr);
4355 if (ret < 0) {
4356 rcu_read_unlock();
4357 return ret;
4358 }
4359 ret = NOTIFY_OK;
4360 break;
4361 case NETDEV_DOWN:
4362 cxgb4_clip_release(event_dev,
4363 (const struct in6_addr *)ifa->addr.s6_addr);
4364 ret = NOTIFY_OK;
4365 break;
4366 default:
4367 break;
4368 }
4369 }
4370 rcu_read_unlock();
4371 return ret;
4372 }
4373
4374 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4375 unsigned long event, void *data)
4376 {
4377 struct inet6_ifaddr *ifa = data;
4378 struct net_device *event_dev;
4379 int ret = NOTIFY_DONE;
4380 struct bonding *bond = netdev_priv(ifa->idev->dev);
4381 struct list_head *iter;
4382 struct slave *slave;
4383 struct pci_dev *first_pdev = NULL;
4384
4385 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4386 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4387 ret = clip_add(event_dev, ifa, event);
4388 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4389 /* It is possible that two different adapters are bonded in one
4390 * bond. We need to find such different adapters and add clip
4391 * in all of them only once.
4392 */
4393 read_lock(&bond->lock);
4394 bond_for_each_slave(bond, slave, iter) {
4395 if (!first_pdev) {
4396 ret = clip_add(slave->dev, ifa, event);
4397 /* If clip_add is success then only initialize
4398 * first_pdev since it means it is our device
4399 */
4400 if (ret == NOTIFY_OK)
4401 first_pdev = to_pci_dev(
4402 slave->dev->dev.parent);
4403 } else if (first_pdev !=
4404 to_pci_dev(slave->dev->dev.parent))
4405 ret = clip_add(slave->dev, ifa, event);
4406 }
4407 read_unlock(&bond->lock);
4408 } else
4409 ret = clip_add(ifa->idev->dev, ifa, event);
4410
4411 return ret;
4412 }
4413
4414 static struct notifier_block cxgb4_inet6addr_notifier = {
4415 .notifier_call = cxgb4_inet6addr_handler
4416 };
4417
4418 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4419 * a physical device.
4420 * The physical device reference is needed to send the actul CLIP command.
4421 */
4422 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4423 {
4424 struct inet6_dev *idev = NULL;
4425 struct inet6_ifaddr *ifa;
4426 int ret = 0;
4427
4428 idev = __in6_dev_get(root_dev);
4429 if (!idev)
4430 return ret;
4431
4432 read_lock_bh(&idev->lock);
4433 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4434 ret = cxgb4_clip_get(dev,
4435 (const struct in6_addr *)ifa->addr.s6_addr);
4436 if (ret < 0)
4437 break;
4438 }
4439 read_unlock_bh(&idev->lock);
4440
4441 return ret;
4442 }
4443
4444 static int update_root_dev_clip(struct net_device *dev)
4445 {
4446 struct net_device *root_dev = NULL;
4447 int i, ret = 0;
4448
4449 /* First populate the real net device's IPv6 addresses */
4450 ret = update_dev_clip(dev, dev);
4451 if (ret)
4452 return ret;
4453
4454 /* Parse all bond and vlan devices layered on top of the physical dev */
4455 for (i = 0; i < VLAN_N_VID; i++) {
4456 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4457 if (!root_dev)
4458 continue;
4459
4460 ret = update_dev_clip(root_dev, dev);
4461 if (ret)
4462 break;
4463 }
4464 return ret;
4465 }
4466
4467 static void update_clip(const struct adapter *adap)
4468 {
4469 int i;
4470 struct net_device *dev;
4471 int ret;
4472
4473 rcu_read_lock();
4474
4475 for (i = 0; i < MAX_NPORTS; i++) {
4476 dev = adap->port[i];
4477 ret = 0;
4478
4479 if (dev)
4480 ret = update_root_dev_clip(dev);
4481
4482 if (ret < 0)
4483 break;
4484 }
4485 rcu_read_unlock();
4486 }
4487
4488 /**
4489 * cxgb_up - enable the adapter
4490 * @adap: adapter being enabled
4491 *
4492 * Called when the first port is enabled, this function performs the
4493 * actions necessary to make an adapter operational, such as completing
4494 * the initialization of HW modules, and enabling interrupts.
4495 *
4496 * Must be called with the rtnl lock held.
4497 */
4498 static int cxgb_up(struct adapter *adap)
4499 {
4500 int err;
4501
4502 err = setup_sge_queues(adap);
4503 if (err)
4504 goto out;
4505 err = setup_rss(adap);
4506 if (err)
4507 goto freeq;
4508
4509 if (adap->flags & USING_MSIX) {
4510 name_msix_vecs(adap);
4511 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4512 adap->msix_info[0].desc, adap);
4513 if (err)
4514 goto irq_err;
4515
4516 err = request_msix_queue_irqs(adap);
4517 if (err) {
4518 free_irq(adap->msix_info[0].vec, adap);
4519 goto irq_err;
4520 }
4521 } else {
4522 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4523 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4524 adap->port[0]->name, adap);
4525 if (err)
4526 goto irq_err;
4527 }
4528 enable_rx(adap);
4529 t4_sge_start(adap);
4530 t4_intr_enable(adap);
4531 adap->flags |= FULL_INIT_DONE;
4532 notify_ulds(adap, CXGB4_STATE_UP);
4533 update_clip(adap);
4534 out:
4535 return err;
4536 irq_err:
4537 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4538 freeq:
4539 t4_free_sge_resources(adap);
4540 goto out;
4541 }
4542
4543 static void cxgb_down(struct adapter *adapter)
4544 {
4545 t4_intr_disable(adapter);
4546 cancel_work_sync(&adapter->tid_release_task);
4547 cancel_work_sync(&adapter->db_full_task);
4548 cancel_work_sync(&adapter->db_drop_task);
4549 adapter->tid_release_task_busy = false;
4550 adapter->tid_release_head = NULL;
4551
4552 if (adapter->flags & USING_MSIX) {
4553 free_msix_queue_irqs(adapter);
4554 free_irq(adapter->msix_info[0].vec, adapter);
4555 } else
4556 free_irq(adapter->pdev->irq, adapter);
4557 quiesce_rx(adapter);
4558 t4_sge_stop(adapter);
4559 t4_free_sge_resources(adapter);
4560 adapter->flags &= ~FULL_INIT_DONE;
4561 }
4562
4563 /*
4564 * net_device operations
4565 */
4566 static int cxgb_open(struct net_device *dev)
4567 {
4568 int err;
4569 struct port_info *pi = netdev_priv(dev);
4570 struct adapter *adapter = pi->adapter;
4571
4572 netif_carrier_off(dev);
4573
4574 if (!(adapter->flags & FULL_INIT_DONE)) {
4575 err = cxgb_up(adapter);
4576 if (err < 0)
4577 return err;
4578 }
4579
4580 err = link_start(dev);
4581 if (!err)
4582 netif_tx_start_all_queues(dev);
4583 return err;
4584 }
4585
4586 static int cxgb_close(struct net_device *dev)
4587 {
4588 struct port_info *pi = netdev_priv(dev);
4589 struct adapter *adapter = pi->adapter;
4590
4591 netif_tx_stop_all_queues(dev);
4592 netif_carrier_off(dev);
4593 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4594 }
4595
4596 /* Return an error number if the indicated filter isn't writable ...
4597 */
4598 static int writable_filter(struct filter_entry *f)
4599 {
4600 if (f->locked)
4601 return -EPERM;
4602 if (f->pending)
4603 return -EBUSY;
4604
4605 return 0;
4606 }
4607
4608 /* Delete the filter at the specified index (if valid). The checks for all
4609 * the common problems with doing this like the filter being locked, currently
4610 * pending in another operation, etc.
4611 */
4612 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4613 {
4614 struct filter_entry *f;
4615 int ret;
4616
4617 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4618 return -EINVAL;
4619
4620 f = &adapter->tids.ftid_tab[fidx];
4621 ret = writable_filter(f);
4622 if (ret)
4623 return ret;
4624 if (f->valid)
4625 return del_filter_wr(adapter, fidx);
4626
4627 return 0;
4628 }
4629
4630 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4631 __be32 sip, __be16 sport, __be16 vlan,
4632 unsigned int queue, unsigned char port, unsigned char mask)
4633 {
4634 int ret;
4635 struct filter_entry *f;
4636 struct adapter *adap;
4637 int i;
4638 u8 *val;
4639
4640 adap = netdev2adap(dev);
4641
4642 /* Adjust stid to correct filter index */
4643 stid -= adap->tids.sftid_base;
4644 stid += adap->tids.nftids;
4645
4646 /* Check to make sure the filter requested is writable ...
4647 */
4648 f = &adap->tids.ftid_tab[stid];
4649 ret = writable_filter(f);
4650 if (ret)
4651 return ret;
4652
4653 /* Clear out any old resources being used by the filter before
4654 * we start constructing the new filter.
