]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
Merge ath-next from ath.git
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40
41 /**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
58 {
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72 }
73
74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76 {
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79 }
80
81 /**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93 {
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98 }
99
100 /**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
115 {
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121 }
122
123 /**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138 {
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143 }
144
145 /*
146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147 * mechanism. This guarantees that we get the real value even if we're
148 * operating within a Virtual Machine and the Hypervisor is trapping our
149 * Configuration Space accesses.
150 */
151 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152 {
153 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
154
155 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
156 req |= ENABLE_F;
157 else
158 req |= T6_ENABLE_F;
159
160 if (is_t4(adap->params.chip))
161 req |= LOCALCFG_F;
162
163 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
164 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
165
166 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
167 * Configuration Space read. (None of the other fields matter when
168 * ENABLE is 0 so a simple register write is easier than a
169 * read-modify-write via t4_set_reg_field().)
170 */
171 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
172 }
173
174 /*
175 * t4_report_fw_error - report firmware error
176 * @adap: the adapter
177 *
178 * The adapter firmware can indicate error conditions to the host.
179 * If the firmware has indicated an error, print out the reason for
180 * the firmware error.
181 */
182 static void t4_report_fw_error(struct adapter *adap)
183 {
184 static const char *const reason[] = {
185 "Crash", /* PCIE_FW_EVAL_CRASH */
186 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
187 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
188 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
189 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
190 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
191 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
192 "Reserved", /* reserved */
193 };
194 u32 pcie_fw;
195
196 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
197 if (pcie_fw & PCIE_FW_ERR_F)
198 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
199 reason[PCIE_FW_EVAL_G(pcie_fw)]);
200 }
201
202 /*
203 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
204 */
205 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
206 u32 mbox_addr)
207 {
208 for ( ; nflit; nflit--, mbox_addr += 8)
209 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
210 }
211
212 /*
213 * Handle a FW assertion reported in a mailbox.
214 */
215 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
216 {
217 struct fw_debug_cmd asrt;
218
219 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
220 dev_alert(adap->pdev_dev,
221 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
222 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
223 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
224 }
225
226 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
227 {
228 dev_err(adap->pdev_dev,
229 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
230 (unsigned long long)t4_read_reg64(adap, data_reg),
231 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
238 }
239
240 /**
241 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
242 * @adap: the adapter
243 * @mbox: index of the mailbox to use
244 * @cmd: the command to write
245 * @size: command length in bytes
246 * @rpl: where to optionally store the reply
247 * @sleep_ok: if true we may sleep while awaiting command completion
248 * @timeout: time to wait for command to finish before timing out
249 *
250 * Sends the given command to FW through the selected mailbox and waits
251 * for the FW to execute the command. If @rpl is not %NULL it is used to
252 * store the FW's reply to the command. The command and its optional
253 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
254 * to respond. @sleep_ok determines whether we may sleep while awaiting
255 * the response. If sleeping is allowed we use progressive backoff
256 * otherwise we spin.
257 *
258 * The return value is 0 on success or a negative errno on failure. A
259 * failure can happen either because we are not able to execute the
260 * command or FW executes it but signals an error. In the latter case
261 * the return value is the error code indicated by FW (negated).
262 */
263 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
264 int size, void *rpl, bool sleep_ok, int timeout)
265 {
266 static const int delay[] = {
267 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
268 };
269
270 u32 v;
271 u64 res;
272 int i, ms, delay_idx;
273 const __be64 *p = cmd;
274 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
275 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
276
277 if ((size & 15) || size > MBOX_LEN)
278 return -EINVAL;
279
280 /*
281 * If the device is off-line, as in EEH, commands will time out.
282 * Fail them early so we don't waste time waiting.
283 */
284 if (adap->pdev->error_state != pci_channel_io_normal)
285 return -EIO;
286
287 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
288 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
289 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
290
291 if (v != MBOX_OWNER_DRV)
292 return v ? -EBUSY : -ETIMEDOUT;
293
294 for (i = 0; i < size; i += 8)
295 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
296
297 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
298 t4_read_reg(adap, ctl_reg); /* flush write */
299
300 delay_idx = 0;
301 ms = delay[0];
302
303 for (i = 0; i < timeout; i += ms) {
304 if (sleep_ok) {
305 ms = delay[delay_idx]; /* last element may repeat */
306 if (delay_idx < ARRAY_SIZE(delay) - 1)
307 delay_idx++;
308 msleep(ms);
309 } else
310 mdelay(ms);
311
312 v = t4_read_reg(adap, ctl_reg);
313 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
314 if (!(v & MBMSGVALID_F)) {
315 t4_write_reg(adap, ctl_reg, 0);
316 continue;
317 }
318
319 res = t4_read_reg64(adap, data_reg);
320 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
321 fw_asrt(adap, data_reg);
322 res = FW_CMD_RETVAL_V(EIO);
323 } else if (rpl) {
324 get_mbox_rpl(adap, rpl, size / 8, data_reg);
325 }
326
327 if (FW_CMD_RETVAL_G((int)res))
328 dump_mbox(adap, mbox, data_reg);
329 t4_write_reg(adap, ctl_reg, 0);
330 return -FW_CMD_RETVAL_G((int)res);
331 }
332 }
333
334 dump_mbox(adap, mbox, data_reg);
335 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
336 *(const u8 *)cmd, mbox);
337 t4_report_fw_error(adap);
338 return -ETIMEDOUT;
339 }
340
341 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
342 void *rpl, bool sleep_ok)
343 {
344 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
345 FW_CMD_MAX_TIMEOUT);
346 }
347
348 static int t4_edc_err_read(struct adapter *adap, int idx)
349 {
350 u32 edc_ecc_err_addr_reg;
351 u32 rdata_reg;
352
353 if (is_t4(adap->params.chip)) {
354 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
355 return 0;
356 }
357 if (idx != 0 && idx != 1) {
358 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
359 return 0;
360 }
361
362 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
363 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
364
365 CH_WARN(adap,
366 "edc%d err addr 0x%x: 0x%x.\n",
367 idx, edc_ecc_err_addr_reg,
368 t4_read_reg(adap, edc_ecc_err_addr_reg));
369 CH_WARN(adap,
370 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
371 rdata_reg,
372 (unsigned long long)t4_read_reg64(adap, rdata_reg),
373 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
381
382 return 0;
383 }
384
385 /**
386 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
387 * @adap: the adapter
388 * @win: PCI-E Memory Window to use
389 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
390 * @addr: address within indicated memory type
391 * @len: amount of memory to transfer
392 * @hbuf: host memory buffer
393 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
394 *
395 * Reads/writes an [almost] arbitrary memory region in the firmware: the
396 * firmware memory address and host buffer must be aligned on 32-bit
397 * boudaries; the length may be arbitrary. The memory is transferred as
398 * a raw byte sequence from/to the firmware's memory. If this memory
399 * contains data structures which contain multi-byte integers, it's the
400 * caller's responsibility to perform appropriate byte order conversions.
401 */
402 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
403 u32 len, void *hbuf, int dir)
404 {
405 u32 pos, offset, resid, memoffset;
406 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
407 u32 *buf;
408
409 /* Argument sanity checks ...
410 */
411 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
412 return -EINVAL;
413 buf = (u32 *)hbuf;
414
415 /* It's convenient to be able to handle lengths which aren't a
416 * multiple of 32-bits because we often end up transferring files to
417 * the firmware. So we'll handle that by normalizing the length here
418 * and then handling any residual transfer at the end.
419 */
420 resid = len & 0x3;
421 len -= resid;
422
423 /* Offset into the region of memory which is being accessed
424 * MEM_EDC0 = 0
425 * MEM_EDC1 = 1
426 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
427 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
428 */
429 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
430 if (mtype != MEM_MC1)
431 memoffset = (mtype * (edc_size * 1024 * 1024));
432 else {
433 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
434 MA_EXT_MEMORY0_BAR_A));
435 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
436 }
437
438 /* Determine the PCIE_MEM_ACCESS_OFFSET */
439 addr = addr + memoffset;
440
441 /* Each PCI-E Memory Window is programmed with a window size -- or
442 * "aperture" -- which controls the granularity of its mapping onto
443 * adapter memory. We need to grab that aperture in order to know
444 * how to use the specified window. The window is also programmed
445 * with the base address of the Memory Window in BAR0's address
446 * space. For T4 this is an absolute PCI-E Bus Address. For T5
447 * the address is relative to BAR0.
448 */
449 mem_reg = t4_read_reg(adap,
450 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
451 win));
452 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
453 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
454 if (is_t4(adap->params.chip))
455 mem_base -= adap->t4_bar0;
456 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
457
458 /* Calculate our initial PCI-E Memory Window Position and Offset into
459 * that Window.
460 */
461 pos = addr & ~(mem_aperture-1);
462 offset = addr - pos;
463
464 /* Set up initial PCI-E Memory Window to cover the start of our
465 * transfer. (Read it back to ensure that changes propagate before we
466 * attempt to use the new value.)
467 */
468 t4_write_reg(adap,
469 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
470 pos | win_pf);
471 t4_read_reg(adap,
472 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
473
474 /* Transfer data to/from the adapter as long as there's an integral
475 * number of 32-bit transfers to complete.
476 *
477 * A note on Endianness issues:
478 *
479 * The "register" reads and writes below from/to the PCI-E Memory
480 * Window invoke the standard adapter Big-Endian to PCI-E Link
481 * Little-Endian "swizzel." As a result, if we have the following
482 * data in adapter memory:
483 *
484 * Memory: ... | b0 | b1 | b2 | b3 | ...
485 * Address: i+0 i+1 i+2 i+3
486 *
487 * Then a read of the adapter memory via the PCI-E Memory Window
488 * will yield:
489 *
490 * x = readl(i)
491 * 31 0
492 * [ b3 | b2 | b1 | b0 ]
493 *
494 * If this value is stored into local memory on a Little-Endian system
495 * it will show up correctly in local memory as:
496 *
497 * ( ..., b0, b1, b2, b3, ... )
498 *
499 * But on a Big-Endian system, the store will show up in memory
500 * incorrectly swizzled as:
501 *
502 * ( ..., b3, b2, b1, b0, ... )
503 *
504 * So we need to account for this in the reads and writes to the
505 * PCI-E Memory Window below by undoing the register read/write
506 * swizzels.
507 */
508 while (len > 0) {
509 if (dir == T4_MEMORY_READ)
510 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
511 mem_base + offset));
512 else
513 t4_write_reg(adap, mem_base + offset,
514 (__force u32)cpu_to_le32(*buf++));
515 offset += sizeof(__be32);
516 len -= sizeof(__be32);
517
518 /* If we've reached the end of our current window aperture,
519 * move the PCI-E Memory Window on to the next. Note that
520 * doing this here after "len" may be 0 allows us to set up
521 * the PCI-E Memory Window for a possible final residual
522 * transfer below ...
523 */
524 if (offset == mem_aperture) {
525 pos += mem_aperture;
526 offset = 0;
527 t4_write_reg(adap,
528 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
529 win), pos | win_pf);
530 t4_read_reg(adap,
531 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
532 win));
533 }
534 }
535
536 /* If the original transfer had a length which wasn't a multiple of
537 * 32-bits, now's where we need to finish off the transfer of the
538 * residual amount. The PCI-E Memory Window has already been moved
539 * above (if necessary) to cover this final transfer.
540 */
541 if (resid) {
542 union {
543 u32 word;
544 char byte[4];
545 } last;
546 unsigned char *bp;
547 int i;
548
549 if (dir == T4_MEMORY_READ) {
550 last.word = le32_to_cpu(
551 (__force __le32)t4_read_reg(adap,
552 mem_base + offset));
553 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
554 bp[i] = last.byte[i];
555 } else {
556 last.word = *buf;
557 for (i = resid; i < 4; i++)
558 last.byte[i] = 0;
559 t4_write_reg(adap, mem_base + offset,
560 (__force u32)cpu_to_le32(last.word));
561 }
562 }
563
564 return 0;
565 }
566
567 /* Return the specified PCI-E Configuration Space register from our Physical
568 * Function. We try first via a Firmware LDST Command since we prefer to let
569 * the firmware own all of these registers, but if that fails we go for it
570 * directly ourselves.
571 */
572 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
573 {
574 u32 val, ldst_addrspace;
575
576 /* If fw_attach != 0, construct and send the Firmware LDST Command to
577 * retrieve the specified PCI-E Configuration Space register.
578 */
579 struct fw_ldst_cmd ldst_cmd;
580 int ret;
581
582 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
583 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
584 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
585 FW_CMD_REQUEST_F |
586 FW_CMD_READ_F |
587 ldst_addrspace);
588 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
589 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
590 ldst_cmd.u.pcie.ctrl_to_fn =
591 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
592 ldst_cmd.u.pcie.r = reg;
593
594 /* If the LDST Command succeeds, return the result, otherwise
595 * fall through to reading it directly ourselves ...
596 */
597 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
598 &ldst_cmd);
599 if (ret == 0)
600 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
601 else
602 /* Read the desired Configuration Space register via the PCI-E
603 * Backdoor mechanism.
604 */
605 t4_hw_pci_read_cfg4(adap, reg, &val);
606 return val;
607 }
608
609 /* Get the window based on base passed to it.
610 * Window aperture is currently unhandled, but there is no use case for it
611 * right now
612 */
613 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
614 u32 memwin_base)
615 {
616 u32 ret;
617
618 if (is_t4(adap->params.chip)) {
619 u32 bar0;
620
621 /* Truncation intentional: we only read the bottom 32-bits of
622 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
623 * mechanism to read BAR0 instead of using
624 * pci_resource_start() because we could be operating from
625 * within a Virtual Machine which is trapping our accesses to
626 * our Configuration Space and we need to set up the PCI-E
627 * Memory Window decoders with the actual addresses which will
628 * be coming across the PCI-E link.
629 */
630 bar0 = t4_read_pcie_cfg4(adap, pci_base);
631 bar0 &= pci_mask;
632 adap->t4_bar0 = bar0;
633
634 ret = bar0 + memwin_base;
635 } else {
636 /* For T5, only relative offset inside the PCIe BAR is passed */
637 ret = memwin_base;
638 }
639 return ret;
640 }
641
642 /* Get the default utility window (win0) used by everyone */
643 u32 t4_get_util_window(struct adapter *adap)
644 {
645 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
646 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
647 }
648
649 /* Set up memory window for accessing adapter memory ranges. (Read
650 * back MA register to ensure that changes propagate before we attempt
651 * to use the new values.)
652 */
653 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
654 {
655 t4_write_reg(adap,
656 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
657 memwin_base | BIR_V(0) |
658 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
659 t4_read_reg(adap,
660 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
661 }
662
663 /**
664 * t4_get_regs_len - return the size of the chips register set
665 * @adapter: the adapter
666 *
667 * Returns the size of the chip's BAR0 register space.
668 */
669 unsigned int t4_get_regs_len(struct adapter *adapter)
670 {
671 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
672
673 switch (chip_version) {
674 case CHELSIO_T4:
675 return T4_REGMAP_SIZE;
676
677 case CHELSIO_T5:
678 case CHELSIO_T6:
679 return T5_REGMAP_SIZE;
680 }
681
682 dev_err(adapter->pdev_dev,
683 "Unsupported chip version %d\n", chip_version);
684 return 0;
685 }
686
687 /**
688 * t4_get_regs - read chip registers into provided buffer
689 * @adap: the adapter
690 * @buf: register buffer
691 * @buf_size: size (in bytes) of register buffer
692 *
693 * If the provided register buffer isn't large enough for the chip's
694 * full register range, the register dump will be truncated to the
695 * register buffer's size.
696 */
697 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
698 {
699 static const unsigned int t4_reg_ranges[] = {
700 0x1008, 0x1108,
701 0x1180, 0x11b4,
702 0x11fc, 0x123c,
703 0x1300, 0x173c,
704 0x1800, 0x18fc,
705 0x3000, 0x305c,
706 0x3068, 0x30d8,
707 0x30e0, 0x5924,
708 0x5960, 0x59d4,
709 0x5a00, 0x5af8,
710 0x6000, 0x6098,
711 0x6100, 0x6150,
712 0x6200, 0x6208,
713 0x6240, 0x6248,
714 0x6280, 0x6338,
715 0x6370, 0x638c,
716 0x6400, 0x643c,
717 0x6500, 0x6524,
718 0x6a00, 0x6a38,
719 0x6a60, 0x6a78,
720 0x6b00, 0x6b84,
721 0x6bf0, 0x6c84,
722 0x6cf0, 0x6d84,
723 0x6df0, 0x6e84,
724 0x6ef0, 0x6f84,
725 0x6ff0, 0x7084,
726 0x70f0, 0x7184,
727 0x71f0, 0x7284,
728 0x72f0, 0x7384,
729 0x73f0, 0x7450,
730 0x7500, 0x7530,
731 0x7600, 0x761c,
732 0x7680, 0x76cc,
733 0x7700, 0x7798,
734 0x77c0, 0x77fc,
735 0x7900, 0x79fc,
736 0x7b00, 0x7c38,
737 0x7d00, 0x7efc,
738 0x8dc0, 0x8e1c,
739 0x8e30, 0x8e78,
740 0x8ea0, 0x8f6c,
741 0x8fc0, 0x9074,
742 0x90fc, 0x90fc,
743 0x9400, 0x9458,
744 0x9600, 0x96bc,
745 0x9800, 0x9808,
746 0x9820, 0x983c,
747 0x9850, 0x9864,
748 0x9c00, 0x9c6c,
749 0x9c80, 0x9cec,
750 0x9d00, 0x9d6c,
751 0x9d80, 0x9dec,
752 0x9e00, 0x9e6c,
753 0x9e80, 0x9eec,
754 0x9f00, 0x9f6c,
755 0x9f80, 0x9fec,
756 0xd004, 0xd03c,
757 0xdfc0, 0xdfe0,
758 0xe000, 0xea7c,
759 0xf000, 0x11110,
760 0x11118, 0x11190,
761 0x19040, 0x1906c,
762 0x19078, 0x19080,
763 0x1908c, 0x19124,
764 0x19150, 0x191b0,
765 0x191d0, 0x191e8,
766 0x19238, 0x1924c,
767 0x193f8, 0x19474,
768 0x19490, 0x194f8,
769 0x19800, 0x19f4c,
770 0x1a000, 0x1a06c,
771 0x1a0b0, 0x1a120,
772 0x1a128, 0x1a138,
773 0x1a190, 0x1a1c4,
774 0x1a1fc, 0x1a1fc,
775 0x1e040, 0x1e04c,
776 0x1e284, 0x1e28c,
777 0x1e2c0, 0x1e2c0,
778 0x1e2e0, 0x1e2e0,
779 0x1e300, 0x1e384,
780 0x1e3c0, 0x1e3c8,
781 0x1e440, 0x1e44c,
782 0x1e684, 0x1e68c,
783 0x1e6c0, 0x1e6c0,
784 0x1e6e0, 0x1e6e0,
785 0x1e700, 0x1e784,
786 0x1e7c0, 0x1e7c8,
787 0x1e840, 0x1e84c,
788 0x1ea84, 0x1ea8c,
789 0x1eac0, 0x1eac0,
790 0x1eae0, 0x1eae0,
791 0x1eb00, 0x1eb84,
792 0x1ebc0, 0x1ebc8,
793 0x1ec40, 0x1ec4c,
794 0x1ee84, 0x1ee8c,
