]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/chelsio/cxgb4/t4_hw.c
cxgb4: Fix to dump devlog, even if FW is crashed
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40
41 /**
42 * t4_wait_op_done_val - wait until an operation is completed
43 * @adapter: the adapter performing the operation
44 * @reg: the register to check for completion
45 * @mask: a single-bit field within @reg that indicates completion
46 * @polarity: the value of the field when the operation is completed
47 * @attempts: number of check iterations
48 * @delay: delay in usecs between iterations
49 * @valp: where to store the value of the register at completion time
50 *
51 * Wait until an operation is completed by checking a bit in a register
52 * up to @attempts times. If @valp is not NULL the value of the register
53 * at the time it indicated completion is stored there. Returns 0 if the
54 * operation completes and -EAGAIN otherwise.
55 */
56 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
57 int polarity, int attempts, int delay, u32 *valp)
58 {
59 while (1) {
60 u32 val = t4_read_reg(adapter, reg);
61
62 if (!!(val & mask) == polarity) {
63 if (valp)
64 *valp = val;
65 return 0;
66 }
67 if (--attempts == 0)
68 return -EAGAIN;
69 if (delay)
70 udelay(delay);
71 }
72 }
73
74 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
75 int polarity, int attempts, int delay)
76 {
77 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
78 delay, NULL);
79 }
80
81 /**
82 * t4_set_reg_field - set a register field to a value
83 * @adapter: the adapter to program
84 * @addr: the register address
85 * @mask: specifies the portion of the register to modify
86 * @val: the new value for the register field
87 *
88 * Sets a register field specified by the supplied mask to the
89 * given value.
90 */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 u32 val)
93 {
94 u32 v = t4_read_reg(adapter, addr) & ~mask;
95
96 t4_write_reg(adapter, addr, v | val);
97 (void) t4_read_reg(adapter, addr); /* flush */
98 }
99
100 /**
101 * t4_read_indirect - read indirectly addressed registers
102 * @adap: the adapter
103 * @addr_reg: register holding the indirect address
104 * @data_reg: register holding the value of the indirect register
105 * @vals: where the read register values are stored
106 * @nregs: how many indirect registers to read
107 * @start_idx: index of first indirect register to read
108 *
109 * Reads registers that are accessed indirectly through an address/data
110 * register pair.
111 */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 unsigned int data_reg, u32 *vals,
114 unsigned int nregs, unsigned int start_idx)
115 {
116 while (nregs--) {
117 t4_write_reg(adap, addr_reg, start_idx);
118 *vals++ = t4_read_reg(adap, data_reg);
119 start_idx++;
120 }
121 }
122
123 /**
124 * t4_write_indirect - write indirectly addressed registers
125 * @adap: the adapter
126 * @addr_reg: register holding the indirect addresses
127 * @data_reg: register holding the value for the indirect registers
128 * @vals: values to write
129 * @nregs: how many indirect registers to write
130 * @start_idx: address of first indirect register to write
131 *
132 * Writes a sequential block of registers that are accessed indirectly
133 * through an address/data register pair.
134 */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 unsigned int data_reg, const u32 *vals,
137 unsigned int nregs, unsigned int start_idx)
138 {
139 while (nregs--) {
140 t4_write_reg(adap, addr_reg, start_idx++);
141 t4_write_reg(adap, data_reg, *vals++);
142 }
143 }
144
145 /*
146 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147 * mechanism. This guarantees that we get the real value even if we're
148 * operating within a Virtual Machine and the Hypervisor is trapping our
149 * Configuration Space accesses.
150 */
151 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
152 {
153 u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg);
154
155 if (is_t4(adap->params.chip))
156 req |= LOCALCFG_F;
157
158 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
159 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
160
161 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
162 * Configuration Space read. (None of the other fields matter when
163 * ENABLE is 0 so a simple register write is easier than a
164 * read-modify-write via t4_set_reg_field().)
165 */
166 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
167 }
168
169 /*
170 * t4_report_fw_error - report firmware error
171 * @adap: the adapter
172 *
173 * The adapter firmware can indicate error conditions to the host.
174 * If the firmware has indicated an error, print out the reason for
175 * the firmware error.
176 */
177 static void t4_report_fw_error(struct adapter *adap)
178 {
179 static const char *const reason[] = {
180 "Crash", /* PCIE_FW_EVAL_CRASH */
181 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
182 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
183 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
184 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
185 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
186 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
187 "Reserved", /* reserved */
188 };
189 u32 pcie_fw;
190
191 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
192 if (pcie_fw & PCIE_FW_ERR_F)
193 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
194 reason[PCIE_FW_EVAL_G(pcie_fw)]);
195 }
196
197 /*
198 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
199 */
200 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
201 u32 mbox_addr)
202 {
203 for ( ; nflit; nflit--, mbox_addr += 8)
204 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
205 }
206
207 /*
208 * Handle a FW assertion reported in a mailbox.
209 */
210 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
211 {
212 struct fw_debug_cmd asrt;
213
214 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
215 dev_alert(adap->pdev_dev,
216 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
217 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
218 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
219 }
220
221 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
222 {
223 dev_err(adap->pdev_dev,
224 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
225 (unsigned long long)t4_read_reg64(adap, data_reg),
226 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
227 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
228 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
229 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
230 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
231 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
233 }
234
235 /**
236 * t4_wr_mbox_meat - send a command to FW through the given mailbox
237 * @adap: the adapter
238 * @mbox: index of the mailbox to use
239 * @cmd: the command to write
240 * @size: command length in bytes
241 * @rpl: where to optionally store the reply
242 * @sleep_ok: if true we may sleep while awaiting command completion
243 *
244 * Sends the given command to FW through the selected mailbox and waits
245 * for the FW to execute the command. If @rpl is not %NULL it is used to
246 * store the FW's reply to the command. The command and its optional
247 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
248 * to respond. @sleep_ok determines whether we may sleep while awaiting
249 * the response. If sleeping is allowed we use progressive backoff
250 * otherwise we spin.
251 *
252 * The return value is 0 on success or a negative errno on failure. A
253 * failure can happen either because we are not able to execute the
254 * command or FW executes it but signals an error. In the latter case
255 * the return value is the error code indicated by FW (negated).
256 */
257 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
258 void *rpl, bool sleep_ok)
259 {
260 static const int delay[] = {
261 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
262 };
263
264 u32 v;
265 u64 res;
266 int i, ms, delay_idx;
267 const __be64 *p = cmd;
268 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
269 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
270
271 if ((size & 15) || size > MBOX_LEN)
272 return -EINVAL;
273
274 /*
275 * If the device is off-line, as in EEH, commands will time out.
276 * Fail them early so we don't waste time waiting.
277 */
278 if (adap->pdev->error_state != pci_channel_io_normal)
279 return -EIO;
280
281 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
282 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
283 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
284
285 if (v != MBOX_OWNER_DRV)
286 return v ? -EBUSY : -ETIMEDOUT;
287
288 for (i = 0; i < size; i += 8)
289 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
290
291 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
292 t4_read_reg(adap, ctl_reg); /* flush write */
293
294 delay_idx = 0;
295 ms = delay[0];
296
297 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
298 if (sleep_ok) {
299 ms = delay[delay_idx]; /* last element may repeat */
300 if (delay_idx < ARRAY_SIZE(delay) - 1)
301 delay_idx++;
302 msleep(ms);
303 } else
304 mdelay(ms);
305
306 v = t4_read_reg(adap, ctl_reg);
307 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
308 if (!(v & MBMSGVALID_F)) {
309 t4_write_reg(adap, ctl_reg, 0);
310 continue;
311 }
312
313 res = t4_read_reg64(adap, data_reg);
314 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
315 fw_asrt(adap, data_reg);
316 res = FW_CMD_RETVAL_V(EIO);
317 } else if (rpl) {
318 get_mbox_rpl(adap, rpl, size / 8, data_reg);
319 }
320
321 if (FW_CMD_RETVAL_G((int)res))
322 dump_mbox(adap, mbox, data_reg);
323 t4_write_reg(adap, ctl_reg, 0);
324 return -FW_CMD_RETVAL_G((int)res);
325 }
326 }
327
328 dump_mbox(adap, mbox, data_reg);
329 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
330 *(const u8 *)cmd, mbox);
331 t4_report_fw_error(adap);
332 return -ETIMEDOUT;
333 }
334
335 /**
336 * t4_mc_read - read from MC through backdoor accesses
337 * @adap: the adapter
338 * @addr: address of first byte requested
339 * @idx: which MC to access
340 * @data: 64 bytes of data containing the requested address
341 * @ecc: where to store the corresponding 64-bit ECC word
342 *
343 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
344 * that covers the requested address @addr. If @parity is not %NULL it
345 * is assigned the 64-bit ECC word for the read data.
346 */
347 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
348 {
349 int i;
350 u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
351 u32 mc_bist_status_rdata, mc_bist_data_pattern;
352
353 if (is_t4(adap->params.chip)) {
354 mc_bist_cmd = MC_BIST_CMD_A;
355 mc_bist_cmd_addr = MC_BIST_CMD_ADDR_A;
356 mc_bist_cmd_len = MC_BIST_CMD_LEN_A;
357 mc_bist_status_rdata = MC_BIST_STATUS_RDATA_A;
358 mc_bist_data_pattern = MC_BIST_DATA_PATTERN_A;
359 } else {
360 mc_bist_cmd = MC_REG(MC_P_BIST_CMD_A, idx);
361 mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
362 mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
363 mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
364 mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
365 }
366
367 if (t4_read_reg(adap, mc_bist_cmd) & START_BIST_F)
368 return -EBUSY;
369 t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
370 t4_write_reg(adap, mc_bist_cmd_len, 64);
371 t4_write_reg(adap, mc_bist_data_pattern, 0xc);
372 t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE_V(1) | START_BIST_F |
373 BIST_CMD_GAP_V(1));
374 i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST_F, 0, 10, 1);
375 if (i)
376 return i;
377
378 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
379
380 for (i = 15; i >= 0; i--)
381 *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
382 if (ecc)
383 *ecc = t4_read_reg64(adap, MC_DATA(16));
384 #undef MC_DATA
385 return 0;
386 }
387
388 /**
389 * t4_edc_read - read from EDC through backdoor accesses
390 * @adap: the adapter
391 * @idx: which EDC to access
392 * @addr: address of first byte requested
393 * @data: 64 bytes of data containing the requested address
394 * @ecc: where to store the corresponding 64-bit ECC word
395 *
396 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
397 * that covers the requested address @addr. If @parity is not %NULL it
398 * is assigned the 64-bit ECC word for the read data.
399 */
400 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
401 {
402 int i;
403 u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
404 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
405
406 if (is_t4(adap->params.chip)) {
407 edc_bist_cmd = EDC_REG(EDC_BIST_CMD_A, idx);
408 edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR_A, idx);
409 edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN_A, idx);
410 edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN_A,
411 idx);
412 edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA_A,
413 idx);
414 } else {
415 edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
416 edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
417 edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
418 edc_bist_cmd_data_pattern =
419 EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
420 edc_bist_status_rdata =
421 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
422 }
423
424 if (t4_read_reg(adap, edc_bist_cmd) & START_BIST_F)
425 return -EBUSY;
426 t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
427 t4_write_reg(adap, edc_bist_cmd_len, 64);
428 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
429 t4_write_reg(adap, edc_bist_cmd,
430 BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F);
431 i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST_F, 0, 10, 1);
432 if (i)
433 return i;
434
435 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
436
437 for (i = 15; i >= 0; i--)
438 *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
439 if (ecc)
440 *ecc = t4_read_reg64(adap, EDC_DATA(16));
441 #undef EDC_DATA
442 return 0;
443 }
444
445 /**
446 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
447 * @adap: the adapter
448 * @win: PCI-E Memory Window to use
449 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
450 * @addr: address within indicated memory type
451 * @len: amount of memory to transfer
452 * @hbuf: host memory buffer
453 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
454 *
455 * Reads/writes an [almost] arbitrary memory region in the firmware: the
456 * firmware memory address and host buffer must be aligned on 32-bit
457 * boudaries; the length may be arbitrary. The memory is transferred as
458 * a raw byte sequence from/to the firmware's memory. If this memory
459 * contains data structures which contain multi-byte integers, it's the
460 * caller's responsibility to perform appropriate byte order conversions.
461 */
462 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
463 u32 len, void *hbuf, int dir)
464 {
465 u32 pos, offset, resid, memoffset;
466 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
467 u32 *buf;
468
469 /* Argument sanity checks ...
470 */
471 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
472 return -EINVAL;
473 buf = (u32 *)hbuf;
474
475 /* It's convenient to be able to handle lengths which aren't a
476 * multiple of 32-bits because we often end up transferring files to
477 * the firmware. So we'll handle that by normalizing the length here
478 * and then handling any residual transfer at the end.
479 */
480 resid = len & 0x3;
481 len -= resid;
482
483 /* Offset into the region of memory which is being accessed
484 * MEM_EDC0 = 0
485 * MEM_EDC1 = 1
486 * MEM_MC = 2 -- T4
487 * MEM_MC0 = 2 -- For T5
488 * MEM_MC1 = 3 -- For T5
489 */
490 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
491 if (mtype != MEM_MC1)
492 memoffset = (mtype * (edc_size * 1024 * 1024));
493 else {
494 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
495 MA_EXT_MEMORY1_BAR_A));
496 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
497 }
498
499 /* Determine the PCIE_MEM_ACCESS_OFFSET */
500 addr = addr + memoffset;
501
502 /* Each PCI-E Memory Window is programmed with a window size -- or
503 * "aperture" -- which controls the granularity of its mapping onto
504 * adapter memory. We need to grab that aperture in order to know
505 * how to use the specified window. The window is also programmed
506 * with the base address of the Memory Window in BAR0's address
507 * space. For T4 this is an absolute PCI-E Bus Address. For T5
508 * the address is relative to BAR0.
509 */
510 mem_reg = t4_read_reg(adap,
511 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
512 win));
513 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
514 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
515 if (is_t4(adap->params.chip))
516 mem_base -= adap->t4_bar0;
517 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn);
518
519 /* Calculate our initial PCI-E Memory Window Position and Offset into
520 * that Window.
521 */
522 pos = addr & ~(mem_aperture-1);
523 offset = addr - pos;
524
525 /* Set up initial PCI-E Memory Window to cover the start of our
526 * transfer. (Read it back to ensure that changes propagate before we
527 * attempt to use the new value.)
528 */
529 t4_write_reg(adap,
530 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
531 pos | win_pf);
532 t4_read_reg(adap,
533 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
534
535 /* Transfer data to/from the adapter as long as there's an integral
536 * number of 32-bit transfers to complete.
537 *
538 * A note on Endianness issues:
539 *
540 * The "register" reads and writes below from/to the PCI-E Memory
541 * Window invoke the standard adapter Big-Endian to PCI-E Link
542 * Little-Endian "swizzel." As a result, if we have the following
543 * data in adapter memory:
544 *
545 * Memory: ... | b0 | b1 | b2 | b3 | ...
546 * Address: i+0 i+1 i+2 i+3
547 *
548 * Then a read of the adapter memory via the PCI-E Memory Window
549 * will yield:
550 *
551 * x = readl(i)
552 * 31 0
553 * [ b3 | b2 | b1 | b0 ]
554 *
555 * If this value is stored into local memory on a Little-Endian system
556 * it will show up correctly in local memory as:
557 *
558 * ( ..., b0, b1, b2, b3, ... )
559 *
560 * But on a Big-Endian system, the store will show up in memory
561 * incorrectly swizzled as:
562 *
563 * ( ..., b3, b2, b1, b0, ... )
564 *
565 * So we need to account for this in the reads and writes to the
566 * PCI-E Memory Window below by undoing the register read/write
567 * swizzels.
568 */
569 while (len > 0) {
570 if (dir == T4_MEMORY_READ)
571 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
572 mem_base + offset));
573 else
574 t4_write_reg(adap, mem_base + offset,
575 (__force u32)cpu_to_le32(*buf++));
576 offset += sizeof(__be32);
577 len -= sizeof(__be32);
578
579 /* If we've reached the end of our current window aperture,
580 * move the PCI-E Memory Window on to the next. Note that
581 * doing this here after "len" may be 0 allows us to set up
582 * the PCI-E Memory Window for a possible final residual
583 * transfer below ...
584 */
585 if (offset == mem_aperture) {
586 pos += mem_aperture;
587 offset = 0;
588 t4_write_reg(adap,
589 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
590 win), pos | win_pf);
591 t4_read_reg(adap,
592 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
593 win));
594 }
595 }
596
597 /* If the original transfer had a length which wasn't a multiple of
598 * 32-bits, now's where we need to finish off the transfer of the
599 * residual amount. The PCI-E Memory Window has already been moved
600 * above (if necessary) to cover this final transfer.
601 */
602 if (resid) {
603 union {
604 u32 word;
605 char byte[4];
606 } last;
607 unsigned char *bp;
608 int i;
609
610 if (dir == T4_MEMORY_READ) {
611 last.word = le32_to_cpu(
612 (__force __le32)t4_read_reg(adap,
613 mem_base + offset));
614 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
615 bp[i] = last.byte[i];
616 } else {
617 last.word = *buf;
618 for (i = resid; i < 4; i++)
619 last.byte[i] = 0;
620 t4_write_reg(adap, mem_base + offset,
621 (__force u32)cpu_to_le32(last.word));
622 }
623 }
624
625 return 0;
626 }
627
628 #define EEPROM_STAT_ADDR 0x7bfc
629 #define VPD_BASE 0x400
630 #define VPD_BASE_OLD 0
631 #define VPD_LEN 1024
632 #define CHELSIO_VPD_UNIQUE_ID 0x82
633
634 /**
635 * t4_seeprom_wp - enable/disable EEPROM write protection
636 * @adapter: the adapter
637 * @enable: whether to enable or disable write protection
638 *
639 * Enables or disables write protection on the serial EEPROM.
640 */
641 int t4_seeprom_wp(struct adapter *adapter, bool enable)
642 {
643 unsigned int v = enable ? 0xc : 0;
644 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
645 return ret < 0 ? ret : 0;
646 }
647
648 /**
649 * get_vpd_params - read VPD parameters from VPD EEPROM
650 * @adapter: adapter to read
651 * @p: where to store the parameters
652 *
653 * Reads card parameters stored in VPD EEPROM.