4655 */
4656 if (f->valid)
4657 clear_filter(adap, f);
4658
4659 /* Clear out filter specifications */
4660 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4661 f->fs.val.lport = cpu_to_be16(sport);
4662 f->fs.mask.lport = ~0;
4663 val = (u8 *)&sip;
4664 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4665 for (i = 0; i < 4; i++) {
4666 f->fs.val.lip[i] = val[i];
4667 f->fs.mask.lip[i] = ~0;
4668 }
4669 if (adap->params.tp.vlan_pri_map & F_PORT) {
4670 f->fs.val.iport = port;
4671 f->fs.mask.iport = mask;
4672 }
4673 }
4674
4675 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4676 f->fs.val.proto = IPPROTO_TCP;
4677 f->fs.mask.proto = ~0;
4678 }
4679
4680 f->fs.dirsteer = 1;
4681 f->fs.iq = queue;
4682 /* Mark filter as locked */
4683 f->locked = 1;
4684 f->fs.rpttid = 1;
4685
4686 ret = set_filter_wr(adap, stid);
4687 if (ret) {
4688 clear_filter(adap, f);
4689 return ret;
4690 }
4691
4692 return 0;
4693 }
4694 EXPORT_SYMBOL(cxgb4_create_server_filter);
4695
4696 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4697 unsigned int queue, bool ipv6)
4698 {
4699 int ret;
4700 struct filter_entry *f;
4701 struct adapter *adap;
4702
4703 adap = netdev2adap(dev);
4704
4705 /* Adjust stid to correct filter index */
4706 stid -= adap->tids.sftid_base;
4707 stid += adap->tids.nftids;
4708
4709 f = &adap->tids.ftid_tab[stid];
4710 /* Unlock the filter */
4711 f->locked = 0;
4712
4713 ret = delete_filter(adap, stid);
4714 if (ret)
4715 return ret;
4716
4717 return 0;
4718 }
4719 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4720
4721 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4722 struct rtnl_link_stats64 *ns)
4723 {
4724 struct port_stats stats;
4725 struct port_info *p = netdev_priv(dev);
4726 struct adapter *adapter = p->adapter;
4727
4728 /* Block retrieving statistics during EEH error
4729 * recovery. Otherwise, the recovery might fail
4730 * and the PCI device will be removed permanently
4731 */
4732 spin_lock(&adapter->stats_lock);
4733 if (!netif_device_present(dev)) {
4734 spin_unlock(&adapter->stats_lock);
4735 return ns;
4736 }
4737 t4_get_port_stats(adapter, p->tx_chan, &stats);
4738 spin_unlock(&adapter->stats_lock);
4739
4740 ns->tx_bytes = stats.tx_octets;
4741 ns->tx_packets = stats.tx_frames;
4742 ns->rx_bytes = stats.rx_octets;
4743 ns->rx_packets = stats.rx_frames;
4744 ns->multicast = stats.rx_mcast_frames;
4745
4746 /* detailed rx_errors */
4747 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4748 stats.rx_runt;
4749 ns->rx_over_errors = 0;
4750 ns->rx_crc_errors = stats.rx_fcs_err;
4751 ns->rx_frame_errors = stats.rx_symbol_err;
4752 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4753 stats.rx_ovflow2 + stats.rx_ovflow3 +
4754 stats.rx_trunc0 + stats.rx_trunc1 +
4755 stats.rx_trunc2 + stats.rx_trunc3;
4756 ns->rx_missed_errors = 0;
4757
4758 /* detailed tx_errors */
4759 ns->tx_aborted_errors = 0;
4760 ns->tx_carrier_errors = 0;
4761 ns->tx_fifo_errors = 0;
4762 ns->tx_heartbeat_errors = 0;
4763 ns->tx_window_errors = 0;
4764
4765 ns->tx_errors = stats.tx_error_frames;
4766 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4767 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4768 return ns;
4769 }
4770
4771 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4772 {
4773 unsigned int mbox;
4774 int ret = 0, prtad, devad;
4775 struct port_info *pi = netdev_priv(dev);
4776 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4777
4778 switch (cmd) {
4779 case SIOCGMIIPHY:
4780 if (pi->mdio_addr < 0)
4781 return -EOPNOTSUPP;
4782 data->phy_id = pi->mdio_addr;
4783 break;
4784 case SIOCGMIIREG:
4785 case SIOCSMIIREG:
4786 if (mdio_phy_id_is_c45(data->phy_id)) {
4787 prtad = mdio_phy_id_prtad(data->phy_id);
4788 devad = mdio_phy_id_devad(data->phy_id);
4789 } else if (data->phy_id < 32) {
4790 prtad = data->phy_id;
4791 devad = 0;
4792 data->reg_num &= 0x1f;
4793 } else
4794 return -EINVAL;
4795
4796 mbox = pi->adapter->fn;
4797 if (cmd == SIOCGMIIREG)
4798 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4799 data->reg_num, &data->val_out);
4800 else
4801 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4802 data->reg_num, data->val_in);
4803 break;
4804 default:
4805 return -EOPNOTSUPP;
4806 }
4807 return ret;
4808 }
4809
4810 static void cxgb_set_rxmode(struct net_device *dev)
4811 {
4812 /* unfortunately we can't return errors to the stack */
4813 set_rxmode(dev, -1, false);
4814 }
4815
4816 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4817 {
4818 int ret;
4819 struct port_info *pi = netdev_priv(dev);
4820
4821 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4822 return -EINVAL;
4823 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4824 -1, -1, -1, true);
4825 if (!ret)
4826 dev->mtu = new_mtu;
4827 return ret;
4828 }
4829
4830 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4831 {
4832 int ret;
4833 struct sockaddr *addr = p;
4834 struct port_info *pi = netdev_priv(dev);
4835
4836 if (!is_valid_ether_addr(addr->sa_data))
4837 return -EADDRNOTAVAIL;
4838
4839 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4840 pi->xact_addr_filt, addr->sa_data, true, true);
4841 if (ret < 0)
4842 return ret;
4843
4844 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4845 pi->xact_addr_filt = ret;
4846 return 0;
4847 }
4848
4849 #ifdef CONFIG_NET_POLL_CONTROLLER
4850 static void cxgb_netpoll(struct net_device *dev)
4851 {
4852 struct port_info *pi = netdev_priv(dev);
4853 struct adapter *adap = pi->adapter;
4854
4855 if (adap->flags & USING_MSIX) {
4856 int i;
4857 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4858
4859 for (i = pi->nqsets; i; i--, rx++)
4860 t4_sge_intr_msix(0, &rx->rspq);
4861 } else
4862 t4_intr_handler(adap)(0, adap);
4863 }
4864 #endif
4865
4866 static const struct net_device_ops cxgb4_netdev_ops = {
4867 .ndo_open = cxgb_open,
4868 .ndo_stop = cxgb_close,
4869 .ndo_start_xmit = t4_eth_xmit,
4870 .ndo_select_queue = cxgb_select_queue,
4871 .ndo_get_stats64 = cxgb_get_stats,
4872 .ndo_set_rx_mode = cxgb_set_rxmode,
4873 .ndo_set_mac_address = cxgb_set_mac_addr,
4874 .ndo_set_features = cxgb_set_features,
4875 .ndo_validate_addr = eth_validate_addr,
4876 .ndo_do_ioctl = cxgb_ioctl,
4877 .ndo_change_mtu = cxgb_change_mtu,
4878 #ifdef CONFIG_NET_POLL_CONTROLLER
4879 .ndo_poll_controller = cxgb_netpoll,
4880 #endif
4881 };
4882
4883 void t4_fatal_err(struct adapter *adap)
4884 {
4885 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4886 t4_intr_disable(adap);
4887 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4888 }
4889
4890 /* Return the specified PCI-E Configuration Space register from our Physical
4891 * Function. We try first via a Firmware LDST Command since we prefer to let
4892 * the firmware own all of these registers, but if that fails we go for it
4893 * directly ourselves.
4894 */
4895 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4896 {
4897 struct fw_ldst_cmd ldst_cmd;
4898 u32 val;
4899 int ret;
4900
4901 /* Construct and send the Firmware LDST Command to retrieve the
4902 * specified PCI-E Configuration Space register.
4903 */
4904 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4905 ldst_cmd.op_to_addrspace =
4906 htonl(FW_CMD_OP(FW_LDST_CMD) |
4907 FW_CMD_REQUEST |
4908 FW_CMD_READ |
4909 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4910 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4911 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4912 ldst_cmd.u.pcie.ctrl_to_fn =
4913 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4914 ldst_cmd.u.pcie.r = reg;
4915 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4916 &ldst_cmd);
4917
4918 /* If the LDST Command suucceeded, exctract the returned register
4919 * value. Otherwise read it directly ourself.
4920 */
4921 if (ret == 0)
4922 val = ntohl(ldst_cmd.u.pcie.data[0]);
4923 else
4924 t4_hw_pci_read_cfg4(adap, reg, &val);
4925
4926 return val;
4927 }
4928
4929 static void setup_memwin(struct adapter *adap)
4930 {
4931 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4932
4933 if (is_t4(adap->params.chip)) {
4934 u32 bar0;
4935
4936 /* Truncation intentional: we only read the bottom 32-bits of
4937 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
4938 * mechanism to read BAR0 instead of using
4939 * pci_resource_start() because we could be operating from
4940 * within a Virtual Machine which is trapping our accesses to
4941 * our Configuration Space and we need to set up the PCI-E
4942 * Memory Window decoders with the actual addresses which will
4943 * be coming across the PCI-E link.
