]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/sge.c
slip: Fix use-after-free Read in slip_open
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58
59 /*
60 * Rx buffer size. We use largish buffers if possible but settle for single
61 * pages under memory shortage.
62 */
63 #if PAGE_SHIFT >= 16
64 # define FL_PG_ORDER 0
65 #else
66 # define FL_PG_ORDER (16 - PAGE_SHIFT)
67 #endif
68
69 /* RX_PULL_LEN should be <= RX_COPY_THRES */
70 #define RX_COPY_THRES 256
71 #define RX_PULL_LEN 128
72
73 /*
74 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
75 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
76 */
77 #define RX_PKT_SKB_LEN 512
78
79 /*
80 * Max number of Tx descriptors we clean up at a time. Should be modest as
81 * freeing skbs isn't cheap and it happens while holding locks. We just need
82 * to free packets faster than they arrive, we eventually catch up and keep
83 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
84 * also match the CIDX Flush Threshold.
85 */
86 #define MAX_TX_RECLAIM 32
87
88 /*
89 * Max number of Rx buffers we replenish at a time. Again keep this modest,
90 * allocating buffers isn't cheap either.
91 */
92 #define MAX_RX_REFILL 16U
93
94 /*
95 * Period of the Rx queue check timer. This timer is infrequent as it has
96 * something to do only when the system experiences severe memory shortage.
97 */
98 #define RX_QCHECK_PERIOD (HZ / 2)
99
100 /*
101 * Period of the Tx queue check timer.
102 */
103 #define TX_QCHECK_PERIOD (HZ / 2)
104
105 /*
106 * Max number of Tx descriptors to be reclaimed by the Tx timer.
107 */
108 #define MAX_TIMER_TX_RECLAIM 100
109
110 /*
111 * Timer index used when backing off due to memory shortage.
112 */
113 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
114
115 /*
116 * Suspension threshold for non-Ethernet Tx queues. We require enough room
117 * for a full sized WR.
118 */
119 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
120
121 /*
122 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
123 * into a WR.
124 */
125 #define MAX_IMM_TX_PKT_LEN 256
126
127 /*
128 * Max size of a WR sent through a control Tx queue.
129 */
130 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
131
132 struct rx_sw_desc { /* SW state per Rx descriptor */
133 struct page *page;
134 dma_addr_t dma_addr;
135 };
136
137 /*
138 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
139 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
140 * We could easily support more but there doesn't seem to be much need for
141 * that ...
142 */
143 #define FL_MTU_SMALL 1500
144 #define FL_MTU_LARGE 9000
145
146 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
147 unsigned int mtu)
148 {
149 struct sge *s = &adapter->sge;
150
151 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
152 }
153
154 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
155 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
156
157 /*
158 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
159 * these to specify the buffer size as an index into the SGE Free List Buffer
160 * Size register array. We also use bit 4, when the buffer has been unmapped
161 * for DMA, but this is of course never sent to the hardware and is only used
162 * to prevent double unmappings. All of the above requires that the Free List
163 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
164 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
165 * Free List Buffer alignment is 32 bytes, this works out for us ...
166 */
167 enum {
168 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
169 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
170 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
171
172 /*
173 * XXX We shouldn't depend on being able to use these indices.
174 * XXX Especially when some other Master PF has initialized the
175 * XXX adapter or we use the Firmware Configuration File. We
176 * XXX should really search through the Host Buffer Size register
177 * XXX array for the appropriately sized buffer indices.
178 */
179 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
180 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
181
182 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
183 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
184 };
185
186 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
187 #define MIN_NAPI_WORK 1
188
189 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
190 {
191 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
192 }
193
194 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
195 {
196 return !(d->dma_addr & RX_UNMAPPED_BUF);
197 }
198
199 /**
200 * txq_avail - return the number of available slots in a Tx queue
201 * @q: the Tx queue
202 *
203 * Returns the number of descriptors in a Tx queue available to write new
204 * packets.
205 */
206 static inline unsigned int txq_avail(const struct sge_txq *q)
207 {
208 return q->size - 1 - q->in_use;
209 }
210
211 /**
212 * fl_cap - return the capacity of a free-buffer list
213 * @fl: the FL
214 *
215 * Returns the capacity of a free-buffer list. The capacity is less than
216 * the size because one descriptor needs to be left unpopulated, otherwise
217 * HW will think the FL is empty.
218 */
219 static inline unsigned int fl_cap(const struct sge_fl *fl)
220 {
221 return fl->size - 8; /* 1 descriptor = 8 buffers */
222 }
223
224 /**
225 * fl_starving - return whether a Free List is starving.
226 * @adapter: pointer to the adapter
227 * @fl: the Free List
228 *
229 * Tests specified Free List to see whether the number of buffers
230 * available to the hardware has falled below our "starvation"
231 * threshold.
232 */
233 static inline bool fl_starving(const struct adapter *adapter,
234 const struct sge_fl *fl)
235 {
236 const struct sge *s = &adapter->sge;
237
238 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
239 }
240
241 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
242 dma_addr_t *addr)
243 {
244 const skb_frag_t *fp, *end;
245 const struct skb_shared_info *si;
246
247 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
248 if (dma_mapping_error(dev, *addr))
249 goto out_err;
250
251 si = skb_shinfo(skb);
252 end = &si->frags[si->nr_frags];
253
254 for (fp = si->frags; fp < end; fp++) {
255 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
256 DMA_TO_DEVICE);
257 if (dma_mapping_error(dev, *addr))
258 goto unwind;
259 }
260 return 0;
261
262 unwind:
263 while (fp-- > si->frags)
264 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
265
266 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
267 out_err:
268 return -ENOMEM;
269 }
270 EXPORT_SYMBOL(cxgb4_map_skb);
271
272 #ifdef CONFIG_NEED_DMA_MAP_STATE
273 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
274 const dma_addr_t *addr)
275 {
276 const skb_frag_t *fp, *end;
277 const struct skb_shared_info *si;
278
279 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
280
281 si = skb_shinfo(skb);
282 end = &si->frags[si->nr_frags];
283 for (fp = si->frags; fp < end; fp++)
284 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
285 }
286
287 /**
288 * deferred_unmap_destructor - unmap a packet when it is freed
289 * @skb: the packet
290 *
291 * This is the packet destructor used for Tx packets that need to remain
292 * mapped until they are freed rather than until their Tx descriptors are
293 * freed.
294 */
295 static void deferred_unmap_destructor(struct sk_buff *skb)
296 {
297 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
298 }
299 #endif
300
301 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
302 const struct ulptx_sgl *sgl, const struct sge_txq *q)
303 {
304 const struct ulptx_sge_pair *p;
305 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
306
307 if (likely(skb_headlen(skb)))
308 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
309 DMA_TO_DEVICE);
310 else {
311 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
312 DMA_TO_DEVICE);
313 nfrags--;
314 }
315
316 /*
317 * the complexity below is because of the possibility of a wrap-around
318 * in the middle of an SGL
319 */
320 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
321 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
322 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
323 ntohl(p->len[0]), DMA_TO_DEVICE);
324 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
325 ntohl(p->len[1]), DMA_TO_DEVICE);
326 p++;
327 } else if ((u8 *)p == (u8 *)q->stat) {
328 p = (const struct ulptx_sge_pair *)q->desc;
329 goto unmap;
330 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
331 const __be64 *addr = (const __be64 *)q->desc;
332
333 dma_unmap_page(dev, be64_to_cpu(addr[0]),
334 ntohl(p->len[0]), DMA_TO_DEVICE);
335 dma_unmap_page(dev, be64_to_cpu(addr[1]),
336 ntohl(p->len[1]), DMA_TO_DEVICE);
337 p = (const struct ulptx_sge_pair *)&addr[2];
338 } else {
339 const __be64 *addr = (const __be64 *)q->desc;
340
341 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
342 ntohl(p->len[0]), DMA_TO_DEVICE);
343 dma_unmap_page(dev, be64_to_cpu(addr[0]),
344 ntohl(p->len[1]), DMA_TO_DEVICE);
345 p = (const struct ulptx_sge_pair *)&addr[1];
346 }
347 }
348 if (nfrags) {
349 __be64 addr;
350
351 if ((u8 *)p == (u8 *)q->stat)
352 p = (const struct ulptx_sge_pair *)q->desc;
353 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
354 *(const __be64 *)q->desc;
355 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
356 DMA_TO_DEVICE);
357 }
358 }
359
360 /**
361 * free_tx_desc - reclaims Tx descriptors and their buffers
362 * @adapter: the adapter
363 * @q: the Tx queue to reclaim descriptors from
364 * @n: the number of descriptors to reclaim
365 * @unmap: whether the buffers should be unmapped for DMA
366 *
367 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
368 * Tx buffers. Called with the Tx queue lock held.
369 */
370 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
371 unsigned int n, bool unmap)
372 {
373 struct tx_sw_desc *d;
374 unsigned int cidx = q->cidx;
375 struct device *dev = adap->pdev_dev;
376
377 d = &q->sdesc[cidx];
378 while (n--) {
379 if (d->skb) { /* an SGL is present */
380 if (unmap)
381 unmap_sgl(dev, d->skb, d->sgl, q);
382 dev_consume_skb_any(d->skb);
383 d->skb = NULL;
384 }
385 ++d;
386 if (++cidx == q->size) {
387 cidx = 0;
388 d = q->sdesc;
389 }
390 }
391 q->cidx = cidx;
392 }
393
394 /*
395 * Return the number of reclaimable descriptors in a Tx queue.
396 */
397 static inline int reclaimable(const struct sge_txq *q)
398 {
399 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
400 hw_cidx -= q->cidx;
401 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
402 }
403
404 /**
405 * reclaim_completed_tx - reclaims completed TX Descriptors
406 * @adap: the adapter
407 * @q: the Tx queue to reclaim completed descriptors from
408 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
409 * @unmap: whether the buffers should be unmapped for DMA
410 *
411 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
412 * and frees the associated buffers if possible. If @max == -1, then
413 * we'll use a defaiult maximum. Called with the TX Queue locked.
414 */
415 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
416 int maxreclaim, bool unmap)
417 {
418 int reclaim = reclaimable(q);
419
420 if (reclaim) {
421 /*
422 * Limit the amount of clean up work we do at a time to keep
423 * the Tx lock hold time O(1).
424 */
425 if (maxreclaim < 0)
426 maxreclaim = MAX_TX_RECLAIM;
427 if (reclaim > maxreclaim)
428 reclaim = maxreclaim;
429
430 free_tx_desc(adap, q, reclaim, unmap);
431 q->in_use -= reclaim;
432 }
433
434 return reclaim;
435 }
436
437 /**
438 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
439 * @adap: the adapter
440 * @q: the Tx queue to reclaim completed descriptors from
441 * @unmap: whether the buffers should be unmapped for DMA
442 *
443 * Reclaims Tx descriptors that the SGE has indicated it has processed,
444 * and frees the associated buffers if possible. Called with the Tx
445 * queue locked.
446 */
447 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
448 bool unmap)
449 {
450 (void)reclaim_completed_tx(adap, q, -1, unmap);
451 }
452 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
453
454 static inline int get_buf_size(struct adapter *adapter,
455 const struct rx_sw_desc *d)
456 {
457 struct sge *s = &adapter->sge;
458 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
459 int buf_size;
460
461 switch (rx_buf_size_idx) {
462 case RX_SMALL_PG_BUF:
463 buf_size = PAGE_SIZE;
464 break;
465
466 case RX_LARGE_PG_BUF:
467 buf_size = PAGE_SIZE << s->fl_pg_order;
468 break;
469
470 case RX_SMALL_MTU_BUF:
471 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
472 break;
473
474 case RX_LARGE_MTU_BUF:
475 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
476 break;
477
478 default:
479 BUG();
480 }
481
482 return buf_size;
483 }
484
485 /**
486 * free_rx_bufs - free the Rx buffers on an SGE free list
487 * @adap: the adapter
488 * @q: the SGE free list to free buffers from
489 * @n: how many buffers to free
490 *
491 * Release the next @n buffers on an SGE free-buffer Rx queue. The
492 * buffers must be made inaccessible to HW before calling this function.
493 */
494 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
495 {
496 while (n--) {
497 struct rx_sw_desc *d = &q->sdesc[q->cidx];
498
499 if (is_buf_mapped(d))
500 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
501 get_buf_size(adap, d),
502 PCI_DMA_FROMDEVICE);
503 put_page(d->page);
504 d->page = NULL;
505 if (++q->cidx == q->size)
506 q->cidx = 0;
507 q->avail--;
508 }
509 }
510
511 /**
512 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
513 * @adap: the adapter
514 * @q: the SGE free list
515 *
516 * Unmap the current buffer on an SGE free-buffer Rx queue. The
517 * buffer must be made inaccessible to HW before calling this function.
518 *
519 * This is similar to @free_rx_bufs above but does not free the buffer.
520 * Do note that the FL still loses any further access to the buffer.
521 */
522 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
523 {
524 struct rx_sw_desc *d = &q->sdesc[q->cidx];
525
526 if (is_buf_mapped(d))
527 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
528 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
529 d->page = NULL;
530 if (++q->cidx == q->size)
531 q->cidx = 0;
532 q->avail--;
533 }
534
535 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
536 {
537 if (q->pend_cred >= 8) {
538 u32 val = adap->params.arch.sge_fl_db;
539
540 if (is_t4(adap->params.chip))
541 val |= PIDX_V(q->pend_cred / 8);
542 else
543 val |= PIDX_T5_V(q->pend_cred / 8);
544
545 /* Make sure all memory writes to the Free List queue are
546 * committed before we tell the hardware about them.
547 */
548 wmb();
549
550 /* If we don't have access to the new User Doorbell (T5+), use
551 * the old doorbell mechanism; otherwise use the new BAR2
552 * mechanism.
553 */
554 if (unlikely(q->bar2_addr == NULL)) {
555 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
556 val | QID_V(q->cntxt_id));
557 } else {
558 writel(val | QID_V(q->bar2_qid),
559 q->bar2_addr + SGE_UDB_KDOORBELL);
560
561 /* This Write memory Barrier will force the write to
562 * the User Doorbell area to be flushed.
563 */
564 wmb();
565 }
566 q->pend_cred &= 7;
567 }
568 }
569
570 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
571 dma_addr_t mapping)
572 {
573 sd->page = pg;
574 sd->dma_addr = mapping; /* includes size low bits */
575 }
576
577 /**
578 * refill_fl - refill an SGE Rx buffer ring
579 * @adap: the adapter
580 * @q: the ring to refill
581 * @n: the number of new buffers to allocate
582 * @gfp: the gfp flags for the allocations
583 *
584 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
585 * allocated with the supplied gfp flags. The caller must assure that
586 * @n does not exceed the queue's capacity. If afterwards the queue is
587 * found critically low mark it as starving in the bitmap of starving FLs.
588 *
589 * Returns the number of buffers allocated.
590 */
591 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
592 gfp_t gfp)
593 {
594 struct sge *s = &adap->sge;
595 struct page *pg;
596 dma_addr_t mapping;
597 unsigned int cred = q->avail;
598 __be64 *d = &q->desc[q->pidx];
599 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
600 int node;
601
602 #ifdef CONFIG_DEBUG_FS
603 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
604 goto out;
605 #endif
606
607 gfp |= __GFP_NOWARN;
608 node = dev_to_node(adap->pdev_dev);
609
610 if (s->fl_pg_order == 0)
611 goto alloc_small_pages;
612
613 /*
614 * Prefer large buffers
615 */
616 while (n) {
617 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
618 if (unlikely(!pg)) {
619 q->large_alloc_failed++;
620 break; /* fall back to single pages */
621 }
622
623 mapping = dma_map_page(adap->pdev_dev, pg, 0,
624 PAGE_SIZE << s->fl_pg_order,
625 PCI_DMA_FROMDEVICE);
626 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
627 __free_pages(pg, s->fl_pg_order);
628 q->mapping_err++;
629 goto out; /* do not try small pages for this error */
630 }
631 mapping |= RX_LARGE_PG_BUF;
632 *d++ = cpu_to_be64(mapping);
633
634 set_rx_sw_desc(sd, pg, mapping);
635 sd++;
636
637 q->avail++;
638 if (++q->pidx == q->size) {
639 q->pidx = 0;
640 sd = q->sdesc;
641 d = q->desc;
642 }
643 n--;
644 }
645
646 alloc_small_pages:
647 while (n--) {
648 pg = alloc_pages_node(node, gfp, 0);
649 if (unlikely(!pg)) {
650 q->alloc_failed++;
651 break;
652 }
653
654 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
655 PCI_DMA_FROMDEVICE);
656 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
657 put_page(pg);
658 q->mapping_err++;
659 goto out;
660 }
661 *d++ = cpu_to_be64(mapping);
662
663 set_rx_sw_desc(sd, pg, mapping);
664 sd++;
665
666 q->avail++;
667 if (++q->pidx == q->size) {
668 q->pidx = 0;
669 sd = q->sdesc;
670 d = q->desc;
671 }
672 }
673
674 out: cred = q->avail - cred;
675 q->pend_cred += cred;
676 ring_fl_db(adap, q);
677
678 if (unlikely(fl_starving(adap, q))) {
679 smp_wmb();
680 q->low++;
681 set_bit(q->cntxt_id - adap->sge.egr_start,
682 adap->sge.starving_fl);
683 }
684
685 return cred;
686 }
687
688 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
689 {
690 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
691 GFP_ATOMIC);
692 }
693
694 /**
695 * alloc_ring - allocate resources for an SGE descriptor ring
696 * @dev: the PCI device's core device
697 * @nelem: the number of descriptors
698 * @elem_size: the size of each descriptor
699 * @sw_size: the size of the SW state associated with each ring element
700 * @phys: the physical address of the allocated ring
701 * @metadata: address of the array holding the SW state for the ring
702 * @stat_size: extra space in HW ring for status information
703 * @node: preferred node for memory allocations
704 *
705 * Allocates resources for an SGE descriptor ring, such as Tx queues,
706 * free buffer lists, or response queues. Each SGE ring requires
707 * space for its HW descriptors plus, optionally, space for the SW state
708 * associated with each HW entry (the metadata). The function returns
709 * three values: the virtual address for the HW ring (the return value
710 * of the function), the bus address of the HW ring, and the address
711 * of the SW ring.