654 */
655 int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
656 {
657 u32 cclk_param, cclk_val;
658 int i, ret, addr;
659 int ec, sn, pn;
660 u8 *vpd, csum;
661 unsigned int vpdr_len, kw_offset, id_len;
662
663 vpd = vmalloc(VPD_LEN);
664 if (!vpd)
665 return -ENOMEM;
666
667 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
668 if (ret < 0)
669 goto out;
670
671 /* The VPD shall have a unique identifier specified by the PCI SIG.
672 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
673 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
674 * is expected to automatically put this entry at the
675 * beginning of the VPD.
676 */
677 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
678
679 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
680 if (ret < 0)
681 goto out;
682
683 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
684 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
685 ret = -EINVAL;
686 goto out;
687 }
688
689 id_len = pci_vpd_lrdt_size(vpd);
690 if (id_len > ID_LEN)
691 id_len = ID_LEN;
692
693 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
694 if (i < 0) {
695 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
696 ret = -EINVAL;
697 goto out;
698 }
699
700 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
701 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
702 if (vpdr_len + kw_offset > VPD_LEN) {
703 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
704 ret = -EINVAL;
705 goto out;
706 }
707
708 #define FIND_VPD_KW(var, name) do { \
709 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
710 if (var < 0) { \
711 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
712 ret = -EINVAL; \
713 goto out; \
714 } \
715 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
716 } while (0)
717
718 FIND_VPD_KW(i, "RV");
719 for (csum = 0; i >= 0; i--)
720 csum += vpd[i];
721
722 if (csum) {
723 dev_err(adapter->pdev_dev,
724 "corrupted VPD EEPROM, actual csum %u\n", csum);
725 ret = -EINVAL;
726 goto out;
727 }
728
729 FIND_VPD_KW(ec, "EC");
730 FIND_VPD_KW(sn, "SN");
731 FIND_VPD_KW(pn, "PN");
732 #undef FIND_VPD_KW
733
734 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
735 strim(p->id);
736 memcpy(p->ec, vpd + ec, EC_LEN);
737 strim(p->ec);
738 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
739 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
740 strim(p->sn);
741 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
742 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
743 strim(p->pn);
744
745 /*
746 * Ask firmware for the Core Clock since it knows how to translate the
747 * Reference Clock ('V2') VPD field into a Core Clock value ...
748 */
749 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
750 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
751 ret = t4_query_params(adapter, adapter->mbox, 0, 0,
752 1, &cclk_param, &cclk_val);
753
754 out:
755 vfree(vpd);
756 if (ret)
757 return ret;
758 p->cclk = cclk_val;
759
760 return 0;
761 }
762
763 /* serial flash and firmware constants */
764 enum {
765 SF_ATTEMPTS = 10, /* max retries for SF operations */
766
767 /* flash command opcodes */
768 SF_PROG_PAGE = 2, /* program page */
769 SF_WR_DISABLE = 4, /* disable writes */
770 SF_RD_STATUS = 5, /* read status register */
771 SF_WR_ENABLE = 6, /* enable writes */
772 SF_RD_DATA_FAST = 0xb, /* read flash */
773 SF_RD_ID = 0x9f, /* read ID */
774 SF_ERASE_SECTOR = 0xd8, /* erase sector */
775
776 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
777 };
778
779 /**
780 * sf1_read - read data from the serial flash
781 * @adapter: the adapter
782 * @byte_cnt: number of bytes to read
783 * @cont: whether another operation will be chained
784 * @lock: whether to lock SF for PL access only
785 * @valp: where to store the read data
786 *
787 * Reads up to 4 bytes of data from the serial flash. The location of
788 * the read needs to be specified prior to calling this by issuing the
789 * appropriate commands to the serial flash.
790 */
791 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
792 int lock, u32 *valp)
793 {
794 int ret;
795
796 if (!byte_cnt || byte_cnt > 4)
797 return -EINVAL;
798 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
799 return -EBUSY;
800 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
801 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
802 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
803 if (!ret)
804 *valp = t4_read_reg(adapter, SF_DATA_A);
805 return ret;
806 }
807
808 /**
809 * sf1_write - write data to the serial flash
810 * @adapter: the adapter
811 * @byte_cnt: number of bytes to write
812 * @cont: whether another operation will be chained
813 * @lock: whether to lock SF for PL access only
814 * @val: value to write
815 *
816 * Writes up to 4 bytes of data to the serial flash. The location of
817 * the write needs to be specified prior to calling this by issuing the
818 * appropriate commands to the serial flash.
819 */
820 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
821 int lock, u32 val)
822 {
823 if (!byte_cnt || byte_cnt > 4)
824 return -EINVAL;
825 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
826 return -EBUSY;
827 t4_write_reg(adapter, SF_DATA_A, val);
828 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
829 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
830 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
831 }
832
833 /**
834 * flash_wait_op - wait for a flash operation to complete
835 * @adapter: the adapter
836 * @attempts: max number of polls of the status register
837 * @delay: delay between polls in ms
838 *
839 * Wait for a flash operation to complete by polling the status register.
840 */
841 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
842 {
843 int ret;
844 u32 status;
845
846 while (1) {
847 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
848 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
849 return ret;
850 if (!(status & 1))
851 return 0;
852 if (--attempts == 0)
853 return -EAGAIN;
854 if (delay)
855 msleep(delay);
856 }
857 }
858
859 /**
860 * t4_read_flash - read words from serial flash
861 * @adapter: the adapter
862 * @addr: the start address for the read
863 * @nwords: how many 32-bit words to read
864 * @data: where to store the read data
865 * @byte_oriented: whether to store data as bytes or as words
866 *
867 * Read the specified number of 32-bit words from the serial flash.
868 * If @byte_oriented is set the read data is stored as a byte array
869 * (i.e., big-endian), otherwise as 32-bit words in the platform's
870 * natural endianess.
871 */
872 int t4_read_flash(struct adapter *adapter, unsigned int addr,
873 unsigned int nwords, u32 *data, int byte_oriented)
874 {
875 int ret;
876
877 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
878 return -EINVAL;
879
880 addr = swab32(addr) | SF_RD_DATA_FAST;
881
882 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
883 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
884 return ret;
885
886 for ( ; nwords; nwords--, data++) {
887 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
888 if (nwords == 1)
889 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
890 if (ret)
891 return ret;
892 if (byte_oriented)
893 *data = (__force __u32) (htonl(*data));
894 }
895 return 0;
896 }
897
898 /**
899 * t4_write_flash - write up to a page of data to the serial flash
900 * @adapter: the adapter
901 * @addr: the start address to write
902 * @n: length of data to write in bytes
903 * @data: the data to write
904 *
905 * Writes up to a page of data (256 bytes) to the serial flash starting
906 * at the given address. All the data must be written to the same page.
907 */
908 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
909 unsigned int n, const u8 *data)
910 {
911 int ret;
912 u32 buf[64];
913 unsigned int i, c, left, val, offset = addr & 0xff;
914
915 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
916 return -EINVAL;
917
918 val = swab32(addr) | SF_PROG_PAGE;
919
920 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
921 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
922 goto unlock;
923
924 for (left = n; left; left -= c) {
925 c = min(left, 4U);
926 for (val = 0, i = 0; i < c; ++i)
927 val = (val << 8) + *data++;
928
929 ret = sf1_write(adapter, c, c != left, 1, val);
930 if (ret)
931 goto unlock;
932 }
933 ret = flash_wait_op(adapter, 8, 1);
934 if (ret)
935 goto unlock;
936
937 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
938
939 /* Read the page to verify the write succeeded */
940 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
941 if (ret)
942 return ret;
943
944 if (memcmp(data - n, (u8 *)buf + offset, n)) {
945 dev_err(adapter->pdev_dev,
946 "failed to correctly write the flash page at %#x\n",
947 addr);
948 return -EIO;
949 }
950 return 0;
951
952 unlock:
953 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
954 return ret;
955 }
956
957 /**
958 * t4_get_fw_version - read the firmware version
959 * @adapter: the adapter
960 * @vers: where to place the version
961 *
962 * Reads the FW version from flash.
963 */
964 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
965 {
966 return t4_read_flash(adapter, FLASH_FW_START +
967 offsetof(struct fw_hdr, fw_ver), 1,
968 vers, 0);
969 }
970
971 /**
972 * t4_get_tp_version - read the TP microcode version
973 * @adapter: the adapter
974 * @vers: where to place the version
975 *
976 * Reads the TP microcode version from flash.
977 */
978 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
979 {
980 return t4_read_flash(adapter, FLASH_FW_START +
981 offsetof(struct fw_hdr, tp_microcode_ver),
982 1, vers, 0);
983 }
984
985 /**
986 * t4_get_exprom_version - return the Expansion ROM version (if any)
987 * @adapter: the adapter
988 * @vers: where to place the version
989 *
990 * Reads the Expansion ROM header from FLASH and returns the version
991 * number (if present) through the @vers return value pointer. We return
992 * this in the Firmware Version Format since it's convenient. Return
993 * 0 on success, -ENOENT if no Expansion ROM is present.
994 */
995 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
996 {
997 struct exprom_header {
998 unsigned char hdr_arr[16]; /* must start with 0x55aa */
999 unsigned char hdr_ver[4]; /* Expansion ROM version */
1000 } *hdr;
1001 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
1002 sizeof(u32))];
1003 int ret;
1004
1005 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
1006 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
1007 0);
1008 if (ret)
1009 return ret;
1010
1011 hdr = (struct exprom_header *)exprom_header_buf;
1012 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
1013 return -ENOENT;
1014
1015 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
1016 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
1017 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
1018 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
1019 return 0;
1020 }
1021
1022 /* Is the given firmware API compatible with the one the driver was compiled
1023 * with?
1024 */
1025 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1026 {
1027
1028 /* short circuit if it's the exact same firmware version */
1029 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1030 return 1;
1031
1032 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1033 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1034 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1035 return 1;
1036 #undef SAME_INTF
1037
1038 return 0;
1039 }
1040
1041 /* The firmware in the filesystem is usable, but should it be installed?
1042 * This routine explains itself in detail if it indicates the filesystem
1043 * firmware should be installed.
1044 */
1045 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
1046 int k, int c)
1047 {
1048 const char *reason;
1049
1050 if (!card_fw_usable) {
1051 reason = "incompatible or unusable";
1052 goto install;
1053 }
1054
1055 if (k > c) {
1056 reason = "older than the version supported with this driver";
1057 goto install;
1058 }
1059
1060 return 0;
1061
1062 install:
1063 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
1064 "installing firmware %u.%u.%u.%u on card.\n",
1065 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1066 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1067 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1068 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1069
1070 return 1;
1071 }
1072
1073 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
1074 const u8 *fw_data, unsigned int fw_size,
1075 struct fw_hdr *card_fw, enum dev_state state,
1076 int *reset)
1077 {
1078 int ret, card_fw_usable, fs_fw_usable;
1079 const struct fw_hdr *fs_fw;
1080 const struct fw_hdr *drv_fw;
1081
1082 drv_fw = &fw_info->fw_hdr;
1083
1084 /* Read the header of the firmware on the card */
1085 ret = -t4_read_flash(adap, FLASH_FW_START,
1086 sizeof(*card_fw) / sizeof(uint32_t),
1087 (uint32_t *)card_fw, 1);
1088 if (ret == 0) {
1089 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1090 } else {
1091 dev_err(adap->pdev_dev,
1092 "Unable to read card's firmware header: %d\n", ret);
1093 card_fw_usable = 0;
1094 }
1095
1096 if (fw_data != NULL) {
1097 fs_fw = (const void *)fw_data;
1098 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1099 } else {
1100 fs_fw = NULL;
1101 fs_fw_usable = 0;
1102 }
1103
1104 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1105 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1106 /* Common case: the firmware on the card is an exact match and
1107 * the filesystem one is an exact match too, or the filesystem
1108 * one is absent/incompatible.
1109 */
1110 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
1111 should_install_fs_fw(adap, card_fw_usable,
1112 be32_to_cpu(fs_fw->fw_ver),
1113 be32_to_cpu(card_fw->fw_ver))) {
1114 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
1115 fw_size, 0);
1116 if (ret != 0) {
1117 dev_err(adap->pdev_dev,
1118 "failed to install firmware: %d\n", ret);
1119 goto bye;
1120 }
1121
1122 /* Installed successfully, update the cached header too. */
1123 *card_fw = *fs_fw;
1124 card_fw_usable = 1;
1125 *reset = 0; /* already reset as part of load_fw */
1126 }
1127
1128 if (!card_fw_usable) {
1129 uint32_t d, c, k;
1130
1131 d = be32_to_cpu(drv_fw->fw_ver);
1132 c = be32_to_cpu(card_fw->fw_ver);
1133 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1134
1135 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
1136 "chip state %d, "
1137 "driver compiled with %d.%d.%d.%d, "
1138 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1139 state,
1140 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1141 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1142 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1143 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1144 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1145 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1146 ret = EINVAL;
1147 goto bye;
1148 }
1149
1150 /* We're using whatever's on the card and it's known to be good. */
1151 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
1152 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1153
1154 bye:
1155 return ret;
1156 }
1157
1158 /**
1159 * t4_flash_erase_sectors - erase a range of flash sectors
1160 * @adapter: the adapter
1161 * @start: the first sector to erase
1162 * @end: the last sector to erase
1163 *
1164 * Erases the sectors in the given inclusive range.
1165 */
1166 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1167 {
1168 int ret = 0;
1169
1170 if (end >= adapter->params.sf_nsec)
1171 return -EINVAL;
1172
1173 while (start <= end) {
1174 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1175 (ret = sf1_write(adapter, 4, 0, 1,
1176 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1177 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1178 dev_err(adapter->pdev_dev,
1179 "erase of flash sector %d failed, error %d\n",
1180 start, ret);
1181 break;
1182 }
1183 start++;
1184 }
1185 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
1186 return ret;
1187 }
1188
1189 /**
1190 * t4_flash_cfg_addr - return the address of the flash configuration file
1191 * @adapter: the adapter
1192 *
1193 * Return the address within the flash where the Firmware Configuration
1194 * File is stored.
1195 */
1196 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
1197 {
1198 if (adapter->params.sf_size == 0x100000)
1199 return FLASH_FPGA_CFG_START;
1200 else
1201 return FLASH_CFG_START;
1202 }
1203
1204 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
1205 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
1206 * and emit an error message for mismatched firmware to save our caller the
1207 * effort ...
1208 */
1209 static bool t4_fw_matches_chip(const struct adapter *adap,
1210 const struct fw_hdr *hdr)
1211 {
1212 /* The expression below will return FALSE for any unsupported adapter
1213 * which will keep us "honest" in the future ...
1214 */
1215 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
1216 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5))
1217 return true;
1218
1219 dev_err(adap->pdev_dev,
1220 "FW image (%d) is not suitable for this adapter (%d)\n",
1221 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
1222 return false;
1223 }
1224
1225 /**
1226 * t4_load_fw - download firmware
1227 * @adap: the adapter
1228 * @fw_data: the firmware image to write
1229 * @size: image size
1230 *
1231 * Write the supplied firmware image to the card's serial flash.
1232 */
1233 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1234 {
1235 u32 csum;
1236 int ret, addr;
1237 unsigned int i;
1238 u8 first_page[SF_PAGE_SIZE];
1239 const __be32 *p = (const __be32 *)fw_data;
1240 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1241 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1242 unsigned int fw_img_start = adap->params.sf_fw_start;
1243 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
1244
1245 if (!size) {
1246 dev_err(adap->pdev_dev, "FW image has no data\n");
1247 return -EINVAL;
1248 }
1249 if (size & 511) {
1250 dev_err(adap->pdev_dev,
1251 "FW image size not multiple of 512 bytes\n");
1252 return -EINVAL;
1253 }
1254 if (ntohs(hdr->len512) * 512 != size) {
1255 dev_err(adap->pdev_dev,
1256 "FW image size differs from size in FW header\n");
1257 return -EINVAL;
1258 }
1259 if (size > FW_MAX_SIZE) {
1260 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
1261 FW_MAX_SIZE);
1262 return -EFBIG;
1263 }
1264 if (!t4_fw_matches_chip(adap, hdr))
1265 return -EINVAL;
1266
1267 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1268 csum += ntohl(p[i]);
1269
1270 if (csum != 0xffffffff) {
1271 dev_err(adap->pdev_dev,
1272 "corrupted firmware image, checksum %#x\n", csum);
1273 return -EINVAL;
1274 }
1275
1276 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
1277 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
1278 if (ret)
1279 goto out;
1280
1281 /*
1282 * We write the correct version at the end so the driver can see a bad
1283 * version if the FW write fails. Start by writing a copy of the
1284 * first page with a bad version.
1285 */
1286 memcpy(first_page, fw_data, SF_PAGE_SIZE);
1287 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1288 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
1289 if (ret)
1290 goto out;
1291
1292 addr = fw_img_start;
1293 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1294 addr += SF_PAGE_SIZE;
1295 fw_data += SF_PAGE_SIZE;
1296 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
1297 if (ret)
1298 goto out;
1299 }
1300
1301 ret = t4_write_flash(adap,
1302 fw_img_start + offsetof(struct fw_hdr, fw_ver),
1303 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
1304 out:
1305 if (ret)
1306 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
1307 ret);
1308 else
1309 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
1310 return ret;
1311 }
1312
1313 /**
1314 * t4_fwcache - firmware cache operation
1315 * @adap: the adapter
1316 * @op : the operation (flush or flush and invalidate)
1317 */
1318 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
1319 {
1320 struct fw_params_cmd c;
1321
1322 memset(&c, 0, sizeof(c));
1323 c.op_to_vfn =
1324 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
1325 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
1326 FW_PARAMS_CMD_PFN_V(adap->fn) |
1327 FW_PARAMS_CMD_VFN_V(0));
1328 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
1329 c.param[0].mnem =
1330 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1331 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
1332 c.param[0].val = (__force __be32)op;
1333
1334 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
1335 }
1336
1337 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
1338 {
1339 unsigned int i, j;
1340
1341 for (i = 0; i < 8; i++) {
1342 u32 *p = la_buf + i;
1343
1344 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
1345 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
1346 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
1347 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
1348 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
1349 }
1350 }
1351
1352 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1353 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1354 FW_PORT_CAP_ANEG)
1355
1356 /**
1357 * t4_link_start - apply link configuration to MAC/PHY
1358 * @phy: the PHY to setup
1359 * @mac: the MAC to setup
1360 * @lc: the requested link configuration
1361 *
1362 * Set up a port's MAC and PHY according to a desired link configuration.