795 0x1eec0, 0x1eec0,
796 0x1eee0, 0x1eee0,
797 0x1ef00, 0x1ef84,
798 0x1efc0, 0x1efc8,
799 0x1f040, 0x1f04c,
800 0x1f284, 0x1f28c,
801 0x1f2c0, 0x1f2c0,
802 0x1f2e0, 0x1f2e0,
803 0x1f300, 0x1f384,
804 0x1f3c0, 0x1f3c8,
805 0x1f440, 0x1f44c,
806 0x1f684, 0x1f68c,
807 0x1f6c0, 0x1f6c0,
808 0x1f6e0, 0x1f6e0,
809 0x1f700, 0x1f784,
810 0x1f7c0, 0x1f7c8,
811 0x1f840, 0x1f84c,
812 0x1fa84, 0x1fa8c,
813 0x1fac0, 0x1fac0,
814 0x1fae0, 0x1fae0,
815 0x1fb00, 0x1fb84,
816 0x1fbc0, 0x1fbc8,
817 0x1fc40, 0x1fc4c,
818 0x1fe84, 0x1fe8c,
819 0x1fec0, 0x1fec0,
820 0x1fee0, 0x1fee0,
821 0x1ff00, 0x1ff84,
822 0x1ffc0, 0x1ffc8,
823 0x20000, 0x2002c,
824 0x20100, 0x2013c,
825 0x20190, 0x201c8,
826 0x20200, 0x20318,
827 0x20400, 0x20528,
828 0x20540, 0x20614,
829 0x21000, 0x21040,
830 0x2104c, 0x21060,
831 0x210c0, 0x210ec,
832 0x21200, 0x21268,
833 0x21270, 0x21284,
834 0x212fc, 0x21388,
835 0x21400, 0x21404,
836 0x21500, 0x21518,
837 0x2152c, 0x2153c,
838 0x21550, 0x21554,
839 0x21600, 0x21600,
840 0x21608, 0x21628,
841 0x21630, 0x2163c,
842 0x21700, 0x2171c,
843 0x21780, 0x2178c,
844 0x21800, 0x21c38,
845 0x21c80, 0x21d7c,
846 0x21e00, 0x21e04,
847 0x22000, 0x2202c,
848 0x22100, 0x2213c,
849 0x22190, 0x221c8,
850 0x22200, 0x22318,
851 0x22400, 0x22528,
852 0x22540, 0x22614,
853 0x23000, 0x23040,
854 0x2304c, 0x23060,
855 0x230c0, 0x230ec,
856 0x23200, 0x23268,
857 0x23270, 0x23284,
858 0x232fc, 0x23388,
859 0x23400, 0x23404,
860 0x23500, 0x23518,
861 0x2352c, 0x2353c,
862 0x23550, 0x23554,
863 0x23600, 0x23600,
864 0x23608, 0x23628,
865 0x23630, 0x2363c,
866 0x23700, 0x2371c,
867 0x23780, 0x2378c,
868 0x23800, 0x23c38,
869 0x23c80, 0x23d7c,
870 0x23e00, 0x23e04,
871 0x24000, 0x2402c,
872 0x24100, 0x2413c,
873 0x24190, 0x241c8,
874 0x24200, 0x24318,
875 0x24400, 0x24528,
876 0x24540, 0x24614,
877 0x25000, 0x25040,
878 0x2504c, 0x25060,
879 0x250c0, 0x250ec,
880 0x25200, 0x25268,
881 0x25270, 0x25284,
882 0x252fc, 0x25388,
883 0x25400, 0x25404,
884 0x25500, 0x25518,
885 0x2552c, 0x2553c,
886 0x25550, 0x25554,
887 0x25600, 0x25600,
888 0x25608, 0x25628,
889 0x25630, 0x2563c,
890 0x25700, 0x2571c,
891 0x25780, 0x2578c,
892 0x25800, 0x25c38,
893 0x25c80, 0x25d7c,
894 0x25e00, 0x25e04,
895 0x26000, 0x2602c,
896 0x26100, 0x2613c,
897 0x26190, 0x261c8,
898 0x26200, 0x26318,
899 0x26400, 0x26528,
900 0x26540, 0x26614,
901 0x27000, 0x27040,
902 0x2704c, 0x27060,
903 0x270c0, 0x270ec,
904 0x27200, 0x27268,
905 0x27270, 0x27284,
906 0x272fc, 0x27388,
907 0x27400, 0x27404,
908 0x27500, 0x27518,
909 0x2752c, 0x2753c,
910 0x27550, 0x27554,
911 0x27600, 0x27600,
912 0x27608, 0x27628,
913 0x27630, 0x2763c,
914 0x27700, 0x2771c,
915 0x27780, 0x2778c,
916 0x27800, 0x27c38,
917 0x27c80, 0x27d7c,
918 0x27e00, 0x27e04,
919 };
920
921 static const unsigned int t5_reg_ranges[] = {
922 0x1008, 0x1148,
923 0x1180, 0x11b4,
924 0x11fc, 0x123c,
925 0x1280, 0x173c,
926 0x1800, 0x18fc,
927 0x3000, 0x3028,
928 0x3068, 0x30d8,
929 0x30e0, 0x30fc,
930 0x3140, 0x357c,
931 0x35a8, 0x35cc,
932 0x35ec, 0x35ec,
933 0x3600, 0x5624,
934 0x56cc, 0x575c,
935 0x580c, 0x5814,
936 0x5890, 0x58bc,
937 0x5940, 0x59dc,
938 0x59fc, 0x5a18,
939 0x5a60, 0x5a9c,
940 0x5b94, 0x5bfc,
941 0x6000, 0x6040,
942 0x6058, 0x614c,
943 0x7700, 0x7798,
944 0x77c0, 0x78fc,
945 0x7b00, 0x7c54,
946 0x7d00, 0x7efc,
947 0x8dc0, 0x8de0,
948 0x8df8, 0x8e84,
949 0x8ea0, 0x8f84,
950 0x8fc0, 0x90f8,
951 0x9400, 0x9470,
952 0x9600, 0x96f4,
953 0x9800, 0x9808,
954 0x9820, 0x983c,
955 0x9850, 0x9864,
956 0x9c00, 0x9c6c,
957 0x9c80, 0x9cec,
958 0x9d00, 0x9d6c,
959 0x9d80, 0x9dec,
960 0x9e00, 0x9e6c,
961 0x9e80, 0x9eec,
962 0x9f00, 0x9f6c,
963 0x9f80, 0xa020,
964 0xd004, 0xd03c,
965 0xdfc0, 0xdfe0,
966 0xe000, 0x11088,
967 0x1109c, 0x11110,
968 0x11118, 0x1117c,
969 0x11190, 0x11204,
970 0x19040, 0x1906c,
971 0x19078, 0x19080,
972 0x1908c, 0x19124,
973 0x19150, 0x191b0,
974 0x191d0, 0x191e8,
975 0x19238, 0x19290,
976 0x193f8, 0x19474,
977 0x19490, 0x194cc,
978 0x194f0, 0x194f8,
979 0x19c00, 0x19c60,
980 0x19c94, 0x19e10,
981 0x19e50, 0x19f34,
982 0x19f40, 0x19f50,
983 0x19f90, 0x19fe4,
984 0x1a000, 0x1a06c,
985 0x1a0b0, 0x1a120,
986 0x1a128, 0x1a138,
987 0x1a190, 0x1a1c4,
988 0x1a1fc, 0x1a1fc,
989 0x1e008, 0x1e00c,
990 0x1e040, 0x1e04c,
991 0x1e284, 0x1e290,
992 0x1e2c0, 0x1e2c0,
993 0x1e2e0, 0x1e2e0,
994 0x1e300, 0x1e384,
995 0x1e3c0, 0x1e3c8,
996 0x1e408, 0x1e40c,
997 0x1e440, 0x1e44c,
998 0x1e684, 0x1e690,
999 0x1e6c0, 0x1e6c0,
1000 0x1e6e0, 0x1e6e0,
1001 0x1e700, 0x1e784,
1002 0x1e7c0, 0x1e7c8,
1003 0x1e808, 0x1e80c,
1004 0x1e840, 0x1e84c,
1005 0x1ea84, 0x1ea90,
1006 0x1eac0, 0x1eac0,
1007 0x1eae0, 0x1eae0,
1008 0x1eb00, 0x1eb84,
1009 0x1ebc0, 0x1ebc8,
1010 0x1ec08, 0x1ec0c,
1011 0x1ec40, 0x1ec4c,
1012 0x1ee84, 0x1ee90,
1013 0x1eec0, 0x1eec0,
1014 0x1eee0, 0x1eee0,
1015 0x1ef00, 0x1ef84,
1016 0x1efc0, 0x1efc8,
1017 0x1f008, 0x1f00c,
1018 0x1f040, 0x1f04c,
1019 0x1f284, 0x1f290,
1020 0x1f2c0, 0x1f2c0,
1021 0x1f2e0, 0x1f2e0,
1022 0x1f300, 0x1f384,
1023 0x1f3c0, 0x1f3c8,
1024 0x1f408, 0x1f40c,
1025 0x1f440, 0x1f44c,
1026 0x1f684, 0x1f690,
1027 0x1f6c0, 0x1f6c0,
1028 0x1f6e0, 0x1f6e0,
1029 0x1f700, 0x1f784,
1030 0x1f7c0, 0x1f7c8,
1031 0x1f808, 0x1f80c,
1032 0x1f840, 0x1f84c,
1033 0x1fa84, 0x1fa90,
1034 0x1fac0, 0x1fac0,
1035 0x1fae0, 0x1fae0,
1036 0x1fb00, 0x1fb84,
1037 0x1fbc0, 0x1fbc8,
1038 0x1fc08, 0x1fc0c,
1039 0x1fc40, 0x1fc4c,
1040 0x1fe84, 0x1fe90,
1041 0x1fec0, 0x1fec0,
1042 0x1fee0, 0x1fee0,
1043 0x1ff00, 0x1ff84,
1044 0x1ffc0, 0x1ffc8,
1045 0x30000, 0x30030,
1046 0x30100, 0x30144,
1047 0x30190, 0x301d0,
1048 0x30200, 0x30318,
1049 0x30400, 0x3052c,
1050 0x30540, 0x3061c,
1051 0x30800, 0x30834,
1052 0x308c0, 0x30908,
1053 0x30910, 0x309ac,
1054 0x30a00, 0x30a2c,
1055 0x30a44, 0x30a50,
1056 0x30a74, 0x30c24,
1057 0x30d00, 0x30d00,
1058 0x30d08, 0x30d14,
1059 0x30d1c, 0x30d20,
1060 0x30d3c, 0x30d50,
1061 0x31200, 0x3120c,
1062 0x31220, 0x31220,
1063 0x31240, 0x31240,
1064 0x31600, 0x3160c,
1065 0x31a00, 0x31a1c,
1066 0x31e00, 0x31e20,
1067 0x31e38, 0x31e3c,
1068 0x31e80, 0x31e80,
1069 0x31e88, 0x31ea8,
1070 0x31eb0, 0x31eb4,
1071 0x31ec8, 0x31ed4,
1072 0x31fb8, 0x32004,
1073 0x32200, 0x32200,
1074 0x32208, 0x32240,
1075 0x32248, 0x32280,
1076 0x32288, 0x322c0,
1077 0x322c8, 0x322fc,
1078 0x32600, 0x32630,
1079 0x32a00, 0x32abc,
1080 0x32b00, 0x32b70,
1081 0x33000, 0x33048,
1082 0x33060, 0x3309c,
1083 0x330f0, 0x33148,
1084 0x33160, 0x3319c,
1085 0x331f0, 0x332e4,
1086 0x332f8, 0x333e4,
1087 0x333f8, 0x33448,
1088 0x33460, 0x3349c,
1089 0x334f0, 0x33548,
1090 0x33560, 0x3359c,
1091 0x335f0, 0x336e4,
1092 0x336f8, 0x337e4,
1093 0x337f8, 0x337fc,
1094 0x33814, 0x33814,
1095 0x3382c, 0x3382c,
1096 0x33880, 0x3388c,
1097 0x338e8, 0x338ec,
1098 0x33900, 0x33948,
1099 0x33960, 0x3399c,
1100 0x339f0, 0x33ae4,
1101 0x33af8, 0x33b10,
1102 0x33b28, 0x33b28,
1103 0x33b3c, 0x33b50,
1104 0x33bf0, 0x33c10,
1105 0x33c28, 0x33c28,
1106 0x33c3c, 0x33c50,
1107 0x33cf0, 0x33cfc,
1108 0x34000, 0x34030,
1109 0x34100, 0x34144,
1110 0x34190, 0x341d0,
1111 0x34200, 0x34318,
1112 0x34400, 0x3452c,
1113 0x34540, 0x3461c,
1114 0x34800, 0x34834,
1115 0x348c0, 0x34908,
1116 0x34910, 0x349ac,
1117 0x34a00, 0x34a2c,
1118 0x34a44, 0x34a50,
1119 0x34a74, 0x34c24,
1120 0x34d00, 0x34d00,
1121 0x34d08, 0x34d14,
1122 0x34d1c, 0x34d20,
1123 0x34d3c, 0x34d50,
1124 0x35200, 0x3520c,
1125 0x35220, 0x35220,
1126 0x35240, 0x35240,
1127 0x35600, 0x3560c,
1128 0x35a00, 0x35a1c,
1129 0x35e00, 0x35e20,
1130 0x35e38, 0x35e3c,
1131 0x35e80, 0x35e80,
1132 0x35e88, 0x35ea8,
1133 0x35eb0, 0x35eb4,
1134 0x35ec8, 0x35ed4,
1135 0x35fb8, 0x36004,
1136 0x36200, 0x36200,
1137 0x36208, 0x36240,
1138 0x36248, 0x36280,
1139 0x36288, 0x362c0,
1140 0x362c8, 0x362fc,
1141 0x36600, 0x36630,
1142 0x36a00, 0x36abc,
1143 0x36b00, 0x36b70,
1144 0x37000, 0x37048,
1145 0x37060, 0x3709c,
1146 0x370f0, 0x37148,
1147 0x37160, 0x3719c,
1148 0x371f0, 0x372e4,
1149 0x372f8, 0x373e4,
1150 0x373f8, 0x37448,
1151 0x37460, 0x3749c,
1152 0x374f0, 0x37548,
1153 0x37560, 0x3759c,
1154 0x375f0, 0x376e4,
1155 0x376f8, 0x377e4,
1156 0x377f8, 0x377fc,
1157 0x37814, 0x37814,
1158 0x3782c, 0x3782c,
1159 0x37880, 0x3788c,
1160 0x378e8, 0x378ec,
1161 0x37900, 0x37948,
1162 0x37960, 0x3799c,
1163 0x379f0, 0x37ae4,
1164 0x37af8, 0x37b10,
1165 0x37b28, 0x37b28,
1166 0x37b3c, 0x37b50,
1167 0x37bf0, 0x37c10,
1168 0x37c28, 0x37c28,
1169 0x37c3c, 0x37c50,
1170 0x37cf0, 0x37cfc,
1171 0x38000, 0x38030,
1172 0x38100, 0x38144,
1173 0x38190, 0x381d0,
1174 0x38200, 0x38318,
1175 0x38400, 0x3852c,
1176 0x38540, 0x3861c,
1177 0x38800, 0x38834,
1178 0x388c0, 0x38908,
1179 0x38910, 0x389ac,
1180 0x38a00, 0x38a2c,
1181 0x38a44, 0x38a50,
1182 0x38a74, 0x38c24,
1183 0x38d00, 0x38d00,
1184 0x38d08, 0x38d14,
1185 0x38d1c, 0x38d20,
1186 0x38d3c, 0x38d50,
1187 0x39200, 0x3920c,
1188 0x39220, 0x39220,
1189 0x39240, 0x39240,
1190 0x39600, 0x3960c,
1191 0x39a00, 0x39a1c,
1192 0x39e00, 0x39e20,
1193 0x39e38, 0x39e3c,
1194 0x39e80, 0x39e80,
1195 0x39e88, 0x39ea8,
1196 0x39eb0, 0x39eb4,
1197 0x39ec8, 0x39ed4,
1198 0x39fb8, 0x3a004,
1199 0x3a200, 0x3a200,
1200 0x3a208, 0x3a240,
1201 0x3a248, 0x3a280,
1202 0x3a288, 0x3a2c0,
1203 0x3a2c8, 0x3a2fc,
1204 0x3a600, 0x3a630,
1205 0x3aa00, 0x3aabc,
1206 0x3ab00, 0x3ab70,
1207 0x3b000, 0x3b048,
1208 0x3b060, 0x3b09c,
1209 0x3b0f0, 0x3b148,
1210 0x3b160, 0x3b19c,
1211 0x3b1f0, 0x3b2e4,
1212 0x3b2f8, 0x3b3e4,
1213 0x3b3f8, 0x3b448,
1214 0x3b460, 0x3b49c,
1215 0x3b4f0, 0x3b548,
1216 0x3b560, 0x3b59c,
1217 0x3b5f0, 0x3b6e4,
1218 0x3b6f8, 0x3b7e4,
1219 0x3b7f8, 0x3b7fc,
1220 0x3b814, 0x3b814,
1221 0x3b82c, 0x3b82c,
1222 0x3b880, 0x3b88c,
1223 0x3b8e8, 0x3b8ec,
1224 0x3b900, 0x3b948,
1225 0x3b960, 0x3b99c,
1226 0x3b9f0, 0x3bae4,
1227 0x3baf8, 0x3bb10,
1228 0x3bb28, 0x3bb28,
1229 0x3bb3c, 0x3bb50,
1230 0x3bbf0, 0x3bc10,
1231 0x3bc28, 0x3bc28,
1232 0x3bc3c, 0x3bc50,
1233 0x3bcf0, 0x3bcfc,
1234 0x3c000, 0x3c030,
1235 0x3c100, 0x3c144,
1236 0x3c190, 0x3c1d0,
1237 0x3c200, 0x3c318,
1238 0x3c400, 0x3c52c,
1239 0x3c540, 0x3c61c,
1240 0x3c800, 0x3c834,
1241 0x3c8c0, 0x3c908,
1242 0x3c910, 0x3c9ac,
1243 0x3ca00, 0x3ca2c,
1244 0x3ca44, 0x3ca50,
1245 0x3ca74, 0x3cc24,
1246 0x3cd00, 0x3cd00,
1247 0x3cd08, 0x3cd14,
1248 0x3cd1c, 0x3cd20,
1249 0x3cd3c, 0x3cd50,
1250 0x3d200, 0x3d20c,
1251 0x3d220, 0x3d220,
1252 0x3d240, 0x3d240,
1253 0x3d600, 0x3d60c,
1254 0x3da00, 0x3da1c,
1255 0x3de00, 0x3de20,
1256 0x3de38, 0x3de3c,
1257 0x3de80, 0x3de80,
1258 0x3de88, 0x3dea8,
1259 0x3deb0, 0x3deb4,
1260 0x3dec8, 0x3ded4,
1261 0x3dfb8, 0x3e004,
1262 0x3e200, 0x3e200,
1263 0x3e208, 0x3e240,
1264 0x3e248, 0x3e280,
1265 0x3e288, 0x3e2c0,
1266 0x3e2c8, 0x3e2fc,
1267 0x3e600, 0x3e630,
1268 0x3ea00, 0x3eabc,
1269 0x3eb00, 0x3eb70,
1270 0x3f000, 0x3f048,
1271 0x3f060, 0x3f09c,
1272 0x3f0f0, 0x3f148,
1273 0x3f160, 0x3f19c,
1274 0x3f1f0, 0x3f2e4,
1275 0x3f2f8, 0x3f3e4,
1276 0x3f3f8, 0x3f448,
1277 0x3f460, 0x3f49c,
1278 0x3f4f0, 0x3f548,
1279 0x3f560, 0x3f59c,
1280 0x3f5f0, 0x3f6e4,
1281 0x3f6f8, 0x3f7e4,
1282 0x3f7f8, 0x3f7fc,
1283 0x3f814, 0x3f814,
1284 0x3f82c, 0x3f82c,
1285 0x3f880, 0x3f88c,
1286 0x3f8e8, 0x3f8ec,
1287 0x3f900, 0x3f948,
1288 0x3f960, 0x3f99c,
1289 0x3f9f0, 0x3fae4,
1290 0x3faf8, 0x3fb10,
1291 0x3fb28, 0x3fb28,
1292 0x3fb3c, 0x3fb50,
1293 0x3fbf0, 0x3fc10,
1294 0x3fc28, 0x3fc28,
1295 0x3fc3c, 0x3fc50,
1296 0x3fcf0, 0x3fcfc,
1297 0x40000, 0x4000c,
1298 0x40040, 0x40068,
1299 0x4007c, 0x40144,
1300 0x40180, 0x4018c,
1301 0x40200, 0x40298,
1302 0x402ac, 0x4033c,
1303 0x403f8, 0x403fc,
1304 0x41304, 0x413c4,
1305 0x41400, 0x4141c,
1306 0x41480, 0x414d0,
1307 0x44000, 0x44078,
1308 0x440c0, 0x44278,
1309 0x442c0, 0x44478,
1310 0x444c0, 0x44678,
1311 0x446c0, 0x44878,
1312 0x448c0, 0x449fc,
1313 0x45000, 0x45068,
1314 0x45080, 0x45084,
1315 0x450a0, 0x450b0,
1316 0x45200, 0x45268,
1317 0x45280, 0x45284,
1318 0x452a0, 0x452b0,
1319 0x460c0, 0x460e4,
1320 0x47000, 0x4708c,
1321 0x47200, 0x47250,
1322 0x47400, 0x47420,
1323 0x47600, 0x47618,
1324 0x47800, 0x47814,
1325 0x48000, 0x4800c,
1326 0x48040, 0x48068,
1327 0x4807c, 0x48144,
1328 0x48180, 0x4818c,
1329 0x48200, 0x48298,
1330 0x482ac, 0x4833c,
1331 0x483f8, 0x483fc,
1332 0x49304, 0x493c4,
1333 0x49400, 0x4941c,
1334 0x49480, 0x494d0,
1335 0x4c000, 0x4c078,
1336 0x4c0c0, 0x4c278,
1337 0x4c2c0, 0x4c478,
1338 0x4c4c0, 0x4c678,
1339 0x4c6c0, 0x4c878,
1340 0x4c8c0, 0x4c9fc,
1341 0x4d000, 0x4d068,
1342 0x4d080, 0x4d084,
1343 0x4d0a0, 0x4d0b0,
1344 0x4d200, 0x4d268,
1345 0x4d280, 0x4d284,
1346 0x4d2a0, 0x4d2b0,
1347 0x4e0c0, 0x4e0e4,
1348 0x4f000, 0x4f08c,
1349 0x4f200, 0x4f250,
1350 0x4f400, 0x4f420,
1351 0x4f600, 0x4f618,
1352 0x4f800, 0x4f814,
1353 0x50000, 0x500cc,
1354 0x50400, 0x50400,
1355 0x50800, 0x508cc,
1356 0x50c00, 0x50c00,
1357 0x51000, 0x5101c,
1358 0x51300, 0x51308,
1359 };
1360
1361 static const unsigned int t6_reg_ranges[] = {
1362 0x1008, 0x1124,
1363 0x1138, 0x114c,
1364 0x1180, 0x11b4,
1365 0x11fc, 0x1254,
1366 0x1280, 0x133c,
1367 0x1800, 0x18fc,
1368 0x3000, 0x302c,
1369 0x3060, 0x30d8,
1370 0x30e0, 0x30fc,
1371 0x3140, 0x357c,
1372 0x35a8, 0x35cc,
1373 0x35ec, 0x35ec,
1374 0x3600, 0x5624,
1375 0x56cc, 0x575c,
1376 0x580c, 0x5814,
1377 0x5890, 0x58bc,
1378 0x5940, 0x595c,
1379 0x5980, 0x598c,
1380 0x59b0, 0x59dc,
1381 0x59fc, 0x5a18,
1382 0x5a60, 0x5a6c,
1383 0x5a80, 0x5a9c,
1384 0x5b94, 0x5bfc,
1385 0x5c10, 0x5ec0,
1386 0x5ec8, 0x5ecc,
1387 0x6000, 0x6040,
1388 0x6058, 0x619c,
1389 0x7700, 0x7798,
1390 0x77c0, 0x7880,
1391 0x78cc, 0x78fc,
1392 0x7b00, 0x7c54,
1393 0x7d00, 0x7efc,
1394 0x8dc0, 0x8de4,
1395 0x8df8, 0x8e84,
1396 0x8ea0, 0x8f88,
1397 0x8fb8, 0x9124,
1398 0x9400, 0x9470,
1399 0x9600, 0x971c,
1400 0x9800, 0x9808,
1401 0x9820, 0x983c,
1402 0x9850, 0x9864,
1403 0x9c00, 0x9c6c,
1404 0x9c80, 0x9cec,
1405 0x9d00, 0x9d6c,
1406 0x9d80, 0x9dec,
1407 0x9e00, 0x9e6c,
1408 0x9e80, 0x9eec,
1409 0x9f00, 0x9f6c,
1410 0x9f80, 0xa020,
1411 0xd004, 0xd03c,
1412 0xd100, 0xd118,
1413 0xd200, 0xd31c,
1414 0xdfc0, 0xdfe0,
1415 0xe000, 0xf008,
1416 0x11000, 0x11014,
1417 0x11048, 0x1117c,
1418 0x11190, 0x11270,
1419 0x11300, 0x1130c,
1420 0x12000, 0x1206c,
1421 0x19040, 0x1906c,
1422 0x19078, 0x19080,
1423 0x1908c, 0x19124,
1424 0x19150, 0x191b0,
1425 0x191d0, 0x191e8,
1426 0x19238, 0x192bc,
1427 0x193f8, 0x19474,
1428 0x19490, 0x194cc,
1429 0x194f0, 0x194f8,
1430 0x19c00, 0x19c80,
1431 0x19c94, 0x19cbc,
1432 0x19ce4, 0x19d28,
1433 0x19d50, 0x19d78,
1434 0x19d94, 0x19dc8,
1435 0x19df0, 0x19e10,
1436 0x19e50, 0x19e6c,
1437 0x19ea0, 0x19f34,
1438 0x19f40, 0x19f50,
1439 0x19f90, 0x19fac,
1440 0x19fc4, 0x19fe4,
1441 0x1a000, 0x1a06c,
1442 0x1a0b0, 0x1a120,
1443 0x1a128, 0x1a138,
1444 0x1a190, 0x1a1c4,
1445 0x1a1fc, 0x1a1fc,
1446 0x1e008, 0x1e00c,
1447 0x1e040, 0x1e04c,
1448 0x1e284, 0x1e290,
1449 0x1e2c0, 0x1e2c0,
1450 0x1e2e0, 0x1e2e0,
1451 0x1e300, 0x1e384,
1452 0x1e3c0, 0x1e3c8,
1453 0x1e408, 0x1e40c,
1454 0x1e440, 0x1e44c,
1455 0x1e684, 0x1e690,
1456 0x1e6c0, 0x1e6c0,
1457 0x1e6e0, 0x1e6e0,
1458 0x1e700, 0x1e784,
1459 0x1e7c0, 0x1e7c8,
1460 0x1e808, 0x1e80c,
1461 0x1e840, 0x1e84c,
1462 0x1ea84, 0x1ea90,
1463 0x1eac0, 0x1eac0,
1464 0x1eae0, 0x1eae0,
1465 0x1eb00, 0x1eb84,
1466 0x1ebc0, 0x1ebc8,
1467 0x1ec08, 0x1ec0c,
1468 0x1ec40, 0x1ec4c,
1469 0x1ee84, 0x1ee90,
1470 0x1eec0, 0x1eec0,
1471 0x1eee0, 0x1eee0,
1472 0x1ef00, 0x1ef84,
1473 0x1efc0, 0x1efc8,
1474 0x1f008, 0x1f00c,
1475 0x1f040, 0x1f04c,
1476 0x1f284, 0x1f290,
1477 0x1f2c0, 0x1f2c0,
1478 0x1f2e0, 0x1f2e0,
1479 0x1f300, 0x1f384,
1480 0x1f3c0, 0x1f3c8,
1481 0x1f408, 0x1f40c,
1482 0x1f440, 0x1f44c,
1483 0x1f684, 0x1f690,
1484 0x1f6c0, 0x1f6c0,
1485 0x1f6e0, 0x1f6e0,
1486 0x1f700, 0x1f784,
1487 0x1f7c0, 0x1f7c8,
1488 0x1f808, 0x1f80c,
1489 0x1f840, 0x1f84c,
1490 0x1fa84, 0x1fa90,
1491 0x1fac0, 0x1fac0,
1492 0x1fae0, 0x1fae0,
1493 0x1fb00, 0x1fb84,
1494 0x1fbc0, 0x1fbc8,
1495 0x1fc08, 0x1fc0c,
1496 0x1fc40, 0x1fc4c,
1497 0x1fe84, 0x1fe90,
1498 0x1fec0, 0x1fec0,
1499 0x1fee0, 0x1fee0,
1500 0x1ff00, 0x1ff84,
1501 0x1ffc0, 0x1ffc8,
1502 0x30000, 0x30070,
1503 0x30100, 0x301d0,
1504 0x30200, 0x30320,
1505 0x30400, 0x3052c,
1506 0x30540, 0x3061c,
1507 0x30800, 0x30890,
1508 0x308c0, 0x30908,
1509 0x30910, 0x309b8,
1510 0x30a00, 0x30a04,
1511 0x30a0c, 0x30a2c,
1512 0x30a44, 0x30a50,
1513 0x30a74, 0x30c24,
1514 0x30d00, 0x30d3c,
1515 0x30d44, 0x30d7c,
1516 0x30de0, 0x30de0,
1517 0x30e00, 0x30ed4,
1518 0x30f00, 0x30fa4,
1519 0x30fc0, 0x30fc4,
1520 0x31000, 0x31004,
1521 0x31080, 0x310fc,
1522 0x31208, 0x31220,
1523 0x3123c, 0x31254,
1524 0x31300, 0x31300,
1525 0x31308, 0x3131c,
1526 0x31338, 0x3133c,
1527 0x31380, 0x31380,
1528 0x31388, 0x313a8,
1529 0x313b4, 0x313b4,
1530 0x31400, 0x31420,
1531 0x31438, 0x3143c,
1532 0x31480, 0x31480,
1533 0x314a8, 0x314a8,
1534 0x314b0, 0x314b4,
1535 0x314c8, 0x314d4,
1536 0x31a40, 0x31a4c,
1537 0x31af0, 0x31b20,
1538 0x31b38, 0x31b3c,
1539 0x31b80, 0x31b80,
1540 0x31ba8, 0x31ba8,
1541 0x31bb0, 0x31bb4,
1542 0x31bc8, 0x31bd4,
1543 0x32140, 0x3218c,
1544 0x321f0, 0x32200,
1545 0x32218, 0x32218,
1546 0x32400, 0x32400,
1547 0x32408, 0x3241c,
1548 0x32618, 0x32620,
1549 0x32664, 0x32664,
1550 0x326a8, 0x326a8,
1551 0x326ec, 0x326ec,
1552 0x32a00, 0x32abc,
1553 0x32b00, 0x32b78,
1554 0x32c00, 0x32c00,
1555 0x32c08, 0x32c3c,
1556 0x32e00, 0x32e2c,
1557 0x32f00, 0x32f2c,
1558 0x33000, 0x330ac,
1559 0x330c0, 0x331ac,
1560 0x331c0, 0x332c4,
1561 0x332e4, 0x333c4,
1562 0x333e4, 0x334ac,
1563 0x334c0, 0x335ac,
1564 0x335c0, 0x336c4,
1565 0x336e4, 0x337c4,
1566 0x337e4, 0x337fc,
1567 0x33814, 0x33814,
1568 0x33854, 0x33868,
1569 0x33880, 0x3388c,
1570 0x338c0, 0x338d0,
1571 0x338e8, 0x338ec,
1572 0x33900, 0x339ac,
1573 0x339c0, 0x33ac4,
1574 0x33ae4, 0x33b10,
1575 0x33b24, 0x33b50,
1576 0x33bf0, 0x33c10,
1577 0x33c24, 0x33c50,
1578 0x33cf0, 0x33cfc,
1579 0x34000, 0x34070,
1580 0x34100, 0x341d0,
1581 0x34200, 0x34320,
1582 0x34400, 0x3452c,
1583 0x34540, 0x3461c,
1584 0x34800, 0x34890,
1585 0x348c0, 0x34908,
1586 0x34910, 0x349b8,
1587 0x34a00, 0x34a04,
1588 0x34a0c, 0x34a2c,
1589 0x34a44, 0x34a50,
1590 0x34a74, 0x34c24,
1591 0x34d00, 0x34d3c,
1592 0x34d44, 0x34d7c,
1593 0x34de0, 0x34de0,
1594 0x34e00, 0x34ed4,
1595 0x34f00, 0x34fa4,
1596 0x34fc0, 0x34fc4,
1597 0x35000, 0x35004,
1598 0x35080, 0x350fc,
1599 0x35208, 0x35220,
1600 0x3523c, 0x35254,
1601 0x35300, 0x35300,
1602 0x35308, 0x3531c,
1603 0x35338, 0x3533c,
1604 0x35380, 0x35380,
1605 0x35388, 0x353a8,
1606 0x353b4, 0x353b4,
1607 0x35400, 0x35420,
1608 0x35438, 0x3543c,
1609 0x35480, 0x35480,
1610 0x354a8, 0x354a8,
1611 0x354b0, 0x354b4,
1612 0x354c8, 0x354d4,
1613 0x35a40, 0x35a4c,
1614 0x35af0, 0x35b20,
1615 0x35b38, 0x35b3c,
1616 0x35b80, 0x35b80,
1617 0x35ba8, 0x35ba8,
1618 0x35bb0, 0x35bb4,
1619 0x35bc8, 0x35bd4,
1620 0x36140, 0x3618c,
1621 0x361f0, 0x36200,
1622 0x36218, 0x36218,
1623 0x36400, 0x36400,
1624 0x36408, 0x3641c,
1625 0x36618, 0x36620,
1626 0x36664, 0x36664,
1627 0x366a8, 0x366a8,
1628 0x366ec, 0x366ec,
1629 0x36a00, 0x36abc,
1630 0x36b00, 0x36b78,
1631 0x36c00, 0x36c00,
1632 0x36c08, 0x36c3c,
1633 0x36e00, 0x36e2c,
1634 0x36f00, 0x36f2c,
1635 0x37000, 0x370ac,
1636 0x370c0, 0x371ac,
1637 0x371c0, 0x372c4,
1638 0x372e4, 0x373c4,
1639 0x373e4, 0x374ac,
1640 0x374c0, 0x375ac,
1641 0x375c0, 0x376c4,
1642 0x376e4, 0x377c4,
1643 0x377e4, 0x377fc,
1644 0x37814, 0x37814,
1645 0x37854, 0x37868,
1646 0x37880, 0x3788c,
1647 0x378c0, 0x378d0,
1648 0x378e8, 0x378ec,
1649 0x37900, 0x379ac,
1650 0x379c0, 0x37ac4,
1651 0x37ae4, 0x37b10,
1652 0x37b24, 0x37b50,
1653 0x37bf0, 0x37c10,
1654 0x37c24, 0x37c50,
1655 0x37cf0, 0x37cfc,
1656 0x40040, 0x40040,
1657 0x40080, 0x40084,
1658 0x40100, 0x40100,
1659 0x40140, 0x401bc,
1660 0x40200, 0x40214,
1661 0x40228, 0x40228,
1662 0x40240, 0x40258,
1663 0x40280, 0x40280,
1664 0x40304, 0x40304,
1665 0x40330, 0x4033c,
1666 0x41304, 0x413dc,
1667 0x41400, 0x4141c,
1668 0x41480, 0x414d0,
1669 0x44000, 0x4407c,
1670 0x440c0, 0x4427c,
1671 0x442c0, 0x4447c,
1672 0x444c0, 0x4467c,
1673 0x446c0, 0x4487c,
1674 0x448c0, 0x44a7c,
1675 0x44ac0, 0x44c7c,
1676 0x44cc0, 0x44e7c,
1677 0x44ec0, 0x4507c,
1678 0x450c0, 0x451fc,
1679 0x45800, 0x45868,
1680 0x45880, 0x45884,
1681 0x458a0, 0x458b0,
1682 0x45a00, 0x45a68,
1683 0x45a80, 0x45a84,
1684 0x45aa0, 0x45ab0,
1685 0x460c0, 0x460e4,
1686 0x47000, 0x4708c,
1687 0x47200, 0x47250,
1688 0x47400, 0x47420,
1689 0x47600, 0x47618,
1690 0x47800, 0x4782c,
1691 0x50000, 0x500cc,
1692 0x50400, 0x50400,
1693 0x50800, 0x508cc,
1694 0x50c00, 0x50c00,
1695 0x51000, 0x510b0,
1696 0x51300, 0x51324,
1697 };
1698
1699 u32 *buf_end = (u32 *)((char *)buf + buf_size);
1700 const unsigned int *reg_ranges;
1701 int reg_ranges_size, range;
1702 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1703
1704 /* Select the right set of register ranges to dump depending on the
1705 * adapter chip type.
