]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/sge.c
32a45dc51ed7966b912097a1bb83872698a686d8
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60
61 /*
62 * Rx buffer size. We use largish buffers if possible but settle for single
63 * pages under memory shortage.
64 */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES 256
73 #define RX_PULL_LEN 128
74
75 /*
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78 */
79 #define RX_PKT_SKB_LEN 512
80
81 /*
82 * Max number of Tx descriptors we clean up at a time. Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks. We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
86 * also match the CIDX Flush Threshold.
87 */
88 #define MAX_TX_RECLAIM 32
89
90 /*
91 * Max number of Rx buffers we replenish at a time. Again keep this modest,
92 * allocating buffers isn't cheap either.
93 */
94 #define MAX_RX_REFILL 16U
95
96 /*
97 * Period of the Rx queue check timer. This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
99 */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101
102 /*
103 * Period of the Tx queue check timer.
104 */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106
107 /*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110 #define MAX_TIMER_TX_RECLAIM 100
111
112 /*
113 * Timer index used when backing off due to memory shortage.
114 */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117 /*
118 * Suspension threshold for non-Ethernet Tx queues. We require enough room
119 * for a full sized WR.
120 */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122
123 /*
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
126 */
127 #define MAX_IMM_TX_PKT_LEN 256
128
129 /*
130 * Max size of a WR sent through a control Tx queue.
131 */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133
134 struct rx_sw_desc { /* SW state per Rx descriptor */
135 struct page *page;
136 dma_addr_t dma_addr;
137 };
138
139 /*
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
144 */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147
148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 unsigned int mtu)
150 {
151 struct sge *s = &adapter->sge;
152
153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158
159 /*
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array. We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings. All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
168 */
169 enum {
170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
173
174 /*
175 * XXX We shouldn't depend on being able to use these indices.
176 * XXX Especially when some other Master PF has initialized the
177 * XXX adapter or we use the Firmware Configuration File. We
178 * XXX should really search through the Host Buffer Size register
179 * XXX array for the appropriately sized buffer indices.
180 */
181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
183
184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
186 };
187
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK 1
190
191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195
196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200
201 /**
202 * txq_avail - return the number of available slots in a Tx queue
203 * @q: the Tx queue
204 *
205 * Returns the number of descriptors in a Tx queue available to write new
206 * packets.
207 */
208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 return q->size - 1 - q->in_use;
211 }
212
213 /**
214 * fl_cap - return the capacity of a free-buffer list
215 * @fl: the FL
216 *
217 * Returns the capacity of a free-buffer list. The capacity is less than
218 * the size because one descriptor needs to be left unpopulated, otherwise
219 * HW will think the FL is empty.
220 */
221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 return fl->size - 8; /* 1 descriptor = 8 buffers */
224 }
225
226 /**
227 * fl_starving - return whether a Free List is starving.
228 * @adapter: pointer to the adapter
229 * @fl: the Free List
230 *
231 * Tests specified Free List to see whether the number of buffers
232 * available to the hardware has falled below our "starvation"
233 * threshold.
234 */
235 static inline bool fl_starving(const struct adapter *adapter,
236 const struct sge_fl *fl)
237 {
238 const struct sge *s = &adapter->sge;
239
240 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242
243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 dma_addr_t *addr)
245 {
246 const skb_frag_t *fp, *end;
247 const struct skb_shared_info *si;
248
249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 if (dma_mapping_error(dev, *addr))
251 goto out_err;
252
253 si = skb_shinfo(skb);
254 end = &si->frags[si->nr_frags];
255
256 for (fp = si->frags; fp < end; fp++) {
257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 DMA_TO_DEVICE);
259 if (dma_mapping_error(dev, *addr))
260 goto unwind;
261 }
262 return 0;
263
264 unwind:
265 while (fp-- > si->frags)
266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267
268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273
274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 const dma_addr_t *addr)
276 {
277 const skb_frag_t *fp, *end;
278 const struct skb_shared_info *si;
279
280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281
282 si = skb_shinfo(skb);
283 end = &si->frags[si->nr_frags];
284 for (fp = si->frags; fp < end; fp++)
285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290 * deferred_unmap_destructor - unmap a packet when it is freed
291 * @skb: the packet
292 *
293 * This is the packet destructor used for Tx packets that need to remain
294 * mapped until they are freed rather than until their Tx descriptors are
295 * freed.
296 */
297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302
303 /**
304 * free_tx_desc - reclaims Tx descriptors and their buffers
305 * @adap: the adapter
306 * @q: the Tx queue to reclaim descriptors from
307 * @n: the number of descriptors to reclaim
308 * @unmap: whether the buffers should be unmapped for DMA
309 *
310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 * Tx buffers. Called with the Tx queue lock held.
312 */
313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 unsigned int n, bool unmap)
315 {
316 unsigned int cidx = q->cidx;
317 struct tx_sw_desc *d;
318
319 d = &q->sdesc[cidx];
320 while (n--) {
321 if (d->skb) { /* an SGL is present */
322 if (unmap && d->addr[0]) {
323 unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 memset(d->addr, 0, sizeof(d->addr));
325 }
326 dev_consume_skb_any(d->skb);
327 d->skb = NULL;
328 }
329 ++d;
330 if (++cidx == q->size) {
331 cidx = 0;
332 d = q->sdesc;
333 }
334 }
335 q->cidx = cidx;
336 }
337
338 /*
339 * Return the number of reclaimable descriptors in a Tx queue.
340 */
341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 hw_cidx -= q->cidx;
345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347
348 /**
349 * reclaim_completed_tx - reclaims completed TX Descriptors
350 * @adap: the adapter
351 * @q: the Tx queue to reclaim completed descriptors from
352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 * @unmap: whether the buffers should be unmapped for DMA
354 *
355 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 * and frees the associated buffers if possible. If @max == -1, then
357 * we'll use a defaiult maximum. Called with the TX Queue locked.
358 */
359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 int maxreclaim, bool unmap)
361 {
362 int reclaim = reclaimable(q);
363
364 if (reclaim) {
365 /*
366 * Limit the amount of clean up work we do at a time to keep
367 * the Tx lock hold time O(1).
368 */
369 if (maxreclaim < 0)
370 maxreclaim = MAX_TX_RECLAIM;
371 if (reclaim > maxreclaim)
372 reclaim = maxreclaim;
373
374 free_tx_desc(adap, q, reclaim, unmap);
375 q->in_use -= reclaim;
376 }
377
378 return reclaim;
379 }
380
381 /**
382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 * @adap: the adapter
384 * @q: the Tx queue to reclaim completed descriptors from
385 * @unmap: whether the buffers should be unmapped for DMA
386 *
387 * Reclaims Tx descriptors that the SGE has indicated it has processed,
388 * and frees the associated buffers if possible. Called with the Tx
389 * queue locked.
390 */
391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 bool unmap)
393 {
394 (void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397
398 static inline int get_buf_size(struct adapter *adapter,
399 const struct rx_sw_desc *d)
400 {
401 struct sge *s = &adapter->sge;
402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 int buf_size;
404
405 switch (rx_buf_size_idx) {
406 case RX_SMALL_PG_BUF:
407 buf_size = PAGE_SIZE;
408 break;
409
410 case RX_LARGE_PG_BUF:
411 buf_size = PAGE_SIZE << s->fl_pg_order;
412 break;
413
414 case RX_SMALL_MTU_BUF:
415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 break;
417
418 case RX_LARGE_MTU_BUF:
419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 break;
421
422 default:
423 BUG();
424 }
425
426 return buf_size;
427 }
428
429 /**
430 * free_rx_bufs - free the Rx buffers on an SGE free list
431 * @adap: the adapter
432 * @q: the SGE free list to free buffers from
433 * @n: how many buffers to free
434 *
435 * Release the next @n buffers on an SGE free-buffer Rx queue. The
436 * buffers must be made inaccessible to HW before calling this function.
437 */
438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 while (n--) {
441 struct rx_sw_desc *d = &q->sdesc[q->cidx];
442
443 if (is_buf_mapped(d))
444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 get_buf_size(adap, d),
446 PCI_DMA_FROMDEVICE);
447 put_page(d->page);
448 d->page = NULL;
449 if (++q->cidx == q->size)
450 q->cidx = 0;
451 q->avail--;
452 }
453 }
454
455 /**
456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 * @adap: the adapter
458 * @q: the SGE free list
459 *
460 * Unmap the current buffer on an SGE free-buffer Rx queue. The
461 * buffer must be made inaccessible to HW before calling this function.
462 *
463 * This is similar to @free_rx_bufs above but does not free the buffer.
464 * Do note that the FL still loses any further access to the buffer.
465 */
466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 struct rx_sw_desc *d = &q->sdesc[q->cidx];
469
470 if (is_buf_mapped(d))
471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
473 d->page = NULL;
474 if (++q->cidx == q->size)
475 q->cidx = 0;
476 q->avail--;
477 }
478
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= 8) {
482 u32 val = adap->params.arch.sge_fl_db;
483
484 if (is_t4(adap->params.chip))
485 val |= PIDX_V(q->pend_cred / 8);
486 else
487 val |= PIDX_T5_V(q->pend_cred / 8);
488
489 /* Make sure all memory writes to the Free List queue are
490 * committed before we tell the hardware about them.
491 */
492 wmb();
493
494 /* If we don't have access to the new User Doorbell (T5+), use
495 * the old doorbell mechanism; otherwise use the new BAR2
496 * mechanism.
497 */
498 if (unlikely(q->bar2_addr == NULL)) {
499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 val | QID_V(q->cntxt_id));
501 } else {
502 writel(val | QID_V(q->bar2_qid),
503 q->bar2_addr + SGE_UDB_KDOORBELL);
504
505 /* This Write memory Barrier will force the write to
506 * the User Doorbell area to be flushed.
507 */
508 wmb();
509 }
510 q->pend_cred &= 7;
511 }
512 }
513
514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 dma_addr_t mapping)
516 {
517 sd->page = pg;
518 sd->dma_addr = mapping; /* includes size low bits */
519 }
520
521 /**
522 * refill_fl - refill an SGE Rx buffer ring
523 * @adap: the adapter
524 * @q: the ring to refill
525 * @n: the number of new buffers to allocate
526 * @gfp: the gfp flags for the allocations
527 *
528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 * allocated with the supplied gfp flags. The caller must assure that
530 * @n does not exceed the queue's capacity. If afterwards the queue is
531 * found critically low mark it as starving in the bitmap of starving FLs.
532 *
533 * Returns the number of buffers allocated.
534 */
535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 gfp_t gfp)
537 {
538 struct sge *s = &adap->sge;
539 struct page *pg;
540 dma_addr_t mapping;
541 unsigned int cred = q->avail;
542 __be64 *d = &q->desc[q->pidx];
543 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 int node;
545
546 #ifdef CONFIG_DEBUG_FS
547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 goto out;
549 #endif
550
551 gfp |= __GFP_NOWARN;
552 node = dev_to_node(adap->pdev_dev);
553
554 if (s->fl_pg_order == 0)
555 goto alloc_small_pages;
556
557 /*
558 * Prefer large buffers
559 */
560 while (n) {
561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 if (unlikely(!pg)) {
563 q->large_alloc_failed++;
564 break; /* fall back to single pages */
565 }
566
567 mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 PAGE_SIZE << s->fl_pg_order,
569 PCI_DMA_FROMDEVICE);
570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 __free_pages(pg, s->fl_pg_order);
572 q->mapping_err++;
573 goto out; /* do not try small pages for this error */
574 }
575 mapping |= RX_LARGE_PG_BUF;
576 *d++ = cpu_to_be64(mapping);
577
578 set_rx_sw_desc(sd, pg, mapping);
579 sd++;
580
581 q->avail++;
582 if (++q->pidx == q->size) {
583 q->pidx = 0;
584 sd = q->sdesc;
585 d = q->desc;
586 }
587 n--;
588 }
589
590 alloc_small_pages:
591 while (n--) {
592 pg = alloc_pages_node(node, gfp, 0);
593 if (unlikely(!pg)) {
594 q->alloc_failed++;
595 break;
596 }
597
598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 PCI_DMA_FROMDEVICE);
600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 put_page(pg);
602 q->mapping_err++;
603 goto out;
604 }
605 *d++ = cpu_to_be64(mapping);
606
607 set_rx_sw_desc(sd, pg, mapping);
608 sd++;
609
610 q->avail++;
611 if (++q->pidx == q->size) {
612 q->pidx = 0;
613 sd = q->sdesc;
614 d = q->desc;
615 }
616 }
617
618 out: cred = q->avail - cred;
619 q->pend_cred += cred;
620 ring_fl_db(adap, q);
621
622 if (unlikely(fl_starving(adap, q))) {
623 smp_wmb();
624 q->low++;
625 set_bit(q->cntxt_id - adap->sge.egr_start,
626 adap->sge.starving_fl);
627 }
628
629 return cred;
630 }
631
632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 GFP_ATOMIC);
636 }
637
638 /**
639 * alloc_ring - allocate resources for an SGE descriptor ring
640 * @dev: the PCI device's core device
641 * @nelem: the number of descriptors
642 * @elem_size: the size of each descriptor
643 * @sw_size: the size of the SW state associated with each ring element
644 * @phys: the physical address of the allocated ring
645 * @metadata: address of the array holding the SW state for the ring
646 * @stat_size: extra space in HW ring for status information
647 * @node: preferred node for memory allocations
648 *
649 * Allocates resources for an SGE descriptor ring, such as Tx queues,
650 * free buffer lists, or response queues. Each SGE ring requires
651 * space for its HW descriptors plus, optionally, space for the SW state
652 * associated with each HW entry (the metadata). The function returns
653 * three values: the virtual address for the HW ring (the return value
654 * of the function), the bus address of the HW ring, and the address
655 * of the SW ring.
656 */
657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 size_t sw_size, dma_addr_t *phys, void *metadata,
659 size_t stat_size, int node)
660 {
661 size_t len = nelem * elem_size + stat_size;
662 void *s = NULL;
663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664
665 if (!p)
666 return NULL;
667 if (sw_size) {
668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669
670 if (!s) {
671 dma_free_coherent(dev, len, p, *phys);
672 return NULL;
673 }
674 }
675 if (metadata)
676 *(void **)metadata = s;
677 return p;
678 }
679
680 /**
681 * sgl_len - calculates the size of an SGL of the given capacity
682 * @n: the number of SGL entries
683 *
684 * Calculates the number of flits needed for a scatter/gather list that
685 * can hold the given number of entries.
686 */
687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 * boundaries). If N is even, then Length[N+1] should be set to 0 and
695 * Address[N+1] is omitted.
696 *
697 * The following calculation incorporates all of the above. It's
698 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 * first two flits which include the DSGL header, Length0 and
700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 * (n-1) is odd ...
704 */
705 n--;
706 return (3 * n) / 2 + (n & 1) + 2;
707 }
708
709 /**
710 * flits_to_desc - returns the num of Tx descriptors for the given flits
711 * @n: the number of flits
712 *
713 * Returns the number of Tx descriptors needed for the supplied number
714 * of flits.
715 */
716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 return DIV_ROUND_UP(n, 8);
720 }
721
722 /**
723 * is_eth_imm - can an Ethernet packet be sent as immediate data?
724 * @skb: the packet
725 * @chip_ver: chip version
726 *
727 * Returns whether an Ethernet packet is small enough to fit as
728 * immediate data. Return value corresponds to headroom required.
729 */
730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 {
732 int hdrlen = 0;
733
734 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735 chip_ver > CHELSIO_T5) {
736 hdrlen = sizeof(struct cpl_tx_tnl_lso);
737 hdrlen += sizeof(struct cpl_tx_pkt_core);
738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 return 0;
740 } else {
741 hdrlen = skb_shinfo(skb)->gso_size ?
742 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743 hdrlen += sizeof(struct cpl_tx_pkt);
744 }
745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746 return hdrlen;
747 return 0;
748 }
749
750 /**
751 * calc_tx_flits - calculate the number of flits for a packet Tx WR
752 * @skb: the packet
753 * @chip_ver: chip version
754 *
755 * Returns the number of flits needed for a Tx WR for the given Ethernet
756 * packet, including the needed WR and CPL headers.
757 */
758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759 unsigned int chip_ver)
760 {
761 unsigned int flits;
762 int hdrlen = is_eth_imm(skb, chip_ver);
763
764 /* If the skb is small enough, we can pump it out as a work request
765 * with only immediate data. In that case we just have to have the
766 * TX Packet header plus the skb data in the Work Request.
767 */
768
769 if (hdrlen)
770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771
772 /* Otherwise, we're going to have to construct a Scatter gather list
773 * of the skb body and fragments. We also include the flits necessary
774 * for the TX Packet Work Request and CPL. We always have a firmware
775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 * with an embedded TX Packet Write CPL message.
779 */
780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781 if (skb_shinfo(skb)->gso_size) {
782 if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784 sizeof(struct cpl_tx_tnl_lso);
785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786 u32 pkt_hdrlen;
787
788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789 skb_headlen(skb));
790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791 round_up(pkt_hdrlen, 16);
792 } else {
793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794 sizeof(struct cpl_tx_pkt_lso_core);
795 }
796
797 hdrlen += sizeof(struct cpl_tx_pkt_core);
798 flits += (hdrlen / sizeof(__be64));
799 } else {
800 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802 }
803 return flits;
804 }
805
806 /**
807 * calc_tx_descs - calculate the number of Tx descriptors for a packet
808 * @skb: the packet
809 * @chip_ver: chip version
810 *
811 * Returns the number of Tx descriptors needed for the given Ethernet
812 * packet, including the needed WR and CPL headers.
813 */
814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
815 unsigned int chip_ver)
816 {
817 return flits_to_desc(calc_tx_flits(skb, chip_ver));
818 }
819
820 /**
821 * cxgb4_write_sgl - populate a scatter/gather list for a packet
822 * @skb: the packet
823 * @q: the Tx queue we are writing into
824 * @sgl: starting location for writing the SGL
825 * @end: points right after the end of the SGL
826 * @start: start offset into skb main-body data to include in the SGL
827 * @addr: the list of bus addresses for the SGL elements
828 *
829 * Generates a gather list for the buffers that make up a packet.
830 * The caller must provide adequate space for the SGL that will be written.
831 * The SGL includes all of the packet's page fragments and the data in its
832 * main body except for the first @start bytes. @sgl must be 16-byte
833 * aligned and within a Tx descriptor with available space. @end points
834 * right after the end of the SGL but does not account for any potential
835 * wrap around, i.e., @end > @sgl.