1363 * - If the PHY can auto-negotiate first decide what to advertise, then
1364 * enable/disable auto-negotiation as desired, and reset.
1365 * - If the PHY does not auto-negotiate just reset it.
1366 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1367 * otherwise do it later based on the outcome of auto-negotiation.
1368 */
1369 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1370 struct link_config *lc)
1371 {
1372 struct fw_port_cmd c;
1373 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
1374
1375 lc->link_ok = 0;
1376 if (lc->requested_fc & PAUSE_RX)
1377 fc |= FW_PORT_CAP_FC_RX;
1378 if (lc->requested_fc & PAUSE_TX)
1379 fc |= FW_PORT_CAP_FC_TX;
1380
1381 memset(&c, 0, sizeof(c));
1382 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
1383 FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
1384 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
1385 FW_LEN16(c));
1386
1387 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1388 c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1389 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1390 } else if (lc->autoneg == AUTONEG_DISABLE) {
1391 c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1392 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1393 } else
1394 c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1395
1396 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1397 }
1398
1399 /**
1400 * t4_restart_aneg - restart autonegotiation
1401 * @adap: the adapter
1402 * @mbox: mbox to use for the FW command
1403 * @port: the port id
1404 *
1405 * Restarts autonegotiation for the selected port.
1406 */
1407 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1408 {
1409 struct fw_port_cmd c;
1410
1411 memset(&c, 0, sizeof(c));
1412 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
1413 FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
1414 c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
1415 FW_LEN16(c));
1416 c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1417 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1418 }
1419
1420 typedef void (*int_handler_t)(struct adapter *adap);
1421
1422 struct intr_info {
1423 unsigned int mask; /* bits to check in interrupt status */
1424 const char *msg; /* message to print or NULL */
1425 short stat_idx; /* stat counter to increment or -1 */
1426 unsigned short fatal; /* whether the condition reported is fatal */
1427 int_handler_t int_handler; /* platform-specific int handler */
1428 };
1429
1430 /**
1431 * t4_handle_intr_status - table driven interrupt handler
1432 * @adapter: the adapter that generated the interrupt
1433 * @reg: the interrupt status register to process
1434 * @acts: table of interrupt actions
1435 *
1436 * A table driven interrupt handler that applies a set of masks to an
1437 * interrupt status word and performs the corresponding actions if the
1438 * interrupts described by the mask have occurred. The actions include
1439 * optionally emitting a warning or alert message. The table is terminated
1440 * by an entry specifying mask 0. Returns the number of fatal interrupt
1441 * conditions.
1442 */
1443 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1444 const struct intr_info *acts)
1445 {
1446 int fatal = 0;
1447 unsigned int mask = 0;
1448 unsigned int status = t4_read_reg(adapter, reg);
1449
1450 for ( ; acts->mask; ++acts) {
1451 if (!(status & acts->mask))
1452 continue;
1453 if (acts->fatal) {
1454 fatal++;
1455 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1456 status & acts->mask);
1457 } else if (acts->msg && printk_ratelimit())
1458 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
1459 status & acts->mask);
1460 if (acts->int_handler)
1461 acts->int_handler(adapter);
1462 mask |= acts->mask;
1463 }
1464 status &= mask;
1465 if (status) /* clear processed interrupts */
1466 t4_write_reg(adapter, reg, status);
1467 return fatal;
1468 }
1469
1470 /*
1471 * Interrupt handler for the PCIE module.
1472 */
1473 static void pcie_intr_handler(struct adapter *adapter)
1474 {
1475 static const struct intr_info sysbus_intr_info[] = {
1476 { RNPP_F, "RXNP array parity error", -1, 1 },
1477 { RPCP_F, "RXPC array parity error", -1, 1 },
1478 { RCIP_F, "RXCIF array parity error", -1, 1 },
1479 { RCCP_F, "Rx completions control array parity error", -1, 1 },
1480 { RFTP_F, "RXFT array parity error", -1, 1 },
1481 { 0 }
1482 };
1483 static const struct intr_info pcie_port_intr_info[] = {
1484 { TPCP_F, "TXPC array parity error", -1, 1 },
1485 { TNPP_F, "TXNP array parity error", -1, 1 },
1486 { TFTP_F, "TXFT array parity error", -1, 1 },
1487 { TCAP_F, "TXCA array parity error", -1, 1 },
1488 { TCIP_F, "TXCIF array parity error", -1, 1 },
1489 { RCAP_F, "RXCA array parity error", -1, 1 },
1490 { OTDD_F, "outbound request TLP discarded", -1, 1 },
1491 { RDPE_F, "Rx data parity error", -1, 1 },
1492 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
1493 { 0 }
1494 };
1495 static const struct intr_info pcie_intr_info[] = {
1496 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
1497 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
1498 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
1499 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
1500 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
1501 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
1502 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
1503 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
1504 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
1505 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
1506 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
1507 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
1508 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
1509 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
1510 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
1511 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
1512 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
1513 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
1514 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
1515 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
1516 { FIDPERR_F, "PCI FID parity error", -1, 1 },
1517 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
1518 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
1519 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
1520 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
1521 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
1522 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
1523 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
1524 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
1525 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
1526 -1, 0 },
1527 { 0 }
1528 };
1529
1530 static struct intr_info t5_pcie_intr_info[] = {
1531 { MSTGRPPERR_F, "Master Response Read Queue parity error",
1532 -1, 1 },
1533 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
1534 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
1535 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
1536 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
1537 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
1538 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
1539 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
1540 -1, 1 },
1541 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
1542 -1, 1 },
1543 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
1544 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
1545 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
1546 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
1547 { DREQWRPERR_F, "PCI DMA channel write request parity error",
1548 -1, 1 },
1549 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
1550 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
1551 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
1552 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
1553 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
1554 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
1555 { FIDPERR_F, "PCI FID parity error", -1, 1 },
1556 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
1557 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
1558 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
1559 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
1560 -1, 1 },
1561 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
1562 -1, 1 },
1563 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
1564 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
1565 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
1566 { READRSPERR_F, "Outbound read error", -1, 0 },
1567 { 0 }
1568 };
1569
1570 int fat;
1571
1572 if (is_t4(adapter->params.chip))
1573 fat = t4_handle_intr_status(adapter,
1574 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
1575 sysbus_intr_info) +
1576 t4_handle_intr_status(adapter,
1577 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
1578 pcie_port_intr_info) +
1579 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
1580 pcie_intr_info);
1581 else
1582 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
1583 t5_pcie_intr_info);
1584
1585 if (fat)
1586 t4_fatal_err(adapter);
1587 }
1588
1589 /*
1590 * TP interrupt handler.
1591 */
1592 static void tp_intr_handler(struct adapter *adapter)
1593 {
1594 static const struct intr_info tp_intr_info[] = {
1595 { 0x3fffffff, "TP parity error", -1, 1 },
1596 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
1597 { 0 }
1598 };
1599
1600 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
1601 t4_fatal_err(adapter);
1602 }
1603
1604 /*
1605 * SGE interrupt handler.
1606 */
1607 static void sge_intr_handler(struct adapter *adapter)
1608 {
1609 u64 v;
1610
1611 static const struct intr_info sge_intr_info[] = {
1612 { ERR_CPL_EXCEED_IQE_SIZE_F,
1613 "SGE received CPL exceeding IQE size", -1, 1 },
1614 { ERR_INVALID_CIDX_INC_F,
1615 "SGE GTS CIDX increment too large", -1, 0 },
1616 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
1617 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
1618 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
1619 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
1620 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
1621 "SGE IQID > 1023 received CPL for FL", -1, 0 },
1622 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
1623 0 },
1624 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
1625 0 },
1626 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
1627 0 },
1628 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
1629 0 },
1630 { ERR_ING_CTXT_PRIO_F,
1631 "SGE too many priority ingress contexts", -1, 0 },
1632 { ERR_EGR_CTXT_PRIO_F,
1633 "SGE too many priority egress contexts", -1, 0 },
1634 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
1635 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
1636 { 0 }
1637 };
1638
1639 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
1640 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
1641 if (v) {
1642 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
1643 (unsigned long long)v);
1644 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
1645 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
1646 }
1647
1648 if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) ||
1649 v != 0)
1650 t4_fatal_err(adapter);
1651 }
1652
1653 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
1654 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
1655 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
1656 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
1657
1658 /*
1659 * CIM interrupt handler.
1660 */
1661 static void cim_intr_handler(struct adapter *adapter)
1662 {
1663 static const struct intr_info cim_intr_info[] = {
1664 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
1665 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
1666 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
1667 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
1668 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
1669 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
1670 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
1671 { 0 }
1672 };
1673 static const struct intr_info cim_upintr_info[] = {
1674 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
1675 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
1676 { ILLWRINT_F, "CIM illegal write", -1, 1 },
1677 { ILLRDINT_F, "CIM illegal read", -1, 1 },
1678 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
1679 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
1680 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
1681 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
1682 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
1683 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
1684 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
1685 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
1686 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
1687 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
1688 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
1689 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
1690 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
1691 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
1692 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
1693 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
1694 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
1695 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
1696 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
1697 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
1698 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
1699 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
1700 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
1701 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
1702 { 0 }
1703 };
1704
1705 int fat;
1706
1707 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
1708 t4_report_fw_error(adapter);
1709
1710 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
1711 cim_intr_info) +
1712 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
1713 cim_upintr_info);
1714 if (fat)
1715 t4_fatal_err(adapter);
1716 }
1717
1718 /*
1719 * ULP RX interrupt handler.
1720 */
1721 static void ulprx_intr_handler(struct adapter *adapter)
1722 {
1723 static const struct intr_info ulprx_intr_info[] = {
1724 { 0x1800000, "ULPRX context error", -1, 1 },
1725 { 0x7fffff, "ULPRX parity error", -1, 1 },
1726 { 0 }
1727 };
1728
1729 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
1730 t4_fatal_err(adapter);
1731 }
1732
1733 /*
1734 * ULP TX interrupt handler.
1735 */
1736 static void ulptx_intr_handler(struct adapter *adapter)
1737 {
1738 static const struct intr_info ulptx_intr_info[] = {
1739 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
1740 0 },
1741 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
1742 0 },
1743 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
1744 0 },
1745 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
1746 0 },
1747 { 0xfffffff, "ULPTX parity error", -1, 1 },
1748 { 0 }
1749 };
1750
1751 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
1752 t4_fatal_err(adapter);
1753 }
1754
1755 /*
1756 * PM TX interrupt handler.
1757 */
1758 static void pmtx_intr_handler(struct adapter *adapter)
1759 {
1760 static const struct intr_info pmtx_intr_info[] = {
1761 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
1762 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
1763 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
1764 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
1765 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
1766 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
1767 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
1768 -1, 1 },
1769 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
1770 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
1771 { 0 }
1772 };
1773
1774 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
1775 t4_fatal_err(adapter);
1776 }
1777
1778 /*
1779 * PM RX interrupt handler.
1780 */
1781 static void pmrx_intr_handler(struct adapter *adapter)
1782 {
1783 static const struct intr_info pmrx_intr_info[] = {
1784 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
1785 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
1786 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
1787 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
1788 -1, 1 },
1789 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
1790 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
1791 { 0 }
1792 };
1793
1794 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
1795 t4_fatal_err(adapter);
1796 }
1797
1798 /*
1799 * CPL switch interrupt handler.
1800 */
1801 static void cplsw_intr_handler(struct adapter *adapter)
1802 {
1803 static const struct intr_info cplsw_intr_info[] = {
1804 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
1805 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
1806 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
1807 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
1808 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
1809 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
1810 { 0 }
1811 };
1812
1813 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
1814 t4_fatal_err(adapter);
1815 }
1816
1817 /*
1818 * LE interrupt handler.
1819 */
1820 static void le_intr_handler(struct adapter *adap)
1821 {
1822 static const struct intr_info le_intr_info[] = {
1823 { LIPMISS_F, "LE LIP miss", -1, 0 },
1824 { LIP0_F, "LE 0 LIP error", -1, 0 },
1825 { PARITYERR_F, "LE parity error", -1, 1 },
1826 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
1827 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
1828 { 0 }
1829 };
1830
1831 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, le_intr_info))
1832 t4_fatal_err(adap);
1833 }
1834
1835 /*
1836 * MPS interrupt handler.
1837 */
1838 static void mps_intr_handler(struct adapter *adapter)
1839 {
1840 static const struct intr_info mps_rx_intr_info[] = {
1841 { 0xffffff, "MPS Rx parity error", -1, 1 },
1842 { 0 }
1843 };
1844 static const struct intr_info mps_tx_intr_info[] = {
1845 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
1846 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
1847 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
1848 -1, 1 },
1849 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
1850 -1, 1 },
1851 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
1852 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
1853 { FRMERR_F, "MPS Tx framing error", -1, 1 },
1854 { 0 }
1855 };
1856 static const struct intr_info mps_trc_intr_info[] = {
1857 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
1858 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
1859 -1, 1 },
1860 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
1861 { 0 }
1862 };
1863 static const struct intr_info mps_stat_sram_intr_info[] = {
1864 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
1865 { 0 }
1866 };
1867 static const struct intr_info mps_stat_tx_intr_info[] = {
1868 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
1869 { 0 }
1870 };
1871 static const struct intr_info mps_stat_rx_intr_info[] = {
1872 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
1873 { 0 }
1874 };
1875 static const struct intr_info mps_cls_intr_info[] = {
1876 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
1877 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
1878 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
1879 { 0 }
1880 };
1881
1882 int fat;
1883
1884 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
1885 mps_rx_intr_info) +
1886 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
1887 mps_tx_intr_info) +
1888 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
1889 mps_trc_intr_info) +
1890 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
1891 mps_stat_sram_intr_info) +
1892 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
1893 mps_stat_tx_intr_info) +
1894 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
1895 mps_stat_rx_intr_info) +
1896 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
1897 mps_cls_intr_info);
1898
1899 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
1900 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
1901 if (fat)
1902 t4_fatal_err(adapter);
1903 }
1904
1905 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
1906 ECC_UE_INT_CAUSE_F)
1907
1908 /*
1909 * EDC/MC interrupt handler.
1910 */
1911 static void mem_intr_handler(struct adapter *adapter, int idx)
1912 {
1913 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
1914
1915 unsigned int addr, cnt_addr, v;
1916
1917 if (idx <= MEM_EDC1) {
1918 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
1919 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
1920 } else if (idx == MEM_MC) {
1921 if (is_t4(adapter->params.chip)) {
1922 addr = MC_INT_CAUSE_A;
1923 cnt_addr = MC_ECC_STATUS_A;
1924 } else {
1925 addr = MC_P_INT_CAUSE_A;
1926 cnt_addr = MC_P_ECC_STATUS_A;
1927 }
1928 } else {
1929 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
1930 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
1931 }
1932
1933 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
1934 if (v & PERR_INT_CAUSE_F)
1935 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
1936 name[idx]);
1937 if (v & ECC_CE_INT_CAUSE_F) {
1938 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
1939
1940 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
1941 if (printk_ratelimit())
1942 dev_warn(adapter->pdev_dev,
1943 "%u %s correctable ECC data error%s\n",
1944 cnt, name[idx], cnt > 1 ? "s" : "");
1945 }
1946 if (v & ECC_UE_INT_CAUSE_F)
1947 dev_alert(adapter->pdev_dev,
1948 "%s uncorrectable ECC data error\n", name[idx]);
1949
1950 t4_write_reg(adapter, addr, v);
1951 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
1952 t4_fatal_err(adapter);
1953 }
1954
1955 /*
1956 * MA interrupt handler.
1957 */
1958 static void ma_intr_handler(struct adapter *adap)
1959 {
1960 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
1961
1962 if (status & MEM_PERR_INT_CAUSE_F) {
1963 dev_alert(adap->pdev_dev,
1964 "MA parity error, parity status %#x\n",
1965 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
1966 if (is_t5(adap->params.chip))
1967 dev_alert(adap->pdev_dev,
1968 "MA parity error, parity status %#x\n",
1969 t4_read_reg(adap,
1970 MA_PARITY_ERROR_STATUS2_A));
1971 }
1972 if (status & MEM_WRAP_INT_CAUSE_F) {
1973 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
1974 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
1975 "client %u to address %#x\n",
1976 MEM_WRAP_CLIENT_NUM_G(v),
1977 MEM_WRAP_ADDRESS_G(v) << 4);
1978 }
1979 t4_write_reg(adap, MA_INT_CAUSE_A, status);
1980 t4_fatal_err(adap);
1981 }
1982
1983 /*
1984 * SMB interrupt handler.
1985 */
1986 static void smb_intr_handler(struct adapter *adap)
1987 {
1988 static const struct intr_info smb_intr_info[] = {
1989 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
1990 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
1991 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
1992 { 0 }
1993 };
1994
1995 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
1996 t4_fatal_err(adap);
1997 }
1998
1999 /*
2000 * NC-SI interrupt handler.
2001 */
2002 static void ncsi_intr_handler(struct adapter *adap)
2003 {
2004 static const struct intr_info ncsi_intr_info[] = {
2005 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
2006 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
2007 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
2008 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
2009 { 0 }
2010 };
2011
2012 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
2013 t4_fatal_err(adap);
2014 }
2015
2016 /*
2017 * XGMAC interrupt handler.
2018 */
2019 static void xgmac_intr_handler(struct adapter *adap, int port)
2020 {
2021 u32 v, int_cause_reg;
2022
2023 if (is_t4(adap->params.chip))
2024 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
2025 else
2026 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
2027
2028 v = t4_read_reg(adap, int_cause_reg);
2029
2030 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
2031 if (!v)
2032 return;
2033
2034 if (v & TXFIFO_PRTY_ERR_F)
2035 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
2036 port);
2037 if (v & RXFIFO_PRTY_ERR_F)
2038 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
2039 port);
2040 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
2041 t4_fatal_err(adap);
2042 }
2043
2044 /*
2045 * PL interrupt handler.