1706 */
1707 switch (chip_version) {
1708 case CHELSIO_T4:
1709 reg_ranges = t4_reg_ranges;
1710 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
1711 break;
1712
1713 case CHELSIO_T5:
1714 reg_ranges = t5_reg_ranges;
1715 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1716 break;
1717
1718 case CHELSIO_T6:
1719 reg_ranges = t6_reg_ranges;
1720 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1721 break;
1722
1723 default:
1724 dev_err(adap->pdev_dev,
1725 "Unsupported chip version %d\n", chip_version);
1726 return;
1727 }
1728
1729 /* Clear the register buffer and insert the appropriate register
1730 * values selected by the above register ranges.
1731 */
1732 memset(buf, 0, buf_size);
1733 for (range = 0; range < reg_ranges_size; range += 2) {
1734 unsigned int reg = reg_ranges[range];
1735 unsigned int last_reg = reg_ranges[range + 1];
1736 u32 *bufp = (u32 *)((char *)buf + reg);
1737
1738 /* Iterate across the register range filling in the register
1739 * buffer but don't write past the end of the register buffer.
1740 */
1741 while (reg <= last_reg && bufp < buf_end) {
1742 *bufp++ = t4_read_reg(adap, reg);
1743 reg += sizeof(u32);
1744 }
1745 }
1746 }
1747
1748 #define EEPROM_STAT_ADDR 0x7bfc
1749 #define VPD_BASE 0x400
1750 #define VPD_BASE_OLD 0
1751 #define VPD_LEN 1024
1752 #define CHELSIO_VPD_UNIQUE_ID 0x82
1753
1754 /**
1755 * t4_seeprom_wp - enable/disable EEPROM write protection
1756 * @adapter: the adapter
1757 * @enable: whether to enable or disable write protection
1758 *
1759 * Enables or disables write protection on the serial EEPROM.
1760 */
1761 int t4_seeprom_wp(struct adapter *adapter, bool enable)
1762 {
1763 unsigned int v = enable ? 0xc : 0;
1764 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
1765 return ret < 0 ? ret : 0;
1766 }
1767
1768 /**
1769 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
1770 * @adapter: adapter to read
1771 * @p: where to store the parameters
1772 *
1773 * Reads card parameters stored in VPD EEPROM.
1774 */
1775 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
1776 {
1777 int i, ret = 0, addr;
1778 int ec, sn, pn, na;
1779 u8 *vpd, csum;
1780 unsigned int vpdr_len, kw_offset, id_len;
1781
1782 vpd = vmalloc(VPD_LEN);
1783 if (!vpd)
1784 return -ENOMEM;
1785
1786 /* Card information normally starts at VPD_BASE but early cards had
1787 * it at 0.
1788 */
1789 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
1790 if (ret < 0)
1791 goto out;
1792
1793 /* The VPD shall have a unique identifier specified by the PCI SIG.
1794 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
1795 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
1796 * is expected to automatically put this entry at the
1797 * beginning of the VPD.
1798 */
1799 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1800
1801 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1802 if (ret < 0)
1803 goto out;
1804
1805 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
1806 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1807 ret = -EINVAL;
1808 goto out;
1809 }
1810
1811 id_len = pci_vpd_lrdt_size(vpd);
1812 if (id_len > ID_LEN)
1813 id_len = ID_LEN;
1814
1815 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
1816 if (i < 0) {
1817 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1818 ret = -EINVAL;
1819 goto out;
1820 }
1821
1822 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
1823 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
1824 if (vpdr_len + kw_offset > VPD_LEN) {
1825 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1826 ret = -EINVAL;
1827 goto out;
1828 }
1829
1830 #define FIND_VPD_KW(var, name) do { \
1831 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1832 if (var < 0) { \
1833 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1834 ret = -EINVAL; \
1835 goto out; \
1836 } \
1837 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
1838 } while (0)
1839
1840 FIND_VPD_KW(i, "RV");
1841 for (csum = 0; i >= 0; i--)
1842 csum += vpd[i];
1843
1844 if (csum) {
1845 dev_err(adapter->pdev_dev,
1846 "corrupted VPD EEPROM, actual csum %u\n", csum);
1847 ret = -EINVAL;
1848 goto out;
1849 }
1850
1851 FIND_VPD_KW(ec, "EC");
1852 FIND_VPD_KW(sn, "SN");
1853 FIND_VPD_KW(pn, "PN");
1854 FIND_VPD_KW(na, "NA");
1855 #undef FIND_VPD_KW
1856
1857 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1858 strim(p->id);
1859 memcpy(p->ec, vpd + ec, EC_LEN);
1860 strim(p->ec);
1861 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
1862 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1863 strim(p->sn);
1864 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1865 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
1866 strim(p->pn);
1867 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
1868 strim((char *)p->na);
1869
1870 out:
1871 vfree(vpd);
1872 return ret;
1873 }
1874
1875 /**
1876 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
1877 * @adapter: adapter to read
1878 * @p: where to store the parameters
1879 *
1880 * Reads card parameters stored in VPD EEPROM and retrieves the Core
1881 * Clock. This can only be called after a connection to the firmware
1882 * is established.
1883 */
1884 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
1885 {
1886 u32 cclk_param, cclk_val;
1887 int ret;
1888
1889 /* Grab the raw VPD parameters.
1890 */
1891 ret = t4_get_raw_vpd_params(adapter, p);
1892 if (ret)
1893 return ret;
1894
1895 /* Ask firmware for the Core Clock since it knows how to translate the
1896 * Reference Clock ('V2') VPD field into a Core Clock value ...
1897 */
1898 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1899 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1900 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1901 1, &cclk_param, &cclk_val);
1902
1903 if (ret)
1904 return ret;
1905 p->cclk = cclk_val;
1906
1907 return 0;
1908 }
1909
1910 /* serial flash and firmware constants */
1911 enum {
1912 SF_ATTEMPTS = 10, /* max retries for SF operations */
1913
1914 /* flash command opcodes */
1915 SF_PROG_PAGE = 2, /* program page */
1916 SF_WR_DISABLE = 4, /* disable writes */
1917 SF_RD_STATUS = 5, /* read status register */
1918 SF_WR_ENABLE = 6, /* enable writes */
1919 SF_RD_DATA_FAST = 0xb, /* read flash */
1920 SF_RD_ID = 0x9f, /* read ID */
1921 SF_ERASE_SECTOR = 0xd8, /* erase sector */
1922
1923 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1924 };
1925
1926 /**
1927 * sf1_read - read data from the serial flash
1928 * @adapter: the adapter
1929 * @byte_cnt: number of bytes to read
1930 * @cont: whether another operation will be chained
1931 * @lock: whether to lock SF for PL access only
1932 * @valp: where to store the read data
1933 *
1934 * Reads up to 4 bytes of data from the serial flash. The location of
1935 * the read needs to be specified prior to calling this by issuing the
1936 * appropriate commands to the serial flash.
1937 */
1938 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1939 int lock, u32 *valp)
1940 {
1941 int ret;
1942
1943 if (!byte_cnt || byte_cnt > 4)
1944 return -EINVAL;
1945 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1946 return -EBUSY;
1947 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1948 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
1949 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1950 if (!ret)
1951 *valp = t4_read_reg(adapter, SF_DATA_A);
1952 return ret;
1953 }
1954
1955 /**
1956 * sf1_write - write data to the serial flash
1957 * @adapter: the adapter
1958 * @byte_cnt: number of bytes to write
1959 * @cont: whether another operation will be chained
1960 * @lock: whether to lock SF for PL access only
1961 * @val: value to write
1962 *
1963 * Writes up to 4 bytes of data to the serial flash. The location of
1964 * the write needs to be specified prior to calling this by issuing the
1965 * appropriate commands to the serial flash.
1966 */
1967 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1968 int lock, u32 val)
1969 {
1970 if (!byte_cnt || byte_cnt > 4)
1971 return -EINVAL;
1972 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1973 return -EBUSY;
1974 t4_write_reg(adapter, SF_DATA_A, val);
1975 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
1976 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
1977 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1978 }
1979
1980 /**
1981 * flash_wait_op - wait for a flash operation to complete
1982 * @adapter: the adapter
1983 * @attempts: max number of polls of the status register
1984 * @delay: delay between polls in ms
1985 *
1986 * Wait for a flash operation to complete by polling the status register.
1987 */
1988 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
1989 {
1990 int ret;
1991 u32 status;
1992
1993 while (1) {
1994 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
1995 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
1996 return ret;
1997 if (!(status & 1))
1998 return 0;
1999 if (--attempts == 0)
2000 return -EAGAIN;
2001 if (delay)
2002 msleep(delay);
2003 }
2004 }
2005
2006 /**
2007 * t4_read_flash - read words from serial flash
2008 * @adapter: the adapter
2009 * @addr: the start address for the read
2010 * @nwords: how many 32-bit words to read
2011 * @data: where to store the read data
2012 * @byte_oriented: whether to store data as bytes or as words
2013 *
2014 * Read the specified number of 32-bit words from the serial flash.
2015 * If @byte_oriented is set the read data is stored as a byte array
2016 * (i.e., big-endian), otherwise as 32-bit words in the platform's
2017 * natural endianness.
2018 */
2019 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2020 unsigned int nwords, u32 *data, int byte_oriented)
2021 {
2022 int ret;
2023
2024 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2025 return -EINVAL;
2026
2027 addr = swab32(addr) | SF_RD_DATA_FAST;
2028
2029 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2030 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2031 return ret;
2032
2033 for ( ; nwords; nwords--, data++) {
2034 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2035 if (nwords == 1)
2036 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2037 if (ret)
2038 return ret;
2039 if (byte_oriented)
2040 *data = (__force __u32)(cpu_to_be32(*data));
2041 }
2042 return 0;
2043 }
2044
2045 /**
2046 * t4_write_flash - write up to a page of data to the serial flash
2047 * @adapter: the adapter
2048 * @addr: the start address to write
2049 * @n: length of data to write in bytes
2050 * @data: the data to write
2051 *
2052 * Writes up to a page of data (256 bytes) to the serial flash starting
2053 * at the given address. All the data must be written to the same page.
2054 */
2055 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2056 unsigned int n, const u8 *data)
2057 {
2058 int ret;
2059 u32 buf[64];
2060 unsigned int i, c, left, val, offset = addr & 0xff;
2061
2062 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2063 return -EINVAL;
2064
2065 val = swab32(addr) | SF_PROG_PAGE;
2066
2067 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2068 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2069 goto unlock;
2070
2071 for (left = n; left; left -= c) {
2072 c = min(left, 4U);
2073 for (val = 0, i = 0; i < c; ++i)
2074 val = (val << 8) + *data++;
2075
2076 ret = sf1_write(adapter, c, c != left, 1, val);
2077 if (ret)
2078 goto unlock;
2079 }
2080 ret = flash_wait_op(adapter, 8, 1);
2081 if (ret)
2082 goto unlock;
2083
2084 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2085
2086 /* Read the page to verify the write succeeded */
2087 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2088 if (ret)
2089 return ret;
2090
2091 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2092 dev_err(adapter->pdev_dev,
2093 "failed to correctly write the flash page at %#x\n",
2094 addr);
2095 return -EIO;
2096 }
2097 return 0;
2098
2099 unlock:
2100 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2101 return ret;
2102 }
2103
2104 /**
2105 * t4_get_fw_version - read the firmware version
2106 * @adapter: the adapter
2107 * @vers: where to place the version
2108 *
2109 * Reads the FW version from flash.
2110 */
2111 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2112 {
2113 return t4_read_flash(adapter, FLASH_FW_START +
2114 offsetof(struct fw_hdr, fw_ver), 1,
2115 vers, 0);
2116 }
2117
2118 /**
2119 * t4_get_tp_version - read the TP microcode version
2120 * @adapter: the adapter
2121 * @vers: where to place the version
2122 *
2123 * Reads the TP microcode version from flash.
2124 */
2125 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2126 {
2127 return t4_read_flash(adapter, FLASH_FW_START +
2128 offsetof(struct fw_hdr, tp_microcode_ver),
2129 1, vers, 0);
2130 }
2131
2132 /**
2133 * t4_get_exprom_version - return the Expansion ROM version (if any)
2134 * @adapter: the adapter
2135 * @vers: where to place the version
2136 *
2137 * Reads the Expansion ROM header from FLASH and returns the version
2138 * number (if present) through the @vers return value pointer. We return
2139 * this in the Firmware Version Format since it's convenient. Return
2140 * 0 on success, -ENOENT if no Expansion ROM is present.
2141 */
2142 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2143 {
2144 struct exprom_header {
2145 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2146 unsigned char hdr_ver[4]; /* Expansion ROM version */
2147 } *hdr;
2148 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2149 sizeof(u32))];
2150 int ret;
2151
2152 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2153 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2154 0);
2155 if (ret)
2156 return ret;
2157
2158 hdr = (struct exprom_header *)exprom_header_buf;
2159 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2160 return -ENOENT;
2161
2162 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2163 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2164 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2165 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2166 return 0;
2167 }
2168
2169 /* Is the given firmware API compatible with the one the driver was compiled
2170 * with?
2171 */
2172 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2173 {
2174
2175 /* short circuit if it's the exact same firmware version */
2176 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2177 return 1;
2178
2179 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2180 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2181 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2182 return 1;
2183 #undef SAME_INTF
2184
2185 return 0;
2186 }
2187
2188 /* The firmware in the filesystem is usable, but should it be installed?
2189 * This routine explains itself in detail if it indicates the filesystem
2190 * firmware should be installed.
2191 */
2192 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
2193 int k, int c)
2194 {
2195 const char *reason;
2196
2197 if (!card_fw_usable) {
2198 reason = "incompatible or unusable";
2199 goto install;
2200 }
2201
2202 if (k > c) {
2203 reason = "older than the version supported with this driver";
2204 goto install;
2205 }
2206
2207 return 0;
2208
2209 install:
2210 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
2211 "installing firmware %u.%u.%u.%u on card.\n",
2212 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2213 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2214 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2215 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2216
2217 return 1;
2218 }
2219
2220 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
2221 const u8 *fw_data, unsigned int fw_size,
2222 struct fw_hdr *card_fw, enum dev_state state,
2223 int *reset)
2224 {
2225 int ret, card_fw_usable, fs_fw_usable;
2226 const struct fw_hdr *fs_fw;
2227 const struct fw_hdr *drv_fw;
2228
2229 drv_fw = &fw_info->fw_hdr;
2230
2231 /* Read the header of the firmware on the card */
2232 ret = -t4_read_flash(adap, FLASH_FW_START,
2233 sizeof(*card_fw) / sizeof(uint32_t),
2234 (uint32_t *)card_fw, 1);
2235 if (ret == 0) {
2236 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2237 } else {
2238 dev_err(adap->pdev_dev,
2239 "Unable to read card's firmware header: %d\n", ret);
2240 card_fw_usable = 0;
2241 }
2242
2243 if (fw_data != NULL) {
2244 fs_fw = (const void *)fw_data;
2245 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2246 } else {
2247 fs_fw = NULL;
2248 fs_fw_usable = 0;
2249 }
2250
2251 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2252 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2253 /* Common case: the firmware on the card is an exact match and
2254 * the filesystem one is an exact match too, or the filesystem
2255 * one is absent/incompatible.
2256 */
2257 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
2258 should_install_fs_fw(adap, card_fw_usable,
2259 be32_to_cpu(fs_fw->fw_ver),
2260 be32_to_cpu(card_fw->fw_ver))) {
2261 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
2262 fw_size, 0);
2263 if (ret != 0) {
2264 dev_err(adap->pdev_dev,
2265 "failed to install firmware: %d\n", ret);
2266 goto bye;
2267 }
2268
2269 /* Installed successfully, update the cached header too. */
2270 *card_fw = *fs_fw;
2271 card_fw_usable = 1;
2272 *reset = 0; /* already reset as part of load_fw */
2273 }
2274
2275 if (!card_fw_usable) {
2276 uint32_t d, c, k;
2277
2278 d = be32_to_cpu(drv_fw->fw_ver);
2279 c = be32_to_cpu(card_fw->fw_ver);
2280 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2281
2282 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
2283 "chip state %d, "
2284 "driver compiled with %d.%d.%d.%d, "
2285 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2286 state,
2287 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2288 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2289 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2290 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2291 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2292 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2293 ret = EINVAL;
2294 goto bye;
2295 }
2296
2297 /* We're using whatever's on the card and it's known to be good. */
2298 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
2299 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2300
2301 bye:
2302 return ret;
2303 }
2304
2305 /**
2306 * t4_flash_erase_sectors - erase a range of flash sectors
2307 * @adapter: the adapter
2308 * @start: the first sector to erase
2309 * @end: the last sector to erase
2310 *
2311 * Erases the sectors in the given inclusive range.
2312 */
2313 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
2314 {
2315 int ret = 0;
2316
2317 if (end >= adapter->params.sf_nsec)
2318 return -EINVAL;
2319
2320 while (start <= end) {
2321 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2322 (ret = sf1_write(adapter, 4, 0, 1,
2323 SF_ERASE_SECTOR | (start << 8))) != 0 ||
2324 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2325 dev_err(adapter->pdev_dev,
2326 "erase of flash sector %d failed, error %d\n",
2327 start, ret);
2328 break;
2329 }
2330 start++;
2331 }
2332 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2333 return ret;
2334 }
2335
2336 /**
2337 * t4_flash_cfg_addr - return the address of the flash configuration file
2338 * @adapter: the adapter
2339 *
2340 * Return the address within the flash where the Firmware Configuration
2341 * File is stored.
2342 */
2343 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
2344 {
2345 if (adapter->params.sf_size == 0x100000)
2346 return FLASH_FPGA_CFG_START;
2347 else
2348 return FLASH_CFG_START;
2349 }
2350
2351 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
2352 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
2353 * and emit an error message for mismatched firmware to save our caller the
2354 * effort ...
2355 */
2356 static bool t4_fw_matches_chip(const struct adapter *adap,
2357 const struct fw_hdr *hdr)
2358 {
2359 /* The expression below will return FALSE for any unsupported adapter
2360 * which will keep us "honest" in the future ...
2361 */
2362 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2363 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
2364 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2365 return true;
2366
2367 dev_err(adap->pdev_dev,
2368 "FW image (%d) is not suitable for this adapter (%d)\n",
2369 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
2370 return false;
2371 }
2372
2373 /**
2374 * t4_load_fw - download firmware
2375 * @adap: the adapter
2376 * @fw_data: the firmware image to write
2377 * @size: image size
2378 *
2379 * Write the supplied firmware image to the card's serial flash.
2380 */
2381 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
2382 {
2383 u32 csum;
2384 int ret, addr;
2385 unsigned int i;
2386 u8 first_page[SF_PAGE_SIZE];
2387 const __be32 *p = (const __be32 *)fw_data;
2388 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2389 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
2390 unsigned int fw_img_start = adap->params.sf_fw_start;
2391 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2392
2393 if (!size) {
2394 dev_err(adap->pdev_dev, "FW image has no data\n");
2395 return -EINVAL;
2396 }
2397 if (size & 511) {
2398 dev_err(adap->pdev_dev,
2399 "FW image size not multiple of 512 bytes\n");
2400 return -EINVAL;
2401 }
2402 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2403 dev_err(adap->pdev_dev,
2404 "FW image size differs from size in FW header\n");
2405 return -EINVAL;
2406 }
2407 if (size > FW_MAX_SIZE) {
2408 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
2409 FW_MAX_SIZE);
2410 return -EFBIG;
2411 }
2412 if (!t4_fw_matches_chip(adap, hdr))
2413 return -EINVAL;
2414
2415 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2416 csum += be32_to_cpu(p[i]);
2417
2418 if (csum != 0xffffffff) {
2419 dev_err(adap->pdev_dev,
2420 "corrupted firmware image, checksum %#x\n", csum);
2421 return -EINVAL;
2422 }
2423
2424 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
2425 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2426 if (ret)
2427 goto out;
2428
2429 /*
2430 * We write the correct version at the end so the driver can see a bad
2431 * version if the FW write fails. Start by writing a copy of the
2432 * first page with a bad version.
2433 */
2434 memcpy(first_page, fw_data, SF_PAGE_SIZE);
2435 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2436 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2437 if (ret)
2438 goto out;
2439
2440 addr = fw_img_start;
2441 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
2442 addr += SF_PAGE_SIZE;
2443 fw_data += SF_PAGE_SIZE;
2444 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
2445 if (ret)
2446 goto out;
2447 }
2448
2449 ret = t4_write_flash(adap,
2450 fw_img_start + offsetof(struct fw_hdr, fw_ver),
2451 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
2452 out:
2453 if (ret)
2454 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
2455 ret);
2456 else
2457 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2458 return ret;
2459 }
2460
2461 /**
2462 * t4_phy_fw_ver - return current PHY firmware version
2463 * @adap: the adapter
2464 * @phy_fw_ver: return value buffer for PHY firmware version
2465 *
2466 * Returns the current version of external PHY firmware on the
2467 * adapter.
2468 */
2469 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
2470 {
2471 u32 param, val;
2472 int ret;
2473
2474 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2475 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2476 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2477 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2478 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2479 &param, &val);
2480 if (ret < 0)
2481 return ret;
2482 *phy_fw_ver = val;
2483 return 0;
2484 }
2485
2486 /**
2487 * t4_load_phy_fw - download port PHY firmware
2488 * @adap: the adapter
2489 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
2490 * @win_lock: the lock to use to guard the memory copy
2491 * @phy_fw_version: function to check PHY firmware versions
2492 * @phy_fw_data: the PHY firmware image to write
2493 * @phy_fw_size: image size
2494 *
2495 * Transfer the specified PHY firmware to the adapter. If a non-NULL
2496 * @phy_fw_version is supplied, then it will be used to determine if
2497 * it's necessary to perform the transfer by comparing the version
2498 * of any existing adapter PHY firmware with that of the passed in
2499 * PHY firmware image. If @win_lock is non-NULL then it will be used
2500 * around the call to t4_memory_rw() which transfers the PHY firmware
2501 * to the adapter.
2502 *
2503 * A negative error number will be returned if an error occurs. If
2504 * version number support is available and there's no need to upgrade
2505 * the firmware, 0 will be returned. If firmware is successfully
2506 * transferred to the adapter, 1 will be retured.
2507 *
2508 * NOTE: some adapters only have local RAM to store the PHY firmware. As
2509 * a result, a RESET of the adapter would cause that RAM to lose its
2510 * contents. Thus, loading PHY firmware on such adapters must happen
2511 * after any FW_RESET_CMDs ...
2512 */
2513 int t4_load_phy_fw(struct adapter *adap,
2514 int win, spinlock_t *win_lock,
2515 int (*phy_fw_version)(const u8 *, size_t),
2516 const u8 *phy_fw_data, size_t phy_fw_size)
2517 {
2518 unsigned long mtype = 0, maddr = 0;
2519 u32 param, val;
2520 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
2521 int ret;
2522
2523 /* If we have version number support, then check to see if the adapter
2524 * already has up-to-date PHY firmware loaded.
