]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/dlink/dl2k.c
Driver: Vmxnet3: Extend register dump support
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / dlink / dl2k.c
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 */
12
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
25
26 static char version[] =
27 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10; /* Rx frame count each interrupt */
37 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
39
40
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54
55
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
59
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 void __iomem *ioaddr = np->ioaddr;
63
64 dw16(IntEnable, DEFAULT_INTR);
65 }
66
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static void alloc_list (struct net_device *dev);
74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76 static void rio_free_tx (struct net_device *dev, int irq);
77 static void tx_error (struct net_device *dev, int tx_status);
78 static int receive_packet (struct net_device *dev);
79 static void rio_error (struct net_device *dev, int int_status);
80 static int change_mtu (struct net_device *dev, int new_mtu);
81 static void set_multicast (struct net_device *dev);
82 static struct net_device_stats *get_stats (struct net_device *dev);
83 static int clear_stats (struct net_device *dev);
84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85 static int rio_close (struct net_device *dev);
86 static int find_miiphy (struct net_device *dev);
87 static int parse_eeprom (struct net_device *dev);
88 static int read_eeprom (struct netdev_private *, int eep_addr);
89 static int mii_wait_link (struct net_device *dev, int wait);
90 static int mii_set_media (struct net_device *dev);
91 static int mii_get_media (struct net_device *dev);
92 static int mii_set_media_pcs (struct net_device *dev);
93 static int mii_get_media_pcs (struct net_device *dev);
94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96 u16 data);
97
98 static const struct ethtool_ops ethtool_ops;
99
100 static const struct net_device_ops netdev_ops = {
101 .ndo_open = rio_open,
102 .ndo_start_xmit = start_xmit,
103 .ndo_stop = rio_close,
104 .ndo_get_stats = get_stats,
105 .ndo_validate_addr = eth_validate_addr,
106 .ndo_set_mac_address = eth_mac_addr,
107 .ndo_set_rx_mode = set_multicast,
108 .ndo_do_ioctl = rio_ioctl,
109 .ndo_tx_timeout = rio_tx_timeout,
110 .ndo_change_mtu = change_mtu,
111 };
112
113 static int
114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115 {
116 struct net_device *dev;
117 struct netdev_private *np;
118 static int card_idx;
119 int chip_idx = ent->driver_data;
120 int err, irq;
121 void __iomem *ioaddr;
122 static int version_printed;
123 void *ring_space;
124 dma_addr_t ring_dma;
125
126 if (!version_printed++)
127 printk ("%s", version);
128
129 err = pci_enable_device (pdev);
130 if (err)
131 return err;
132
133 irq = pdev->irq;
134 err = pci_request_regions (pdev, "dl2k");
135 if (err)
136 goto err_out_disable;
137
138 pci_set_master (pdev);
139
140 err = -ENOMEM;
141
142 dev = alloc_etherdev (sizeof (*np));
143 if (!dev)
144 goto err_out_res;
145 SET_NETDEV_DEV(dev, &pdev->dev);
146
147 np = netdev_priv(dev);
148
149 /* IO registers range. */
150 ioaddr = pci_iomap(pdev, 0, 0);
151 if (!ioaddr)
152 goto err_out_dev;
153 np->eeprom_addr = ioaddr;
154
155 #ifdef MEM_MAPPING
156 /* MM registers range. */
157 ioaddr = pci_iomap(pdev, 1, 0);
158 if (!ioaddr)
159 goto err_out_iounmap;
160 #endif
161 np->ioaddr = ioaddr;
162 np->chip_id = chip_idx;
163 np->pdev = pdev;
164 spin_lock_init (&np->tx_lock);
165 spin_lock_init (&np->rx_lock);
166
167 /* Parse manual configuration */
168 np->an_enable = 1;
169 np->tx_coalesce = 1;
170 if (card_idx < MAX_UNITS) {
171 if (media[card_idx] != NULL) {
172 np->an_enable = 0;
173 if (strcmp (media[card_idx], "auto") == 0 ||
174 strcmp (media[card_idx], "autosense") == 0 ||
175 strcmp (media[card_idx], "0") == 0 ) {
176 np->an_enable = 2;
177 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178 strcmp (media[card_idx], "4") == 0) {
179 np->speed = 100;
180 np->full_duplex = 1;
181 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182 strcmp (media[card_idx], "3") == 0) {
183 np->speed = 100;
184 np->full_duplex = 0;
185 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186 strcmp (media[card_idx], "2") == 0) {
187 np->speed = 10;
188 np->full_duplex = 1;
189 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190 strcmp (media[card_idx], "1") == 0) {
191 np->speed = 10;
192 np->full_duplex = 0;
193 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194 strcmp (media[card_idx], "6") == 0) {
195 np->speed=1000;
196 np->full_duplex=1;
197 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198 strcmp (media[card_idx], "5") == 0) {
199 np->speed = 1000;
200 np->full_duplex = 0;
201 } else {
202 np->an_enable = 1;
203 }
204 }
205 if (jumbo[card_idx] != 0) {
206 np->jumbo = 1;
207 dev->mtu = MAX_JUMBO;
208 } else {
209 np->jumbo = 0;
210 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211 dev->mtu = mtu[card_idx];
212 }
213 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214 vlan[card_idx] : 0;
215 if (rx_coalesce > 0 && rx_timeout > 0) {
216 np->rx_coalesce = rx_coalesce;
217 np->rx_timeout = rx_timeout;
218 np->coalesce = 1;
219 }
220 np->tx_flow = (tx_flow == 0) ? 0 : 1;
221 np->rx_flow = (rx_flow == 0) ? 0 : 1;
222
223 if (tx_coalesce < 1)
224 tx_coalesce = 1;
225 else if (tx_coalesce > TX_RING_SIZE-1)
226 tx_coalesce = TX_RING_SIZE - 1;
227 }
228 dev->netdev_ops = &netdev_ops;
229 dev->watchdog_timeo = TX_TIMEOUT;
230 dev->ethtool_ops = &ethtool_ops;
231 #if 0
232 dev->features = NETIF_F_IP_CSUM;
233 #endif
234 pci_set_drvdata (pdev, dev);