2046 */
2047 static void pl_intr_handler(struct adapter *adap)
2048 {
2049 static const struct intr_info pl_intr_info[] = {
2050 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
2051 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
2052 { 0 }
2053 };
2054
2055 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
2056 t4_fatal_err(adap);
2057 }
2058
2059 #define PF_INTR_MASK (PFSW_F)
2060 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
2061 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
2062 CPL_SWITCH_F | SGE_F | ULP_TX_F)
2063
2064 /**
2065 * t4_slow_intr_handler - control path interrupt handler
2066 * @adapter: the adapter
2067 *
2068 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
2069 * The designation 'slow' is because it involves register reads, while
2070 * data interrupts typically don't involve any MMIOs.
2071 */
2072 int t4_slow_intr_handler(struct adapter *adapter)
2073 {
2074 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
2075
2076 if (!(cause & GLBL_INTR_MASK))
2077 return 0;
2078 if (cause & CIM_F)
2079 cim_intr_handler(adapter);
2080 if (cause & MPS_F)
2081 mps_intr_handler(adapter);
2082 if (cause & NCSI_F)
2083 ncsi_intr_handler(adapter);
2084 if (cause & PL_F)
2085 pl_intr_handler(adapter);
2086 if (cause & SMB_F)
2087 smb_intr_handler(adapter);
2088 if (cause & XGMAC0_F)
2089 xgmac_intr_handler(adapter, 0);
2090 if (cause & XGMAC1_F)
2091 xgmac_intr_handler(adapter, 1);
2092 if (cause & XGMAC_KR0_F)
2093 xgmac_intr_handler(adapter, 2);
2094 if (cause & XGMAC_KR1_F)
2095 xgmac_intr_handler(adapter, 3);
2096 if (cause & PCIE_F)
2097 pcie_intr_handler(adapter);
2098 if (cause & MC_F)
2099 mem_intr_handler(adapter, MEM_MC);
2100 if (!is_t4(adapter->params.chip) && (cause & MC1_S))
2101 mem_intr_handler(adapter, MEM_MC1);
2102 if (cause & EDC0_F)
2103 mem_intr_handler(adapter, MEM_EDC0);
2104 if (cause & EDC1_F)
2105 mem_intr_handler(adapter, MEM_EDC1);
2106 if (cause & LE_F)
2107 le_intr_handler(adapter);
2108 if (cause & TP_F)
2109 tp_intr_handler(adapter);
2110 if (cause & MA_F)
2111 ma_intr_handler(adapter);
2112 if (cause & PM_TX_F)
2113 pmtx_intr_handler(adapter);
2114 if (cause & PM_RX_F)
2115 pmrx_intr_handler(adapter);
2116 if (cause & ULP_RX_F)
2117 ulprx_intr_handler(adapter);
2118 if (cause & CPL_SWITCH_F)
2119 cplsw_intr_handler(adapter);
2120 if (cause & SGE_F)
2121 sge_intr_handler(adapter);
2122 if (cause & ULP_TX_F)
2123 ulptx_intr_handler(adapter);
2124
2125 /* Clear the interrupts just processed for which we are the master. */
2126 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
2127 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
2128 return 1;
2129 }
2130
2131 /**
2132 * t4_intr_enable - enable interrupts
2133 * @adapter: the adapter whose interrupts should be enabled
2134 *
2135 * Enable PF-specific interrupts for the calling function and the top-level
2136 * interrupt concentrator for global interrupts. Interrupts are already
2137 * enabled at each module, here we just enable the roots of the interrupt
2138 * hierarchies.
2139 *
2140 * Note: this function should be called only when the driver manages
2141 * non PF-specific interrupts from the various HW modules. Only one PCI
2142 * function at a time should be doing this.
2143 */
2144 void t4_intr_enable(struct adapter *adapter)
2145 {
2146 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
2147
2148 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
2149 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
2150 ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F |
2151 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2152 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2153 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2154 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F |
2155 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F |
2156 EGRESS_SIZE_ERR_F);
2157 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
2158 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
2159 }
2160
2161 /**
2162 * t4_intr_disable - disable interrupts
2163 * @adapter: the adapter whose interrupts should be disabled
2164 *
2165 * Disable interrupts. We only disable the top-level interrupt
2166 * concentrators. The caller must be a PCI function managing global
2167 * interrupts.
2168 */
2169 void t4_intr_disable(struct adapter *adapter)
2170 {
2171 u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
2172
2173 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
2174 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
2175 }
2176
2177 /**
2178 * hash_mac_addr - return the hash value of a MAC address
2179 * @addr: the 48-bit Ethernet MAC address
2180 *
2181 * Hashes a MAC address according to the hash function used by HW inexact
2182 * (hash) address matching.
2183 */
2184 static int hash_mac_addr(const u8 *addr)
2185 {
2186 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2187 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2188 a ^= b;
2189 a ^= (a >> 12);
2190 a ^= (a >> 6);
2191 return a & 0x3f;
2192 }
2193
2194 /**
2195 * t4_config_rss_range - configure a portion of the RSS mapping table
2196 * @adapter: the adapter
2197 * @mbox: mbox to use for the FW command
2198 * @viid: virtual interface whose RSS subtable is to be written
2199 * @start: start entry in the table to write
2200 * @n: how many table entries to write
2201 * @rspq: values for the response queue lookup table
2202 * @nrspq: number of values in @rspq
2203 *
2204 * Programs the selected part of the VI's RSS mapping table with the
2205 * provided values. If @nrspq < @n the supplied values are used repeatedly
2206 * until the full table range is populated.
2207 *
2208 * The caller must ensure the values in @rspq are in the range allowed for
2209 * @viid.
2210 */
2211 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2212 int start, int n, const u16 *rspq, unsigned int nrspq)
2213 {
2214 int ret;
2215 const u16 *rsp = rspq;
2216 const u16 *rsp_end = rspq + nrspq;
2217 struct fw_rss_ind_tbl_cmd cmd;
2218
2219 memset(&cmd, 0, sizeof(cmd));
2220 cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
2221 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2222 FW_RSS_IND_TBL_CMD_VIID_V(viid));
2223 cmd.retval_len16 = htonl(FW_LEN16(cmd));
2224
2225 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
2226 while (n > 0) {
2227 int nq = min(n, 32);
2228 __be32 *qp = &cmd.iq0_to_iq2;
2229
2230 cmd.niqid = htons(nq);
2231 cmd.startidx = htons(start);
2232
2233 start += nq;
2234 n -= nq;
2235
2236 while (nq > 0) {
2237 unsigned int v;
2238
2239 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
2240 if (++rsp >= rsp_end)
2241 rsp = rspq;
2242 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
2243 if (++rsp >= rsp_end)
2244 rsp = rspq;
2245 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
2246 if (++rsp >= rsp_end)
2247 rsp = rspq;
2248
2249 *qp++ = htonl(v);
2250 nq -= 3;
2251 }
2252
2253 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2254 if (ret)
2255 return ret;
2256 }
2257 return 0;
2258 }
2259
2260 /**
2261 * t4_config_glbl_rss - configure the global RSS mode
2262 * @adapter: the adapter
2263 * @mbox: mbox to use for the FW command
2264 * @mode: global RSS mode
2265 * @flags: mode-specific flags
2266 *
2267 * Sets the global RSS mode.
2268 */
2269 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2270 unsigned int flags)
2271 {
2272 struct fw_rss_glb_config_cmd c;
2273
2274 memset(&c, 0, sizeof(c));
2275 c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
2276 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2277 c.retval_len16 = htonl(FW_LEN16(c));
2278 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2279 c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
2280 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2281 c.u.basicvirtual.mode_pkd =
2282 htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
2283 c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2284 } else
2285 return -EINVAL;
2286 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2287 }
2288
2289 /* Read an RSS table row */
2290 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
2291 {
2292 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
2293 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
2294 5, 0, val);
2295 }
2296
2297 /**
2298 * t4_read_rss - read the contents of the RSS mapping table
2299 * @adapter: the adapter
2300 * @map: holds the contents of the RSS mapping table
2301 *
2302 * Reads the contents of the RSS hash->queue mapping table.
2303 */
2304 int t4_read_rss(struct adapter *adapter, u16 *map)
2305 {
2306 u32 val;
2307 int i, ret;
2308
2309 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
2310 ret = rd_rss_row(adapter, i, &val);
2311 if (ret)
2312 return ret;
2313 *map++ = LKPTBLQUEUE0_G(val);
2314 *map++ = LKPTBLQUEUE1_G(val);
2315 }
2316 return 0;
2317 }
2318
2319 /**
2320 * t4_read_rss_key - read the global RSS key
2321 * @adap: the adapter
2322 * @key: 10-entry array holding the 320-bit RSS key
2323 *
2324 * Reads the global 320-bit RSS key.
2325 */
2326 void t4_read_rss_key(struct adapter *adap, u32 *key)
2327 {
2328 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
2329 TP_RSS_SECRET_KEY0_A);
2330 }
2331
2332 /**
2333 * t4_write_rss_key - program one of the RSS keys
2334 * @adap: the adapter
2335 * @key: 10-entry array holding the 320-bit RSS key
2336 * @idx: which RSS key to write
2337 *
2338 * Writes one of the RSS keys with the given 320-bit value. If @idx is
2339 * 0..15 the corresponding entry in the RSS key table is written,
2340 * otherwise the global RSS key is written.
2341 */
2342 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
2343 {
2344 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
2345 TP_RSS_SECRET_KEY0_A);
2346 if (idx >= 0 && idx < 16)
2347 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
2348 KEYWRADDR_V(idx) | KEYWREN_F);
2349 }
2350
2351 /**
2352 * t4_read_rss_pf_config - read PF RSS Configuration Table
2353 * @adapter: the adapter
2354 * @index: the entry in the PF RSS table to read
2355 * @valp: where to store the returned value
2356 *
2357 * Reads the PF RSS Configuration Table at the specified index and returns
2358 * the value found there.
2359 */
2360 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
2361 u32 *valp)
2362 {
2363 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2364 valp, 1, TP_RSS_PF0_CONFIG_A + index);
2365 }
2366
2367 /**
2368 * t4_read_rss_vf_config - read VF RSS Configuration Table
2369 * @adapter: the adapter
2370 * @index: the entry in the VF RSS table to read
2371 * @vfl: where to store the returned VFL
2372 * @vfh: where to store the returned VFH
2373 *
2374 * Reads the VF RSS Configuration Table at the specified index and returns
2375 * the (VFL, VFH) values found there.
2376 */
2377 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
2378 u32 *vfl, u32 *vfh)
2379 {
2380 u32 vrt, mask, data;
2381
2382 mask = VFWRADDR_V(VFWRADDR_M);
2383 data = VFWRADDR_V(index);
2384
2385 /* Request that the index'th VF Table values be read into VFL/VFH.
2386 */
2387 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
2388 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
2389 vrt |= data | VFRDEN_F;
2390 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
2391
2392 /* Grab the VFL/VFH values ...
2393 */
2394 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2395 vfl, 1, TP_RSS_VFL_CONFIG_A);
2396 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2397 vfh, 1, TP_RSS_VFH_CONFIG_A);
2398 }
2399
2400 /**
2401 * t4_read_rss_pf_map - read PF RSS Map
2402 * @adapter: the adapter
2403 *
2404 * Reads the PF RSS Map register and returns its value.
2405 */
2406 u32 t4_read_rss_pf_map(struct adapter *adapter)
2407 {
2408 u32 pfmap;
2409
2410 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2411 &pfmap, 1, TP_RSS_PF_MAP_A);
2412 return pfmap;
2413 }
2414
2415 /**
2416 * t4_read_rss_pf_mask - read PF RSS Mask
2417 * @adapter: the adapter
2418 *
2419 * Reads the PF RSS Mask register and returns its value.
2420 */
2421 u32 t4_read_rss_pf_mask(struct adapter *adapter)
2422 {
2423 u32 pfmask;
2424
2425 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2426 &pfmask, 1, TP_RSS_PF_MSK_A);
2427 return pfmask;
2428 }
2429
2430 /**
2431 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
2432 * @adap: the adapter
2433 * @v4: holds the TCP/IP counter values
2434 * @v6: holds the TCP/IPv6 counter values
2435 *
2436 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
2437 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
2438 */
2439 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
2440 struct tp_tcp_stats *v6)
2441 {
2442 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
2443
2444 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
2445 #define STAT(x) val[STAT_IDX(x)]
2446 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
2447
2448 if (v4) {
2449 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
2450 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
2451 v4->tcpOutRsts = STAT(OUT_RST);
2452 v4->tcpInSegs = STAT64(IN_SEG);
2453 v4->tcpOutSegs = STAT64(OUT_SEG);
2454 v4->tcpRetransSegs = STAT64(RXT_SEG);
2455 }
2456 if (v6) {
2457 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
2458 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
2459 v6->tcpOutRsts = STAT(OUT_RST);
2460 v6->tcpInSegs = STAT64(IN_SEG);
2461 v6->tcpOutSegs = STAT64(OUT_SEG);
2462 v6->tcpRetransSegs = STAT64(RXT_SEG);
2463 }
2464 #undef STAT64
2465 #undef STAT
2466 #undef STAT_IDX
2467 }
2468
2469 /**
2470 * t4_read_mtu_tbl - returns the values in the HW path MTU table
2471 * @adap: the adapter
2472 * @mtus: where to store the MTU values
2473 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
2474 *
2475 * Reads the HW path MTU table.
2476 */
2477 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
2478 {
2479 u32 v;
2480 int i;
2481
2482 for (i = 0; i < NMTUS; ++i) {
2483 t4_write_reg(adap, TP_MTU_TABLE_A,
2484 MTUINDEX_V(0xff) | MTUVALUE_V(i));
2485 v = t4_read_reg(adap, TP_MTU_TABLE_A);
2486 mtus[i] = MTUVALUE_G(v);
2487 if (mtu_log)
2488 mtu_log[i] = MTUWIDTH_G(v);
2489 }
2490 }
2491
2492 /**
2493 * t4_read_cong_tbl - reads the congestion control table
2494 * @adap: the adapter
2495 * @incr: where to store the alpha values
2496 *
2497 * Reads the additive increments programmed into the HW congestion
2498 * control table.
2499 */
2500 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
2501 {
2502 unsigned int mtu, w;
2503
2504 for (mtu = 0; mtu < NMTUS; ++mtu)
2505 for (w = 0; w < NCCTRL_WIN; ++w) {
2506 t4_write_reg(adap, TP_CCTRL_TABLE_A,
2507 ROWINDEX_V(0xffff) | (mtu << 5) | w);
2508 incr[mtu][w] = (u16)t4_read_reg(adap,
2509 TP_CCTRL_TABLE_A) & 0x1fff;
2510 }
2511 }
2512
2513 /**
2514 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
2515 * @adap: the adapter
2516 * @addr: the indirect TP register address
2517 * @mask: specifies the field within the register to modify
2518 * @val: new value for the field
2519 *
2520 * Sets a field of an indirect TP register to the given value.
2521 */
2522 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
2523 unsigned int mask, unsigned int val)
2524 {
2525 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
2526 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
2527 t4_write_reg(adap, TP_PIO_DATA_A, val);
2528 }
2529
2530 /**
2531 * init_cong_ctrl - initialize congestion control parameters
2532 * @a: the alpha values for congestion control
2533 * @b: the beta values for congestion control
2534 *
2535 * Initialize the congestion control parameters.
2536 */
2537 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2538 {
2539 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2540 a[9] = 2;
2541 a[10] = 3;
2542 a[11] = 4;
2543 a[12] = 5;
2544 a[13] = 6;
2545 a[14] = 7;
2546 a[15] = 8;
2547 a[16] = 9;
2548 a[17] = 10;
2549 a[18] = 14;
2550 a[19] = 17;
2551 a[20] = 21;
2552 a[21] = 25;
2553 a[22] = 30;
2554 a[23] = 35;
2555 a[24] = 45;
2556 a[25] = 60;
2557 a[26] = 80;
2558 a[27] = 100;
2559 a[28] = 200;
2560 a[29] = 300;
2561 a[30] = 400;
2562 a[31] = 500;
2563
2564 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2565 b[9] = b[10] = 1;
2566 b[11] = b[12] = 2;
2567 b[13] = b[14] = b[15] = b[16] = 3;
2568 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2569 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2570 b[28] = b[29] = 6;
2571 b[30] = b[31] = 7;
2572 }
2573
2574 /* The minimum additive increment value for the congestion control table */
2575 #define CC_MIN_INCR 2U
2576
2577 /**
2578 * t4_load_mtus - write the MTU and congestion control HW tables
2579 * @adap: the adapter
2580 * @mtus: the values for the MTU table
2581 * @alpha: the values for the congestion control alpha parameter
2582 * @beta: the values for the congestion control beta parameter
2583 *
2584 * Write the HW MTU table with the supplied MTUs and the high-speed
2585 * congestion control table with the supplied alpha, beta, and MTUs.
2586 * We write the two tables together because the additive increments
2587 * depend on the MTUs.
2588 */
2589 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
2590 const unsigned short *alpha, const unsigned short *beta)
2591 {
2592 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2593 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2594 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2595 28672, 40960, 57344, 81920, 114688, 163840, 229376
2596 };
2597
2598 unsigned int i, w;
2599
2600 for (i = 0; i < NMTUS; ++i) {
2601 unsigned int mtu = mtus[i];
2602 unsigned int log2 = fls(mtu);
2603
2604 if (!(mtu & ((1 << log2) >> 2))) /* round */
2605 log2--;
2606 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
2607 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
2608
2609 for (w = 0; w < NCCTRL_WIN; ++w) {
2610 unsigned int inc;
2611
2612 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2613 CC_MIN_INCR);
2614
2615 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
2616 (w << 16) | (beta[w] << 13) | inc);
2617 }
2618 }
2619 }
2620
2621 /**
2622 * t4_pmtx_get_stats - returns the HW stats from PMTX
2623 * @adap: the adapter
2624 * @cnt: where to store the count statistics
2625 * @cycles: where to store the cycle statistics
2626 *
2627 * Returns performance statistics from PMTX.
2628 */
2629 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
2630 {
2631 int i;
2632 u32 data[2];
2633
2634 for (i = 0; i < PM_NSTATS; i++) {
2635 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
2636 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
2637 if (is_t4(adap->params.chip)) {
2638 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
2639 } else {
2640 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
2641 PM_TX_DBG_DATA_A, data, 2,
2642 PM_TX_DBG_STAT_MSB_A);
2643 cycles[i] = (((u64)data[0] << 32) | data[1]);
2644 }
2645 }
2646 }
2647
2648 /**
2649 * t4_pmrx_get_stats - returns the HW stats from PMRX
2650 * @adap: the adapter
2651 * @cnt: where to store the count statistics
2652 * @cycles: where to store the cycle statistics
2653 *
2654 * Returns performance statistics from PMRX.