836 */
837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
838 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
839 const dma_addr_t *addr)
840 {
841 unsigned int i, len;
842 struct ulptx_sge_pair *to;
843 const struct skb_shared_info *si = skb_shinfo(skb);
844 unsigned int nfrags = si->nr_frags;
845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
846
847 len = skb_headlen(skb) - start;
848 if (likely(len)) {
849 sgl->len0 = htonl(len);
850 sgl->addr0 = cpu_to_be64(addr[0] + start);
851 nfrags++;
852 } else {
853 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
854 sgl->addr0 = cpu_to_be64(addr[1]);
855 }
856
857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
858 ULPTX_NSGE_V(nfrags));
859 if (likely(--nfrags == 0))
860 return;
861 /*
862 * Most of the complexity below deals with the possibility we hit the
863 * end of the queue in the middle of writing the SGL. For this case
864 * only we create the SGL in a temporary buffer and then copy it.
865 */
866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
867
868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
871 to->addr[0] = cpu_to_be64(addr[i]);
872 to->addr[1] = cpu_to_be64(addr[++i]);
873 }
874 if (nfrags) {
875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
876 to->len[1] = cpu_to_be32(0);
877 to->addr[0] = cpu_to_be64(addr[i + 1]);
878 }
879 if (unlikely((u8 *)end > (u8 *)q->stat)) {
880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
881
882 if (likely(part0))
883 memcpy(sgl->sge, buf, part0);
884 part1 = (u8 *)end - (u8 *)q->stat;
885 memcpy(q->desc, (u8 *)buf + part0, part1);
886 end = (void *)q->desc + part1;
887 }
888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
889 *end = 0;
890 }
891 EXPORT_SYMBOL(cxgb4_write_sgl);
892
893 /* This function copies 64 byte coalesced work request to
894 * memory mapped BAR2 space. For coalesced WR SGE fetches
895 * data from the FIFO instead of from Host.
896 */
897 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
898 {
899 int count = 8;
900
901 while (count) {
902 writeq(*src, dst);
903 src++;
904 dst++;
905 count--;
906 }
907 }
908
909 /**
910 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
911 * @adap: the adapter
912 * @q: the Tx queue
913 * @n: number of new descriptors to give to HW
914 *
915 * Ring the doorbel for a Tx queue.
916 */
917 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
918 {
919 /* Make sure that all writes to the TX Descriptors are committed
920 * before we tell the hardware about them.
921 */
922 wmb();
923
924 /* If we don't have access to the new User Doorbell (T5+), use the old
925 * doorbell mechanism; otherwise use the new BAR2 mechanism.
926 */
927 if (unlikely(q->bar2_addr == NULL)) {
928 u32 val = PIDX_V(n);
929 unsigned long flags;
930
931 /* For T4 we need to participate in the Doorbell Recovery
932 * mechanism.
933 */
934 spin_lock_irqsave(&q->db_lock, flags);
935 if (!q->db_disabled)
936 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
937 QID_V(q->cntxt_id) | val);
938 else
939 q->db_pidx_inc += n;
940 q->db_pidx = q->pidx;
941 spin_unlock_irqrestore(&q->db_lock, flags);
942 } else {
943 u32 val = PIDX_T5_V(n);
944
945 /* T4 and later chips share the same PIDX field offset within
946 * the doorbell, but T5 and later shrank the field in order to
947 * gain a bit for Doorbell Priority. The field was absurdly
948 * large in the first place (14 bits) so we just use the T5
949 * and later limits and warn if a Queue ID is too large.
950 */
951 WARN_ON(val & DBPRIO_F);
952
953 /* If we're only writing a single TX Descriptor and we can use
954 * Inferred QID registers, we can use the Write Combining
955 * Gather Buffer; otherwise we use the simple doorbell.
956 */
957 if (n == 1 && q->bar2_qid == 0) {
958 int index = (q->pidx
959 ? (q->pidx - 1)
960 : (q->size - 1));
961 u64 *wr = (u64 *)&q->desc[index];
962
963 cxgb_pio_copy((u64 __iomem *)
964 (q->bar2_addr + SGE_UDB_WCDOORBELL),
965 wr);
966 } else {
967 writel(val | QID_V(q->bar2_qid),
968 q->bar2_addr + SGE_UDB_KDOORBELL);
969 }
970
971 /* This Write Memory Barrier will force the write to the User
972 * Doorbell area to be flushed. This is needed to prevent
973 * writes on different CPUs for the same queue from hitting
974 * the adapter out of order. This is required when some Work
975 * Requests take the Write Combine Gather Buffer path (user
976 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
977 * take the traditional path where we simply increment the
978 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
979 * hardware DMA read the actual Work Request.
980 */
981 wmb();
982 }
983 }
984 EXPORT_SYMBOL(cxgb4_ring_tx_db);
985
986 /**
987 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
988 * @skb: the packet
989 * @q: the Tx queue where the packet will be inlined
990 * @pos: starting position in the Tx queue where to inline the packet
991 *
992 * Inline a packet's contents directly into Tx descriptors, starting at
993 * the given position within the Tx DMA ring.
994 * Most of the complexity of this operation is dealing with wrap arounds
995 * in the middle of the packet we want to inline.
996 */
997 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
998 const struct sge_txq *q, void *pos)
999 {
1000 int left = (void *)q->stat - pos;
1001 u64 *p;
1002
1003 if (likely(skb->len <= left)) {
1004 if (likely(!skb->data_len))
1005 skb_copy_from_linear_data(skb, pos, skb->len);
1006 else
1007 skb_copy_bits(skb, 0, pos, skb->len);
1008 pos += skb->len;
1009 } else {
1010 skb_copy_bits(skb, 0, pos, left);
1011 skb_copy_bits(skb, left, q->desc, skb->len - left);
1012 pos = (void *)q->desc + (skb->len - left);
1013 }
1014
1015 /* 0-pad to multiple of 16 */
1016 p = PTR_ALIGN(pos, 8);
1017 if ((uintptr_t)p & 8)
1018 *p = 0;
1019 }
1020 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1021
1022 static void *inline_tx_skb_header(const struct sk_buff *skb,
1023 const struct sge_txq *q, void *pos,
1024 int length)
1025 {
1026 u64 *p;
1027 int left = (void *)q->stat - pos;
1028
1029 if (likely(length <= left)) {
1030 memcpy(pos, skb->data, length);
1031 pos += length;
1032 } else {
1033 memcpy(pos, skb->data, left);
1034 memcpy(q->desc, skb->data + left, length - left);
1035 pos = (void *)q->desc + (length - left);
1036 }
1037 /* 0-pad to multiple of 16 */
1038 p = PTR_ALIGN(pos, 8);
1039 if ((uintptr_t)p & 8) {
1040 *p = 0;
1041 return p + 1;
1042 }
1043 return p;
1044 }
1045
1046 /*
1047 * Figure out what HW csum a packet wants and return the appropriate control
1048 * bits.
1049 */
1050 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1051 {
1052 int csum_type;
1053 bool inner_hdr_csum = false;
1054 u16 proto, ver;
1055
1056 if (skb->encapsulation &&
1057 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1058 inner_hdr_csum = true;
1059
1060 if (inner_hdr_csum) {
1061 ver = inner_ip_hdr(skb)->version;
1062 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1063 inner_ipv6_hdr(skb)->nexthdr;
1064 } else {
1065 ver = ip_hdr(skb)->version;
1066 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1067 ipv6_hdr(skb)->nexthdr;
1068 }
1069
1070 if (ver == 4) {
1071 if (proto == IPPROTO_TCP)
1072 csum_type = TX_CSUM_TCPIP;
1073 else if (proto == IPPROTO_UDP)
1074 csum_type = TX_CSUM_UDPIP;
1075 else {
1076 nocsum: /*
1077 * unknown protocol, disable HW csum
1078 * and hope a bad packet is detected
1079 */
1080 return TXPKT_L4CSUM_DIS_F;
1081 }
1082 } else {
1083 /*
1084 * this doesn't work with extension headers
1085 */
1086 if (proto == IPPROTO_TCP)
1087 csum_type = TX_CSUM_TCPIP6;
1088 else if (proto == IPPROTO_UDP)
1089 csum_type = TX_CSUM_UDPIP6;
1090 else
1091 goto nocsum;
1092 }
1093
1094 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1095 int eth_hdr_len, l4_len;
1096 u64 hdr_len;
1097
1098 if (inner_hdr_csum) {
1099 /* This allows checksum offload for all encapsulated
1100 * packets like GRE etc..
1101 */
1102 l4_len = skb_inner_network_header_len(skb);
1103 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1104 } else {
1105 l4_len = skb_network_header_len(skb);
1106 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1107 }
1108 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1109
1110 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1111 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1112 else
1113 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1114 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1115 } else {
1116 int start = skb_transport_offset(skb);
1117
1118 return TXPKT_CSUM_TYPE_V(csum_type) |
1119 TXPKT_CSUM_START_V(start) |
1120 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1121 }
1122 }
1123
1124 static void eth_txq_stop(struct sge_eth_txq *q)
1125 {
1126 netif_tx_stop_queue(q->txq);
1127 q->q.stops++;
1128 }
1129
1130 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1131 {
1132 q->in_use += n;
1133 q->pidx += n;
1134 if (q->pidx >= q->size)
1135 q->pidx -= q->size;
1136 }
1137
1138 #ifdef CONFIG_CHELSIO_T4_FCOE
1139 static inline int
1140 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1141 const struct port_info *pi, u64 *cntrl)
1142 {
1143 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1144
1145 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1146 return 0;
1147
1148 if (skb->protocol != htons(ETH_P_FCOE))
1149 return 0;
1150
1151 skb_reset_mac_header(skb);
1152 skb->mac_len = sizeof(struct ethhdr);
1153
1154 skb_set_network_header(skb, skb->mac_len);
1155 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1156
1157 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1158 return -ENOTSUPP;
1159
1160 /* FC CRC offload */
1161 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1162 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1163 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1164 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1165 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1166 return 0;
1167 }
1168 #endif /* CONFIG_CHELSIO_T4_FCOE */
1169
1170 /* Returns tunnel type if hardware supports offloading of the same.
1171 * It is called only for T5 and onwards.
1172 */
1173 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1174 {
1175 u8 l4_hdr = 0;
1176 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1177 struct port_info *pi = netdev_priv(skb->dev);
1178 struct adapter *adapter = pi->adapter;
1179
1180 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1181 skb->inner_protocol != htons(ETH_P_TEB))
1182 return tnl_type;
1183
1184 switch (vlan_get_protocol(skb)) {
1185 case htons(ETH_P_IP):
1186 l4_hdr = ip_hdr(skb)->protocol;
1187 break;
1188 case htons(ETH_P_IPV6):
1189 l4_hdr = ipv6_hdr(skb)->nexthdr;
1190 break;
1191 default:
1192 return tnl_type;
1193 }
1194
1195 switch (l4_hdr) {
1196 case IPPROTO_UDP:
1197 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1198 tnl_type = TX_TNL_TYPE_VXLAN;
1199 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1200 tnl_type = TX_TNL_TYPE_GENEVE;
1201 break;
1202 default:
1203 return tnl_type;
1204 }
1205
1206 return tnl_type;
1207 }
1208
1209 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1210 struct cpl_tx_tnl_lso *tnl_lso,
1211 enum cpl_tx_tnl_lso_type tnl_type)
1212 {
1213 u32 val;
1214 int in_eth_xtra_len;
1215 int l3hdr_len = skb_network_header_len(skb);
1216 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1217 const struct skb_shared_info *ssi = skb_shinfo(skb);
1218 bool v6 = (ip_hdr(skb)->version == 6);
1219
1220 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1221 CPL_TX_TNL_LSO_FIRST_F |
1222 CPL_TX_TNL_LSO_LAST_F |
1223 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1224 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1225 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1226 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1227 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1228 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1229 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1230
1231 tnl_lso->IpIdOffsetOut = 0;
1232
1233 /* Get the tunnel header length */
1234 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1235 in_eth_xtra_len = skb_inner_network_header(skb) -
1236 skb_inner_mac_header(skb) - ETH_HLEN;
1237
1238 switch (tnl_type) {
1239 case TX_TNL_TYPE_VXLAN:
1240 case TX_TNL_TYPE_GENEVE:
1241 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1242 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1243 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1244 break;
1245 default:
1246 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1247 break;
1248 }
1249
1250 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1251 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1252 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1253
1254 tnl_lso->r1 = 0;
1255
1256 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1257 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1258 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1259 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1260 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1261
1262 tnl_lso->IpIdOffset = htons(0);
1263
1264 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1265 tnl_lso->TCPSeqOffset = htonl(0);
1266 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1267 }
1268
1269 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1270 struct cpl_tx_pkt_lso_core *lso)
1271 {
1272 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1273 int l3hdr_len = skb_network_header_len(skb);
1274 const struct skb_shared_info *ssi;
1275 bool ipv6 = false;
1276
1277 ssi = skb_shinfo(skb);
1278 if (ssi->gso_type & SKB_GSO_TCPV6)
1279 ipv6 = true;
1280
1281 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1282 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1283 LSO_IPV6_V(ipv6) |
1284 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1285 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1286 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1287 lso->ipid_ofst = htons(0);
1288 lso->mss = htons(ssi->gso_size);
1289 lso->seqno_offset = htonl(0);
1290 if (is_t4(adap->params.chip))
1291 lso->len = htonl(skb->len);
1292 else
1293 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1294
1295 return (void *)(lso + 1);
1296 }
1297
1298 /**
1299 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1300 * @adap: the adapter
1301 * @eq: the Ethernet TX Queue
1302 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1303 *
1304 * We're typically called here to update the state of an Ethernet TX
1305 * Queue with respect to the hardware's progress in consuming the TX
1306 * Work Requests that we've put on that Egress Queue. This happens
1307 * when we get Egress Queue Update messages and also prophylactically
1308 * in regular timer-based Ethernet TX Queue maintenance.
1309 */
1310 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1311 int maxreclaim)
1312 {
1313 unsigned int reclaimed, hw_cidx;
1314 struct sge_txq *q = &eq->q;
1315 int hw_in_use;
1316
1317 if (!q->in_use || !__netif_tx_trylock(eq->txq))
1318 return 0;
1319
1320 /* Reclaim pending completed TX Descriptors. */
1321 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1322
1323 hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1324 hw_in_use = q->pidx - hw_cidx;
1325 if (hw_in_use < 0)
1326 hw_in_use += q->size;
1327
1328 /* If the TX Queue is currently stopped and there's now more than half
1329 * the queue available, restart it. Otherwise bail out since the rest
1330 * of what we want do here is with the possibility of shipping any
1331 * currently buffered Coalesced TX Work Request.
1332 */
1333 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1334 netif_tx_wake_queue(eq->txq);
1335 eq->q.restarts++;
1336 }
1337
1338 __netif_tx_unlock(eq->txq);
1339 return reclaimed;
1340 }
1341
1342 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1343 struct net_device *dev,
1344 u32 min_pkt_len)
1345 {
1346 u32 max_pkt_len;
1347
1348 /* The chip min packet length is 10 octets but some firmware
1349 * commands have a minimum packet length requirement. So, play
1350 * safe and reject anything shorter than @min_pkt_len.
1351 */
1352 if (unlikely(skb->len < min_pkt_len))
1353 return -EINVAL;
1354
1355 /* Discard the packet if the length is greater than mtu */
1356 max_pkt_len = ETH_HLEN + dev->mtu;
1357
1358 if (skb_vlan_tagged(skb))
1359 max_pkt_len += VLAN_HLEN;
1360
1361 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1362 return -EINVAL;
1363
1364 return 0;
1365 }
1366
1367 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1368 u32 hdr_len)
1369 {
1370 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1371 wr->u.udpseg.ethlen = skb_network_offset(skb);
1372 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1373 wr->u.udpseg.udplen = sizeof(struct udphdr);
1374 wr->u.udpseg.rtplen = 0;
1375 wr->u.udpseg.r4 = 0;
1376 if (skb_shinfo(skb)->gso_size)
1377 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1378 else
1379 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1380 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1381 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1382
1383 return (void *)(wr + 1);
1384 }
1385
1386 /**
1387 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1388 * @skb: the packet
1389 * @dev: the egress net device
1390 *
1391 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1392 */
1393 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1394 {
1395 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1396 bool ptp_enabled = is_ptp_enabled(skb, dev);
1397 unsigned int last_desc, flits, ndesc;
1398 u32 wr_mid, ctrl0, op, sgl_off = 0;
1399 const struct skb_shared_info *ssi;
1400 int len, qidx, credits, ret, left;
1401 struct tx_sw_desc *sgl_sdesc;
1402 struct fw_eth_tx_eo_wr *eowr;
1403 struct fw_eth_tx_pkt_wr *wr;
1404 struct cpl_tx_pkt_core *cpl;
1405 const struct port_info *pi;
1406 bool immediate = false;
1407 u64 cntrl, *end, *sgl;
1408 struct sge_eth_txq *q;
1409 unsigned int chip_ver;
1410 struct adapter *adap;
1411
1412 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1413 if (ret)
1414 goto out_free;
1415
1416 pi = netdev_priv(dev);
1417 adap = pi->adapter;
1418 ssi = skb_shinfo(skb);
1419 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1420 if (xfrm_offload(skb) && !ssi->gso_size)
1421 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1422 #endif /* CHELSIO_IPSEC_INLINE */
1423
1424 #ifdef CONFIG_CHELSIO_TLS_DEVICE
1425 if (skb->decrypted)
1426 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1427 #endif /* CHELSIO_TLS_DEVICE */
1428
1429 qidx = skb_get_queue_mapping(skb);
1430 if (ptp_enabled) {
1431 if (!(adap->ptp_tx_skb)) {
1432 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1433 adap->ptp_tx_skb = skb_get(skb);
1434 } else {
1435 goto out_free;
1436 }
1437 q = &adap->sge.ptptxq;
1438 } else {
1439 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1440 }
1441 skb_tx_timestamp(skb);
1442
1443 reclaim_completed_tx(adap, &q->q, -1, true);
1444 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1445
1446 #ifdef CONFIG_CHELSIO_T4_FCOE
1447 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1448 if (unlikely(ret == -EOPNOTSUPP))
1449 goto out_free;
1450 #endif /* CONFIG_CHELSIO_T4_FCOE */
1451
1452 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1453 flits = calc_tx_flits(skb, chip_ver);
1454 ndesc = flits_to_desc(flits);
1455 credits = txq_avail(&q->q) - ndesc;
1456
1457 if (unlikely(credits < 0)) {
1458 eth_txq_stop(q);
1459 dev_err(adap->pdev_dev,
1460 "%s: Tx ring %u full while queue awake!\n",
1461 dev->name, qidx);
1462 return NETDEV_TX_BUSY;
1463 }
1464
1465 if (is_eth_imm(skb, chip_ver))
1466 immediate = true;
1467
1468 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1469 tnl_type = cxgb_encap_offload_supported(skb);
1470
1471 last_desc = q->q.pidx + ndesc - 1;
1472 if (last_desc >= q->q.size)
1473 last_desc -= q->q.size;
1474 sgl_sdesc = &q->q.sdesc[last_desc];
1475
1476 if (!immediate &&
1477 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1478 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1479 q->mapping_err++;
1480 goto out_free;
1481 }
1482
1483 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1484 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1485 /* After we're done injecting the Work Request for this
1486 * packet, we'll be below our "stop threshold" so stop the TX
1487 * Queue now and schedule a request for an SGE Egress Queue
1488 * Update message. The queue will get started later on when
1489 * the firmware processes this Work Request and sends us an
1490 * Egress Queue Status Update message indicating that space
1491 * has opened up.