235
236 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237 if (!ring_space)
238 goto err_out_iounmap;
239 np->tx_ring = ring_space;
240 np->tx_ring_dma = ring_dma;
241
242 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243 if (!ring_space)
244 goto err_out_unmap_tx;
245 np->rx_ring = ring_space;
246 np->rx_ring_dma = ring_dma;
247
248 /* Parse eeprom data */
249 parse_eeprom (dev);
250
251 /* Find PHY address */
252 err = find_miiphy (dev);
253 if (err)
254 goto err_out_unmap_rx;
255
256 /* Fiber device? */
257 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
258 np->link_status = 0;
259 /* Set media and reset PHY */
260 if (np->phy_media) {
261 /* default Auto-Negotiation for fiber deivices */
262 if (np->an_enable == 2) {
263 np->an_enable = 1;
264 }
265 mii_set_media_pcs (dev);
266 } else {
267 /* Auto-Negotiation is mandatory for 1000BASE-T,
268 IEEE 802.3ab Annex 28D page 14 */
269 if (np->speed == 1000)
270 np->an_enable = 1;
271 mii_set_media (dev);
272 }
273
274 err = register_netdev (dev);
275 if (err)
276 goto err_out_unmap_rx;
277
278 card_idx++;
279
280 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
281 dev->name, np->name, dev->dev_addr, irq);
282 if (tx_coalesce > 1)
283 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
284 tx_coalesce);
285 if (np->coalesce)
286 printk(KERN_INFO
287 "rx_coalesce:\t%d packets\n"
288 "rx_timeout: \t%d ns\n",
289 np->rx_coalesce, np->rx_timeout*640);
290 if (np->vlan)
291 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
292 return 0;
293
294 err_out_unmap_rx:
295 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
296 err_out_unmap_tx:
297 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
298 err_out_iounmap:
299 #ifdef MEM_MAPPING
300 pci_iounmap(pdev, np->ioaddr);
301 #endif
302 pci_iounmap(pdev, np->eeprom_addr);
303 err_out_dev:
304 free_netdev (dev);
305 err_out_res:
306 pci_release_regions (pdev);
307 err_out_disable:
308 pci_disable_device (pdev);
309 return err;
310 }
311
312 static int
313 find_miiphy (struct net_device *dev)
314 {
315 struct netdev_private *np = netdev_priv(dev);
316 int i, phy_found = 0;
317 np = netdev_priv(dev);
318 np->phy_addr = 1;
319
320 for (i = 31; i >= 0; i--) {
321 int mii_status = mii_read (dev, i, 1);
322 if (mii_status != 0xffff && mii_status != 0x0000) {
323 np->phy_addr = i;
324 phy_found++;
325 }
326 }
327 if (!phy_found) {
328 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
329 return -ENODEV;
330 }
331 return 0;
332 }
333
334 static int
335 parse_eeprom (struct net_device *dev)
336 {
337 struct netdev_private *np = netdev_priv(dev);
338 void __iomem *ioaddr = np->ioaddr;
339 int i, j;
340 u8 sromdata[256];
341 u8 *psib;
342 u32 crc;
343 PSROM_t psrom = (PSROM_t) sromdata;
344
345 int cid, next;
346
347 for (i = 0; i < 128; i++)
348 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
349
350 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
351 /* Check CRC */
352 crc = ~ether_crc_le (256 - 4, sromdata);
353 if (psrom->crc != cpu_to_le32(crc)) {
354 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
355 dev->name);
356 return -1;
357 }
358 }
359
360 /* Set MAC address */
361 for (i = 0; i < 6; i++)
362 dev->dev_addr[i] = psrom->mac_addr[i];
363
364 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
365 return 0;
366 }
367
368 /* Parse Software Information Block */
369 i = 0x30;
370 psib = (u8 *) sromdata;
371 do {
372 cid = psib[i++];
373 next = psib[i++];
374 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
375 printk (KERN_ERR "Cell data error\n");
376 return -1;
377 }
378 switch (cid) {
379 case 0: /* Format version */
380 break;
381 case 1: /* End of cell */
382 return 0;
383 case 2: /* Duplex Polarity */
384 np->duplex_polarity = psib[i];
385 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
386 break;
387 case 3: /* Wake Polarity */
388 np->wake_polarity = psib[i];
389 break;
390 case 9: /* Adapter description */
391 j = (next - i > 255) ? 255 : next - i;
392 memcpy (np->name, &(psib[i]), j);
393 break;
394 case 4:
395 case 5:
396 case 6:
397 case 7:
398 case 8: /* Reversed */
399 break;
400 default: /* Unknown cell */
401 return -1;
402 }
403 i = next;
404 } while (1);
405
406 return 0;
407 }
408
409 static int
410 rio_open (struct net_device *dev)
411 {
412 struct netdev_private *np = netdev_priv(dev);
413 void __iomem *ioaddr = np->ioaddr;
414 const int irq = np->pdev->irq;
415 int i;
416 u16 macctrl;
417
418 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
419 if (i)
420 return i;
421
422 /* Reset all logic functions */
423 dw16(ASICCtrl + 2,
424 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
425 mdelay(10);
426
427 /* DebugCtrl bit 4, 5, 9 must set */
428 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
429
430 /* Jumbo frame */
431 if (np->jumbo != 0)
432 dw16(MaxFrameSize, MAX_JUMBO+14);
433
434 alloc_list (dev);
435
436 /* Get station address */
437 for (i = 0; i < 6; i++)
438 dw8(StationAddr0 + i, dev->dev_addr[i]);
439
440 set_multicast (dev);
441 if (np->coalesce) {
442 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
443 }
444 /* Set RIO to poll every N*320nsec. */
445 dw8(RxDMAPollPeriod, 0x20);
446 dw8(TxDMAPollPeriod, 0xff);
447 dw8(RxDMABurstThresh, 0x30);
448 dw8(RxDMAUrgentThresh, 0x30);
449 dw32(RmonStatMask, 0x0007ffff);
450 /* clear statistics */
451 clear_stats (dev);
452
453 /* VLAN supported */
454 if (np->vlan) {
455 /* priority field in RxDMAIntCtrl */
456 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
457 /* VLANId */
458 dw16(VLANId, np->vlan);
459 /* Length/Type should be 0x8100 */
460 dw32(VLANTag, 0x8100 << 16 | np->vlan);
461 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 VLAN information tagged by TFC' VID, CFI fields. */