2525 */
2526 if (phy_fw_version) {
2527 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
2528 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2529 if (ret < 0)
2530 return ret;
2531
2532 if (cur_phy_fw_ver >= new_phy_fw_vers) {
2533 CH_WARN(adap, "PHY Firmware already up-to-date, "
2534 "version %#x\n", cur_phy_fw_ver);
2535 return 0;
2536 }
2537 }
2538
2539 /* Ask the firmware where it wants us to copy the PHY firmware image.
2540 * The size of the file requires a special version of the READ coommand
2541 * which will pass the file size via the values field in PARAMS_CMD and
2542 * retrieve the return value from firmware and place it in the same
2543 * buffer values
2544 */
2545 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2546 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2547 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2548 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2549 val = phy_fw_size;
2550 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2551 &param, &val, 1);
2552 if (ret < 0)
2553 return ret;
2554 mtype = val >> 8;
2555 maddr = (val & 0xff) << 16;
2556
2557 /* Copy the supplied PHY Firmware image to the adapter memory location
2558 * allocated by the adapter firmware.
2559 */
2560 if (win_lock)
2561 spin_lock_bh(win_lock);
2562 ret = t4_memory_rw(adap, win, mtype, maddr,
2563 phy_fw_size, (__be32 *)phy_fw_data,
2564 T4_MEMORY_WRITE);
2565 if (win_lock)
2566 spin_unlock_bh(win_lock);
2567 if (ret)
2568 return ret;
2569
2570 /* Tell the firmware that the PHY firmware image has been written to
2571 * RAM and it can now start copying it over to the PHYs. The chip
2572 * firmware will RESET the affected PHYs as part of this operation
2573 * leaving them running the new PHY firmware image.
2574 */
2575 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2576 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
2577 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
2578 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2579 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2580 &param, &val, 30000);
2581
2582 /* If we have version number support, then check to see that the new
2583 * firmware got loaded properly.
2584 */
2585 if (phy_fw_version) {
2586 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
2587 if (ret < 0)
2588 return ret;
2589
2590 if (cur_phy_fw_ver != new_phy_fw_vers) {
2591 CH_WARN(adap, "PHY Firmware did not update: "
2592 "version on adapter %#x, "
2593 "version flashed %#x\n",
2594 cur_phy_fw_ver, new_phy_fw_vers);
2595 return -ENXIO;
2596 }
2597 }
2598
2599 return 1;
2600 }
2601
2602 /**
2603 * t4_fwcache - firmware cache operation
2604 * @adap: the adapter
2605 * @op : the operation (flush or flush and invalidate)
2606 */
2607 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
2608 {
2609 struct fw_params_cmd c;
2610
2611 memset(&c, 0, sizeof(c));
2612 c.op_to_vfn =
2613 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
2614 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2615 FW_PARAMS_CMD_PFN_V(adap->pf) |
2616 FW_PARAMS_CMD_VFN_V(0));
2617 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2618 c.param[0].mnem =
2619 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2620 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
2621 c.param[0].val = (__force __be32)op;
2622
2623 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
2624 }
2625
2626 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
2627 unsigned int *pif_req_wrptr,
2628 unsigned int *pif_rsp_wrptr)
2629 {
2630 int i, j;
2631 u32 cfg, val, req, rsp;
2632
2633 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2634 if (cfg & LADBGEN_F)
2635 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2636
2637 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
2638 req = POLADBGWRPTR_G(val);
2639 rsp = PILADBGWRPTR_G(val);
2640 if (pif_req_wrptr)
2641 *pif_req_wrptr = req;
2642 if (pif_rsp_wrptr)
2643 *pif_rsp_wrptr = rsp;
2644
2645 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
2646 for (j = 0; j < 6; j++) {
2647 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
2648 PILADBGRDPTR_V(rsp));
2649 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
2650 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
2651 req++;
2652 rsp++;
2653 }
2654 req = (req + 2) & POLADBGRDPTR_M;
2655 rsp = (rsp + 2) & PILADBGRDPTR_M;
2656 }
2657 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2658 }
2659
2660 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
2661 {
2662 u32 cfg;
2663 int i, j, idx;
2664
2665 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
2666 if (cfg & LADBGEN_F)
2667 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
2668
2669 for (i = 0; i < CIM_MALA_SIZE; i++) {
2670 for (j = 0; j < 5; j++) {
2671 idx = 8 * i + j;
2672 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
2673 PILADBGRDPTR_V(idx));
2674 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
2675 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
2676 }
2677 }
2678 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
2679 }
2680
2681 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
2682 {
2683 unsigned int i, j;
2684
2685 for (i = 0; i < 8; i++) {
2686 u32 *p = la_buf + i;
2687
2688 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
2689 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
2690 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
2691 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
2692 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
2693 }
2694 }
2695
2696 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2697 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
2698 FW_PORT_CAP_ANEG)
2699
2700 /**
2701 * t4_link_l1cfg - apply link configuration to MAC/PHY
2702 * @phy: the PHY to setup
2703 * @mac: the MAC to setup
2704 * @lc: the requested link configuration
2705 *
2706 * Set up a port's MAC and PHY according to a desired link configuration.
2707 * - If the PHY can auto-negotiate first decide what to advertise, then
2708 * enable/disable auto-negotiation as desired, and reset.
2709 * - If the PHY does not auto-negotiate just reset it.
2710 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2711 * otherwise do it later based on the outcome of auto-negotiation.
2712 */
2713 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2714 struct link_config *lc)
2715 {
2716 struct fw_port_cmd c;
2717 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2718
2719 lc->link_ok = 0;
2720 if (lc->requested_fc & PAUSE_RX)
2721 fc |= FW_PORT_CAP_FC_RX;
2722 if (lc->requested_fc & PAUSE_TX)
2723 fc |= FW_PORT_CAP_FC_TX;
2724
2725 memset(&c, 0, sizeof(c));
2726 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2727 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2728 FW_PORT_CMD_PORTID_V(port));
2729 c.action_to_len16 =
2730 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2731 FW_LEN16(c));
2732
2733 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2734 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2735 fc);
2736 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2737 } else if (lc->autoneg == AUTONEG_DISABLE) {
2738 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2739 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
2740 } else
2741 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2742
2743 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2744 }
2745
2746 /**
2747 * t4_restart_aneg - restart autonegotiation
2748 * @adap: the adapter
2749 * @mbox: mbox to use for the FW command
2750 * @port: the port id
2751 *
2752 * Restarts autonegotiation for the selected port.
2753 */
2754 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
2755 {
2756 struct fw_port_cmd c;
2757
2758 memset(&c, 0, sizeof(c));
2759 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2760 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
2761 FW_PORT_CMD_PORTID_V(port));
2762 c.action_to_len16 =
2763 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
2764 FW_LEN16(c));
2765 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2766 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2767 }
2768
2769 typedef void (*int_handler_t)(struct adapter *adap);
2770
2771 struct intr_info {
2772 unsigned int mask; /* bits to check in interrupt status */
2773 const char *msg; /* message to print or NULL */
2774 short stat_idx; /* stat counter to increment or -1 */
2775 unsigned short fatal; /* whether the condition reported is fatal */
2776 int_handler_t int_handler; /* platform-specific int handler */
2777 };
2778
2779 /**
2780 * t4_handle_intr_status - table driven interrupt handler
2781 * @adapter: the adapter that generated the interrupt
2782 * @reg: the interrupt status register to process
2783 * @acts: table of interrupt actions
2784 *
2785 * A table driven interrupt handler that applies a set of masks to an
2786 * interrupt status word and performs the corresponding actions if the
2787 * interrupts described by the mask have occurred. The actions include
2788 * optionally emitting a warning or alert message. The table is terminated
2789 * by an entry specifying mask 0. Returns the number of fatal interrupt
2790 * conditions.
2791 */
2792 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
2793 const struct intr_info *acts)
2794 {
2795 int fatal = 0;
2796 unsigned int mask = 0;
2797 unsigned int status = t4_read_reg(adapter, reg);
2798
2799 for ( ; acts->mask; ++acts) {
2800 if (!(status & acts->mask))
2801 continue;
2802 if (acts->fatal) {
2803 fatal++;
2804 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2805 status & acts->mask);
2806 } else if (acts->msg && printk_ratelimit())
2807 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
2808 status & acts->mask);
2809 if (acts->int_handler)
2810 acts->int_handler(adapter);
2811 mask |= acts->mask;
2812 }
2813 status &= mask;
2814 if (status) /* clear processed interrupts */
2815 t4_write_reg(adapter, reg, status);
2816 return fatal;
2817 }
2818
2819 /*
2820 * Interrupt handler for the PCIE module.
2821 */
2822 static void pcie_intr_handler(struct adapter *adapter)
2823 {
2824 static const struct intr_info sysbus_intr_info[] = {
2825 { RNPP_F, "RXNP array parity error", -1, 1 },
2826 { RPCP_F, "RXPC array parity error", -1, 1 },
2827 { RCIP_F, "RXCIF array parity error", -1, 1 },
2828 { RCCP_F, "Rx completions control array parity error", -1, 1 },
2829 { RFTP_F, "RXFT array parity error", -1, 1 },
2830 { 0 }
2831 };
2832 static const struct intr_info pcie_port_intr_info[] = {
2833 { TPCP_F, "TXPC array parity error", -1, 1 },
2834 { TNPP_F, "TXNP array parity error", -1, 1 },
2835 { TFTP_F, "TXFT array parity error", -1, 1 },
2836 { TCAP_F, "TXCA array parity error", -1, 1 },
2837 { TCIP_F, "TXCIF array parity error", -1, 1 },
2838 { RCAP_F, "RXCA array parity error", -1, 1 },
2839 { OTDD_F, "outbound request TLP discarded", -1, 1 },
2840 { RDPE_F, "Rx data parity error", -1, 1 },
2841 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
2842 { 0 }
2843 };
2844 static const struct intr_info pcie_intr_info[] = {
2845 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
2846 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
2847 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
2848 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2849 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2850 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2851 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2852 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
2853 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
2854 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2855 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
2856 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2857 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2858 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
2859 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2860 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2861 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
2862 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2863 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2864 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2865 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2866 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
2867 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
2868 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2869 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
2870 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
2871 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
2872 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
2873 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
2874 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
2875 -1, 0 },
2876 { 0 }
2877 };
2878
2879 static struct intr_info t5_pcie_intr_info[] = {
2880 { MSTGRPPERR_F, "Master Response Read Queue parity error",
2881 -1, 1 },
2882 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
2883 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
2884 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
2885 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
2886 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
2887 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
2888 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
2889 -1, 1 },
2890 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
2891 -1, 1 },
2892 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
2893 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
2894 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
2895 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
2896 { DREQWRPERR_F, "PCI DMA channel write request parity error",
2897 -1, 1 },
2898 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
2899 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
2900 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
2901 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
2902 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
2903 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
2904 { FIDPERR_F, "PCI FID parity error", -1, 1 },
2905 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
2906 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
2907 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
2908 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
2909 -1, 1 },
2910 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
2911 -1, 1 },
2912 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
2913 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
2914 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2915 { READRSPERR_F, "Outbound read error", -1, 0 },
2916 { 0 }
2917 };
2918
2919 int fat;
2920
2921 if (is_t4(adapter->params.chip))
2922 fat = t4_handle_intr_status(adapter,
2923 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
2924 sysbus_intr_info) +
2925 t4_handle_intr_status(adapter,
2926 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
2927 pcie_port_intr_info) +
2928 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2929 pcie_intr_info);
2930 else
2931 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2932 t5_pcie_intr_info);
2933
2934 if (fat)
2935 t4_fatal_err(adapter);
2936 }
2937
2938 /*
2939 * TP interrupt handler.
2940 */
2941 static void tp_intr_handler(struct adapter *adapter)
2942 {
2943 static const struct intr_info tp_intr_info[] = {
2944 { 0x3fffffff, "TP parity error", -1, 1 },
2945 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2946 { 0 }
2947 };
2948
2949 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2950 t4_fatal_err(adapter);
2951 }
2952
2953 /*
2954 * SGE interrupt handler.
2955 */
2956 static void sge_intr_handler(struct adapter *adapter)
2957 {
2958 u64 v;
2959 u32 err;
2960
2961 static const struct intr_info sge_intr_info[] = {
2962 { ERR_CPL_EXCEED_IQE_SIZE_F,
2963 "SGE received CPL exceeding IQE size", -1, 1 },
2964 { ERR_INVALID_CIDX_INC_F,
2965 "SGE GTS CIDX increment too large", -1, 0 },
2966 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2967 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
2968 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2969 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2970 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2971 0 },
2972 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2973 0 },
2974 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2975 0 },
2976 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2977 0 },
2978 { ERR_ING_CTXT_PRIO_F,
2979 "SGE too many priority ingress contexts", -1, 0 },
2980 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2981 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2982 { 0 }
2983 };
2984
2985 static struct intr_info t4t5_sge_intr_info[] = {
2986 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
2987 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
2988 { ERR_EGR_CTXT_PRIO_F,
2989 "SGE too many priority egress contexts", -1, 0 },
2990 { 0 }
2991 };
2992
2993 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
2994 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2995 if (v) {
2996 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2997 (unsigned long long)v);
2998 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
2999 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3000 }
3001
3002 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3003 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3004 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3005 t4t5_sge_intr_info);
3006
3007 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3008 if (err & ERROR_QID_VALID_F) {
3009 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3010 ERROR_QID_G(err));
3011 if (err & UNCAPTURED_ERROR_F)
3012 dev_err(adapter->pdev_dev,
3013 "SGE UNCAPTURED_ERROR set (clearing)\n");
3014 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3015 UNCAPTURED_ERROR_F);
3016 }
3017
3018 if (v != 0)
3019 t4_fatal_err(adapter);
3020 }
3021
3022 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3023 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3024 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3025 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3026
3027 /*
3028 * CIM interrupt handler.
3029 */
3030 static void cim_intr_handler(struct adapter *adapter)
3031 {
3032 static const struct intr_info cim_intr_info[] = {
3033 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3034 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3035 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3036 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3037 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3038 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3039 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3040 { 0 }
3041 };
3042 static const struct intr_info cim_upintr_info[] = {
3043 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3044 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3045 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3046 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3047 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3048 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3049 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3050 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3051 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3052 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3053 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3054 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3055 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3056 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3057 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3058 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3059 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3060 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3061 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3062 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3063 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3064 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3065 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3066 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3067 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3068 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3069 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3070 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3071 { 0 }
3072 };
3073
3074 int fat;
3075
3076 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3077 t4_report_fw_error(adapter);
3078
3079 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3080 cim_intr_info) +
3081 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3082 cim_upintr_info);
3083 if (fat)
3084 t4_fatal_err(adapter);
3085 }
3086
3087 /*
3088 * ULP RX interrupt handler.
3089 */
3090 static void ulprx_intr_handler(struct adapter *adapter)
3091 {
3092 static const struct intr_info ulprx_intr_info[] = {
3093 { 0x1800000, "ULPRX context error", -1, 1 },
3094 { 0x7fffff, "ULPRX parity error", -1, 1 },
3095 { 0 }
3096 };
3097
3098 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3099 t4_fatal_err(adapter);
3100 }
3101
3102 /*
3103 * ULP TX interrupt handler.
3104 */
3105 static void ulptx_intr_handler(struct adapter *adapter)
3106 {
3107 static const struct intr_info ulptx_intr_info[] = {
3108 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3109 0 },
3110 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3111 0 },
3112 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3113 0 },
3114 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3115 0 },
3116 { 0xfffffff, "ULPTX parity error", -1, 1 },
3117 { 0 }
3118 };
3119
3120 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3121 t4_fatal_err(adapter);
3122 }
3123
3124 /*
3125 * PM TX interrupt handler.
3126 */
3127 static void pmtx_intr_handler(struct adapter *adapter)
3128 {
3129 static const struct intr_info pmtx_intr_info[] = {
3130 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3131 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3132 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3133 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3134 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
3135 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3136 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
3137 -1, 1 },
3138 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3139 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3140 { 0 }
3141 };
3142
3143 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3144 t4_fatal_err(adapter);
3145 }
3146
3147 /*
3148 * PM RX interrupt handler.
3149 */
3150 static void pmrx_intr_handler(struct adapter *adapter)
3151 {
3152 static const struct intr_info pmrx_intr_info[] = {
3153 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3154 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
3155 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3156 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
3157 -1, 1 },
3158 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3159 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3160 { 0 }
3161 };
3162
3163 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3164 t4_fatal_err(adapter);
3165 }
3166
3167 /*
3168 * CPL switch interrupt handler.
3169 */
3170 static void cplsw_intr_handler(struct adapter *adapter)
3171 {
3172 static const struct intr_info cplsw_intr_info[] = {
3173 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3174 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3175 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3176 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3177 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3178 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3179 { 0 }
3180 };
3181
3182 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3183 t4_fatal_err(adapter);
3184 }
3185
3186 /*
3187 * LE interrupt handler.
3188 */
3189 static void le_intr_handler(struct adapter *adap)
3190 {
3191 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
3192 static const struct intr_info le_intr_info[] = {
3193 { LIPMISS_F, "LE LIP miss", -1, 0 },
3194 { LIP0_F, "LE 0 LIP error", -1, 0 },
3195 { PARITYERR_F, "LE parity error", -1, 1 },
3196 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3197 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
3198 { 0 }
3199 };
3200
3201 static struct intr_info t6_le_intr_info[] = {
3202 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3203 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3204 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3205 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3206 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3207 { 0 }
3208 };
3209
3210 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
3211 (chip <= CHELSIO_T5) ?
3212 le_intr_info : t6_le_intr_info))
3213 t4_fatal_err(adap);
3214 }
3215
3216 /*
3217 * MPS interrupt handler.
3218 */
3219 static void mps_intr_handler(struct adapter *adapter)
3220 {
3221 static const struct intr_info mps_rx_intr_info[] = {
3222 { 0xffffff, "MPS Rx parity error", -1, 1 },
3223 { 0 }
3224 };
3225 static const struct intr_info mps_tx_intr_info[] = {
3226 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3227 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3228 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3229 -1, 1 },
3230 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3231 -1, 1 },
3232 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3233 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3234 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3235 { 0 }
3236 };
3237 static const struct intr_info mps_trc_intr_info[] = {
3238 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3239 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3240 -1, 1 },
3241 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3242 { 0 }
3243 };
3244 static const struct intr_info mps_stat_sram_intr_info[] = {
3245 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3246 { 0 }
3247 };
3248 static const struct intr_info mps_stat_tx_intr_info[] = {
3249 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3250 { 0 }
3251 };
3252 static const struct intr_info mps_stat_rx_intr_info[] = {
3253 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3254 { 0 }
3255 };
3256 static const struct intr_info mps_cls_intr_info[] = {
3257 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3258 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3259 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3260 { 0 }
3261 };
3262
3263 int fat;
3264
3265 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3266 mps_rx_intr_info) +
3267 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3268 mps_tx_intr_info) +
3269 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3270 mps_trc_intr_info) +
3271 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3272 mps_stat_sram_intr_info) +
3273 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3274 mps_stat_tx_intr_info) +
3275 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3276 mps_stat_rx_intr_info) +
3277 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3278 mps_cls_intr_info);
3279
3280 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
3281 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
3282 if (fat)
3283 t4_fatal_err(adapter);
3284 }
3285
3286 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3287 ECC_UE_INT_CAUSE_F)
3288
3289 /*
3290 * EDC/MC interrupt handler.
3291 */
3292 static void mem_intr_handler(struct adapter *adapter, int idx)
3293 {
3294 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3295
3296 unsigned int addr, cnt_addr, v;
3297
3298 if (idx <= MEM_EDC1) {
3299 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3300 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3301 } else if (idx == MEM_MC) {
3302 if (is_t4(adapter->params.chip)) {
3303 addr = MC_INT_CAUSE_A;
3304 cnt_addr = MC_ECC_STATUS_A;
3305 } else {
3306 addr = MC_P_INT_CAUSE_A;
3307 cnt_addr = MC_P_ECC_STATUS_A;
3308 }
3309 } else {
3310 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
3311 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3312 }
3313
3314 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3315 if (v & PERR_INT_CAUSE_F)
3316 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
3317 name[idx]);
3318 if (v & ECC_CE_INT_CAUSE_F) {
3319 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3320
3321 t4_edc_err_read(adapter, idx);
3322
3323 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3324 if (printk_ratelimit())
3325 dev_warn(adapter->pdev_dev,
3326 "%u %s correctable ECC data error%s\n",
3327 cnt, name[idx], cnt > 1 ? "s" : "");
3328 }
3329 if (v & ECC_UE_INT_CAUSE_F)
3330 dev_alert(adapter->pdev_dev,
3331 "%s uncorrectable ECC data error\n", name[idx]);
3332
3333 t4_write_reg(adapter, addr, v);
3334 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3335 t4_fatal_err(adapter);
3336 }
3337
3338 /*
3339 * MA interrupt handler.
3340 */
3341 static void ma_intr_handler(struct adapter *adap)
3342 {
3343 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3344
3345 if (status & MEM_PERR_INT_CAUSE_F) {
3346 dev_alert(adap->pdev_dev,
3347 "MA parity error, parity status %#x\n",
3348 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3349 if (is_t5(adap->params.chip))
3350 dev_alert(adap->pdev_dev,
3351 "MA parity error, parity status %#x\n",
3352 t4_read_reg(adap,
3353 MA_PARITY_ERROR_STATUS2_A));
3354 }
3355 if (status & MEM_WRAP_INT_CAUSE_F) {
3356 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3357 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
3358 "client %u to address %#x\n",
3359 MEM_WRAP_CLIENT_NUM_G(v),
3360 MEM_WRAP_ADDRESS_G(v) << 4);
3361 }
3362 t4_write_reg(adap, MA_INT_CAUSE_A, status);
3363 t4_fatal_err(adap);
3364 }
3365
3366 /*
3367 * SMB interrupt handler.
3368 */
3369 static void smb_intr_handler(struct adapter *adap)
3370 {
3371 static const struct intr_info smb_intr_info[] = {
3372 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3373 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3374 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3375 { 0 }
3376 };
3377
3378 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3379 t4_fatal_err(adap);
3380 }
3381
3382 /*
3383 * NC-SI interrupt handler.
3384 */
3385 static void ncsi_intr_handler(struct adapter *adap)
3386 {
3387 static const struct intr_info ncsi_intr_info[] = {
3388 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3389 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3390 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3391 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3392 { 0 }
3393 };
3394
3395 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3396 t4_fatal_err(adap);
3397 }
3398
3399 /*
3400 * XGMAC interrupt handler.
3401 */
3402 static void xgmac_intr_handler(struct adapter *adap, int port)
3403 {
3404 u32 v, int_cause_reg;
3405
3406 if (is_t4(adap->params.chip))
3407 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
3408 else
3409 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
3410
3411 v = t4_read_reg(adap, int_cause_reg);
3412
3413 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3414 if (!v)
3415 return;
3416
3417 if (v & TXFIFO_PRTY_ERR_F)
3418 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
3419 port);
3420 if (v & RXFIFO_PRTY_ERR_F)
3421 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
3422 port);
3423 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3424 t4_fatal_err(adap);
3425 }
3426
3427 /*
3428 * PL interrupt handler.
3429 */
3430 static void pl_intr_handler(struct adapter *adap)
3431 {
3432 static const struct intr_info pl_intr_info[] = {
3433 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3434 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3435 { 0 }
3436 };
3437
3438 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3439 t4_fatal_err(adap);
3440 }
3441
3442 #define PF_INTR_MASK (PFSW_F)
3443 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
3444 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
3445 CPL_SWITCH_F | SGE_F | ULP_TX_F)
3446
3447 /**
3448 * t4_slow_intr_handler - control path interrupt handler
3449 * @adapter: the adapter
3450 *
3451 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
3452 * The designation 'slow' is because it involves register reads, while
3453 * data interrupts typically don't involve any MMIOs.
3454 */
3455 int t4_slow_intr_handler(struct adapter *adapter)
3456 {
3457 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3458
3459 if (!(cause & GLBL_INTR_MASK))
3460 return 0;
3461 if (cause & CIM_F)
3462 cim_intr_handler(adapter);
3463 if (cause & MPS_F)
3464 mps_intr_handler(adapter);
3465 if (cause & NCSI_F)
3466 ncsi_intr_handler(adapter);
3467 if (cause & PL_F)
3468 pl_intr_handler(adapter);
3469 if (cause & SMB_F)
3470 smb_intr_handler(adapter);
3471 if (cause & XGMAC0_F)
3472 xgmac_intr_handler(adapter, 0);
3473 if (cause & XGMAC1_F)
3474 xgmac_intr_handler(adapter, 1);
3475 if (cause & XGMAC_KR0_F)
3476 xgmac_intr_handler(adapter, 2);
3477 if (cause & XGMAC_KR1_F)
3478 xgmac_intr_handler(adapter, 3);
3479 if (cause & PCIE_F)
3480 pcie_intr_handler(adapter);
3481 if (cause & MC_F)
3482 mem_intr_handler(adapter, MEM_MC);
3483 if (is_t5(adapter->params.chip) && (cause & MC1_F))
3484 mem_intr_handler(adapter, MEM_MC1);
3485 if (cause & EDC0_F)
3486 mem_intr_handler(adapter, MEM_EDC0);
3487 if (cause & EDC1_F)
3488 mem_intr_handler(adapter, MEM_EDC1);
3489 if (cause & LE_F)
3490 le_intr_handler(adapter);
3491 if (cause & TP_F)
3492 tp_intr_handler(adapter);
3493 if (cause & MA_F)
3494 ma_intr_handler(adapter);
3495 if (cause & PM_TX_F)
3496 pmtx_intr_handler(adapter);
3497 if (cause & PM_RX_F)
3498 pmrx_intr_handler(adapter);
3499 if (cause & ULP_RX_F)
3500 ulprx_intr_handler(adapter);
3501 if (cause & CPL_SWITCH_F)
3502 cplsw_intr_handler(adapter);
3503 if (cause & SGE_F)
3504 sge_intr_handler(adapter);
3505 if (cause & ULP_TX_F)
3506 ulptx_intr_handler(adapter);
3507
3508 /* Clear the interrupts just processed for which we are the master. */
3509 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
3510 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3511 return 1;
3512 }
3513
3514 /**
3515 * t4_intr_enable - enable interrupts
3516 * @adapter: the adapter whose interrupts should be enabled
3517 *
3518 * Enable PF-specific interrupts for the calling function and the top-level
3519 * interrupt concentrator for global interrupts. Interrupts are already
3520 * enabled at each module, here we just enable the roots of the interrupt
3521 * hierarchies.