1492 */
1493 eth_txq_stop(q);
1494 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1495 }
1496
1497 wr = (void *)&q->q.desc[q->q.pidx];
1498 eowr = (void *)&q->q.desc[q->q.pidx];
1499 wr->equiq_to_len16 = htonl(wr_mid);
1500 wr->r3 = cpu_to_be64(0);
1501 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1502 end = (u64 *)eowr + flits;
1503 else
1504 end = (u64 *)wr + flits;
1505
1506 len = immediate ? skb->len : 0;
1507 len += sizeof(*cpl);
1508 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1509 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1510 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1511
1512 if (tnl_type)
1513 len += sizeof(*tnl_lso);
1514 else
1515 len += sizeof(*lso);
1516
1517 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1518 FW_WR_IMMDLEN_V(len));
1519 if (tnl_type) {
1520 struct iphdr *iph = ip_hdr(skb);
1521
1522 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1523 cpl = (void *)(tnl_lso + 1);
1524 /* Driver is expected to compute partial checksum that
1525 * does not include the IP Total Length.
1526 */
1527 if (iph->version == 4) {
1528 iph->check = 0;
1529 iph->tot_len = 0;
1530 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1531 }
1532 if (skb->ip_summed == CHECKSUM_PARTIAL)
1533 cntrl = hwcsum(adap->params.chip, skb);
1534 } else {
1535 cpl = write_tso_wr(adap, skb, lso);
1536 cntrl = hwcsum(adap->params.chip, skb);
1537 }
1538 sgl = (u64 *)(cpl + 1); /* sgl start here */
1539 q->tso++;
1540 q->tx_cso += ssi->gso_segs;
1541 } else if (ssi->gso_size) {
1542 u64 *start;
1543 u32 hdrlen;
1544
1545 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1546 len += hdrlen;
1547 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1548 FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1549 cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1550 cntrl = hwcsum(adap->params.chip, skb);
1551
1552 start = (u64 *)(cpl + 1);
1553 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1554 hdrlen);
1555 if (unlikely(start > sgl)) {
1556 left = (u8 *)end - (u8 *)q->q.stat;
1557 end = (void *)q->q.desc + left;
1558 }
1559 sgl_off = hdrlen;
1560 q->uso++;
1561 q->tx_cso += ssi->gso_segs;
1562 } else {
1563 if (ptp_enabled)
1564 op = FW_PTP_TX_PKT_WR;
1565 else
1566 op = FW_ETH_TX_PKT_WR;
1567 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1568 FW_WR_IMMDLEN_V(len));
1569 cpl = (void *)(wr + 1);
1570 sgl = (u64 *)(cpl + 1);
1571 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1572 cntrl = hwcsum(adap->params.chip, skb) |
1573 TXPKT_IPCSUM_DIS_F;
1574 q->tx_cso++;
1575 }
1576 }
1577
1578 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1579 /* If current position is already at the end of the
1580 * txq, reset the current to point to start of the queue
1581 * and update the end ptr as well.
1582 */
1583 left = (u8 *)end - (u8 *)q->q.stat;
1584 end = (void *)q->q.desc + left;
1585 sgl = (void *)q->q.desc;
1586 }
1587
1588 if (skb_vlan_tag_present(skb)) {
1589 q->vlan_ins++;
1590 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1591 #ifdef CONFIG_CHELSIO_T4_FCOE
1592 if (skb->protocol == htons(ETH_P_FCOE))
1593 cntrl |= TXPKT_VLAN_V(
1594 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1595 #endif /* CONFIG_CHELSIO_T4_FCOE */
1596 }
1597
1598 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1599 TXPKT_PF_V(adap->pf);
1600 if (ptp_enabled)
1601 ctrl0 |= TXPKT_TSTAMP_F;
1602 #ifdef CONFIG_CHELSIO_T4_DCB
1603 if (is_t4(adap->params.chip))
1604 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1605 else
1606 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1607 #endif
1608 cpl->ctrl0 = htonl(ctrl0);
1609 cpl->pack = htons(0);
1610 cpl->len = htons(skb->len);
1611 cpl->ctrl1 = cpu_to_be64(cntrl);
1612
1613 if (immediate) {
1614 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1615 dev_consume_skb_any(skb);
1616 } else {
1617 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1618 sgl_sdesc->addr);
1619 skb_orphan(skb);
1620 sgl_sdesc->skb = skb;
1621 }
1622
1623 txq_advance(&q->q, ndesc);
1624
1625 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1626 return NETDEV_TX_OK;
1627
1628 out_free:
1629 dev_kfree_skb_any(skb);
1630 return NETDEV_TX_OK;
1631 }
1632
1633 /* Constants ... */
1634 enum {
1635 /* Egress Queue sizes, producer and consumer indices are all in units
1636 * of Egress Context Units bytes. Note that as far as the hardware is
1637 * concerned, the free list is an Egress Queue (the host produces free
1638 * buffers which the hardware consumes) and free list entries are
1639 * 64-bit PCI DMA addresses.
1640 */
1641 EQ_UNIT = SGE_EQ_IDXSIZE,
1642 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1643 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1644
1645 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1646 sizeof(struct cpl_tx_pkt_lso_core) +
1647 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1648 };
1649
1650 /**
1651 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1652 * @skb: the packet
1653 *
1654 * Returns whether an Ethernet packet is small enough to fit completely as
1655 * immediate data.
1656 */
1657 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1658 {
1659 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1660 * which does not accommodate immediate data. We could dike out all
1661 * of the support code for immediate data but that would tie our hands
1662 * too much if we ever want to enhace the firmware. It would also
1663 * create more differences between the PF and VF Drivers.
1664 */
1665 return false;
1666 }
1667
1668 /**
1669 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1670 * @skb: the packet
1671 *
1672 * Returns the number of flits needed for a TX Work Request for the
1673 * given Ethernet packet, including the needed WR and CPL headers.
1674 */
1675 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1676 {
1677 unsigned int flits;
1678
1679 /* If the skb is small enough, we can pump it out as a work request
1680 * with only immediate data. In that case we just have to have the
1681 * TX Packet header plus the skb data in the Work Request.
1682 */
1683 if (t4vf_is_eth_imm(skb))
1684 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1685 sizeof(__be64));
1686
1687 /* Otherwise, we're going to have to construct a Scatter gather list
1688 * of the skb body and fragments. We also include the flits necessary
1689 * for the TX Packet Work Request and CPL. We always have a firmware
1690 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1691 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1692 * message or, if we're doing a Large Send Offload, an LSO CPL message
1693 * with an embedded TX Packet Write CPL message.
1694 */
1695 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1696 if (skb_shinfo(skb)->gso_size)
1697 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1698 sizeof(struct cpl_tx_pkt_lso_core) +
1699 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1700 else
1701 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1702 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1703 return flits;
1704 }
1705
1706 /**
1707 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1708 * @skb: the packet
1709 * @dev: the egress net device
1710 *
1711 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1712 */
1713 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1714 struct net_device *dev)
1715 {
1716 unsigned int last_desc, flits, ndesc;
1717 const struct skb_shared_info *ssi;
1718 struct fw_eth_tx_pkt_vm_wr *wr;
1719 struct tx_sw_desc *sgl_sdesc;
1720 struct cpl_tx_pkt_core *cpl;
1721 const struct port_info *pi;
1722 struct sge_eth_txq *txq;
1723 struct adapter *adapter;
1724 int qidx, credits, ret;
1725 size_t fw_hdr_copy_len;
1726 u64 cntrl, *end;
1727 u32 wr_mid;
1728
1729 /* The chip minimum packet length is 10 octets but the firmware
1730 * command that we are using requires that we copy the Ethernet header
1731 * (including the VLAN tag) into the header so we reject anything
1732 * smaller than that ...
1733 */
1734 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1735 sizeof(wr->ethtype) + sizeof(wr->vlantci);
1736 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1737 if (ret)
1738 goto out_free;
1739
1740 /* Figure out which TX Queue we're going to use. */
1741 pi = netdev_priv(dev);
1742 adapter = pi->adapter;
1743 qidx = skb_get_queue_mapping(skb);
1744 WARN_ON(qidx >= pi->nqsets);
1745 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1746
1747 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1748 * transfers have completed.
1749 */
1750 reclaim_completed_tx(adapter, &txq->q, -1, true);
1751
1752 /* Calculate the number of flits and TX Descriptors we're going to
1753 * need along with how many TX Descriptors will be left over after
1754 * we inject our Work Request.
1755 */
1756 flits = t4vf_calc_tx_flits(skb);
1757 ndesc = flits_to_desc(flits);
1758 credits = txq_avail(&txq->q) - ndesc;
1759
1760 if (unlikely(credits < 0)) {
1761 /* Not enough room for this packet's Work Request. Stop the
1762 * TX Queue and return a "busy" condition. The queue will get
1763 * started later on when the firmware informs us that space
1764 * has opened up.
1765 */
1766 eth_txq_stop(txq);
1767 dev_err(adapter->pdev_dev,
1768 "%s: TX ring %u full while queue awake!\n",
1769 dev->name, qidx);
1770 return NETDEV_TX_BUSY;
1771 }
1772
1773 last_desc = txq->q.pidx + ndesc - 1;
1774 if (last_desc >= txq->q.size)
1775 last_desc -= txq->q.size;
1776 sgl_sdesc = &txq->q.sdesc[last_desc];
1777
1778 if (!t4vf_is_eth_imm(skb) &&
1779 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1780 sgl_sdesc->addr) < 0)) {
1781 /* We need to map the skb into PCI DMA space (because it can't
1782 * be in-lined directly into the Work Request) and the mapping
1783 * operation failed. Record the error and drop the packet.
1784 */
1785 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1786 txq->mapping_err++;
1787 goto out_free;
1788 }
1789
1790 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1791 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1792 /* After we're done injecting the Work Request for this
1793 * packet, we'll be below our "stop threshold" so stop the TX
1794 * Queue now and schedule a request for an SGE Egress Queue
1795 * Update message. The queue will get started later on when
1796 * the firmware processes this Work Request and sends us an
1797 * Egress Queue Status Update message indicating that space
1798 * has opened up.
1799 */
1800 eth_txq_stop(txq);
1801 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1802 }
1803
1804 /* Start filling in our Work Request. Note that we do _not_ handle
1805 * the WR Header wrapping around the TX Descriptor Ring. If our
1806 * maximum header size ever exceeds one TX Descriptor, we'll need to
1807 * do something else here.
1808 */
1809 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1810 wr = (void *)&txq->q.desc[txq->q.pidx];
1811 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1812 wr->r3[0] = cpu_to_be32(0);
1813 wr->r3[1] = cpu_to_be32(0);
1814 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1815 end = (u64 *)wr + flits;
1816
1817 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1818 * message with an encapsulated TX Packet CPL message. Otherwise we
1819 * just use a TX Packet CPL message.
1820 */
1821 ssi = skb_shinfo(skb);
1822 if (ssi->gso_size) {
1823 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1824 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1825 int l3hdr_len = skb_network_header_len(skb);
1826 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1827
1828 wr->op_immdlen =
1829 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1830 FW_WR_IMMDLEN_V(sizeof(*lso) +
1831 sizeof(*cpl)));
1832 /* Fill in the LSO CPL message. */
1833 lso->lso_ctrl =
1834 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1835 LSO_FIRST_SLICE_F |
1836 LSO_LAST_SLICE_F |
1837 LSO_IPV6_V(v6) |
1838 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1839 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1840 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1841 lso->ipid_ofst = cpu_to_be16(0);
1842 lso->mss = cpu_to_be16(ssi->gso_size);
1843 lso->seqno_offset = cpu_to_be32(0);
1844 if (is_t4(adapter->params.chip))
1845 lso->len = cpu_to_be32(skb->len);
1846 else
1847 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1848
1849 /* Set up TX Packet CPL pointer, control word and perform
1850 * accounting.
1851 */
1852 cpl = (void *)(lso + 1);
1853
1854 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1855 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1856 else
1857 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1858
1859 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1860 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1861 TXPKT_IPHDR_LEN_V(l3hdr_len);
1862 txq->tso++;
1863 txq->tx_cso += ssi->gso_segs;
1864 } else {
1865 int len;
1866
1867 len = (t4vf_is_eth_imm(skb)
1868 ? skb->len + sizeof(*cpl)
1869 : sizeof(*cpl));
1870 wr->op_immdlen =
1871 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1872 FW_WR_IMMDLEN_V(len));
1873
1874 /* Set up TX Packet CPL pointer, control word and perform
1875 * accounting.
1876 */
1877 cpl = (void *)(wr + 1);
1878 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1879 cntrl = hwcsum(adapter->params.chip, skb) |
1880 TXPKT_IPCSUM_DIS_F;
1881 txq->tx_cso++;
1882 } else {
1883 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1884 }
1885 }
1886
1887 /* If there's a VLAN tag present, add that to the list of things to
1888 * do in this Work Request.
1889 */
1890 if (skb_vlan_tag_present(skb)) {
1891 txq->vlan_ins++;
1892 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1893 }
1894
1895 /* Fill in the TX Packet CPL message header. */
1896 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1897 TXPKT_INTF_V(pi->port_id) |
1898 TXPKT_PF_V(0));
1899 cpl->pack = cpu_to_be16(0);
1900 cpl->len = cpu_to_be16(skb->len);
1901 cpl->ctrl1 = cpu_to_be64(cntrl);
1902
1903 /* Fill in the body of the TX Packet CPL message with either in-lined
1904 * data or a Scatter/Gather List.
1905 */
1906 if (t4vf_is_eth_imm(skb)) {
1907 /* In-line the packet's data and free the skb since we don't
1908 * need it any longer.
1909 */
1910 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1911 dev_consume_skb_any(skb);
1912 } else {
1913 /* Write the skb's Scatter/Gather list into the TX Packet CPL
1914 * message and retain a pointer to the skb so we can free it
1915 * later when its DMA completes. (We store the skb pointer
1916 * in the Software Descriptor corresponding to the last TX
1917 * Descriptor used by the Work Request.)
1918 *
1919 * The retained skb will be freed when the corresponding TX
1920 * Descriptors are reclaimed after their DMAs complete.
1921 * However, this could take quite a while since, in general,
1922 * the hardware is set up to be lazy about sending DMA
1923 * completion notifications to us and we mostly perform TX
1924 * reclaims in the transmit routine.
1925 *
1926 * This is good for performamce but means that we rely on new
1927 * TX packets arriving to run the destructors of completed
1928 * packets, which open up space in their sockets' send queues.
1929 * Sometimes we do not get such new packets causing TX to
1930 * stall. A single UDP transmitter is a good example of this
1931 * situation. We have a clean up timer that periodically
1932 * reclaims completed packets but it doesn't run often enough
1933 * (nor do we want it to) to prevent lengthy stalls. A
1934 * solution to this problem is to run the destructor early,
1935 * after the packet is queued but before it's DMAd. A con is
1936 * that we lie to socket memory accounting, but the amount of
1937 * extra memory is reasonable (limited by the number of TX
1938 * descriptors), the packets do actually get freed quickly by
1939 * new packets almost always, and for protocols like TCP that
1940 * wait for acks to really free up the data the extra memory
1941 * is even less. On the positive side we run the destructors
1942 * on the sending CPU rather than on a potentially different
1943 * completing CPU, usually a good thing.
1944 *
1945 * Run the destructor before telling the DMA engine about the
1946 * packet to make sure it doesn't complete and get freed
1947 * prematurely.
1948 */
1949 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1950 struct sge_txq *tq = &txq->q;
1951
1952 /* If the Work Request header was an exact multiple of our TX
1953 * Descriptor length, then it's possible that the starting SGL
1954 * pointer lines up exactly with the end of our TX Descriptor
1955 * ring. If that's the case, wrap around to the beginning
1956 * here ...
1957 */
1958 if (unlikely((void *)sgl == (void *)tq->stat)) {
1959 sgl = (void *)tq->desc;
1960 end = (void *)((void *)tq->desc +
1961 ((void *)end - (void *)tq->stat));
1962 }
1963
1964 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
1965 skb_orphan(skb);
1966 sgl_sdesc->skb = skb;
1967 }
1968
1969 /* Advance our internal TX Queue state, tell the hardware about
1970 * the new TX descriptors and return success.
1971 */
1972 txq_advance(&txq->q, ndesc);
1973
1974 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1975 return NETDEV_TX_OK;
1976
1977 out_free:
1978 /* An error of some sort happened. Free the TX skb and tell the
1979 * OS that we've "dealt" with the packet ...
1980 */
1981 dev_kfree_skb_any(skb);
1982 return NETDEV_TX_OK;
1983 }
1984
1985 /**
1986 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1987 * @q: the SGE control Tx queue
1988 *
1989 * This is a variant of cxgb4_reclaim_completed_tx() that is used
1990 * for Tx queues that send only immediate data (presently just
1991 * the control queues) and thus do not have any sk_buffs to release.