2655 */
2656 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
2657 {
2658 int i;
2659 u32 data[2];
2660
2661 for (i = 0; i < PM_NSTATS; i++) {
2662 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
2663 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
2664 if (is_t4(adap->params.chip)) {
2665 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
2666 } else {
2667 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
2668 PM_RX_DBG_DATA_A, data, 2,
2669 PM_RX_DBG_STAT_MSB_A);
2670 cycles[i] = (((u64)data[0] << 32) | data[1]);
2671 }
2672 }
2673 }
2674
2675 /**
2676 * get_mps_bg_map - return the buffer groups associated with a port
2677 * @adap: the adapter
2678 * @idx: the port index
2679 *
2680 * Returns a bitmap indicating which MPS buffer groups are associated
2681 * with the given port. Bit i is set if buffer group i is used by the
2682 * port.
2683 */
2684 static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
2685 {
2686 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
2687
2688 if (n == 0)
2689 return idx == 0 ? 0xf : 0;
2690 if (n == 1)
2691 return idx < 2 ? (3 << (2 * idx)) : 0;
2692 return 1 << idx;
2693 }
2694
2695 /**
2696 * t4_get_port_type_description - return Port Type string description
2697 * @port_type: firmware Port Type enumeration
2698 */
2699 const char *t4_get_port_type_description(enum fw_port_type port_type)
2700 {
2701 static const char *const port_type_description[] = {
2702 "R XFI",
2703 "R XAUI",
2704 "T SGMII",
2705 "T XFI",
2706 "T XAUI",
2707 "KX4",
2708 "CX4",
2709 "KX",
2710 "KR",
2711 "R SFP+",
2712 "KR/KX",
2713 "KR/KX/KX4",
2714 "R QSFP_10G",
2715 "R QSA",
2716 "R QSFP",
2717 "R BP40_BA",
2718 };
2719
2720 if (port_type < ARRAY_SIZE(port_type_description))
2721 return port_type_description[port_type];
2722 return "UNKNOWN";
2723 }
2724
2725 /**
2726 * t4_get_port_stats - collect port statistics
2727 * @adap: the adapter
2728 * @idx: the port index
2729 * @p: the stats structure to fill
2730 *
2731 * Collect statistics related to the given port from HW.
2732 */
2733 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2734 {
2735 u32 bgmap = get_mps_bg_map(adap, idx);
2736
2737 #define GET_STAT(name) \
2738 t4_read_reg64(adap, \
2739 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
2740 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
2741 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
2742
2743 p->tx_octets = GET_STAT(TX_PORT_BYTES);
2744 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
2745 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
2746 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
2747 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
2748 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
2749 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
2750 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
2751 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
2752 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
2753 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
2754 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2755 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
2756 p->tx_drop = GET_STAT(TX_PORT_DROP);
2757 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
2758 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
2759 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
2760 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
2761 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
2762 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
2763 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
2764 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
2765 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
2766
2767 p->rx_octets = GET_STAT(RX_PORT_BYTES);
2768 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
2769 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
2770 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
2771 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
2772 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
2773 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2774 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
2775 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
2776 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
2777 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
2778 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
2779 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
2780 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
2781 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
2782 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
2783 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
2784 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
2785 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
2786 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
2787 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
2788 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
2789 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
2790 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
2791 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
2792 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
2793 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
2794
2795 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
2796 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
2797 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
2798 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
2799 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
2800 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
2801 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
2802 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
2803
2804 #undef GET_STAT
2805 #undef GET_STAT_COM
2806 }
2807
2808 /**
2809 * t4_wol_magic_enable - enable/disable magic packet WoL
2810 * @adap: the adapter
2811 * @port: the physical port index
2812 * @addr: MAC address expected in magic packets, %NULL to disable
2813 *
2814 * Enables/disables magic packet wake-on-LAN for the selected port.
2815 */
2816 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
2817 const u8 *addr)
2818 {
2819 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
2820
2821 if (is_t4(adap->params.chip)) {
2822 mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
2823 mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
2824 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
2825 } else {
2826 mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
2827 mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
2828 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
2829 }
2830
2831 if (addr) {
2832 t4_write_reg(adap, mag_id_reg_l,
2833 (addr[2] << 24) | (addr[3] << 16) |
2834 (addr[4] << 8) | addr[5]);
2835 t4_write_reg(adap, mag_id_reg_h,
2836 (addr[0] << 8) | addr[1]);
2837 }
2838 t4_set_reg_field(adap, port_cfg_reg, MAGICEN_F,
2839 addr ? MAGICEN_F : 0);
2840 }
2841
2842 /**
2843 * t4_wol_pat_enable - enable/disable pattern-based WoL
2844 * @adap: the adapter
2845 * @port: the physical port index
2846 * @map: bitmap of which HW pattern filters to set
2847 * @mask0: byte mask for bytes 0-63 of a packet
2848 * @mask1: byte mask for bytes 64-127 of a packet
2849 * @crc: Ethernet CRC for selected bytes
2850 * @enable: enable/disable switch
2851 *
2852 * Sets the pattern filters indicated in @map to mask out the bytes
2853 * specified in @mask0/@mask1 in received packets and compare the CRC of
2854 * the resulting packet against @crc. If @enable is %true pattern-based
2855 * WoL is enabled, otherwise disabled.
2856 */
2857 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
2858 u64 mask0, u64 mask1, unsigned int crc, bool enable)
2859 {
2860 int i;
2861 u32 port_cfg_reg;
2862
2863 if (is_t4(adap->params.chip))
2864 port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
2865 else
2866 port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
2867
2868 if (!enable) {
2869 t4_set_reg_field(adap, port_cfg_reg, PATEN_F, 0);
2870 return 0;
2871 }
2872 if (map > 0xff)
2873 return -EINVAL;
2874
2875 #define EPIO_REG(name) \
2876 (is_t4(adap->params.chip) ? \
2877 PORT_REG(port, XGMAC_PORT_EPIO_##name##_A) : \
2878 T5_PORT_REG(port, MAC_PORT_EPIO_##name##_A))
2879
2880 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
2881 t4_write_reg(adap, EPIO_REG(DATA2), mask1);
2882 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
2883
2884 for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
2885 if (!(map & 1))
2886 continue;
2887
2888 /* write byte masks */
2889 t4_write_reg(adap, EPIO_REG(DATA0), mask0);
2890 t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i) | EPIOWR_F);
2891 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
2892 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
2893 return -ETIMEDOUT;
2894
2895 /* write CRC */
2896 t4_write_reg(adap, EPIO_REG(DATA0), crc);
2897 t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i + 32) | EPIOWR_F);
2898 t4_read_reg(adap, EPIO_REG(OP)); /* flush */
2899 if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
2900 return -ETIMEDOUT;
2901 }
2902 #undef EPIO_REG
2903
2904 t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2_A), 0, PATEN_F);
2905 return 0;
2906 }
2907
2908 /* t4_mk_filtdelwr - create a delete filter WR
2909 * @ftid: the filter ID
2910 * @wr: the filter work request to populate
2911 * @qid: ingress queue to receive the delete notification
2912 *
2913 * Creates a filter work request to delete the supplied filter. If @qid is
2914 * negative the delete notification is suppressed.
2915 */
2916 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
2917 {
2918 memset(wr, 0, sizeof(*wr));
2919 wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
2920 wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
2921 wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
2922 FW_FILTER_WR_NOREPLY_V(qid < 0));
2923 wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
2924 if (qid >= 0)
2925 wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
2926 }
2927
2928 #define INIT_CMD(var, cmd, rd_wr) do { \
2929 (var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
2930 FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
2931 (var).retval_len16 = htonl(FW_LEN16(var)); \
2932 } while (0)
2933
2934 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
2935 u32 addr, u32 val)
2936 {
2937 struct fw_ldst_cmd c;
2938
2939 memset(&c, 0, sizeof(c));
2940 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
2941 FW_CMD_WRITE_F |
2942 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
2943 c.cycles_to_len16 = htonl(FW_LEN16(c));
2944 c.u.addrval.addr = htonl(addr);
2945 c.u.addrval.val = htonl(val);
2946
2947 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2948 }
2949
2950 /**
2951 * t4_mdio_rd - read a PHY register through MDIO
2952 * @adap: the adapter
2953 * @mbox: mailbox to use for the FW command
2954 * @phy_addr: the PHY address
2955 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2956 * @reg: the register to read
2957 * @valp: where to store the value
2958 *
2959 * Issues a FW command through the given mailbox to read a PHY register.
2960 */
2961 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2962 unsigned int mmd, unsigned int reg, u16 *valp)
2963 {
2964 int ret;
2965 struct fw_ldst_cmd c;
2966
2967 memset(&c, 0, sizeof(c));
2968 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
2969 FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
2970 c.cycles_to_len16 = htonl(FW_LEN16(c));
2971 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
2972 FW_LDST_CMD_MMD_V(mmd));
2973 c.u.mdio.raddr = htons(reg);
2974
2975 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2976 if (ret == 0)
2977 *valp = ntohs(c.u.mdio.rval);
2978 return ret;
2979 }
2980
2981 /**
2982 * t4_mdio_wr - write a PHY register through MDIO
2983 * @adap: the adapter
2984 * @mbox: mailbox to use for the FW command
2985 * @phy_addr: the PHY address
2986 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
2987 * @reg: the register to write
2988 * @valp: value to write
2989 *
2990 * Issues a FW command through the given mailbox to write a PHY register.
2991 */
2992 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
2993 unsigned int mmd, unsigned int reg, u16 val)
2994 {
2995 struct fw_ldst_cmd c;
2996
2997 memset(&c, 0, sizeof(c));
2998 c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
2999 FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
3000 c.cycles_to_len16 = htonl(FW_LEN16(c));
3001 c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
3002 FW_LDST_CMD_MMD_V(mmd));
3003 c.u.mdio.raddr = htons(reg);
3004 c.u.mdio.rval = htons(val);
3005
3006 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3007 }
3008
3009 /**
3010 * t4_sge_decode_idma_state - decode the idma state
3011 * @adap: the adapter
3012 * @state: the state idma is stuck in
3013 */
3014 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
3015 {
3016 static const char * const t4_decode[] = {
3017 "IDMA_IDLE",
3018 "IDMA_PUSH_MORE_CPL_FIFO",
3019 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
3020 "Not used",
3021 "IDMA_PHYSADDR_SEND_PCIEHDR",
3022 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
3023 "IDMA_PHYSADDR_SEND_PAYLOAD",
3024 "IDMA_SEND_FIFO_TO_IMSG",
3025 "IDMA_FL_REQ_DATA_FL_PREP",
3026 "IDMA_FL_REQ_DATA_FL",
3027 "IDMA_FL_DROP",
3028 "IDMA_FL_H_REQ_HEADER_FL",
3029 "IDMA_FL_H_SEND_PCIEHDR",
3030 "IDMA_FL_H_PUSH_CPL_FIFO",
3031 "IDMA_FL_H_SEND_CPL",
3032 "IDMA_FL_H_SEND_IP_HDR_FIRST",
3033 "IDMA_FL_H_SEND_IP_HDR",
3034 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
3035 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
3036 "IDMA_FL_H_SEND_IP_HDR_PADDING",
3037 "IDMA_FL_D_SEND_PCIEHDR",
3038 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
3039 "IDMA_FL_D_REQ_NEXT_DATA_FL",
3040 "IDMA_FL_SEND_PCIEHDR",
3041 "IDMA_FL_PUSH_CPL_FIFO",
3042 "IDMA_FL_SEND_CPL",
3043 "IDMA_FL_SEND_PAYLOAD_FIRST",
3044 "IDMA_FL_SEND_PAYLOAD",
3045 "IDMA_FL_REQ_NEXT_DATA_FL",
3046 "IDMA_FL_SEND_NEXT_PCIEHDR",
3047 "IDMA_FL_SEND_PADDING",
3048 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
3049 "IDMA_FL_SEND_FIFO_TO_IMSG",
3050 "IDMA_FL_REQ_DATAFL_DONE",
3051 "IDMA_FL_REQ_HEADERFL_DONE",
3052 };
3053 static const char * const t5_decode[] = {
3054 "IDMA_IDLE",
3055 "IDMA_ALMOST_IDLE",
3056 "IDMA_PUSH_MORE_CPL_FIFO",
3057 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
3058 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
3059 "IDMA_PHYSADDR_SEND_PCIEHDR",
3060 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
3061 "IDMA_PHYSADDR_SEND_PAYLOAD",
3062 "IDMA_SEND_FIFO_TO_IMSG",
3063 "IDMA_FL_REQ_DATA_FL",
3064 "IDMA_FL_DROP",
3065 "IDMA_FL_DROP_SEND_INC",
3066 "IDMA_FL_H_REQ_HEADER_FL",
3067 "IDMA_FL_H_SEND_PCIEHDR",
3068 "IDMA_FL_H_PUSH_CPL_FIFO",
3069 "IDMA_FL_H_SEND_CPL",
3070 "IDMA_FL_H_SEND_IP_HDR_FIRST",
3071 "IDMA_FL_H_SEND_IP_HDR",
3072 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
3073 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
3074 "IDMA_FL_H_SEND_IP_HDR_PADDING",
3075 "IDMA_FL_D_SEND_PCIEHDR",
3076 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
3077 "IDMA_FL_D_REQ_NEXT_DATA_FL",
3078 "IDMA_FL_SEND_PCIEHDR",
3079 "IDMA_FL_PUSH_CPL_FIFO",
3080 "IDMA_FL_SEND_CPL",
3081 "IDMA_FL_SEND_PAYLOAD_FIRST",
3082 "IDMA_FL_SEND_PAYLOAD",
3083 "IDMA_FL_REQ_NEXT_DATA_FL",
3084 "IDMA_FL_SEND_NEXT_PCIEHDR",
3085 "IDMA_FL_SEND_PADDING",
3086 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
3087 };
3088 static const u32 sge_regs[] = {
3089 SGE_DEBUG_DATA_LOW_INDEX_2_A,
3090 SGE_DEBUG_DATA_LOW_INDEX_3_A,
3091 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
3092 };
3093 const char **sge_idma_decode;
3094 int sge_idma_decode_nstates;
3095 int i;
3096
3097 if (is_t4(adapter->params.chip)) {
3098 sge_idma_decode = (const char **)t4_decode;
3099 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
3100 } else {
3101 sge_idma_decode = (const char **)t5_decode;
3102 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
3103 }
3104
3105 if (state < sge_idma_decode_nstates)
3106 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
3107 else
3108 CH_WARN(adapter, "idma state %d unknown\n", state);
3109
3110 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
3111 CH_WARN(adapter, "SGE register %#x value %#x\n",
3112 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
3113 }
3114
3115 /**
3116 * t4_fw_hello - establish communication with FW
3117 * @adap: the adapter
3118 * @mbox: mailbox to use for the FW command
3119 * @evt_mbox: mailbox to receive async FW events
3120 * @master: specifies the caller's willingness to be the device master
3121 * @state: returns the current device state (if non-NULL)
3122 *
3123 * Issues a command to establish communication with FW. Returns either
3124 * an error (negative integer) or the mailbox of the Master PF.
3125 */
3126 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3127 enum dev_master master, enum dev_state *state)
3128 {
3129 int ret;
3130 struct fw_hello_cmd c;
3131 u32 v;
3132 unsigned int master_mbox;
3133 int retries = FW_CMD_HELLO_RETRIES;
3134
3135 retry:
3136 memset(&c, 0, sizeof(c));
3137 INIT_CMD(c, HELLO, WRITE);
3138 c.err_to_clearinit = htonl(
3139 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
3140 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
3141 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
3142 FW_HELLO_CMD_MBMASTER_M) |
3143 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
3144 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
3145 FW_HELLO_CMD_CLEARINIT_F);
3146
3147 /*
3148 * Issue the HELLO command to the firmware. If it's not successful
3149 * but indicates that we got a "busy" or "timeout" condition, retry
3150 * the HELLO until we exhaust our retry limit. If we do exceed our
3151 * retry limit, check to see if the firmware left us any error
3152 * information and report that if so.
3153 */
3154 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3155 if (ret < 0) {
3156 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3157 goto retry;
3158 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
3159 t4_report_fw_error(adap);
3160 return ret;
3161 }
3162
3163 v = ntohl(c.err_to_clearinit);
3164 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
3165 if (state) {
3166 if (v & FW_HELLO_CMD_ERR_F)
3167 *state = DEV_STATE_ERR;
3168 else if (v & FW_HELLO_CMD_INIT_F)
3169 *state = DEV_STATE_INIT;
3170 else
3171 *state = DEV_STATE_UNINIT;
3172 }
3173
3174 /*
3175 * If we're not the Master PF then we need to wait around for the
3176 * Master PF Driver to finish setting up the adapter.
3177 *
3178 * Note that we also do this wait if we're a non-Master-capable PF and
3179 * there is no current Master PF; a Master PF may show up momentarily
3180 * and we wouldn't want to fail pointlessly. (This can happen when an
3181 * OS loads lots of different drivers rapidly at the same time). In
3182 * this case, the Master PF returned by the firmware will be
3183 * PCIE_FW_MASTER_M so the test below will work ...
3184 */
3185 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
3186 master_mbox != mbox) {
3187 int waiting = FW_CMD_HELLO_TIMEOUT;
3188
3189 /*
3190 * Wait for the firmware to either indicate an error or
3191 * initialized state. If we see either of these we bail out
3192 * and report the issue to the caller. If we exhaust the
3193 * "hello timeout" and we haven't exhausted our retries, try
3194 * again. Otherwise bail with a timeout error.
3195 */
3196 for (;;) {
3197 u32 pcie_fw;
3198
3199 msleep(50);
3200 waiting -= 50;
3201
3202 /*
3203 * If neither Error nor Initialialized are indicated
3204 * by the firmware keep waiting till we exaust our
3205 * timeout ... and then retry if we haven't exhausted
3206 * our retries ...
3207 */
3208 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
3209 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
3210 if (waiting <= 0) {
3211 if (retries-- > 0)
3212 goto retry;
3213
3214 return -ETIMEDOUT;
3215 }
3216 continue;
3217 }
3218
3219 /*
3220 * We either have an Error or Initialized condition
3221 * report errors preferentially.