712 */
713 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
714 size_t sw_size, dma_addr_t *phys, void *metadata,
715 size_t stat_size, int node)
716 {
717 size_t len = nelem * elem_size + stat_size;
718 void *s = NULL;
719 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
720
721 if (!p)
722 return NULL;
723 if (sw_size) {
724 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
725
726 if (!s) {
727 dma_free_coherent(dev, len, p, *phys);
728 return NULL;
729 }
730 }
731 if (metadata)
732 *(void **)metadata = s;
733 return p;
734 }
735
736 /**
737 * sgl_len - calculates the size of an SGL of the given capacity
738 * @n: the number of SGL entries
739 *
740 * Calculates the number of flits needed for a scatter/gather list that
741 * can hold the given number of entries.
742 */
743 static inline unsigned int sgl_len(unsigned int n)
744 {
745 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
746 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
747 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
748 * repeated sequences of { Length[i], Length[i+1], Address[i],
749 * Address[i+1] } (this ensures that all addresses are on 64-bit
750 * boundaries). If N is even, then Length[N+1] should be set to 0 and
751 * Address[N+1] is omitted.
752 *
753 * The following calculation incorporates all of the above. It's
754 * somewhat hard to follow but, briefly: the "+2" accounts for the
755 * first two flits which include the DSGL header, Length0 and
756 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
757 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
758 * finally the "+((n-1)&1)" adds the one remaining flit needed if
759 * (n-1) is odd ...
760 */
761 n--;
762 return (3 * n) / 2 + (n & 1) + 2;
763 }
764
765 /**
766 * flits_to_desc - returns the num of Tx descriptors for the given flits
767 * @n: the number of flits
768 *
769 * Returns the number of Tx descriptors needed for the supplied number
770 * of flits.
771 */
772 static inline unsigned int flits_to_desc(unsigned int n)
773 {
774 BUG_ON(n > SGE_MAX_WR_LEN / 8);
775 return DIV_ROUND_UP(n, 8);
776 }
777
778 /**
779 * is_eth_imm - can an Ethernet packet be sent as immediate data?
780 * @skb: the packet
781 *
782 * Returns whether an Ethernet packet is small enough to fit as
783 * immediate data. Return value corresponds to headroom required.
784 */
785 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
786 {
787 int hdrlen = 0;
788
789 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
790 chip_ver > CHELSIO_T5) {
791 hdrlen = sizeof(struct cpl_tx_tnl_lso);
792 hdrlen += sizeof(struct cpl_tx_pkt_core);
793 } else {
794 hdrlen = skb_shinfo(skb)->gso_size ?
795 sizeof(struct cpl_tx_pkt_lso_core) : 0;
796 hdrlen += sizeof(struct cpl_tx_pkt);
797 }
798 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
799 return hdrlen;
800 return 0;
801 }
802
803 /**
804 * calc_tx_flits - calculate the number of flits for a packet Tx WR
805 * @skb: the packet
806 *
807 * Returns the number of flits needed for a Tx WR for the given Ethernet
808 * packet, including the needed WR and CPL headers.
809 */
810 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
811 unsigned int chip_ver)
812 {
813 unsigned int flits;
814 int hdrlen = is_eth_imm(skb, chip_ver);
815
816 /* If the skb is small enough, we can pump it out as a work request
817 * with only immediate data. In that case we just have to have the
818 * TX Packet header plus the skb data in the Work Request.
819 */
820
821 if (hdrlen)
822 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
823
824 /* Otherwise, we're going to have to construct a Scatter gather list
825 * of the skb body and fragments. We also include the flits necessary
826 * for the TX Packet Work Request and CPL. We always have a firmware
827 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
828 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
829 * message or, if we're doing a Large Send Offload, an LSO CPL message
830 * with an embedded TX Packet Write CPL message.
831 */
832 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
833 if (skb_shinfo(skb)->gso_size) {
834 if (skb->encapsulation && chip_ver > CHELSIO_T5)
835 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
836 sizeof(struct cpl_tx_tnl_lso);
837 else
838 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
839 sizeof(struct cpl_tx_pkt_lso_core);
840
841 hdrlen += sizeof(struct cpl_tx_pkt_core);
842 flits += (hdrlen / sizeof(__be64));
843 } else {
844 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
845 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
846 }
847 return flits;
848 }
849
850 /**
851 * calc_tx_descs - calculate the number of Tx descriptors for a packet
852 * @skb: the packet
853 *
854 * Returns the number of Tx descriptors needed for the given Ethernet
855 * packet, including the needed WR and CPL headers.
856 */
857 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
858 unsigned int chip_ver)
859 {
860 return flits_to_desc(calc_tx_flits(skb, chip_ver));
861 }
862
863 /**
864 * cxgb4_write_sgl - populate a scatter/gather list for a packet
865 * @skb: the packet
866 * @q: the Tx queue we are writing into
867 * @sgl: starting location for writing the SGL
868 * @end: points right after the end of the SGL
869 * @start: start offset into skb main-body data to include in the SGL
870 * @addr: the list of bus addresses for the SGL elements
871 *
872 * Generates a gather list for the buffers that make up a packet.
873 * The caller must provide adequate space for the SGL that will be written.
874 * The SGL includes all of the packet's page fragments and the data in its
875 * main body except for the first @start bytes. @sgl must be 16-byte
876 * aligned and within a Tx descriptor with available space. @end points
877 * right after the end of the SGL but does not account for any potential
878 * wrap around, i.e., @end > @sgl.
879 */
880 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
881 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
882 const dma_addr_t *addr)
883 {
884 unsigned int i, len;
885 struct ulptx_sge_pair *to;
886 const struct skb_shared_info *si = skb_shinfo(skb);
887 unsigned int nfrags = si->nr_frags;
888 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
889
890 len = skb_headlen(skb) - start;
891 if (likely(len)) {
892 sgl->len0 = htonl(len);
893 sgl->addr0 = cpu_to_be64(addr[0] + start);
894 nfrags++;
895 } else {
896 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
897 sgl->addr0 = cpu_to_be64(addr[1]);
898 }
899
900 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
901 ULPTX_NSGE_V(nfrags));
902 if (likely(--nfrags == 0))
903 return;
904 /*
905 * Most of the complexity below deals with the possibility we hit the
906 * end of the queue in the middle of writing the SGL. For this case
907 * only we create the SGL in a temporary buffer and then copy it.
908 */
909 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
910
911 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
912 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
913 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
914 to->addr[0] = cpu_to_be64(addr[i]);
915 to->addr[1] = cpu_to_be64(addr[++i]);
916 }
917 if (nfrags) {
918 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
919 to->len[1] = cpu_to_be32(0);
920 to->addr[0] = cpu_to_be64(addr[i + 1]);
921 }
922 if (unlikely((u8 *)end > (u8 *)q->stat)) {
923 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
924
925 if (likely(part0))
926 memcpy(sgl->sge, buf, part0);
927 part1 = (u8 *)end - (u8 *)q->stat;
928 memcpy(q->desc, (u8 *)buf + part0, part1);
929 end = (void *)q->desc + part1;
930 }
931 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
932 *end = 0;
933 }
934 EXPORT_SYMBOL(cxgb4_write_sgl);
935
936 /* This function copies 64 byte coalesced work request to
937 * memory mapped BAR2 space. For coalesced WR SGE fetches
938 * data from the FIFO instead of from Host.
939 */
940 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
941 {
942 int count = 8;
943
944 while (count) {
945 writeq(*src, dst);
946 src++;
947 dst++;
948 count--;
949 }
950 }
951
952 /**
953 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
954 * @adap: the adapter
955 * @q: the Tx queue
956 * @n: number of new descriptors to give to HW
957 *
958 * Ring the doorbel for a Tx queue.
959 */
960 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
961 {
962 /* Make sure that all writes to the TX Descriptors are committed
963 * before we tell the hardware about them.
964 */
965 wmb();
966
967 /* If we don't have access to the new User Doorbell (T5+), use the old
968 * doorbell mechanism; otherwise use the new BAR2 mechanism.
969 */
970 if (unlikely(q->bar2_addr == NULL)) {
971 u32 val = PIDX_V(n);
972 unsigned long flags;
973
974 /* For T4 we need to participate in the Doorbell Recovery
975 * mechanism.
976 */
977 spin_lock_irqsave(&q->db_lock, flags);
978 if (!q->db_disabled)
979 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
980 QID_V(q->cntxt_id) | val);
981 else
982 q->db_pidx_inc += n;
983 q->db_pidx = q->pidx;
984 spin_unlock_irqrestore(&q->db_lock, flags);
985 } else {
986 u32 val = PIDX_T5_V(n);
987
988 /* T4 and later chips share the same PIDX field offset within
989 * the doorbell, but T5 and later shrank the field in order to
990 * gain a bit for Doorbell Priority. The field was absurdly
991 * large in the first place (14 bits) so we just use the T5
992 * and later limits and warn if a Queue ID is too large.
993 */
994 WARN_ON(val & DBPRIO_F);
995
996 /* If we're only writing a single TX Descriptor and we can use
997 * Inferred QID registers, we can use the Write Combining
998 * Gather Buffer; otherwise we use the simple doorbell.
999 */
1000 if (n == 1 && q->bar2_qid == 0) {
1001 int index = (q->pidx
1002 ? (q->pidx - 1)
1003 : (q->size - 1));
1004 u64 *wr = (u64 *)&q->desc[index];
1005
1006 cxgb_pio_copy((u64 __iomem *)
1007 (q->bar2_addr + SGE_UDB_WCDOORBELL),
1008 wr);
1009 } else {
1010 writel(val | QID_V(q->bar2_qid),
1011 q->bar2_addr + SGE_UDB_KDOORBELL);
1012 }
1013
1014 /* This Write Memory Barrier will force the write to the User
1015 * Doorbell area to be flushed. This is needed to prevent
1016 * writes on different CPUs for the same queue from hitting
1017 * the adapter out of order. This is required when some Work
1018 * Requests take the Write Combine Gather Buffer path (user
1019 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1020 * take the traditional path where we simply increment the
1021 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1022 * hardware DMA read the actual Work Request.
1023 */
1024 wmb();
1025 }
1026 }
1027 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1028
1029 /**
1030 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1031 * @skb: the packet
1032 * @q: the Tx queue where the packet will be inlined
1033 * @pos: starting position in the Tx queue where to inline the packet
1034 *
1035 * Inline a packet's contents directly into Tx descriptors, starting at
1036 * the given position within the Tx DMA ring.
1037 * Most of the complexity of this operation is dealing with wrap arounds
1038 * in the middle of the packet we want to inline.
1039 */
1040 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1041 const struct sge_txq *q, void *pos)
1042 {
1043 int left = (void *)q->stat - pos;
1044 u64 *p;
1045
1046 if (likely(skb->len <= left)) {
1047 if (likely(!skb->data_len))
1048 skb_copy_from_linear_data(skb, pos, skb->len);
1049 else
1050 skb_copy_bits(skb, 0, pos, skb->len);
1051 pos += skb->len;
1052 } else {
1053 skb_copy_bits(skb, 0, pos, left);
1054 skb_copy_bits(skb, left, q->desc, skb->len - left);
1055 pos = (void *)q->desc + (skb->len - left);
1056 }
1057
1058 /* 0-pad to multiple of 16 */
1059 p = PTR_ALIGN(pos, 8);
1060 if ((uintptr_t)p & 8)
1061 *p = 0;
1062 }
1063 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1064
1065 static void *inline_tx_skb_header(const struct sk_buff *skb,
1066 const struct sge_txq *q, void *pos,
1067 int length)
1068 {
1069 u64 *p;
1070 int left = (void *)q->stat - pos;
1071
1072 if (likely(length <= left)) {
1073 memcpy(pos, skb->data, length);
1074 pos += length;
1075 } else {
1076 memcpy(pos, skb->data, left);
1077 memcpy(q->desc, skb->data + left, length - left);
1078 pos = (void *)q->desc + (length - left);
1079 }
1080 /* 0-pad to multiple of 16 */
1081 p = PTR_ALIGN(pos, 8);
1082 if ((uintptr_t)p & 8) {
1083 *p = 0;
1084 return p + 1;
1085 }
1086 return p;
1087 }
1088
1089 /*
1090 * Figure out what HW csum a packet wants and return the appropriate control
1091 * bits.
1092 */
1093 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1094 {
1095 int csum_type;
1096 bool inner_hdr_csum = false;
1097 u16 proto, ver;
1098
1099 if (skb->encapsulation &&
1100 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1101 inner_hdr_csum = true;
1102
1103 if (inner_hdr_csum) {
1104 ver = inner_ip_hdr(skb)->version;
1105 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1106 inner_ipv6_hdr(skb)->nexthdr;
1107 } else {
1108 ver = ip_hdr(skb)->version;
1109 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1110 ipv6_hdr(skb)->nexthdr;
1111 }
1112
1113 if (ver == 4) {
1114 if (proto == IPPROTO_TCP)
1115 csum_type = TX_CSUM_TCPIP;
1116 else if (proto == IPPROTO_UDP)
1117 csum_type = TX_CSUM_UDPIP;
1118 else {
1119 nocsum: /*
1120 * unknown protocol, disable HW csum
1121 * and hope a bad packet is detected
1122 */
1123 return TXPKT_L4CSUM_DIS_F;
1124 }
1125 } else {
1126 /*
1127 * this doesn't work with extension headers
1128 */
1129 if (proto == IPPROTO_TCP)
1130 csum_type = TX_CSUM_TCPIP6;
1131 else if (proto == IPPROTO_UDP)
1132 csum_type = TX_CSUM_UDPIP6;
1133 else
1134 goto nocsum;
1135 }
1136
1137 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1138 int eth_hdr_len, l4_len;
1139 u64 hdr_len;
1140
1141 if (inner_hdr_csum) {
1142 /* This allows checksum offload for all encapsulated
1143 * packets like GRE etc..
1144 */
1145 l4_len = skb_inner_network_header_len(skb);
1146 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1147 } else {
1148 l4_len = skb_network_header_len(skb);
1149 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1150 }
1151 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1152
1153 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1154 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1155 else
1156 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1157 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1158 } else {
1159 int start = skb_transport_offset(skb);
1160
1161 return TXPKT_CSUM_TYPE_V(csum_type) |
1162 TXPKT_CSUM_START_V(start) |
1163 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1164 }
1165 }
1166
1167 static void eth_txq_stop(struct sge_eth_txq *q)
1168 {
1169 netif_tx_stop_queue(q->txq);
1170 q->q.stops++;
1171 }
1172
1173 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1174 {
1175 q->in_use += n;
1176 q->pidx += n;
1177 if (q->pidx >= q->size)
1178 q->pidx -= q->size;
1179 }
1180
1181 #ifdef CONFIG_CHELSIO_T4_FCOE
1182 static inline int
1183 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1184 const struct port_info *pi, u64 *cntrl)
1185 {
1186 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1187
1188 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1189 return 0;
1190
1191 if (skb->protocol != htons(ETH_P_FCOE))
1192 return 0;
1193
1194 skb_reset_mac_header(skb);
1195 skb->mac_len = sizeof(struct ethhdr);
1196
1197 skb_set_network_header(skb, skb->mac_len);
1198 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1199
1200 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1201 return -ENOTSUPP;
1202
1203 /* FC CRC offload */
1204 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1205 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1206 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1207 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1208 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1209 return 0;
1210 }
1211 #endif /* CONFIG_CHELSIO_T4_FCOE */
1212
1213 /* Returns tunnel type if hardware supports offloading of the same.