1992 */
1993 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1994 {
1995 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1996 int reclaim = hw_cidx - q->cidx;
1997
1998 if (reclaim < 0)
1999 reclaim += q->size;
2000
2001 q->in_use -= reclaim;
2002 q->cidx = hw_cidx;
2003 }
2004
2005 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2006 {
2007 u32 val = *idx + n;
2008
2009 if (val >= max)
2010 val -= max;
2011
2012 *idx = val;
2013 }
2014
2015 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2016 struct sge_eosw_txq *eosw_txq, u32 ndesc)
2017 {
2018 struct tx_sw_desc *d;
2019
2020 d = &eosw_txq->desc[eosw_txq->last_cidx];
2021 while (ndesc--) {
2022 if (d->skb) {
2023 if (d->addr[0]) {
2024 unmap_skb(adap->pdev_dev, d->skb, d->addr);
2025 memset(d->addr, 0, sizeof(d->addr));
2026 }
2027 dev_consume_skb_any(d->skb);
2028 d->skb = NULL;
2029 }
2030 eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2031 eosw_txq->ndesc);
2032 d = &eosw_txq->desc[eosw_txq->last_cidx];
2033 }
2034 }
2035
2036 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2037 {
2038 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2039 eosw_txq->inuse += n;
2040 }
2041
2042 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2043 struct sk_buff *skb)
2044 {
2045 if (eosw_txq->inuse == eosw_txq->ndesc)
2046 return -ENOMEM;
2047
2048 eosw_txq->desc[eosw_txq->pidx].skb = skb;
2049 return 0;
2050 }
2051
2052 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2053 {
2054 return eosw_txq->desc[eosw_txq->last_pidx].skb;
2055 }
2056
2057 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2058 struct sk_buff *skb, u32 hdr_len)
2059 {
2060 u8 flits, nsgl = 0;
2061 u32 wrlen;
2062
2063 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2064 if (skb_shinfo(skb)->gso_size &&
2065 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2066 wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2067
2068 wrlen += roundup(hdr_len, 16);
2069
2070 /* Packet headers + WR + CPLs */
2071 flits = DIV_ROUND_UP(wrlen, 8);
2072
2073 if (skb_shinfo(skb)->nr_frags > 0) {
2074 if (skb_headlen(skb) - hdr_len)
2075 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2076 else
2077 nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2078 } else if (skb->len - hdr_len) {
2079 nsgl = sgl_len(1);
2080 }
2081
2082 return flits + nsgl;
2083 }
2084
2085 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2086 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2087 u32 hdr_len, u32 wrlen)
2088 {
2089 const struct skb_shared_info *ssi = skb_shinfo(skb);
2090 struct cpl_tx_pkt_core *cpl;
2091 u32 immd_len, wrlen16;
2092 bool compl = false;
2093 u8 ver, proto;
2094
2095 ver = ip_hdr(skb)->version;
2096 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2097
2098 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2099 immd_len = sizeof(struct cpl_tx_pkt_core);
2100 if (skb_shinfo(skb)->gso_size &&
2101 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2102 immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2103 immd_len += hdr_len;
2104
2105 if (!eosw_txq->ncompl ||
2106 (eosw_txq->last_compl + wrlen16) >=
2107 (adap->params.ofldq_wr_cred / 2)) {
2108 compl = true;
2109 eosw_txq->ncompl++;
2110 eosw_txq->last_compl = 0;
2111 }
2112
2113 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2114 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2115 FW_WR_COMPL_V(compl));
2116 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2117 FW_WR_FLOWID_V(eosw_txq->hwtid));
2118 wr->r3 = 0;
2119 if (proto == IPPROTO_UDP) {
2120 cpl = write_eo_udp_wr(skb, wr, hdr_len);
2121 } else {
2122 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2123 wr->u.tcpseg.ethlen = skb_network_offset(skb);
2124 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2125 wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2126 wr->u.tcpseg.tsclk_tsoff = 0;
2127 wr->u.tcpseg.r4 = 0;
2128 wr->u.tcpseg.r5 = 0;
2129 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2130
2131 if (ssi->gso_size) {
2132 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2133
2134 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2135 cpl = write_tso_wr(adap, skb, lso);
2136 } else {
2137 wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2138 cpl = (void *)(wr + 1);
2139 }
2140 }
2141
2142 eosw_txq->cred -= wrlen16;
2143 eosw_txq->last_compl += wrlen16;
2144 return cpl;
2145 }
2146
2147 static int ethofld_hard_xmit(struct net_device *dev,
2148 struct sge_eosw_txq *eosw_txq)
2149 {
2150 struct port_info *pi = netdev2pinfo(dev);
2151 struct adapter *adap = netdev2adap(dev);
2152 u32 wrlen, wrlen16, hdr_len, data_len;
2153 enum sge_eosw_state next_state;
2154 u64 cntrl, *start, *end, *sgl;
2155 struct sge_eohw_txq *eohw_txq;
2156 struct cpl_tx_pkt_core *cpl;
2157 struct fw_eth_tx_eo_wr *wr;
2158 bool skip_eotx_wr = false;
2159 struct tx_sw_desc *d;
2160 struct sk_buff *skb;
2161 int left, ret = 0;
2162 u8 flits, ndesc;
2163
2164 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2165 spin_lock(&eohw_txq->lock);
2166 reclaim_completed_tx_imm(&eohw_txq->q);
2167
2168 d = &eosw_txq->desc[eosw_txq->last_pidx];
2169 skb = d->skb;
2170 skb_tx_timestamp(skb);
2171
2172 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2173 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2174 eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2175 hdr_len = skb->len;
2176 data_len = 0;
2177 flits = DIV_ROUND_UP(hdr_len, 8);
2178 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2179 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2180 else
2181 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2182 skip_eotx_wr = true;
2183 } else {
2184 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2185 data_len = skb->len - hdr_len;
2186 flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2187 }
2188 ndesc = flits_to_desc(flits);
2189 wrlen = flits * 8;
2190 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2191
2192 left = txq_avail(&eohw_txq->q) - ndesc;
2193
2194 /* If there are no descriptors left in hardware queues or no
2195 * CPL credits left in software queues, then wait for them
2196 * to come back and retry again. Note that we always request
2197 * for credits update via interrupt for every half credits
2198 * consumed. So, the interrupt will eventually restore the
2199 * credits and invoke the Tx path again.
2200 */
2201 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2202 ret = -ENOMEM;
2203 goto out_unlock;
2204 }
2205
2206 if (unlikely(skip_eotx_wr)) {
2207 start = (u64 *)wr;
2208 eosw_txq->state = next_state;
2209 eosw_txq->cred -= wrlen16;
2210 eosw_txq->ncompl++;
2211 eosw_txq->last_compl = 0;
2212 goto write_wr_headers;
2213 }
2214
2215 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2216 cntrl = hwcsum(adap->params.chip, skb);
2217 if (skb_vlan_tag_present(skb))
2218 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2219
2220 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2221 TXPKT_INTF_V(pi->tx_chan) |
2222 TXPKT_PF_V(adap->pf));
2223 cpl->pack = 0;
2224 cpl->len = cpu_to_be16(skb->len);
2225 cpl->ctrl1 = cpu_to_be64(cntrl);
2226
2227 start = (u64 *)(cpl + 1);
2228
2229 write_wr_headers:
2230 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2231 hdr_len);
2232 if (data_len) {
2233 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2234 if (unlikely(ret)) {
2235 memset(d->addr, 0, sizeof(d->addr));
2236 eohw_txq->mapping_err++;
2237 goto out_unlock;
2238 }
2239
2240 end = (u64 *)wr + flits;
2241 if (unlikely(start > sgl)) {
2242 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2243 end = (void *)eohw_txq->q.desc + left;
2244 }
2245
2246 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2247 /* If current position is already at the end of the
2248 * txq, reset the current to point to start of the queue
2249 * and update the end ptr as well.
2250 */
2251 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2252
2253 end = (void *)eohw_txq->q.desc + left;
2254 sgl = (void *)eohw_txq->q.desc;
2255 }
2256
2257 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2258 d->addr);
2259 }
2260
2261 if (skb_shinfo(skb)->gso_size) {
2262 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2263 eohw_txq->uso++;
2264 else
2265 eohw_txq->tso++;
2266 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2267 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2268 eohw_txq->tx_cso++;
2269 }
2270
2271 if (skb_vlan_tag_present(skb))
2272 eohw_txq->vlan_ins++;
2273
2274 txq_advance(&eohw_txq->q, ndesc);
2275 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2276 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2277
2278 out_unlock:
2279 spin_unlock(&eohw_txq->lock);
2280 return ret;
2281 }
2282
2283 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2284 {
2285 struct sk_buff *skb;
2286 int pktcount, ret;
2287
2288 switch (eosw_txq->state) {
2289 case CXGB4_EO_STATE_ACTIVE:
2290 case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2291 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2292 pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2293 if (pktcount < 0)
2294 pktcount += eosw_txq->ndesc;
2295 break;
2296 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2297 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2298 case CXGB4_EO_STATE_CLOSED:
2299 default:
2300 return;
2301 }
2302
2303 while (pktcount--) {
2304 skb = eosw_txq_peek(eosw_txq);
2305 if (!skb) {
2306 eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2307 eosw_txq->ndesc);
2308 continue;
2309 }
2310
2311 ret = ethofld_hard_xmit(dev, eosw_txq);
2312 if (ret)
2313 break;
2314 }
2315 }
2316
2317 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2318 struct net_device *dev)
2319 {
2320 struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2321 struct port_info *pi = netdev2pinfo(dev);
2322 struct adapter *adap = netdev2adap(dev);
2323 struct sge_eosw_txq *eosw_txq;
2324 u32 qid;
2325 int ret;
2326
2327 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2328 if (ret)
2329 goto out_free;
2330
2331 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2332 qid = skb_get_queue_mapping(skb) - pi->nqsets;
2333 eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2334 spin_lock_bh(&eosw_txq->lock);
2335 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2336 goto out_unlock;
2337
2338 ret = eosw_txq_enqueue(eosw_txq, skb);
2339 if (ret)
2340 goto out_unlock;
2341
2342 /* SKB is queued for processing until credits are available.
2343 * So, call the destructor now and we'll free the skb later
2344 * after it has been successfully transmitted.
2345 */
2346 skb_orphan(skb);
2347
2348 eosw_txq_advance(eosw_txq, 1);
2349 ethofld_xmit(dev, eosw_txq);
2350 spin_unlock_bh(&eosw_txq->lock);
2351 return NETDEV_TX_OK;
2352
2353 out_unlock:
2354 spin_unlock_bh(&eosw_txq->lock);
2355 out_free:
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2361 {
2362 struct port_info *pi = netdev_priv(dev);
2363 u16 qid = skb_get_queue_mapping(skb);
2364
2365 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2366 return cxgb4_vf_eth_xmit(skb, dev);
2367
2368 if (unlikely(qid >= pi->nqsets))
2369 return cxgb4_ethofld_xmit(skb, dev);
2370
2371 if (is_ptp_enabled(skb, dev)) {
2372 struct adapter *adap = netdev2adap(dev);
2373 netdev_tx_t ret;
2374
2375 spin_lock(&adap->ptp_lock);
2376 ret = cxgb4_eth_xmit(skb, dev);
2377 spin_unlock(&adap->ptp_lock);
2378 return ret;
2379 }
2380
2381 return cxgb4_eth_xmit(skb, dev);
2382 }
2383
2384 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2385 {
2386 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2387 int pidx = eosw_txq->pidx;
2388 struct sk_buff *skb;
2389
2390 if (!pktcount)
2391 return;
2392
2393 if (pktcount < 0)
2394 pktcount += eosw_txq->ndesc;
2395
2396 while (pktcount--) {
2397 pidx--;
2398 if (pidx < 0)
2399 pidx += eosw_txq->ndesc;
2400
2401 skb = eosw_txq->desc[pidx].skb;
2402 if (skb) {
2403 dev_consume_skb_any(skb);
2404 eosw_txq->desc[pidx].skb = NULL;
2405 eosw_txq->inuse--;
2406 }
2407 }
2408
2409 eosw_txq->pidx = eosw_txq->last_pidx + 1;
2410 }
2411
2412 /**
2413 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2414 * @dev: netdevice
2415 * @eotid: ETHOFLD tid to bind/unbind
2416 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2417 *
2418 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2419 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2420 * a traffic class.
2421 */
2422 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2423 {
2424 struct port_info *pi = netdev2pinfo(dev);
2425 struct adapter *adap = netdev2adap(dev);
2426 enum sge_eosw_state next_state;
2427 struct sge_eosw_txq *eosw_txq;
2428 u32 len, len16, nparams = 6;
2429 struct fw_flowc_wr *flowc;
2430 struct eotid_entry *entry;
2431 struct sge_ofld_rxq *rxq;
2432 struct sk_buff *skb;
2433 int ret = 0;
2434
2435 len = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval) * nparams;
2436 len16 = DIV_ROUND_UP(len, 16);
2437
2438 entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2439 if (!entry)
2440 return -ENOMEM;
2441
2442 eosw_txq = (struct sge_eosw_txq *)entry->data;
2443 if (!eosw_txq)
2444 return -ENOMEM;
2445
2446 skb = alloc_skb(len, GFP_KERNEL);
2447 if (!skb)
2448 return -ENOMEM;
2449
2450 spin_lock_bh(&eosw_txq->lock);
2451 if (tc != FW_SCHED_CLS_NONE) {
2452 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2453 goto out_unlock;
2454
2455 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2456 } else {
2457 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2458 goto out_unlock;
2459
2460 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2461 }
2462
2463 flowc = __skb_put(skb, len);
2464 memset(flowc, 0, len);
2465
2466 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2467 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2468 FW_WR_FLOWID_V(eosw_txq->hwtid));
2469 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2470 FW_FLOWC_WR_NPARAMS_V(nparams) |
2471 FW_WR_COMPL_V(1));
2472 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2473 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2474 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2475 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2476 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2477 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2478 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2479 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2480 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2481 flowc->mnemval[4].val = cpu_to_be32(tc);
2482 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2483 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2484 FW_FLOWC_MNEM_EOSTATE_CLOSING :
2485 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2486
2487 /* Free up any pending skbs to ensure there's room for
2488 * termination FLOWC.
2489 */
2490 if (tc == FW_SCHED_CLS_NONE)
2491 eosw_txq_flush_pending_skbs(eosw_txq);
2492
2493 ret = eosw_txq_enqueue(eosw_txq, skb);
2494 if (ret) {
2495 dev_consume_skb_any(skb);
2496 goto out_unlock;
2497 }
2498
2499 eosw_txq->state = next_state;
2500 eosw_txq->flowc_idx = eosw_txq->pidx;
2501 eosw_txq_advance(eosw_txq, 1);
2502 ethofld_xmit(dev, eosw_txq);
2503
2504 out_unlock:
2505 spin_unlock_bh(&eosw_txq->lock);
2506 return ret;
2507 }
2508
2509 /**
2510 * is_imm - check whether a packet can be sent as immediate data
2511 * @skb: the packet
2512 *
2513 * Returns true if a packet can be sent as a WR with immediate data.
2514 */
2515 static inline int is_imm(const struct sk_buff *skb)
2516 {
2517 return skb->len <= MAX_CTRL_WR_LEN;
2518 }
2519
2520 /**
2521 * ctrlq_check_stop - check if a control queue is full and should stop
2522 * @q: the queue
2523 * @wr: most recent WR written to the queue
2524 *
2525 * Check if a control queue has become full and should be stopped.
2526 * We clean up control queue descriptors very lazily, only when we are out.
2527 * If the queue is still full after reclaiming any completed descriptors
2528 * we suspend it and have the last WR wake it up.
2529 */
2530 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2531 {
2532 reclaim_completed_tx_imm(&q->q);
2533 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2534 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2535 q->q.stops++;
2536 q->full = 1;
2537 }
2538 }
2539
2540 /**
2541 * ctrl_xmit - send a packet through an SGE control Tx queue
2542 * @q: the control queue
2543 * @skb: the packet
2544 *
2545 * Send a packet through an SGE control Tx queue. Packets sent through
2546 * a control queue must fit entirely as immediate data.
2547 */
2548 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2549 {
2550 unsigned int ndesc;
2551 struct fw_wr_hdr *wr;
2552
2553 if (unlikely(!is_imm(skb))) {
2554 WARN_ON(1);
2555 dev_kfree_skb(skb);
2556 return NET_XMIT_DROP;
2557 }
2558
2559 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2560 spin_lock(&q->sendq.lock);
2561
2562 if (unlikely(q->full)) {
2563 skb->priority = ndesc; /* save for restart */
2564 __skb_queue_tail(&q->sendq, skb);
2565 spin_unlock(&q->sendq.lock);
2566 return NET_XMIT_CN;
2567 }
2568
2569 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2570 cxgb4_inline_tx_skb(skb, &q->q, wr);
2571
2572 txq_advance(&q->q, ndesc);
2573 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2574 ctrlq_check_stop(q, wr);
2575
2576 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2577 spin_unlock(&q->sendq.lock);
2578
2579 kfree_skb(skb);
2580 return NET_XMIT_SUCCESS;
2581 }
2582
2583 /**
2584 * restart_ctrlq - restart a suspended control queue
2585 * @data: the control queue to restart
2586 *
2587 * Resumes transmission on a suspended Tx control queue.
2588 */
2589 static void restart_ctrlq(unsigned long data)
2590 {
2591 struct sk_buff *skb;
2592 unsigned int written = 0;
2593 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2594
2595 spin_lock(&q->sendq.lock);
2596 reclaim_completed_tx_imm(&q->q);
2597 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2598
2599 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2600 struct fw_wr_hdr *wr;
2601 unsigned int ndesc = skb->priority; /* previously saved */
2602
2603 written += ndesc;
2604 /* Write descriptors and free skbs outside the lock to limit
2605 * wait times. q->full is still set so new skbs will be queued.
2606 */
2607 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2608 txq_advance(&q->q, ndesc);
2609 spin_unlock(&q->sendq.lock);
2610
2611 cxgb4_inline_tx_skb(skb, &q->q, wr);
2612 kfree_skb(skb);
2613
2614 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2615 unsigned long old = q->q.stops;
2616
2617 ctrlq_check_stop(q, wr);
2618 if (q->q.stops != old) { /* suspended anew */
2619 spin_lock(&q->sendq.lock);
2620 goto ringdb;
2621 }
2622 }
2623 if (written > 16) {
2624 cxgb4_ring_tx_db(q->adap, &q->q, written);
2625 written = 0;
2626 }
2627 spin_lock(&q->sendq.lock);
2628 }
2629 q->full = 0;
2630 ringdb:
2631 if (written)
2632 cxgb4_ring_tx_db(q->adap, &q->q, written);
2633 spin_unlock(&q->sendq.lock);
2634 }
2635
2636 /**
2637 * t4_mgmt_tx - send a management message
2638 * @adap: the adapter
2639 * @skb: the packet containing the management message
2640 *
2641 * Send a management message through control queue 0.