4944 */
4945 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4946 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4947 adap->t4_bar0 = bar0;
4948
4949 mem_win0_base = bar0 + MEMWIN0_BASE;
4950 mem_win1_base = bar0 + MEMWIN1_BASE;
4951 mem_win2_base = bar0 + MEMWIN2_BASE;
4952 mem_win2_aperture = MEMWIN2_APERTURE;
4953 } else {
4954 /* For T5, only relative offset inside the PCIe BAR is passed */
4955 mem_win0_base = MEMWIN0_BASE;
4956 mem_win1_base = MEMWIN1_BASE;
4957 mem_win2_base = MEMWIN2_BASE_T5;
4958 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4959 }
4960 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4961 mem_win0_base | BIR(0) |
4962 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4963 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4964 mem_win1_base | BIR(0) |
4965 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4966 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4967 mem_win2_base | BIR(0) |
4968 WINDOW(ilog2(mem_win2_aperture) - 10));
4969 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4970 }
4971
4972 static void setup_memwin_rdma(struct adapter *adap)
4973 {
4974 if (adap->vres.ocq.size) {
4975 u32 start;
4976 unsigned int sz_kb;
4977
4978 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4979 start &= PCI_BASE_ADDRESS_MEM_MASK;
4980 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4981 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4982 t4_write_reg(adap,
4983 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4984 start | BIR(1) | WINDOW(ilog2(sz_kb)));
4985 t4_write_reg(adap,
4986 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4987 adap->vres.ocq.start);
4988 t4_read_reg(adap,
4989 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4990 }
4991 }
4992
4993 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4994 {
4995 u32 v;
4996 int ret;
4997
4998 /* get device capabilities */
4999 memset(c, 0, sizeof(*c));
5000 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5001 FW_CMD_REQUEST | FW_CMD_READ);
5002 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5003 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5004 if (ret < 0)
5005 return ret;
5006
5007 /* select capabilities we'll be using */
5008 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5009 if (!vf_acls)
5010 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5011 else
5012 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5013 } else if (vf_acls) {
5014 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5015 return ret;
5016 }
5017 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5018 FW_CMD_REQUEST | FW_CMD_WRITE);
5019 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5020 if (ret < 0)
5021 return ret;
5022
5023 ret = t4_config_glbl_rss(adap, adap->fn,
5024 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5025 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5026 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5027 if (ret < 0)
5028 return ret;
5029
5030 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5031 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5032 if (ret < 0)
5033 return ret;
5034
5035 t4_sge_init(adap);
5036
5037 /* tweak some settings */
5038 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5039 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5040 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5041 v = t4_read_reg(adap, TP_PIO_DATA);
5042 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5043
5044 /* first 4 Tx modulation queues point to consecutive Tx channels */
5045 adap->params.tp.tx_modq_map = 0xE4;
5046 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5047 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5048
5049 /* associate each Tx modulation queue with consecutive Tx channels */
5050 v = 0x84218421;
5051 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5052 &v, 1, A_TP_TX_SCHED_HDR);
5053 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5054 &v, 1, A_TP_TX_SCHED_FIFO);
5055 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5056 &v, 1, A_TP_TX_SCHED_PCMD);
5057
5058 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5059 if (is_offload(adap)) {
5060 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5061 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5062 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5063 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5064 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5065 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5066 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5067 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5068 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5069 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5070 }
5071
5072 /* get basic stuff going */
5073 return t4_early_init(adap, adap->fn);
5074 }
5075
5076 /*
5077 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
5078 */
5079 #define MAX_ATIDS 8192U
5080
5081 /*
5082 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5083 *
5084 * If the firmware we're dealing with has Configuration File support, then
5085 * we use that to perform all configuration
5086 */
5087
5088 /*
5089 * Tweak configuration based on module parameters, etc. Most of these have
5090 * defaults assigned to them by Firmware Configuration Files (if we're using
5091 * them) but need to be explicitly set if we're using hard-coded
5092 * initialization. But even in the case of using Firmware Configuration
5093 * Files, we'd like to expose the ability to change these via module
5094 * parameters so these are essentially common tweaks/settings for
5095 * Configuration Files and hard-coded initialization ...
5096 */
5097 static int adap_init0_tweaks(struct adapter *adapter)
5098 {
5099 /*
5100 * Fix up various Host-Dependent Parameters like Page Size, Cache
5101 * Line Size, etc. The firmware default is for a 4KB Page Size and
5102 * 64B Cache Line Size ...
5103 */
5104 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5105
5106 /*
5107 * Process module parameters which affect early initialization.
5108 */
5109 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5110 dev_err(&adapter->pdev->dev,
5111 "Ignoring illegal rx_dma_offset=%d, using 2\n",
5112 rx_dma_offset);
5113 rx_dma_offset = 2;
5114 }
5115 t4_set_reg_field(adapter, SGE_CONTROL,
5116 PKTSHIFT_MASK,
5117 PKTSHIFT(rx_dma_offset));
5118
5119 /*
5120 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5121 * adds the pseudo header itself.
5122 */
5123 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5124 CSUM_HAS_PSEUDO_HDR, 0);
5125
5126 return 0;
5127 }
5128
5129 /*
5130 * Attempt to initialize the adapter via a Firmware Configuration File.
5131 */
5132 static int adap_init0_config(struct adapter *adapter, int reset)
5133 {
5134 struct fw_caps_config_cmd caps_cmd;
5135 const struct firmware *cf;
5136 unsigned long mtype = 0, maddr = 0;
5137 u32 finiver, finicsum, cfcsum;
5138 int ret;
5139 int config_issued = 0;
5140 char *fw_config_file, fw_config_file_path[256];
5141 char *config_name = NULL;
5142
5143 /*
5144 * Reset device if necessary.
5145 */
5146 if (reset) {
5147 ret = t4_fw_reset(adapter, adapter->mbox,
5148 PIORSTMODE | PIORST);
5149 if (ret < 0)
5150 goto bye;
5151 }
5152
5153 /*
5154 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5155 * then use that. Otherwise, use the configuration file stored
5156 * in the adapter flash ...
5157 */
5158 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5159 case CHELSIO_T4:
5160 fw_config_file = FW4_CFNAME;
5161 break;
5162 case CHELSIO_T5:
5163 fw_config_file = FW5_CFNAME;
5164 break;
5165 default:
5166 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5167 adapter->pdev->device);
5168 ret = -EINVAL;
5169 goto bye;
5170 }
5171
5172 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5173 if (ret < 0) {
5174 config_name = "On FLASH";
5175 mtype = FW_MEMTYPE_CF_FLASH;
5176 maddr = t4_flash_cfg_addr(adapter);
5177 } else {
5178 u32 params[7], val[7];
5179
5180 sprintf(fw_config_file_path,
5181 "/lib/firmware/%s", fw_config_file);
5182 config_name = fw_config_file_path;
5183
5184 if (cf->size >= FLASH_CFG_MAX_SIZE)
5185 ret = -ENOMEM;
5186 else {
5187 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5188 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5189 ret = t4_query_params(adapter, adapter->mbox,
5190 adapter->fn, 0, 1, params, val);
5191 if (ret == 0) {
5192 /*
5193 * For t4_memory_rw() below addresses and
5194 * sizes have to be in terms of multiples of 4
5195 * bytes. So, if the Configuration File isn't
5196 * a multiple of 4 bytes in length we'll have
5197 * to write that out separately since we can't
5198 * guarantee that the bytes following the
5199 * residual byte in the buffer returned by
5200 * request_firmware() are zeroed out ...
5201 */
5202 size_t resid = cf->size & 0x3;
5203 size_t size = cf->size & ~0x3;
5204 __be32 *data = (__be32 *)cf->data;
5205
5206 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5207 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5208
5209 spin_lock(&adapter->win0_lock);
5210 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5211 size, data, T4_MEMORY_WRITE);
5212 if (ret == 0 && resid != 0) {
5213 union {
5214 __be32 word;
5215 char buf[4];
5216 } last;
5217 int i;
5218
5219 last.word = data[size >> 2];
5220 for (i = resid; i < 4; i++)
5221 last.buf[i] = 0;
5222 ret = t4_memory_rw(adapter, 0, mtype,
5223 maddr + size,
5224 4, &last.word,
5225 T4_MEMORY_WRITE);
5226 }
5227 spin_unlock(&adapter->win0_lock);
5228 }
5229 }
5230
5231 release_firmware(cf);
5232 if (ret)
5233 goto bye;
5234 }
5235
5236 /*
5237 * Issue a Capability Configuration command to the firmware to get it
5238 * to parse the Configuration File. We don't use t4_fw_config_file()
5239 * because we want the ability to modify various features after we've
5240 * processed the configuration file ...
5241 */
5242 memset(&caps_cmd, 0, sizeof(caps_cmd));
5243 caps_cmd.op_to_write =
5244 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5245 FW_CMD_REQUEST |
5246 FW_CMD_READ);
5247 caps_cmd.cfvalid_to_len16 =
5248 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5249 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5250 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5251 FW_LEN16(caps_cmd));
5252 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5253 &caps_cmd);
5254
5255 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5256 * Configuration File in FLASH), our last gasp effort is to use the
5257 * Firmware Configuration File which is embedded in the firmware. A
5258 * very few early versions of the firmware didn't have one embedded
5259 * but we can ignore those.
5260 */
5261 if (ret == -ENOENT) {
5262 memset(&caps_cmd, 0, sizeof(caps_cmd));
5263 caps_cmd.op_to_write =
5264 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5265 FW_CMD_REQUEST |
5266 FW_CMD_READ);
5267 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5268 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5269 sizeof(caps_cmd), &caps_cmd);
5270 config_name = "Firmware Default";
5271 }
5272
5273 config_issued = 1;
5274 if (ret < 0)
5275 goto bye;
5276
5277 finiver = ntohl(caps_cmd.finiver);
5278 finicsum = ntohl(caps_cmd.finicsum);
5279 cfcsum = ntohl(caps_cmd.cfcsum);
5280 if (finicsum != cfcsum)
5281 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5282 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5283 finicsum, cfcsum);
5284
5285 /*
5286 * And now tell the firmware to use the configuration we just loaded.
5287 */
5288 caps_cmd.op_to_write =
5289 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5290 FW_CMD_REQUEST |
5291 FW_CMD_WRITE);
5292 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5293 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5294 NULL);
5295 if (ret < 0)
5296 goto bye;
5297
5298 /*
5299 * Tweak configuration based on system architecture, module
5300 * parameters, etc.
5301 */
5302 ret = adap_init0_tweaks(adapter);
5303 if (ret < 0)
5304 goto bye;
5305
5306 /*
5307 * And finally tell the firmware to initialize itself using the
5308 * parameters from the Configuration File.