3522 *
3523 * Note: this function should be called only when the driver manages
3524 * non PF-specific interrupts from the various HW modules. Only one PCI
3525 * function at a time should be doing this.
3526 */
3527 void t4_intr_enable(struct adapter *adapter)
3528 {
3529 u32 val = 0;
3530 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3531 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3532 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3533
3534 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3535 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3536 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
3537 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3538 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3539 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
3540 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
3541 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3542 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3543 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
3544 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3545 }
3546
3547 /**
3548 * t4_intr_disable - disable interrupts
3549 * @adapter: the adapter whose interrupts should be disabled
3550 *
3551 * Disable interrupts. We only disable the top-level interrupt
3552 * concentrators. The caller must be a PCI function managing global
3553 * interrupts.
3554 */
3555 void t4_intr_disable(struct adapter *adapter)
3556 {
3557 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
3558 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3559 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
3560
3561 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
3562 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3563 }
3564
3565 /**
3566 * hash_mac_addr - return the hash value of a MAC address
3567 * @addr: the 48-bit Ethernet MAC address
3568 *
3569 * Hashes a MAC address according to the hash function used by HW inexact
3570 * (hash) address matching.
3571 */
3572 static int hash_mac_addr(const u8 *addr)
3573 {
3574 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
3575 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
3576 a ^= b;
3577 a ^= (a >> 12);
3578 a ^= (a >> 6);
3579 return a & 0x3f;
3580 }
3581
3582 /**
3583 * t4_config_rss_range - configure a portion of the RSS mapping table
3584 * @adapter: the adapter
3585 * @mbox: mbox to use for the FW command
3586 * @viid: virtual interface whose RSS subtable is to be written
3587 * @start: start entry in the table to write
3588 * @n: how many table entries to write
3589 * @rspq: values for the response queue lookup table
3590 * @nrspq: number of values in @rspq
3591 *
3592 * Programs the selected part of the VI's RSS mapping table with the
3593 * provided values. If @nrspq < @n the supplied values are used repeatedly
3594 * until the full table range is populated.
3595 *
3596 * The caller must ensure the values in @rspq are in the range allowed for
3597 * @viid.
3598 */
3599 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
3600 int start, int n, const u16 *rspq, unsigned int nrspq)
3601 {
3602 int ret;
3603 const u16 *rsp = rspq;
3604 const u16 *rsp_end = rspq + nrspq;
3605 struct fw_rss_ind_tbl_cmd cmd;
3606
3607 memset(&cmd, 0, sizeof(cmd));
3608 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3609 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3610 FW_RSS_IND_TBL_CMD_VIID_V(viid));
3611 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3612
3613 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
3614 while (n > 0) {
3615 int nq = min(n, 32);
3616 __be32 *qp = &cmd.iq0_to_iq2;
3617
3618 cmd.niqid = cpu_to_be16(nq);
3619 cmd.startidx = cpu_to_be16(start);
3620
3621 start += nq;
3622 n -= nq;
3623
3624 while (nq > 0) {
3625 unsigned int v;
3626
3627 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3628 if (++rsp >= rsp_end)
3629 rsp = rspq;
3630 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3631 if (++rsp >= rsp_end)
3632 rsp = rspq;
3633 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3634 if (++rsp >= rsp_end)
3635 rsp = rspq;
3636
3637 *qp++ = cpu_to_be32(v);
3638 nq -= 3;
3639 }
3640
3641 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
3642 if (ret)
3643 return ret;
3644 }
3645 return 0;
3646 }
3647
3648 /**
3649 * t4_config_glbl_rss - configure the global RSS mode
3650 * @adapter: the adapter
3651 * @mbox: mbox to use for the FW command
3652 * @mode: global RSS mode
3653 * @flags: mode-specific flags
3654 *
3655 * Sets the global RSS mode.
3656 */
3657 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
3658 unsigned int flags)
3659 {
3660 struct fw_rss_glb_config_cmd c;
3661
3662 memset(&c, 0, sizeof(c));
3663 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
3664 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3665 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3666 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3667 c.u.manual.mode_pkd =
3668 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3669 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
3670 c.u.basicvirtual.mode_pkd =
3671 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3672 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3673 } else
3674 return -EINVAL;
3675 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3676 }
3677
3678 /**
3679 * t4_config_vi_rss - configure per VI RSS settings
3680 * @adapter: the adapter
3681 * @mbox: mbox to use for the FW command
3682 * @viid: the VI id
3683 * @flags: RSS flags
3684 * @defq: id of the default RSS queue for the VI.
3685 *
3686 * Configures VI-specific RSS properties.
3687 */
3688 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
3689 unsigned int flags, unsigned int defq)
3690 {
3691 struct fw_rss_vi_config_cmd c;
3692
3693 memset(&c, 0, sizeof(c));
3694 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
3695 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3696 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
3697 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3698 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
3699 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
3700 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
3701 }
3702
3703 /* Read an RSS table row */
3704 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
3705 {
3706 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
3707 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
3708 5, 0, val);
3709 }
3710
3711 /**
3712 * t4_read_rss - read the contents of the RSS mapping table
3713 * @adapter: the adapter
3714 * @map: holds the contents of the RSS mapping table
3715 *
3716 * Reads the contents of the RSS hash->queue mapping table.
3717 */
3718 int t4_read_rss(struct adapter *adapter, u16 *map)
3719 {
3720 u32 val;
3721 int i, ret;
3722
3723 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
3724 ret = rd_rss_row(adapter, i, &val);
3725 if (ret)
3726 return ret;
3727 *map++ = LKPTBLQUEUE0_G(val);
3728 *map++ = LKPTBLQUEUE1_G(val);
3729 }
3730 return 0;
3731 }
3732
3733 static unsigned int t4_use_ldst(struct adapter *adap)
3734 {
3735 return (adap->flags & FW_OK) || !adap->use_bd;
3736 }
3737
3738 /**
3739 * t4_fw_tp_pio_rw - Access TP PIO through LDST
3740 * @adap: the adapter
3741 * @vals: where the indirect register values are stored/written
3742 * @nregs: how many indirect registers to read/write
3743 * @start_idx: index of first indirect register to read/write
3744 * @rw: Read (1) or Write (0)
3745 *
3746 * Access TP PIO registers through LDST
3747 */
3748 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
3749 unsigned int start_index, unsigned int rw)
3750 {
3751 int ret, i;
3752 int cmd = FW_LDST_ADDRSPC_TP_PIO;
3753 struct fw_ldst_cmd c;
3754
3755 for (i = 0 ; i < nregs; i++) {
3756 memset(&c, 0, sizeof(c));
3757 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
3758 FW_CMD_REQUEST_F |
3759 (rw ? FW_CMD_READ_F :
3760 FW_CMD_WRITE_F) |
3761 FW_LDST_CMD_ADDRSPACE_V(cmd));
3762 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
3763
3764 c.u.addrval.addr = cpu_to_be32(start_index + i);
3765 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
3766 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
3767 if (!ret && rw)
3768 vals[i] = be32_to_cpu(c.u.addrval.val);
3769 }
3770 }
3771
3772 /**
3773 * t4_read_rss_key - read the global RSS key
3774 * @adap: the adapter
3775 * @key: 10-entry array holding the 320-bit RSS key
3776 *
3777 * Reads the global 320-bit RSS key.
3778 */
3779 void t4_read_rss_key(struct adapter *adap, u32 *key)
3780 {
3781 if (t4_use_ldst(adap))
3782 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
3783 else
3784 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3785 TP_RSS_SECRET_KEY0_A);
3786 }
3787
3788 /**
3789 * t4_write_rss_key - program one of the RSS keys
3790 * @adap: the adapter
3791 * @key: 10-entry array holding the 320-bit RSS key
3792 * @idx: which RSS key to write
3793 *
3794 * Writes one of the RSS keys with the given 320-bit value. If @idx is
3795 * 0..15 the corresponding entry in the RSS key table is written,
3796 * otherwise the global RSS key is written.
3797 */
3798 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
3799 {
3800 u8 rss_key_addr_cnt = 16;
3801 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
3802
3803 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
3804 * allows access to key addresses 16-63 by using KeyWrAddrX
3805 * as index[5:4](upper 2) into key table
3806 */
3807 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
3808 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
3809 rss_key_addr_cnt = 32;
3810
3811 if (t4_use_ldst(adap))
3812 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
3813 else
3814 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
3815 TP_RSS_SECRET_KEY0_A);
3816
3817 if (idx >= 0 && idx < rss_key_addr_cnt) {
3818 if (rss_key_addr_cnt > 16)
3819 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3820 KEYWRADDRX_V(idx >> 4) |
3821 T6_VFWRADDR_V(idx) | KEYWREN_F);
3822 else
3823 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
3824 KEYWRADDR_V(idx) | KEYWREN_F);
3825 }
3826 }
3827
3828 /**
3829 * t4_read_rss_pf_config - read PF RSS Configuration Table
3830 * @adapter: the adapter
3831 * @index: the entry in the PF RSS table to read
3832 * @valp: where to store the returned value
3833 *
3834 * Reads the PF RSS Configuration Table at the specified index and returns
3835 * the value found there.
3836 */
3837 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
3838 u32 *valp)
3839 {
3840 if (t4_use_ldst(adapter))
3841 t4_fw_tp_pio_rw(adapter, valp, 1,
3842 TP_RSS_PF0_CONFIG_A + index, 1);
3843 else
3844 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3845 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3846 }
3847
3848 /**
3849 * t4_read_rss_vf_config - read VF RSS Configuration Table
3850 * @adapter: the adapter
3851 * @index: the entry in the VF RSS table to read
3852 * @vfl: where to store the returned VFL
3853 * @vfh: where to store the returned VFH
3854 *
3855 * Reads the VF RSS Configuration Table at the specified index and returns
3856 * the (VFL, VFH) values found there.
3857 */
3858 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3859 u32 *vfl, u32 *vfh)
3860 {
3861 u32 vrt, mask, data;
3862
3863 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3864 mask = VFWRADDR_V(VFWRADDR_M);
3865 data = VFWRADDR_V(index);
3866 } else {
3867 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
3868 data = T6_VFWRADDR_V(index);
3869 }
3870
3871 /* Request that the index'th VF Table values be read into VFL/VFH.
3872 */
3873 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
3874 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
3875 vrt |= data | VFRDEN_F;
3876 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
3877
3878 /* Grab the VFL/VFH values ...
3879 */
3880 if (t4_use_ldst(adapter)) {
3881 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
3882 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
3883 } else {
3884 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3885 vfl, 1, TP_RSS_VFL_CONFIG_A);
3886 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3887 vfh, 1, TP_RSS_VFH_CONFIG_A);
3888 }
3889 }
3890
3891 /**
3892 * t4_read_rss_pf_map - read PF RSS Map
3893 * @adapter: the adapter
3894 *
3895 * Reads the PF RSS Map register and returns its value.
3896 */
3897 u32 t4_read_rss_pf_map(struct adapter *adapter)
3898 {
3899 u32 pfmap;
3900
3901 if (t4_use_ldst(adapter))
3902 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
3903 else
3904 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3905 &pfmap, 1, TP_RSS_PF_MAP_A);
3906 return pfmap;
3907 }
3908
3909 /**
3910 * t4_read_rss_pf_mask - read PF RSS Mask
3911 * @adapter: the adapter
3912 *
3913 * Reads the PF RSS Mask register and returns its value.
3914 */
3915 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3916 {
3917 u32 pfmask;
3918
3919 if (t4_use_ldst(adapter))
3920 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
3921 else
3922 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3923 &pfmask, 1, TP_RSS_PF_MSK_A);
3924 return pfmask;
3925 }
3926
3927 /**
3928 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
3929 * @adap: the adapter
3930 * @v4: holds the TCP/IP counter values
3931 * @v6: holds the TCP/IPv6 counter values
3932 *
3933 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3934 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3935 */
3936 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3937 struct tp_tcp_stats *v6)
3938 {
3939 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3940
3941 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3942 #define STAT(x) val[STAT_IDX(x)]
3943 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3944
3945 if (v4) {
3946 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3947 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3948 v4->tcp_out_rsts = STAT(OUT_RST);
3949 v4->tcp_in_segs = STAT64(IN_SEG);
3950 v4->tcp_out_segs = STAT64(OUT_SEG);
3951 v4->tcp_retrans_segs = STAT64(RXT_SEG);
3952 }
3953 if (v6) {
3954 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
3955 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3956 v6->tcp_out_rsts = STAT(OUT_RST);
3957 v6->tcp_in_segs = STAT64(IN_SEG);
3958 v6->tcp_out_segs = STAT64(OUT_SEG);
3959 v6->tcp_retrans_segs = STAT64(RXT_SEG);
3960 }
3961 #undef STAT64
3962 #undef STAT
3963 #undef STAT_IDX
3964 }
3965
3966 /**
3967 * t4_tp_get_err_stats - read TP's error MIB counters
3968 * @adap: the adapter
3969 * @st: holds the counter values
3970 *
3971 * Returns the values of TP's error counters.
3972 */
3973 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3974 {
3975 int nchan = adap->params.arch.nchan;
3976
3977 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3978 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
3979 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3980 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
3981 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3982 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
3983 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3984 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
3985 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3986 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
3987 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3988 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
3989 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3990 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
3991 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3992 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
3993
3994 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
3995 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
3996 }
3997
3998 /**
3999 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4000 * @adap: the adapter
4001 * @st: holds the counter values
4002 *
4003 * Returns the values of TP's CPL counters.
4004 */
4005 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4006 {
4007 int nchan = adap->params.arch.nchan;
4008
4009 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4010 nchan, TP_MIB_CPL_IN_REQ_0_A);
4011 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4012 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4013
4014 }
4015
4016 /**
4017 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4018 * @adap: the adapter
4019 * @st: holds the counter values
4020 *
4021 * Returns the values of TP's RDMA counters.
4022 */
4023 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4024 {
4025 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4026 2, TP_MIB_RQE_DFR_PKT_A);
4027 }
4028
4029 /**
4030 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4031 * @adap: the adapter
4032 * @idx: the port index
4033 * @st: holds the counter values
4034 *
4035 * Returns the values of TP's FCoE counters for the selected port.
4036 */
4037 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4038 struct tp_fcoe_stats *st)
4039 {
4040 u32 val[2];
4041
4042 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4043 1, TP_MIB_FCOE_DDP_0_A + idx);
4044 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4045 1, TP_MIB_FCOE_DROP_0_A + idx);
4046 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4047 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4048 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4049 }
4050
4051 /**
4052 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4053 * @adap: the adapter
4054 * @st: holds the counter values
4055 *
4056 * Returns the values of TP's counters for non-TCP directly-placed packets.
4057 */
4058 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4059 {
4060 u32 val[4];
4061
4062 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4063 TP_MIB_USM_PKTS_A);
4064 st->frames = val[0];
4065 st->drops = val[1];
4066 st->octets = ((u64)val[2] << 32) | val[3];
4067 }
4068
4069 /**
4070 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4071 * @adap: the adapter
4072 * @mtus: where to store the MTU values
4073 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4074 *
4075 * Reads the HW path MTU table.
4076 */
4077 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4078 {
4079 u32 v;
4080 int i;
4081
4082 for (i = 0; i < NMTUS; ++i) {
4083 t4_write_reg(adap, TP_MTU_TABLE_A,
4084 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4085 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4086 mtus[i] = MTUVALUE_G(v);
4087 if (mtu_log)
4088 mtu_log[i] = MTUWIDTH_G(v);
4089 }
4090 }
4091
4092 /**
4093 * t4_read_cong_tbl - reads the congestion control table
4094 * @adap: the adapter
4095 * @incr: where to store the alpha values
4096 *
4097 * Reads the additive increments programmed into the HW congestion
4098 * control table.
4099 */
4100 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4101 {
4102 unsigned int mtu, w;
4103
4104 for (mtu = 0; mtu < NMTUS; ++mtu)
4105 for (w = 0; w < NCCTRL_WIN; ++w) {
4106 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4107 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4108 incr[mtu][w] = (u16)t4_read_reg(adap,
4109 TP_CCTRL_TABLE_A) & 0x1fff;
4110 }
4111 }
4112
4113 /**
4114 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4115 * @adap: the adapter
4116 * @addr: the indirect TP register address
4117 * @mask: specifies the field within the register to modify
4118 * @val: new value for the field
4119 *
4120 * Sets a field of an indirect TP register to the given value.
4121 */
4122 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4123 unsigned int mask, unsigned int val)
4124 {
4125 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4126 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4127 t4_write_reg(adap, TP_PIO_DATA_A, val);
4128 }
4129
4130 /**
4131 * init_cong_ctrl - initialize congestion control parameters
4132 * @a: the alpha values for congestion control
4133 * @b: the beta values for congestion control
4134 *
4135 * Initialize the congestion control parameters.
4136 */
4137 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4138 {
4139 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4140 a[9] = 2;
4141 a[10] = 3;
4142 a[11] = 4;
4143 a[12] = 5;
4144 a[13] = 6;
4145 a[14] = 7;
4146 a[15] = 8;
4147 a[16] = 9;
4148 a[17] = 10;
4149 a[18] = 14;
4150 a[19] = 17;
4151 a[20] = 21;
4152 a[21] = 25;
4153 a[22] = 30;
4154 a[23] = 35;
4155 a[24] = 45;
4156 a[25] = 60;
4157 a[26] = 80;
4158 a[27] = 100;
4159 a[28] = 200;
4160 a[29] = 300;
4161 a[30] = 400;
4162 a[31] = 500;
4163
4164 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
4165 b[9] = b[10] = 1;
4166 b[11] = b[12] = 2;
4167 b[13] = b[14] = b[15] = b[16] = 3;
4168 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
4169 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
4170 b[28] = b[29] = 6;
4171 b[30] = b[31] = 7;
4172 }
4173
4174 /* The minimum additive increment value for the congestion control table */
4175 #define CC_MIN_INCR 2U
4176
4177 /**
4178 * t4_load_mtus - write the MTU and congestion control HW tables
4179 * @adap: the adapter
4180 * @mtus: the values for the MTU table
4181 * @alpha: the values for the congestion control alpha parameter
4182 * @beta: the values for the congestion control beta parameter
4183 *
4184 * Write the HW MTU table with the supplied MTUs and the high-speed
4185 * congestion control table with the supplied alpha, beta, and MTUs.
4186 * We write the two tables together because the additive increments
4187 * depend on the MTUs.
4188 */
4189 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
4190 const unsigned short *alpha, const unsigned short *beta)
4191 {
4192 static const unsigned int avg_pkts[NCCTRL_WIN] = {
4193 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
4194 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
4195 28672, 40960, 57344, 81920, 114688, 163840, 229376
4196 };
4197
4198 unsigned int i, w;
4199
4200 for (i = 0; i < NMTUS; ++i) {
4201 unsigned int mtu = mtus[i];
4202 unsigned int log2 = fls(mtu);
4203
4204 if (!(mtu & ((1 << log2) >> 2))) /* round */
4205 log2--;
4206 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
4207 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4208
4209 for (w = 0; w < NCCTRL_WIN; ++w) {
4210 unsigned int inc;
4211
4212 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
4213 CC_MIN_INCR);
4214
4215 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4216 (w << 16) | (beta[w] << 13) | inc);
4217 }
4218 }
4219 }
4220
4221 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
4222 * clocks. The formula is
4223 *
4224 * bytes/s = bytes256 * 256 * ClkFreq / 4096
4225 *
4226 * which is equivalent to
4227 *
4228 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
4229 */
4230 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
4231 {
4232 u64 v = bytes256 * adap->params.vpd.cclk;
4233
4234 return v * 62 + v / 2;
4235 }
4236
4237 /**
4238 * t4_get_chan_txrate - get the current per channel Tx rates
4239 * @adap: the adapter
4240 * @nic_rate: rates for NIC traffic
4241 * @ofld_rate: rates for offloaded traffic
4242 *
4243 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
4244 * for each channel.
4245 */
4246 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
4247 {
4248 u32 v;
4249
4250 v = t4_read_reg(adap, TP_TX_TRATE_A);
4251 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
4252 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
4253 if (adap->params.arch.nchan == NCHAN) {
4254 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
4255 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
4256 }
4257
4258 v = t4_read_reg(adap, TP_TX_ORATE_A);
4259 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
4260 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
4261 if (adap->params.arch.nchan == NCHAN) {
4262 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
4263 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
4264 }
4265 }
4266
4267 /**
4268 * t4_set_trace_filter - configure one of the tracing filters
4269 * @adap: the adapter
4270 * @tp: the desired trace filter parameters
4271 * @idx: which filter to configure
4272 * @enable: whether to enable or disable the filter
4273 *
4274 * Configures one of the tracing filters available in HW. If @enable is
4275 * %0 @tp is not examined and may be %NULL. The user is responsible to
4276 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
4277 */
4278 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
4279 int idx, int enable)
4280 {
4281 int i, ofst = idx * 4;
4282 u32 data_reg, mask_reg, cfg;
4283 u32 multitrc = TRCMULTIFILTER_F;
4284
4285 if (!enable) {
4286 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
4287 return 0;
4288 }
4289
4290 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
4291 if (cfg & TRCMULTIFILTER_F) {
4292 /* If multiple tracers are enabled, then maximum
4293 * capture size is 2.5KB (FIFO size of a single channel)
4294 * minus 2 flits for CPL_TRACE_PKT header.
4295 */
4296 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
4297 return -EINVAL;
4298 } else {
4299 /* If multiple tracers are disabled, to avoid deadlocks
4300 * maximum packet capture size of 9600 bytes is recommended.
4301 * Also in this mode, only trace0 can be enabled and running.
4302 */
4303 multitrc = 0;
4304 if (tp->snap_len > 9600 || idx)
4305 return -EINVAL;
4306 }
4307
4308 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
4309 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
4310 tp->min_len > TFMINPKTSIZE_M)
4311 return -EINVAL;
4312
4313 /* stop the tracer we'll be changing */
4314 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
4315
4316 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
4317 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
4318 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
4319
4320 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
4321 t4_write_reg(adap, data_reg, tp->data[i]);
4322 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
4323 }
4324 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
4325 TFCAPTUREMAX_V(tp->snap_len) |
4326 TFMINPKTSIZE_V(tp->min_len));
4327 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
4328 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
4329 (is_t4(adap->params.chip) ?
4330 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
4331 T5_TFPORT_V(tp->port) | T5_TFEN_F |
4332 T5_TFINVERTMATCH_V(tp->invert)));
4333
4334 return 0;
4335 }
4336
4337 /**
4338 * t4_get_trace_filter - query one of the tracing filters
4339 * @adap: the adapter
4340 * @tp: the current trace filter parameters
4341 * @idx: which trace filter to query
4342 * @enabled: non-zero if the filter is enabled
4343 *
4344 * Returns the current settings of one of the HW tracing filters.
4345 */
4346 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
4347 int *enabled)
4348 {
4349 u32 ctla, ctlb;
4350 int i, ofst = idx * 4;
4351 u32 data_reg, mask_reg;
4352
4353 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
4354 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
4355
4356 if (is_t4(adap->params.chip)) {
4357 *enabled = !!(ctla & TFEN_F);
4358 tp->port = TFPORT_G(ctla);
4359 tp->invert = !!(ctla & TFINVERTMATCH_F);
4360 } else {
4361 *enabled = !!(ctla & T5_TFEN_F);
4362 tp->port = T5_TFPORT_G(ctla);
4363 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
4364 }
4365 tp->snap_len = TFCAPTUREMAX_G(ctlb);
4366 tp->min_len = TFMINPKTSIZE_G(ctlb);
4367 tp->skip_ofst = TFOFFSET_G(ctla);
4368 tp->skip_len = TFLENGTH_G(ctla);
4369
4370 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
4371 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
4372 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
4373
4374 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
4375 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
4376 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
4377 }
4378 }
4379
4380 /**
4381 * t4_pmtx_get_stats - returns the HW stats from PMTX
4382 * @adap: the adapter
4383 * @cnt: where to store the count statistics
4384 * @cycles: where to store the cycle statistics
4385 *
4386 * Returns performance statistics from PMTX.
4387 */
4388 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4389 {
4390 int i;
4391 u32 data[2];
4392
4393 for (i = 0; i < PM_NSTATS; i++) {
4394 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
4395 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
4396 if (is_t4(adap->params.chip)) {
4397 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
4398 } else {
4399 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
4400 PM_TX_DBG_DATA_A, data, 2,
4401 PM_TX_DBG_STAT_MSB_A);
4402 cycles[i] = (((u64)data[0] << 32) | data[1]);
4403 }
4404 }
4405 }
4406
4407 /**
4408 * t4_pmrx_get_stats - returns the HW stats from PMRX
4409 * @adap: the adapter
4410 * @cnt: where to store the count statistics
4411 * @cycles: where to store the cycle statistics
4412 *
4413 * Returns performance statistics from PMRX.
4414 */
4415 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
4416 {
4417 int i;
4418 u32 data[2];
4419
4420 for (i = 0; i < PM_NSTATS; i++) {
4421 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
4422 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
4423 if (is_t4(adap->params.chip)) {
4424 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
4425 } else {
4426 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
4427 PM_RX_DBG_DATA_A, data, 2,
4428 PM_RX_DBG_STAT_MSB_A);
4429 cycles[i] = (((u64)data[0] << 32) | data[1]);
4430 }
4431 }
4432 }
4433
4434 /**
4435 * t4_get_mps_bg_map - return the buffer groups associated with a port
4436 * @adap: the adapter
4437 * @idx: the port index
4438 *
4439 * Returns a bitmap indicating which MPS buffer groups are associated
4440 * with the given port. Bit i is set if buffer group i is used by the
4441 * port.