2642 */
2643 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2644 {
2645 int ret;
2646
2647 local_bh_disable();
2648 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2649 local_bh_enable();
2650 return ret;
2651 }
2652
2653 /**
2654 * is_ofld_imm - check whether a packet can be sent as immediate data
2655 * @skb: the packet
2656 *
2657 * Returns true if a packet can be sent as an offload WR with immediate
2658 * data. We currently use the same limit as for Ethernet packets.
2659 */
2660 static inline int is_ofld_imm(const struct sk_buff *skb)
2661 {
2662 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2663 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2664
2665 if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2666 return skb->len <= SGE_MAX_WR_LEN;
2667 else
2668 return skb->len <= MAX_IMM_TX_PKT_LEN;
2669 }
2670
2671 /**
2672 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2673 * @skb: the packet
2674 *
2675 * Returns the number of flits needed for the given offload packet.
2676 * These packets are already fully constructed and no additional headers
2677 * will be added.
2678 */
2679 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2680 {
2681 unsigned int flits, cnt;
2682
2683 if (is_ofld_imm(skb))
2684 return DIV_ROUND_UP(skb->len, 8);
2685
2686 flits = skb_transport_offset(skb) / 8U; /* headers */
2687 cnt = skb_shinfo(skb)->nr_frags;
2688 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2689 cnt++;
2690 return flits + sgl_len(cnt);
2691 }
2692
2693 /**
2694 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2695 * @q: the queue to stop
2696 *
2697 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2698 * inability to map packets. A periodic timer attempts to restart
2699 * queues so marked.
2700 */
2701 static void txq_stop_maperr(struct sge_uld_txq *q)
2702 {
2703 q->mapping_err++;
2704 q->q.stops++;
2705 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2706 q->adap->sge.txq_maperr);
2707 }
2708
2709 /**
2710 * ofldtxq_stop - stop an offload Tx queue that has become full
2711 * @q: the queue to stop
2712 * @wr: the Work Request causing the queue to become full
2713 *
2714 * Stops an offload Tx queue that has become full and modifies the packet
2715 * being written to request a wakeup.
2716 */
2717 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2718 {
2719 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2720 q->q.stops++;
2721 q->full = 1;
2722 }
2723
2724 /**
2725 * service_ofldq - service/restart a suspended offload queue
2726 * @q: the offload queue
2727 *
2728 * Services an offload Tx queue by moving packets from its Pending Send
2729 * Queue to the Hardware TX ring. The function starts and ends with the
2730 * Send Queue locked, but drops the lock while putting the skb at the
2731 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2732 * allows more skbs to be added to the Send Queue by other threads.
2733 * The packet being processed at the head of the Pending Send Queue is
2734 * left on the queue in case we experience DMA Mapping errors, etc.
2735 * and need to give up and restart later.
2736 *
2737 * service_ofldq() can be thought of as a task which opportunistically
2738 * uses other threads execution contexts. We use the Offload Queue
2739 * boolean "service_ofldq_running" to make sure that only one instance
2740 * is ever running at a time ...
2741 */
2742 static void service_ofldq(struct sge_uld_txq *q)
2743 __must_hold(&q->sendq.lock)
2744 {
2745 u64 *pos, *before, *end;
2746 int credits;
2747 struct sk_buff *skb;
2748 struct sge_txq *txq;
2749 unsigned int left;
2750 unsigned int written = 0;
2751 unsigned int flits, ndesc;
2752
2753 /* If another thread is currently in service_ofldq() processing the
2754 * Pending Send Queue then there's nothing to do. Otherwise, flag
2755 * that we're doing the work and continue. Examining/modifying
2756 * the Offload Queue boolean "service_ofldq_running" must be done
2757 * while holding the Pending Send Queue Lock.
2758 */
2759 if (q->service_ofldq_running)
2760 return;
2761 q->service_ofldq_running = true;
2762
2763 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2764 /* We drop the lock while we're working with the skb at the
2765 * head of the Pending Send Queue. This allows more skbs to
2766 * be added to the Pending Send Queue while we're working on
2767 * this one. We don't need to lock to guard the TX Ring
2768 * updates because only one thread of execution is ever
2769 * allowed into service_ofldq() at a time.
2770 */
2771 spin_unlock(&q->sendq.lock);
2772
2773 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2774
2775 flits = skb->priority; /* previously saved */
2776 ndesc = flits_to_desc(flits);
2777 credits = txq_avail(&q->q) - ndesc;
2778 BUG_ON(credits < 0);
2779 if (unlikely(credits < TXQ_STOP_THRES))
2780 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2781
2782 pos = (u64 *)&q->q.desc[q->q.pidx];
2783 if (is_ofld_imm(skb))
2784 cxgb4_inline_tx_skb(skb, &q->q, pos);
2785 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2786 (dma_addr_t *)skb->head)) {
2787 txq_stop_maperr(q);
2788 spin_lock(&q->sendq.lock);
2789 break;
2790 } else {
2791 int last_desc, hdr_len = skb_transport_offset(skb);
2792
2793 /* The WR headers may not fit within one descriptor.
2794 * So we need to deal with wrap-around here.
2795 */
2796 before = (u64 *)pos;
2797 end = (u64 *)pos + flits;
2798 txq = &q->q;
2799 pos = (void *)inline_tx_skb_header(skb, &q->q,
2800 (void *)pos,
2801 hdr_len);
2802 if (before > (u64 *)pos) {
2803 left = (u8 *)end - (u8 *)txq->stat;
2804 end = (void *)txq->desc + left;
2805 }
2806
2807 /* If current position is already at the end of the
2808 * ofld queue, reset the current to point to
2809 * start of the queue and update the end ptr as well.
2810 */
2811 if (pos == (u64 *)txq->stat) {
2812 left = (u8 *)end - (u8 *)txq->stat;
2813 end = (void *)txq->desc + left;
2814 pos = (void *)txq->desc;
2815 }
2816
2817 cxgb4_write_sgl(skb, &q->q, (void *)pos,
2818 end, hdr_len,
2819 (dma_addr_t *)skb->head);
2820 #ifdef CONFIG_NEED_DMA_MAP_STATE
2821 skb->dev = q->adap->port[0];
2822 skb->destructor = deferred_unmap_destructor;
2823 #endif
2824 last_desc = q->q.pidx + ndesc - 1;
2825 if (last_desc >= q->q.size)
2826 last_desc -= q->q.size;
2827 q->q.sdesc[last_desc].skb = skb;
2828 }
2829
2830 txq_advance(&q->q, ndesc);
2831 written += ndesc;
2832 if (unlikely(written > 32)) {
2833 cxgb4_ring_tx_db(q->adap, &q->q, written);
2834 written = 0;
2835 }
2836
2837 /* Reacquire the Pending Send Queue Lock so we can unlink the
2838 * skb we've just successfully transferred to the TX Ring and
2839 * loop for the next skb which may be at the head of the
2840 * Pending Send Queue.
2841 */
2842 spin_lock(&q->sendq.lock);
2843 __skb_unlink(skb, &q->sendq);
2844 if (is_ofld_imm(skb))
2845 kfree_skb(skb);
2846 }
2847 if (likely(written))
2848 cxgb4_ring_tx_db(q->adap, &q->q, written);
2849
2850 /*Indicate that no thread is processing the Pending Send Queue
2851 * currently.
2852 */
2853 q->service_ofldq_running = false;
2854 }
2855
2856 /**
2857 * ofld_xmit - send a packet through an offload queue
2858 * @q: the Tx offload queue
2859 * @skb: the packet
2860 *
2861 * Send an offload packet through an SGE offload queue.
2862 */
2863 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2864 {
2865 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
2866 spin_lock(&q->sendq.lock);
2867
2868 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
2869 * that results in this new skb being the only one on the queue, start
2870 * servicing it. If there are other skbs already on the list, then
2871 * either the queue is currently being processed or it's been stopped
2872 * for some reason and it'll be restarted at a later time. Restart
2873 * paths are triggered by events like experiencing a DMA Mapping Error
2874 * or filling the Hardware TX Ring.
2875 */
2876 __skb_queue_tail(&q->sendq, skb);
2877 if (q->sendq.qlen == 1)
2878 service_ofldq(q);
2879
2880 spin_unlock(&q->sendq.lock);
2881 return NET_XMIT_SUCCESS;
2882 }
2883
2884 /**
2885 * restart_ofldq - restart a suspended offload queue
2886 * @data: the offload queue to restart
2887 *
2888 * Resumes transmission on a suspended Tx offload queue.
2889 */
2890 static void restart_ofldq(unsigned long data)
2891 {
2892 struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2893
2894 spin_lock(&q->sendq.lock);
2895 q->full = 0; /* the queue actually is completely empty now */
2896 service_ofldq(q);
2897 spin_unlock(&q->sendq.lock);
2898 }
2899
2900 /**
2901 * skb_txq - return the Tx queue an offload packet should use
2902 * @skb: the packet
2903 *
2904 * Returns the Tx queue an offload packet should use as indicated by bits
2905 * 1-15 in the packet's queue_mapping.
2906 */
2907 static inline unsigned int skb_txq(const struct sk_buff *skb)
2908 {
2909 return skb->queue_mapping >> 1;
2910 }
2911
2912 /**
2913 * is_ctrl_pkt - return whether an offload packet is a control packet
2914 * @skb: the packet
2915 *
2916 * Returns whether an offload packet should use an OFLD or a CTRL
2917 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
2918 */
2919 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2920 {
2921 return skb->queue_mapping & 1;
2922 }
2923
2924 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2925 unsigned int tx_uld_type)
2926 {
2927 struct sge_uld_txq_info *txq_info;
2928 struct sge_uld_txq *txq;
2929 unsigned int idx = skb_txq(skb);
2930
2931 if (unlikely(is_ctrl_pkt(skb))) {
2932 /* Single ctrl queue is a requirement for LE workaround path */
2933 if (adap->tids.nsftids)
2934 idx = 0;
2935 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2936 }
2937
2938 txq_info = adap->sge.uld_txq_info[tx_uld_type];
2939 if (unlikely(!txq_info)) {
2940 WARN_ON(true);
2941 return NET_XMIT_DROP;
2942 }
2943
2944 txq = &txq_info->uldtxq[idx];
2945 return ofld_xmit(txq, skb);
2946 }
2947
2948 /**
2949 * t4_ofld_send - send an offload packet
2950 * @adap: the adapter
2951 * @skb: the packet
2952 *
2953 * Sends an offload packet. We use the packet queue_mapping to select the
2954 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2955 * should be sent as regular or control, bits 1-15 select the queue.
2956 */
2957 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2958 {
2959 int ret;
2960
2961 local_bh_disable();
2962 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2963 local_bh_enable();
2964 return ret;
2965 }
2966
2967 /**
2968 * cxgb4_ofld_send - send an offload packet
2969 * @dev: the net device
2970 * @skb: the packet
2971 *
2972 * Sends an offload packet. This is an exported version of @t4_ofld_send,
2973 * intended for ULDs.
2974 */
2975 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2976 {
2977 return t4_ofld_send(netdev2adap(dev), skb);
2978 }
2979 EXPORT_SYMBOL(cxgb4_ofld_send);
2980
2981 static void *inline_tx_header(const void *src,
2982 const struct sge_txq *q,
2983 void *pos, int length)
2984 {
2985 int left = (void *)q->stat - pos;
2986 u64 *p;
2987
2988 if (likely(length <= left)) {
2989 memcpy(pos, src, length);
2990 pos += length;
2991 } else {
2992 memcpy(pos, src, left);
2993 memcpy(q->desc, src + left, length - left);
2994 pos = (void *)q->desc + (length - left);
2995 }
2996 /* 0-pad to multiple of 16 */
2997 p = PTR_ALIGN(pos, 8);
2998 if ((uintptr_t)p & 8) {
2999 *p = 0;
3000 return p + 1;
3001 }
3002 return p;
3003 }
3004
3005 /**
3006 * ofld_xmit_direct - copy a WR into offload queue
3007 * @q: the Tx offload queue
3008 * @src: location of WR
3009 * @len: WR length
3010 *
3011 * Copy an immediate WR into an uncontended SGE offload queue.
3012 */
3013 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3014 unsigned int len)
3015 {
3016 unsigned int ndesc;
3017 int credits;
3018 u64 *pos;
3019
3020 /* Use the lower limit as the cut-off */
3021 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3022 WARN_ON(1);
3023 return NET_XMIT_DROP;
3024 }
3025
3026 /* Don't return NET_XMIT_CN here as the current
3027 * implementation doesn't queue the request
3028 * using an skb when the following conditions not met
3029 */
3030 if (!spin_trylock(&q->sendq.lock))
3031 return NET_XMIT_DROP;
3032
3033 if (q->full || !skb_queue_empty(&q->sendq) ||
3034 q->service_ofldq_running) {
3035 spin_unlock(&q->sendq.lock);
3036 return NET_XMIT_DROP;
3037 }
3038 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3039 credits = txq_avail(&q->q) - ndesc;
3040 pos = (u64 *)&q->q.desc[q->q.pidx];
3041
3042 /* ofldtxq_stop modifies WR header in-situ */
3043 inline_tx_header(src, &q->q, pos, len);
3044 if (unlikely(credits < TXQ_STOP_THRES))
3045 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3046 txq_advance(&q->q, ndesc);
3047 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3048
3049 spin_unlock(&q->sendq.lock);
3050 return NET_XMIT_SUCCESS;
3051 }
3052
3053 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3054 const void *src, unsigned int len)
3055 {
3056 struct sge_uld_txq_info *txq_info;
3057 struct sge_uld_txq *txq;
3058 struct adapter *adap;
3059 int ret;
3060
3061 adap = netdev2adap(dev);
3062
3063 local_bh_disable();
3064 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3065 if (unlikely(!txq_info)) {
3066 WARN_ON(true);
3067 local_bh_enable();
3068 return NET_XMIT_DROP;
3069 }
3070 txq = &txq_info->uldtxq[idx];
3071
3072 ret = ofld_xmit_direct(txq, src, len);
3073 local_bh_enable();
3074 return net_xmit_eval(ret);
3075 }
3076 EXPORT_SYMBOL(cxgb4_immdata_send);
3077
3078 /**
3079 * t4_crypto_send - send crypto packet
3080 * @adap: the adapter
3081 * @skb: the packet
3082 *
3083 * Sends crypto packet. We use the packet queue_mapping to select the
3084 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3085 * should be sent as regular or control, bits 1-15 select the queue.
3086 */
3087 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3088 {
3089 int ret;
3090
3091 local_bh_disable();
3092 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3093 local_bh_enable();
3094 return ret;
3095 }
3096
3097 /**
3098 * cxgb4_crypto_send - send crypto packet
3099 * @dev: the net device
3100 * @skb: the packet
3101 *
3102 * Sends crypto packet. This is an exported version of @t4_crypto_send,
3103 * intended for ULDs.
3104 */
3105 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3106 {
3107 return t4_crypto_send(netdev2adap(dev), skb);
3108 }
3109 EXPORT_SYMBOL(cxgb4_crypto_send);
3110
3111 static inline void copy_frags(struct sk_buff *skb,
3112 const struct pkt_gl *gl, unsigned int offset)
3113 {
3114 int i;
3115
3116 /* usually there's just one frag */
3117 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
3118 gl->frags[0].offset + offset,
3119 gl->frags[0].size - offset);
3120 skb_shinfo(skb)->nr_frags = gl->nfrags;
3121 for (i = 1; i < gl->nfrags; i++)
3122 __skb_fill_page_desc(skb, i, gl->frags[i].page,
3123 gl->frags[i].offset,
3124 gl->frags[i].size);
3125
3126 /* get a reference to the last page, we don't own it */
3127 get_page(gl->frags[gl->nfrags - 1].page);
3128 }
3129
3130 /**
3131 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3132 * @gl: the gather list
3133 * @skb_len: size of sk_buff main body if it carries fragments
3134 * @pull_len: amount of data to move to the sk_buff's main body
3135 *
3136 * Builds an sk_buff from the given packet gather list. Returns the
3137 * sk_buff or %NULL if sk_buff allocation failed.
3138 */
3139 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3140 unsigned int skb_len, unsigned int pull_len)
3141 {
3142 struct sk_buff *skb;
3143
3144 /*
3145 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3146 * size, which is expected since buffers are at least PAGE_SIZEd.
3147 * In this case packets up to RX_COPY_THRES have only one fragment.
3148 */
3149 if (gl->tot_len <= RX_COPY_THRES) {
3150 skb = dev_alloc_skb(gl->tot_len);
3151 if (unlikely(!skb))
3152 goto out;
3153 __skb_put(skb, gl->tot_len);
3154 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3155 } else {
3156 skb = dev_alloc_skb(skb_len);
3157 if (unlikely(!skb))
3158 goto out;
3159 __skb_put(skb, pull_len);
3160 skb_copy_to_linear_data(skb, gl->va, pull_len);
3161
3162 copy_frags(skb, gl, pull_len);
3163 skb->len = gl->tot_len;
3164 skb->data_len = skb->len - pull_len;
3165 skb->truesize += skb->data_len;
3166 }
3167 out: return skb;
3168 }
3169 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3170
3171 /**
3172 * t4_pktgl_free - free a packet gather list
3173 * @gl: the gather list
3174 *
3175 * Releases the pages of a packet gather list. We do not own the last
3176 * page on the list and do not free it.
3177 */
3178 static void t4_pktgl_free(const struct pkt_gl *gl)
3179 {
3180 int n;
3181 const struct page_frag *p;
3182
3183 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3184 put_page(p->page);
3185 }
3186
3187 /*
3188 * Process an MPS trace packet. Give it an unused protocol number so it won't
3189 * be delivered to anyone and send it to the stack for capture.