5309 */
5310 ret = t4_fw_initialize(adapter, adapter->mbox);
5311 if (ret < 0)
5312 goto bye;
5313
5314 /*
5315 * Return successfully and note that we're operating with parameters
5316 * not supplied by the driver, rather than from hard-wired
5317 * initialization constants burried in the driver.
5318 */
5319 adapter->flags |= USING_SOFT_PARAMS;
5320 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5321 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5322 config_name, finiver, cfcsum);
5323 return 0;
5324
5325 /*
5326 * Something bad happened. Return the error ... (If the "error"
5327 * is that there's no Configuration File on the adapter we don't
5328 * want to issue a warning since this is fairly common.)
5329 */
5330 bye:
5331 if (config_issued && ret != -ENOENT)
5332 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5333 config_name, -ret);
5334 return ret;
5335 }
5336
5337 /*
5338 * Attempt to initialize the adapter via hard-coded, driver supplied
5339 * parameters ...
5340 */
5341 static int adap_init0_no_config(struct adapter *adapter, int reset)
5342 {
5343 struct sge *s = &adapter->sge;
5344 struct fw_caps_config_cmd caps_cmd;
5345 u32 v;
5346 int i, ret;
5347
5348 /*
5349 * Reset device if necessary
5350 */
5351 if (reset) {
5352 ret = t4_fw_reset(adapter, adapter->mbox,
5353 PIORSTMODE | PIORST);
5354 if (ret < 0)
5355 goto bye;
5356 }
5357
5358 /*
5359 * Get device capabilities and select which we'll be using.
5360 */
5361 memset(&caps_cmd, 0, sizeof(caps_cmd));
5362 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5363 FW_CMD_REQUEST | FW_CMD_READ);
5364 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5365 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5366 &caps_cmd);
5367 if (ret < 0)
5368 goto bye;
5369
5370 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5371 if (!vf_acls)
5372 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5373 else
5374 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5375 } else if (vf_acls) {
5376 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5377 goto bye;
5378 }
5379 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5380 FW_CMD_REQUEST | FW_CMD_WRITE);
5381 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5382 NULL);
5383 if (ret < 0)
5384 goto bye;
5385
5386 /*
5387 * Tweak configuration based on system architecture, module
5388 * parameters, etc.
5389 */
5390 ret = adap_init0_tweaks(adapter);
5391 if (ret < 0)
5392 goto bye;
5393
5394 /*
5395 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5396 * mode which maps each Virtual Interface to its own section of
5397 * the RSS Table and we turn on all map and hash enables ...
5398 */
5399 adapter->flags |= RSS_TNLALLLOOKUP;
5400 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5401 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5402 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5403 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5404 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5405 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5406 if (ret < 0)
5407 goto bye;
5408
5409 /*
5410 * Set up our own fundamental resource provisioning ...
5411 */
5412 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5413 PFRES_NEQ, PFRES_NETHCTRL,
5414 PFRES_NIQFLINT, PFRES_NIQ,
5415 PFRES_TC, PFRES_NVI,
5416 FW_PFVF_CMD_CMASK_MASK,
5417 pfvfres_pmask(adapter, adapter->fn, 0),
5418 PFRES_NEXACTF,
5419 PFRES_R_CAPS, PFRES_WX_CAPS);
5420 if (ret < 0)
5421 goto bye;
5422
5423 /*
5424 * Perform low level SGE initialization. We need to do this before we
5425 * send the firmware the INITIALIZE command because that will cause
5426 * any other PF Drivers which are waiting for the Master
5427 * Initialization to proceed forward.
5428 */
5429 for (i = 0; i < SGE_NTIMERS - 1; i++)
5430 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5431 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5432 s->counter_val[0] = 1;
5433 for (i = 1; i < SGE_NCOUNTERS; i++)
5434 s->counter_val[i] = min(intr_cnt[i - 1],
5435 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5436 t4_sge_init(adapter);
5437
5438 #ifdef CONFIG_PCI_IOV
5439 /*
5440 * Provision resource limits for Virtual Functions. We currently
5441 * grant them all the same static resource limits except for the Port
5442 * Access Rights Mask which we're assigning based on the PF. All of
5443 * the static provisioning stuff for both the PF and VF really needs
5444 * to be managed in a persistent manner for each device which the
5445 * firmware controls.
5446 */
5447 {
5448 int pf, vf;
5449
5450 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5451 if (num_vf[pf] <= 0)
5452 continue;
5453
5454 /* VF numbering starts at 1! */
5455 for (vf = 1; vf <= num_vf[pf]; vf++) {
5456 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5457 pf, vf,
5458 VFRES_NEQ, VFRES_NETHCTRL,
5459 VFRES_NIQFLINT, VFRES_NIQ,
5460 VFRES_TC, VFRES_NVI,
5461 FW_PFVF_CMD_CMASK_MASK,
5462 pfvfres_pmask(
5463 adapter, pf, vf),
5464 VFRES_NEXACTF,
5465 VFRES_R_CAPS, VFRES_WX_CAPS);
5466 if (ret < 0)
5467 dev_warn(adapter->pdev_dev,
5468 "failed to "\
5469 "provision pf/vf=%d/%d; "
5470 "err=%d\n", pf, vf, ret);
5471 }
5472 }
5473 }
5474 #endif
5475
5476 /*
5477 * Set up the default filter mode. Later we'll want to implement this
5478 * via a firmware command, etc. ... This needs to be done before the
5479 * firmare initialization command ... If the selected set of fields
5480 * isn't equal to the default value, we'll need to make sure that the
5481 * field selections will fit in the 36-bit budget.
5482 */
5483 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5484 int j, bits = 0;
5485
5486 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5487 switch (tp_vlan_pri_map & (1 << j)) {
5488 case 0:
5489 /* compressed filter field not enabled */
5490 break;
5491 case FCOE_MASK:
5492 bits += 1;
5493 break;
5494 case PORT_MASK:
5495 bits += 3;
5496 break;
5497 case VNIC_ID_MASK:
5498 bits += 17;
5499 break;
5500 case VLAN_MASK:
5501 bits += 17;
5502 break;
5503 case TOS_MASK:
5504 bits += 8;
5505 break;
5506 case PROTOCOL_MASK:
5507 bits += 8;
5508 break;
5509 case ETHERTYPE_MASK:
5510 bits += 16;
5511 break;
5512 case MACMATCH_MASK:
5513 bits += 9;
5514 break;
5515 case MPSHITTYPE_MASK:
5516 bits += 3;
5517 break;
5518 case FRAGMENTATION_MASK:
5519 bits += 1;
5520 break;
5521 }
5522
5523 if (bits > 36) {
5524 dev_err(adapter->pdev_dev,
5525 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5526 " using %#x\n", tp_vlan_pri_map, bits,
5527 TP_VLAN_PRI_MAP_DEFAULT);
5528 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5529 }
5530 }
5531 v = tp_vlan_pri_map;
5532 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5533 &v, 1, TP_VLAN_PRI_MAP);
5534
5535 /*
5536 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5537 * to support any of the compressed filter fields above. Newer
5538 * versions of the firmware do this automatically but it doesn't hurt
5539 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5540 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5541 * since the firmware automatically turns this on and off when we have
5542 * a non-zero number of filters active (since it does have a
5543 * performance impact).
5544 */
5545 if (tp_vlan_pri_map)
5546 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5547 FIVETUPLELOOKUP_MASK,
5548 FIVETUPLELOOKUP_MASK);
5549
5550 /*
5551 * Tweak some settings.
5552 */
5553 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5554 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5555 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5556 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5557
5558 /*
5559 * Get basic stuff going by issuing the Firmware Initialize command.
5560 * Note that this _must_ be after all PFVF commands ...
5561 */
5562 ret = t4_fw_initialize(adapter, adapter->mbox);
5563 if (ret < 0)
5564 goto bye;
5565
5566 /*
5567 * Return successfully!
5568 */
5569 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5570 "driver parameters\n");
5571 return 0;
5572
5573 /*
5574 * Something bad happened. Return the error ...
5575 */
5576 bye:
5577 return ret;
5578 }
5579
5580 static struct fw_info fw_info_array[] = {
5581 {
5582 .chip = CHELSIO_T4,
5583 .fs_name = FW4_CFNAME,
5584 .fw_mod_name = FW4_FNAME,
5585 .fw_hdr = {
5586 .chip = FW_HDR_CHIP_T4,
5587 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5588 .intfver_nic = FW_INTFVER(T4, NIC),
5589 .intfver_vnic = FW_INTFVER(T4, VNIC),
5590 .intfver_ri = FW_INTFVER(T4, RI),
5591 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5592 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5593 },
5594 }, {
5595 .chip = CHELSIO_T5,
5596 .fs_name = FW5_CFNAME,
5597 .fw_mod_name = FW5_FNAME,
5598 .fw_hdr = {
5599 .chip = FW_HDR_CHIP_T5,
5600 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5601 .intfver_nic = FW_INTFVER(T5, NIC),
5602 .intfver_vnic = FW_INTFVER(T5, VNIC),
5603 .intfver_ri = FW_INTFVER(T5, RI),
5604 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5605 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5606 },
5607 }
5608 };
5609
5610 static struct fw_info *find_fw_info(int chip)
5611 {
5612 int i;
5613
5614 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5615 if (fw_info_array[i].chip == chip)
5616 return &fw_info_array[i];
5617 }
5618 return NULL;
5619 }
5620
5621 /*
5622 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5623 */
5624 static int adap_init0(struct adapter *adap)
5625 {
5626 int ret;
5627 u32 v, port_vec;
5628 enum dev_state state;
5629 u32 params[7], val[7];
5630 struct fw_caps_config_cmd caps_cmd;
5631 int reset = 1;
5632
5633 /*
5634 * Contact FW, advertising Master capability (and potentially forcing
5635 * ourselves as the Master PF if our module parameter force_init is
5636 * set).