4442 */
4443 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4444 {
4445 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4446
4447 if (n == 0)
4448 return idx == 0 ? 0xf : 0;
4449 if (n == 1)
4450 return idx < 2 ? (3 << (2 * idx)) : 0;
4451 return 1 << idx;
4452 }
4453
4454 /**
4455 * t4_get_port_type_description - return Port Type string description
4456 * @port_type: firmware Port Type enumeration
4457 */
4458 const char *t4_get_port_type_description(enum fw_port_type port_type)
4459 {
4460 static const char *const port_type_description[] = {
4461 "R XFI",
4462 "R XAUI",
4463 "T SGMII",
4464 "T XFI",
4465 "T XAUI",
4466 "KX4",
4467 "CX4",
4468 "KX",
4469 "KR",
4470 "R SFP+",
4471 "KR/KX",
4472 "KR/KX/KX4",
4473 "R QSFP_10G",
4474 "R QSA",
4475 "R QSFP",
4476 "R BP40_BA",
4477 };
4478
4479 if (port_type < ARRAY_SIZE(port_type_description))
4480 return port_type_description[port_type];
4481 return "UNKNOWN";
4482 }
4483
4484 /**
4485 * t4_get_port_stats_offset - collect port stats relative to a previous
4486 * snapshot
4487 * @adap: The adapter
4488 * @idx: The port
4489 * @stats: Current stats to fill
4490 * @offset: Previous stats snapshot
4491 */
4492 void t4_get_port_stats_offset(struct adapter *adap, int idx,
4493 struct port_stats *stats,
4494 struct port_stats *offset)
4495 {
4496 u64 *s, *o;
4497 int i;
4498
4499 t4_get_port_stats(adap, idx, stats);
4500 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
4501 i < (sizeof(struct port_stats) / sizeof(u64));
4502 i++, s++, o++)
4503 *s -= *o;
4504 }
4505
4506 /**
4507 * t4_get_port_stats - collect port statistics
4508 * @adap: the adapter
4509 * @idx: the port index
4510 * @p: the stats structure to fill
4511 *
4512 * Collect statistics related to the given port from HW.
4513 */
4514 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
4515 {
4516 u32 bgmap = t4_get_mps_bg_map(adap, idx);
4517
4518 #define GET_STAT(name) \
4519 t4_read_reg64(adap, \
4520 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
4521 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4522 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4523
4524 p->tx_octets = GET_STAT(TX_PORT_BYTES);
4525 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
4526 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
4527 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
4528 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
4529 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
4530 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
4531 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
4532 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
4533 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
4534 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
4535 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
4536 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
4537 p->tx_drop = GET_STAT(TX_PORT_DROP);
4538 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
4539 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
4540 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
4541 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
4542 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
4543 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
4544 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
4545 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
4546 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
4547
4548 p->rx_octets = GET_STAT(RX_PORT_BYTES);
4549 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
4550 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
4551 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
4552 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
4553 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
4554 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
4555 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
4556 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
4557 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
4558 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
4559 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
4560 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
4561 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
4562 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
4563 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
4564 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
4565 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
4566 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
4567 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
4568 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
4569 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
4570 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
4571 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
4572 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
4573 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
4574 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
4575
4576 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
4577 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
4578 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
4579 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
4580 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
4581 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
4582 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
4583 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
4584
4585 #undef GET_STAT
4586 #undef GET_STAT_COM
4587 }
4588
4589 /**
4590 * t4_get_lb_stats - collect loopback port statistics
4591 * @adap: the adapter
4592 * @idx: the loopback port index
4593 * @p: the stats structure to fill
4594 *
4595 * Return HW statistics for the given loopback port.
4596 */
4597 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4598 {
4599 u32 bgmap = t4_get_mps_bg_map(adap, idx);
4600
4601 #define GET_STAT(name) \
4602 t4_read_reg64(adap, \
4603 (is_t4(adap->params.chip) ? \
4604 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
4605 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
4606 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4607
4608 p->octets = GET_STAT(BYTES);
4609 p->frames = GET_STAT(FRAMES);
4610 p->bcast_frames = GET_STAT(BCAST);
4611 p->mcast_frames = GET_STAT(MCAST);
4612 p->ucast_frames = GET_STAT(UCAST);
4613 p->error_frames = GET_STAT(ERROR);
4614
4615 p->frames_64 = GET_STAT(64B);
4616 p->frames_65_127 = GET_STAT(65B_127B);
4617 p->frames_128_255 = GET_STAT(128B_255B);
4618 p->frames_256_511 = GET_STAT(256B_511B);
4619 p->frames_512_1023 = GET_STAT(512B_1023B);
4620 p->frames_1024_1518 = GET_STAT(1024B_1518B);
4621 p->frames_1519_max = GET_STAT(1519B_MAX);
4622 p->drop = GET_STAT(DROP_FRAMES);
4623
4624 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4625 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4626 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4627 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4628 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4629 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4630 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4631 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4632
4633 #undef GET_STAT
4634 #undef GET_STAT_COM
4635 }
4636
4637 /* t4_mk_filtdelwr - create a delete filter WR
4638 * @ftid: the filter ID
4639 * @wr: the filter work request to populate
4640 * @qid: ingress queue to receive the delete notification
4641 *
4642 * Creates a filter work request to delete the supplied filter. If @qid is
4643 * negative the delete notification is suppressed.
4644 */
4645 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4646 {
4647 memset(wr, 0, sizeof(*wr));
4648 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
4649 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
4650 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
4651 FW_FILTER_WR_NOREPLY_V(qid < 0));
4652 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
4653 if (qid >= 0)
4654 wr->rx_chan_rx_rpl_iq =
4655 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
4656 }
4657
4658 #define INIT_CMD(var, cmd, rd_wr) do { \
4659 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
4660 FW_CMD_REQUEST_F | \
4661 FW_CMD_##rd_wr##_F); \
4662 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4663 } while (0)
4664
4665 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
4666 u32 addr, u32 val)
4667 {
4668 u32 ldst_addrspace;
4669 struct fw_ldst_cmd c;
4670
4671 memset(&c, 0, sizeof(c));
4672 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
4673 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4674 FW_CMD_REQUEST_F |
4675 FW_CMD_WRITE_F |
4676 ldst_addrspace);
4677 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4678 c.u.addrval.addr = cpu_to_be32(addr);
4679 c.u.addrval.val = cpu_to_be32(val);
4680
4681 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4682 }
4683
4684 /**
4685 * t4_mdio_rd - read a PHY register through MDIO
4686 * @adap: the adapter
4687 * @mbox: mailbox to use for the FW command
4688 * @phy_addr: the PHY address
4689 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4690 * @reg: the register to read
4691 * @valp: where to store the value
4692 *
4693 * Issues a FW command through the given mailbox to read a PHY register.
4694 */
4695 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4696 unsigned int mmd, unsigned int reg, u16 *valp)
4697 {
4698 int ret;
4699 u32 ldst_addrspace;
4700 struct fw_ldst_cmd c;
4701
4702 memset(&c, 0, sizeof(c));
4703 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4704 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4705 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4706 ldst_addrspace);
4707 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4708 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4709 FW_LDST_CMD_MMD_V(mmd));
4710 c.u.mdio.raddr = cpu_to_be16(reg);
4711
4712 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4713 if (ret == 0)
4714 *valp = be16_to_cpu(c.u.mdio.rval);
4715 return ret;
4716 }
4717
4718 /**
4719 * t4_mdio_wr - write a PHY register through MDIO
4720 * @adap: the adapter
4721 * @mbox: mailbox to use for the FW command
4722 * @phy_addr: the PHY address
4723 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
4724 * @reg: the register to write
4725 * @valp: value to write
4726 *
4727 * Issues a FW command through the given mailbox to write a PHY register.
4728 */
4729 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4730 unsigned int mmd, unsigned int reg, u16 val)
4731 {
4732 u32 ldst_addrspace;
4733 struct fw_ldst_cmd c;
4734
4735 memset(&c, 0, sizeof(c));
4736 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
4737 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4738 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4739 ldst_addrspace);
4740 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4741 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
4742 FW_LDST_CMD_MMD_V(mmd));
4743 c.u.mdio.raddr = cpu_to_be16(reg);
4744 c.u.mdio.rval = cpu_to_be16(val);
4745
4746 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4747 }
4748
4749 /**
4750 * t4_sge_decode_idma_state - decode the idma state
4751 * @adap: the adapter
4752 * @state: the state idma is stuck in
4753 */
4754 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
4755 {
4756 static const char * const t4_decode[] = {
4757 "IDMA_IDLE",
4758 "IDMA_PUSH_MORE_CPL_FIFO",
4759 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4760 "Not used",
4761 "IDMA_PHYSADDR_SEND_PCIEHDR",
4762 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4763 "IDMA_PHYSADDR_SEND_PAYLOAD",
4764 "IDMA_SEND_FIFO_TO_IMSG",
4765 "IDMA_FL_REQ_DATA_FL_PREP",
4766 "IDMA_FL_REQ_DATA_FL",
4767 "IDMA_FL_DROP",
4768 "IDMA_FL_H_REQ_HEADER_FL",
4769 "IDMA_FL_H_SEND_PCIEHDR",
4770 "IDMA_FL_H_PUSH_CPL_FIFO",
4771 "IDMA_FL_H_SEND_CPL",
4772 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4773 "IDMA_FL_H_SEND_IP_HDR",
4774 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4775 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4776 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4777 "IDMA_FL_D_SEND_PCIEHDR",
4778 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4779 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4780 "IDMA_FL_SEND_PCIEHDR",
4781 "IDMA_FL_PUSH_CPL_FIFO",
4782 "IDMA_FL_SEND_CPL",
4783 "IDMA_FL_SEND_PAYLOAD_FIRST",
4784 "IDMA_FL_SEND_PAYLOAD",
4785 "IDMA_FL_REQ_NEXT_DATA_FL",
4786 "IDMA_FL_SEND_NEXT_PCIEHDR",
4787 "IDMA_FL_SEND_PADDING",
4788 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4789 "IDMA_FL_SEND_FIFO_TO_IMSG",
4790 "IDMA_FL_REQ_DATAFL_DONE",
4791 "IDMA_FL_REQ_HEADERFL_DONE",
4792 };
4793 static const char * const t5_decode[] = {
4794 "IDMA_IDLE",
4795 "IDMA_ALMOST_IDLE",
4796 "IDMA_PUSH_MORE_CPL_FIFO",
4797 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
4798 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
4799 "IDMA_PHYSADDR_SEND_PCIEHDR",
4800 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
4801 "IDMA_PHYSADDR_SEND_PAYLOAD",
4802 "IDMA_SEND_FIFO_TO_IMSG",
4803 "IDMA_FL_REQ_DATA_FL",
4804 "IDMA_FL_DROP",
4805 "IDMA_FL_DROP_SEND_INC",
4806 "IDMA_FL_H_REQ_HEADER_FL",
4807 "IDMA_FL_H_SEND_PCIEHDR",
4808 "IDMA_FL_H_PUSH_CPL_FIFO",
4809 "IDMA_FL_H_SEND_CPL",
4810 "IDMA_FL_H_SEND_IP_HDR_FIRST",
4811 "IDMA_FL_H_SEND_IP_HDR",
4812 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
4813 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
4814 "IDMA_FL_H_SEND_IP_HDR_PADDING",
4815 "IDMA_FL_D_SEND_PCIEHDR",
4816 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
4817 "IDMA_FL_D_REQ_NEXT_DATA_FL",
4818 "IDMA_FL_SEND_PCIEHDR",
4819 "IDMA_FL_PUSH_CPL_FIFO",
4820 "IDMA_FL_SEND_CPL",
4821 "IDMA_FL_SEND_PAYLOAD_FIRST",
4822 "IDMA_FL_SEND_PAYLOAD",
4823 "IDMA_FL_REQ_NEXT_DATA_FL",
4824 "IDMA_FL_SEND_NEXT_PCIEHDR",
4825 "IDMA_FL_SEND_PADDING",
4826 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
4827 };
4828 static const u32 sge_regs[] = {
4829 SGE_DEBUG_DATA_LOW_INDEX_2_A,
4830 SGE_DEBUG_DATA_LOW_INDEX_3_A,
4831 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4832 };
4833 const char **sge_idma_decode;
4834 int sge_idma_decode_nstates;
4835 int i;
4836
4837 if (is_t4(adapter->params.chip)) {
4838 sge_idma_decode = (const char **)t4_decode;
4839 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
4840 } else {
4841 sge_idma_decode = (const char **)t5_decode;
4842 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
4843 }
4844
4845 if (state < sge_idma_decode_nstates)
4846 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
4847 else
4848 CH_WARN(adapter, "idma state %d unknown\n", state);
4849
4850 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
4851 CH_WARN(adapter, "SGE register %#x value %#x\n",
4852 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
4853 }
4854
4855 /**
4856 * t4_sge_ctxt_flush - flush the SGE context cache
4857 * @adap: the adapter
4858 * @mbox: mailbox to use for the FW command
4859 *
4860 * Issues a FW command through the given mailbox to flush the
4861 * SGE context cache.
4862 */
4863 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4864 {
4865 int ret;
4866 u32 ldst_addrspace;
4867 struct fw_ldst_cmd c;
4868
4869 memset(&c, 0, sizeof(c));
4870 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
4871 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4872 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4873 ldst_addrspace);
4874 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4875 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
4876
4877 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4878 return ret;
4879 }
4880
4881 /**
4882 * t4_fw_hello - establish communication with FW
4883 * @adap: the adapter
4884 * @mbox: mailbox to use for the FW command
4885 * @evt_mbox: mailbox to receive async FW events
4886 * @master: specifies the caller's willingness to be the device master
4887 * @state: returns the current device state (if non-NULL)
4888 *
4889 * Issues a command to establish communication with FW. Returns either
4890 * an error (negative integer) or the mailbox of the Master PF.
4891 */
4892 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4893 enum dev_master master, enum dev_state *state)
4894 {
4895 int ret;
4896 struct fw_hello_cmd c;
4897 u32 v;
4898 unsigned int master_mbox;
4899 int retries = FW_CMD_HELLO_RETRIES;
4900
4901 retry:
4902 memset(&c, 0, sizeof(c));
4903 INIT_CMD(c, HELLO, WRITE);
4904 c.err_to_clearinit = cpu_to_be32(
4905 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
4906 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4907 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
4908 mbox : FW_HELLO_CMD_MBMASTER_M) |
4909 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
4910 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
4911 FW_HELLO_CMD_CLEARINIT_F);
4912
4913 /*
4914 * Issue the HELLO command to the firmware. If it's not successful
4915 * but indicates that we got a "busy" or "timeout" condition, retry
4916 * the HELLO until we exhaust our retry limit. If we do exceed our
4917 * retry limit, check to see if the firmware left us any error
4918 * information and report that if so.
4919 */
4920 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4921 if (ret < 0) {
4922 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4923 goto retry;
4924 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4925 t4_report_fw_error(adap);
4926 return ret;
4927 }
4928
4929 v = be32_to_cpu(c.err_to_clearinit);
4930 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4931 if (state) {
4932 if (v & FW_HELLO_CMD_ERR_F)
4933 *state = DEV_STATE_ERR;
4934 else if (v & FW_HELLO_CMD_INIT_F)
4935 *state = DEV_STATE_INIT;
4936 else
4937 *state = DEV_STATE_UNINIT;
4938 }
4939
4940 /*
4941 * If we're not the Master PF then we need to wait around for the
4942 * Master PF Driver to finish setting up the adapter.
4943 *
4944 * Note that we also do this wait if we're a non-Master-capable PF and
4945 * there is no current Master PF; a Master PF may show up momentarily
4946 * and we wouldn't want to fail pointlessly. (This can happen when an
4947 * OS loads lots of different drivers rapidly at the same time). In
4948 * this case, the Master PF returned by the firmware will be
4949 * PCIE_FW_MASTER_M so the test below will work ...
4950 */
4951 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
4952 master_mbox != mbox) {
4953 int waiting = FW_CMD_HELLO_TIMEOUT;
4954
4955 /*
4956 * Wait for the firmware to either indicate an error or
4957 * initialized state. If we see either of these we bail out
4958 * and report the issue to the caller. If we exhaust the
4959 * "hello timeout" and we haven't exhausted our retries, try
4960 * again. Otherwise bail with a timeout error.
4961 */
4962 for (;;) {
4963 u32 pcie_fw;
4964
4965 msleep(50);
4966 waiting -= 50;
4967
4968 /*
4969 * If neither Error nor Initialialized are indicated
4970 * by the firmware keep waiting till we exaust our
4971 * timeout ... and then retry if we haven't exhausted
4972 * our retries ...
4973 */
4974 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
4975 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
4976 if (waiting <= 0) {
4977 if (retries-- > 0)
4978 goto retry;
4979
4980 return -ETIMEDOUT;
4981 }
4982 continue;
4983 }
4984
4985 /*
4986 * We either have an Error or Initialized condition
4987 * report errors preferentially.
4988 */
4989 if (state) {
4990 if (pcie_fw & PCIE_FW_ERR_F)
4991 *state = DEV_STATE_ERR;
4992 else if (pcie_fw & PCIE_FW_INIT_F)
4993 *state = DEV_STATE_INIT;
4994 }
4995
4996 /*
4997 * If we arrived before a Master PF was selected and
4998 * there's not a valid Master PF, grab its identity
4999 * for our caller.
5000 */
5001 if (master_mbox == PCIE_FW_MASTER_M &&
5002 (pcie_fw & PCIE_FW_MASTER_VLD_F))
5003 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5004 break;
5005 }
5006 }
5007
5008 return master_mbox;
5009 }
5010
5011 /**
5012 * t4_fw_bye - end communication with FW
5013 * @adap: the adapter
5014 * @mbox: mailbox to use for the FW command
5015 *
5016 * Issues a command to terminate communication with FW.
5017 */
5018 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5019 {
5020 struct fw_bye_cmd c;
5021
5022 memset(&c, 0, sizeof(c));
5023 INIT_CMD(c, BYE, WRITE);
5024 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5025 }
5026
5027 /**
5028 * t4_init_cmd - ask FW to initialize the device
5029 * @adap: the adapter
5030 * @mbox: mailbox to use for the FW command
5031 *
5032 * Issues a command to FW to partially initialize the device. This
5033 * performs initialization that generally doesn't depend on user input.
5034 */
5035 int t4_early_init(struct adapter *adap, unsigned int mbox)
5036 {
5037 struct fw_initialize_cmd c;
5038
5039 memset(&c, 0, sizeof(c));
5040 INIT_CMD(c, INITIALIZE, WRITE);
5041 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5042 }
5043
5044 /**
5045 * t4_fw_reset - issue a reset to FW
5046 * @adap: the adapter
5047 * @mbox: mailbox to use for the FW command
5048 * @reset: specifies the type of reset to perform
5049 *
5050 * Issues a reset command of the specified type to FW.
5051 */
5052 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5053 {
5054 struct fw_reset_cmd c;
5055
5056 memset(&c, 0, sizeof(c));
5057 INIT_CMD(c, RESET, WRITE);
5058 c.val = cpu_to_be32(reset);
5059 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5060 }
5061
5062 /**
5063 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5064 * @adap: the adapter
5065 * @mbox: mailbox to use for the FW RESET command (if desired)
5066 * @force: force uP into RESET even if FW RESET command fails
5067 *
5068 * Issues a RESET command to firmware (if desired) with a HALT indication
5069 * and then puts the microprocessor into RESET state. The RESET command
5070 * will only be issued if a legitimate mailbox is provided (mbox <=
5071 * PCIE_FW_MASTER_M).
5072 *
5073 * This is generally used in order for the host to safely manipulate the
5074 * adapter without fear of conflicting with whatever the firmware might
5075 * be doing. The only way out of this state is to RESTART the firmware
5076 * ...
5077 */
5078 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5079 {
5080 int ret = 0;
5081
5082 /*
5083 * If a legitimate mailbox is provided, issue a RESET command
5084 * with a HALT indication.
5085 */
5086 if (mbox <= PCIE_FW_MASTER_M) {
5087 struct fw_reset_cmd c;
5088
5089 memset(&c, 0, sizeof(c));
5090 INIT_CMD(c, RESET, WRITE);
5091 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
5092 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
5093 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5094 }
5095
5096 /*
5097 * Normally we won't complete the operation if the firmware RESET
5098 * command fails but if our caller insists we'll go ahead and put the
5099 * uP into RESET. This can be useful if the firmware is hung or even
5100 * missing ... We'll have to take the risk of putting the uP into
5101 * RESET without the cooperation of firmware in that case.
5102 *
5103 * We also force the firmware's HALT flag to be on in case we bypassed
5104 * the firmware RESET command above or we're dealing with old firmware
5105 * which doesn't have the HALT capability. This will serve as a flag
5106 * for the incoming firmware to know that it's coming out of a HALT
5107 * rather than a RESET ... if it's new enough to understand that ...
5108 */
5109 if (ret == 0 || force) {
5110 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
5111 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
5112 PCIE_FW_HALT_F);
5113 }
5114
5115 /*
5116 * And we always return the result of the firmware RESET command
5117 * even when we force the uP into RESET ...
5118 */
5119 return ret;
5120 }
5121
5122 /**
5123 * t4_fw_restart - restart the firmware by taking the uP out of RESET
5124 * @adap: the adapter
5125 * @reset: if we want to do a RESET to restart things
5126 *
5127 * Restart firmware previously halted by t4_fw_halt(). On successful
5128 * return the previous PF Master remains as the new PF Master and there
5129 * is no need to issue a new HELLO command, etc.
5130 *
5131 * We do this in two ways:
5132 *
5133 * 1. If we're dealing with newer firmware we'll simply want to take
5134 * the chip's microprocessor out of RESET. This will cause the
5135 * firmware to start up from its start vector. And then we'll loop
5136 * until the firmware indicates it's started again (PCIE_FW.HALT
5137 * reset to 0) or we timeout.
5138 *
5139 * 2. If we're dealing with older firmware then we'll need to RESET
5140 * the chip since older firmware won't recognize the PCIE_FW.HALT
5141 * flag and automatically RESET itself on startup.
5142 */
5143 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
5144 {
5145 if (reset) {
5146 /*
5147 * Since we're directing the RESET instead of the firmware
5148 * doing it automatically, we need to clear the PCIE_FW.HALT
5149 * bit.
5150 */
5151 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
5152
5153 /*
5154 * If we've been given a valid mailbox, first try to get the
5155 * firmware to do the RESET. If that works, great and we can
5156 * return success. Otherwise, if we haven't been given a
5157 * valid mailbox or the RESET command failed, fall back to
5158 * hitting the chip with a hammer.
5159 */
5160 if (mbox <= PCIE_FW_MASTER_M) {
5161 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5162 msleep(100);
5163 if (t4_fw_reset(adap, mbox,
5164 PIORST_F | PIORSTMODE_F) == 0)
5165 return 0;
5166 }
5167
5168 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
5169 msleep(2000);
5170 } else {
5171 int ms;
5172
5173 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5174 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
5175 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
5176 return 0;
5177 msleep(100);
5178 ms += 100;
5179 }
5180 return -ETIMEDOUT;
5181 }
5182 return 0;
5183 }
5184
5185 /**
5186 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
5187 * @adap: the adapter
5188 * @mbox: mailbox to use for the FW RESET command (if desired)
5189 * @fw_data: the firmware image to write
5190 * @size: image size
5191 * @force: force upgrade even if firmware doesn't cooperate
5192 *
5193 * Perform all of the steps necessary for upgrading an adapter's
5194 * firmware image. Normally this requires the cooperation of the
5195 * existing firmware in order to halt all existing activities
5196 * but if an invalid mailbox token is passed in we skip that step
5197 * (though we'll still put the adapter microprocessor into RESET in
5198 * that case).
5199 *
5200 * On successful return the new firmware will have been loaded and
5201 * the adapter will have been fully RESET losing all previous setup
5202 * state. On unsuccessful return the adapter may be completely hosed ...
5203 * positive errno indicates that the adapter is ~probably~ intact, a
5204 * negative errno indicates that things are looking bad ...
5205 */
5206 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
5207 const u8 *fw_data, unsigned int size, int force)
5208 {
5209 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
5210 int reset, ret;
5211
5212 if (!t4_fw_matches_chip(adap, fw_hdr))
5213 return -EINVAL;
5214
5215 ret = t4_fw_halt(adap, mbox, force);
5216 if (ret < 0 && !force)
5217 return ret;
5218
5219 ret = t4_load_fw(adap, fw_data, size);
5220 if (ret < 0)
5221 return ret;
5222
5223 /*
5224 * Older versions of the firmware don't understand the new
5225 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
5226 * restart. So for newly loaded older firmware we'll have to do the
5227 * RESET for it so it starts up on a clean slate. We can tell if
5228 * the newly loaded firmware will handle this right by checking
5229 * its header flags to see if it advertises the capability.
5230 */
5231 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
5232 return t4_fw_restart(adap, mbox, reset);
5233 }
5234
5235 /**
5236 * t4_fixup_host_params - fix up host-dependent parameters
5237 * @adap: the adapter
5238 * @page_size: the host's Base Page Size
5239 * @cache_line_size: the host's Cache Line Size
5240 *
5241 * Various registers in T4 contain values which are dependent on the
5242 * host's Base Page and Cache Line Sizes. This function will fix all of
5243 * those registers with the appropriate values as passed in ...
5244 */
5245 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
5246 unsigned int cache_line_size)
5247 {
5248 unsigned int page_shift = fls(page_size) - 1;
5249 unsigned int sge_hps = page_shift - 10;
5250 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
5251 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
5252 unsigned int fl_align_log = fls(fl_align) - 1;
5253
5254 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
5255 HOSTPAGESIZEPF0_V(sge_hps) |
5256 HOSTPAGESIZEPF1_V(sge_hps) |
5257 HOSTPAGESIZEPF2_V(sge_hps) |
5258 HOSTPAGESIZEPF3_V(sge_hps) |
5259 HOSTPAGESIZEPF4_V(sge_hps) |
5260 HOSTPAGESIZEPF5_V(sge_hps) |
5261 HOSTPAGESIZEPF6_V(sge_hps) |
5262 HOSTPAGESIZEPF7_V(sge_hps));
5263
5264 if (is_t4(adap->params.chip)) {
5265 t4_set_reg_field(adap, SGE_CONTROL_A,
5266 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5267 EGRSTATUSPAGESIZE_F,
5268 INGPADBOUNDARY_V(fl_align_log -
5269 INGPADBOUNDARY_SHIFT_X) |
5270 EGRSTATUSPAGESIZE_V(stat_len != 64));
5271 } else {
5272 /* T5 introduced the separation of the Free List Padding and
5273 * Packing Boundaries. Thus, we can select a smaller Padding
5274 * Boundary to avoid uselessly chewing up PCIe Link and Memory
5275 * Bandwidth, and use a Packing Boundary which is large enough
5276 * to avoid false sharing between CPUs, etc.