3190 */
3191 static noinline int handle_trace_pkt(struct adapter *adap,
3192 const struct pkt_gl *gl)
3193 {
3194 struct sk_buff *skb;
3195
3196 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3197 if (unlikely(!skb)) {
3198 t4_pktgl_free(gl);
3199 return 0;
3200 }
3201
3202 if (is_t4(adap->params.chip))
3203 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
3204 else
3205 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3206
3207 skb_reset_mac_header(skb);
3208 skb->protocol = htons(0xffff);
3209 skb->dev = adap->port[0];
3210 netif_receive_skb(skb);
3211 return 0;
3212 }
3213
3214 /**
3215 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3216 * @adap: the adapter
3217 * @hwtstamps: time stamp structure to update
3218 * @sgetstamp: 60bit iqe timestamp
3219 *
3220 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3221 * which is in Core Clock ticks into ktime_t and assign it
3222 **/
3223 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3224 struct skb_shared_hwtstamps *hwtstamps,
3225 u64 sgetstamp)
3226 {
3227 u64 ns;
3228 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3229
3230 ns = div_u64(tmp, adap->params.vpd.cclk);
3231
3232 memset(hwtstamps, 0, sizeof(*hwtstamps));
3233 hwtstamps->hwtstamp = ns_to_ktime(ns);
3234 }
3235
3236 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3237 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3238 {
3239 struct adapter *adapter = rxq->rspq.adap;
3240 struct sge *s = &adapter->sge;
3241 struct port_info *pi;
3242 int ret;
3243 struct sk_buff *skb;
3244
3245 skb = napi_get_frags(&rxq->rspq.napi);
3246 if (unlikely(!skb)) {
3247 t4_pktgl_free(gl);
3248 rxq->stats.rx_drops++;
3249 return;
3250 }
3251
3252 copy_frags(skb, gl, s->pktshift);
3253 if (tnl_hdr_len)
3254 skb->csum_level = 1;
3255 skb->len = gl->tot_len - s->pktshift;
3256 skb->data_len = skb->len;
3257 skb->truesize += skb->data_len;
3258 skb->ip_summed = CHECKSUM_UNNECESSARY;
3259 skb_record_rx_queue(skb, rxq->rspq.idx);
3260 pi = netdev_priv(skb->dev);
3261 if (pi->rxtstamp)
3262 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3263 gl->sgetstamp);
3264 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3265 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3266 PKT_HASH_TYPE_L3);
3267
3268 if (unlikely(pkt->vlan_ex)) {
3269 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3270 rxq->stats.vlan_ex++;
3271 }
3272 ret = napi_gro_frags(&rxq->rspq.napi);
3273 if (ret == GRO_HELD)
3274 rxq->stats.lro_pkts++;
3275 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3276 rxq->stats.lro_merged++;
3277 rxq->stats.pkts++;
3278 rxq->stats.rx_cso++;
3279 }
3280
3281 enum {
3282 RX_NON_PTP_PKT = 0,
3283 RX_PTP_PKT_SUC = 1,
3284 RX_PTP_PKT_ERR = 2
3285 };
3286
3287 /**
3288 * t4_systim_to_hwstamp - read hardware time stamp
3289 * @adapter: the adapter
3290 * @skb: the packet
3291 *
3292 * Read Time Stamp from MPS packet and insert in skb which
3293 * is forwarded to PTP application
3294 */
3295 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3296 struct sk_buff *skb)
3297 {
3298 struct skb_shared_hwtstamps *hwtstamps;
3299 struct cpl_rx_mps_pkt *cpl = NULL;
3300 unsigned char *data;
3301 int offset;
3302
3303 cpl = (struct cpl_rx_mps_pkt *)skb->data;
3304 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3305 X_CPL_RX_MPS_PKT_TYPE_PTP))
3306 return RX_PTP_PKT_ERR;
3307
3308 data = skb->data + sizeof(*cpl);
3309 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3310 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3311 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3312 return RX_PTP_PKT_ERR;
3313
3314 hwtstamps = skb_hwtstamps(skb);
3315 memset(hwtstamps, 0, sizeof(*hwtstamps));
3316 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3317
3318 return RX_PTP_PKT_SUC;
3319 }
3320
3321 /**
3322 * t4_rx_hststamp - Recv PTP Event Message
3323 * @adapter: the adapter
3324 * @rsp: the response queue descriptor holding the RX_PKT message
3325 * @rxq: the response queue holding the RX_PKT message
3326 * @skb: the packet
3327 *
3328 * PTP enabled and MPS packet, read HW timestamp
3329 */
3330 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3331 struct sge_eth_rxq *rxq, struct sk_buff *skb)
3332 {
3333 int ret;
3334
3335 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3336 !is_t4(adapter->params.chip))) {
3337 ret = t4_systim_to_hwstamp(adapter, skb);
3338 if (ret == RX_PTP_PKT_ERR) {
3339 kfree_skb(skb);
3340 rxq->stats.rx_drops++;
3341 }
3342 return ret;
3343 }
3344 return RX_NON_PTP_PKT;
3345 }
3346
3347 /**
3348 * t4_tx_hststamp - Loopback PTP Transmit Event Message
3349 * @adapter: the adapter
3350 * @skb: the packet
3351 * @dev: the ingress net device
3352 *
3353 * Read hardware timestamp for the loopback PTP Tx event message
3354 */
3355 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3356 struct net_device *dev)
3357 {
3358 struct port_info *pi = netdev_priv(dev);
3359
3360 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3361 cxgb4_ptp_read_hwstamp(adapter, pi);
3362 kfree_skb(skb);
3363 return 0;
3364 }
3365 return 1;
3366 }
3367
3368 /**
3369 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3370 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3371 * @rsp: Response Entry pointer into Response Queue
3372 * @gl: Gather List pointer
3373 *
3374 * For adapters which support the SGE Doorbell Queue Timer facility,
3375 * we configure the Ethernet TX Queues to send CIDX Updates to the
3376 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3377 * messages. This adds a small load to PCIe Link RX bandwidth and,
3378 * potentially, higher CPU Interrupt load, but allows us to respond
3379 * much more quickly to the CIDX Updates. This is important for
3380 * Upper Layer Software which isn't willing to have a large amount
3381 * of TX Data outstanding before receiving DMA Completions.
3382 */
3383 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3384 const __be64 *rsp,
3385 const struct pkt_gl *gl)
3386 {
3387 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3388 struct port_info *pi = netdev_priv(rspq->netdev);
3389 struct adapter *adapter = rspq->adap;
3390 struct sge *s = &adapter->sge;
3391 struct sge_eth_txq *txq;
3392
3393 /* skip RSS header */
3394 rsp++;
3395
3396 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3397 */
3398 if (unlikely(opcode == CPL_FW4_MSG &&
3399 ((const struct cpl_fw4_msg *)rsp)->type ==
3400 FW_TYPE_RSSCPL)) {
3401 rsp++;
3402 opcode = ((const struct rss_header *)rsp)->opcode;
3403 rsp++;
3404 }
3405
3406 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3407 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3408 __func__, opcode);
3409 return;
3410 }
3411
3412 txq = &s->ethtxq[pi->first_qset + rspq->idx];
3413 t4_sge_eth_txq_egress_update(adapter, txq, -1);
3414 }
3415
3416 /**
3417 * t4_ethrx_handler - process an ingress ethernet packet
3418 * @q: the response queue that received the packet
3419 * @rsp: the response queue descriptor holding the RX_PKT message
3420 * @si: the gather list of packet fragments
3421 *
3422 * Process an ingress ethernet packet and deliver it to the stack.
3423 */
3424 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3425 const struct pkt_gl *si)
3426 {
3427 bool csum_ok;
3428 struct sk_buff *skb;
3429 const struct cpl_rx_pkt *pkt;
3430 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3431 struct adapter *adapter = q->adap;
3432 struct sge *s = &q->adap->sge;
3433 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3434 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3435 u16 err_vec, tnl_hdr_len = 0;
3436 struct port_info *pi;
3437 int ret = 0;
3438
3439 /* If we're looking at TX Queue CIDX Update, handle that separately
3440 * and return.
3441 */
3442 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3443 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3444 t4_tx_completion_handler(q, rsp, si);
3445 return 0;
3446 }
3447
3448 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3449 return handle_trace_pkt(q->adap, si);
3450
3451 pkt = (const struct cpl_rx_pkt *)rsp;
3452 /* Compressed error vector is enabled for T6 only */
3453 if (q->adap->params.tp.rx_pkt_encap) {
3454 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3455 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3456 } else {
3457 err_vec = be16_to_cpu(pkt->err_vec);
3458 }
3459
3460 csum_ok = pkt->csum_calc && !err_vec &&
3461 (q->netdev->features & NETIF_F_RXCSUM);
3462
3463 if (err_vec)
3464 rxq->stats.bad_rx_pkts++;
3465
3466 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3467 tnl_hdr_len) &&
3468 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3469 do_gro(rxq, si, pkt, tnl_hdr_len);
3470 return 0;
3471 }
3472
3473 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3474 if (unlikely(!skb)) {
3475 t4_pktgl_free(si);
3476 rxq->stats.rx_drops++;
3477 return 0;
3478 }
3479 pi = netdev_priv(q->netdev);
3480
3481 /* Handle PTP Event Rx packet */
3482 if (unlikely(pi->ptp_enable)) {
3483 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3484 if (ret == RX_PTP_PKT_ERR)
3485 return 0;
3486 }
3487 if (likely(!ret))
3488 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3489
3490 /* Handle the PTP Event Tx Loopback packet */
3491 if (unlikely(pi->ptp_enable && !ret &&
3492 (pkt->l2info & htonl(RXF_UDP_F)) &&
3493 cxgb4_ptp_is_ptp_rx(skb))) {
3494 if (!t4_tx_hststamp(adapter, skb, q->netdev))
3495 return 0;
3496 }
3497
3498 skb->protocol = eth_type_trans(skb, q->netdev);
3499 skb_record_rx_queue(skb, q->idx);
3500 if (skb->dev->features & NETIF_F_RXHASH)
3501 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3502 PKT_HASH_TYPE_L3);
3503
3504 rxq->stats.pkts++;
3505
3506 if (pi->rxtstamp)
3507 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3508 si->sgetstamp);
3509 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3510 if (!pkt->ip_frag) {
3511 skb->ip_summed = CHECKSUM_UNNECESSARY;
3512 rxq->stats.rx_cso++;
3513 } else if (pkt->l2info & htonl(RXF_IP_F)) {
3514 __sum16 c = (__force __sum16)pkt->csum;
3515 skb->csum = csum_unfold(c);
3516
3517 if (tnl_hdr_len) {
3518 skb->ip_summed = CHECKSUM_UNNECESSARY;
3519 skb->csum_level = 1;
3520 } else {
3521 skb->ip_summed = CHECKSUM_COMPLETE;
3522 }
3523 rxq->stats.rx_cso++;
3524 }
3525 } else {
3526 skb_checksum_none_assert(skb);
3527 #ifdef CONFIG_CHELSIO_T4_FCOE
3528 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3529 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3530
3531 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3532 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3533 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3534 if (q->adap->params.tp.rx_pkt_encap)
3535 csum_ok = err_vec &
3536 T6_COMPR_RXERR_SUM_F;
3537 else
3538 csum_ok = err_vec & RXERR_CSUM_F;
3539 if (!csum_ok)
3540 skb->ip_summed = CHECKSUM_UNNECESSARY;
3541 }
3542 }
3543
3544 #undef CPL_RX_PKT_FLAGS
3545 #endif /* CONFIG_CHELSIO_T4_FCOE */
3546 }
3547
3548 if (unlikely(pkt->vlan_ex)) {
3549 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3550 rxq->stats.vlan_ex++;
3551 }
3552 skb_mark_napi_id(skb, &q->napi);
3553 netif_receive_skb(skb);
3554 return 0;
3555 }
3556
3557 /**
3558 * restore_rx_bufs - put back a packet's Rx buffers
3559 * @si: the packet gather list
3560 * @q: the SGE free list
3561 * @frags: number of FL buffers to restore
3562 *
3563 * Puts back on an FL the Rx buffers associated with @si. The buffers
3564 * have already been unmapped and are left unmapped, we mark them so to
3565 * prevent further unmapping attempts.
3566 *
3567 * This function undoes a series of @unmap_rx_buf calls when we find out
3568 * that the current packet can't be processed right away afterall and we
3569 * need to come back to it later. This is a very rare event and there's
3570 * no effort to make this particularly efficient.
3571 */
3572 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3573 int frags)
3574 {
3575 struct rx_sw_desc *d;
3576
3577 while (frags--) {
3578 if (q->cidx == 0)
3579 q->cidx = q->size - 1;
3580 else
3581 q->cidx--;
3582 d = &q->sdesc[q->cidx];
3583 d->page = si->frags[frags].page;
3584 d->dma_addr |= RX_UNMAPPED_BUF;
3585 q->avail++;
3586 }
3587 }
3588
3589 /**
3590 * is_new_response - check if a response is newly written
3591 * @r: the response descriptor
3592 * @q: the response queue
3593 *
3594 * Returns true if a response descriptor contains a yet unprocessed
3595 * response.
3596 */
3597 static inline bool is_new_response(const struct rsp_ctrl *r,
3598 const struct sge_rspq *q)
3599 {
3600 return (r->type_gen >> RSPD_GEN_S) == q->gen;
3601 }
3602
3603 /**
3604 * rspq_next - advance to the next entry in a response queue
3605 * @q: the queue
3606 *
3607 * Updates the state of a response queue to advance it to the next entry.
3608 */
3609 static inline void rspq_next(struct sge_rspq *q)
3610 {
3611 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3612 if (unlikely(++q->cidx == q->size)) {
3613 q->cidx = 0;
3614 q->gen ^= 1;
3615 q->cur_desc = q->desc;
3616 }
3617 }
3618
3619 /**
3620 * process_responses - process responses from an SGE response queue
3621 * @q: the ingress queue to process
3622 * @budget: how many responses can be processed in this round
3623 *
3624 * Process responses from an SGE response queue up to the supplied budget.
3625 * Responses include received packets as well as control messages from FW
3626 * or HW.
3627 *
3628 * Additionally choose the interrupt holdoff time for the next interrupt
3629 * on this queue. If the system is under memory shortage use a fairly
3630 * long delay to help recovery.
3631 */
3632 static int process_responses(struct sge_rspq *q, int budget)
3633 {
3634 int ret, rsp_type;
3635 int budget_left = budget;
3636 const struct rsp_ctrl *rc;
3637 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3638 struct adapter *adapter = q->adap;
3639 struct sge *s = &adapter->sge;
3640
3641 while (likely(budget_left)) {
3642 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3643 if (!is_new_response(rc, q)) {
3644 if (q->flush_handler)
3645 q->flush_handler(q);
3646 break;
3647 }
3648
3649 dma_rmb();
3650 rsp_type = RSPD_TYPE_G(rc->type_gen);
3651 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3652 struct page_frag *fp;
3653 struct pkt_gl si;
3654 const struct rx_sw_desc *rsd;
3655 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3656
3657 if (len & RSPD_NEWBUF_F) {
3658 if (likely(q->offset > 0)) {
3659 free_rx_bufs(q->adap, &rxq->fl, 1);
3660 q->offset = 0;
3661 }
3662 len = RSPD_LEN_G(len);
3663 }
3664 si.tot_len = len;
3665
3666 /* gather packet fragments */
3667 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3668 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3669 bufsz = get_buf_size(adapter, rsd);
3670 fp->page = rsd->page;
3671 fp->offset = q->offset;
3672 fp->size = min(bufsz, len);
3673 len -= fp->size;
3674 if (!len)
3675 break;
3676 unmap_rx_buf(q->adap, &rxq->fl);
3677 }
3678
3679 si.sgetstamp = SGE_TIMESTAMP_G(
3680 be64_to_cpu(rc->last_flit));
3681 /*
3682 * Last buffer remains mapped so explicitly make it
3683 * coherent for CPU access.
3684 */
3685 dma_sync_single_for_cpu(q->adap->pdev_dev,
3686 get_buf_addr(rsd),
3687 fp->size, DMA_FROM_DEVICE);
3688
3689 si.va = page_address(si.frags[0].page) +
3690 si.frags[0].offset;
3691 prefetch(si.va);
3692
3693 si.nfrags = frags + 1;
3694 ret = q->handler(q, q->cur_desc, &si);
3695 if (likely(ret == 0))
3696 q->offset += ALIGN(fp->size, s->fl_align);
3697 else
3698 restore_rx_bufs(&si, &rxq->fl, frags);
3699 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3700 ret = q->handler(q, q->cur_desc, NULL);
3701 } else {
3702 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3703 }
3704
3705 if (unlikely(ret)) {
3706 /* couldn't process descriptor, back off for recovery */
3707 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3708 break;
3709 }
3710
3711 rspq_next(q);
3712 budget_left--;
3713 }
3714
3715 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3716 __refill_fl(q->adap, &rxq->fl);
3717 return budget - budget_left;
3718 }
3719
3720 /**
3721 * napi_rx_handler - the NAPI handler for Rx processing
3722 * @napi: the napi instance
3723 * @budget: how many packets we can process in this round
3724 *
3725 * Handler for new data events when using NAPI. This does not need any
3726 * locking or protection from interrupts as data interrupts are off at
3727 * this point and other adapter interrupts do not interfere (the latter
3728 * in not a concern at all with MSI-X as non-data interrupts then have
3729 * a separate handler).
3730 */
3731 static int napi_rx_handler(struct napi_struct *napi, int budget)
3732 {
3733 unsigned int params;
3734 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3735 int work_done;
3736 u32 val;
3737
3738 work_done = process_responses(q, budget);
3739 if (likely(work_done < budget)) {
3740 int timer_index;
3741
3742 napi_complete_done(napi, work_done);
3743 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3744
3745 if (q->adaptive_rx) {
3746 if (work_done > max(timer_pkt_quota[timer_index],
3747 MIN_NAPI_WORK))
3748 timer_index = (timer_index + 1);
3749 else
3750 timer_index = timer_index - 1;
3751
3752 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3753 q->next_intr_params =
3754 QINTR_TIMER_IDX_V(timer_index) |
3755 QINTR_CNT_EN_V(0);
3756 params = q->next_intr_params;
3757 } else {
3758 params = q->next_intr_params;
3759 q->next_intr_params = q->intr_params;
3760 }
3761 } else
3762 params = QINTR_TIMER_IDX_V(7);
3763
3764 val = CIDXINC_V(work_done) | SEINTARM_V(params);
3765
3766 /* If we don't have access to the new User GTS (T5+), use the old
3767 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3768 */
3769 if (unlikely(q->bar2_addr == NULL)) {
3770 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3771 val | INGRESSQID_V((u32)q->cntxt_id));
3772 } else {
3773 writel(val | INGRESSQID_V(q->bar2_qid),
3774 q->bar2_addr + SGE_UDB_GTS);
3775 wmb();
3776 }
3777 return work_done;
3778 }
3779
3780 void cxgb4_ethofld_restart(unsigned long data)
3781 {
3782 struct sge_eosw_txq *eosw_txq = (struct sge_eosw_txq *)data;
3783 int pktcount;
3784
3785 spin_lock(&eosw_txq->lock);
3786 pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
3787 if (pktcount < 0)
3788 pktcount += eosw_txq->ndesc;
3789
3790 if (pktcount) {
3791 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
3792 eosw_txq, pktcount);
3793 eosw_txq->inuse -= pktcount;
3794 }
3795
3796 /* There may be some packets waiting for completions. So,
3797 * attempt to send these packets now.