5637 */
5638 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5639 force_init ? MASTER_MUST : MASTER_MAY,
5640 &state);
5641 if (ret < 0) {
5642 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5643 ret);
5644 return ret;
5645 }
5646 if (ret == adap->mbox)
5647 adap->flags |= MASTER_PF;
5648 if (force_init && state == DEV_STATE_INIT)
5649 state = DEV_STATE_UNINIT;
5650
5651 /*
5652 * If we're the Master PF Driver and the device is uninitialized,
5653 * then let's consider upgrading the firmware ... (We always want
5654 * to check the firmware version number in order to A. get it for
5655 * later reporting and B. to warn if the currently loaded firmware
5656 * is excessively mismatched relative to the driver.)
5657 */
5658 t4_get_fw_version(adap, &adap->params.fw_vers);
5659 t4_get_tp_version(adap, &adap->params.tp_vers);
5660 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5661 struct fw_info *fw_info;
5662 struct fw_hdr *card_fw;
5663 const struct firmware *fw;
5664 const u8 *fw_data = NULL;
5665 unsigned int fw_size = 0;
5666
5667 /* This is the firmware whose headers the driver was compiled
5668 * against
5669 */
5670 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5671 if (fw_info == NULL) {
5672 dev_err(adap->pdev_dev,
5673 "unable to get firmware info for chip %d.\n",
5674 CHELSIO_CHIP_VERSION(adap->params.chip));
5675 return -EINVAL;
5676 }
5677
5678 /* allocate memory to read the header of the firmware on the
5679 * card
5680 */
5681 card_fw = t4_alloc_mem(sizeof(*card_fw));
5682
5683 /* Get FW from from /lib/firmware/ */
5684 ret = request_firmware(&fw, fw_info->fw_mod_name,
5685 adap->pdev_dev);
5686 if (ret < 0) {
5687 dev_err(adap->pdev_dev,
5688 "unable to load firmware image %s, error %d\n",
5689 fw_info->fw_mod_name, ret);
5690 } else {
5691 fw_data = fw->data;
5692 fw_size = fw->size;
5693 }
5694
5695 /* upgrade FW logic */
5696 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5697 state, &reset);
5698
5699 /* Cleaning up */
5700 if (fw != NULL)
5701 release_firmware(fw);
5702 t4_free_mem(card_fw);
5703
5704 if (ret < 0)
5705 goto bye;
5706 }
5707
5708 /*
5709 * Grab VPD parameters. This should be done after we establish a
5710 * connection to the firmware since some of the VPD parameters
5711 * (notably the Core Clock frequency) are retrieved via requests to
5712 * the firmware. On the other hand, we need these fairly early on
5713 * so we do this right after getting ahold of the firmware.
5714 */
5715 ret = get_vpd_params(adap, &adap->params.vpd);
5716 if (ret < 0)
5717 goto bye;
5718
5719 /*
5720 * Find out what ports are available to us. Note that we need to do
5721 * this before calling adap_init0_no_config() since it needs nports
5722 * and portvec ...
5723 */
5724 v =
5725 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5726 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5727 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5728 if (ret < 0)
5729 goto bye;
5730
5731 adap->params.nports = hweight32(port_vec);
5732 adap->params.portvec = port_vec;
5733
5734 /*
5735 * If the firmware is initialized already (and we're not forcing a
5736 * master initialization), note that we're living with existing
5737 * adapter parameters. Otherwise, it's time to try initializing the
5738 * adapter ...
5739 */
5740 if (state == DEV_STATE_INIT) {
5741 dev_info(adap->pdev_dev, "Coming up as %s: "\
5742 "Adapter already initialized\n",
5743 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5744 adap->flags |= USING_SOFT_PARAMS;
5745 } else {
5746 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5747 "Initializing adapter\n");
5748
5749 /*
5750 * If the firmware doesn't support Configuration
5751 * Files warn user and exit,
5752 */
5753 if (ret < 0)
5754 dev_warn(adap->pdev_dev, "Firmware doesn't support "
5755 "configuration file.\n");
5756 if (force_old_init)
5757 ret = adap_init0_no_config(adap, reset);
5758 else {
5759 /*
5760 * Find out whether we're dealing with a version of
5761 * the firmware which has configuration file support.
5762 */
5763 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5764 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5765 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5766 params, val);
5767
5768 /*
5769 * If the firmware doesn't support Configuration
5770 * Files, use the old Driver-based, hard-wired
5771 * initialization. Otherwise, try using the
5772 * Configuration File support and fall back to the
5773 * Driver-based initialization if there's no
5774 * Configuration File found.
5775 */
5776 if (ret < 0)
5777 ret = adap_init0_no_config(adap, reset);
5778 else {
5779 /*
5780 * The firmware provides us with a memory
5781 * buffer where we can load a Configuration
5782 * File from the host if we want to override
5783 * the Configuration File in flash.
5784 */
5785
5786 ret = adap_init0_config(adap, reset);
5787 if (ret == -ENOENT) {
5788 dev_info(adap->pdev_dev,
5789 "No Configuration File present "
5790 "on adapter. Using hard-wired "
5791 "configuration parameters.\n");
5792 ret = adap_init0_no_config(adap, reset);
5793 }
5794 }
5795 }
5796 if (ret < 0) {
5797 dev_err(adap->pdev_dev,
5798 "could not initialize adapter, error %d\n",
5799 -ret);
5800 goto bye;
5801 }
5802 }
5803
5804 /*
5805 * If we're living with non-hard-coded parameters (either from a
5806 * Firmware Configuration File or values programmed by a different PF
5807 * Driver), give the SGE code a chance to pull in anything that it
5808 * needs ... Note that this must be called after we retrieve our VPD
5809 * parameters in order to know how to convert core ticks to seconds.
5810 */
5811 if (adap->flags & USING_SOFT_PARAMS) {
5812 ret = t4_sge_init(adap);
5813 if (ret < 0)
5814 goto bye;
5815 }
5816
5817 if (is_bypass_device(adap->pdev->device))
5818 adap->params.bypass = 1;
5819
5820 /*
5821 * Grab some of our basic fundamental operating parameters.
5822 */
5823 #define FW_PARAM_DEV(param) \
5824 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5825 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5826
5827 #define FW_PARAM_PFVF(param) \
5828 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5829 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5830 FW_PARAMS_PARAM_Y(0) | \
5831 FW_PARAMS_PARAM_Z(0)
5832
5833 params[0] = FW_PARAM_PFVF(EQ_START);
5834 params[1] = FW_PARAM_PFVF(L2T_START);
5835 params[2] = FW_PARAM_PFVF(L2T_END);
5836 params[3] = FW_PARAM_PFVF(FILTER_START);
5837 params[4] = FW_PARAM_PFVF(FILTER_END);
5838 params[5] = FW_PARAM_PFVF(IQFLINT_START);
5839 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5840 if (ret < 0)
5841 goto bye;
5842 adap->sge.egr_start = val[0];
5843 adap->l2t_start = val[1];
5844 adap->l2t_end = val[2];
5845 adap->tids.ftid_base = val[3];
5846 adap->tids.nftids = val[4] - val[3] + 1;
5847 adap->sge.ingr_start = val[5];
5848
5849 /* query params related to active filter region */
5850 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5851 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5852 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5853 /* If Active filter size is set we enable establishing
5854 * offload connection through firmware work request
5855 */
5856 if ((val[0] != val[1]) && (ret >= 0)) {
5857 adap->flags |= FW_OFLD_CONN;
5858 adap->tids.aftid_base = val[0];
5859 adap->tids.aftid_end = val[1];
5860 }
5861
5862 /* If we're running on newer firmware, let it know that we're
5863 * prepared to deal with encapsulated CPL messages. Older
5864 * firmware won't understand this and we'll just get
5865 * unencapsulated messages ...
5866 */
5867 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5868 val[0] = 1;
5869 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5870
5871 /*
5872 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5873 * capability. Earlier versions of the firmware didn't have the
5874 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5875 * permission to use ULPTX MEMWRITE DSGL.
5876 */
5877 if (is_t4(adap->params.chip)) {
5878 adap->params.ulptx_memwrite_dsgl = false;
5879 } else {
5880 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5881 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5882 1, params, val);
5883 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5884 }
5885
5886 /*
5887 * Get device capabilities so we can determine what resources we need
5888 * to manage.
5889 */
5890 memset(&caps_cmd, 0, sizeof(caps_cmd));
5891 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5892 FW_CMD_REQUEST | FW_CMD_READ);
5893 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5894 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5895 &caps_cmd);
5896 if (ret < 0)
5897 goto bye;
5898
5899 if (caps_cmd.ofldcaps) {
5900 /* query offload-related parameters */
5901 params[0] = FW_PARAM_DEV(NTID);
5902 params[1] = FW_PARAM_PFVF(SERVER_START);
5903 params[2] = FW_PARAM_PFVF(SERVER_END);
5904 params[3] = FW_PARAM_PFVF(TDDP_START);
5905 params[4] = FW_PARAM_PFVF(TDDP_END);
5906 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5907 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5908 params, val);
5909 if (ret < 0)
5910 goto bye;
5911 adap->tids.ntids = val[0];
5912 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5913 adap->tids.stid_base = val[1];
5914 adap->tids.nstids = val[2] - val[1] + 1;
5915 /*
5916 * Setup server filter region. Divide the availble filter
5917 * region into two parts. Regular filters get 1/3rd and server
5918 * filters get 2/3rd part. This is only enabled if workarond
5919 * path is enabled.
5920 * 1. For regular filters.
5921 * 2. Server filter: This are special filters which are used
5922 * to redirect SYN packets to offload queue.