3222 */
3223 if (state) {
3224 if (pcie_fw & PCIE_FW_ERR_F)
3225 *state = DEV_STATE_ERR;
3226 else if (pcie_fw & PCIE_FW_INIT_F)
3227 *state = DEV_STATE_INIT;
3228 }
3229
3230 /*
3231 * If we arrived before a Master PF was selected and
3232 * there's not a valid Master PF, grab its identity
3233 * for our caller.
3234 */
3235 if (master_mbox == PCIE_FW_MASTER_M &&
3236 (pcie_fw & PCIE_FW_MASTER_VLD_F))
3237 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
3238 break;
3239 }
3240 }
3241
3242 return master_mbox;
3243 }
3244
3245 /**
3246 * t4_fw_bye - end communication with FW
3247 * @adap: the adapter
3248 * @mbox: mailbox to use for the FW command
3249 *
3250 * Issues a command to terminate communication with FW.
3251 */
3252 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3253 {
3254 struct fw_bye_cmd c;
3255
3256 memset(&c, 0, sizeof(c));
3257 INIT_CMD(c, BYE, WRITE);
3258 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3259 }
3260
3261 /**
3262 * t4_init_cmd - ask FW to initialize the device
3263 * @adap: the adapter
3264 * @mbox: mailbox to use for the FW command
3265 *
3266 * Issues a command to FW to partially initialize the device. This
3267 * performs initialization that generally doesn't depend on user input.
3268 */
3269 int t4_early_init(struct adapter *adap, unsigned int mbox)
3270 {
3271 struct fw_initialize_cmd c;
3272
3273 memset(&c, 0, sizeof(c));
3274 INIT_CMD(c, INITIALIZE, WRITE);
3275 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3276 }
3277
3278 /**
3279 * t4_fw_reset - issue a reset to FW
3280 * @adap: the adapter
3281 * @mbox: mailbox to use for the FW command
3282 * @reset: specifies the type of reset to perform
3283 *
3284 * Issues a reset command of the specified type to FW.
3285 */
3286 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3287 {
3288 struct fw_reset_cmd c;
3289
3290 memset(&c, 0, sizeof(c));
3291 INIT_CMD(c, RESET, WRITE);
3292 c.val = htonl(reset);
3293 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3294 }
3295
3296 /**
3297 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3298 * @adap: the adapter
3299 * @mbox: mailbox to use for the FW RESET command (if desired)
3300 * @force: force uP into RESET even if FW RESET command fails
3301 *
3302 * Issues a RESET command to firmware (if desired) with a HALT indication
3303 * and then puts the microprocessor into RESET state. The RESET command
3304 * will only be issued if a legitimate mailbox is provided (mbox <=
3305 * PCIE_FW_MASTER_M).
3306 *
3307 * This is generally used in order for the host to safely manipulate the
3308 * adapter without fear of conflicting with whatever the firmware might
3309 * be doing. The only way out of this state is to RESTART the firmware
3310 * ...
3311 */
3312 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3313 {
3314 int ret = 0;
3315
3316 /*
3317 * If a legitimate mailbox is provided, issue a RESET command
3318 * with a HALT indication.
3319 */
3320 if (mbox <= PCIE_FW_MASTER_M) {
3321 struct fw_reset_cmd c;
3322
3323 memset(&c, 0, sizeof(c));
3324 INIT_CMD(c, RESET, WRITE);
3325 c.val = htonl(PIORST_F | PIORSTMODE_F);
3326 c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
3327 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3328 }
3329
3330 /*
3331 * Normally we won't complete the operation if the firmware RESET
3332 * command fails but if our caller insists we'll go ahead and put the
3333 * uP into RESET. This can be useful if the firmware is hung or even
3334 * missing ... We'll have to take the risk of putting the uP into
3335 * RESET without the cooperation of firmware in that case.
3336 *
3337 * We also force the firmware's HALT flag to be on in case we bypassed
3338 * the firmware RESET command above or we're dealing with old firmware
3339 * which doesn't have the HALT capability. This will serve as a flag
3340 * for the incoming firmware to know that it's coming out of a HALT
3341 * rather than a RESET ... if it's new enough to understand that ...
3342 */
3343 if (ret == 0 || force) {
3344 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
3345 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
3346 PCIE_FW_HALT_F);
3347 }
3348
3349 /*
3350 * And we always return the result of the firmware RESET command
3351 * even when we force the uP into RESET ...
3352 */
3353 return ret;
3354 }
3355
3356 /**
3357 * t4_fw_restart - restart the firmware by taking the uP out of RESET
3358 * @adap: the adapter
3359 * @reset: if we want to do a RESET to restart things
3360 *
3361 * Restart firmware previously halted by t4_fw_halt(). On successful
3362 * return the previous PF Master remains as the new PF Master and there
3363 * is no need to issue a new HELLO command, etc.
3364 *
3365 * We do this in two ways:
3366 *
3367 * 1. If we're dealing with newer firmware we'll simply want to take
3368 * the chip's microprocessor out of RESET. This will cause the
3369 * firmware to start up from its start vector. And then we'll loop
3370 * until the firmware indicates it's started again (PCIE_FW.HALT
3371 * reset to 0) or we timeout.
3372 *
3373 * 2. If we're dealing with older firmware then we'll need to RESET
3374 * the chip since older firmware won't recognize the PCIE_FW.HALT
3375 * flag and automatically RESET itself on startup.
3376 */
3377 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3378 {
3379 if (reset) {
3380 /*
3381 * Since we're directing the RESET instead of the firmware
3382 * doing it automatically, we need to clear the PCIE_FW.HALT
3383 * bit.
3384 */
3385 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
3386
3387 /*
3388 * If we've been given a valid mailbox, first try to get the
3389 * firmware to do the RESET. If that works, great and we can
3390 * return success. Otherwise, if we haven't been given a
3391 * valid mailbox or the RESET command failed, fall back to
3392 * hitting the chip with a hammer.
3393 */
3394 if (mbox <= PCIE_FW_MASTER_M) {
3395 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
3396 msleep(100);
3397 if (t4_fw_reset(adap, mbox,
3398 PIORST_F | PIORSTMODE_F) == 0)
3399 return 0;
3400 }
3401
3402 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
3403 msleep(2000);
3404 } else {
3405 int ms;
3406
3407 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
3408 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3409 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
3410 return 0;
3411 msleep(100);
3412 ms += 100;
3413 }
3414 return -ETIMEDOUT;
3415 }
3416 return 0;
3417 }
3418
3419 /**
3420 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
3421 * @adap: the adapter
3422 * @mbox: mailbox to use for the FW RESET command (if desired)
3423 * @fw_data: the firmware image to write
3424 * @size: image size
3425 * @force: force upgrade even if firmware doesn't cooperate
3426 *
3427 * Perform all of the steps necessary for upgrading an adapter's
3428 * firmware image. Normally this requires the cooperation of the
3429 * existing firmware in order to halt all existing activities
3430 * but if an invalid mailbox token is passed in we skip that step
3431 * (though we'll still put the adapter microprocessor into RESET in
3432 * that case).
3433 *
3434 * On successful return the new firmware will have been loaded and
3435 * the adapter will have been fully RESET losing all previous setup
3436 * state. On unsuccessful return the adapter may be completely hosed ...
3437 * positive errno indicates that the adapter is ~probably~ intact, a
3438 * negative errno indicates that things are looking bad ...
3439 */
3440 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
3441 const u8 *fw_data, unsigned int size, int force)
3442 {
3443 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
3444 int reset, ret;
3445
3446 if (!t4_fw_matches_chip(adap, fw_hdr))
3447 return -EINVAL;
3448
3449 ret = t4_fw_halt(adap, mbox, force);
3450 if (ret < 0 && !force)
3451 return ret;
3452
3453 ret = t4_load_fw(adap, fw_data, size);
3454 if (ret < 0)
3455 return ret;
3456
3457 /*
3458 * Older versions of the firmware don't understand the new
3459 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
3460 * restart. So for newly loaded older firmware we'll have to do the
3461 * RESET for it so it starts up on a clean slate. We can tell if
3462 * the newly loaded firmware will handle this right by checking
3463 * its header flags to see if it advertises the capability.
3464 */
3465 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
3466 return t4_fw_restart(adap, mbox, reset);
3467 }
3468
3469 /**
3470 * t4_fixup_host_params - fix up host-dependent parameters
3471 * @adap: the adapter
3472 * @page_size: the host's Base Page Size
3473 * @cache_line_size: the host's Cache Line Size
3474 *
3475 * Various registers in T4 contain values which are dependent on the
3476 * host's Base Page and Cache Line Sizes. This function will fix all of
3477 * those registers with the appropriate values as passed in ...
3478 */
3479 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3480 unsigned int cache_line_size)
3481 {
3482 unsigned int page_shift = fls(page_size) - 1;
3483 unsigned int sge_hps = page_shift - 10;
3484 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3485 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3486 unsigned int fl_align_log = fls(fl_align) - 1;
3487
3488 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
3489 HOSTPAGESIZEPF0_V(sge_hps) |
3490 HOSTPAGESIZEPF1_V(sge_hps) |
3491 HOSTPAGESIZEPF2_V(sge_hps) |
3492 HOSTPAGESIZEPF3_V(sge_hps) |
3493 HOSTPAGESIZEPF4_V(sge_hps) |
3494 HOSTPAGESIZEPF5_V(sge_hps) |
3495 HOSTPAGESIZEPF6_V(sge_hps) |
3496 HOSTPAGESIZEPF7_V(sge_hps));
3497
3498 if (is_t4(adap->params.chip)) {
3499 t4_set_reg_field(adap, SGE_CONTROL_A,
3500 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
3501 EGRSTATUSPAGESIZE_F,
3502 INGPADBOUNDARY_V(fl_align_log -
3503 INGPADBOUNDARY_SHIFT_X) |
3504 EGRSTATUSPAGESIZE_V(stat_len != 64));
3505 } else {
3506 /* T5 introduced the separation of the Free List Padding and
3507 * Packing Boundaries. Thus, we can select a smaller Padding
3508 * Boundary to avoid uselessly chewing up PCIe Link and Memory
3509 * Bandwidth, and use a Packing Boundary which is large enough
3510 * to avoid false sharing between CPUs, etc.
3511 *
3512 * For the PCI Link, the smaller the Padding Boundary the
3513 * better. For the Memory Controller, a smaller Padding
3514 * Boundary is better until we cross under the Memory Line
3515 * Size (the minimum unit of transfer to/from Memory). If we
3516 * have a Padding Boundary which is smaller than the Memory
3517 * Line Size, that'll involve a Read-Modify-Write cycle on the
3518 * Memory Controller which is never good. For T5 the smallest
3519 * Padding Boundary which we can select is 32 bytes which is
3520 * larger than any known Memory Controller Line Size so we'll
3521 * use that.
3522 *
3523 * T5 has a different interpretation of the "0" value for the
3524 * Packing Boundary. This corresponds to 16 bytes instead of
3525 * the expected 32 bytes. We never have a Packing Boundary
3526 * less than 32 bytes so we can't use that special value but
3527 * on the other hand, if we wanted 32 bytes, the best we can
3528 * really do is 64 bytes.
3529 */
3530 if (fl_align <= 32) {
3531 fl_align = 64;
3532 fl_align_log = 6;
3533 }
3534 t4_set_reg_field(adap, SGE_CONTROL_A,
3535 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
3536 EGRSTATUSPAGESIZE_F,
3537 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
3538 EGRSTATUSPAGESIZE_V(stat_len != 64));
3539 t4_set_reg_field(adap, SGE_CONTROL2_A,
3540 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
3541 INGPACKBOUNDARY_V(fl_align_log -
3542 INGPACKBOUNDARY_SHIFT_X));
3543 }
3544 /*
3545 * Adjust various SGE Free List Host Buffer Sizes.
3546 *
3547 * This is something of a crock since we're using fixed indices into
3548 * the array which are also known by the sge.c code and the T4
3549 * Firmware Configuration File. We need to come up with a much better
3550 * approach to managing this array. For now, the first four entries
3551 * are:
3552 *
3553 * 0: Host Page Size
3554 * 1: 64KB
3555 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3556 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3557 *
3558 * For the single-MTU buffers in unpacked mode we need to include
3559 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3560 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3561 * Padding boundry. All of these are accommodated in the Factory
3562 * Default Firmware Configuration File but we need to adjust it for
3563 * this host's cache line size.
3564 */
3565 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
3566 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
3567 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
3568 & ~(fl_align-1));
3569 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
3570 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
3571 & ~(fl_align-1));
3572
3573 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
3574
3575 return 0;
3576 }
3577
3578 /**
3579 * t4_fw_initialize - ask FW to initialize the device
3580 * @adap: the adapter
3581 * @mbox: mailbox to use for the FW command
3582 *
3583 * Issues a command to FW to partially initialize the device. This
3584 * performs initialization that generally doesn't depend on user input.
3585 */
3586 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3587 {
3588 struct fw_initialize_cmd c;
3589
3590 memset(&c, 0, sizeof(c));
3591 INIT_CMD(c, INITIALIZE, WRITE);
3592 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3593 }
3594
3595 /**
3596 * t4_query_params - query FW or device parameters
3597 * @adap: the adapter
3598 * @mbox: mailbox to use for the FW command
3599 * @pf: the PF
3600 * @vf: the VF
3601 * @nparams: the number of parameters
3602 * @params: the parameter names
3603 * @val: the parameter values
3604 *
3605 * Reads the value of FW or device parameters. Up to 7 parameters can be
3606 * queried at once.
3607 */
3608 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3609 unsigned int vf, unsigned int nparams, const u32 *params,
3610 u32 *val)
3611 {
3612 int i, ret;
3613 struct fw_params_cmd c;
3614 __be32 *p = &c.param[0].mnem;
3615
3616 if (nparams > 7)
3617 return -EINVAL;
3618
3619 memset(&c, 0, sizeof(c));
3620 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
3621 FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
3622 FW_PARAMS_CMD_VFN_V(vf));
3623 c.retval_len16 = htonl(FW_LEN16(c));
3624 for (i = 0; i < nparams; i++, p += 2)
3625 *p = htonl(*params++);
3626
3627 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3628 if (ret == 0)
3629 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3630 *val++ = ntohl(*p);
3631 return ret;
3632 }
3633
3634 /**
3635 * t4_set_params_nosleep - sets FW or device parameters
3636 * @adap: the adapter
3637 * @mbox: mailbox to use for the FW command
3638 * @pf: the PF
3639 * @vf: the VF
3640 * @nparams: the number of parameters
3641 * @params: the parameter names
3642 * @val: the parameter values
3643 *
3644 * Does not ever sleep
3645 * Sets the value of FW or device parameters. Up to 7 parameters can be
3646 * specified at once.
3647 */
3648 int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
3649 unsigned int pf, unsigned int vf,
3650 unsigned int nparams, const u32 *params,
3651 const u32 *val)
3652 {
3653 struct fw_params_cmd c;
3654 __be32 *p = &c.param[0].mnem;
3655
3656 if (nparams > 7)
3657 return -EINVAL;
3658
3659 memset(&c, 0, sizeof(c));
3660 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3661 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3662 FW_PARAMS_CMD_PFN_V(pf) |
3663 FW_PARAMS_CMD_VFN_V(vf));
3664 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3665
3666 while (nparams--) {
3667 *p++ = cpu_to_be32(*params++);
3668 *p++ = cpu_to_be32(*val++);
3669 }
3670
3671 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3672 }
3673
3674 /**
3675 * t4_set_params - sets FW or device parameters
3676 * @adap: the adapter
3677 * @mbox: mailbox to use for the FW command
3678 * @pf: the PF
3679 * @vf: the VF
3680 * @nparams: the number of parameters
3681 * @params: the parameter names
3682 * @val: the parameter values
3683 *
3684 * Sets the value of FW or device parameters. Up to 7 parameters can be
3685 * specified at once.
3686 */
3687 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3688 unsigned int vf, unsigned int nparams, const u32 *params,
3689 const u32 *val)
3690 {
3691 struct fw_params_cmd c;
3692 __be32 *p = &c.param[0].mnem;
3693
3694 if (nparams > 7)
3695 return -EINVAL;
3696
3697 memset(&c, 0, sizeof(c));
3698 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
3699 FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
3700 FW_PARAMS_CMD_VFN_V(vf));
3701 c.retval_len16 = htonl(FW_LEN16(c));
3702 while (nparams--) {
3703 *p++ = htonl(*params++);
3704 *p++ = htonl(*val++);
3705 }
3706
3707 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3708 }
3709
3710 /**
3711 * t4_cfg_pfvf - configure PF/VF resource limits
3712 * @adap: the adapter
3713 * @mbox: mailbox to use for the FW command
3714 * @pf: the PF being configured
3715 * @vf: the VF being configured
3716 * @txq: the max number of egress queues
3717 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
3718 * @rxqi: the max number of interrupt-capable ingress queues
3719 * @rxq: the max number of interruptless ingress queues
3720 * @tc: the PCI traffic class
3721 * @vi: the max number of virtual interfaces
3722 * @cmask: the channel access rights mask for the PF/VF
3723 * @pmask: the port access rights mask for the PF/VF
3724 * @nexact: the maximum number of exact MPS filters
3725 * @rcaps: read capabilities
3726 * @wxcaps: write/execute capabilities
3727 *
3728 * Configures resource limits and capabilities for a physical or virtual
3729 * function.
3730 */
3731 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
3732 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
3733 unsigned int rxqi, unsigned int rxq, unsigned int tc,
3734 unsigned int vi, unsigned int cmask, unsigned int pmask,
3735 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
3736 {
3737 struct fw_pfvf_cmd c;
3738
3739 memset(&c, 0, sizeof(c));
3740 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
3741 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
3742 FW_PFVF_CMD_VFN_V(vf));
3743 c.retval_len16 = htonl(FW_LEN16(c));
3744 c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
3745 FW_PFVF_CMD_NIQ_V(rxq));
3746 c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
3747 FW_PFVF_CMD_PMASK_V(pmask) |
3748 FW_PFVF_CMD_NEQ_V(txq));
3749 c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
3750 FW_PFVF_CMD_NEXACTF_V(nexact));
3751 c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
3752 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
3753 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
3754 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3755 }
3756
3757 /**
3758 * t4_alloc_vi - allocate a virtual interface
3759 * @adap: the adapter
3760 * @mbox: mailbox to use for the FW command
3761 * @port: physical port associated with the VI
3762 * @pf: the PF owning the VI
3763 * @vf: the VF owning the VI
3764 * @nmac: number of MAC addresses needed (1 to 5)
3765 * @mac: the MAC addresses of the VI
3766 * @rss_size: size of RSS table slice associated with this VI
3767 *
3768 * Allocates a virtual interface for the given physical port. If @mac is
3769 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3770 * @mac should be large enough to hold @nmac Ethernet addresses, they are
3771 * stored consecutively so the space needed is @nmac * 6 bytes.