5277 *
5278 * For the PCI Link, the smaller the Padding Boundary the
5279 * better. For the Memory Controller, a smaller Padding
5280 * Boundary is better until we cross under the Memory Line
5281 * Size (the minimum unit of transfer to/from Memory). If we
5282 * have a Padding Boundary which is smaller than the Memory
5283 * Line Size, that'll involve a Read-Modify-Write cycle on the
5284 * Memory Controller which is never good. For T5 the smallest
5285 * Padding Boundary which we can select is 32 bytes which is
5286 * larger than any known Memory Controller Line Size so we'll
5287 * use that.
5288 *
5289 * T5 has a different interpretation of the "0" value for the
5290 * Packing Boundary. This corresponds to 16 bytes instead of
5291 * the expected 32 bytes. We never have a Packing Boundary
5292 * less than 32 bytes so we can't use that special value but
5293 * on the other hand, if we wanted 32 bytes, the best we can
5294 * really do is 64 bytes.
5295 */
5296 if (fl_align <= 32) {
5297 fl_align = 64;
5298 fl_align_log = 6;
5299 }
5300 t4_set_reg_field(adap, SGE_CONTROL_A,
5301 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
5302 EGRSTATUSPAGESIZE_F,
5303 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
5304 EGRSTATUSPAGESIZE_V(stat_len != 64));
5305 t4_set_reg_field(adap, SGE_CONTROL2_A,
5306 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
5307 INGPACKBOUNDARY_V(fl_align_log -
5308 INGPACKBOUNDARY_SHIFT_X));
5309 }
5310 /*
5311 * Adjust various SGE Free List Host Buffer Sizes.
5312 *
5313 * This is something of a crock since we're using fixed indices into
5314 * the array which are also known by the sge.c code and the T4
5315 * Firmware Configuration File. We need to come up with a much better
5316 * approach to managing this array. For now, the first four entries
5317 * are:
5318 *
5319 * 0: Host Page Size
5320 * 1: 64KB
5321 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
5322 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
5323 *
5324 * For the single-MTU buffers in unpacked mode we need to include
5325 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
5326 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5327 * Padding boundary. All of these are accommodated in the Factory
5328 * Default Firmware Configuration File but we need to adjust it for
5329 * this host's cache line size.
5330 */
5331 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
5332 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
5333 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5334 & ~(fl_align-1));
5335 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
5336 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5337 & ~(fl_align-1));
5338
5339 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5340
5341 return 0;
5342 }
5343
5344 /**
5345 * t4_fw_initialize - ask FW to initialize the device
5346 * @adap: the adapter
5347 * @mbox: mailbox to use for the FW command
5348 *
5349 * Issues a command to FW to partially initialize the device. This
5350 * performs initialization that generally doesn't depend on user input.
5351 */
5352 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
5353 {
5354 struct fw_initialize_cmd c;
5355
5356 memset(&c, 0, sizeof(c));
5357 INIT_CMD(c, INITIALIZE, WRITE);
5358 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5359 }
5360
5361 /**
5362 * t4_query_params_rw - query FW or device parameters
5363 * @adap: the adapter
5364 * @mbox: mailbox to use for the FW command
5365 * @pf: the PF
5366 * @vf: the VF
5367 * @nparams: the number of parameters
5368 * @params: the parameter names
5369 * @val: the parameter values
5370 * @rw: Write and read flag
5371 *
5372 * Reads the value of FW or device parameters. Up to 7 parameters can be
5373 * queried at once.
5374 */
5375 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
5376 unsigned int vf, unsigned int nparams, const u32 *params,
5377 u32 *val, int rw)
5378 {
5379 int i, ret;
5380 struct fw_params_cmd c;
5381 __be32 *p = &c.param[0].mnem;
5382
5383 if (nparams > 7)
5384 return -EINVAL;
5385
5386 memset(&c, 0, sizeof(c));
5387 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5388 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5389 FW_PARAMS_CMD_PFN_V(pf) |
5390 FW_PARAMS_CMD_VFN_V(vf));
5391 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5392
5393 for (i = 0; i < nparams; i++) {
5394 *p++ = cpu_to_be32(*params++);
5395 if (rw)
5396 *p = cpu_to_be32(*(val + i));
5397 p++;
5398 }
5399
5400 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5401 if (ret == 0)
5402 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5403 *val++ = be32_to_cpu(*p);
5404 return ret;
5405 }
5406
5407 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5408 unsigned int vf, unsigned int nparams, const u32 *params,
5409 u32 *val)
5410 {
5411 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
5412 }
5413
5414 /**
5415 * t4_set_params_timeout - sets FW or device parameters
5416 * @adap: the adapter
5417 * @mbox: mailbox to use for the FW command
5418 * @pf: the PF
5419 * @vf: the VF
5420 * @nparams: the number of parameters
5421 * @params: the parameter names
5422 * @val: the parameter values
5423 * @timeout: the timeout time
5424 *
5425 * Sets the value of FW or device parameters. Up to 7 parameters can be
5426 * specified at once.
5427 */
5428 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5429 unsigned int pf, unsigned int vf,
5430 unsigned int nparams, const u32 *params,
5431 const u32 *val, int timeout)
5432 {
5433 struct fw_params_cmd c;
5434 __be32 *p = &c.param[0].mnem;
5435
5436 if (nparams > 7)
5437 return -EINVAL;
5438
5439 memset(&c, 0, sizeof(c));
5440 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5441 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5442 FW_PARAMS_CMD_PFN_V(pf) |
5443 FW_PARAMS_CMD_VFN_V(vf));
5444 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5445
5446 while (nparams--) {
5447 *p++ = cpu_to_be32(*params++);
5448 *p++ = cpu_to_be32(*val++);
5449 }
5450
5451 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5452 }
5453
5454 /**
5455 * t4_set_params - sets FW or device parameters
5456 * @adap: the adapter
5457 * @mbox: mailbox to use for the FW command
5458 * @pf: the PF
5459 * @vf: the VF
5460 * @nparams: the number of parameters
5461 * @params: the parameter names
5462 * @val: the parameter values
5463 *
5464 * Sets the value of FW or device parameters. Up to 7 parameters can be
5465 * specified at once.
5466 */
5467 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
5468 unsigned int vf, unsigned int nparams, const u32 *params,
5469 const u32 *val)
5470 {
5471 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
5472 FW_CMD_MAX_TIMEOUT);
5473 }
5474
5475 /**
5476 * t4_cfg_pfvf - configure PF/VF resource limits
5477 * @adap: the adapter
5478 * @mbox: mailbox to use for the FW command
5479 * @pf: the PF being configured
5480 * @vf: the VF being configured
5481 * @txq: the max number of egress queues
5482 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
5483 * @rxqi: the max number of interrupt-capable ingress queues
5484 * @rxq: the max number of interruptless ingress queues
5485 * @tc: the PCI traffic class
5486 * @vi: the max number of virtual interfaces
5487 * @cmask: the channel access rights mask for the PF/VF
5488 * @pmask: the port access rights mask for the PF/VF
5489 * @nexact: the maximum number of exact MPS filters
5490 * @rcaps: read capabilities
5491 * @wxcaps: write/execute capabilities
5492 *
5493 * Configures resource limits and capabilities for a physical or virtual
5494 * function.
5495 */
5496 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
5497 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
5498 unsigned int rxqi, unsigned int rxq, unsigned int tc,
5499 unsigned int vi, unsigned int cmask, unsigned int pmask,
5500 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
5501 {
5502 struct fw_pfvf_cmd c;
5503
5504 memset(&c, 0, sizeof(c));
5505 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
5506 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
5507 FW_PFVF_CMD_VFN_V(vf));
5508 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5509 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
5510 FW_PFVF_CMD_NIQ_V(rxq));
5511 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
5512 FW_PFVF_CMD_PMASK_V(pmask) |
5513 FW_PFVF_CMD_NEQ_V(txq));
5514 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
5515 FW_PFVF_CMD_NVI_V(vi) |
5516 FW_PFVF_CMD_NEXACTF_V(nexact));
5517 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
5518 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
5519 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5520 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5521 }
5522
5523 /**
5524 * t4_alloc_vi - allocate a virtual interface
5525 * @adap: the adapter
5526 * @mbox: mailbox to use for the FW command
5527 * @port: physical port associated with the VI
5528 * @pf: the PF owning the VI
5529 * @vf: the VF owning the VI
5530 * @nmac: number of MAC addresses needed (1 to 5)
5531 * @mac: the MAC addresses of the VI
5532 * @rss_size: size of RSS table slice associated with this VI
5533 *
5534 * Allocates a virtual interface for the given physical port. If @mac is
5535 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
5536 * @mac should be large enough to hold @nmac Ethernet addresses, they are
5537 * stored consecutively so the space needed is @nmac * 6 bytes.
5538 * Returns a negative error number or the non-negative VI id.
5539 */
5540 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
5541 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
5542 unsigned int *rss_size)
5543 {
5544 int ret;
5545 struct fw_vi_cmd c;
5546
5547 memset(&c, 0, sizeof(c));
5548 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
5549 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
5550 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
5551 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5552 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5553 c.nmac = nmac - 1;
5554
5555 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5556 if (ret)
5557 return ret;
5558
5559 if (mac) {
5560 memcpy(mac, c.mac, sizeof(c.mac));
5561 switch (nmac) {
5562 case 5:
5563 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
5564 case 4:
5565 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
5566 case 3:
5567 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
5568 case 2:
5569 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
5570 }
5571 }
5572 if (rss_size)
5573 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
5574 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5575 }
5576
5577 /**
5578 * t4_free_vi - free a virtual interface
5579 * @adap: the adapter
5580 * @mbox: mailbox to use for the FW command
5581 * @pf: the PF owning the VI
5582 * @vf: the VF owning the VI
5583 * @viid: virtual interface identifiler
5584 *
5585 * Free a previously allocated virtual interface.
5586 */
5587 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
5588 unsigned int vf, unsigned int viid)
5589 {
5590 struct fw_vi_cmd c;
5591
5592 memset(&c, 0, sizeof(c));
5593 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
5594 FW_CMD_REQUEST_F |
5595 FW_CMD_EXEC_F |
5596 FW_VI_CMD_PFN_V(pf) |
5597 FW_VI_CMD_VFN_V(vf));
5598 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
5599 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
5600
5601 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5602 }
5603
5604 /**
5605 * t4_set_rxmode - set Rx properties of a virtual interface
5606 * @adap: the adapter
5607 * @mbox: mailbox to use for the FW command
5608 * @viid: the VI id
5609 * @mtu: the new MTU or -1
5610 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
5611 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
5612 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5613 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5614 * @sleep_ok: if true we may sleep while awaiting command completion
5615 *
5616 * Sets Rx properties of a virtual interface.
5617 */
5618 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5619 int mtu, int promisc, int all_multi, int bcast, int vlanex,
5620 bool sleep_ok)
5621 {
5622 struct fw_vi_rxmode_cmd c;
5623
5624 /* convert to FW values */
5625 if (mtu < 0)
5626 mtu = FW_RXMODE_MTU_NO_CHG;
5627 if (promisc < 0)
5628 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5629 if (all_multi < 0)
5630 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5631 if (bcast < 0)
5632 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5633 if (vlanex < 0)
5634 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5635
5636 memset(&c, 0, sizeof(c));
5637 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
5638 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5639 FW_VI_RXMODE_CMD_VIID_V(viid));
5640 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5641 c.mtu_to_vlanexen =
5642 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
5643 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
5644 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
5645 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
5646 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5647 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5648 }
5649
5650 /**
5651 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5652 * @adap: the adapter
5653 * @mbox: mailbox to use for the FW command
5654 * @viid: the VI id
5655 * @free: if true any existing filters for this VI id are first removed
5656 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
5657 * @addr: the MAC address(es)
5658 * @idx: where to store the index of each allocated filter
5659 * @hash: pointer to hash address filter bitmap
5660 * @sleep_ok: call is allowed to sleep
5661 *
5662 * Allocates an exact-match filter for each of the supplied addresses and
5663 * sets it to the corresponding address. If @idx is not %NULL it should
5664 * have at least @naddr entries, each of which will be set to the index of
5665 * the filter allocated for the corresponding MAC address. If a filter
5666 * could not be allocated for an address its index is set to 0xffff.
5667 * If @hash is not %NULL addresses that fail to allocate an exact filter
5668 * are hashed and update the hash filter bitmap pointed at by @hash.
5669 *
5670 * Returns a negative error number or the number of filters allocated.
5671 */
5672 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5673 unsigned int viid, bool free, unsigned int naddr,
5674 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5675 {
5676 int offset, ret = 0;
5677 struct fw_vi_mac_cmd c;
5678 unsigned int nfilters = 0;
5679 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
5680 unsigned int rem = naddr;
5681
5682 if (naddr > max_naddr)
5683 return -EINVAL;
5684
5685 for (offset = 0; offset < naddr ; /**/) {
5686 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
5687 rem : ARRAY_SIZE(c.u.exact));
5688 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5689 u.exact[fw_naddr]), 16);
5690 struct fw_vi_mac_exact *p;
5691 int i;
5692
5693 memset(&c, 0, sizeof(c));
5694 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5695 FW_CMD_REQUEST_F |
5696 FW_CMD_WRITE_F |
5697 FW_CMD_EXEC_V(free) |
5698 FW_VI_MAC_CMD_VIID_V(viid));
5699 c.freemacs_to_len16 =
5700 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
5701 FW_CMD_LEN16_V(len16));
5702
5703 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5704 p->valid_to_idx =
5705 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5706 FW_VI_MAC_CMD_IDX_V(
5707 FW_VI_MAC_ADD_MAC));
5708 memcpy(p->macaddr, addr[offset + i],
5709 sizeof(p->macaddr));
5710 }
5711
5712 /* It's okay if we run out of space in our MAC address arena.
5713 * Some of the addresses we submit may get stored so we need
5714 * to run through the reply to see what the results were ...
5715 */
5716 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5717 if (ret && ret != -FW_ENOMEM)
5718 break;
5719
5720 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5721 u16 index = FW_VI_MAC_CMD_IDX_G(
5722 be16_to_cpu(p->valid_to_idx));
5723
5724 if (idx)
5725 idx[offset + i] = (index >= max_naddr ?
5726 0xffff : index);
5727 if (index < max_naddr)
5728 nfilters++;
5729 else if (hash)
5730 *hash |= (1ULL <<
5731 hash_mac_addr(addr[offset + i]));
5732 }
5733
5734 free = false;
5735 offset += fw_naddr;
5736 rem -= fw_naddr;
5737 }
5738
5739 if (ret == 0 || ret == -FW_ENOMEM)
5740 ret = nfilters;
5741 return ret;
5742 }
5743
5744 /**
5745 * t4_change_mac - modifies the exact-match filter for a MAC address
5746 * @adap: the adapter
5747 * @mbox: mailbox to use for the FW command
5748 * @viid: the VI id
5749 * @idx: index of existing filter for old value of MAC address, or -1
5750 * @addr: the new MAC address value
5751 * @persist: whether a new MAC allocation should be persistent
5752 * @add_smt: if true also add the address to the HW SMT
5753 *
5754 * Modifies an exact-match filter and sets it to the new MAC address.
5755 * Note that in general it is not possible to modify the value of a given
5756 * filter so the generic way to modify an address filter is to free the one
5757 * being used by the old address value and allocate a new filter for the
5758 * new address value. @idx can be -1 if the address is a new addition.
5759 *
5760 * Returns a negative error number or the index of the filter with the new
5761 * MAC value.
5762 */
5763 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5764 int idx, const u8 *addr, bool persist, bool add_smt)
5765 {
5766 int ret, mode;
5767 struct fw_vi_mac_cmd c;
5768 struct fw_vi_mac_exact *p = c.u.exact;
5769 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5770
5771 if (idx < 0) /* new allocation */
5772 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5773 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5774
5775 memset(&c, 0, sizeof(c));
5776 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5777 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5778 FW_VI_MAC_CMD_VIID_V(viid));
5779 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
5780 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
5781 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
5782 FW_VI_MAC_CMD_IDX_V(idx));
5783 memcpy(p->macaddr, addr, sizeof(p->macaddr));
5784
5785 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5786 if (ret == 0) {
5787 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
5788 if (ret >= max_mac_addr)
5789 ret = -ENOMEM;
5790 }
5791 return ret;
5792 }
5793
5794 /**
5795 * t4_set_addr_hash - program the MAC inexact-match hash filter
5796 * @adap: the adapter
5797 * @mbox: mailbox to use for the FW command
5798 * @viid: the VI id
5799 * @ucast: whether the hash filter should also match unicast addresses
5800 * @vec: the value to be written to the hash filter
5801 * @sleep_ok: call is allowed to sleep
5802 *
5803 * Sets the 64-bit inexact-match hash filter for a virtual interface.
5804 */
5805 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5806 bool ucast, u64 vec, bool sleep_ok)
5807 {
5808 struct fw_vi_mac_cmd c;
5809
5810 memset(&c, 0, sizeof(c));
5811 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
5812 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5813 FW_VI_ENABLE_CMD_VIID_V(viid));
5814 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
5815 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
5816 FW_CMD_LEN16_V(1));
5817 c.u.hash.hashvec = cpu_to_be64(vec);
5818 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5819 }
5820
5821 /**
5822 * t4_enable_vi_params - enable/disable a virtual interface
5823 * @adap: the adapter
5824 * @mbox: mailbox to use for the FW command
5825 * @viid: the VI id
5826 * @rx_en: 1=enable Rx, 0=disable Rx
5827 * @tx_en: 1=enable Tx, 0=disable Tx
5828 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
5829 *
5830 * Enables/disables a virtual interface. Note that setting DCB Enable
5831 * only makes sense when enabling a Virtual Interface ...
5832 */
5833 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
5834 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
5835 {
5836 struct fw_vi_enable_cmd c;
5837
5838 memset(&c, 0, sizeof(c));
5839 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5840 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5841 FW_VI_ENABLE_CMD_VIID_V(viid));
5842 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
5843 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
5844 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
5845 FW_LEN16(c));
5846 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5847 }
5848
5849 /**
5850 * t4_enable_vi - enable/disable a virtual interface
5851 * @adap: the adapter
5852 * @mbox: mailbox to use for the FW command
5853 * @viid: the VI id
5854 * @rx_en: 1=enable Rx, 0=disable Rx
5855 * @tx_en: 1=enable Tx, 0=disable Tx
5856 *
5857 * Enables/disables a virtual interface.
5858 */
5859 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5860 bool rx_en, bool tx_en)
5861 {
5862 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5863 }
5864
5865 /**
5866 * t4_identify_port - identify a VI's port by blinking its LED
5867 * @adap: the adapter
5868 * @mbox: mailbox to use for the FW command
5869 * @viid: the VI id
5870 * @nblinks: how many times to blink LED at 2.5 Hz
5871 *
5872 * Identifies a VI's port by blinking its LED.
5873 */
5874 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5875 unsigned int nblinks)
5876 {
5877 struct fw_vi_enable_cmd c;
5878
5879 memset(&c, 0, sizeof(c));
5880 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
5881 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5882 FW_VI_ENABLE_CMD_VIID_V(viid));
5883 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
5884 c.blinkdur = cpu_to_be16(nblinks);
5885 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5886 }
5887
5888 /**
5889 * t4_iq_free - free an ingress queue and its FLs
5890 * @adap: the adapter
5891 * @mbox: mailbox to use for the FW command
5892 * @pf: the PF owning the queues
5893 * @vf: the VF owning the queues
5894 * @iqtype: the ingress queue type
5895 * @iqid: ingress queue id
5896 * @fl0id: FL0 queue id or 0xffff if no attached FL0
5897 * @fl1id: FL1 queue id or 0xffff if no attached FL1
5898 *
5899 * Frees an ingress queue and its associated FLs, if any.
5900 */
5901 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5902 unsigned int vf, unsigned int iqtype, unsigned int iqid,
5903 unsigned int fl0id, unsigned int fl1id)
5904 {
5905 struct fw_iq_cmd c;
5906
5907 memset(&c, 0, sizeof(c));
5908 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
5909 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
5910 FW_IQ_CMD_VFN_V(vf));
5911 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
5912 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
5913 c.iqid = cpu_to_be16(iqid);
5914 c.fl0id = cpu_to_be16(fl0id);
5915 c.fl1id = cpu_to_be16(fl1id);
5916 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5917 }
5918
5919 /**
5920 * t4_eth_eq_free - free an Ethernet egress queue
5921 * @adap: the adapter
5922 * @mbox: mailbox to use for the FW command
5923 * @pf: the PF owning the queue
5924 * @vf: the VF owning the queue
5925 * @eqid: egress queue id
5926 *
5927 * Frees an Ethernet egress queue.
5928 */
5929 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5930 unsigned int vf, unsigned int eqid)
5931 {
5932 struct fw_eq_eth_cmd c;
5933
5934 memset(&c, 0, sizeof(c));
5935 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
5936 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5937 FW_EQ_ETH_CMD_PFN_V(pf) |
5938 FW_EQ_ETH_CMD_VFN_V(vf));
5939 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
5940 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5941 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5942 }
5943
5944 /**
5945 * t4_ctrl_eq_free - free a control egress queue
5946 * @adap: the adapter
5947 * @mbox: mailbox to use for the FW command
5948 * @pf: the PF owning the queue
5949 * @vf: the VF owning the queue
5950 * @eqid: egress queue id
5951 *
5952 * Frees a control egress queue.
5953 */
5954 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5955 unsigned int vf, unsigned int eqid)
5956 {
5957 struct fw_eq_ctrl_cmd c;
5958
5959 memset(&c, 0, sizeof(c));
5960 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
5961 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5962 FW_EQ_CTRL_CMD_PFN_V(pf) |
5963 FW_EQ_CTRL_CMD_VFN_V(vf));
5964 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
5965 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
5966 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5967 }
5968
5969 /**
5970 * t4_ofld_eq_free - free an offload egress queue
5971 * @adap: the adapter
5972 * @mbox: mailbox to use for the FW command
5973 * @pf: the PF owning the queue
5974 * @vf: the VF owning the queue
5975 * @eqid: egress queue id
5976 *
5977 * Frees a control egress queue.
5978 */
5979 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5980 unsigned int vf, unsigned int eqid)
5981 {
5982 struct fw_eq_ofld_cmd c;
5983
5984 memset(&c, 0, sizeof(c));
5985 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
5986 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
5987 FW_EQ_OFLD_CMD_PFN_V(pf) |
5988 FW_EQ_OFLD_CMD_VFN_V(vf));
5989 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
5990 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
5991 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5992 }
5993
5994 /**
5995 * t4_handle_fw_rpl - process a FW reply message
5996 * @adap: the adapter
5997 * @rpl: start of the FW message
5998 *
5999 * Processes a FW message, such as link state change messages.
6000 */
6001 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
6002 {
6003 u8 opcode = *(const u8 *)rpl;
6004
6005 if (opcode == FW_PORT_CMD) { /* link/module state change message */
6006 int speed = 0, fc = 0;
6007 const struct fw_port_cmd *p = (void *)rpl;
6008 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
6009 int port = adap->chan_map[chan];
6010 struct port_info *pi = adap2pinfo(adap, port);
6011 struct link_config *lc = &pi->link_cfg;
6012 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
6013 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
6014 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
6015
6016 if (stat & FW_PORT_CMD_RXPAUSE_F)
6017 fc |= PAUSE_RX;
6018 if (stat & FW_PORT_CMD_TXPAUSE_F)
6019 fc |= PAUSE_TX;
6020 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
6021 speed = 100;
6022 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
6023 speed = 1000;
6024 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
6025 speed = 10000;
6026 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
6027 speed = 40000;
6028
6029 if (link_ok != lc->link_ok || speed != lc->speed ||
6030 fc != lc->fc) { /* something changed */
6031 lc->link_ok = link_ok;
6032 lc->speed = speed;
6033 lc->fc = fc;
6034 lc->supported = be16_to_cpu(p->u.info.pcap);
6035 t4_os_link_changed(adap, port, link_ok);
6036 }
6037 if (mod != pi->mod_type) {
6038 pi->mod_type = mod;
6039 t4_os_portmod_changed(adap, port);
6040 }
6041 }
6042 return 0;
6043 }
6044
6045 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
6046 {
6047 u16 val;
6048
6049 if (pci_is_pcie(adapter->pdev)) {
6050 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
6051 p->speed = val & PCI_EXP_LNKSTA_CLS;
6052 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
6053 }
6054 }
6055
6056 /**
6057 * init_link_config - initialize a link's SW state
6058 * @lc: structure holding the link state
6059 * @caps: link capabilities
6060 *
6061 * Initializes the SW state maintained for each link, including the link's
6062 * capabilities and default speed/flow-control/autonegotiation settings.
6063 */
6064 static void init_link_config(struct link_config *lc, unsigned int caps)
6065 {
6066 lc->supported = caps;
6067 lc->requested_speed = 0;
6068 lc->speed = 0;
6069 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
6070 if (lc->supported & FW_PORT_CAP_ANEG) {
6071 lc->advertising = lc->supported & ADVERT_MASK;
6072 lc->autoneg = AUTONEG_ENABLE;
6073 lc->requested_fc |= PAUSE_AUTONEG;
6074 } else {
6075 lc->advertising = 0;
6076 lc->autoneg = AUTONEG_DISABLE;
6077 }
6078 }
6079
6080 #define CIM_PF_NOACCESS 0xeeeeeeee
6081
6082 int t4_wait_dev_ready(void __iomem *regs)
6083 {
6084 u32 whoami;
6085
6086 whoami = readl(regs + PL_WHOAMI_A);
6087 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
6088 return 0;
6089
6090 msleep(500);
6091 whoami = readl(regs + PL_WHOAMI_A);
6092 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
6093 }
6094
6095 struct flash_desc {
6096 u32 vendor_and_model_id;
6097 u32 size_mb;
6098 };
6099
6100 static int get_flash_params(struct adapter *adap)
6101 {
6102 /* Table for non-Numonix supported flash parts. Numonix parts are left
6103 * to the preexisting code. All flash parts have 64KB sectors.