5923 */
5924 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5925 adap->tids.sftid_base = adap->tids.ftid_base +
5926 DIV_ROUND_UP(adap->tids.nftids, 3);
5927 adap->tids.nsftids = adap->tids.nftids -
5928 DIV_ROUND_UP(adap->tids.nftids, 3);
5929 adap->tids.nftids = adap->tids.sftid_base -
5930 adap->tids.ftid_base;
5931 }
5932 adap->vres.ddp.start = val[3];
5933 adap->vres.ddp.size = val[4] - val[3] + 1;
5934 adap->params.ofldq_wr_cred = val[5];
5935
5936 adap->params.offload = 1;
5937 }
5938 if (caps_cmd.rdmacaps) {
5939 params[0] = FW_PARAM_PFVF(STAG_START);
5940 params[1] = FW_PARAM_PFVF(STAG_END);
5941 params[2] = FW_PARAM_PFVF(RQ_START);
5942 params[3] = FW_PARAM_PFVF(RQ_END);
5943 params[4] = FW_PARAM_PFVF(PBL_START);
5944 params[5] = FW_PARAM_PFVF(PBL_END);
5945 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5946 params, val);
5947 if (ret < 0)
5948 goto bye;
5949 adap->vres.stag.start = val[0];
5950 adap->vres.stag.size = val[1] - val[0] + 1;
5951 adap->vres.rq.start = val[2];
5952 adap->vres.rq.size = val[3] - val[2] + 1;
5953 adap->vres.pbl.start = val[4];
5954 adap->vres.pbl.size = val[5] - val[4] + 1;
5955
5956 params[0] = FW_PARAM_PFVF(SQRQ_START);
5957 params[1] = FW_PARAM_PFVF(SQRQ_END);
5958 params[2] = FW_PARAM_PFVF(CQ_START);
5959 params[3] = FW_PARAM_PFVF(CQ_END);
5960 params[4] = FW_PARAM_PFVF(OCQ_START);
5961 params[5] = FW_PARAM_PFVF(OCQ_END);
5962 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
5963 val);
5964 if (ret < 0)
5965 goto bye;
5966 adap->vres.qp.start = val[0];
5967 adap->vres.qp.size = val[1] - val[0] + 1;
5968 adap->vres.cq.start = val[2];
5969 adap->vres.cq.size = val[3] - val[2] + 1;
5970 adap->vres.ocq.start = val[4];
5971 adap->vres.ocq.size = val[5] - val[4] + 1;
5972
5973 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5974 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5975 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
5976 val);
5977 if (ret < 0) {
5978 adap->params.max_ordird_qp = 8;
5979 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5980 ret = 0;
5981 } else {
5982 adap->params.max_ordird_qp = val[0];
5983 adap->params.max_ird_adapter = val[1];
5984 }
5985 dev_info(adap->pdev_dev,
5986 "max_ordird_qp %d max_ird_adapter %d\n",
5987 adap->params.max_ordird_qp,
5988 adap->params.max_ird_adapter);
5989 }
5990 if (caps_cmd.iscsicaps) {
5991 params[0] = FW_PARAM_PFVF(ISCSI_START);
5992 params[1] = FW_PARAM_PFVF(ISCSI_END);
5993 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5994 params, val);
5995 if (ret < 0)
5996 goto bye;
5997 adap->vres.iscsi.start = val[0];
5998 adap->vres.iscsi.size = val[1] - val[0] + 1;
5999 }
6000 #undef FW_PARAM_PFVF
6001 #undef FW_PARAM_DEV
6002
6003 /* The MTU/MSS Table is initialized by now, so load their values. If
6004 * we're initializing the adapter, then we'll make any modifications
6005 * we want to the MTU/MSS Table and also initialize the congestion
6006 * parameters.
6007 */
6008 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6009 if (state != DEV_STATE_INIT) {
6010 int i;
6011
6012 /* The default MTU Table contains values 1492 and 1500.
6013 * However, for TCP, it's better to have two values which are
6014 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6015 * This allows us to have a TCP Data Payload which is a
6016 * multiple of 8 regardless of what combination of TCP Options
6017 * are in use (always a multiple of 4 bytes) which is
6018 * important for performance reasons. For instance, if no
6019 * options are in use, then we have a 20-byte IP header and a
6020 * 20-byte TCP header. In this case, a 1500-byte MSS would
6021 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6022 * which is not a multiple of 8. So using an MSS of 1488 in
6023 * this case results in a TCP Data Payload of 1448 bytes which
6024 * is a multiple of 8. On the other hand, if 12-byte TCP Time
6025 * Stamps have been negotiated, then an MTU of 1500 bytes
6026 * results in a TCP Data Payload of 1448 bytes which, as
6027 * above, is a multiple of 8 bytes ...
6028 */
6029 for (i = 0; i < NMTUS; i++)
6030 if (adap->params.mtus[i] == 1492) {
6031 adap->params.mtus[i] = 1488;
6032 break;
6033 }
6034
6035 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6036 adap->params.b_wnd);
6037 }
6038 t4_init_tp_params(adap);
6039 adap->flags |= FW_OK;
6040 return 0;
6041
6042 /*
6043 * Something bad happened. If a command timed out or failed with EIO
6044 * FW does not operate within its spec or something catastrophic
6045 * happened to HW/FW, stop issuing commands.
6046 */
6047 bye:
6048 if (ret != -ETIMEDOUT && ret != -EIO)
6049 t4_fw_bye(adap, adap->mbox);
6050 return ret;
6051 }
6052
6053 /* EEH callbacks */
6054
6055 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6056 pci_channel_state_t state)
6057 {
6058 int i;
6059 struct adapter *adap = pci_get_drvdata(pdev);
6060
6061 if (!adap)
6062 goto out;
6063
6064 rtnl_lock();
6065 adap->flags &= ~FW_OK;
6066 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6067 spin_lock(&adap->stats_lock);
6068 for_each_port(adap, i) {
6069 struct net_device *dev = adap->port[i];
6070
6071 netif_device_detach(dev);
6072 netif_carrier_off(dev);
6073 }
6074 spin_unlock(&adap->stats_lock);
6075 if (adap->flags & FULL_INIT_DONE)
6076 cxgb_down(adap);
6077 rtnl_unlock();
6078 if ((adap->flags & DEV_ENABLED)) {
6079 pci_disable_device(pdev);
6080 adap->flags &= ~DEV_ENABLED;
6081 }
6082 out: return state == pci_channel_io_perm_failure ?
6083 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6084 }
6085
6086 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6087 {
6088 int i, ret;
6089 struct fw_caps_config_cmd c;
6090 struct adapter *adap = pci_get_drvdata(pdev);
6091
6092 if (!adap) {
6093 pci_restore_state(pdev);
6094 pci_save_state(pdev);
6095 return PCI_ERS_RESULT_RECOVERED;
6096 }
6097
6098 if (!(adap->flags & DEV_ENABLED)) {
6099 if (pci_enable_device(pdev)) {
6100 dev_err(&pdev->dev, "Cannot reenable PCI "
6101 "device after reset\n");
6102 return PCI_ERS_RESULT_DISCONNECT;
6103 }
6104 adap->flags |= DEV_ENABLED;
6105 }
6106
6107 pci_set_master(pdev);
6108 pci_restore_state(pdev);
6109 pci_save_state(pdev);
6110 pci_cleanup_aer_uncorrect_error_status(pdev);
6111
6112 if (t4_wait_dev_ready(adap) < 0)
6113 return PCI_ERS_RESULT_DISCONNECT;
6114 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6115 return PCI_ERS_RESULT_DISCONNECT;
6116 adap->flags |= FW_OK;
6117 if (adap_init1(adap, &c))
6118 return PCI_ERS_RESULT_DISCONNECT;
6119
6120 for_each_port(adap, i) {
6121 struct port_info *p = adap2pinfo(adap, i);
6122
6123 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6124 NULL, NULL);
6125 if (ret < 0)
6126 return PCI_ERS_RESULT_DISCONNECT;
6127 p->viid = ret;
6128 p->xact_addr_filt = -1;
6129 }
6130
6131 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6132 adap->params.b_wnd);
6133 setup_memwin(adap);
6134 if (cxgb_up(adap))
6135 return PCI_ERS_RESULT_DISCONNECT;
6136 return PCI_ERS_RESULT_RECOVERED;
6137 }
6138
6139 static void eeh_resume(struct pci_dev *pdev)
6140 {
6141 int i;
6142 struct adapter *adap = pci_get_drvdata(pdev);
6143
6144 if (!adap)
6145 return;
6146
6147 rtnl_lock();
6148 for_each_port(adap, i) {
6149 struct net_device *dev = adap->port[i];
6150
6151 if (netif_running(dev)) {
6152 link_start(dev);
6153 cxgb_set_rxmode(dev);
6154 }
6155 netif_device_attach(dev);
6156 }
6157 rtnl_unlock();
6158 }
6159
6160 static const struct pci_error_handlers cxgb4_eeh = {
6161 .error_detected = eeh_err_detected,
6162 .slot_reset = eeh_slot_reset,
6163 .resume = eeh_resume,
6164 };
6165
6166 static inline bool is_x_10g_port(const struct link_config *lc)
6167 {
6168 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6169 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6170 }
6171
6172 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6173 unsigned int us, unsigned int cnt,
6174 unsigned int size, unsigned int iqe_size)
6175 {
6176 q->adap = adap;
6177 set_rspq_intr_params(q, us, cnt);
6178 q->iqe_len = iqe_size;
6179 q->size = size;
6180 }
6181
6182 /*
6183 * Perform default configuration of DMA queues depending on the number and type
6184 * of ports we found and the number of available CPUs. Most settings can be
6185 * modified by the admin prior to actual use.