463 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
464 }
465
466 setup_timer(&np->timer, rio_timer, (unsigned long)dev);
467 np->timer.expires = jiffies + 1*HZ;
468 add_timer (&np->timer);
469
470 /* Start Tx/Rx */
471 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
472
473 macctrl = 0;
474 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
475 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
476 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
477 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
478 dw16(MACCtrl, macctrl);
479
480 netif_start_queue (dev);
481
482 dl2k_enable_int(np);
483 return 0;
484 }
485
486 static void
487 rio_timer (unsigned long data)
488 {
489 struct net_device *dev = (struct net_device *)data;
490 struct netdev_private *np = netdev_priv(dev);
491 unsigned int entry;
492 int next_tick = 1*HZ;
493 unsigned long flags;
494
495 spin_lock_irqsave(&np->rx_lock, flags);
496 /* Recover rx ring exhausted error */
497 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
498 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
499 /* Re-allocate skbuffs to fill the descriptor ring */
500 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
501 struct sk_buff *skb;
502 entry = np->old_rx % RX_RING_SIZE;
503 /* Dropped packets don't need to re-allocate */
504 if (np->rx_skbuff[entry] == NULL) {
505 skb = netdev_alloc_skb_ip_align(dev,
506 np->rx_buf_sz);
507 if (skb == NULL) {
508 np->rx_ring[entry].fraginfo = 0;
509 printk (KERN_INFO
510 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
511 dev->name, entry);
512 break;
513 }
514 np->rx_skbuff[entry] = skb;
515 np->rx_ring[entry].fraginfo =
516 cpu_to_le64 (pci_map_single
517 (np->pdev, skb->data, np->rx_buf_sz,
518 PCI_DMA_FROMDEVICE));
519 }
520 np->rx_ring[entry].fraginfo |=
521 cpu_to_le64((u64)np->rx_buf_sz << 48);
522 np->rx_ring[entry].status = 0;
523 } /* end for */
524 } /* end if */
525 spin_unlock_irqrestore (&np->rx_lock, flags);
526 np->timer.expires = jiffies + next_tick;
527 add_timer(&np->timer);
528 }
529
530 static void
531 rio_tx_timeout (struct net_device *dev)
532 {
533 struct netdev_private *np = netdev_priv(dev);
534 void __iomem *ioaddr = np->ioaddr;
535
536 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
537 dev->name, dr32(TxStatus));
538 rio_free_tx(dev, 0);
539 dev->if_port = 0;
540 dev->trans_start = jiffies; /* prevent tx timeout */
541 }
542
543 /* allocate and initialize Tx and Rx descriptors */
544 static void
545 alloc_list (struct net_device *dev)
546 {
547 struct netdev_private *np = netdev_priv(dev);
548 void __iomem *ioaddr = np->ioaddr;
549 int i;
550
551 np->cur_rx = np->cur_tx = 0;
552 np->old_rx = np->old_tx = 0;
553 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
554
555 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
556 for (i = 0; i < TX_RING_SIZE; i++) {
557 np->tx_skbuff[i] = NULL;
558 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
559 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
560 ((i+1)%TX_RING_SIZE) *
561 sizeof (struct netdev_desc));
562 }
563
564 /* Initialize Rx descriptors */
565 for (i = 0; i < RX_RING_SIZE; i++) {
566 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
567 ((i + 1) % RX_RING_SIZE) *
568 sizeof (struct netdev_desc));
569 np->rx_ring[i].status = 0;
570 np->rx_ring[i].fraginfo = 0;
571 np->rx_skbuff[i] = NULL;
572 }
573
574 /* Allocate the rx buffers */
575 for (i = 0; i < RX_RING_SIZE; i++) {
576 /* Allocated fixed size of skbuff */
577 struct sk_buff *skb;
578
579 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
580 np->rx_skbuff[i] = skb;
581 if (skb == NULL)
582 break;
583
584 /* Rubicon now supports 40 bits of addressing space. */
585 np->rx_ring[i].fraginfo =
586 cpu_to_le64 ( pci_map_single (
587 np->pdev, skb->data, np->rx_buf_sz,
588 PCI_DMA_FROMDEVICE));
589 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
590 }
591
592 /* Set RFDListPtr */
593 dw32(RFDListPtr0, np->rx_ring_dma);
594 dw32(RFDListPtr1, 0);
595 }
596
597 static netdev_tx_t
598 start_xmit (struct sk_buff *skb, struct net_device *dev)
599 {
600 struct netdev_private *np = netdev_priv(dev);
601 void __iomem *ioaddr = np->ioaddr;
602 struct netdev_desc *txdesc;
603 unsigned entry;
604 u64 tfc_vlan_tag = 0;
605
606 if (np->link_status == 0) { /* Link Down */
607 dev_kfree_skb(skb);
608 return NETDEV_TX_OK;
609 }
610 entry = np->cur_tx % TX_RING_SIZE;
611 np->tx_skbuff[entry] = skb;
612 txdesc = &np->tx_ring[entry];
613
614 #if 0
615 if (skb->ip_summed == CHECKSUM_PARTIAL) {
616 txdesc->status |=
617 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
618 IPChecksumEnable);
619 }
620 #endif
621 if (np->vlan) {
622 tfc_vlan_tag = VLANTagInsert |
623 ((u64)np->vlan << 32) |
624 ((u64)skb->priority << 45);
625 }
626 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
627 skb->len,
628 PCI_DMA_TODEVICE));
629 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
630
631 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
632 * Work around: Always use 1 descriptor in 10Mbps mode */
633 if (entry % np->tx_coalesce == 0 || np->speed == 10)
634 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
635 WordAlignDisable |
636 TxDMAIndicate |
637 (1 << FragCountShift));
638 else
639 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
640 WordAlignDisable |
641 (1 << FragCountShift));
642
643 /* TxDMAPollNow */
644 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
645 /* Schedule ISR */
646 dw32(CountDown, 10000);
647 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
648 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
649 < TX_QUEUE_LEN - 1 && np->speed != 10) {
650 /* do nothing */
651 } else if (!netif_queue_stopped(dev)) {
652 netif_stop_queue (dev);
653 }
654
655 /* The first TFDListPtr */