1214 * It is called only for T5 and onwards.
1215 */
1216 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1217 {
1218 u8 l4_hdr = 0;
1219 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1220 struct port_info *pi = netdev_priv(skb->dev);
1221 struct adapter *adapter = pi->adapter;
1222
1223 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1224 skb->inner_protocol != htons(ETH_P_TEB))
1225 return tnl_type;
1226
1227 switch (vlan_get_protocol(skb)) {
1228 case htons(ETH_P_IP):
1229 l4_hdr = ip_hdr(skb)->protocol;
1230 break;
1231 case htons(ETH_P_IPV6):
1232 l4_hdr = ipv6_hdr(skb)->nexthdr;
1233 break;
1234 default:
1235 return tnl_type;
1236 }
1237
1238 switch (l4_hdr) {
1239 case IPPROTO_UDP:
1240 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1241 tnl_type = TX_TNL_TYPE_VXLAN;
1242 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1243 tnl_type = TX_TNL_TYPE_GENEVE;
1244 break;
1245 default:
1246 return tnl_type;
1247 }
1248
1249 return tnl_type;
1250 }
1251
1252 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1253 struct cpl_tx_tnl_lso *tnl_lso,
1254 enum cpl_tx_tnl_lso_type tnl_type)
1255 {
1256 u32 val;
1257 int in_eth_xtra_len;
1258 int l3hdr_len = skb_network_header_len(skb);
1259 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1260 const struct skb_shared_info *ssi = skb_shinfo(skb);
1261 bool v6 = (ip_hdr(skb)->version == 6);
1262
1263 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1264 CPL_TX_TNL_LSO_FIRST_F |
1265 CPL_TX_TNL_LSO_LAST_F |
1266 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1267 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1268 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1269 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1270 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1271 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1272 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1273
1274 tnl_lso->IpIdOffsetOut = 0;
1275
1276 /* Get the tunnel header length */
1277 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1278 in_eth_xtra_len = skb_inner_network_header(skb) -
1279 skb_inner_mac_header(skb) - ETH_HLEN;
1280
1281 switch (tnl_type) {
1282 case TX_TNL_TYPE_VXLAN:
1283 case TX_TNL_TYPE_GENEVE:
1284 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1285 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1286 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1287 break;
1288 default:
1289 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1290 break;
1291 }
1292
1293 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1294 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1295 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1296
1297 tnl_lso->r1 = 0;
1298
1299 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1300 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1301 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1302 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1303 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1304
1305 tnl_lso->IpIdOffset = htons(0);
1306
1307 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1308 tnl_lso->TCPSeqOffset = htonl(0);
1309 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1310 }
1311
1312 /**
1313 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1314 * @adap: the adapter
1315 * @eq: the Ethernet TX Queue
1316 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1317 *
1318 * We're typically called here to update the state of an Ethernet TX
1319 * Queue with respect to the hardware's progress in consuming the TX
1320 * Work Requests that we've put on that Egress Queue. This happens
1321 * when we get Egress Queue Update messages and also prophylactically
1322 * in regular timer-based Ethernet TX Queue maintenance.
1323 */
1324 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1325 int maxreclaim)
1326 {
1327 struct sge_txq *q = &eq->q;
1328 unsigned int reclaimed;
1329
1330 if (!q->in_use || !__netif_tx_trylock(eq->txq))
1331 return 0;
1332
1333 /* Reclaim pending completed TX Descriptors. */
1334 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1335
1336 /* If the TX Queue is currently stopped and there's now more than half
1337 * the queue available, restart it. Otherwise bail out since the rest
1338 * of what we want do here is with the possibility of shipping any
1339 * currently buffered Coalesced TX Work Request.
1340 */
1341 if (netif_tx_queue_stopped(eq->txq) && txq_avail(q) > (q->size / 2)) {
1342 netif_tx_wake_queue(eq->txq);
1343 eq->q.restarts++;
1344 }
1345
1346 __netif_tx_unlock(eq->txq);
1347 return reclaimed;
1348 }
1349
1350 /**
1351 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1352 * @skb: the packet
1353 * @dev: the egress net device
1354 *
1355 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1356 */
1357 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1358 {
1359 u32 wr_mid, ctrl0, op;
1360 u64 cntrl, *end, *sgl;
1361 int qidx, credits;
1362 unsigned int flits, ndesc;
1363 struct adapter *adap;
1364 struct sge_eth_txq *q;
1365 const struct port_info *pi;
1366 struct fw_eth_tx_pkt_wr *wr;
1367 struct cpl_tx_pkt_core *cpl;
1368 const struct skb_shared_info *ssi;
1369 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1370 bool immediate = false;
1371 int len, max_pkt_len;
1372 bool ptp_enabled = is_ptp_enabled(skb, dev);
1373 unsigned int chip_ver;
1374 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1375
1376 #ifdef CONFIG_CHELSIO_T4_FCOE
1377 int err;
1378 #endif /* CONFIG_CHELSIO_T4_FCOE */
1379
1380 /*
1381 * The chip min packet length is 10 octets but play safe and reject
1382 * anything shorter than an Ethernet header.
1383 */
1384 if (unlikely(skb->len < ETH_HLEN)) {
1385 out_free: dev_kfree_skb_any(skb);
1386 return NETDEV_TX_OK;
1387 }
1388
1389 /* Discard the packet if the length is greater than mtu */
1390 max_pkt_len = ETH_HLEN + dev->mtu;
1391 if (skb_vlan_tagged(skb))
1392 max_pkt_len += VLAN_HLEN;
1393 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1394 goto out_free;
1395
1396 pi = netdev_priv(dev);
1397 adap = pi->adapter;
1398 ssi = skb_shinfo(skb);
1399 #ifdef CONFIG_CHELSIO_IPSEC_INLINE
1400 if (xfrm_offload(skb) && !ssi->gso_size)
1401 return adap->uld[CXGB4_ULD_CRYPTO].tx_handler(skb, dev);
1402 #endif /* CHELSIO_IPSEC_INLINE */
1403
1404 qidx = skb_get_queue_mapping(skb);
1405 if (ptp_enabled) {
1406 spin_lock(&adap->ptp_lock);
1407 if (!(adap->ptp_tx_skb)) {
1408 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1409 adap->ptp_tx_skb = skb_get(skb);
1410 } else {
1411 spin_unlock(&adap->ptp_lock);
1412 goto out_free;
1413 }
1414 q = &adap->sge.ptptxq;
1415 } else {
1416 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1417 }
1418 skb_tx_timestamp(skb);
1419
1420 reclaim_completed_tx(adap, &q->q, -1, true);
1421 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1422
1423 #ifdef CONFIG_CHELSIO_T4_FCOE
1424 err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1425 if (unlikely(err == -ENOTSUPP)) {
1426 if (ptp_enabled)
1427 spin_unlock(&adap->ptp_lock);
1428 goto out_free;
1429 }
1430 #endif /* CONFIG_CHELSIO_T4_FCOE */
1431
1432 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1433 flits = calc_tx_flits(skb, chip_ver);
1434 ndesc = flits_to_desc(flits);
1435 credits = txq_avail(&q->q) - ndesc;
1436
1437 if (unlikely(credits < 0)) {
1438 eth_txq_stop(q);
1439 dev_err(adap->pdev_dev,
1440 "%s: Tx ring %u full while queue awake!\n",
1441 dev->name, qidx);
1442 if (ptp_enabled)
1443 spin_unlock(&adap->ptp_lock);
1444 return NETDEV_TX_BUSY;
1445 }
1446
1447 if (is_eth_imm(skb, chip_ver))
1448 immediate = true;
1449
1450 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1451 tnl_type = cxgb_encap_offload_supported(skb);
1452
1453 if (!immediate &&
1454 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) {
1455 q->mapping_err++;
1456 if (ptp_enabled)
1457 spin_unlock(&adap->ptp_lock);
1458 goto out_free;
1459 }
1460
1461 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1462 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1463 /* After we're done injecting the Work Request for this
1464 * packet, we'll be below our "stop threshold" so stop the TX
1465 * Queue now and schedule a request for an SGE Egress Queue
1466 * Update message. The queue will get started later on when
1467 * the firmware processes this Work Request and sends us an
1468 * Egress Queue Status Update message indicating that space
1469 * has opened up.
1470 */
1471 eth_txq_stop(q);
1472
1473 /* If we're using the SGE Doorbell Queue Timer facility, we
1474 * don't need to ask the Firmware to send us Egress Queue CIDX
1475 * Updates: the Hardware will do this automatically. And
1476 * since we send the Ingress Queue CIDX Updates to the
1477 * corresponding Ethernet Response Queue, we'll get them very
1478 * quickly.
1479 */
1480 if (!q->dbqt)
1481 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1482 }
1483
1484 wr = (void *)&q->q.desc[q->q.pidx];
1485 wr->equiq_to_len16 = htonl(wr_mid);
1486 wr->r3 = cpu_to_be64(0);
1487 end = (u64 *)wr + flits;
1488
1489 len = immediate ? skb->len : 0;
1490 len += sizeof(*cpl);
1491 if (ssi->gso_size) {
1492 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1493 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1494 int l3hdr_len = skb_network_header_len(skb);
1495 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1496 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1497
1498 if (tnl_type)
1499 len += sizeof(*tnl_lso);
1500 else
1501 len += sizeof(*lso);
1502
1503 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1504 FW_WR_IMMDLEN_V(len));
1505 if (tnl_type) {
1506 struct iphdr *iph = ip_hdr(skb);
1507
1508 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1509 cpl = (void *)(tnl_lso + 1);
1510 /* Driver is expected to compute partial checksum that
1511 * does not include the IP Total Length.
1512 */
1513 if (iph->version == 4) {
1514 iph->check = 0;
1515 iph->tot_len = 0;
1516 iph->check = (u16)(~ip_fast_csum((u8 *)iph,
1517 iph->ihl));
1518 }
1519 if (skb->ip_summed == CHECKSUM_PARTIAL)
1520 cntrl = hwcsum(adap->params.chip, skb);
1521 } else {
1522 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1523 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1524 LSO_IPV6_V(v6) |
1525 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1526 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1527 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1528 lso->ipid_ofst = htons(0);
1529 lso->mss = htons(ssi->gso_size);
1530 lso->seqno_offset = htonl(0);
1531 if (is_t4(adap->params.chip))
1532 lso->len = htonl(skb->len);
1533 else
1534 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1535 cpl = (void *)(lso + 1);
1536
1537 if (CHELSIO_CHIP_VERSION(adap->params.chip)
1538 <= CHELSIO_T5)
1539 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1540 else
1541 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1542
1543 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1544 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1545 TXPKT_IPHDR_LEN_V(l3hdr_len);
1546 }
1547 sgl = (u64 *)(cpl + 1); /* sgl start here */
1548 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1549 /* If current position is already at the end of the
1550 * txq, reset the current to point to start of the queue
1551 * and update the end ptr as well.
1552 */
1553 if (sgl == (u64 *)q->q.stat) {
1554 int left = (u8 *)end - (u8 *)q->q.stat;
1555
1556 end = (void *)q->q.desc + left;
1557 sgl = (void *)q->q.desc;
1558 }
1559 }
1560 q->tso++;
1561 q->tx_cso += ssi->gso_segs;
1562 } else {
1563 if (ptp_enabled)
1564 op = FW_PTP_TX_PKT_WR;
1565 else
1566 op = FW_ETH_TX_PKT_WR;
1567 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1568 FW_WR_IMMDLEN_V(len));
1569 cpl = (void *)(wr + 1);
1570 sgl = (u64 *)(cpl + 1);
1571 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1572 cntrl = hwcsum(adap->params.chip, skb) |
1573 TXPKT_IPCSUM_DIS_F;
1574 q->tx_cso++;
1575 }
1576 }
1577
1578 if (skb_vlan_tag_present(skb)) {
1579 q->vlan_ins++;
1580 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1581 #ifdef CONFIG_CHELSIO_T4_FCOE
1582 if (skb->protocol == htons(ETH_P_FCOE))
1583 cntrl |= TXPKT_VLAN_V(
1584 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1585 #endif /* CONFIG_CHELSIO_T4_FCOE */
1586 }
1587
1588 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1589 TXPKT_PF_V(adap->pf);
1590 if (ptp_enabled)
1591 ctrl0 |= TXPKT_TSTAMP_F;
1592 #ifdef CONFIG_CHELSIO_T4_DCB
1593 if (is_t4(adap->params.chip))
1594 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1595 else
1596 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1597 #endif
1598 cpl->ctrl0 = htonl(ctrl0);
1599 cpl->pack = htons(0);
1600 cpl->len = htons(skb->len);
1601 cpl->ctrl1 = cpu_to_be64(cntrl);
1602
1603 if (immediate) {
1604 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1605 dev_consume_skb_any(skb);
1606 } else {
1607 int last_desc;
1608
1609 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr);
1610 skb_orphan(skb);
1611
1612 last_desc = q->q.pidx + ndesc - 1;
1613 if (last_desc >= q->q.size)
1614 last_desc -= q->q.size;
1615 q->q.sdesc[last_desc].skb = skb;
1616 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl;
1617 }
1618
1619 txq_advance(&q->q, ndesc);
1620
1621 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1622 if (ptp_enabled)
1623 spin_unlock(&adap->ptp_lock);
1624 return NETDEV_TX_OK;
1625 }
1626
1627 /* Constants ... */
1628 enum {
1629 /* Egress Queue sizes, producer and consumer indices are all in units
1630 * of Egress Context Units bytes. Note that as far as the hardware is
1631 * concerned, the free list is an Egress Queue (the host produces free
1632 * buffers which the hardware consumes) and free list entries are
1633 * 64-bit PCI DMA addresses.
1634 */
1635 EQ_UNIT = SGE_EQ_IDXSIZE,
1636 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1637 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1638
1639 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1640 sizeof(struct cpl_tx_pkt_lso_core) +
1641 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1642 };
1643
1644 /**
1645 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1646 * @skb: the packet
1647 *
1648 * Returns whether an Ethernet packet is small enough to fit completely as
1649 * immediate data.
1650 */
1651 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1652 {
1653 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1654 * which does not accommodate immediate data. We could dike out all
1655 * of the support code for immediate data but that would tie our hands
1656 * too much if we ever want to enhace the firmware. It would also
1657 * create more differences between the PF and VF Drivers.
1658 */
1659 return false;
1660 }
1661
1662 /**
1663 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1664 * @skb: the packet
1665 *
1666 * Returns the number of flits needed for a TX Work Request for the
1667 * given Ethernet packet, including the needed WR and CPL headers.
1668 */
1669 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1670 {
1671 unsigned int flits;
1672
1673 /* If the skb is small enough, we can pump it out as a work request
1674 * with only immediate data. In that case we just have to have the
1675 * TX Packet header plus the skb data in the Work Request.
1676 */
1677 if (t4vf_is_eth_imm(skb))
1678 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1679 sizeof(__be64));
1680
1681 /* Otherwise, we're going to have to construct a Scatter gather list
1682 * of the skb body and fragments. We also include the flits necessary
1683 * for the TX Packet Work Request and CPL. We always have a firmware
1684 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1685 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1686 * message or, if we're doing a Large Send Offload, an LSO CPL message
1687 * with an embedded TX Packet Write CPL message.
1688 */
1689 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1690 if (skb_shinfo(skb)->gso_size)
1691 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1692 sizeof(struct cpl_tx_pkt_lso_core) +
1693 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1694 else
1695 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1696 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1697 return flits;
1698 }
1699
1700 /**
1701 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1702 * @skb: the packet
1703 * @dev: the egress net device
1704 *
1705 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1706 */
1707 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1708 struct net_device *dev)
1709 {
1710 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1711 const struct skb_shared_info *ssi;
1712 struct fw_eth_tx_pkt_vm_wr *wr;
1713 int qidx, credits, max_pkt_len;
1714 struct cpl_tx_pkt_core *cpl;
1715 const struct port_info *pi;
1716 unsigned int flits, ndesc;
1717 struct sge_eth_txq *txq;
1718 struct adapter *adapter;
1719 u64 cntrl, *end;
1720 u32 wr_mid;
1721 const size_t fw_hdr_copy_len = sizeof(wr->ethmacdst) +
1722 sizeof(wr->ethmacsrc) +
1723 sizeof(wr->ethtype) +
1724 sizeof(wr->vlantci);
1725
1726 /* The chip minimum packet length is 10 octets but the firmware
1727 * command that we are using requires that we copy the Ethernet header
1728 * (including the VLAN tag) into the header so we reject anything
1729 * smaller than that ...