3772 * Returns a negative error number or the non-negative VI id.
3773 */
3774 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3775 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3776 unsigned int *rss_size)
3777 {
3778 int ret;
3779 struct fw_vi_cmd c;
3780
3781 memset(&c, 0, sizeof(c));
3782 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
3783 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3784 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
3785 c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
3786 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
3787 c.nmac = nmac - 1;
3788
3789 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3790 if (ret)
3791 return ret;
3792
3793 if (mac) {
3794 memcpy(mac, c.mac, sizeof(c.mac));
3795 switch (nmac) {
3796 case 5:
3797 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3798 case 4:
3799 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3800 case 3:
3801 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3802 case 2:
3803 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
3804 }
3805 }
3806 if (rss_size)
3807 *rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
3808 return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
3809 }
3810
3811 /**
3812 * t4_set_rxmode - set Rx properties of a virtual interface
3813 * @adap: the adapter
3814 * @mbox: mailbox to use for the FW command
3815 * @viid: the VI id
3816 * @mtu: the new MTU or -1
3817 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3818 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3819 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3820 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
3821 * @sleep_ok: if true we may sleep while awaiting command completion
3822 *
3823 * Sets Rx properties of a virtual interface.
3824 */
3825 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3826 int mtu, int promisc, int all_multi, int bcast, int vlanex,
3827 bool sleep_ok)
3828 {
3829 struct fw_vi_rxmode_cmd c;
3830
3831 /* convert to FW values */
3832 if (mtu < 0)
3833 mtu = FW_RXMODE_MTU_NO_CHG;
3834 if (promisc < 0)
3835 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
3836 if (all_multi < 0)
3837 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
3838 if (bcast < 0)
3839 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
3840 if (vlanex < 0)
3841 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
3842
3843 memset(&c, 0, sizeof(c));
3844 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
3845 FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
3846 c.retval_len16 = htonl(FW_LEN16(c));
3847 c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
3848 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
3849 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
3850 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
3851 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
3852 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3853 }
3854
3855 /**
3856 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
3857 * @adap: the adapter
3858 * @mbox: mailbox to use for the FW command
3859 * @viid: the VI id
3860 * @free: if true any existing filters for this VI id are first removed
3861 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
3862 * @addr: the MAC address(es)
3863 * @idx: where to store the index of each allocated filter
3864 * @hash: pointer to hash address filter bitmap
3865 * @sleep_ok: call is allowed to sleep
3866 *
3867 * Allocates an exact-match filter for each of the supplied addresses and
3868 * sets it to the corresponding address. If @idx is not %NULL it should
3869 * have at least @naddr entries, each of which will be set to the index of
3870 * the filter allocated for the corresponding MAC address. If a filter
3871 * could not be allocated for an address its index is set to 0xffff.
3872 * If @hash is not %NULL addresses that fail to allocate an exact filter
3873 * are hashed and update the hash filter bitmap pointed at by @hash.
3874 *
3875 * Returns a negative error number or the number of filters allocated.
3876 */
3877 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
3878 unsigned int viid, bool free, unsigned int naddr,
3879 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
3880 {
3881 int i, ret;
3882 struct fw_vi_mac_cmd c;
3883 struct fw_vi_mac_exact *p;
3884 unsigned int max_naddr = is_t4(adap->params.chip) ?
3885 NUM_MPS_CLS_SRAM_L_INSTANCES :
3886 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
3887
3888 if (naddr > 7)
3889 return -EINVAL;
3890
3891 memset(&c, 0, sizeof(c));
3892 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
3893 FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
3894 FW_VI_MAC_CMD_VIID_V(viid));
3895 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
3896 FW_CMD_LEN16_V((naddr + 2) / 2));
3897
3898 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3899 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
3900 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
3901 memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
3902 }
3903
3904 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
3905 if (ret)
3906 return ret;
3907
3908 for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3909 u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
3910
3911 if (idx)
3912 idx[i] = index >= max_naddr ? 0xffff : index;
3913 if (index < max_naddr)
3914 ret++;
3915 else if (hash)
3916 *hash |= (1ULL << hash_mac_addr(addr[i]));
3917 }
3918 return ret;
3919 }
3920
3921 /**
3922 * t4_change_mac - modifies the exact-match filter for a MAC address
3923 * @adap: the adapter
3924 * @mbox: mailbox to use for the FW command
3925 * @viid: the VI id
3926 * @idx: index of existing filter for old value of MAC address, or -1
3927 * @addr: the new MAC address value
3928 * @persist: whether a new MAC allocation should be persistent
3929 * @add_smt: if true also add the address to the HW SMT
3930 *
3931 * Modifies an exact-match filter and sets it to the new MAC address.
3932 * Note that in general it is not possible to modify the value of a given
3933 * filter so the generic way to modify an address filter is to free the one
3934 * being used by the old address value and allocate a new filter for the
3935 * new address value. @idx can be -1 if the address is a new addition.
3936 *
3937 * Returns a negative error number or the index of the filter with the new
3938 * MAC value.
3939 */
3940 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
3941 int idx, const u8 *addr, bool persist, bool add_smt)
3942 {
3943 int ret, mode;
3944 struct fw_vi_mac_cmd c;
3945 struct fw_vi_mac_exact *p = c.u.exact;
3946 unsigned int max_mac_addr = is_t4(adap->params.chip) ?
3947 NUM_MPS_CLS_SRAM_L_INSTANCES :
3948 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
3949
3950 if (idx < 0) /* new allocation */
3951 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
3952 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
3953
3954 memset(&c, 0, sizeof(c));
3955 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
3956 FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
3957 c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
3958 p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
3959 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
3960 FW_VI_MAC_CMD_IDX_V(idx));
3961 memcpy(p->macaddr, addr, sizeof(p->macaddr));
3962
3963 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3964 if (ret == 0) {
3965 ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
3966 if (ret >= max_mac_addr)
3967 ret = -ENOMEM;
3968 }
3969 return ret;
3970 }
3971
3972 /**
3973 * t4_set_addr_hash - program the MAC inexact-match hash filter
3974 * @adap: the adapter
3975 * @mbox: mailbox to use for the FW command
3976 * @viid: the VI id
3977 * @ucast: whether the hash filter should also match unicast addresses
3978 * @vec: the value to be written to the hash filter
3979 * @sleep_ok: call is allowed to sleep
3980 *
3981 * Sets the 64-bit inexact-match hash filter for a virtual interface.
3982 */
3983 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
3984 bool ucast, u64 vec, bool sleep_ok)
3985 {
3986 struct fw_vi_mac_cmd c;
3987
3988 memset(&c, 0, sizeof(c));
3989 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
3990 FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
3991 c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
3992 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
3993 FW_CMD_LEN16_V(1));
3994 c.u.hash.hashvec = cpu_to_be64(vec);
3995 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3996 }
3997
3998 /**
3999 * t4_enable_vi_params - enable/disable a virtual interface
4000 * @adap: the adapter
4001 * @mbox: mailbox to use for the FW command
4002 * @viid: the VI id
4003 * @rx_en: 1=enable Rx, 0=disable Rx
4004 * @tx_en: 1=enable Tx, 0=disable Tx
4005 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4006 *
4007 * Enables/disables a virtual interface. Note that setting DCB Enable
4008 * only makes sense when enabling a Virtual Interface ...
4009 */
4010 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4011 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4012 {
4013 struct fw_vi_enable_cmd c;
4014
4015 memset(&c, 0, sizeof(c));
4016 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
4017 FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
4018
4019 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
4020 FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
4021 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
4022 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4023 }
4024
4025 /**
4026 * t4_enable_vi - enable/disable a virtual interface
4027 * @adap: the adapter
4028 * @mbox: mailbox to use for the FW command
4029 * @viid: the VI id
4030 * @rx_en: 1=enable Rx, 0=disable Rx
4031 * @tx_en: 1=enable Tx, 0=disable Tx
4032 *
4033 * Enables/disables a virtual interface.
4034 */
4035 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4036 bool rx_en, bool tx_en)
4037 {
4038 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4039 }
4040
4041 /**
4042 * t4_identify_port - identify a VI's port by blinking its LED
4043 * @adap: the adapter
4044 * @mbox: mailbox to use for the FW command
4045 * @viid: the VI id
4046 * @nblinks: how many times to blink LED at 2.5 Hz
4047 *
4048 * Identifies a VI's port by blinking its LED.
4049 */
4050 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
4051 unsigned int nblinks)
4052 {
4053 struct fw_vi_enable_cmd c;
4054
4055 memset(&c, 0, sizeof(c));
4056 c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
4057 FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
4058 c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
4059 c.blinkdur = htons(nblinks);
4060 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4061 }
4062
4063 /**
4064 * t4_iq_free - free an ingress queue and its FLs
4065 * @adap: the adapter
4066 * @mbox: mailbox to use for the FW command
4067 * @pf: the PF owning the queues
4068 * @vf: the VF owning the queues
4069 * @iqtype: the ingress queue type
4070 * @iqid: ingress queue id
4071 * @fl0id: FL0 queue id or 0xffff if no attached FL0
4072 * @fl1id: FL1 queue id or 0xffff if no attached FL1
4073 *
4074 * Frees an ingress queue and its associated FLs, if any.
4075 */
4076 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4077 unsigned int vf, unsigned int iqtype, unsigned int iqid,
4078 unsigned int fl0id, unsigned int fl1id)
4079 {
4080 struct fw_iq_cmd c;
4081
4082 memset(&c, 0, sizeof(c));
4083 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4084 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
4085 FW_IQ_CMD_VFN_V(vf));
4086 c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
4087 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
4088 c.iqid = htons(iqid);
4089 c.fl0id = htons(fl0id);
4090 c.fl1id = htons(fl1id);
4091 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4092 }
4093
4094 /**
4095 * t4_eth_eq_free - free an Ethernet egress queue
4096 * @adap: the adapter
4097 * @mbox: mailbox to use for the FW command
4098 * @pf: the PF owning the queue
4099 * @vf: the VF owning the queue
4100 * @eqid: egress queue id
4101 *
4102 * Frees an Ethernet egress queue.
4103 */
4104 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4105 unsigned int vf, unsigned int eqid)
4106 {
4107 struct fw_eq_eth_cmd c;
4108
4109 memset(&c, 0, sizeof(c));
4110 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4111 FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
4112 FW_EQ_ETH_CMD_VFN_V(vf));
4113 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
4114 c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
4115 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4116 }
4117
4118 /**
4119 * t4_ctrl_eq_free - free a control egress queue
4120 * @adap: the adapter
4121 * @mbox: mailbox to use for the FW command
4122 * @pf: the PF owning the queue
4123 * @vf: the VF owning the queue
4124 * @eqid: egress queue id
4125 *
4126 * Frees a control egress queue.
4127 */
4128 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4129 unsigned int vf, unsigned int eqid)
4130 {
4131 struct fw_eq_ctrl_cmd c;
4132
4133 memset(&c, 0, sizeof(c));
4134 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4135 FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
4136 FW_EQ_CTRL_CMD_VFN_V(vf));
4137 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
4138 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
4139 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4140 }
4141
4142 /**
4143 * t4_ofld_eq_free - free an offload egress queue
4144 * @adap: the adapter
4145 * @mbox: mailbox to use for the FW command
4146 * @pf: the PF owning the queue
4147 * @vf: the VF owning the queue
4148 * @eqid: egress queue id
4149 *
4150 * Frees a control egress queue.
4151 */
4152 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4153 unsigned int vf, unsigned int eqid)
4154 {
4155 struct fw_eq_ofld_cmd c;
4156
4157 memset(&c, 0, sizeof(c));
4158 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
4159 FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
4160 FW_EQ_OFLD_CMD_VFN_V(vf));
4161 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
4162 c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
4163 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4164 }
4165
4166 /**
4167 * t4_handle_fw_rpl - process a FW reply message
4168 * @adap: the adapter
4169 * @rpl: start of the FW message
4170 *
4171 * Processes a FW message, such as link state change messages.
4172 */
4173 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4174 {
4175 u8 opcode = *(const u8 *)rpl;
4176
4177 if (opcode == FW_PORT_CMD) { /* link/module state change message */
4178 int speed = 0, fc = 0;
4179 const struct fw_port_cmd *p = (void *)rpl;
4180 int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
4181 int port = adap->chan_map[chan];
4182 struct port_info *pi = adap2pinfo(adap, port);
4183 struct link_config *lc = &pi->link_cfg;
4184 u32 stat = ntohl(p->u.info.lstatus_to_modtype);
4185 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
4186 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
4187
4188 if (stat & FW_PORT_CMD_RXPAUSE_F)
4189 fc |= PAUSE_RX;
4190 if (stat & FW_PORT_CMD_TXPAUSE_F)
4191 fc |= PAUSE_TX;
4192 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
4193 speed = 100;
4194 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
4195 speed = 1000;
4196 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
4197 speed = 10000;
4198 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
4199 speed = 40000;
4200
4201 if (link_ok != lc->link_ok || speed != lc->speed ||
4202 fc != lc->fc) { /* something changed */
4203 lc->link_ok = link_ok;
4204 lc->speed = speed;
4205 lc->fc = fc;
4206 lc->supported = be16_to_cpu(p->u.info.pcap);
4207 t4_os_link_changed(adap, port, link_ok);
4208 }
4209 if (mod != pi->mod_type) {
4210 pi->mod_type = mod;
4211 t4_os_portmod_changed(adap, port);
4212 }
4213 }
4214 return 0;
4215 }
4216
4217 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
4218 {
4219 u16 val;
4220
4221 if (pci_is_pcie(adapter->pdev)) {
4222 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
4223 p->speed = val & PCI_EXP_LNKSTA_CLS;
4224 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
4225 }
4226 }
4227
4228 /**
4229 * init_link_config - initialize a link's SW state
4230 * @lc: structure holding the link state
4231 * @caps: link capabilities
4232 *
4233 * Initializes the SW state maintained for each link, including the link's
4234 * capabilities and default speed/flow-control/autonegotiation settings.
4235 */
4236 static void init_link_config(struct link_config *lc, unsigned int caps)
4237 {
4238 lc->supported = caps;
4239 lc->requested_speed = 0;
4240 lc->speed = 0;
4241 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
4242 if (lc->supported & FW_PORT_CAP_ANEG) {
4243 lc->advertising = lc->supported & ADVERT_MASK;
4244 lc->autoneg = AUTONEG_ENABLE;
4245 lc->requested_fc |= PAUSE_AUTONEG;
4246 } else {
4247 lc->advertising = 0;
4248 lc->autoneg = AUTONEG_DISABLE;
4249 }
4250 }
4251
4252 #define CIM_PF_NOACCESS 0xeeeeeeee
4253
4254 int t4_wait_dev_ready(void __iomem *regs)
4255 {
4256 u32 whoami;
4257
4258 whoami = readl(regs + PL_WHOAMI_A);
4259 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
4260 return 0;
4261
4262 msleep(500);
4263 whoami = readl(regs + PL_WHOAMI_A);
4264 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
4265 }
4266
4267 struct flash_desc {
4268 u32 vendor_and_model_id;
4269 u32 size_mb;
4270 };
4271
4272 static int get_flash_params(struct adapter *adap)
4273 {
4274 /* Table for non-Numonix supported flash parts. Numonix parts are left
4275 * to the preexisting code. All flash parts have 64KB sectors.
4276 */
4277 static struct flash_desc supported_flash[] = {
4278 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
4279 };
4280
4281 int ret;
4282 u32 info;
4283
4284 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
4285 if (!ret)
4286 ret = sf1_read(adap, 3, 0, 1, &info);
4287 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
4288 if (ret)
4289 return ret;
4290
4291 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
4292 if (supported_flash[ret].vendor_and_model_id == info) {
4293 adap->params.sf_size = supported_flash[ret].size_mb;
4294 adap->params.sf_nsec =
4295 adap->params.sf_size / SF_SEC_SIZE;
4296 return 0;
4297 }
4298
4299 if ((info & 0xff) != 0x20) /* not a Numonix flash */
4300 return -EINVAL;
4301 info >>= 16; /* log2 of size */
4302 if (info >= 0x14 && info < 0x18)
4303 adap->params.sf_nsec = 1 << (info - 16);
4304 else if (info == 0x18)
4305 adap->params.sf_nsec = 64;
4306 else
4307 return -EINVAL;
4308 adap->params.sf_size = 1 << info;
4309 adap->params.sf_fw_start =
4310 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
4311
4312 if (adap->params.sf_size < FLASH_MIN_SIZE)
4313 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
4314 adap->params.sf_size, FLASH_MIN_SIZE);
4315 return 0;
4316 }
4317
4318 /**
4319 * t4_prep_adapter - prepare SW and HW for operation
4320 * @adapter: the adapter
4321 * @reset: if true perform a HW reset
4322 *
4323 * Initialize adapter SW state for the various HW modules, set initial
4324 * values for some adapter tunables, take PHYs out of reset, and
4325 * initialize the MDIO interface.
4326 */
4327 int t4_prep_adapter(struct adapter *adapter)
4328 {
4329 int ret, ver;
4330 uint16_t device_id;
4331 u32 pl_rev;
4332
4333 get_pci_mode(adapter, &adapter->params.pci);
4334 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
4335
4336 ret = get_flash_params(adapter);
4337 if (ret < 0) {
4338 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
4339 return ret;
4340 }
4341
4342 /* Retrieve adapter's device ID
4343 */
4344 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
4345 ver = device_id >> 12;
4346 adapter->params.chip = 0;
4347 switch (ver) {
4348 case CHELSIO_T4:
4349 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4350 break;
4351 case CHELSIO_T5:
4352 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4353 break;
4354 default:
4355 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4356 device_id);
4357 return -EINVAL;
4358 }
4359
4360 adapter->params.cim_la_size = CIMLA_SIZE;
4361 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
4362
4363 /*
4364 * Default port for debugging in case we can't reach FW.