6186 */
6187 static void cfg_queues(struct adapter *adap)
6188 {
6189 struct sge *s = &adap->sge;
6190 int i, n10g = 0, qidx = 0;
6191 #ifndef CONFIG_CHELSIO_T4_DCB
6192 int q10g = 0;
6193 #endif
6194 int ciq_size;
6195
6196 for_each_port(adap, i)
6197 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6198 #ifdef CONFIG_CHELSIO_T4_DCB
6199 /* For Data Center Bridging support we need to be able to support up
6200 * to 8 Traffic Priorities; each of which will be assigned to its
6201 * own TX Queue in order to prevent Head-Of-Line Blocking.
6202 */
6203 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6204 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6205 MAX_ETH_QSETS, adap->params.nports * 8);
6206 BUG_ON(1);
6207 }
6208
6209 for_each_port(adap, i) {
6210 struct port_info *pi = adap2pinfo(adap, i);
6211
6212 pi->first_qset = qidx;
6213 pi->nqsets = 8;
6214 qidx += pi->nqsets;
6215 }
6216 #else /* !CONFIG_CHELSIO_T4_DCB */
6217 /*
6218 * We default to 1 queue per non-10G port and up to # of cores queues
6219 * per 10G port.
6220 */
6221 if (n10g)
6222 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6223 if (q10g > netif_get_num_default_rss_queues())
6224 q10g = netif_get_num_default_rss_queues();
6225
6226 for_each_port(adap, i) {
6227 struct port_info *pi = adap2pinfo(adap, i);
6228
6229 pi->first_qset = qidx;
6230 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6231 qidx += pi->nqsets;
6232 }
6233 #endif /* !CONFIG_CHELSIO_T4_DCB */
6234
6235 s->ethqsets = qidx;
6236 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6237
6238 if (is_offload(adap)) {
6239 /*
6240 * For offload we use 1 queue/channel if all ports are up to 1G,
6241 * otherwise we divide all available queues amongst the channels
6242 * capped by the number of available cores.
6243 */
6244 if (n10g) {
6245 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6246 num_online_cpus());
6247 s->ofldqsets = roundup(i, adap->params.nports);
6248 } else
6249 s->ofldqsets = adap->params.nports;
6250 /* For RDMA one Rx queue per channel suffices */
6251 s->rdmaqs = adap->params.nports;
6252 s->rdmaciqs = adap->params.nports;
6253 }
6254
6255 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6256 struct sge_eth_rxq *r = &s->ethrxq[i];
6257
6258 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6259 r->fl.size = 72;
6260 }
6261
6262 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6263 s->ethtxq[i].q.size = 1024;
6264
6265 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6266 s->ctrlq[i].q.size = 512;
6267
6268 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6269 s->ofldtxq[i].q.size = 1024;
6270
6271 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6272 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6273
6274 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6275 r->rspq.uld = CXGB4_ULD_ISCSI;
6276 r->fl.size = 72;
6277 }
6278
6279 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6280 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6281
6282 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6283 r->rspq.uld = CXGB4_ULD_RDMA;
6284 r->fl.size = 72;
6285 }
6286
6287 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6288 if (ciq_size > SGE_MAX_IQ_SIZE) {
6289 CH_WARN(adap, "CIQ size too small for available IQs\n");
6290 ciq_size = SGE_MAX_IQ_SIZE;
6291 }
6292
6293 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6294 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6295
6296 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6297 r->rspq.uld = CXGB4_ULD_RDMA;
6298 }
6299
6300 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6301 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6302 }
6303
6304 /*
6305 * Reduce the number of Ethernet queues across all ports to at most n.
6306 * n provides at least one queue per port.
6307 */
6308 static void reduce_ethqs(struct adapter *adap, int n)
6309 {
6310 int i;
6311 struct port_info *pi;
6312
6313 while (n < adap->sge.ethqsets)
6314 for_each_port(adap, i) {
6315 pi = adap2pinfo(adap, i);
6316 if (pi->nqsets > 1) {
6317 pi->nqsets--;
6318 adap->sge.ethqsets--;
6319 if (adap->sge.ethqsets <= n)
6320 break;
6321 }
6322 }
6323
6324 n = 0;
6325 for_each_port(adap, i) {
6326 pi = adap2pinfo(adap, i);
6327 pi->first_qset = n;
6328 n += pi->nqsets;
6329 }
6330 }
6331
6332 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6333 #define EXTRA_VECS 2
6334
6335 static int enable_msix(struct adapter *adap)
6336 {
6337 int ofld_need = 0;
6338 int i, want, need;
6339 struct sge *s = &adap->sge;
6340 unsigned int nchan = adap->params.nports;
6341 struct msix_entry entries[MAX_INGQ + 1];
6342
6343 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6344 entries[i].entry = i;
6345
6346 want = s->max_ethqsets + EXTRA_VECS;
6347 if (is_offload(adap)) {
6348 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6349 /* need nchan for each possible ULD */
6350 ofld_need = 3 * nchan;
6351 }
6352 #ifdef CONFIG_CHELSIO_T4_DCB
6353 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6354 * each port.
6355 */
6356 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6357 #else
6358 need = adap->params.nports + EXTRA_VECS + ofld_need;
6359 #endif
6360 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6361 if (want < 0)
6362 return want;
6363
6364 /*
6365 * Distribute available vectors to the various queue groups.
6366 * Every group gets its minimum requirement and NIC gets top
6367 * priority for leftovers.
6368 */
6369 i = want - EXTRA_VECS - ofld_need;
6370 if (i < s->max_ethqsets) {
6371 s->max_ethqsets = i;
6372 if (i < s->ethqsets)
6373 reduce_ethqs(adap, i);
6374 }
6375 if (is_offload(adap)) {
6376 i = want - EXTRA_VECS - s->max_ethqsets;
6377 i -= ofld_need - nchan;
6378 s->ofldqsets = (i / nchan) * nchan; /* round down */
6379 }
6380 for (i = 0; i < want; ++i)
6381 adap->msix_info[i].vec = entries[i].vector;
6382
6383 return 0;
6384 }
6385
6386 #undef EXTRA_VECS
6387
6388 static int init_rss(struct adapter *adap)
6389 {
6390 unsigned int i, j;
6391
6392 for_each_port(adap, i) {
6393 struct port_info *pi = adap2pinfo(adap, i);
6394
6395 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6396 if (!pi->rss)
6397 return -ENOMEM;
6398 for (j = 0; j < pi->rss_size; j++)
6399 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6400 }
6401 return 0;
6402 }
6403
6404 static void print_port_info(const struct net_device *dev)
6405 {
6406 char buf[80];
6407 char *bufp = buf;
6408 const char *spd = "";
6409 const struct port_info *pi = netdev_priv(dev);
6410 const struct adapter *adap = pi->adapter;
6411
6412 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6413 spd = " 2.5 GT/s";
6414 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6415 spd = " 5 GT/s";
6416 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6417 spd = " 8 GT/s";
6418
6419 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6420 bufp += sprintf(bufp, "100/");
6421 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6422 bufp += sprintf(bufp, "1000/");
6423 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6424 bufp += sprintf(bufp, "10G/");
6425 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6426 bufp += sprintf(bufp, "40G/");
6427 if (bufp != buf)
6428 --bufp;
6429 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6430
6431 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6432 adap->params.vpd.id,
6433 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6434 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6435 (adap->flags & USING_MSIX) ? " MSI-X" :
6436 (adap->flags & USING_MSI) ? " MSI" : "");
6437 netdev_info(dev, "S/N: %s, P/N: %s\n",
6438 adap->params.vpd.sn, adap->params.vpd.pn);
6439 }
6440
6441 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6442 {
6443 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6444 }
6445
6446 /*
6447 * Free the following resources:
6448 * - memory used for tables
6449 * - MSI/MSI-X
6450 * - net devices
6451 * - resources FW is holding for us
6452 */
6453 static void free_some_resources(struct adapter *adapter)
6454 {
6455 unsigned int i;
6456
6457 t4_free_mem(adapter->l2t);
6458 t4_free_mem(adapter->tids.tid_tab);
6459 disable_msi(adapter);
6460
6461 for_each_port(adapter, i)
6462 if (adapter->port[i]) {
6463 kfree(adap2pinfo(adapter, i)->rss);
6464 free_netdev(adapter->port[i]);
6465 }
6466 if (adapter->flags & FW_OK)
6467 t4_fw_bye(adapter, adapter->fn);
6468 }
6469
6470 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6471 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6472 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6473 #define SEGMENT_SIZE 128
6474
6475 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6476 {
6477 int func, i, err, s_qpp, qpp, num_seg;
6478 struct port_info *pi;
6479 bool highdma = false;
6480 struct adapter *adapter = NULL;
6481 void __iomem *regs;
6482
6483 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6484
6485 err = pci_request_regions(pdev, KBUILD_MODNAME);
6486 if (err) {
6487 /* Just info, some other driver may have claimed the device. */
6488 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6489 return err;
6490 }
6491
6492 err = pci_enable_device(pdev);
6493 if (err) {
6494 dev_err(&pdev->dev, "cannot enable PCI device\n");
6495 goto out_release_regions;
6496 }
6497
6498 regs = pci_ioremap_bar(pdev, 0);
6499 if (!regs) {
6500 dev_err(&pdev->dev, "cannot map device registers\n");
6501 err = -ENOMEM;
6502 goto out_disable_device;
6503 }
6504
6505 /* We control everything through one PF */
6506 func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6507 if (func != ent->driver_data) {
6508 iounmap(regs);
6509 pci_disable_device(pdev);
6510 pci_save_state(pdev); /* to restore SR-IOV later */
6511 goto sriov;
6512 }
6513
6514 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6515 highdma = true;
6516 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6517 if (err) {
6518 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6519 "coherent allocations\n");
6520 goto out_unmap_bar0;
6521 }
6522 } else {
6523 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6524 if (err) {
6525 dev_err(&pdev->dev, "no usable DMA configuration\n");
6526 goto out_unmap_bar0;
6527 }
6528 }
6529
6530 pci_enable_pcie_error_reporting(pdev);
6531 enable_pcie_relaxed_ordering(pdev);
6532 pci_set_master(pdev);
6533 pci_save_state(pdev);
6534
6535 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6536 if (!adapter) {
6537 err = -ENOMEM;
6538 goto out_unmap_bar0;
6539 }
6540
6541 adapter->workq = create_singlethread_workqueue("cxgb4");
6542 if (!adapter->workq) {
6543 err = -ENOMEM;
6544 goto out_free_adapter;
6545 }
6546
6547 /* PCI device has been enabled */
6548 adapter->flags |= DEV_ENABLED;
6549
6550 adapter->regs = regs;
6551 adapter->pdev = pdev;
6552 adapter->pdev_dev = &pdev->dev;
6553 adapter->mbox = func;
6554 adapter->fn = func;
6555 adapter->msg_enable = dflt_msg_enable;
6556 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6557
6558 spin_lock_init(&adapter->stats_lock);
6559 spin_lock_init(&adapter->tid_release_lock);
6560
6561 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6562 INIT_WORK(&adapter->db_full_task, process_db_full);
6563 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6564
6565 err = t4_prep_adapter(adapter);
6566 if (err)
6567 goto out_free_adapter;
6568
6569
6570 if (!is_t4(adapter->params.chip)) {
6571 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6572 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6573 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6574 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6575
6576 /* Each segment size is 128B. Write coalescing is enabled only
6577 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6578 * queue is less no of segments that can be accommodated in
6579 * a page size.