6104 */
6105 static struct flash_desc supported_flash[] = {
6106 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
6107 };
6108
6109 int ret;
6110 u32 info;
6111
6112 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
6113 if (!ret)
6114 ret = sf1_read(adap, 3, 0, 1, &info);
6115 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
6116 if (ret)
6117 return ret;
6118
6119 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
6120 if (supported_flash[ret].vendor_and_model_id == info) {
6121 adap->params.sf_size = supported_flash[ret].size_mb;
6122 adap->params.sf_nsec =
6123 adap->params.sf_size / SF_SEC_SIZE;
6124 return 0;
6125 }
6126
6127 if ((info & 0xff) != 0x20) /* not a Numonix flash */
6128 return -EINVAL;
6129 info >>= 16; /* log2 of size */
6130 if (info >= 0x14 && info < 0x18)
6131 adap->params.sf_nsec = 1 << (info - 16);
6132 else if (info == 0x18)
6133 adap->params.sf_nsec = 64;
6134 else
6135 return -EINVAL;
6136 adap->params.sf_size = 1 << info;
6137 adap->params.sf_fw_start =
6138 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6139
6140 if (adap->params.sf_size < FLASH_MIN_SIZE)
6141 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
6142 adap->params.sf_size, FLASH_MIN_SIZE);
6143 return 0;
6144 }
6145
6146 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
6147 {
6148 u16 val;
6149 u32 pcie_cap;
6150
6151 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6152 if (pcie_cap) {
6153 pci_read_config_word(adapter->pdev,
6154 pcie_cap + PCI_EXP_DEVCTL2, &val);
6155 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
6156 val |= range;
6157 pci_write_config_word(adapter->pdev,
6158 pcie_cap + PCI_EXP_DEVCTL2, val);
6159 }
6160 }
6161
6162 /**
6163 * t4_prep_adapter - prepare SW and HW for operation
6164 * @adapter: the adapter
6165 * @reset: if true perform a HW reset
6166 *
6167 * Initialize adapter SW state for the various HW modules, set initial
6168 * values for some adapter tunables, take PHYs out of reset, and
6169 * initialize the MDIO interface.
6170 */
6171 int t4_prep_adapter(struct adapter *adapter)
6172 {
6173 int ret, ver;
6174 uint16_t device_id;
6175 u32 pl_rev;
6176
6177 get_pci_mode(adapter, &adapter->params.pci);
6178 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
6179
6180 ret = get_flash_params(adapter);
6181 if (ret < 0) {
6182 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
6183 return ret;
6184 }
6185
6186 /* Retrieve adapter's device ID
6187 */
6188 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
6189 ver = device_id >> 12;
6190 adapter->params.chip = 0;
6191 switch (ver) {
6192 case CHELSIO_T4:
6193 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6194 adapter->params.arch.sge_fl_db = DBPRIO_F;
6195 adapter->params.arch.mps_tcam_size =
6196 NUM_MPS_CLS_SRAM_L_INSTANCES;
6197 adapter->params.arch.mps_rplc_size = 128;
6198 adapter->params.arch.nchan = NCHAN;
6199 adapter->params.arch.vfcount = 128;
6200 break;
6201 case CHELSIO_T5:
6202 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6203 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
6204 adapter->params.arch.mps_tcam_size =
6205 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6206 adapter->params.arch.mps_rplc_size = 128;
6207 adapter->params.arch.nchan = NCHAN;
6208 adapter->params.arch.vfcount = 128;
6209 break;
6210 case CHELSIO_T6:
6211 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6212 adapter->params.arch.sge_fl_db = 0;
6213 adapter->params.arch.mps_tcam_size =
6214 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6215 adapter->params.arch.mps_rplc_size = 256;
6216 adapter->params.arch.nchan = 2;
6217 adapter->params.arch.vfcount = 256;
6218 break;
6219 default:
6220 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
6221 device_id);
6222 return -EINVAL;
6223 }
6224
6225 adapter->params.cim_la_size = CIMLA_SIZE;
6226 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
6227
6228 /*
6229 * Default port for debugging in case we can't reach FW.
6230 */
6231 adapter->params.nports = 1;
6232 adapter->params.portvec = 1;
6233 adapter->params.vpd.cclk = 50000;
6234
6235 /* Set pci completion timeout value to 4 seconds. */
6236 set_pcie_completion_timeout(adapter, 0xd);
6237 return 0;
6238 }
6239
6240 /**
6241 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
6242 * @adapter: the adapter
6243 * @qid: the Queue ID
6244 * @qtype: the Ingress or Egress type for @qid
6245 * @user: true if this request is for a user mode queue
6246 * @pbar2_qoffset: BAR2 Queue Offset
6247 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
6248 *
6249 * Returns the BAR2 SGE Queue Registers information associated with the
6250 * indicated Absolute Queue ID. These are passed back in return value
6251 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
6252 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
6253 *
6254 * This may return an error which indicates that BAR2 SGE Queue
6255 * registers aren't available. If an error is not returned, then the
6256 * following values are returned:
6257 *
6258 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
6259 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
6260 *
6261 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
6262 * require the "Inferred Queue ID" ability may be used. E.g. the
6263 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
6264 * then these "Inferred Queue ID" register may not be used.
6265 */
6266 int t4_bar2_sge_qregs(struct adapter *adapter,
6267 unsigned int qid,
6268 enum t4_bar2_qtype qtype,
6269 int user,
6270 u64 *pbar2_qoffset,
6271 unsigned int *pbar2_qid)
6272 {
6273 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
6274 u64 bar2_page_offset, bar2_qoffset;
6275 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
6276
6277 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
6278 if (!user && is_t4(adapter->params.chip))
6279 return -EINVAL;
6280
6281 /* Get our SGE Page Size parameters.
6282 */
6283 page_shift = adapter->params.sge.hps + 10;
6284 page_size = 1 << page_shift;
6285
6286 /* Get the right Queues per Page parameters for our Queue.
6287 */
6288 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
6289 ? adapter->params.sge.eq_qpp
6290 : adapter->params.sge.iq_qpp);
6291 qpp_mask = (1 << qpp_shift) - 1;
6292
6293 /* Calculate the basics of the BAR2 SGE Queue register area:
6294 * o The BAR2 page the Queue registers will be in.
6295 * o The BAR2 Queue ID.
6296 * o The BAR2 Queue ID Offset into the BAR2 page.
6297 */
6298 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
6299 bar2_qid = qid & qpp_mask;
6300 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
6301
6302 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
6303 * hardware will infer the Absolute Queue ID simply from the writes to
6304 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
6305 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
6306 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
6307 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
6308 * from the BAR2 Page and BAR2 Queue ID.
6309 *
6310 * One important censequence of this is that some BAR2 SGE registers
6311 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
6312 * there. But other registers synthesize the SGE Queue ID purely
6313 * from the writes to the registers -- the Write Combined Doorbell
6314 * Buffer is a good example. These BAR2 SGE Registers are only
6315 * available for those BAR2 SGE Register areas where the SGE Absolute
6316 * Queue ID can be inferred from simple writes.
6317 */
6318 bar2_qoffset = bar2_page_offset;
6319 bar2_qinferred = (bar2_qid_offset < page_size);
6320 if (bar2_qinferred) {
6321 bar2_qoffset += bar2_qid_offset;
6322 bar2_qid = 0;
6323 }
6324
6325 *pbar2_qoffset = bar2_qoffset;
6326 *pbar2_qid = bar2_qid;
6327 return 0;
6328 }
6329
6330 /**
6331 * t4_init_devlog_params - initialize adapter->params.devlog
6332 * @adap: the adapter
6333 *
6334 * Initialize various fields of the adapter's Firmware Device Log
6335 * Parameters structure.
6336 */
6337 int t4_init_devlog_params(struct adapter *adap)
6338 {
6339 struct devlog_params *dparams = &adap->params.devlog;
6340 u32 pf_dparams;
6341 unsigned int devlog_meminfo;
6342 struct fw_devlog_cmd devlog_cmd;
6343 int ret;
6344
6345 /* If we're dealing with newer firmware, the Device Log Paramerters
6346 * are stored in a designated register which allows us to access the
6347 * Device Log even if we can't talk to the firmware.
6348 */
6349 pf_dparams =
6350 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
6351 if (pf_dparams) {
6352 unsigned int nentries, nentries128;
6353
6354 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
6355 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
6356
6357 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
6358 nentries = (nentries128 + 1) * 128;
6359 dparams->size = nentries * sizeof(struct fw_devlog_e);
6360
6361 return 0;
6362 }
6363
6364 /* Otherwise, ask the firmware for it's Device Log Parameters.
6365 */
6366 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6367 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
6368 FW_CMD_REQUEST_F | FW_CMD_READ_F);
6369 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6370 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
6371 &devlog_cmd);
6372 if (ret)
6373 return ret;
6374
6375 devlog_meminfo =
6376 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6377 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
6378 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6379 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6380
6381 return 0;
6382 }
6383
6384 /**
6385 * t4_init_sge_params - initialize adap->params.sge
6386 * @adapter: the adapter
6387 *
6388 * Initialize various fields of the adapter's SGE Parameters structure.
6389 */
6390 int t4_init_sge_params(struct adapter *adapter)
6391 {
6392 struct sge_params *sge_params = &adapter->params.sge;
6393 u32 hps, qpp;
6394 unsigned int s_hps, s_qpp;
6395
6396 /* Extract the SGE Page Size for our PF.
6397 */
6398 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6399 s_hps = (HOSTPAGESIZEPF0_S +
6400 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6401 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
6402
6403 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
6404 */
6405 s_qpp = (QUEUESPERPAGEPF0_S +
6406 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6407 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
6408 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6409 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6410 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6411
6412 return 0;
6413 }
6414
6415 /**
6416 * t4_init_tp_params - initialize adap->params.tp
6417 * @adap: the adapter
6418 *
6419 * Initialize various fields of the adapter's TP Parameters structure.
6420 */
6421 int t4_init_tp_params(struct adapter *adap)
6422 {
6423 int chan;
6424 u32 v;
6425
6426 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
6427 adap->params.tp.tre = TIMERRESOLUTION_G(v);
6428 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6429
6430 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
6431 for (chan = 0; chan < NCHAN; chan++)
6432 adap->params.tp.tx_modq[chan] = chan;
6433
6434 /* Cache the adapter's Compressed Filter Mode and global Incress
6435 * Configuration.
6436 */
6437 if (t4_use_ldst(adap)) {
6438 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
6439 TP_VLAN_PRI_MAP_A, 1);
6440 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
6441 TP_INGRESS_CONFIG_A, 1);
6442 } else {
6443 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6444 &adap->params.tp.vlan_pri_map, 1,
6445 TP_VLAN_PRI_MAP_A);
6446 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
6447 &adap->params.tp.ingress_config, 1,
6448 TP_INGRESS_CONFIG_A);
6449 }
6450
6451 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
6452 * shift positions of several elements of the Compressed Filter Tuple
6453 * for this adapter which we need frequently ...
6454 */
6455 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
6456 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
6457 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6458 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6459 PROTOCOL_F);
6460
6461 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6462 * represents the presence of an Outer VLAN instead of a VNIC ID.
6463 */
6464 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6465 adap->params.tp.vnic_shift = -1;
6466
6467 return 0;
6468 }
6469
6470 /**
6471 * t4_filter_field_shift - calculate filter field shift
6472 * @adap: the adapter
6473 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
6474 *
6475 * Return the shift position of a filter field within the Compressed
6476 * Filter Tuple. The filter field is specified via its selection bit
6477 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
6478 */
6479 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
6480 {
6481 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
6482 unsigned int sel;
6483 int field_shift;
6484
6485 if ((filter_mode & filter_sel) == 0)
6486 return -1;
6487
6488 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
6489 switch (filter_mode & sel) {
6490 case FCOE_F:
6491 field_shift += FT_FCOE_W;
6492 break;
6493 case PORT_F:
6494 field_shift += FT_PORT_W;
6495 break;
6496 case VNIC_ID_F:
6497 field_shift += FT_VNIC_ID_W;
6498 break;
6499 case VLAN_F:
6500 field_shift += FT_VLAN_W;
6501 break;
6502 case TOS_F:
6503 field_shift += FT_TOS_W;
6504 break;
6505 case PROTOCOL_F:
6506 field_shift += FT_PROTOCOL_W;
6507 break;
6508 case ETHERTYPE_F:
6509 field_shift += FT_ETHERTYPE_W;
6510 break;
6511 case MACMATCH_F:
6512 field_shift += FT_MACMATCH_W;
6513 break;
6514 case MPSHITTYPE_F:
6515 field_shift += FT_MPSHITTYPE_W;
6516 break;
6517 case FRAGMENTATION_F:
6518 field_shift += FT_FRAGMENTATION_W;
6519 break;
6520 }
6521 }
6522 return field_shift;
6523 }
6524
6525 int t4_init_rss_mode(struct adapter *adap, int mbox)
6526 {
6527 int i, ret;
6528 struct fw_rss_vi_config_cmd rvc;
6529
6530 memset(&rvc, 0, sizeof(rvc));
6531
6532 for_each_port(adap, i) {
6533 struct port_info *p = adap2pinfo(adap, i);
6534
6535 rvc.op_to_viid =
6536 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6537 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6538 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
6539 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6540 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6541 if (ret)
6542 return ret;
6543 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6544 }
6545 return 0;
6546 }
6547
6548 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6549 {
6550 u8 addr[6];
6551 int ret, i, j = 0;
6552 struct fw_port_cmd c;
6553 struct fw_rss_vi_config_cmd rvc;
6554
6555 memset(&c, 0, sizeof(c));
6556 memset(&rvc, 0, sizeof(rvc));
6557
6558 for_each_port(adap, i) {
6559 unsigned int rss_size;
6560 struct port_info *p = adap2pinfo(adap, i);
6561
6562 while ((adap->params.portvec & (1 << j)) == 0)
6563 j++;
6564
6565 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
6566 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6567 FW_PORT_CMD_PORTID_V(j));
6568 c.action_to_len16 = cpu_to_be32(
6569 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6570 FW_LEN16(c));
6571 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6572 if (ret)
6573 return ret;
6574
6575 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
6576 if (ret < 0)
6577 return ret;
6578
6579 p->viid = ret;
6580 p->tx_chan = j;
6581 p->lport = j;
6582 p->rss_size = rss_size;
6583 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6584 adap->port[i]->dev_port = j;
6585
6586 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6587 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
6588 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
6589 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6590 p->mod_type = FW_PORT_MOD_TYPE_NA;
6591
6592 rvc.op_to_viid =
6593 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
6594 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6595 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
6596 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6597 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
6598 if (ret)
6599 return ret;
6600 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6601
6602 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6603 j++;
6604 }
6605 return 0;
6606 }
6607
6608 /**
6609 * t4_read_cimq_cfg - read CIM queue configuration
6610 * @adap: the adapter
6611 * @base: holds the queue base addresses in bytes
6612 * @size: holds the queue sizes in bytes
6613 * @thres: holds the queue full thresholds in bytes
6614 *
6615 * Returns the current configuration of the CIM queues, starting with
6616 * the IBQs, then the OBQs.
6617 */
6618 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
6619 {
6620 unsigned int i, v;
6621 int cim_num_obq = is_t4(adap->params.chip) ?
6622 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6623
6624 for (i = 0; i < CIM_NUM_IBQ; i++) {
6625 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
6626 QUENUMSELECT_V(i));
6627 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6628 /* value is in 256-byte units */
6629 *base++ = CIMQBASE_G(v) * 256;
6630 *size++ = CIMQSIZE_G(v) * 256;
6631 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
6632 }
6633 for (i = 0; i < cim_num_obq; i++) {
6634 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6635 QUENUMSELECT_V(i));
6636 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6637 /* value is in 256-byte units */
6638 *base++ = CIMQBASE_G(v) * 256;
6639 *size++ = CIMQSIZE_G(v) * 256;
6640 }
6641 }
6642
6643 /**
6644 * t4_read_cim_ibq - read the contents of a CIM inbound queue
6645 * @adap: the adapter
6646 * @qid: the queue index
6647 * @data: where to store the queue contents
6648 * @n: capacity of @data in 32-bit words
6649 *
6650 * Reads the contents of the selected CIM queue starting at address 0 up
6651 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6652 * error and the number of 32-bit words actually read on success.
6653 */
6654 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6655 {
6656 int i, err, attempts;
6657 unsigned int addr;
6658 const unsigned int nwords = CIM_IBQ_SIZE * 4;
6659
6660 if (qid > 5 || (n & 3))
6661 return -EINVAL;
6662
6663 addr = qid * nwords;
6664 if (n > nwords)
6665 n = nwords;
6666
6667 /* It might take 3-10ms before the IBQ debug read access is allowed.
6668 * Wait for 1 Sec with a delay of 1 usec.
6669 */
6670 attempts = 1000000;
6671
6672 for (i = 0; i < n; i++, addr++) {
6673 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
6674 IBQDBGEN_F);
6675 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
6676 attempts, 1);
6677 if (err)
6678 return err;
6679 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
6680 }
6681 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6682 return i;
6683 }
6684
6685 /**
6686 * t4_read_cim_obq - read the contents of a CIM outbound queue
6687 * @adap: the adapter
6688 * @qid: the queue index
6689 * @data: where to store the queue contents
6690 * @n: capacity of @data in 32-bit words
6691 *
6692 * Reads the contents of the selected CIM queue starting at address 0 up
6693 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
6694 * error and the number of 32-bit words actually read on success.
6695 */
6696 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
6697 {
6698 int i, err;
6699 unsigned int addr, v, nwords;
6700 int cim_num_obq = is_t4(adap->params.chip) ?
6701 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
6702
6703 if ((qid > (cim_num_obq - 1)) || (n & 3))
6704 return -EINVAL;
6705
6706 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
6707 QUENUMSELECT_V(qid));
6708 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
6709
6710 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
6711 nwords = CIMQSIZE_G(v) * 64; /* same */
6712 if (n > nwords)
6713 n = nwords;
6714
6715 for (i = 0; i < n; i++, addr++) {
6716 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
6717 OBQDBGEN_F);
6718 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
6719 2, 1);
6720 if (err)
6721 return err;
6722 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
6723 }
6724 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6725 return i;
6726 }
6727
6728 /**
6729 * t4_cim_read - read a block from CIM internal address space
6730 * @adap: the adapter
6731 * @addr: the start address within the CIM address space
6732 * @n: number of words to read
6733 * @valp: where to store the result
6734 *
6735 * Reads a block of 4-byte words from the CIM intenal address space.
6736 */
6737 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
6738 unsigned int *valp)
6739 {
6740 int ret = 0;
6741
6742 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6743 return -EBUSY;
6744
6745 for ( ; !ret && n--; addr += 4) {
6746 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
6747 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6748 0, 5, 2);
6749 if (!ret)
6750 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
6751 }
6752 return ret;
6753 }
6754
6755 /**
6756 * t4_cim_write - write a block into CIM internal address space
6757 * @adap: the adapter
6758 * @addr: the start address within the CIM address space
6759 * @n: number of words to write
6760 * @valp: set of values to write
6761 *
6762 * Writes a block of 4-byte words into the CIM intenal address space.
6763 */
6764 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
6765 const unsigned int *valp)
6766 {
6767 int ret = 0;
6768
6769 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
6770 return -EBUSY;
6771
6772 for ( ; !ret && n--; addr += 4) {
6773 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
6774 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
6775 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
6776 0, 5, 2);
6777 }
6778 return ret;
6779 }
6780
6781 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
6782 unsigned int val)
6783 {
6784 return t4_cim_write(adap, addr, 1, &val);
6785 }
6786
6787 /**
6788 * t4_cim_read_la - read CIM LA capture buffer
6789 * @adap: the adapter
6790 * @la_buf: where to store the LA data
6791 * @wrptr: the HW write pointer within the capture buffer
6792 *
6793 * Reads the contents of the CIM LA buffer with the most recent entry at
6794 * the end of the returned data and with the entry at @wrptr first.
6795 * We try to leave the LA in the running state we find it in.
6796 */
6797 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
6798 {
6799 int i, ret;
6800 unsigned int cfg, val, idx;
6801
6802 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
6803 if (ret)
6804 return ret;
6805
6806 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
6807 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
6808 if (ret)
6809 return ret;
6810 }
6811
6812 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6813 if (ret)
6814 goto restart;
6815
6816 idx = UPDBGLAWRPTR_G(val);
6817 if (wrptr)
6818 *wrptr = idx;
6819
6820 for (i = 0; i < adap->params.cim_la_size; i++) {
6821 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6822 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
6823 if (ret)
6824 break;
6825 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
6826 if (ret)
6827 break;
6828 if (val & UPDBGLARDEN_F) {
6829 ret = -ETIMEDOUT;
6830 break;
6831 }
6832 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
6833 if (ret)
6834 break;
6835 idx = (idx + 1) & UPDBGLARDPTR_M;
6836 }
6837 restart:
6838 if (cfg & UPDBGLAEN_F) {
6839 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
6840 cfg & ~UPDBGLARDEN_F);
6841 if (!ret)
6842 ret = r;
6843 }
6844 return ret;
6845 }
6846
6847 /**
6848 * t4_tp_read_la - read TP LA capture buffer
6849 * @adap: the adapter
6850 * @la_buf: where to store the LA data
6851 * @wrptr: the HW write pointer within the capture buffer
6852 *
6853 * Reads the contents of the TP LA buffer with the most recent entry at
6854 * the end of the returned data and with the entry at @wrptr first.
6855 * We leave the LA in the running state we find it in.
6856 */
6857 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
6858 {
6859 bool last_incomplete;
6860 unsigned int i, cfg, val, idx;
6861
6862 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
6863 if (cfg & DBGLAENABLE_F) /* freeze LA */
6864 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6865 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
6866
6867 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
6868 idx = DBGLAWPTR_G(val);
6869 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
6870 if (last_incomplete)
6871 idx = (idx + 1) & DBGLARPTR_M;
6872 if (wrptr)
6873 *wrptr = idx;
6874
6875 val &= 0xffff;
6876 val &= ~DBGLARPTR_V(DBGLARPTR_M);
6877 val |= adap->params.tp.la_mask;
6878
6879 for (i = 0; i < TPLA_SIZE; i++) {
6880 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
6881 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
6882 idx = (idx + 1) & DBGLARPTR_M;
6883 }
6884
6885 /* Wipe out last entry if it isn't valid */
6886 if (last_incomplete)
6887 la_buf[TPLA_SIZE - 1] = ~0ULL;
6888
6889 if (cfg & DBGLAENABLE_F) /* restore running state */
6890 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
6891 cfg | adap->params.tp.la_mask);
6892 }
6893
6894 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
6895 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
6896 * state for more than the Warning Threshold then we'll issue a warning about
6897 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
6898 * appears to be hung every Warning Repeat second till the situation clears.
6899 * If the situation clears, we'll note that as well.
6900 */
6901 #define SGE_IDMA_WARN_THRESH 1
6902 #define SGE_IDMA_WARN_REPEAT 300
6903
6904 /**
6905 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
6906 * @adapter: the adapter
6907 * @idma: the adapter IDMA Monitor state
6908 *
6909 * Initialize the state of an SGE Ingress DMA Monitor.
6910 */
6911 void t4_idma_monitor_init(struct adapter *adapter,
6912 struct sge_idma_monitor_state *idma)
6913 {
6914 /* Initialize the state variables for detecting an SGE Ingress DMA
6915 * hang. The SGE has internal counters which count up on each clock
6916 * tick whenever the SGE finds its Ingress DMA State Engines in the
6917 * same state they were on the previous clock tick. The clock used is
6918 * the Core Clock so we have a limit on the maximum "time" they can
6919 * record; typically a very small number of seconds. For instance,
6920 * with a 600MHz Core Clock, we can only count up to a bit more than
6921 * 7s. So we'll synthesize a larger counter in order to not run the
6922 * risk of having the "timers" overflow and give us the flexibility to
6923 * maintain a Hung SGE State Machine of our own which operates across
6924 * a longer time frame.
6925 */
6926 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
6927 idma->idma_stalled[0] = 0;
6928 idma->idma_stalled[1] = 0;
6929 }
6930
6931 /**
6932 * t4_idma_monitor - monitor SGE Ingress DMA state
6933 * @adapter: the adapter
6934 * @idma: the adapter IDMA Monitor state
6935 * @hz: number of ticks/second
6936 * @ticks: number of ticks since the last IDMA Monitor call
6937 */
6938 void t4_idma_monitor(struct adapter *adapter,
6939 struct sge_idma_monitor_state *idma,
6940 int hz, int ticks)
6941 {
6942 int i, idma_same_state_cnt[2];
6943
6944 /* Read the SGE Debug Ingress DMA Same State Count registers. These
6945 * are counters inside the SGE which count up on each clock when the
6946 * SGE finds its Ingress DMA State Engines in the same states they
6947 * were in the previous clock. The counters will peg out at
6948 * 0xffffffff without wrapping around so once they pass the 1s
6949 * threshold they'll stay above that till the IDMA state changes.
6950 */
6951 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
6952 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
6953 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
6954
6955 for (i = 0; i < 2; i++) {
6956 u32 debug0, debug11;
6957
6958 /* If the Ingress DMA Same State Counter ("timer") is less
6959 * than 1s, then we can reset our synthesized Stall Timer and
6960 * continue. If we have previously emitted warnings about a
6961 * potential stalled Ingress Queue, issue a note indicating
6962 * that the Ingress Queue has resumed forward progress.
6963 */
6964 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
6965 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
6966 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
6967 "resumed after %d seconds\n",
6968 i, idma->idma_qid[i],
6969 idma->idma_stalled[i] / hz);
6970 idma->idma_stalled[i] = 0;
6971 continue;
6972 }
6973
6974 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
6975 * domain. The first time we get here it'll be because we
6976 * passed the 1s Threshold; each additional time it'll be
6977 * because the RX Timer Callback is being fired on its regular
6978 * schedule.
6979 *
6980 * If the stall is below our Potential Hung Ingress Queue
6981 * Warning Threshold, continue.
6982 */
6983 if (idma->idma_stalled[i] == 0) {
6984 idma->idma_stalled[i] = hz;
6985 idma->idma_warn[i] = 0;
6986 } else {
6987 idma->idma_stalled[i] += ticks;
6988 idma->idma_warn[i] -= ticks;
6989 }
6990
6991 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
6992 continue;
6993
6994 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
6995 */
6996 if (idma->idma_warn[i] > 0)
6997 continue;
6998 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
6999
7000 /* Read and save the SGE IDMA State and Queue ID information.
7001 * We do this every time in case it changes across time ...
7002 * can't be too careful ...
7003 */
7004 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
7005 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7006 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
7007
7008 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
7009 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
7010 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
7011
7012 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
7013 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
7014 i, idma->idma_qid[i], idma->idma_state[i],
7015 idma->idma_stalled[i] / hz,
7016 debug0, debug11);
7017 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
7018 }
7019 }