4365 */
4366 adapter->params.nports = 1;
4367 adapter->params.portvec = 1;
4368 adapter->params.vpd.cclk = 50000;
4369 return 0;
4370 }
4371
4372 /**
4373 * cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information
4374 * @adapter: the adapter
4375 * @qid: the Queue ID
4376 * @qtype: the Ingress or Egress type for @qid
4377 * @pbar2_qoffset: BAR2 Queue Offset
4378 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4379 *
4380 * Returns the BAR2 SGE Queue Registers information associated with the
4381 * indicated Absolute Queue ID. These are passed back in return value
4382 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
4383 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
4384 *
4385 * This may return an error which indicates that BAR2 SGE Queue
4386 * registers aren't available. If an error is not returned, then the
4387 * following values are returned:
4388 *
4389 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
4390 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
4391 *
4392 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
4393 * require the "Inferred Queue ID" ability may be used. E.g. the
4394 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
4395 * then these "Inferred Queue ID" register may not be used.
4396 */
4397 int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter,
4398 unsigned int qid,
4399 enum t4_bar2_qtype qtype,
4400 u64 *pbar2_qoffset,
4401 unsigned int *pbar2_qid)
4402 {
4403 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
4404 u64 bar2_page_offset, bar2_qoffset;
4405 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
4406
4407 /* T4 doesn't support BAR2 SGE Queue registers.
4408 */
4409 if (is_t4(adapter->params.chip))
4410 return -EINVAL;
4411
4412 /* Get our SGE Page Size parameters.
4413 */
4414 page_shift = adapter->params.sge.hps + 10;
4415 page_size = 1 << page_shift;
4416
4417 /* Get the right Queues per Page parameters for our Queue.
4418 */
4419 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
4420 ? adapter->params.sge.eq_qpp
4421 : adapter->params.sge.iq_qpp);
4422 qpp_mask = (1 << qpp_shift) - 1;
4423
4424 /* Calculate the basics of the BAR2 SGE Queue register area:
4425 * o The BAR2 page the Queue registers will be in.
4426 * o The BAR2 Queue ID.
4427 * o The BAR2 Queue ID Offset into the BAR2 page.
4428 */
4429 bar2_page_offset = ((qid >> qpp_shift) << page_shift);
4430 bar2_qid = qid & qpp_mask;
4431 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
4432
4433 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
4434 * hardware will infer the Absolute Queue ID simply from the writes to
4435 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
4436 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
4437 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
4438 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
4439 * from the BAR2 Page and BAR2 Queue ID.
4440 *
4441 * One important censequence of this is that some BAR2 SGE registers
4442 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
4443 * there. But other registers synthesize the SGE Queue ID purely
4444 * from the writes to the registers -- the Write Combined Doorbell
4445 * Buffer is a good example. These BAR2 SGE Registers are only
4446 * available for those BAR2 SGE Register areas where the SGE Absolute
4447 * Queue ID can be inferred from simple writes.
4448 */
4449 bar2_qoffset = bar2_page_offset;
4450 bar2_qinferred = (bar2_qid_offset < page_size);
4451 if (bar2_qinferred) {
4452 bar2_qoffset += bar2_qid_offset;
4453 bar2_qid = 0;
4454 }
4455
4456 *pbar2_qoffset = bar2_qoffset;
4457 *pbar2_qid = bar2_qid;
4458 return 0;
4459 }
4460
4461 /**
4462 * t4_init_devlog_params - initialize adapter->params.devlog
4463 * @adap: the adapter
4464 *
4465 * Initialize various fields of the adapter's Firmware Device Log
4466 * Parameters structure.
4467 */
4468 int t4_init_devlog_params(struct adapter *adap)
4469 {
4470 struct devlog_params *dparams = &adap->params.devlog;
4471 u32 pf_dparams;
4472 unsigned int devlog_meminfo;
4473 struct fw_devlog_cmd devlog_cmd;
4474 int ret;
4475
4476 /* If we're dealing with newer firmware, the Device Log Paramerters
4477 * are stored in a designated register which allows us to access the
4478 * Device Log even if we can't talk to the firmware.
4479 */
4480 pf_dparams =
4481 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
4482 if (pf_dparams) {
4483 unsigned int nentries, nentries128;
4484
4485 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
4486 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
4487
4488 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
4489 nentries = (nentries128 + 1) * 128;
4490 dparams->size = nentries * sizeof(struct fw_devlog_e);
4491
4492 return 0;
4493 }
4494
4495 /* Otherwise, ask the firmware for it's Device Log Parameters.
4496 */
4497 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
4498 devlog_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_DEVLOG_CMD) |
4499 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4500 devlog_cmd.retval_len16 = htonl(FW_LEN16(devlog_cmd));
4501 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
4502 &devlog_cmd);
4503 if (ret)
4504 return ret;
4505
4506 devlog_meminfo = ntohl(devlog_cmd.memtype_devlog_memaddr16_devlog);
4507 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
4508 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
4509 dparams->size = ntohl(devlog_cmd.memsize_devlog);
4510
4511 return 0;
4512 }
4513
4514 /**
4515 * t4_init_sge_params - initialize adap->params.sge
4516 * @adapter: the adapter
4517 *
4518 * Initialize various fields of the adapter's SGE Parameters structure.
4519 */
4520 int t4_init_sge_params(struct adapter *adapter)
4521 {
4522 struct sge_params *sge_params = &adapter->params.sge;
4523 u32 hps, qpp;
4524 unsigned int s_hps, s_qpp;
4525
4526 /* Extract the SGE Page Size for our PF.
4527 */
4528 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
4529 s_hps = (HOSTPAGESIZEPF0_S +
4530 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn);
4531 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
4532
4533 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
4534 */
4535 s_qpp = (QUEUESPERPAGEPF0_S +
4536 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn);
4537 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
4538 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
4539 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
4540 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
4541
4542 return 0;
4543 }
4544
4545 /**
4546 * t4_init_tp_params - initialize adap->params.tp
4547 * @adap: the adapter
4548 *
4549 * Initialize various fields of the adapter's TP Parameters structure.
4550 */
4551 int t4_init_tp_params(struct adapter *adap)
4552 {
4553 int chan;
4554 u32 v;
4555
4556 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
4557 adap->params.tp.tre = TIMERRESOLUTION_G(v);
4558 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
4559
4560 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
4561 for (chan = 0; chan < NCHAN; chan++)
4562 adap->params.tp.tx_modq[chan] = chan;
4563
4564 /* Cache the adapter's Compressed Filter Mode and global Incress
4565 * Configuration.
4566 */
4567 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4568 &adap->params.tp.vlan_pri_map, 1,
4569 TP_VLAN_PRI_MAP_A);
4570 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4571 &adap->params.tp.ingress_config, 1,
4572 TP_INGRESS_CONFIG_A);
4573
4574 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
4575 * shift positions of several elements of the Compressed Filter Tuple
4576 * for this adapter which we need frequently ...
4577 */
4578 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
4579 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
4580 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
4581 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
4582 PROTOCOL_F);
4583
4584 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
4585 * represents the presense of an Outer VLAN instead of a VNIC ID.
4586 */
4587 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
4588 adap->params.tp.vnic_shift = -1;
4589
4590 return 0;
4591 }
4592
4593 /**
4594 * t4_filter_field_shift - calculate filter field shift
4595 * @adap: the adapter
4596 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
4597 *
4598 * Return the shift position of a filter field within the Compressed
4599 * Filter Tuple. The filter field is specified via its selection bit
4600 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
4601 */
4602 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
4603 {
4604 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
4605 unsigned int sel;
4606 int field_shift;
4607
4608 if ((filter_mode & filter_sel) == 0)
4609 return -1;
4610
4611 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
4612 switch (filter_mode & sel) {
4613 case FCOE_F:
4614 field_shift += FT_FCOE_W;
4615 break;
4616 case PORT_F:
4617 field_shift += FT_PORT_W;
4618 break;
4619 case VNIC_ID_F:
4620 field_shift += FT_VNIC_ID_W;
4621 break;
4622 case VLAN_F:
4623 field_shift += FT_VLAN_W;
4624 break;
4625 case TOS_F:
4626 field_shift += FT_TOS_W;
4627 break;
4628 case PROTOCOL_F:
4629 field_shift += FT_PROTOCOL_W;
4630 break;
4631 case ETHERTYPE_F:
4632 field_shift += FT_ETHERTYPE_W;
4633 break;
4634 case MACMATCH_F:
4635 field_shift += FT_MACMATCH_W;
4636 break;
4637 case MPSHITTYPE_F:
4638 field_shift += FT_MPSHITTYPE_W;
4639 break;
4640 case FRAGMENTATION_F:
4641 field_shift += FT_FRAGMENTATION_W;
4642 break;
4643 }
4644 }
4645 return field_shift;
4646 }
4647
4648 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
4649 {
4650 u8 addr[6];
4651 int ret, i, j = 0;
4652 struct fw_port_cmd c;
4653 struct fw_rss_vi_config_cmd rvc;
4654
4655 memset(&c, 0, sizeof(c));
4656 memset(&rvc, 0, sizeof(rvc));
4657
4658 for_each_port(adap, i) {
4659 unsigned int rss_size;
4660 struct port_info *p = adap2pinfo(adap, i);
4661
4662 while ((adap->params.portvec & (1 << j)) == 0)
4663 j++;
4664
4665 c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
4666 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4667 FW_PORT_CMD_PORTID_V(j));
4668 c.action_to_len16 = htonl(
4669 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
4670 FW_LEN16(c));
4671 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4672 if (ret)
4673 return ret;
4674
4675 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
4676 if (ret < 0)
4677 return ret;
4678
4679 p->viid = ret;
4680 p->tx_chan = j;
4681 p->lport = j;
4682 p->rss_size = rss_size;
4683 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
4684 adap->port[i]->dev_port = j;
4685
4686 ret = ntohl(c.u.info.lstatus_to_modtype);
4687 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
4688 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
4689 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
4690 p->mod_type = FW_PORT_MOD_TYPE_NA;
4691
4692 rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4693 FW_CMD_REQUEST_F | FW_CMD_READ_F |
4694 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
4695 rvc.retval_len16 = htonl(FW_LEN16(rvc));
4696 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
4697 if (ret)
4698 return ret;
4699 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
4700
4701 init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
4702 j++;
4703 }
4704 return 0;
4705 }
4706
4707 /**
4708 * t4_read_cimq_cfg - read CIM queue configuration
4709 * @adap: the adapter
4710 * @base: holds the queue base addresses in bytes
4711 * @size: holds the queue sizes in bytes
4712 * @thres: holds the queue full thresholds in bytes
4713 *
4714 * Returns the current configuration of the CIM queues, starting with
4715 * the IBQs, then the OBQs.
4716 */
4717 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
4718 {
4719 unsigned int i, v;
4720 int cim_num_obq = is_t4(adap->params.chip) ?
4721 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
4722
4723 for (i = 0; i < CIM_NUM_IBQ; i++) {
4724 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
4725 QUENUMSELECT_V(i));
4726 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
4727 /* value is in 256-byte units */
4728 *base++ = CIMQBASE_G(v) * 256;
4729 *size++ = CIMQSIZE_G(v) * 256;
4730 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
4731 }
4732 for (i = 0; i < cim_num_obq; i++) {
4733 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
4734 QUENUMSELECT_V(i));
4735 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
4736 /* value is in 256-byte units */
4737 *base++ = CIMQBASE_G(v) * 256;
4738 *size++ = CIMQSIZE_G(v) * 256;
4739 }
4740 }
4741
4742 /**
4743 * t4_read_cim_ibq - read the contents of a CIM inbound queue
4744 * @adap: the adapter
4745 * @qid: the queue index
4746 * @data: where to store the queue contents
4747 * @n: capacity of @data in 32-bit words
4748 *
4749 * Reads the contents of the selected CIM queue starting at address 0 up
4750 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
4751 * error and the number of 32-bit words actually read on success.
4752 */
4753 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
4754 {
4755 int i, err, attempts;
4756 unsigned int addr;
4757 const unsigned int nwords = CIM_IBQ_SIZE * 4;
4758
4759 if (qid > 5 || (n & 3))
4760 return -EINVAL;
4761
4762 addr = qid * nwords;
4763 if (n > nwords)
4764 n = nwords;
4765
4766 /* It might take 3-10ms before the IBQ debug read access is allowed.
4767 * Wait for 1 Sec with a delay of 1 usec.
4768 */
4769 attempts = 1000000;
4770
4771 for (i = 0; i < n; i++, addr++) {
4772 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
4773 IBQDBGEN_F);
4774 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
4775 attempts, 1);
4776 if (err)
4777 return err;
4778 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
4779 }
4780 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
4781 return i;
4782 }
4783
4784 /**
4785 * t4_read_cim_obq - read the contents of a CIM outbound queue
4786 * @adap: the adapter
4787 * @qid: the queue index
4788 * @data: where to store the queue contents
4789 * @n: capacity of @data in 32-bit words
4790 *
4791 * Reads the contents of the selected CIM queue starting at address 0 up
4792 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
4793 * error and the number of 32-bit words actually read on success.
4794 */
4795 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
4796 {
4797 int i, err;
4798 unsigned int addr, v, nwords;
4799 int cim_num_obq = is_t4(adap->params.chip) ?
4800 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
4801
4802 if ((qid > (cim_num_obq - 1)) || (n & 3))
4803 return -EINVAL;
4804
4805 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
4806 QUENUMSELECT_V(qid));
4807 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
4808
4809 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
4810 nwords = CIMQSIZE_G(v) * 64; /* same */
4811 if (n > nwords)
4812 n = nwords;
4813
4814 for (i = 0; i < n; i++, addr++) {
4815 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
4816 OBQDBGEN_F);
4817 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
4818 2, 1);
4819 if (err)
4820 return err;
4821 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
4822 }
4823 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
4824 return i;
4825 }
4826
4827 /**
4828 * t4_cim_read - read a block from CIM internal address space
4829 * @adap: the adapter
4830 * @addr: the start address within the CIM address space
4831 * @n: number of words to read
4832 * @valp: where to store the result
4833 *
4834 * Reads a block of 4-byte words from the CIM intenal address space.
4835 */
4836 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
4837 unsigned int *valp)
4838 {
4839 int ret = 0;
4840
4841 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
4842 return -EBUSY;
4843
4844 for ( ; !ret && n--; addr += 4) {
4845 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
4846 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
4847 0, 5, 2);
4848 if (!ret)
4849 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
4850 }
4851 return ret;
4852 }
4853
4854 /**
4855 * t4_cim_write - write a block into CIM internal address space
4856 * @adap: the adapter
4857 * @addr: the start address within the CIM address space
4858 * @n: number of words to write
4859 * @valp: set of values to write
4860 *
4861 * Writes a block of 4-byte words into the CIM intenal address space.
4862 */
4863 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
4864 const unsigned int *valp)
4865 {
4866 int ret = 0;
4867
4868 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
4869 return -EBUSY;
4870
4871 for ( ; !ret && n--; addr += 4) {
4872 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
4873 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
4874 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
4875 0, 5, 2);
4876 }
4877 return ret;
4878 }
4879
4880 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
4881 unsigned int val)
4882 {
4883 return t4_cim_write(adap, addr, 1, &val);
4884 }
4885
4886 /**
4887 * t4_cim_read_la - read CIM LA capture buffer
4888 * @adap: the adapter
4889 * @la_buf: where to store the LA data
4890 * @wrptr: the HW write pointer within the capture buffer
4891 *
4892 * Reads the contents of the CIM LA buffer with the most recent entry at
4893 * the end of the returned data and with the entry at @wrptr first.
4894 * We try to leave the LA in the running state we find it in.
4895 */
4896 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
4897 {
4898 int i, ret;
4899 unsigned int cfg, val, idx;
4900
4901 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
4902 if (ret)
4903 return ret;
4904
4905 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
4906 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
4907 if (ret)
4908 return ret;
4909 }
4910
4911 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
4912 if (ret)
4913 goto restart;
4914
4915 idx = UPDBGLAWRPTR_G(val);
4916 if (wrptr)
4917 *wrptr = idx;
4918
4919 for (i = 0; i < adap->params.cim_la_size; i++) {
4920 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
4921 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
4922 if (ret)
4923 break;
4924 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
4925 if (ret)
4926 break;
4927 if (val & UPDBGLARDEN_F) {
4928 ret = -ETIMEDOUT;
4929 break;
4930 }
4931 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
4932 if (ret)
4933 break;
4934 idx = (idx + 1) & UPDBGLARDPTR_M;
4935 }
4936 restart:
4937 if (cfg & UPDBGLAEN_F) {
4938 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
4939 cfg & ~UPDBGLARDEN_F);
4940 if (!ret)
4941 ret = r;
4942 }
4943 return ret;
4944 }
4945
4946 /**
4947 * t4_tp_read_la - read TP LA capture buffer
4948 * @adap: the adapter
4949 * @la_buf: where to store the LA data
4950 * @wrptr: the HW write pointer within the capture buffer
4951 *
4952 * Reads the contents of the TP LA buffer with the most recent entry at
4953 * the end of the returned data and with the entry at @wrptr first.
4954 * We leave the LA in the running state we find it in.
4955 */
4956 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
4957 {
4958 bool last_incomplete;
4959 unsigned int i, cfg, val, idx;
4960
4961 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
4962 if (cfg & DBGLAENABLE_F) /* freeze LA */
4963 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
4964 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
4965
4966 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
4967 idx = DBGLAWPTR_G(val);
4968 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
4969 if (last_incomplete)
4970 idx = (idx + 1) & DBGLARPTR_M;
4971 if (wrptr)
4972 *wrptr = idx;
4973
4974 val &= 0xffff;
4975 val &= ~DBGLARPTR_V(DBGLARPTR_M);
4976 val |= adap->params.tp.la_mask;
4977
4978 for (i = 0; i < TPLA_SIZE; i++) {
4979 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
4980 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
4981 idx = (idx + 1) & DBGLARPTR_M;
4982 }
4983
4984 /* Wipe out last entry if it isn't valid */
4985 if (last_incomplete)
4986 la_buf[TPLA_SIZE - 1] = ~0ULL;
4987
4988 if (cfg & DBGLAENABLE_F) /* restore running state */
4989 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
4990 cfg | adap->params.tp.la_mask);
4991 }