1730 */
1731 if (unlikely(skb->len < fw_hdr_copy_len))
1732 goto out_free;
1733
1734 /* Discard the packet if the length is greater than mtu */
1735 max_pkt_len = ETH_HLEN + dev->mtu;
1736 if (skb_vlan_tag_present(skb))
1737 max_pkt_len += VLAN_HLEN;
1738 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1739 goto out_free;
1740
1741 /* Figure out which TX Queue we're going to use. */
1742 pi = netdev_priv(dev);
1743 adapter = pi->adapter;
1744 qidx = skb_get_queue_mapping(skb);
1745 WARN_ON(qidx >= pi->nqsets);
1746 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1747
1748 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1749 * transfers have completed.
1750 */
1751 reclaim_completed_tx(adapter, &txq->q, -1, true);
1752
1753 /* Calculate the number of flits and TX Descriptors we're going to
1754 * need along with how many TX Descriptors will be left over after
1755 * we inject our Work Request.
1756 */
1757 flits = t4vf_calc_tx_flits(skb);
1758 ndesc = flits_to_desc(flits);
1759 credits = txq_avail(&txq->q) - ndesc;
1760
1761 if (unlikely(credits < 0)) {
1762 /* Not enough room for this packet's Work Request. Stop the
1763 * TX Queue and return a "busy" condition. The queue will get
1764 * started later on when the firmware informs us that space
1765 * has opened up.
1766 */
1767 eth_txq_stop(txq);
1768 dev_err(adapter->pdev_dev,
1769 "%s: TX ring %u full while queue awake!\n",
1770 dev->name, qidx);
1771 return NETDEV_TX_BUSY;
1772 }
1773
1774 if (!t4vf_is_eth_imm(skb) &&
1775 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1776 /* We need to map the skb into PCI DMA space (because it can't
1777 * be in-lined directly into the Work Request) and the mapping
1778 * operation failed. Record the error and drop the packet.
1779 */
1780 txq->mapping_err++;
1781 goto out_free;
1782 }
1783
1784 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1785 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1786 /* After we're done injecting the Work Request for this
1787 * packet, we'll be below our "stop threshold" so stop the TX
1788 * Queue now and schedule a request for an SGE Egress Queue
1789 * Update message. The queue will get started later on when
1790 * the firmware processes this Work Request and sends us an
1791 * Egress Queue Status Update message indicating that space
1792 * has opened up.
1793 */
1794 eth_txq_stop(txq);
1795
1796 /* If we're using the SGE Doorbell Queue Timer facility, we
1797 * don't need to ask the Firmware to send us Egress Queue CIDX
1798 * Updates: the Hardware will do this automatically. And
1799 * since we send the Ingress Queue CIDX Updates to the
1800 * corresponding Ethernet Response Queue, we'll get them very
1801 * quickly.
1802 */
1803 if (!txq->dbqt)
1804 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1805 }
1806
1807 /* Start filling in our Work Request. Note that we do _not_ handle
1808 * the WR Header wrapping around the TX Descriptor Ring. If our
1809 * maximum header size ever exceeds one TX Descriptor, we'll need to
1810 * do something else here.
1811 */
1812 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1813 wr = (void *)&txq->q.desc[txq->q.pidx];
1814 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1815 wr->r3[0] = cpu_to_be32(0);
1816 wr->r3[1] = cpu_to_be32(0);
1817 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1818 end = (u64 *)wr + flits;
1819
1820 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1821 * message with an encapsulated TX Packet CPL message. Otherwise we
1822 * just use a TX Packet CPL message.
1823 */
1824 ssi = skb_shinfo(skb);
1825 if (ssi->gso_size) {
1826 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1827 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1828 int l3hdr_len = skb_network_header_len(skb);
1829 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1830
1831 wr->op_immdlen =
1832 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1833 FW_WR_IMMDLEN_V(sizeof(*lso) +
1834 sizeof(*cpl)));
1835 /* Fill in the LSO CPL message. */
1836 lso->lso_ctrl =
1837 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1838 LSO_FIRST_SLICE_F |
1839 LSO_LAST_SLICE_F |
1840 LSO_IPV6_V(v6) |
1841 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1842 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1843 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1844 lso->ipid_ofst = cpu_to_be16(0);
1845 lso->mss = cpu_to_be16(ssi->gso_size);
1846 lso->seqno_offset = cpu_to_be32(0);
1847 if (is_t4(adapter->params.chip))
1848 lso->len = cpu_to_be32(skb->len);
1849 else
1850 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1851
1852 /* Set up TX Packet CPL pointer, control word and perform
1853 * accounting.
1854 */
1855 cpl = (void *)(lso + 1);
1856
1857 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1858 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1859 else
1860 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1861
1862 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1863 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1864 TXPKT_IPHDR_LEN_V(l3hdr_len);
1865 txq->tso++;
1866 txq->tx_cso += ssi->gso_segs;
1867 } else {
1868 int len;
1869
1870 len = (t4vf_is_eth_imm(skb)
1871 ? skb->len + sizeof(*cpl)
1872 : sizeof(*cpl));
1873 wr->op_immdlen =
1874 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1875 FW_WR_IMMDLEN_V(len));
1876
1877 /* Set up TX Packet CPL pointer, control word and perform
1878 * accounting.
1879 */
1880 cpl = (void *)(wr + 1);
1881 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1882 cntrl = hwcsum(adapter->params.chip, skb) |
1883 TXPKT_IPCSUM_DIS_F;
1884 txq->tx_cso++;
1885 } else {
1886 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1887 }
1888 }
1889
1890 /* If there's a VLAN tag present, add that to the list of things to
1891 * do in this Work Request.
1892 */
1893 if (skb_vlan_tag_present(skb)) {
1894 txq->vlan_ins++;
1895 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1896 }
1897
1898 /* Fill in the TX Packet CPL message header. */
1899 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1900 TXPKT_INTF_V(pi->port_id) |
1901 TXPKT_PF_V(0));
1902 cpl->pack = cpu_to_be16(0);
1903 cpl->len = cpu_to_be16(skb->len);
1904 cpl->ctrl1 = cpu_to_be64(cntrl);
1905
1906 /* Fill in the body of the TX Packet CPL message with either in-lined
1907 * data or a Scatter/Gather List.
1908 */
1909 if (t4vf_is_eth_imm(skb)) {
1910 /* In-line the packet's data and free the skb since we don't
1911 * need it any longer.
1912 */
1913 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
1914 dev_consume_skb_any(skb);
1915 } else {
1916 /* Write the skb's Scatter/Gather list into the TX Packet CPL
1917 * message and retain a pointer to the skb so we can free it
1918 * later when its DMA completes. (We store the skb pointer
1919 * in the Software Descriptor corresponding to the last TX
1920 * Descriptor used by the Work Request.)
1921 *
1922 * The retained skb will be freed when the corresponding TX
1923 * Descriptors are reclaimed after their DMAs complete.
1924 * However, this could take quite a while since, in general,
1925 * the hardware is set up to be lazy about sending DMA
1926 * completion notifications to us and we mostly perform TX
1927 * reclaims in the transmit routine.
1928 *
1929 * This is good for performamce but means that we rely on new
1930 * TX packets arriving to run the destructors of completed
1931 * packets, which open up space in their sockets' send queues.
1932 * Sometimes we do not get such new packets causing TX to
1933 * stall. A single UDP transmitter is a good example of this
1934 * situation. We have a clean up timer that periodically
1935 * reclaims completed packets but it doesn't run often enough
1936 * (nor do we want it to) to prevent lengthy stalls. A
1937 * solution to this problem is to run the destructor early,
1938 * after the packet is queued but before it's DMAd. A con is
1939 * that we lie to socket memory accounting, but the amount of
1940 * extra memory is reasonable (limited by the number of TX
1941 * descriptors), the packets do actually get freed quickly by
1942 * new packets almost always, and for protocols like TCP that
1943 * wait for acks to really free up the data the extra memory
1944 * is even less. On the positive side we run the destructors
1945 * on the sending CPU rather than on a potentially different
1946 * completing CPU, usually a good thing.
1947 *
1948 * Run the destructor before telling the DMA engine about the
1949 * packet to make sure it doesn't complete and get freed
1950 * prematurely.
1951 */
1952 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1953 struct sge_txq *tq = &txq->q;
1954 int last_desc;
1955
1956 /* If the Work Request header was an exact multiple of our TX
1957 * Descriptor length, then it's possible that the starting SGL
1958 * pointer lines up exactly with the end of our TX Descriptor
1959 * ring. If that's the case, wrap around to the beginning
1960 * here ...
1961 */
1962 if (unlikely((void *)sgl == (void *)tq->stat)) {
1963 sgl = (void *)tq->desc;
1964 end = (void *)((void *)tq->desc +
1965 ((void *)end - (void *)tq->stat));
1966 }
1967
1968 cxgb4_write_sgl(skb, tq, sgl, end, 0, addr);
1969 skb_orphan(skb);
1970
1971 last_desc = tq->pidx + ndesc - 1;
1972 if (last_desc >= tq->size)
1973 last_desc -= tq->size;
1974 tq->sdesc[last_desc].skb = skb;
1975 tq->sdesc[last_desc].sgl = sgl;
1976 }
1977
1978 /* Advance our internal TX Queue state, tell the hardware about
1979 * the new TX descriptors and return success.
1980 */
1981 txq_advance(&txq->q, ndesc);
1982
1983 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
1984 return NETDEV_TX_OK;
1985
1986 out_free:
1987 /* An error of some sort happened. Free the TX skb and tell the
1988 * OS that we've "dealt" with the packet ...
1989 */
1990 dev_kfree_skb_any(skb);
1991 return NETDEV_TX_OK;
1992 }
1993
1994 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1995 {
1996 struct port_info *pi = netdev_priv(dev);
1997
1998 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
1999 return cxgb4_vf_eth_xmit(skb, dev);
2000
2001 return cxgb4_eth_xmit(skb, dev);
2002 }
2003
2004 /**
2005 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2006 * @q: the SGE control Tx queue
2007 *
2008 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2009 * for Tx queues that send only immediate data (presently just
2010 * the control queues) and thus do not have any sk_buffs to release.
2011 */
2012 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2013 {
2014 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2015 int reclaim = hw_cidx - q->cidx;
2016
2017 if (reclaim < 0)
2018 reclaim += q->size;
2019
2020 q->in_use -= reclaim;
2021 q->cidx = hw_cidx;
2022 }
2023
2024 /**
2025 * is_imm - check whether a packet can be sent as immediate data
2026 * @skb: the packet
2027 *
2028 * Returns true if a packet can be sent as a WR with immediate data.
2029 */
2030 static inline int is_imm(const struct sk_buff *skb)
2031 {
2032 return skb->len <= MAX_CTRL_WR_LEN;
2033 }
2034
2035 /**
2036 * ctrlq_check_stop - check if a control queue is full and should stop
2037 * @q: the queue
2038 * @wr: most recent WR written to the queue
2039 *
2040 * Check if a control queue has become full and should be stopped.
2041 * We clean up control queue descriptors very lazily, only when we are out.
2042 * If the queue is still full after reclaiming any completed descriptors
2043 * we suspend it and have the last WR wake it up.
2044 */
2045 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2046 {
2047 reclaim_completed_tx_imm(&q->q);
2048 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2049 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2050 q->q.stops++;
2051 q->full = 1;
2052 }
2053 }
2054
2055 /**
2056 * ctrl_xmit - send a packet through an SGE control Tx queue
2057 * @q: the control queue
2058 * @skb: the packet
2059 *
2060 * Send a packet through an SGE control Tx queue. Packets sent through
2061 * a control queue must fit entirely as immediate data.
2062 */
2063 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2064 {
2065 unsigned int ndesc;
2066 struct fw_wr_hdr *wr;
2067
2068 if (unlikely(!is_imm(skb))) {
2069 WARN_ON(1);
2070 dev_kfree_skb(skb);
2071 return NET_XMIT_DROP;
2072 }
2073
2074 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2075 spin_lock(&q->sendq.lock);
2076
2077 if (unlikely(q->full)) {
2078 skb->priority = ndesc; /* save for restart */
2079 __skb_queue_tail(&q->sendq, skb);
2080 spin_unlock(&q->sendq.lock);
2081 return NET_XMIT_CN;
2082 }
2083
2084 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2085 cxgb4_inline_tx_skb(skb, &q->q, wr);
2086
2087 txq_advance(&q->q, ndesc);
2088 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2089 ctrlq_check_stop(q, wr);
2090
2091 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2092 spin_unlock(&q->sendq.lock);
2093
2094 kfree_skb(skb);
2095 return NET_XMIT_SUCCESS;
2096 }
2097
2098 /**
2099 * restart_ctrlq - restart a suspended control queue
2100 * @data: the control queue to restart
2101 *
2102 * Resumes transmission on a suspended Tx control queue.
2103 */
2104 static void restart_ctrlq(unsigned long data)
2105 {
2106 struct sk_buff *skb;
2107 unsigned int written = 0;
2108 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
2109
2110 spin_lock(&q->sendq.lock);
2111 reclaim_completed_tx_imm(&q->q);
2112 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2113
2114 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2115 struct fw_wr_hdr *wr;
2116 unsigned int ndesc = skb->priority; /* previously saved */
2117
2118 written += ndesc;
2119 /* Write descriptors and free skbs outside the lock to limit
2120 * wait times. q->full is still set so new skbs will be queued.
2121 */
2122 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2123 txq_advance(&q->q, ndesc);
2124 spin_unlock(&q->sendq.lock);
2125
2126 cxgb4_inline_tx_skb(skb, &q->q, wr);
2127 kfree_skb(skb);
2128
2129 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2130 unsigned long old = q->q.stops;
2131
2132 ctrlq_check_stop(q, wr);
2133 if (q->q.stops != old) { /* suspended anew */
2134 spin_lock(&q->sendq.lock);
2135 goto ringdb;
2136 }
2137 }
2138 if (written > 16) {
2139 cxgb4_ring_tx_db(q->adap, &q->q, written);
2140 written = 0;
2141 }
2142 spin_lock(&q->sendq.lock);
2143 }
2144 q->full = 0;
2145 ringdb:
2146 if (written)
2147 cxgb4_ring_tx_db(q->adap, &q->q, written);
2148 spin_unlock(&q->sendq.lock);
2149 }
2150
2151 /**
2152 * t4_mgmt_tx - send a management message
2153 * @adap: the adapter
2154 * @skb: the packet containing the management message
2155 *
2156 * Send a management message through control queue 0.
2157 */
2158 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2159 {
2160 int ret;
2161
2162 local_bh_disable();
2163 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2164 local_bh_enable();
2165 return ret;
2166 }
2167
2168 /**
2169 * is_ofld_imm - check whether a packet can be sent as immediate data
2170 * @skb: the packet
2171 *
2172 * Returns true if a packet can be sent as an offload WR with immediate
2173 * data. We currently use the same limit as for Ethernet packets.
2174 */
2175 static inline int is_ofld_imm(const struct sk_buff *skb)
2176 {
2177 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2178 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2179
2180 if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2181 return skb->len <= SGE_MAX_WR_LEN;
2182 else
2183 return skb->len <= MAX_IMM_TX_PKT_LEN;
2184 }
2185
2186 /**
2187 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2188 * @skb: the packet
2189 *
2190 * Returns the number of flits needed for the given offload packet.
2191 * These packets are already fully constructed and no additional headers
2192 * will be added.
2193 */
2194 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2195 {
2196 unsigned int flits, cnt;
2197
2198 if (is_ofld_imm(skb))
2199 return DIV_ROUND_UP(skb->len, 8);
2200
2201 flits = skb_transport_offset(skb) / 8U; /* headers */
2202 cnt = skb_shinfo(skb)->nr_frags;
2203 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2204 cnt++;
2205 return flits + sgl_len(cnt);
2206 }
2207
2208 /**
2209 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2210 * @adap: the adapter
2211 * @q: the queue to stop
2212 *
2213 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2214 * inability to map packets. A periodic timer attempts to restart
2215 * queues so marked.
2216 */
2217 static void txq_stop_maperr(struct sge_uld_txq *q)
2218 {
2219 q->mapping_err++;
2220 q->q.stops++;
2221 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2222 q->adap->sge.txq_maperr);
2223 }
2224
2225 /**
2226 * ofldtxq_stop - stop an offload Tx queue that has become full
2227 * @q: the queue to stop
2228 * @wr: the Work Request causing the queue to become full
2229 *
2230 * Stops an offload Tx queue that has become full and modifies the packet
2231 * being written to request a wakeup.
2232 */
2233 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2234 {
2235 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2236 q->q.stops++;
2237 q->full = 1;
2238 }
2239
2240 /**
2241 * service_ofldq - service/restart a suspended offload queue
2242 * @q: the offload queue
2243 *
2244 * Services an offload Tx queue by moving packets from its Pending Send
2245 * Queue to the Hardware TX ring. The function starts and ends with the
2246 * Send Queue locked, but drops the lock while putting the skb at the
2247 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2248 * allows more skbs to be added to the Send Queue by other threads.