3798 */
3799 ethofld_xmit(eosw_txq->netdev, eosw_txq);
3800 spin_unlock(&eosw_txq->lock);
3801 }
3802
3803 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
3804 * @q: the response queue that received the packet
3805 * @rsp: the response queue descriptor holding the CPL message
3806 * @si: the gather list of packet fragments
3807 *
3808 * Process a ETHOFLD Tx completion. Increment the cidx here, but
3809 * free up the descriptors in a tasklet later.
3810 */
3811 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
3812 const struct pkt_gl *si)
3813 {
3814 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3815
3816 /* skip RSS header */
3817 rsp++;
3818
3819 if (opcode == CPL_FW4_ACK) {
3820 const struct cpl_fw4_ack *cpl;
3821 struct sge_eosw_txq *eosw_txq;
3822 struct eotid_entry *entry;
3823 struct sk_buff *skb;
3824 u32 hdr_len, eotid;
3825 u8 flits, wrlen16;
3826 int credits;
3827
3828 cpl = (const struct cpl_fw4_ack *)rsp;
3829 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
3830 q->adap->tids.eotid_base;
3831 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
3832 if (!entry)
3833 goto out_done;
3834
3835 eosw_txq = (struct sge_eosw_txq *)entry->data;
3836 if (!eosw_txq)
3837 goto out_done;
3838
3839 spin_lock(&eosw_txq->lock);
3840 credits = cpl->credits;
3841 while (credits > 0) {
3842 skb = eosw_txq->desc[eosw_txq->cidx].skb;
3843 if (!skb)
3844 break;
3845
3846 if (unlikely((eosw_txq->state ==
3847 CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
3848 eosw_txq->state ==
3849 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
3850 eosw_txq->cidx == eosw_txq->flowc_idx)) {
3851 flits = DIV_ROUND_UP(skb->len, 8);
3852 if (eosw_txq->state ==
3853 CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
3854 eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
3855 else
3856 eosw_txq->state = CXGB4_EO_STATE_CLOSED;
3857 complete(&eosw_txq->completion);
3858 } else {
3859 hdr_len = eth_get_headlen(eosw_txq->netdev,
3860 skb->data,
3861 skb_headlen(skb));
3862 flits = ethofld_calc_tx_flits(q->adap, skb,
3863 hdr_len);
3864 }
3865 eosw_txq_advance_index(&eosw_txq->cidx, 1,
3866 eosw_txq->ndesc);
3867 wrlen16 = DIV_ROUND_UP(flits * 8, 16);
3868 credits -= wrlen16;
3869 }
3870
3871 eosw_txq->cred += cpl->credits;
3872 eosw_txq->ncompl--;
3873
3874 spin_unlock(&eosw_txq->lock);
3875
3876 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
3877 * if there were packets waiting for completion.
3878 */
3879 tasklet_schedule(&eosw_txq->qresume_tsk);
3880 }
3881
3882 out_done:
3883 return 0;
3884 }
3885
3886 /*
3887 * The MSI-X interrupt handler for an SGE response queue.
3888 */
3889 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3890 {
3891 struct sge_rspq *q = cookie;
3892
3893 napi_schedule(&q->napi);
3894 return IRQ_HANDLED;
3895 }
3896
3897 /*
3898 * Process the indirect interrupt entries in the interrupt queue and kick off
3899 * NAPI for each queue that has generated an entry.
3900 */
3901 static unsigned int process_intrq(struct adapter *adap)
3902 {
3903 unsigned int credits;
3904 const struct rsp_ctrl *rc;
3905 struct sge_rspq *q = &adap->sge.intrq;
3906 u32 val;
3907
3908 spin_lock(&adap->sge.intrq_lock);
3909 for (credits = 0; ; credits++) {
3910 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3911 if (!is_new_response(rc, q))
3912 break;
3913
3914 dma_rmb();
3915 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3916 unsigned int qid = ntohl(rc->pldbuflen_qid);
3917
3918 qid -= adap->sge.ingr_start;
3919 napi_schedule(&adap->sge.ingr_map[qid]->napi);
3920 }
3921
3922 rspq_next(q);
3923 }
3924
3925 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3926
3927 /* If we don't have access to the new User GTS (T5+), use the old
3928 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3929 */
3930 if (unlikely(q->bar2_addr == NULL)) {
3931 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3932 val | INGRESSQID_V(q->cntxt_id));
3933 } else {
3934 writel(val | INGRESSQID_V(q->bar2_qid),
3935 q->bar2_addr + SGE_UDB_GTS);
3936 wmb();
3937 }
3938 spin_unlock(&adap->sge.intrq_lock);
3939 return credits;
3940 }
3941
3942 /*
3943 * The MSI interrupt handler, which handles data events from SGE response queues
3944 * as well as error and other async events as they all use the same MSI vector.
3945 */
3946 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3947 {
3948 struct adapter *adap = cookie;
3949
3950 if (adap->flags & CXGB4_MASTER_PF)
3951 t4_slow_intr_handler(adap);
3952 process_intrq(adap);
3953 return IRQ_HANDLED;
3954 }
3955
3956 /*
3957 * Interrupt handler for legacy INTx interrupts.
3958 * Handles data events from SGE response queues as well as error and other
3959 * async events as they all use the same interrupt line.
3960 */
3961 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3962 {
3963 struct adapter *adap = cookie;
3964
3965 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3966 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3967 process_intrq(adap))
3968 return IRQ_HANDLED;
3969 return IRQ_NONE; /* probably shared interrupt */
3970 }
3971
3972 /**
3973 * t4_intr_handler - select the top-level interrupt handler
3974 * @adap: the adapter
3975 *
3976 * Selects the top-level interrupt handler based on the type of interrupts
3977 * (MSI-X, MSI, or INTx).
3978 */
3979 irq_handler_t t4_intr_handler(struct adapter *adap)
3980 {
3981 if (adap->flags & CXGB4_USING_MSIX)
3982 return t4_sge_intr_msix;
3983 if (adap->flags & CXGB4_USING_MSI)
3984 return t4_intr_msi;
3985 return t4_intr_intx;
3986 }
3987
3988 static void sge_rx_timer_cb(struct timer_list *t)
3989 {
3990 unsigned long m;
3991 unsigned int i;
3992 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3993 struct sge *s = &adap->sge;
3994
3995 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3996 for (m = s->starving_fl[i]; m; m &= m - 1) {
3997 struct sge_eth_rxq *rxq;
3998 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3999 struct sge_fl *fl = s->egr_map[id];
4000
4001 clear_bit(id, s->starving_fl);
4002 smp_mb__after_atomic();
4003
4004 if (fl_starving(adap, fl)) {
4005 rxq = container_of(fl, struct sge_eth_rxq, fl);
4006 if (napi_reschedule(&rxq->rspq.napi))
4007 fl->starving++;
4008 else
4009 set_bit(id, s->starving_fl);
4010 }
4011 }
4012 /* The remainder of the SGE RX Timer Callback routine is dedicated to
4013 * global Master PF activities like checking for chip ingress stalls,
4014 * etc.
4015 */
4016 if (!(adap->flags & CXGB4_MASTER_PF))
4017 goto done;
4018
4019 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4020
4021 done:
4022 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4023 }
4024
4025 static void sge_tx_timer_cb(struct timer_list *t)
4026 {
4027 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4028 struct sge *s = &adap->sge;
4029 unsigned long m, period;
4030 unsigned int i, budget;
4031
4032 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4033 for (m = s->txq_maperr[i]; m; m &= m - 1) {
4034 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4035 struct sge_uld_txq *txq = s->egr_map[id];
4036
4037 clear_bit(id, s->txq_maperr);
4038 tasklet_schedule(&txq->qresume_tsk);
4039 }
4040
4041 if (!is_t4(adap->params.chip)) {
4042 struct sge_eth_txq *q = &s->ptptxq;
4043 int avail;
4044
4045 spin_lock(&adap->ptp_lock);
4046 avail = reclaimable(&q->q);
4047
4048 if (avail) {
4049 free_tx_desc(adap, &q->q, avail, false);
4050 q->q.in_use -= avail;
4051 }
4052 spin_unlock(&adap->ptp_lock);
4053 }
4054
4055 budget = MAX_TIMER_TX_RECLAIM;
4056 i = s->ethtxq_rover;
4057 do {
4058 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4059 budget);
4060 if (!budget)
4061 break;
4062
4063 if (++i >= s->ethqsets)
4064 i = 0;
4065 } while (i != s->ethtxq_rover);
4066 s->ethtxq_rover = i;
4067
4068 if (budget == 0) {
4069 /* If we found too many reclaimable packets schedule a timer
4070 * in the near future to continue where we left off.
4071 */
4072 period = 2;
4073 } else {
4074 /* We reclaimed all reclaimable TX Descriptors, so reschedule
4075 * at the normal period.
4076 */
4077 period = TX_QCHECK_PERIOD;
4078 }
4079
4080 mod_timer(&s->tx_timer, jiffies + period);
4081 }
4082
4083 /**
4084 * bar2_address - return the BAR2 address for an SGE Queue's Registers
4085 * @adapter: the adapter
4086 * @qid: the SGE Queue ID
4087 * @qtype: the SGE Queue Type (Egress or Ingress)
4088 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4089 *
4090 * Returns the BAR2 address for the SGE Queue Registers associated with
4091 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
4092 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4093 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4094 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
4095 */
4096 static void __iomem *bar2_address(struct adapter *adapter,
4097 unsigned int qid,
4098 enum t4_bar2_qtype qtype,
4099 unsigned int *pbar2_qid)
4100 {
4101 u64 bar2_qoffset;
4102 int ret;
4103
4104 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4105 &bar2_qoffset, pbar2_qid);
4106 if (ret)
4107 return NULL;
4108
4109 return adapter->bar2 + bar2_qoffset;
4110 }
4111
4112 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4113 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4114 */
4115 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4116 struct net_device *dev, int intr_idx,
4117 struct sge_fl *fl, rspq_handler_t hnd,
4118 rspq_flush_handler_t flush_hnd, int cong)
4119 {
4120 int ret, flsz = 0;
4121 struct fw_iq_cmd c;
4122 struct sge *s = &adap->sge;
4123 struct port_info *pi = netdev_priv(dev);
4124 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4125
4126 /* Size needs to be multiple of 16, including status entry. */
4127 iq->size = roundup(iq->size, 16);
4128
4129 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4130 &iq->phys_addr, NULL, 0,
4131 dev_to_node(adap->pdev_dev));
4132 if (!iq->desc)
4133 return -ENOMEM;
4134
4135 memset(&c, 0, sizeof(c));
4136 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4137 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4138 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4139 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4140 FW_LEN16(c));
4141 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4142 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4143 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4144 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4145 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4146 -intr_idx - 1));
4147 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4148 FW_IQ_CMD_IQGTSMODE_F |
4149 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4150 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4151 c.iqsize = htons(iq->size);
4152 c.iqaddr = cpu_to_be64(iq->phys_addr);
4153 if (cong >= 0)
4154 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4155 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4156 : FW_IQ_IQTYPE_OFLD));
4157
4158 if (fl) {
4159 unsigned int chip_ver =
4160 CHELSIO_CHIP_VERSION(adap->params.chip);
4161
4162 /* Allocate the ring for the hardware free list (with space
4163 * for its status page) along with the associated software
4164 * descriptor ring. The free list size needs to be a multiple
4165 * of the Egress Queue Unit and at least 2 Egress Units larger
4166 * than the SGE's Egress Congrestion Threshold
4167 * (fl_starve_thres - 1).
4168 */
4169 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4170 fl->size = s->fl_starve_thres - 1 + 2 * 8;
4171 fl->size = roundup(fl->size, 8);
4172 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4173 sizeof(struct rx_sw_desc), &fl->addr,
4174 &fl->sdesc, s->stat_len,
4175 dev_to_node(adap->pdev_dev));
4176 if (!fl->desc)
4177 goto fl_nomem;
4178
4179 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4180 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4181 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4182 FW_IQ_CMD_FL0DATARO_V(relaxed) |
4183 FW_IQ_CMD_FL0PADEN_F);
4184 if (cong >= 0)
4185 c.iqns_to_fl0congen |=
4186 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4187 FW_IQ_CMD_FL0CONGCIF_F |
4188 FW_IQ_CMD_FL0CONGEN_F);
4189 /* In T6, for egress queue type FL there is internal overhead
4190 * of 16B for header going into FLM module. Hence the maximum
4191 * allowed burst size is 448 bytes. For T4/T5, the hardware
4192 * doesn't coalesce fetch requests if more than 64 bytes of
4193 * Free List pointers are provided, so we use a 128-byte Fetch
4194 * Burst Minimum there (T6 implements coalescing so we can use
4195 * the smaller 64-byte value there).
4196 */
4197 c.fl0dcaen_to_fl0cidxfthresh =
4198 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4199 FETCHBURSTMIN_128B_X :
4200 FETCHBURSTMIN_64B_T6_X) |
4201 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4202 FETCHBURSTMAX_512B_X :
4203 FETCHBURSTMAX_256B_X));
4204 c.fl0size = htons(flsz);
4205 c.fl0addr = cpu_to_be64(fl->addr);
4206 }
4207
4208 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4209 if (ret)
4210 goto err;
4211
4212 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4213 iq->cur_desc = iq->desc;
4214 iq->cidx = 0;
4215 iq->gen = 1;
4216 iq->next_intr_params = iq->intr_params;
4217 iq->cntxt_id = ntohs(c.iqid);
4218 iq->abs_id = ntohs(c.physiqid);
4219 iq->bar2_addr = bar2_address(adap,
4220 iq->cntxt_id,
4221 T4_BAR2_QTYPE_INGRESS,
4222 &iq->bar2_qid);
4223 iq->size--; /* subtract status entry */
4224 iq->netdev = dev;
4225 iq->handler = hnd;
4226 iq->flush_handler = flush_hnd;
4227
4228 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4229 skb_queue_head_init(&iq->lro_mgr.lroq);
4230
4231 /* set offset to -1 to distinguish ingress queues without FL */
4232 iq->offset = fl ? 0 : -1;
4233
4234 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4235
4236 if (fl) {
4237 fl->cntxt_id = ntohs(c.fl0id);
4238 fl->avail = fl->pend_cred = 0;
4239 fl->pidx = fl->cidx = 0;
4240 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4241 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4242
4243 /* Note, we must initialize the BAR2 Free List User Doorbell
4244 * information before refilling the Free List!
4245 */
4246 fl->bar2_addr = bar2_address(adap,
4247 fl->cntxt_id,
4248 T4_BAR2_QTYPE_EGRESS,
4249 &fl->bar2_qid);
4250 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4251 }
4252
4253 /* For T5 and later we attempt to set up the Congestion Manager values
4254 * of the new RX Ethernet Queue. This should really be handled by
4255 * firmware because it's more complex than any host driver wants to
4256 * get involved with and it's different per chip and this is almost
4257 * certainly wrong. Firmware would be wrong as well, but it would be
4258 * a lot easier to fix in one place ... For now we do something very
4259 * simple (and hopefully less wrong).
4260 */
4261 if (!is_t4(adap->params.chip) && cong >= 0) {
4262 u32 param, val, ch_map = 0;
4263 int i;
4264 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4265
4266 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4267 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4268 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4269 if (cong == 0) {
4270 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4271 } else {
4272 val =
4273 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4274 for (i = 0; i < 4; i++) {
4275 if (cong & (1 << i))
4276 ch_map |= 1 << (i << cng_ch_bits_log);
4277 }
4278 val |= CONMCTXT_CNGCHMAP_V(ch_map);
4279 }
4280 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4281 &param, &val);
4282 if (ret)
4283 dev_warn(adap->pdev_dev, "Failed to set Congestion"
4284 " Manager Context for Ingress Queue %d: %d\n",
4285 iq->cntxt_id, -ret);
4286 }
4287
4288 return 0;
4289
4290 fl_nomem:
4291 ret = -ENOMEM;
4292 err:
4293 if (iq->desc) {
4294 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4295 iq->desc, iq->phys_addr);
4296 iq->desc = NULL;
4297 }
4298 if (fl && fl->desc) {
4299 kfree(fl->sdesc);
4300 fl->sdesc = NULL;
4301 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4302 fl->desc, fl->addr);
4303 fl->desc = NULL;
4304 }
4305 return ret;
4306 }
4307
4308 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4309 {
4310 q->cntxt_id = id;
4311 q->bar2_addr = bar2_address(adap,
4312 q->cntxt_id,
4313 T4_BAR2_QTYPE_EGRESS,
4314 &q->bar2_qid);
4315 q->in_use = 0;
4316 q->cidx = q->pidx = 0;
4317 q->stops = q->restarts = 0;
4318 q->stat = (void *)&q->desc[q->size];
4319 spin_lock_init(&q->db_lock);
4320 adap->sge.egr_map[id - adap->sge.egr_start] = q;
4321 }
4322
4323 /**
4324 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4325 * @adap: the adapter
4326 * @txq: the SGE Ethernet TX Queue to initialize
4327 * @dev: the Linux Network Device
4328 * @netdevq: the corresponding Linux TX Queue
4329 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
4330 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4331 */
4332 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4333 struct net_device *dev, struct netdev_queue *netdevq,
4334 unsigned int iqid, u8 dbqt)
4335 {
4336 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4337 struct port_info *pi = netdev_priv(dev);
4338 struct sge *s = &adap->sge;
4339 struct fw_eq_eth_cmd c;
4340 int ret, nentries;
4341
4342 /* Add status entries */
4343 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4344
4345 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4346 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4347 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4348 netdev_queue_numa_node_read(netdevq));
4349 if (!txq->q.desc)
4350 return -ENOMEM;
4351
4352 memset(&c, 0, sizeof(c));
4353 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4354 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4355 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4356 FW_EQ_ETH_CMD_VFN_V(0));
4357 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4358 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4359
4360 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4361 * mechanism, we use Ingress Queue messages for Hardware Consumer
4362 * Index Updates on the TX Queue. Otherwise we have the Hardware
4363 * write the CIDX Updates into the Status Page at the end of the
4364 * TX Queue.