656 if (!dr32(TFDListPtr0)) {
657 dw32(TFDListPtr0, np->tx_ring_dma +
658 entry * sizeof (struct netdev_desc));
659 dw32(TFDListPtr1, 0);
660 }
661
662 return NETDEV_TX_OK;
663 }
664
665 static irqreturn_t
666 rio_interrupt (int irq, void *dev_instance)
667 {
668 struct net_device *dev = dev_instance;
669 struct netdev_private *np = netdev_priv(dev);
670 void __iomem *ioaddr = np->ioaddr;
671 unsigned int_status;
672 int cnt = max_intrloop;
673 int handled = 0;
674
675 while (1) {
676 int_status = dr16(IntStatus);
677 dw16(IntStatus, int_status);
678 int_status &= DEFAULT_INTR;
679 if (int_status == 0 || --cnt < 0)
680 break;
681 handled = 1;
682 /* Processing received packets */
683 if (int_status & RxDMAComplete)
684 receive_packet (dev);
685 /* TxDMAComplete interrupt */
686 if ((int_status & (TxDMAComplete|IntRequested))) {
687 int tx_status;
688 tx_status = dr32(TxStatus);
689 if (tx_status & 0x01)
690 tx_error (dev, tx_status);
691 /* Free used tx skbuffs */
692 rio_free_tx (dev, 1);
693 }
694
695 /* Handle uncommon events */
696 if (int_status &
697 (HostError | LinkEvent | UpdateStats))
698 rio_error (dev, int_status);
699 }
700 if (np->cur_tx != np->old_tx)
701 dw32(CountDown, 100);
702 return IRQ_RETVAL(handled);
703 }
704
705 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
706 {
707 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
708 }
709
710 static void
711 rio_free_tx (struct net_device *dev, int irq)
712 {
713 struct netdev_private *np = netdev_priv(dev);
714 int entry = np->old_tx % TX_RING_SIZE;
715 int tx_use = 0;
716 unsigned long flag = 0;
717
718 if (irq)
719 spin_lock(&np->tx_lock);
720 else
721 spin_lock_irqsave(&np->tx_lock, flag);
722
723 /* Free used tx skbuffs */
724 while (entry != np->cur_tx) {
725 struct sk_buff *skb;
726
727 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
728 break;
729 skb = np->tx_skbuff[entry];
730 pci_unmap_single (np->pdev,
731 desc_to_dma(&np->tx_ring[entry]),
732 skb->len, PCI_DMA_TODEVICE);
733 if (irq)
734 dev_kfree_skb_irq (skb);
735 else
736 dev_kfree_skb (skb);
737
738 np->tx_skbuff[entry] = NULL;
739 entry = (entry + 1) % TX_RING_SIZE;
740 tx_use++;
741 }
742 if (irq)
743 spin_unlock(&np->tx_lock);
744 else
745 spin_unlock_irqrestore(&np->tx_lock, flag);
746 np->old_tx = entry;
747
748 /* If the ring is no longer full, clear tx_full and
749 call netif_wake_queue() */
750
751 if (netif_queue_stopped(dev) &&
752 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
753 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
754 netif_wake_queue (dev);
755 }
756 }
757
758 static void
759 tx_error (struct net_device *dev, int tx_status)
760 {
761 struct netdev_private *np = netdev_priv(dev);
762 void __iomem *ioaddr = np->ioaddr;
763 int frame_id;
764 int i;
765
766 frame_id = (tx_status & 0xffff0000);
767 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
768 dev->name, tx_status, frame_id);
769 np->stats.tx_errors++;
770 /* Ttransmit Underrun */
771 if (tx_status & 0x10) {
772 np->stats.tx_fifo_errors++;
773 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
774 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
775 dw16(ASICCtrl + 2,
776 TxReset | DMAReset | FIFOReset | NetworkReset);
777 /* Wait for ResetBusy bit clear */
778 for (i = 50; i > 0; i--) {
779 if (!(dr16(ASICCtrl + 2) & ResetBusy))
780 break;
781 mdelay (1);
782 }
783 rio_free_tx (dev, 1);
784 /* Reset TFDListPtr */
785 dw32(TFDListPtr0, np->tx_ring_dma +
786 np->old_tx * sizeof (struct netdev_desc));
787 dw32(TFDListPtr1, 0);
788
789 /* Let TxStartThresh stay default value */
790 }
791 /* Late Collision */
792 if (tx_status & 0x04) {
793 np->stats.tx_fifo_errors++;
794 /* TxReset and clear FIFO */
795 dw16(ASICCtrl + 2, TxReset | FIFOReset);
796 /* Wait reset done */
797 for (i = 50; i > 0; i--) {
798 if (!(dr16(ASICCtrl + 2) & ResetBusy))
799 break;
800 mdelay (1);
801 }
802 /* Let TxStartThresh stay default value */
803 }
804 /* Maximum Collisions */
805 #ifdef ETHER_STATS
806 if (tx_status & 0x08)
807 np->stats.collisions16++;
808 #else
809 if (tx_status & 0x08)
810 np->stats.collisions++;
811 #endif
812 /* Restart the Tx */
813 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
814 }
815
816 static int
817 receive_packet (struct net_device *dev)
818 {
819 struct netdev_private *np = netdev_priv(dev);
820 int entry = np->cur_rx % RX_RING_SIZE;
821 int cnt = 30;
822
823 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
824 while (1) {
825 struct netdev_desc *desc = &np->rx_ring[entry];
826 int pkt_len;
827 u64 frame_status;
828
829 if (!(desc->status & cpu_to_le64(RFDDone)) ||
830 !(desc->status & cpu_to_le64(FrameStart)) ||
831 !(desc->status & cpu_to_le64(FrameEnd)))
832 break;
833
834 /* Chip omits the CRC. */
835 frame_status = le64_to_cpu(desc->status);
836 pkt_len = frame_status & 0xffff;
837 if (--cnt < 0)
838 break;
839 /* Update rx error statistics, drop packet. */
840 if (frame_status & RFS_Errors) {
841 np->stats.rx_errors++;
842 if (frame_status & (RxRuntFrame | RxLengthError))
843 np->stats.rx_length_errors++;
844 if (frame_status & RxFCSError)
845 np->stats.rx_crc_errors++;
846 if (frame_status & RxAlignmentError && np->speed != 1000)
847 np->stats.rx_frame_errors++;
848 if (frame_status & RxFIFOOverrun)
849 np->stats.rx_fifo_errors++;
850 } else {
851 struct sk_buff *skb;
852
853 /* Small skbuffs for short packets */
854 if (pkt_len > copy_thresh) {
855 pci_unmap_single (np->pdev,
856 desc_to_dma(desc),
857 np->rx_buf_sz,
858 PCI_DMA_FROMDEVICE);
859 skb_put (skb = np->rx_skbuff[entry], pkt_len);
860 np->rx_skbuff[entry] = NULL;
861 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
862 pci_dma_sync_single_for_cpu(np->pdev,
863 desc_to_dma(desc),
864 np->rx_buf_sz,
865 PCI_DMA_FROMDEVICE);