2249 * The packet being processed at the head of the Pending Send Queue is
2250 * left on the queue in case we experience DMA Mapping errors, etc.
2251 * and need to give up and restart later.
2252 *
2253 * service_ofldq() can be thought of as a task which opportunistically
2254 * uses other threads execution contexts. We use the Offload Queue
2255 * boolean "service_ofldq_running" to make sure that only one instance
2256 * is ever running at a time ...
2257 */
2258 static void service_ofldq(struct sge_uld_txq *q)
2259 {
2260 u64 *pos, *before, *end;
2261 int credits;
2262 struct sk_buff *skb;
2263 struct sge_txq *txq;
2264 unsigned int left;
2265 unsigned int written = 0;
2266 unsigned int flits, ndesc;
2267
2268 /* If another thread is currently in service_ofldq() processing the
2269 * Pending Send Queue then there's nothing to do. Otherwise, flag
2270 * that we're doing the work and continue. Examining/modifying
2271 * the Offload Queue boolean "service_ofldq_running" must be done
2272 * while holding the Pending Send Queue Lock.
2273 */
2274 if (q->service_ofldq_running)
2275 return;
2276 q->service_ofldq_running = true;
2277
2278 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2279 /* We drop the lock while we're working with the skb at the
2280 * head of the Pending Send Queue. This allows more skbs to
2281 * be added to the Pending Send Queue while we're working on
2282 * this one. We don't need to lock to guard the TX Ring
2283 * updates because only one thread of execution is ever
2284 * allowed into service_ofldq() at a time.
2285 */
2286 spin_unlock(&q->sendq.lock);
2287
2288 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2289
2290 flits = skb->priority; /* previously saved */
2291 ndesc = flits_to_desc(flits);
2292 credits = txq_avail(&q->q) - ndesc;
2293 BUG_ON(credits < 0);
2294 if (unlikely(credits < TXQ_STOP_THRES))
2295 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2296
2297 pos = (u64 *)&q->q.desc[q->q.pidx];
2298 if (is_ofld_imm(skb))
2299 cxgb4_inline_tx_skb(skb, &q->q, pos);
2300 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2301 (dma_addr_t *)skb->head)) {
2302 txq_stop_maperr(q);
2303 spin_lock(&q->sendq.lock);
2304 break;
2305 } else {
2306 int last_desc, hdr_len = skb_transport_offset(skb);
2307
2308 /* The WR headers may not fit within one descriptor.
2309 * So we need to deal with wrap-around here.
2310 */
2311 before = (u64 *)pos;
2312 end = (u64 *)pos + flits;
2313 txq = &q->q;
2314 pos = (void *)inline_tx_skb_header(skb, &q->q,
2315 (void *)pos,
2316 hdr_len);
2317 if (before > (u64 *)pos) {
2318 left = (u8 *)end - (u8 *)txq->stat;
2319 end = (void *)txq->desc + left;
2320 }
2321
2322 /* If current position is already at the end of the
2323 * ofld queue, reset the current to point to
2324 * start of the queue and update the end ptr as well.
2325 */
2326 if (pos == (u64 *)txq->stat) {
2327 left = (u8 *)end - (u8 *)txq->stat;
2328 end = (void *)txq->desc + left;
2329 pos = (void *)txq->desc;
2330 }
2331
2332 cxgb4_write_sgl(skb, &q->q, (void *)pos,
2333 end, hdr_len,
2334 (dma_addr_t *)skb->head);
2335 #ifdef CONFIG_NEED_DMA_MAP_STATE
2336 skb->dev = q->adap->port[0];
2337 skb->destructor = deferred_unmap_destructor;
2338 #endif
2339 last_desc = q->q.pidx + ndesc - 1;
2340 if (last_desc >= q->q.size)
2341 last_desc -= q->q.size;
2342 q->q.sdesc[last_desc].skb = skb;
2343 }
2344
2345 txq_advance(&q->q, ndesc);
2346 written += ndesc;
2347 if (unlikely(written > 32)) {
2348 cxgb4_ring_tx_db(q->adap, &q->q, written);
2349 written = 0;
2350 }
2351
2352 /* Reacquire the Pending Send Queue Lock so we can unlink the
2353 * skb we've just successfully transferred to the TX Ring and
2354 * loop for the next skb which may be at the head of the
2355 * Pending Send Queue.
2356 */
2357 spin_lock(&q->sendq.lock);
2358 __skb_unlink(skb, &q->sendq);
2359 if (is_ofld_imm(skb))
2360 kfree_skb(skb);
2361 }
2362 if (likely(written))
2363 cxgb4_ring_tx_db(q->adap, &q->q, written);
2364
2365 /*Indicate that no thread is processing the Pending Send Queue
2366 * currently.
2367 */
2368 q->service_ofldq_running = false;
2369 }
2370
2371 /**
2372 * ofld_xmit - send a packet through an offload queue
2373 * @q: the Tx offload queue
2374 * @skb: the packet
2375 *
2376 * Send an offload packet through an SGE offload queue.
2377 */
2378 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
2379 {
2380 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
2381 spin_lock(&q->sendq.lock);
2382
2383 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
2384 * that results in this new skb being the only one on the queue, start
2385 * servicing it. If there are other skbs already on the list, then
2386 * either the queue is currently being processed or it's been stopped
2387 * for some reason and it'll be restarted at a later time. Restart
2388 * paths are triggered by events like experiencing a DMA Mapping Error
2389 * or filling the Hardware TX Ring.
2390 */
2391 __skb_queue_tail(&q->sendq, skb);
2392 if (q->sendq.qlen == 1)
2393 service_ofldq(q);
2394
2395 spin_unlock(&q->sendq.lock);
2396 return NET_XMIT_SUCCESS;
2397 }
2398
2399 /**
2400 * restart_ofldq - restart a suspended offload queue
2401 * @data: the offload queue to restart
2402 *
2403 * Resumes transmission on a suspended Tx offload queue.
2404 */
2405 static void restart_ofldq(unsigned long data)
2406 {
2407 struct sge_uld_txq *q = (struct sge_uld_txq *)data;
2408
2409 spin_lock(&q->sendq.lock);
2410 q->full = 0; /* the queue actually is completely empty now */
2411 service_ofldq(q);
2412 spin_unlock(&q->sendq.lock);
2413 }
2414
2415 /**
2416 * skb_txq - return the Tx queue an offload packet should use
2417 * @skb: the packet
2418 *
2419 * Returns the Tx queue an offload packet should use as indicated by bits
2420 * 1-15 in the packet's queue_mapping.
2421 */
2422 static inline unsigned int skb_txq(const struct sk_buff *skb)
2423 {
2424 return skb->queue_mapping >> 1;
2425 }
2426
2427 /**
2428 * is_ctrl_pkt - return whether an offload packet is a control packet
2429 * @skb: the packet
2430 *
2431 * Returns whether an offload packet should use an OFLD or a CTRL
2432 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
2433 */
2434 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
2435 {
2436 return skb->queue_mapping & 1;
2437 }
2438
2439 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
2440 unsigned int tx_uld_type)
2441 {
2442 struct sge_uld_txq_info *txq_info;
2443 struct sge_uld_txq *txq;
2444 unsigned int idx = skb_txq(skb);
2445
2446 if (unlikely(is_ctrl_pkt(skb))) {
2447 /* Single ctrl queue is a requirement for LE workaround path */
2448 if (adap->tids.nsftids)
2449 idx = 0;
2450 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
2451 }
2452
2453 txq_info = adap->sge.uld_txq_info[tx_uld_type];
2454 if (unlikely(!txq_info)) {
2455 WARN_ON(true);
2456 return NET_XMIT_DROP;
2457 }
2458
2459 txq = &txq_info->uldtxq[idx];
2460 return ofld_xmit(txq, skb);
2461 }
2462
2463 /**
2464 * t4_ofld_send - send an offload packet
2465 * @adap: the adapter
2466 * @skb: the packet
2467 *
2468 * Sends an offload packet. We use the packet queue_mapping to select the
2469 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2470 * should be sent as regular or control, bits 1-15 select the queue.
2471 */
2472 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
2473 {
2474 int ret;
2475
2476 local_bh_disable();
2477 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
2478 local_bh_enable();
2479 return ret;
2480 }
2481
2482 /**
2483 * cxgb4_ofld_send - send an offload packet
2484 * @dev: the net device
2485 * @skb: the packet
2486 *
2487 * Sends an offload packet. This is an exported version of @t4_ofld_send,
2488 * intended for ULDs.
2489 */
2490 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
2491 {
2492 return t4_ofld_send(netdev2adap(dev), skb);
2493 }
2494 EXPORT_SYMBOL(cxgb4_ofld_send);
2495
2496 static void *inline_tx_header(const void *src,
2497 const struct sge_txq *q,
2498 void *pos, int length)
2499 {
2500 int left = (void *)q->stat - pos;
2501 u64 *p;
2502
2503 if (likely(length <= left)) {
2504 memcpy(pos, src, length);
2505 pos += length;
2506 } else {
2507 memcpy(pos, src, left);
2508 memcpy(q->desc, src + left, length - left);
2509 pos = (void *)q->desc + (length - left);
2510 }
2511 /* 0-pad to multiple of 16 */
2512 p = PTR_ALIGN(pos, 8);
2513 if ((uintptr_t)p & 8) {
2514 *p = 0;
2515 return p + 1;
2516 }
2517 return p;
2518 }
2519
2520 /**
2521 * ofld_xmit_direct - copy a WR into offload queue
2522 * @q: the Tx offload queue
2523 * @src: location of WR
2524 * @len: WR length
2525 *
2526 * Copy an immediate WR into an uncontended SGE offload queue.
2527 */
2528 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
2529 unsigned int len)
2530 {
2531 unsigned int ndesc;
2532 int credits;
2533 u64 *pos;
2534
2535 /* Use the lower limit as the cut-off */
2536 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
2537 WARN_ON(1);
2538 return NET_XMIT_DROP;
2539 }
2540
2541 /* Don't return NET_XMIT_CN here as the current
2542 * implementation doesn't queue the request
2543 * using an skb when the following conditions not met
2544 */
2545 if (!spin_trylock(&q->sendq.lock))
2546 return NET_XMIT_DROP;
2547
2548 if (q->full || !skb_queue_empty(&q->sendq) ||
2549 q->service_ofldq_running) {
2550 spin_unlock(&q->sendq.lock);
2551 return NET_XMIT_DROP;
2552 }
2553 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
2554 credits = txq_avail(&q->q) - ndesc;
2555 pos = (u64 *)&q->q.desc[q->q.pidx];
2556
2557 /* ofldtxq_stop modifies WR header in-situ */
2558 inline_tx_header(src, &q->q, pos, len);
2559 if (unlikely(credits < TXQ_STOP_THRES))
2560 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
2561 txq_advance(&q->q, ndesc);
2562 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2563
2564 spin_unlock(&q->sendq.lock);
2565 return NET_XMIT_SUCCESS;
2566 }
2567
2568 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
2569 const void *src, unsigned int len)
2570 {
2571 struct sge_uld_txq_info *txq_info;
2572 struct sge_uld_txq *txq;
2573 struct adapter *adap;
2574 int ret;
2575
2576 adap = netdev2adap(dev);
2577
2578 local_bh_disable();
2579 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2580 if (unlikely(!txq_info)) {
2581 WARN_ON(true);
2582 local_bh_enable();
2583 return NET_XMIT_DROP;
2584 }
2585 txq = &txq_info->uldtxq[idx];
2586
2587 ret = ofld_xmit_direct(txq, src, len);
2588 local_bh_enable();
2589 return net_xmit_eval(ret);
2590 }
2591 EXPORT_SYMBOL(cxgb4_immdata_send);
2592
2593 /**
2594 * t4_crypto_send - send crypto packet
2595 * @adap: the adapter
2596 * @skb: the packet
2597 *
2598 * Sends crypto packet. We use the packet queue_mapping to select the
2599 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2600 * should be sent as regular or control, bits 1-15 select the queue.
2601 */
2602 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
2603 {
2604 int ret;
2605
2606 local_bh_disable();
2607 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
2608 local_bh_enable();
2609 return ret;
2610 }
2611
2612 /**
2613 * cxgb4_crypto_send - send crypto packet
2614 * @dev: the net device
2615 * @skb: the packet
2616 *
2617 * Sends crypto packet. This is an exported version of @t4_crypto_send,
2618 * intended for ULDs.
2619 */
2620 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
2621 {
2622 return t4_crypto_send(netdev2adap(dev), skb);
2623 }
2624 EXPORT_SYMBOL(cxgb4_crypto_send);
2625
2626 static inline void copy_frags(struct sk_buff *skb,
2627 const struct pkt_gl *gl, unsigned int offset)
2628 {
2629 int i;
2630
2631 /* usually there's just one frag */
2632 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
2633 gl->frags[0].offset + offset,
2634 gl->frags[0].size - offset);
2635 skb_shinfo(skb)->nr_frags = gl->nfrags;
2636 for (i = 1; i < gl->nfrags; i++)
2637 __skb_fill_page_desc(skb, i, gl->frags[i].page,
2638 gl->frags[i].offset,
2639 gl->frags[i].size);
2640
2641 /* get a reference to the last page, we don't own it */
2642 get_page(gl->frags[gl->nfrags - 1].page);
2643 }
2644
2645 /**
2646 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
2647 * @gl: the gather list
2648 * @skb_len: size of sk_buff main body if it carries fragments
2649 * @pull_len: amount of data to move to the sk_buff's main body
2650 *
2651 * Builds an sk_buff from the given packet gather list. Returns the
2652 * sk_buff or %NULL if sk_buff allocation failed.
2653 */
2654 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
2655 unsigned int skb_len, unsigned int pull_len)
2656 {
2657 struct sk_buff *skb;
2658
2659 /*
2660 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
2661 * size, which is expected since buffers are at least PAGE_SIZEd.
2662 * In this case packets up to RX_COPY_THRES have only one fragment.
2663 */
2664 if (gl->tot_len <= RX_COPY_THRES) {
2665 skb = dev_alloc_skb(gl->tot_len);
2666 if (unlikely(!skb))
2667 goto out;
2668 __skb_put(skb, gl->tot_len);
2669 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
2670 } else {
2671 skb = dev_alloc_skb(skb_len);
2672 if (unlikely(!skb))
2673 goto out;
2674 __skb_put(skb, pull_len);
2675 skb_copy_to_linear_data(skb, gl->va, pull_len);
2676
2677 copy_frags(skb, gl, pull_len);
2678 skb->len = gl->tot_len;
2679 skb->data_len = skb->len - pull_len;
2680 skb->truesize += skb->data_len;
2681 }
2682 out: return skb;
2683 }
2684 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
2685
2686 /**
2687 * t4_pktgl_free - free a packet gather list
2688 * @gl: the gather list
2689 *
2690 * Releases the pages of a packet gather list. We do not own the last
2691 * page on the list and do not free it.
2692 */
2693 static void t4_pktgl_free(const struct pkt_gl *gl)
2694 {
2695 int n;
2696 const struct page_frag *p;
2697
2698 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
2699 put_page(p->page);
2700 }
2701
2702 /*
2703 * Process an MPS trace packet. Give it an unused protocol number so it won't
2704 * be delivered to anyone and send it to the stack for capture.