4365 */
4366 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
4367 FW_EQ_ETH_CMD_VIID_V(pi->viid));
4368
4369 c.fetchszm_to_iqid =
4370 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4371 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4372 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4373
4374 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4375 c.dcaen_to_eqsize =
4376 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4377 ? FETCHBURSTMIN_64B_X
4378 : FETCHBURSTMIN_64B_T6_X) |
4379 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4380 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4381 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4382
4383 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4384
4385 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4386 * currently configured Timer Index. THis can be changed later via an
4387 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
4388 * Doorbell Queue mode is currently automatically enabled in the
4389 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4390 */
4391 if (dbqt)
4392 c.timeren_timerix =
4393 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4394 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4395
4396 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4397 if (ret) {
4398 kfree(txq->q.sdesc);
4399 txq->q.sdesc = NULL;
4400 dma_free_coherent(adap->pdev_dev,
4401 nentries * sizeof(struct tx_desc),
4402 txq->q.desc, txq->q.phys_addr);
4403 txq->q.desc = NULL;
4404 return ret;
4405 }
4406
4407 txq->q.q_type = CXGB4_TXQ_ETH;
4408 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4409 txq->txq = netdevq;
4410 txq->tso = 0;
4411 txq->uso = 0;
4412 txq->tx_cso = 0;
4413 txq->vlan_ins = 0;
4414 txq->mapping_err = 0;
4415 txq->dbqt = dbqt;
4416
4417 return 0;
4418 }
4419
4420 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4421 struct net_device *dev, unsigned int iqid,
4422 unsigned int cmplqid)
4423 {
4424 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4425 struct port_info *pi = netdev_priv(dev);
4426 struct sge *s = &adap->sge;
4427 struct fw_eq_ctrl_cmd c;
4428 int ret, nentries;
4429
4430 /* Add status entries */
4431 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4432
4433 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4434 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4435 NULL, 0, dev_to_node(adap->pdev_dev));
4436 if (!txq->q.desc)
4437 return -ENOMEM;
4438
4439 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4440 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4441 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4442 FW_EQ_CTRL_CMD_VFN_V(0));
4443 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4444 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4445 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4446 c.physeqid_pkd = htonl(0);
4447 c.fetchszm_to_iqid =
4448 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4449 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4450 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4451 c.dcaen_to_eqsize =
4452 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4453 ? FETCHBURSTMIN_64B_X
4454 : FETCHBURSTMIN_64B_T6_X) |
4455 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4456 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4457 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4458 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4459
4460 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4461 if (ret) {
4462 dma_free_coherent(adap->pdev_dev,
4463 nentries * sizeof(struct tx_desc),
4464 txq->q.desc, txq->q.phys_addr);
4465 txq->q.desc = NULL;
4466 return ret;
4467 }
4468
4469 txq->q.q_type = CXGB4_TXQ_CTRL;
4470 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4471 txq->adap = adap;
4472 skb_queue_head_init(&txq->sendq);
4473 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
4474 txq->full = 0;
4475 return 0;
4476 }
4477
4478 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4479 unsigned int cmplqid)
4480 {
4481 u32 param, val;
4482
4483 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4484 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4485 FW_PARAMS_PARAM_YZ_V(eqid));
4486 val = cmplqid;
4487 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4488 }
4489
4490 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4491 struct net_device *dev, u32 cmd, u32 iqid)
4492 {
4493 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4494 struct port_info *pi = netdev_priv(dev);
4495 struct sge *s = &adap->sge;
4496 struct fw_eq_ofld_cmd c;
4497 u32 fb_min, nentries;
4498 int ret;
4499
4500 /* Add status entries */
4501 nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4502 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4503 sizeof(struct tx_sw_desc), &q->phys_addr,
4504 &q->sdesc, s->stat_len, NUMA_NO_NODE);
4505 if (!q->desc)
4506 return -ENOMEM;
4507
4508 if (chip_ver <= CHELSIO_T5)
4509 fb_min = FETCHBURSTMIN_64B_X;
4510 else
4511 fb_min = FETCHBURSTMIN_64B_T6_X;
4512
4513 memset(&c, 0, sizeof(c));
4514 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4515 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4516 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4517 FW_EQ_OFLD_CMD_VFN_V(0));
4518 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4519 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4520 c.fetchszm_to_iqid =
4521 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4522 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4523 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4524 c.dcaen_to_eqsize =
4525 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4526 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4527 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4528 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4529 c.eqaddr = cpu_to_be64(q->phys_addr);
4530
4531 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4532 if (ret) {
4533 kfree(q->sdesc);
4534 q->sdesc = NULL;
4535 dma_free_coherent(adap->pdev_dev,
4536 nentries * sizeof(struct tx_desc),
4537 q->desc, q->phys_addr);
4538 q->desc = NULL;
4539 return ret;
4540 }
4541
4542 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4543 return 0;
4544 }
4545
4546 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4547 struct net_device *dev, unsigned int iqid,
4548 unsigned int uld_type)
4549 {
4550 u32 cmd = FW_EQ_OFLD_CMD;
4551 int ret;
4552
4553 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4554 cmd = FW_EQ_CTRL_CMD;
4555
4556 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4557 if (ret)
4558 return ret;
4559
4560 txq->q.q_type = CXGB4_TXQ_ULD;
4561 txq->adap = adap;
4562 skb_queue_head_init(&txq->sendq);
4563 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
4564 txq->full = 0;
4565 txq->mapping_err = 0;
4566 return 0;
4567 }
4568
4569 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4570 struct net_device *dev, u32 iqid)
4571 {
4572 int ret;
4573
4574 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4575 if (ret)
4576 return ret;
4577
4578 txq->q.q_type = CXGB4_TXQ_ULD;
4579 spin_lock_init(&txq->lock);
4580 txq->adap = adap;
4581 txq->tso = 0;
4582 txq->uso = 0;
4583 txq->tx_cso = 0;
4584 txq->vlan_ins = 0;
4585 txq->mapping_err = 0;
4586 return 0;
4587 }
4588
4589 void free_txq(struct adapter *adap, struct sge_txq *q)
4590 {
4591 struct sge *s = &adap->sge;
4592
4593 dma_free_coherent(adap->pdev_dev,
4594 q->size * sizeof(struct tx_desc) + s->stat_len,
4595 q->desc, q->phys_addr);
4596 q->cntxt_id = 0;
4597 q->sdesc = NULL;
4598 q->desc = NULL;
4599 }
4600
4601 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4602 struct sge_fl *fl)
4603 {
4604 struct sge *s = &adap->sge;
4605 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4606
4607 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4608 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4609 rq->cntxt_id, fl_id, 0xffff);
4610 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4611 rq->desc, rq->phys_addr);
4612 netif_napi_del(&rq->napi);
4613 rq->netdev = NULL;
4614 rq->cntxt_id = rq->abs_id = 0;
4615 rq->desc = NULL;
4616
4617 if (fl) {
4618 free_rx_bufs(adap, fl, fl->avail);
4619 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4620 fl->desc, fl->addr);
4621 kfree(fl->sdesc);
4622 fl->sdesc = NULL;
4623 fl->cntxt_id = 0;
4624 fl->desc = NULL;
4625 }
4626 }
4627
4628 /**
4629 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4630 * @adap: the adapter
4631 * @n: number of queues
4632 * @q: pointer to first queue
4633 *
4634 * Release the resources of a consecutive block of offload Rx queues.
4635 */
4636 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4637 {
4638 for ( ; n; n--, q++)
4639 if (q->rspq.desc)
4640 free_rspq_fl(adap, &q->rspq,
4641 q->fl.size ? &q->fl : NULL);
4642 }
4643
4644 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4645 {
4646 if (txq->q.desc) {
4647 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4648 txq->q.cntxt_id);
4649 free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4650 kfree(txq->q.sdesc);
4651 free_txq(adap, &txq->q);
4652 }
4653 }
4654
4655 /**
4656 * t4_free_sge_resources - free SGE resources
4657 * @adap: the adapter
4658 *
4659 * Frees resources used by the SGE queue sets.
4660 */
4661 void t4_free_sge_resources(struct adapter *adap)
4662 {
4663 int i;
4664 struct sge_eth_rxq *eq;
4665 struct sge_eth_txq *etq;
4666
4667 /* stop all Rx queues in order to start them draining */
4668 for (i = 0; i < adap->sge.ethqsets; i++) {
4669 eq = &adap->sge.ethrxq[i];
4670 if (eq->rspq.desc)
4671 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4672 FW_IQ_TYPE_FL_INT_CAP,
4673 eq->rspq.cntxt_id,
4674 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4675 0xffff);
4676 }
4677
4678 /* clean up Ethernet Tx/Rx queues */
4679 for (i = 0; i < adap->sge.ethqsets; i++) {
4680 eq = &adap->sge.ethrxq[i];
4681 if (eq->rspq.desc)
4682 free_rspq_fl(adap, &eq->rspq,
4683 eq->fl.size ? &eq->fl : NULL);
4684 if (eq->msix) {
4685 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4686 eq->msix = NULL;
4687 }
4688
4689 etq = &adap->sge.ethtxq[i];
4690 if (etq->q.desc) {
4691 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4692 etq->q.cntxt_id);
4693 __netif_tx_lock_bh(etq->txq);
4694 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4695 __netif_tx_unlock_bh(etq->txq);
4696 kfree(etq->q.sdesc);
4697 free_txq(adap, &etq->q);
4698 }
4699 }
4700
4701 /* clean up control Tx queues */
4702 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4703 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4704
4705 if (cq->q.desc) {
4706 tasklet_kill(&cq->qresume_tsk);
4707 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4708 cq->q.cntxt_id);
4709 __skb_queue_purge(&cq->sendq);
4710 free_txq(adap, &cq->q);
4711 }
4712 }
4713
4714 if (adap->sge.fw_evtq.desc) {
4715 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4716 if (adap->sge.fwevtq_msix_idx >= 0)
4717 cxgb4_free_msix_idx_in_bmap(adap,
4718 adap->sge.fwevtq_msix_idx);
4719 }
4720
4721 if (adap->sge.nd_msix_idx >= 0)
4722 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4723
4724 if (adap->sge.intrq.desc)
4725 free_rspq_fl(adap, &adap->sge.intrq, NULL);
4726
4727 if (!is_t4(adap->params.chip)) {
4728 etq = &adap->sge.ptptxq;
4729 if (etq->q.desc) {
4730 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4731 etq->q.cntxt_id);
4732 spin_lock_bh(&adap->ptp_lock);
4733 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4734 spin_unlock_bh(&adap->ptp_lock);
4735 kfree(etq->q.sdesc);
4736 free_txq(adap, &etq->q);
4737 }
4738 }
4739
4740 /* clear the reverse egress queue map */
4741 memset(adap->sge.egr_map, 0,
4742 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4743 }
4744
4745 void t4_sge_start(struct adapter *adap)
4746 {
4747 adap->sge.ethtxq_rover = 0;
4748 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4749 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4750 }
4751
4752 /**
4753 * t4_sge_stop - disable SGE operation
4754 * @adap: the adapter
4755 *
4756 * Stop tasklets and timers associated with the DMA engine. Note that
4757 * this is effective only if measures have been taken to disable any HW
4758 * events that may restart them.
4759 */
4760 void t4_sge_stop(struct adapter *adap)
4761 {
4762 int i;
4763 struct sge *s = &adap->sge;
4764
4765 if (in_interrupt()) /* actions below require waiting */
4766 return;
4767
4768 if (s->rx_timer.function)
4769 del_timer_sync(&s->rx_timer);
4770 if (s->tx_timer.function)
4771 del_timer_sync(&s->tx_timer);
4772
4773 if (is_offload(adap)) {
4774 struct sge_uld_txq_info *txq_info;
4775
4776 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4777 if (txq_info) {
4778 struct sge_uld_txq *txq = txq_info->uldtxq;
4779
4780 for_each_ofldtxq(&adap->sge, i) {
4781 if (txq->q.desc)
4782 tasklet_kill(&txq->qresume_tsk);
4783 }
4784 }
4785 }
4786
4787 if (is_pci_uld(adap)) {
4788 struct sge_uld_txq_info *txq_info;
4789
4790 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4791 if (txq_info) {
4792 struct sge_uld_txq *txq = txq_info->uldtxq;
4793
4794 for_each_ofldtxq(&adap->sge, i) {
4795 if (txq->q.desc)
4796 tasklet_kill(&txq->qresume_tsk);
4797 }
4798 }
4799 }
4800
4801 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4802 struct sge_ctrl_txq *cq = &s->ctrlq[i];
4803
4804 if (cq->q.desc)
4805 tasklet_kill(&cq->qresume_tsk);
4806 }
4807 }
4808
4809 /**
4810 * t4_sge_init_soft - grab core SGE values needed by SGE code
4811 * @adap: the adapter
4812 *
4813 * We need to grab the SGE operating parameters that we need to have
4814 * in order to do our job and make sure we can live with them.
4815 */
4816
4817 static int t4_sge_init_soft(struct adapter *adap)
4818 {
4819 struct sge *s = &adap->sge;
4820 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4821 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4822 u32 ingress_rx_threshold;
4823
4824 /*
4825 * Verify that CPL messages are going to the Ingress Queue for
4826 * process_responses() and that only packet data is going to the
4827 * Free Lists.
4828 */
4829 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4830 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4831 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4832 return -EINVAL;
4833 }
4834
4835 /*
4836 * Validate the Host Buffer Register Array indices that we want to
4837 * use ...
4838 *
4839 * XXX Note that we should really read through the Host Buffer Size
4840 * XXX register array and find the indices of the Buffer Sizes which
4841 * XXX meet our needs!
4842 */
4843 #define READ_FL_BUF(x) \
4844 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4845
4846 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4847 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4848 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4849 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4850
4851 /* We only bother using the Large Page logic if the Large Page Buffer
4852 * is larger than our Page Size Buffer.
4853 */
4854 if (fl_large_pg <= fl_small_pg)
4855 fl_large_pg = 0;
4856
4857 #undef READ_FL_BUF
4858
4859 /* The Page Size Buffer must be exactly equal to our Page Size and the
4860 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4861 */
4862 if (fl_small_pg != PAGE_SIZE ||
4863 (fl_large_pg & (fl_large_pg-1)) != 0) {
4864 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4865 fl_small_pg, fl_large_pg);
4866 return -EINVAL;
4867 }
4868 if (fl_large_pg)
4869 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4870
4871 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4872 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4873 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4874 fl_small_mtu, fl_large_mtu);
4875 return -EINVAL;
4876 }
4877
4878 /*
4879 * Retrieve our RX interrupt holdoff timer values and counter
4880 * threshold values from the SGE parameters.
4881 */
4882 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4883 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4884 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4885 s->timer_val[0] = core_ticks_to_us(adap,
4886 TIMERVALUE0_G(timer_value_0_and_1));
4887 s->timer_val[1] = core_ticks_to_us(adap,
4888 TIMERVALUE1_G(timer_value_0_and_1));
4889 s->timer_val[2] = core_ticks_to_us(adap,
4890 TIMERVALUE2_G(timer_value_2_and_3));
4891 s->timer_val[3] = core_ticks_to_us(adap,
4892 TIMERVALUE3_G(timer_value_2_and_3));
4893 s->timer_val[4] = core_ticks_to_us(adap,
4894 TIMERVALUE4_G(timer_value_4_and_5));
4895 s->timer_val[5] = core_ticks_to_us(adap,
4896 TIMERVALUE5_G(timer_value_4_and_5));
4897
4898 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4899 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4900 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4901 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4902 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4903
4904 return 0;
4905 }
4906
4907 /**
4908 * t4_sge_init - initialize SGE
4909 * @adap: the adapter
4910 *
4911 * Perform low-level SGE code initialization needed every time after a
4912 * chip reset.
4913 */
4914 int t4_sge_init(struct adapter *adap)
4915 {
4916 struct sge *s = &adap->sge;
4917 u32 sge_control, sge_conm_ctrl;
4918 int ret, egress_threshold;
4919
4920 /*
4921 * Ingress Padding Boundary and Egress Status Page Size are set up by
4922 * t4_fixup_host_params().
4923 */
4924 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4925 s->pktshift = PKTSHIFT_G(sge_control);
4926 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4927
4928 s->fl_align = t4_fl_pkt_align(adap);
4929 ret = t4_sge_init_soft(adap);
4930 if (ret < 0)
4931 return ret;
4932
4933 /*
4934 * A FL with <= fl_starve_thres buffers is starving and a periodic
4935 * timer will attempt to refill it. This needs to be larger than the
4936 * SGE's Egress Congestion Threshold. If it isn't, then we can get
4937 * stuck waiting for new packets while the SGE is waiting for us to
4938 * give it more Free List entries. (Note that the SGE's Egress
4939 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4940 * there was only a single field to control this. For T5 there's the
4941 * original field which now only applies to Unpacked Mode Free List
4942 * buffers and a new field which only applies to Packed Mode Free List
4943 * buffers.
4944 */
4945 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4946 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4947 case CHELSIO_T4:
4948 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4949 break;
4950 case CHELSIO_T5:
4951 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4952 break;
4953 case CHELSIO_T6:
4954 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4955 break;
4956 default:
4957 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4958 CHELSIO_CHIP_VERSION(adap->params.chip));
4959 return -EINVAL;
4960 }
4961 s->fl_starve_thres = 2*egress_threshold + 1;
4962
4963 t4_idma_monitor_init(adap, &s->idma_monitor);
4964
4965 /* Set up timers used for recuring callbacks to process RX and TX
4966 * administrative tasks.
4967 */
4968 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4969 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4970
4971 spin_lock_init(&s->intrq_lock);
4972
4973 return 0;
4974 }