866 skb_copy_to_linear_data (skb,
867 np->rx_skbuff[entry]->data,
868 pkt_len);
869 skb_put (skb, pkt_len);
870 pci_dma_sync_single_for_device(np->pdev,
871 desc_to_dma(desc),
872 np->rx_buf_sz,
873 PCI_DMA_FROMDEVICE);
874 }
875 skb->protocol = eth_type_trans (skb, dev);
876 #if 0
877 /* Checksum done by hw, but csum value unavailable. */
878 if (np->pdev->pci_rev_id >= 0x0c &&
879 !(frame_status & (TCPError | UDPError | IPError))) {
880 skb->ip_summed = CHECKSUM_UNNECESSARY;
881 }
882 #endif
883 netif_rx (skb);
884 }
885 entry = (entry + 1) % RX_RING_SIZE;
886 }
887 spin_lock(&np->rx_lock);
888 np->cur_rx = entry;
889 /* Re-allocate skbuffs to fill the descriptor ring */
890 entry = np->old_rx;
891 while (entry != np->cur_rx) {
892 struct sk_buff *skb;
893 /* Dropped packets don't need to re-allocate */
894 if (np->rx_skbuff[entry] == NULL) {
895 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
896 if (skb == NULL) {
897 np->rx_ring[entry].fraginfo = 0;
898 printk (KERN_INFO
899 "%s: receive_packet: "
900 "Unable to re-allocate Rx skbuff.#%d\n",
901 dev->name, entry);
902 break;
903 }
904 np->rx_skbuff[entry] = skb;
905 np->rx_ring[entry].fraginfo =
906 cpu_to_le64 (pci_map_single
907 (np->pdev, skb->data, np->rx_buf_sz,
908 PCI_DMA_FROMDEVICE));
909 }
910 np->rx_ring[entry].fraginfo |=
911 cpu_to_le64((u64)np->rx_buf_sz << 48);
912 np->rx_ring[entry].status = 0;
913 entry = (entry + 1) % RX_RING_SIZE;
914 }
915 np->old_rx = entry;
916 spin_unlock(&np->rx_lock);
917 return 0;
918 }
919
920 static void
921 rio_error (struct net_device *dev, int int_status)
922 {
923 struct netdev_private *np = netdev_priv(dev);
924 void __iomem *ioaddr = np->ioaddr;
925 u16 macctrl;
926
927 /* Link change event */
928 if (int_status & LinkEvent) {
929 if (mii_wait_link (dev, 10) == 0) {
930 printk (KERN_INFO "%s: Link up\n", dev->name);
931 if (np->phy_media)
932 mii_get_media_pcs (dev);
933 else
934 mii_get_media (dev);
935 if (np->speed == 1000)
936 np->tx_coalesce = tx_coalesce;
937 else
938 np->tx_coalesce = 1;
939 macctrl = 0;
940 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
941 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
942 macctrl |= (np->tx_flow) ?
943 TxFlowControlEnable : 0;
944 macctrl |= (np->rx_flow) ?
945 RxFlowControlEnable : 0;
946 dw16(MACCtrl, macctrl);
947 np->link_status = 1;
948 netif_carrier_on(dev);
949 } else {
950 printk (KERN_INFO "%s: Link off\n", dev->name);
951 np->link_status = 0;
952 netif_carrier_off(dev);
953 }
954 }
955
956 /* UpdateStats statistics registers */
957 if (int_status & UpdateStats) {
958 get_stats (dev);
959 }
960
961 /* PCI Error, a catastronphic error related to the bus interface
962 occurs, set GlobalReset and HostReset to reset. */
963 if (int_status & HostError) {
964 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
965 dev->name, int_status);
966 dw16(ASICCtrl + 2, GlobalReset | HostReset);
967 mdelay (500);
968 }
969 }
970
971 static struct net_device_stats *
972 get_stats (struct net_device *dev)
973 {
974 struct netdev_private *np = netdev_priv(dev);
975 void __iomem *ioaddr = np->ioaddr;
976 #ifdef MEM_MAPPING
977 int i;
978 #endif
979 unsigned int stat_reg;
980
981 /* All statistics registers need to be acknowledged,
982 else statistic overflow could cause problems */
983
984 np->stats.rx_packets += dr32(FramesRcvOk);
985 np->stats.tx_packets += dr32(FramesXmtOk);
986 np->stats.rx_bytes += dr32(OctetRcvOk);
987 np->stats.tx_bytes += dr32(OctetXmtOk);
988
989 np->stats.multicast = dr32(McstFramesRcvdOk);
990 np->stats.collisions += dr32(SingleColFrames)
991 + dr32(MultiColFrames);
992
993 /* detailed tx errors */
994 stat_reg = dr16(FramesAbortXSColls);
995 np->stats.tx_aborted_errors += stat_reg;
996 np->stats.tx_errors += stat_reg;
997
998 stat_reg = dr16(CarrierSenseErrors);
999 np->stats.tx_carrier_errors += stat_reg;
1000 np->stats.tx_errors += stat_reg;
1001
1002 /* Clear all other statistic register. */
1003 dr32(McstOctetXmtOk);
1004 dr16(BcstFramesXmtdOk);
1005 dr32(McstFramesXmtdOk);
1006 dr16(BcstFramesRcvdOk);
1007 dr16(MacControlFramesRcvd);
1008 dr16(FrameTooLongErrors);
1009 dr16(InRangeLengthErrors);
1010 dr16(FramesCheckSeqErrors);
1011 dr16(FramesLostRxErrors);
1012 dr32(McstOctetXmtOk);
1013 dr32(BcstOctetXmtOk);
1014 dr32(McstFramesXmtdOk);
1015 dr32(FramesWDeferredXmt);
1016 dr32(LateCollisions);
1017 dr16(BcstFramesXmtdOk);
1018 dr16(MacControlFramesXmtd);
1019 dr16(FramesWEXDeferal);
1020
1021 #ifdef MEM_MAPPING
1022 for (i = 0x100; i <= 0x150; i += 4)
1023 dr32(i);
1024 #endif
1025 dr16(TxJumboFrames);
1026 dr16(RxJumboFrames);
1027 dr16(TCPCheckSumErrors);
1028 dr16(UDPCheckSumErrors);
1029 dr16(IPCheckSumErrors);
1030 return &np->stats;
1031 }
1032
1033 static int
1034 clear_stats (struct net_device *dev)
1035 {
1036 struct netdev_private *np = netdev_priv(dev);
1037 void __iomem *ioaddr = np->ioaddr;
1038 #ifdef MEM_MAPPING
1039 int i;
1040 #endif
1041
1042 /* All statistics registers need to be acknowledged,
1043 else statistic overflow could cause problems */
1044 dr32(FramesRcvOk);
1045 dr32(FramesXmtOk);
1046 dr32(OctetRcvOk);
1047 dr32(OctetXmtOk);
1048
1049 dr32(McstFramesRcvdOk);
1050 dr32(SingleColFrames);
1051 dr32(MultiColFrames);
1052 dr32(LateCollisions);
1053 /* detailed rx errors */
1054 dr16(FrameTooLongErrors);
1055 dr16(InRangeLengthErrors);
1056 dr16(FramesCheckSeqErrors);
1057 dr16(FramesLostRxErrors);
1058
1059 /* detailed tx errors */
1060 dr16(FramesAbortXSColls);
1061 dr16(CarrierSenseErrors);
1062
1063 /* Clear all other statistic register. */
1064 dr32(McstOctetXmtOk);
1065 dr16(BcstFramesXmtdOk);
1066 dr32(McstFramesXmtdOk);
1067 dr16(BcstFramesRcvdOk);
1068 dr16(MacControlFramesRcvd);
1069 dr32(McstOctetXmtOk);
1070 dr32(BcstOctetXmtOk);