2705 */
2706 static noinline int handle_trace_pkt(struct adapter *adap,
2707 const struct pkt_gl *gl)
2708 {
2709 struct sk_buff *skb;
2710
2711 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
2712 if (unlikely(!skb)) {
2713 t4_pktgl_free(gl);
2714 return 0;
2715 }
2716
2717 if (is_t4(adap->params.chip))
2718 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
2719 else
2720 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
2721
2722 skb_reset_mac_header(skb);
2723 skb->protocol = htons(0xffff);
2724 skb->dev = adap->port[0];
2725 netif_receive_skb(skb);
2726 return 0;
2727 }
2728
2729 /**
2730 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
2731 * @adap: the adapter
2732 * @hwtstamps: time stamp structure to update
2733 * @sgetstamp: 60bit iqe timestamp
2734 *
2735 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
2736 * which is in Core Clock ticks into ktime_t and assign it
2737 **/
2738 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
2739 struct skb_shared_hwtstamps *hwtstamps,
2740 u64 sgetstamp)
2741 {
2742 u64 ns;
2743 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
2744
2745 ns = div_u64(tmp, adap->params.vpd.cclk);
2746
2747 memset(hwtstamps, 0, sizeof(*hwtstamps));
2748 hwtstamps->hwtstamp = ns_to_ktime(ns);
2749 }
2750
2751 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
2752 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
2753 {
2754 struct adapter *adapter = rxq->rspq.adap;
2755 struct sge *s = &adapter->sge;
2756 struct port_info *pi;
2757 int ret;
2758 struct sk_buff *skb;
2759
2760 skb = napi_get_frags(&rxq->rspq.napi);
2761 if (unlikely(!skb)) {
2762 t4_pktgl_free(gl);
2763 rxq->stats.rx_drops++;
2764 return;
2765 }
2766
2767 copy_frags(skb, gl, s->pktshift);
2768 if (tnl_hdr_len)
2769 skb->csum_level = 1;
2770 skb->len = gl->tot_len - s->pktshift;
2771 skb->data_len = skb->len;
2772 skb->truesize += skb->data_len;
2773 skb->ip_summed = CHECKSUM_UNNECESSARY;
2774 skb_record_rx_queue(skb, rxq->rspq.idx);
2775 pi = netdev_priv(skb->dev);
2776 if (pi->rxtstamp)
2777 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
2778 gl->sgetstamp);
2779 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
2780 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
2781 PKT_HASH_TYPE_L3);
2782
2783 if (unlikely(pkt->vlan_ex)) {
2784 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
2785 rxq->stats.vlan_ex++;
2786 }
2787 ret = napi_gro_frags(&rxq->rspq.napi);
2788 if (ret == GRO_HELD)
2789 rxq->stats.lro_pkts++;
2790 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
2791 rxq->stats.lro_merged++;
2792 rxq->stats.pkts++;
2793 rxq->stats.rx_cso++;
2794 }
2795
2796 enum {
2797 RX_NON_PTP_PKT = 0,
2798 RX_PTP_PKT_SUC = 1,
2799 RX_PTP_PKT_ERR = 2
2800 };
2801
2802 /**
2803 * t4_systim_to_hwstamp - read hardware time stamp
2804 * @adap: the adapter
2805 * @skb: the packet
2806 *
2807 * Read Time Stamp from MPS packet and insert in skb which
2808 * is forwarded to PTP application
2809 */
2810 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
2811 struct sk_buff *skb)
2812 {
2813 struct skb_shared_hwtstamps *hwtstamps;
2814 struct cpl_rx_mps_pkt *cpl = NULL;
2815 unsigned char *data;
2816 int offset;
2817
2818 cpl = (struct cpl_rx_mps_pkt *)skb->data;
2819 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
2820 X_CPL_RX_MPS_PKT_TYPE_PTP))
2821 return RX_PTP_PKT_ERR;
2822
2823 data = skb->data + sizeof(*cpl);
2824 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
2825 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
2826 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
2827 return RX_PTP_PKT_ERR;
2828
2829 hwtstamps = skb_hwtstamps(skb);
2830 memset(hwtstamps, 0, sizeof(*hwtstamps));
2831 hwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*((u64 *)data)));
2832
2833 return RX_PTP_PKT_SUC;
2834 }
2835
2836 /**
2837 * t4_rx_hststamp - Recv PTP Event Message
2838 * @adap: the adapter
2839 * @rsp: the response queue descriptor holding the RX_PKT message
2840 * @skb: the packet
2841 *
2842 * PTP enabled and MPS packet, read HW timestamp
2843 */
2844 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
2845 struct sge_eth_rxq *rxq, struct sk_buff *skb)
2846 {
2847 int ret;
2848
2849 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
2850 !is_t4(adapter->params.chip))) {
2851 ret = t4_systim_to_hwstamp(adapter, skb);
2852 if (ret == RX_PTP_PKT_ERR) {
2853 kfree_skb(skb);
2854 rxq->stats.rx_drops++;
2855 }
2856 return ret;
2857 }
2858 return RX_NON_PTP_PKT;
2859 }
2860
2861 /**
2862 * t4_tx_hststamp - Loopback PTP Transmit Event Message
2863 * @adap: the adapter
2864 * @skb: the packet
2865 * @dev: the ingress net device
2866 *
2867 * Read hardware timestamp for the loopback PTP Tx event message
2868 */
2869 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
2870 struct net_device *dev)
2871 {
2872 struct port_info *pi = netdev_priv(dev);
2873
2874 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
2875 cxgb4_ptp_read_hwstamp(adapter, pi);
2876 kfree_skb(skb);
2877 return 0;
2878 }
2879 return 1;
2880 }
2881
2882 /**
2883 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
2884 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
2885 * @rsp: Response Entry pointer into Response Queue
2886 * @gl: Gather List pointer
2887 *
2888 * For adapters which support the SGE Doorbell Queue Timer facility,
2889 * we configure the Ethernet TX Queues to send CIDX Updates to the
2890 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
2891 * messages. This adds a small load to PCIe Link RX bandwidth and,
2892 * potentially, higher CPU Interrupt load, but allows us to respond
2893 * much more quickly to the CIDX Updates. This is important for
2894 * Upper Layer Software which isn't willing to have a large amount
2895 * of TX Data outstanding before receiving DMA Completions.
2896 */
2897 static void t4_tx_completion_handler(struct sge_rspq *rspq,
2898 const __be64 *rsp,
2899 const struct pkt_gl *gl)
2900 {
2901 u8 opcode = ((const struct rss_header *)rsp)->opcode;
2902 struct port_info *pi = netdev_priv(rspq->netdev);
2903 struct adapter *adapter = rspq->adap;
2904 struct sge *s = &adapter->sge;
2905 struct sge_eth_txq *txq;
2906
2907 /* skip RSS header */
2908 rsp++;
2909
2910 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
2911 */
2912 if (unlikely(opcode == CPL_FW4_MSG &&
2913 ((const struct cpl_fw4_msg *)rsp)->type ==
2914 FW_TYPE_RSSCPL)) {
2915 rsp++;
2916 opcode = ((const struct rss_header *)rsp)->opcode;
2917 rsp++;
2918 }
2919
2920 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
2921 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
2922 __func__, opcode);
2923 return;
2924 }
2925
2926 txq = &s->ethtxq[pi->first_qset + rspq->idx];
2927
2928 /* We've got the Hardware Consumer Index Update in the Egress Update
2929 * message. If we're using the SGE Doorbell Queue Timer mechanism,
2930 * these Egress Update messages will be our sole CIDX Updates we get
2931 * since we don't want to chew up PCIe bandwidth for both Ingress
2932 * Messages and Status Page writes. However, The code which manages
2933 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
2934 * stored in the Status Page at the end of the TX Queue. It's easiest
2935 * to simply copy the CIDX Update value from the Egress Update message
2936 * to the Status Page. Also note that no Endian issues need to be
2937 * considered here since both are Big Endian and we're just copying
2938 * bytes consistently ...
2939 */
2940 if (txq->dbqt) {
2941 struct cpl_sge_egr_update *egr;
2942
2943 egr = (struct cpl_sge_egr_update *)rsp;
2944 WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
2945 }
2946
2947 t4_sge_eth_txq_egress_update(adapter, txq, -1);
2948 }
2949
2950 /**
2951 * t4_ethrx_handler - process an ingress ethernet packet
2952 * @q: the response queue that received the packet
2953 * @rsp: the response queue descriptor holding the RX_PKT message
2954 * @si: the gather list of packet fragments
2955 *
2956 * Process an ingress ethernet packet and deliver it to the stack.
2957 */
2958 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
2959 const struct pkt_gl *si)
2960 {
2961 bool csum_ok;
2962 struct sk_buff *skb;
2963 const struct cpl_rx_pkt *pkt;
2964 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
2965 struct adapter *adapter = q->adap;
2966 struct sge *s = &q->adap->sge;
2967 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
2968 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
2969 u16 err_vec, tnl_hdr_len = 0;
2970 struct port_info *pi;
2971 int ret = 0;
2972
2973 /* If we're looking at TX Queue CIDX Update, handle that separately
2974 * and return.
2975 */
2976 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
2977 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
2978 t4_tx_completion_handler(q, rsp, si);
2979 return 0;
2980 }
2981
2982 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
2983 return handle_trace_pkt(q->adap, si);
2984
2985 pkt = (const struct cpl_rx_pkt *)rsp;
2986 /* Compressed error vector is enabled for T6 only */
2987 if (q->adap->params.tp.rx_pkt_encap) {
2988 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
2989 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
2990 } else {
2991 err_vec = be16_to_cpu(pkt->err_vec);
2992 }
2993
2994 csum_ok = pkt->csum_calc && !err_vec &&
2995 (q->netdev->features & NETIF_F_RXCSUM);
2996
2997 if (err_vec)
2998 rxq->stats.bad_rx_pkts++;
2999
3000 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3001 tnl_hdr_len) &&
3002 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3003 do_gro(rxq, si, pkt, tnl_hdr_len);
3004 return 0;
3005 }
3006
3007 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3008 if (unlikely(!skb)) {
3009 t4_pktgl_free(si);
3010 rxq->stats.rx_drops++;
3011 return 0;
3012 }
3013 pi = netdev_priv(q->netdev);
3014
3015 /* Handle PTP Event Rx packet */
3016 if (unlikely(pi->ptp_enable)) {
3017 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3018 if (ret == RX_PTP_PKT_ERR)
3019 return 0;
3020 }
3021 if (likely(!ret))
3022 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3023
3024 /* Handle the PTP Event Tx Loopback packet */
3025 if (unlikely(pi->ptp_enable && !ret &&
3026 (pkt->l2info & htonl(RXF_UDP_F)) &&
3027 cxgb4_ptp_is_ptp_rx(skb))) {
3028 if (!t4_tx_hststamp(adapter, skb, q->netdev))
3029 return 0;
3030 }
3031
3032 skb->protocol = eth_type_trans(skb, q->netdev);
3033 skb_record_rx_queue(skb, q->idx);
3034 if (skb->dev->features & NETIF_F_RXHASH)
3035 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3036 PKT_HASH_TYPE_L3);
3037
3038 rxq->stats.pkts++;
3039
3040 if (pi->rxtstamp)
3041 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3042 si->sgetstamp);
3043 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3044 if (!pkt->ip_frag) {
3045 skb->ip_summed = CHECKSUM_UNNECESSARY;
3046 rxq->stats.rx_cso++;
3047 } else if (pkt->l2info & htonl(RXF_IP_F)) {
3048 __sum16 c = (__force __sum16)pkt->csum;
3049 skb->csum = csum_unfold(c);
3050
3051 if (tnl_hdr_len) {
3052 skb->ip_summed = CHECKSUM_UNNECESSARY;
3053 skb->csum_level = 1;
3054 } else {
3055 skb->ip_summed = CHECKSUM_COMPLETE;
3056 }
3057 rxq->stats.rx_cso++;
3058 }
3059 } else {
3060 skb_checksum_none_assert(skb);
3061 #ifdef CONFIG_CHELSIO_T4_FCOE
3062 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3063 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3064
3065 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3066 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3067 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3068 if (q->adap->params.tp.rx_pkt_encap)
3069 csum_ok = err_vec &
3070 T6_COMPR_RXERR_SUM_F;
3071 else
3072 csum_ok = err_vec & RXERR_CSUM_F;
3073 if (!csum_ok)
3074 skb->ip_summed = CHECKSUM_UNNECESSARY;
3075 }
3076 }
3077
3078 #undef CPL_RX_PKT_FLAGS
3079 #endif /* CONFIG_CHELSIO_T4_FCOE */
3080 }
3081
3082 if (unlikely(pkt->vlan_ex)) {
3083 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3084 rxq->stats.vlan_ex++;
3085 }
3086 skb_mark_napi_id(skb, &q->napi);
3087 netif_receive_skb(skb);
3088 return 0;
3089 }
3090
3091 /**
3092 * restore_rx_bufs - put back a packet's Rx buffers
3093 * @si: the packet gather list
3094 * @q: the SGE free list
3095 * @frags: number of FL buffers to restore
3096 *
3097 * Puts back on an FL the Rx buffers associated with @si. The buffers
3098 * have already been unmapped and are left unmapped, we mark them so to
3099 * prevent further unmapping attempts.
3100 *
3101 * This function undoes a series of @unmap_rx_buf calls when we find out
3102 * that the current packet can't be processed right away afterall and we
3103 * need to come back to it later. This is a very rare event and there's
3104 * no effort to make this particularly efficient.
3105 */
3106 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3107 int frags)
3108 {
3109 struct rx_sw_desc *d;
3110
3111 while (frags--) {
3112 if (q->cidx == 0)
3113 q->cidx = q->size - 1;
3114 else
3115 q->cidx--;
3116 d = &q->sdesc[q->cidx];
3117 d->page = si->frags[frags].page;
3118 d->dma_addr |= RX_UNMAPPED_BUF;
3119 q->avail++;
3120 }
3121 }
3122
3123 /**
3124 * is_new_response - check if a response is newly written
3125 * @r: the response descriptor
3126 * @q: the response queue
3127 *
3128 * Returns true if a response descriptor contains a yet unprocessed
3129 * response.
3130 */
3131 static inline bool is_new_response(const struct rsp_ctrl *r,
3132 const struct sge_rspq *q)
3133 {
3134 return (r->type_gen >> RSPD_GEN_S) == q->gen;
3135 }
3136
3137 /**
3138 * rspq_next - advance to the next entry in a response queue
3139 * @q: the queue
3140 *
3141 * Updates the state of a response queue to advance it to the next entry.
3142 */
3143 static inline void rspq_next(struct sge_rspq *q)
3144 {
3145 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3146 if (unlikely(++q->cidx == q->size)) {
3147 q->cidx = 0;
3148 q->gen ^= 1;
3149 q->cur_desc = q->desc;
3150 }
3151 }
3152
3153 /**
3154 * process_responses - process responses from an SGE response queue
3155 * @q: the ingress queue to process
3156 * @budget: how many responses can be processed in this round
3157 *
3158 * Process responses from an SGE response queue up to the supplied budget.
3159 * Responses include received packets as well as control messages from FW
3160 * or HW.
3161 *
3162 * Additionally choose the interrupt holdoff time for the next interrupt
3163 * on this queue. If the system is under memory shortage use a fairly
3164 * long delay to help recovery.
3165 */
3166 static int process_responses(struct sge_rspq *q, int budget)
3167 {
3168 int ret, rsp_type;
3169 int budget_left = budget;
3170 const struct rsp_ctrl *rc;
3171 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3172 struct adapter *adapter = q->adap;
3173 struct sge *s = &adapter->sge;
3174
3175 while (likely(budget_left)) {
3176 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3177 if (!is_new_response(rc, q)) {
3178 if (q->flush_handler)
3179 q->flush_handler(q);
3180 break;
3181 }
3182
3183 dma_rmb();
3184 rsp_type = RSPD_TYPE_G(rc->type_gen);
3185 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3186 struct page_frag *fp;
3187 struct pkt_gl si;
3188 const struct rx_sw_desc *rsd;
3189 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3190
3191 if (len & RSPD_NEWBUF_F) {
3192 if (likely(q->offset > 0)) {
3193 free_rx_bufs(q->adap, &rxq->fl, 1);
3194 q->offset = 0;
3195 }
3196 len = RSPD_LEN_G(len);
3197 }
3198 si.tot_len = len;
3199
3200 /* gather packet fragments */
3201 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3202 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3203 bufsz = get_buf_size(adapter, rsd);
3204 fp->page = rsd->page;
3205 fp->offset = q->offset;
3206 fp->size = min(bufsz, len);
3207 len -= fp->size;
3208 if (!len)
3209 break;
3210 unmap_rx_buf(q->adap, &rxq->fl);
3211 }
3212
3213 si.sgetstamp = SGE_TIMESTAMP_G(
3214 be64_to_cpu(rc->last_flit));
3215 /*
3216 * Last buffer remains mapped so explicitly make it
3217 * coherent for CPU access.
3218 */
3219 dma_sync_single_for_cpu(q->adap->pdev_dev,
3220 get_buf_addr(rsd),
3221 fp->size, DMA_FROM_DEVICE);
3222
3223 si.va = page_address(si.frags[0].page) +
3224 si.frags[0].offset;
3225 prefetch(si.va);
3226
3227 si.nfrags = frags + 1;
3228 ret = q->handler(q, q->cur_desc, &si);
3229 if (likely(ret == 0))
3230 q->offset += ALIGN(fp->size, s->fl_align);
3231 else
3232 restore_rx_bufs(&si, &rxq->fl, frags);
3233 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3234 ret = q->handler(q, q->cur_desc, NULL);
3235 } else {
3236 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3237 }
3238
3239 if (unlikely(ret)) {
3240 /* couldn't process descriptor, back off for recovery */
3241 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3242 break;
3243 }
3244
3245 rspq_next(q);
3246 budget_left--;
3247 }
3248
3249 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3250 __refill_fl(q->adap, &rxq->fl);
3251 return budget - budget_left;
3252 }
3253
3254 /**
3255 * napi_rx_handler - the NAPI handler for Rx processing
3256 * @napi: the napi instance
3257 * @budget: how many packets we can process in this round
3258 *
3259 * Handler for new data events when using NAPI. This does not need any
3260 * locking or protection from interrupts as data interrupts are off at
3261 * this point and other adapter interrupts do not interfere (the latter
3262 * in not a concern at all with MSI-X as non-data interrupts then have
3263 * a separate handler).