6580 */
6581 if (qpp > num_seg) {
6582 dev_err(&pdev->dev,
6583 "Incorrect number of egress queues per page\n");
6584 err = -EINVAL;
6585 goto out_free_adapter;
6586 }
6587 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6588 pci_resource_len(pdev, 2));
6589 if (!adapter->bar2) {
6590 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6591 err = -ENOMEM;
6592 goto out_free_adapter;
6593 }
6594 }
6595
6596 setup_memwin(adapter);
6597 err = adap_init0(adapter);
6598 setup_memwin_rdma(adapter);
6599 if (err)
6600 goto out_unmap_bar;
6601
6602 for_each_port(adapter, i) {
6603 struct net_device *netdev;
6604
6605 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6606 MAX_ETH_QSETS);
6607 if (!netdev) {
6608 err = -ENOMEM;
6609 goto out_free_dev;
6610 }
6611
6612 SET_NETDEV_DEV(netdev, &pdev->dev);
6613
6614 adapter->port[i] = netdev;
6615 pi = netdev_priv(netdev);
6616 pi->adapter = adapter;
6617 pi->xact_addr_filt = -1;
6618 pi->port_id = i;
6619 netdev->irq = pdev->irq;
6620
6621 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6622 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6623 NETIF_F_RXCSUM | NETIF_F_RXHASH |
6624 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6625 if (highdma)
6626 netdev->hw_features |= NETIF_F_HIGHDMA;
6627 netdev->features |= netdev->hw_features;
6628 netdev->vlan_features = netdev->features & VLAN_FEAT;
6629
6630 netdev->priv_flags |= IFF_UNICAST_FLT;
6631
6632 netdev->netdev_ops = &cxgb4_netdev_ops;
6633 #ifdef CONFIG_CHELSIO_T4_DCB
6634 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6635 cxgb4_dcb_state_init(netdev);
6636 #endif
6637 netdev->ethtool_ops = &cxgb_ethtool_ops;
6638 }
6639
6640 pci_set_drvdata(pdev, adapter);
6641
6642 if (adapter->flags & FW_OK) {
6643 err = t4_port_init(adapter, func, func, 0);
6644 if (err)
6645 goto out_free_dev;
6646 }
6647
6648 /*
6649 * Configure queues and allocate tables now, they can be needed as
6650 * soon as the first register_netdev completes.
6651 */
6652 cfg_queues(adapter);
6653
6654 adapter->l2t = t4_init_l2t();
6655 if (!adapter->l2t) {
6656 /* We tolerate a lack of L2T, giving up some functionality */
6657 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6658 adapter->params.offload = 0;
6659 }
6660
6661 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6662 dev_warn(&pdev->dev, "could not allocate TID table, "
6663 "continuing\n");
6664 adapter->params.offload = 0;
6665 }
6666
6667 /* See what interrupts we'll be using */
6668 if (msi > 1 && enable_msix(adapter) == 0)
6669 adapter->flags |= USING_MSIX;
6670 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6671 adapter->flags |= USING_MSI;
6672
6673 err = init_rss(adapter);
6674 if (err)
6675 goto out_free_dev;
6676
6677 /*
6678 * The card is now ready to go. If any errors occur during device
6679 * registration we do not fail the whole card but rather proceed only
6680 * with the ports we manage to register successfully. However we must
6681 * register at least one net device.
6682 */
6683 for_each_port(adapter, i) {
6684 pi = adap2pinfo(adapter, i);
6685 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6686 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6687
6688 err = register_netdev(adapter->port[i]);
6689 if (err)
6690 break;
6691 adapter->chan_map[pi->tx_chan] = i;
6692 print_port_info(adapter->port[i]);
6693 }
6694 if (i == 0) {
6695 dev_err(&pdev->dev, "could not register any net devices\n");
6696 goto out_free_dev;
6697 }
6698 if (err) {
6699 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6700 err = 0;
6701 }
6702
6703 if (cxgb4_debugfs_root) {
6704 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6705 cxgb4_debugfs_root);
6706 setup_debugfs(adapter);
6707 }
6708
6709 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6710 pdev->needs_freset = 1;
6711
6712 if (is_offload(adapter))
6713 attach_ulds(adapter);
6714
6715 sriov:
6716 #ifdef CONFIG_PCI_IOV
6717 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6718 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6719 dev_info(&pdev->dev,
6720 "instantiated %u virtual functions\n",
6721 num_vf[func]);
6722 #endif
6723 return 0;
6724
6725 out_free_dev:
6726 free_some_resources(adapter);
6727 out_unmap_bar:
6728 if (!is_t4(adapter->params.chip))
6729 iounmap(adapter->bar2);
6730 out_free_adapter:
6731 if (adapter->workq)
6732 destroy_workqueue(adapter->workq);
6733
6734 kfree(adapter);
6735 out_unmap_bar0:
6736 iounmap(regs);
6737 out_disable_device:
6738 pci_disable_pcie_error_reporting(pdev);
6739 pci_disable_device(pdev);
6740 out_release_regions:
6741 pci_release_regions(pdev);
6742 return err;
6743 }
6744
6745 static void remove_one(struct pci_dev *pdev)
6746 {
6747 struct adapter *adapter = pci_get_drvdata(pdev);
6748
6749 #ifdef CONFIG_PCI_IOV
6750 pci_disable_sriov(pdev);
6751
6752 #endif
6753
6754 if (adapter) {
6755 int i;
6756
6757 /* Tear down per-adapter Work Queue first since it can contain
6758 * references to our adapter data structure.
6759 */
6760 destroy_workqueue(adapter->workq);
6761
6762 if (is_offload(adapter))
6763 detach_ulds(adapter);
6764
6765 for_each_port(adapter, i)
6766 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6767 unregister_netdev(adapter->port[i]);
6768
6769 debugfs_remove_recursive(adapter->debugfs_root);
6770
6771 /* If we allocated filters, free up state associated with any
6772 * valid filters ...
6773 */
6774 if (adapter->tids.ftid_tab) {
6775 struct filter_entry *f = &adapter->tids.ftid_tab[0];
6776 for (i = 0; i < (adapter->tids.nftids +
6777 adapter->tids.nsftids); i++, f++)
6778 if (f->valid)
6779 clear_filter(adapter, f);
6780 }
6781
6782 if (adapter->flags & FULL_INIT_DONE)
6783 cxgb_down(adapter);
6784
6785 free_some_resources(adapter);
6786 iounmap(adapter->regs);
6787 if (!is_t4(adapter->params.chip))
6788 iounmap(adapter->bar2);
6789 pci_disable_pcie_error_reporting(pdev);
6790 if ((adapter->flags & DEV_ENABLED)) {
6791 pci_disable_device(pdev);
6792 adapter->flags &= ~DEV_ENABLED;
6793 }
6794 pci_release_regions(pdev);
6795 synchronize_rcu();
6796 kfree(adapter);
6797 } else
6798 pci_release_regions(pdev);
6799 }
6800
6801 static struct pci_driver cxgb4_driver = {
6802 .name = KBUILD_MODNAME,
6803 .id_table = cxgb4_pci_tbl,
6804 .probe = init_one,
6805 .remove = remove_one,
6806 .shutdown = remove_one,
6807 .err_handler = &cxgb4_eeh,
6808 };
6809
6810 static int __init cxgb4_init_module(void)
6811 {
6812 int ret;
6813
6814 /* Debugfs support is optional, just warn if this fails */
6815 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6816 if (!cxgb4_debugfs_root)
6817 pr_warn("could not create debugfs entry, continuing\n");
6818
6819 ret = pci_register_driver(&cxgb4_driver);
6820 if (ret < 0)
6821 debugfs_remove(cxgb4_debugfs_root);
6822
6823 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6824
6825 return ret;
6826 }
6827
6828 static void __exit cxgb4_cleanup_module(void)
6829 {
6830 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6831 pci_unregister_driver(&cxgb4_driver);
6832 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6833 }
6834
6835 module_init(cxgb4_init_module);
6836 module_exit(cxgb4_cleanup_module);