1071 dr32(McstFramesXmtdOk);
1072 dr32(FramesWDeferredXmt);
1073 dr16(BcstFramesXmtdOk);
1074 dr16(MacControlFramesXmtd);
1075 dr16(FramesWEXDeferal);
1076 #ifdef MEM_MAPPING
1077 for (i = 0x100; i <= 0x150; i += 4)
1078 dr32(i);
1079 #endif
1080 dr16(TxJumboFrames);
1081 dr16(RxJumboFrames);
1082 dr16(TCPCheckSumErrors);
1083 dr16(UDPCheckSumErrors);
1084 dr16(IPCheckSumErrors);
1085 return 0;
1086 }
1087
1088
1089 static int
1090 change_mtu (struct net_device *dev, int new_mtu)
1091 {
1092 struct netdev_private *np = netdev_priv(dev);
1093 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1094
1095 if ((new_mtu < 68) || (new_mtu > max)) {
1096 return -EINVAL;
1097 }
1098
1099 dev->mtu = new_mtu;
1100
1101 return 0;
1102 }
1103
1104 static void
1105 set_multicast (struct net_device *dev)
1106 {
1107 struct netdev_private *np = netdev_priv(dev);
1108 void __iomem *ioaddr = np->ioaddr;
1109 u32 hash_table[2];
1110 u16 rx_mode = 0;
1111
1112 hash_table[0] = hash_table[1] = 0;
1113 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1114 hash_table[1] |= 0x02000000;
1115 if (dev->flags & IFF_PROMISC) {
1116 /* Receive all frames promiscuously. */
1117 rx_mode = ReceiveAllFrames;
1118 } else if ((dev->flags & IFF_ALLMULTI) ||
1119 (netdev_mc_count(dev) > multicast_filter_limit)) {
1120 /* Receive broadcast and multicast frames */
1121 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1122 } else if (!netdev_mc_empty(dev)) {
1123 struct netdev_hw_addr *ha;
1124 /* Receive broadcast frames and multicast frames filtering
1125 by Hashtable */
1126 rx_mode =
1127 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1128 netdev_for_each_mc_addr(ha, dev) {
1129 int bit, index = 0;
1130 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1131 /* The inverted high significant 6 bits of CRC are
1132 used as an index to hashtable */
1133 for (bit = 0; bit < 6; bit++)
1134 if (crc & (1 << (31 - bit)))
1135 index |= (1 << bit);
1136 hash_table[index / 32] |= (1 << (index % 32));
1137 }
1138 } else {
1139 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1140 }
1141 if (np->vlan) {
1142 /* ReceiveVLANMatch field in ReceiveMode */
1143 rx_mode |= ReceiveVLANMatch;
1144 }
1145
1146 dw32(HashTable0, hash_table[0]);
1147 dw32(HashTable1, hash_table[1]);
1148 dw16(ReceiveMode, rx_mode);
1149 }
1150
1151 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1152 {
1153 struct netdev_private *np = netdev_priv(dev);
1154
1155 strlcpy(info->driver, "dl2k", sizeof(info->driver));
1156 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1157 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1158 }
1159
1160 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1161 {
1162 struct netdev_private *np = netdev_priv(dev);
1163 if (np->phy_media) {
1164 /* fiber device */
1165 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1166 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1167 cmd->port = PORT_FIBRE;
1168 cmd->transceiver = XCVR_INTERNAL;
1169 } else {
1170 /* copper device */
1171 cmd->supported = SUPPORTED_10baseT_Half |
1172 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1173 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1174 SUPPORTED_Autoneg | SUPPORTED_MII;
1175 cmd->advertising = ADVERTISED_10baseT_Half |
1176 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1177 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1178 ADVERTISED_Autoneg | ADVERTISED_MII;
1179 cmd->port = PORT_MII;
1180 cmd->transceiver = XCVR_INTERNAL;
1181 }
1182 if ( np->link_status ) {
1183 ethtool_cmd_speed_set(cmd, np->speed);
1184 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1185 } else {
1186 ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1187 cmd->duplex = DUPLEX_UNKNOWN;
1188 }
1189 if ( np->an_enable)
1190 cmd->autoneg = AUTONEG_ENABLE;
1191 else
1192 cmd->autoneg = AUTONEG_DISABLE;
1193
1194 cmd->phy_address = np->phy_addr;
1195 return 0;
1196 }
1197
1198 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1199 {
1200 struct netdev_private *np = netdev_priv(dev);
1201 netif_carrier_off(dev);
1202 if (cmd->autoneg == AUTONEG_ENABLE) {
1203 if (np->an_enable)
1204 return 0;
1205 else {
1206 np->an_enable = 1;
1207 mii_set_media(dev);
1208 return 0;
1209 }
1210 } else {
1211 np->an_enable = 0;
1212 if (np->speed == 1000) {
1213 ethtool_cmd_speed_set(cmd, SPEED_100);
1214 cmd->duplex = DUPLEX_FULL;
1215 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1216 }
1217 switch (ethtool_cmd_speed(cmd)) {
1218 case SPEED_10:
1219 np->speed = 10;
1220 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1221 break;
1222 case SPEED_100:
1223 np->speed = 100;
1224 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1225 break;
1226 case SPEED_1000: /* not supported */
1227 default:
1228 return -EINVAL;
1229 }
1230 mii_set_media(dev);
1231 }
1232 return 0;
1233 }
1234
1235 static u32 rio_get_link(struct net_device *dev)
1236 {
1237 struct netdev_private *np = netdev_priv(dev);
1238 return np->link_status;
1239 }
1240
1241 static const struct ethtool_ops ethtool_ops = {
1242 .get_drvinfo = rio_get_drvinfo,
1243 .get_settings = rio_get_settings,
1244 .set_settings = rio_set_settings,
1245 .get_link = rio_get_link,
1246 };
1247
1248 static int
1249 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1250 {
1251 int phy_addr;
1252 struct netdev_private *np = netdev_priv(dev);
1253 struct mii_ioctl_data *miidata = if_mii(rq);
1254
1255 phy_addr = np->phy_addr;
1256 switch (cmd) {
1257 case SIOCGMIIPHY:
1258 miidata->phy_id = phy_addr;
1259 break;
1260 case SIOCGMIIREG:
1261 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1262 break;
1263 case SIOCSMIIREG:
1264 if (!capable(CAP_NET_ADMIN))
1265 return -EPERM;
1266 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1267 break;