3264 */
3265 static int napi_rx_handler(struct napi_struct *napi, int budget)
3266 {
3267 unsigned int params;
3268 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3269 int work_done;
3270 u32 val;
3271
3272 work_done = process_responses(q, budget);
3273 if (likely(work_done < budget)) {
3274 int timer_index;
3275
3276 napi_complete_done(napi, work_done);
3277 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3278
3279 if (q->adaptive_rx) {
3280 if (work_done > max(timer_pkt_quota[timer_index],
3281 MIN_NAPI_WORK))
3282 timer_index = (timer_index + 1);
3283 else
3284 timer_index = timer_index - 1;
3285
3286 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3287 q->next_intr_params =
3288 QINTR_TIMER_IDX_V(timer_index) |
3289 QINTR_CNT_EN_V(0);
3290 params = q->next_intr_params;
3291 } else {
3292 params = q->next_intr_params;
3293 q->next_intr_params = q->intr_params;
3294 }
3295 } else
3296 params = QINTR_TIMER_IDX_V(7);
3297
3298 val = CIDXINC_V(work_done) | SEINTARM_V(params);
3299
3300 /* If we don't have access to the new User GTS (T5+), use the old
3301 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3302 */
3303 if (unlikely(q->bar2_addr == NULL)) {
3304 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
3305 val | INGRESSQID_V((u32)q->cntxt_id));
3306 } else {
3307 writel(val | INGRESSQID_V(q->bar2_qid),
3308 q->bar2_addr + SGE_UDB_GTS);
3309 wmb();
3310 }
3311 return work_done;
3312 }
3313
3314 /*
3315 * The MSI-X interrupt handler for an SGE response queue.
3316 */
3317 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
3318 {
3319 struct sge_rspq *q = cookie;
3320
3321 napi_schedule(&q->napi);
3322 return IRQ_HANDLED;
3323 }
3324
3325 /*
3326 * Process the indirect interrupt entries in the interrupt queue and kick off
3327 * NAPI for each queue that has generated an entry.
3328 */
3329 static unsigned int process_intrq(struct adapter *adap)
3330 {
3331 unsigned int credits;
3332 const struct rsp_ctrl *rc;
3333 struct sge_rspq *q = &adap->sge.intrq;
3334 u32 val;
3335
3336 spin_lock(&adap->sge.intrq_lock);
3337 for (credits = 0; ; credits++) {
3338 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3339 if (!is_new_response(rc, q))
3340 break;
3341
3342 dma_rmb();
3343 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
3344 unsigned int qid = ntohl(rc->pldbuflen_qid);
3345
3346 qid -= adap->sge.ingr_start;
3347 napi_schedule(&adap->sge.ingr_map[qid]->napi);
3348 }
3349
3350 rspq_next(q);
3351 }
3352
3353 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
3354
3355 /* If we don't have access to the new User GTS (T5+), use the old
3356 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3357 */
3358 if (unlikely(q->bar2_addr == NULL)) {
3359 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
3360 val | INGRESSQID_V(q->cntxt_id));
3361 } else {
3362 writel(val | INGRESSQID_V(q->bar2_qid),
3363 q->bar2_addr + SGE_UDB_GTS);
3364 wmb();
3365 }
3366 spin_unlock(&adap->sge.intrq_lock);
3367 return credits;
3368 }
3369
3370 /*
3371 * The MSI interrupt handler, which handles data events from SGE response queues
3372 * as well as error and other async events as they all use the same MSI vector.
3373 */
3374 static irqreturn_t t4_intr_msi(int irq, void *cookie)
3375 {
3376 struct adapter *adap = cookie;
3377
3378 if (adap->flags & CXGB4_MASTER_PF)
3379 t4_slow_intr_handler(adap);
3380 process_intrq(adap);
3381 return IRQ_HANDLED;
3382 }
3383
3384 /*
3385 * Interrupt handler for legacy INTx interrupts.
3386 * Handles data events from SGE response queues as well as error and other
3387 * async events as they all use the same interrupt line.
3388 */
3389 static irqreturn_t t4_intr_intx(int irq, void *cookie)
3390 {
3391 struct adapter *adap = cookie;
3392
3393 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
3394 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
3395 process_intrq(adap))
3396 return IRQ_HANDLED;
3397 return IRQ_NONE; /* probably shared interrupt */
3398 }
3399
3400 /**
3401 * t4_intr_handler - select the top-level interrupt handler
3402 * @adap: the adapter
3403 *
3404 * Selects the top-level interrupt handler based on the type of interrupts
3405 * (MSI-X, MSI, or INTx).
3406 */
3407 irq_handler_t t4_intr_handler(struct adapter *adap)
3408 {
3409 if (adap->flags & CXGB4_USING_MSIX)
3410 return t4_sge_intr_msix;
3411 if (adap->flags & CXGB4_USING_MSI)
3412 return t4_intr_msi;
3413 return t4_intr_intx;
3414 }
3415
3416 static void sge_rx_timer_cb(struct timer_list *t)
3417 {
3418 unsigned long m;
3419 unsigned int i;
3420 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
3421 struct sge *s = &adap->sge;
3422
3423 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3424 for (m = s->starving_fl[i]; m; m &= m - 1) {
3425 struct sge_eth_rxq *rxq;
3426 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
3427 struct sge_fl *fl = s->egr_map[id];
3428
3429 clear_bit(id, s->starving_fl);
3430 smp_mb__after_atomic();
3431
3432 if (fl_starving(adap, fl)) {
3433 rxq = container_of(fl, struct sge_eth_rxq, fl);
3434 if (napi_reschedule(&rxq->rspq.napi))
3435 fl->starving++;
3436 else
3437 set_bit(id, s->starving_fl);
3438 }
3439 }
3440 /* The remainder of the SGE RX Timer Callback routine is dedicated to
3441 * global Master PF activities like checking for chip ingress stalls,
3442 * etc.
3443 */
3444 if (!(adap->flags & CXGB4_MASTER_PF))
3445 goto done;
3446
3447 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
3448
3449 done:
3450 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
3451 }
3452
3453 static void sge_tx_timer_cb(struct timer_list *t)
3454 {
3455 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
3456 struct sge *s = &adap->sge;
3457 unsigned long m, period;
3458 unsigned int i, budget;
3459
3460 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
3461 for (m = s->txq_maperr[i]; m; m &= m - 1) {
3462 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
3463 struct sge_uld_txq *txq = s->egr_map[id];
3464
3465 clear_bit(id, s->txq_maperr);
3466 tasklet_schedule(&txq->qresume_tsk);
3467 }
3468
3469 if (!is_t4(adap->params.chip)) {
3470 struct sge_eth_txq *q = &s->ptptxq;
3471 int avail;
3472
3473 spin_lock(&adap->ptp_lock);
3474 avail = reclaimable(&q->q);
3475
3476 if (avail) {
3477 free_tx_desc(adap, &q->q, avail, false);
3478 q->q.in_use -= avail;
3479 }
3480 spin_unlock(&adap->ptp_lock);
3481 }
3482
3483 budget = MAX_TIMER_TX_RECLAIM;
3484 i = s->ethtxq_rover;
3485 do {
3486 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
3487 budget);
3488 if (!budget)
3489 break;
3490
3491 if (++i >= s->ethqsets)
3492 i = 0;
3493 } while (i != s->ethtxq_rover);
3494 s->ethtxq_rover = i;
3495
3496 if (budget == 0) {
3497 /* If we found too many reclaimable packets schedule a timer
3498 * in the near future to continue where we left off.
3499 */
3500 period = 2;
3501 } else {
3502 /* We reclaimed all reclaimable TX Descriptors, so reschedule
3503 * at the normal period.
3504 */
3505 period = TX_QCHECK_PERIOD;
3506 }
3507
3508 mod_timer(&s->tx_timer, jiffies + period);
3509 }
3510
3511 /**
3512 * bar2_address - return the BAR2 address for an SGE Queue's Registers
3513 * @adapter: the adapter
3514 * @qid: the SGE Queue ID
3515 * @qtype: the SGE Queue Type (Egress or Ingress)
3516 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
3517 *
3518 * Returns the BAR2 address for the SGE Queue Registers associated with
3519 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
3520 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
3521 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
3522 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
3523 */
3524 static void __iomem *bar2_address(struct adapter *adapter,
3525 unsigned int qid,
3526 enum t4_bar2_qtype qtype,
3527 unsigned int *pbar2_qid)
3528 {
3529 u64 bar2_qoffset;
3530 int ret;
3531
3532 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
3533 &bar2_qoffset, pbar2_qid);
3534 if (ret)
3535 return NULL;
3536
3537 return adapter->bar2 + bar2_qoffset;
3538 }
3539
3540 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
3541 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
3542 */
3543 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
3544 struct net_device *dev, int intr_idx,
3545 struct sge_fl *fl, rspq_handler_t hnd,
3546 rspq_flush_handler_t flush_hnd, int cong)
3547 {
3548 int ret, flsz = 0;
3549 struct fw_iq_cmd c;
3550 struct sge *s = &adap->sge;
3551 struct port_info *pi = netdev_priv(dev);
3552 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
3553
3554 /* Size needs to be multiple of 16, including status entry. */
3555 iq->size = roundup(iq->size, 16);
3556
3557 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
3558 &iq->phys_addr, NULL, 0,
3559 dev_to_node(adap->pdev_dev));
3560 if (!iq->desc)
3561 return -ENOMEM;
3562
3563 memset(&c, 0, sizeof(c));
3564 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
3565 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3566 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
3567 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
3568 FW_LEN16(c));
3569 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
3570 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
3571 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
3572 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
3573 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
3574 -intr_idx - 1));
3575 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
3576 FW_IQ_CMD_IQGTSMODE_F |
3577 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
3578 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
3579 c.iqsize = htons(iq->size);
3580 c.iqaddr = cpu_to_be64(iq->phys_addr);
3581 if (cong >= 0)
3582 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
3583 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
3584 : FW_IQ_IQTYPE_OFLD));
3585
3586 if (fl) {
3587 unsigned int chip_ver =
3588 CHELSIO_CHIP_VERSION(adap->params.chip);
3589
3590 /* Allocate the ring for the hardware free list (with space
3591 * for its status page) along with the associated software
3592 * descriptor ring. The free list size needs to be a multiple
3593 * of the Egress Queue Unit and at least 2 Egress Units larger
3594 * than the SGE's Egress Congrestion Threshold
3595 * (fl_starve_thres - 1).
3596 */
3597 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
3598 fl->size = s->fl_starve_thres - 1 + 2 * 8;
3599 fl->size = roundup(fl->size, 8);
3600 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
3601 sizeof(struct rx_sw_desc), &fl->addr,
3602 &fl->sdesc, s->stat_len,
3603 dev_to_node(adap->pdev_dev));
3604 if (!fl->desc)
3605 goto fl_nomem;
3606
3607 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
3608 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
3609 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
3610 FW_IQ_CMD_FL0DATARO_V(relaxed) |
3611 FW_IQ_CMD_FL0PADEN_F);
3612 if (cong >= 0)
3613 c.iqns_to_fl0congen |=
3614 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
3615 FW_IQ_CMD_FL0CONGCIF_F |
3616 FW_IQ_CMD_FL0CONGEN_F);
3617 /* In T6, for egress queue type FL there is internal overhead
3618 * of 16B for header going into FLM module. Hence the maximum
3619 * allowed burst size is 448 bytes. For T4/T5, the hardware
3620 * doesn't coalesce fetch requests if more than 64 bytes of
3621 * Free List pointers are provided, so we use a 128-byte Fetch
3622 * Burst Minimum there (T6 implements coalescing so we can use
3623 * the smaller 64-byte value there).
3624 */
3625 c.fl0dcaen_to_fl0cidxfthresh =
3626 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
3627 FETCHBURSTMIN_128B_X :
3628 FETCHBURSTMIN_64B_T6_X) |
3629 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
3630 FETCHBURSTMAX_512B_X :
3631 FETCHBURSTMAX_256B_X));
3632 c.fl0size = htons(flsz);
3633 c.fl0addr = cpu_to_be64(fl->addr);
3634 }
3635
3636 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3637 if (ret)
3638 goto err;
3639
3640 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
3641 iq->cur_desc = iq->desc;
3642 iq->cidx = 0;
3643 iq->gen = 1;
3644 iq->next_intr_params = iq->intr_params;
3645 iq->cntxt_id = ntohs(c.iqid);
3646 iq->abs_id = ntohs(c.physiqid);
3647 iq->bar2_addr = bar2_address(adap,
3648 iq->cntxt_id,
3649 T4_BAR2_QTYPE_INGRESS,
3650 &iq->bar2_qid);
3651 iq->size--; /* subtract status entry */
3652 iq->netdev = dev;
3653 iq->handler = hnd;
3654 iq->flush_handler = flush_hnd;
3655
3656 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
3657 skb_queue_head_init(&iq->lro_mgr.lroq);
3658
3659 /* set offset to -1 to distinguish ingress queues without FL */
3660 iq->offset = fl ? 0 : -1;
3661
3662 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
3663
3664 if (fl) {
3665 fl->cntxt_id = ntohs(c.fl0id);
3666 fl->avail = fl->pend_cred = 0;
3667 fl->pidx = fl->cidx = 0;
3668 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
3669 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
3670
3671 /* Note, we must initialize the BAR2 Free List User Doorbell
3672 * information before refilling the Free List!
3673 */
3674 fl->bar2_addr = bar2_address(adap,
3675 fl->cntxt_id,
3676 T4_BAR2_QTYPE_EGRESS,
3677 &fl->bar2_qid);
3678 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
3679 }
3680
3681 /* For T5 and later we attempt to set up the Congestion Manager values
3682 * of the new RX Ethernet Queue. This should really be handled by
3683 * firmware because it's more complex than any host driver wants to
3684 * get involved with and it's different per chip and this is almost
3685 * certainly wrong. Firmware would be wrong as well, but it would be
3686 * a lot easier to fix in one place ... For now we do something very
3687 * simple (and hopefully less wrong).
3688 */
3689 if (!is_t4(adap->params.chip) && cong >= 0) {
3690 u32 param, val, ch_map = 0;
3691 int i;
3692 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
3693
3694 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
3696 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
3697 if (cong == 0) {
3698 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
3699 } else {
3700 val =
3701 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
3702 for (i = 0; i < 4; i++) {
3703 if (cong & (1 << i))
3704 ch_map |= 1 << (i << cng_ch_bits_log);
3705 }
3706 val |= CONMCTXT_CNGCHMAP_V(ch_map);
3707 }
3708 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
3709 &param, &val);
3710 if (ret)
3711 dev_warn(adap->pdev_dev, "Failed to set Congestion"
3712 " Manager Context for Ingress Queue %d: %d\n",
3713 iq->cntxt_id, -ret);
3714 }
3715
3716 return 0;
3717
3718 fl_nomem:
3719 ret = -ENOMEM;
3720 err:
3721 if (iq->desc) {
3722 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
3723 iq->desc, iq->phys_addr);
3724 iq->desc = NULL;
3725 }
3726 if (fl && fl->desc) {
3727 kfree(fl->sdesc);
3728 fl->sdesc = NULL;
3729 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
3730 fl->desc, fl->addr);
3731 fl->desc = NULL;
3732 }
3733 return ret;
3734 }
3735
3736 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
3737 {
3738 q->cntxt_id = id;
3739 q->bar2_addr = bar2_address(adap,
3740 q->cntxt_id,
3741 T4_BAR2_QTYPE_EGRESS,
3742 &q->bar2_qid);
3743 q->in_use = 0;
3744 q->cidx = q->pidx = 0;
3745 q->stops = q->restarts = 0;
3746 q->stat = (void *)&q->desc[q->size];
3747 spin_lock_init(&q->db_lock);
3748 adap->sge.egr_map[id - adap->sge.egr_start] = q;
3749 }
3750
3751 /**
3752 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
3753 * @adap: the adapter
3754 * @txq: the SGE Ethernet TX Queue to initialize
3755 * @dev: the Linux Network Device
3756 * @netdevq: the corresponding Linux TX Queue
3757 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
3758 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
3759 */
3760 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
3761 struct net_device *dev, struct netdev_queue *netdevq,
3762 unsigned int iqid, u8 dbqt)
3763 {
3764 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
3765 struct port_info *pi = netdev_priv(dev);
3766 struct sge *s = &adap->sge;
3767 struct fw_eq_eth_cmd c;
3768 int ret, nentries;
3769
3770 /* Add status entries */
3771 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3772
3773 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3774 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3775 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3776 netdev_queue_numa_node_read(netdevq));
3777 if (!txq->q.desc)
3778 return -ENOMEM;
3779
3780 memset(&c, 0, sizeof(c));
3781 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
3782 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3783 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
3784 FW_EQ_ETH_CMD_VFN_V(0));
3785 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
3786 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
3787
3788 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
3789 * mechanism, we use Ingress Queue messages for Hardware Consumer
3790 * Index Updates on the TX Queue. Otherwise we have the Hardware
3791 * write the CIDX Updates into the Status Page at the end of the
3792 * TX Queue.
3793 */
3794 c.autoequiqe_to_viid = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
3795 FW_EQ_ETH_CMD_VIID_V(pi->viid));
3796
3797 c.fetchszm_to_iqid =
3798 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3799 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
3800 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
3801
3802 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
3803 c.dcaen_to_eqsize =
3804 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
3805 ? FETCHBURSTMIN_64B_X
3806 : FETCHBURSTMIN_64B_T6_X) |
3807 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3808 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3809 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
3810
3811 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3812
3813 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
3814 * currently configured Timer Index. THis can be changed later via an
3815 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
3816 * Doorbell Queue mode is currently automatically enabled in the
3817 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
3818 */
3819 if (dbqt)
3820 c.timeren_timerix =
3821 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
3822 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
3823
3824 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3825 if (ret) {
3826 kfree(txq->q.sdesc);
3827 txq->q.sdesc = NULL;
3828 dma_free_coherent(adap->pdev_dev,
3829 nentries * sizeof(struct tx_desc),
3830 txq->q.desc, txq->q.phys_addr);
3831 txq->q.desc = NULL;
3832 return ret;
3833 }
3834
3835 txq->q.q_type = CXGB4_TXQ_ETH;
3836 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
3837 txq->txq = netdevq;
3838 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
3839 txq->mapping_err = 0;
3840 txq->dbqt = dbqt;
3841
3842 return 0;
3843 }
3844
3845 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
3846 struct net_device *dev, unsigned int iqid,
3847 unsigned int cmplqid)
3848 {
3849 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
3850 struct port_info *pi = netdev_priv(dev);
3851 struct sge *s = &adap->sge;
3852 struct fw_eq_ctrl_cmd c;
3853 int ret, nentries;
3854
3855 /* Add status entries */
3856 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3857
3858 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
3859 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
3860 NULL, 0, dev_to_node(adap->pdev_dev));
3861 if (!txq->q.desc)
3862 return -ENOMEM;
3863
3864 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
3865 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3866 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
3867 FW_EQ_CTRL_CMD_VFN_V(0));
3868 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
3869 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
3870 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
3871 c.physeqid_pkd = htonl(0);
3872 c.fetchszm_to_iqid =
3873 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3874 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
3875 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
3876 c.dcaen_to_eqsize =
3877 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
3878 ? FETCHBURSTMIN_64B_X
3879 : FETCHBURSTMIN_64B_T6_X) |
3880 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3881 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3882 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
3883 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3884
3885 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3886 if (ret) {
3887 dma_free_coherent(adap->pdev_dev,
3888 nentries * sizeof(struct tx_desc),
3889 txq->q.desc, txq->q.phys_addr);
3890 txq->q.desc = NULL;
3891 return ret;
3892 }
3893
3894 txq->q.q_type = CXGB4_TXQ_CTRL;
3895 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
3896 txq->adap = adap;
3897 skb_queue_head_init(&txq->sendq);
3898 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
3899 txq->full = 0;
3900 return 0;
3901 }
3902
3903 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
3904 unsigned int cmplqid)
3905 {
3906 u32 param, val;
3907
3908 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
3909 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
3910 FW_PARAMS_PARAM_YZ_V(eqid));
3911 val = cmplqid;
3912 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
3913 }
3914
3915 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
3916 struct net_device *dev, unsigned int iqid,
3917 unsigned int uld_type)
3918 {
3919 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
3920 int ret, nentries;
3921 struct fw_eq_ofld_cmd c;
3922 struct sge *s = &adap->sge;
3923 struct port_info *pi = netdev_priv(dev);
3924 int cmd = FW_EQ_OFLD_CMD;
3925
3926 /* Add status entries */
3927 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
3928
3929 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
3930 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
3931 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
3932 NUMA_NO_NODE);
3933 if (!txq->q.desc)
3934 return -ENOMEM;
3935
3936 memset(&c, 0, sizeof(c));
3937 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
3938 cmd = FW_EQ_CTRL_CMD;
3939 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
3940 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3941 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
3942 FW_EQ_OFLD_CMD_VFN_V(0));
3943 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
3944 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
3945 c.fetchszm_to_iqid =
3946 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
3947 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
3948 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
3949 c.dcaen_to_eqsize =
3950 htonl(FW_EQ_OFLD_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
3951 ? FETCHBURSTMIN_64B_X
3952 : FETCHBURSTMIN_64B_T6_X) |
3953 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
3954 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
3955 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
3956 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
3957
3958 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3959 if (ret) {
3960 kfree(txq->q.sdesc);
3961 txq->q.sdesc = NULL;
3962 dma_free_coherent(adap->pdev_dev,
3963 nentries * sizeof(struct tx_desc),
3964 txq->q.desc, txq->q.phys_addr);
3965 txq->q.desc = NULL;
3966 return ret;
3967 }
3968
3969 txq->q.q_type = CXGB4_TXQ_ULD;
3970 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
3971 txq->adap = adap;
3972 skb_queue_head_init(&txq->sendq);
3973 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
3974 txq->full = 0;
3975 txq->mapping_err = 0;
3976 return 0;
3977 }
3978
3979 void free_txq(struct adapter *adap, struct sge_txq *q)
3980 {
3981 struct sge *s = &adap->sge;
3982
3983 dma_free_coherent(adap->pdev_dev,
3984 q->size * sizeof(struct tx_desc) + s->stat_len,
3985 q->desc, q->phys_addr);
3986 q->cntxt_id = 0;
3987 q->sdesc = NULL;
3988 q->desc = NULL;
3989 }
3990
3991 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
3992 struct sge_fl *fl)
3993 {
3994 struct sge *s = &adap->sge;
3995 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
3996
3997 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
3998 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
3999 rq->cntxt_id, fl_id, 0xffff);
4000 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4001 rq->desc, rq->phys_addr);
4002 netif_napi_del(&rq->napi);
4003 rq->netdev = NULL;
4004 rq->cntxt_id = rq->abs_id = 0;
4005 rq->desc = NULL;
4006
4007 if (fl) {
4008 free_rx_bufs(adap, fl, fl->avail);
4009 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4010 fl->desc, fl->addr);
4011 kfree(fl->sdesc);
4012 fl->sdesc = NULL;
4013 fl->cntxt_id = 0;
4014 fl->desc = NULL;
4015 }
4016 }
4017
4018 /**
4019 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4020 * @adap: the adapter
4021 * @n: number of queues
4022 * @q: pointer to first queue
4023 *
4024 * Release the resources of a consecutive block of offload Rx queues.
4025 */
4026 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4027 {
4028 for ( ; n; n--, q++)
4029 if (q->rspq.desc)
4030 free_rspq_fl(adap, &q->rspq,
4031 q->fl.size ? &q->fl : NULL);
4032 }
4033
4034 /**
4035 * t4_free_sge_resources - free SGE resources
4036 * @adap: the adapter
4037 *
4038 * Frees resources used by the SGE queue sets.
4039 */
4040 void t4_free_sge_resources(struct adapter *adap)
4041 {
4042 int i;
4043 struct sge_eth_rxq *eq;
4044 struct sge_eth_txq *etq;
4045
4046 /* stop all Rx queues in order to start them draining */
4047 for (i = 0; i < adap->sge.ethqsets; i++) {
4048 eq = &adap->sge.ethrxq[i];
4049 if (eq->rspq.desc)
4050 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4051 FW_IQ_TYPE_FL_INT_CAP,
4052 eq->rspq.cntxt_id,
4053 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4054 0xffff);
4055 }
4056
4057 /* clean up Ethernet Tx/Rx queues */
4058 for (i = 0; i < adap->sge.ethqsets; i++) {
4059 eq = &adap->sge.ethrxq[i];
4060 if (eq->rspq.desc)
4061 free_rspq_fl(adap, &eq->rspq,
4062 eq->fl.size ? &eq->fl : NULL);
4063
4064 etq = &adap->sge.ethtxq[i];
4065 if (etq->q.desc) {
4066 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4067 etq->q.cntxt_id);
4068 __netif_tx_lock_bh(etq->txq);
4069 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4070 __netif_tx_unlock_bh(etq->txq);
4071 kfree(etq->q.sdesc);
4072 free_txq(adap, &etq->q);
4073 }
4074 }
4075
4076 /* clean up control Tx queues */
4077 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4078 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4079
4080 if (cq->q.desc) {
4081 tasklet_kill(&cq->qresume_tsk);
4082 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4083 cq->q.cntxt_id);
4084 __skb_queue_purge(&cq->sendq);
4085 free_txq(adap, &cq->q);
4086 }
4087 }
4088
4089 if (adap->sge.fw_evtq.desc)
4090 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4091
4092 if (adap->sge.intrq.desc)
4093 free_rspq_fl(adap, &adap->sge.intrq, NULL);
4094
4095 if (!is_t4(adap->params.chip)) {
4096 etq = &adap->sge.ptptxq;
4097 if (etq->q.desc) {
4098 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4099 etq->q.cntxt_id);
4100 spin_lock_bh(&adap->ptp_lock);
4101 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4102 spin_unlock_bh(&adap->ptp_lock);
4103 kfree(etq->q.sdesc);
4104 free_txq(adap, &etq->q);
4105 }
4106 }
4107
4108 /* clear the reverse egress queue map */
4109 memset(adap->sge.egr_map, 0,
4110 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4111 }
4112
4113 void t4_sge_start(struct adapter *adap)
4114 {
4115 adap->sge.ethtxq_rover = 0;
4116 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4117 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4118 }
4119
4120 /**
4121 * t4_sge_stop - disable SGE operation
4122 * @adap: the adapter
4123 *
4124 * Stop tasklets and timers associated with the DMA engine. Note that
4125 * this is effective only if measures have been taken to disable any HW
4126 * events that may restart them.
4127 */
4128 void t4_sge_stop(struct adapter *adap)
4129 {
4130 int i;
4131 struct sge *s = &adap->sge;
4132
4133 if (in_interrupt()) /* actions below require waiting */
4134 return;
4135
4136 if (s->rx_timer.function)
4137 del_timer_sync(&s->rx_timer);
4138 if (s->tx_timer.function)
4139 del_timer_sync(&s->tx_timer);
4140
4141 if (is_offload(adap)) {
4142 struct sge_uld_txq_info *txq_info;
4143
4144 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
4145 if (txq_info) {
4146 struct sge_uld_txq *txq = txq_info->uldtxq;
4147
4148 for_each_ofldtxq(&adap->sge, i) {
4149 if (txq->q.desc)
4150 tasklet_kill(&txq->qresume_tsk);
4151 }
4152 }
4153 }
4154
4155 if (is_pci_uld(adap)) {
4156 struct sge_uld_txq_info *txq_info;
4157
4158 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
4159 if (txq_info) {
4160 struct sge_uld_txq *txq = txq_info->uldtxq;
4161
4162 for_each_ofldtxq(&adap->sge, i) {
4163 if (txq->q.desc)
4164 tasklet_kill(&txq->qresume_tsk);
4165 }
4166 }
4167 }
4168
4169 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
4170 struct sge_ctrl_txq *cq = &s->ctrlq[i];
4171
4172 if (cq->q.desc)
4173 tasklet_kill(&cq->qresume_tsk);
4174 }
4175 }
4176
4177 /**
4178 * t4_sge_init_soft - grab core SGE values needed by SGE code
4179 * @adap: the adapter
4180 *
4181 * We need to grab the SGE operating parameters that we need to have
4182 * in order to do our job and make sure we can live with them.
4183 */
4184
4185 static int t4_sge_init_soft(struct adapter *adap)
4186 {
4187 struct sge *s = &adap->sge;
4188 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
4189 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
4190 u32 ingress_rx_threshold;
4191
4192 /*
4193 * Verify that CPL messages are going to the Ingress Queue for
4194 * process_responses() and that only packet data is going to the
4195 * Free Lists.
4196 */
4197 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
4198 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
4199 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
4200 return -EINVAL;
4201 }
4202
4203 /*
4204 * Validate the Host Buffer Register Array indices that we want to
4205 * use ...
4206 *
4207 * XXX Note that we should really read through the Host Buffer Size
4208 * XXX register array and find the indices of the Buffer Sizes which
4209 * XXX meet our needs!
4210 */
4211 #define READ_FL_BUF(x) \
4212 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
4213
4214 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
4215 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
4216 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
4217 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
4218
4219 /* We only bother using the Large Page logic if the Large Page Buffer
4220 * is larger than our Page Size Buffer.
4221 */
4222 if (fl_large_pg <= fl_small_pg)
4223 fl_large_pg = 0;
4224
4225 #undef READ_FL_BUF
4226
4227 /* The Page Size Buffer must be exactly equal to our Page Size and the
4228 * Large Page Size Buffer should be 0 (per above) or a power of 2.
4229 */
4230 if (fl_small_pg != PAGE_SIZE ||
4231 (fl_large_pg & (fl_large_pg-1)) != 0) {
4232 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
4233 fl_small_pg, fl_large_pg);
4234 return -EINVAL;
4235 }
4236 if (fl_large_pg)
4237 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
4238
4239 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
4240 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
4241 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
4242 fl_small_mtu, fl_large_mtu);
4243 return -EINVAL;
4244 }
4245
4246 /*
4247 * Retrieve our RX interrupt holdoff timer values and counter
4248 * threshold values from the SGE parameters.
4249 */
4250 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
4251 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
4252 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
4253 s->timer_val[0] = core_ticks_to_us(adap,
4254 TIMERVALUE0_G(timer_value_0_and_1));
4255 s->timer_val[1] = core_ticks_to_us(adap,
4256 TIMERVALUE1_G(timer_value_0_and_1));
4257 s->timer_val[2] = core_ticks_to_us(adap,
4258 TIMERVALUE2_G(timer_value_2_and_3));
4259 s->timer_val[3] = core_ticks_to_us(adap,
4260 TIMERVALUE3_G(timer_value_2_and_3));
4261 s->timer_val[4] = core_ticks_to_us(adap,
4262 TIMERVALUE4_G(timer_value_4_and_5));
4263 s->timer_val[5] = core_ticks_to_us(adap,
4264 TIMERVALUE5_G(timer_value_4_and_5));
4265
4266 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
4267 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
4268 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
4269 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
4270 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
4271
4272 return 0;
4273 }
4274
4275 /**
4276 * t4_sge_init - initialize SGE
4277 * @adap: the adapter
4278 *
4279 * Perform low-level SGE code initialization needed every time after a
4280 * chip reset.
4281 */
4282 int t4_sge_init(struct adapter *adap)
4283 {
4284 struct sge *s = &adap->sge;
4285 u32 sge_control, sge_conm_ctrl;
4286 int ret, egress_threshold;
4287
4288 /*
4289 * Ingress Padding Boundary and Egress Status Page Size are set up by
4290 * t4_fixup_host_params().
4291 */
4292 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
4293 s->pktshift = PKTSHIFT_G(sge_control);
4294 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
4295
4296 s->fl_align = t4_fl_pkt_align(adap);
4297 ret = t4_sge_init_soft(adap);
4298 if (ret < 0)
4299 return ret;
4300
4301 /*
4302 * A FL with <= fl_starve_thres buffers is starving and a periodic
4303 * timer will attempt to refill it. This needs to be larger than the
4304 * SGE's Egress Congestion Threshold. If it isn't, then we can get
4305 * stuck waiting for new packets while the SGE is waiting for us to
4306 * give it more Free List entries. (Note that the SGE's Egress
4307 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
4308 * there was only a single field to control this. For T5 there's the
4309 * original field which now only applies to Unpacked Mode Free List
4310 * buffers and a new field which only applies to Packed Mode Free List
4311 * buffers.
4312 */
4313 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
4314 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
4315 case CHELSIO_T4:
4316 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
4317 break;
4318 case CHELSIO_T5:
4319 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4320 break;
4321 case CHELSIO_T6:
4322 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
4323 break;
4324 default:
4325 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
4326 CHELSIO_CHIP_VERSION(adap->params.chip));
4327 return -EINVAL;
4328 }
4329 s->fl_starve_thres = 2*egress_threshold + 1;
4330
4331 t4_idma_monitor_init(adap, &s->idma_monitor);
4332
4333 /* Set up timers used for recuring callbacks to process RX and TX
4334 * administrative tasks.
4335 */
4336 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
4337 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
4338
4339 spin_lock_init(&s->intrq_lock);
4340
4341 return 0;
4342 }