1268 default:
1269 return -EOPNOTSUPP;
1270 }
1271 return 0;
1272 }
1273
1274 #define EEP_READ 0x0200
1275 #define EEP_BUSY 0x8000
1276 /* Read the EEPROM word */
1277 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1278 static int read_eeprom(struct netdev_private *np, int eep_addr)
1279 {
1280 void __iomem *ioaddr = np->eeprom_addr;
1281 int i = 1000;
1282
1283 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1284 while (i-- > 0) {
1285 if (!(dr16(EepromCtrl) & EEP_BUSY))
1286 return dr16(EepromData);
1287 }
1288 return 0;
1289 }
1290
1291 enum phy_ctrl_bits {
1292 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1293 MII_DUPLEX = 0x08,
1294 };
1295
1296 #define mii_delay() dr8(PhyCtrl)
1297 static void
1298 mii_sendbit (struct net_device *dev, u32 data)
1299 {
1300 struct netdev_private *np = netdev_priv(dev);
1301 void __iomem *ioaddr = np->ioaddr;
1302
1303 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1304 dw8(PhyCtrl, data);
1305 mii_delay ();
1306 dw8(PhyCtrl, data | MII_CLK);
1307 mii_delay ();
1308 }
1309
1310 static int
1311 mii_getbit (struct net_device *dev)
1312 {
1313 struct netdev_private *np = netdev_priv(dev);
1314 void __iomem *ioaddr = np->ioaddr;
1315 u8 data;
1316
1317 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1318 dw8(PhyCtrl, data);
1319 mii_delay ();
1320 dw8(PhyCtrl, data | MII_CLK);
1321 mii_delay ();
1322 return (dr8(PhyCtrl) >> 1) & 1;
1323 }
1324
1325 static void
1326 mii_send_bits (struct net_device *dev, u32 data, int len)
1327 {
1328 int i;
1329
1330 for (i = len - 1; i >= 0; i--) {
1331 mii_sendbit (dev, data & (1 << i));
1332 }
1333 }
1334
1335 static int
1336 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1337 {
1338 u32 cmd;
1339 int i;
1340 u32 retval = 0;
1341
1342 /* Preamble */
1343 mii_send_bits (dev, 0xffffffff, 32);
1344 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1345 /* ST,OP = 0110'b for read operation */
1346 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1347 mii_send_bits (dev, cmd, 14);
1348 /* Turnaround */
1349 if (mii_getbit (dev))
1350 goto err_out;
1351 /* Read data */
1352 for (i = 0; i < 16; i++) {
1353 retval |= mii_getbit (dev);
1354 retval <<= 1;
1355 }
1356 /* End cycle */
1357 mii_getbit (dev);
1358 return (retval >> 1) & 0xffff;
1359
1360 err_out:
1361 return 0;
1362 }
1363 static int
1364 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1365 {
1366 u32 cmd;
1367
1368 /* Preamble */
1369 mii_send_bits (dev, 0xffffffff, 32);
1370 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1371 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1372 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1373 mii_send_bits (dev, cmd, 32);
1374 /* End cycle */
1375 mii_getbit (dev);
1376 return 0;
1377 }
1378 static int
1379 mii_wait_link (struct net_device *dev, int wait)
1380 {
1381 __u16 bmsr;
1382 int phy_addr;
1383 struct netdev_private *np;
1384
1385 np = netdev_priv(dev);
1386 phy_addr = np->phy_addr;
1387
1388 do {
1389 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1390 if (bmsr & BMSR_LSTATUS)
1391 return 0;
1392 mdelay (1);
1393 } while (--wait > 0);
1394 return -1;
1395 }
1396 static int
1397 mii_get_media (struct net_device *dev)
1398 {
1399 __u16 negotiate;
1400 __u16 bmsr;
1401 __u16 mscr;
1402 __u16 mssr;
1403 int phy_addr;
1404 struct netdev_private *np;
1405
1406 np = netdev_priv(dev);
1407 phy_addr = np->phy_addr;
1408
1409 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1410 if (np->an_enable) {
1411 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1412 /* Auto-Negotiation not completed */
1413 return -1;
1414 }
1415 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1416 mii_read (dev, phy_addr, MII_LPA);
1417 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1418 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1419 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1420 np->speed = 1000;
1421 np->full_duplex = 1;
1422 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1423 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1424 np->speed = 1000;
1425 np->full_duplex = 0;
1426 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1427 } else if (negotiate & ADVERTISE_100FULL) {
1428 np->speed = 100;
1429 np->full_duplex = 1;
1430 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1431 } else if (negotiate & ADVERTISE_100HALF) {
1432 np->speed = 100;
1433 np->full_duplex = 0;
1434 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1435 } else if (negotiate & ADVERTISE_10FULL) {
1436 np->speed = 10;
1437 np->full_duplex = 1;
1438 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1439 } else if (negotiate & ADVERTISE_10HALF) {
1440 np->speed = 10;
1441 np->full_duplex = 0;
1442 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1443 }
1444 if (negotiate & ADVERTISE_PAUSE_CAP) {
1445 np->tx_flow &= 1;
1446 np->rx_flow &= 1;
1447 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1448 np->tx_flow = 0;
1449 np->rx_flow &= 1;
1450 }
1451 /* else tx_flow, rx_flow = user select */
1452 } else {
1453 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1454 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1455 case BMCR_SPEED1000:
1456 printk (KERN_INFO "Operating at 1000 Mbps, ");
1457 break;
1458 case BMCR_SPEED100:
1459 printk (KERN_INFO "Operating at 100 Mbps, ");
1460 break;
1461 case 0:
1462 printk (KERN_INFO "Operating at 10 Mbps, ");
1463 }
1464 if (bmcr & BMCR_FULLDPLX) {
1465 printk (KERN_CONT "Full duplex\n");
1466 } else {
1467 printk (KERN_CONT "Half duplex\n");
1468 }
1469 }
1470 if (np->tx_flow)
1471 printk(KERN_INFO "Enable Tx Flow Control\n");
1472 else
1473 printk(KERN_INFO "Disable Tx Flow Control\n");
1474 if (np->rx_flow)
1475 printk(KERN_INFO "Enable Rx Flow Control\n");
1476 else
1477 printk(KERN_INFO "Disable Rx Flow Control\n");
1478
1479 return 0;
1480 }
1481
1482 static int
1483 mii_set_media (struct net_device *dev)
1484 {
1485 __u16 pscr;
1486 __u16 bmcr;
1487 __u16 bmsr;
1488 __u16 anar;
1489 int phy_addr;
1490 struct netdev_private *np;
1491 np = netdev_priv(dev);
1492 phy_addr = np->phy_addr;
1493
1494 /* Does user set speed? */
1495 if (np->an_enable) {
1496 /* Advertise capabilities */
1497 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1498 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1499 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1500 ADVERTISE_100HALF | ADVERTISE_10HALF |
1501 ADVERTISE_100BASE4);
1502 if (bmsr & BMSR_100FULL)
1503 anar |= ADVERTISE_100FULL;
1504 if (bmsr & BMSR_100HALF)
1505 anar |= ADVERTISE_100HALF;
1506 if (bmsr & BMSR_100BASE4)
1507 anar |= ADVERTISE_100BASE4;
1508 if (bmsr & BMSR_10FULL)
1509 anar |= ADVERTISE_10FULL;
1510 if (bmsr & BMSR_10HALF)
1511 anar |= ADVERTISE_10HALF;
1512 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1513 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1514
1515 /* Enable Auto crossover */
1516 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1517 pscr |= 3 << 5; /* 11'b */
1518 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1519
1520 /* Soft reset PHY */
1521 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1522 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1523 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1524 mdelay(1);
1525 } else {
1526 /* Force speed setting */
1527 /* 1) Disable Auto crossover */
1528 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1529 pscr &= ~(3 << 5);
1530 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1531
1532 /* 2) PHY Reset */
1533 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1534 bmcr |= BMCR_RESET;
1535 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1536
1537 /* 3) Power Down */
1538 bmcr = 0x1940; /* must be 0x1940 */
1539 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1540 mdelay (100); /* wait a certain time */
1541
1542 /* 4) Advertise nothing */
1543 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1544
1545 /* 5) Set media and Power Up */
1546 bmcr = BMCR_PDOWN;
1547 if (np->speed == 100) {
1548 bmcr |= BMCR_SPEED100;
1549 printk (KERN_INFO "Manual 100 Mbps, ");
1550 } else if (np->speed == 10) {
1551 printk (KERN_INFO "Manual 10 Mbps, ");
1552 }
1553 if (np->full_duplex) {
1554 bmcr |= BMCR_FULLDPLX;
1555 printk (KERN_CONT "Full duplex\n");
1556 } else {
1557 printk (KERN_CONT "Half duplex\n");
1558 }
1559 #if 0
1560 /* Set 1000BaseT Master/Slave setting */
1561 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1562 mscr |= MII_MSCR_CFG_ENABLE;
1563 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1564 #endif
1565 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1566 mdelay(10);
1567 }
1568 return 0;
1569 }
1570
1571 static int
1572 mii_get_media_pcs (struct net_device *dev)
1573 {
1574 __u16 negotiate;
1575 __u16 bmsr;
1576 int phy_addr;
1577 struct netdev_private *np;
1578
1579 np = netdev_priv(dev);
1580 phy_addr = np->phy_addr;
1581
1582 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1583 if (np->an_enable) {
1584 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1585 /* Auto-Negotiation not completed */
1586 return -1;
1587 }
1588 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1589 mii_read (dev, phy_addr, PCS_ANLPAR);
1590 np->speed = 1000;
1591 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1592 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1593 np->full_duplex = 1;
1594 } else {
1595 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1596 np->full_duplex = 0;
1597 }
1598 if (negotiate & PCS_ANAR_PAUSE) {
1599 np->tx_flow &= 1;
1600 np->rx_flow &= 1;
1601 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1602 np->tx_flow = 0;
1603 np->rx_flow &= 1;
1604 }
1605 /* else tx_flow, rx_flow = user select */
1606 } else {
1607 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1608 printk (KERN_INFO "Operating at 1000 Mbps, ");
1609 if (bmcr & BMCR_FULLDPLX) {
1610 printk (KERN_CONT "Full duplex\n");
1611 } else {
1612 printk (KERN_CONT "Half duplex\n");
1613 }
1614 }
1615 if (np->tx_flow)
1616 printk(KERN_INFO "Enable Tx Flow Control\n");
1617 else
1618 printk(KERN_INFO "Disable Tx Flow Control\n");
1619 if (np->rx_flow)
1620 printk(KERN_INFO "Enable Rx Flow Control\n");
1621 else
1622 printk(KERN_INFO "Disable Rx Flow Control\n");
1623
1624 return 0;
1625 }
1626
1627 static int
1628 mii_set_media_pcs (struct net_device *dev)
1629 {
1630 __u16 bmcr;
1631 __u16 esr;
1632 __u16 anar;
1633 int phy_addr;
1634 struct netdev_private *np;
1635 np = netdev_priv(dev);
1636 phy_addr = np->phy_addr;
1637
1638 /* Auto-Negotiation? */
1639 if (np->an_enable) {
1640 /* Advertise capabilities */
1641 esr = mii_read (dev, phy_addr, PCS_ESR);
1642 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1643 ~PCS_ANAR_HALF_DUPLEX &
1644 ~PCS_ANAR_FULL_DUPLEX;
1645 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1646 anar |= PCS_ANAR_HALF_DUPLEX;
1647 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1648 anar |= PCS_ANAR_FULL_DUPLEX;
1649 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1650 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1651
1652 /* Soft reset PHY */
1653 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1654 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1655 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1656 mdelay(1);
1657 } else {
1658 /* Force speed setting */
1659 /* PHY Reset */
1660 bmcr = BMCR_RESET;
1661 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1662 mdelay(10);
1663 if (np->full_duplex) {
1664 bmcr = BMCR_FULLDPLX;
1665 printk (KERN_INFO "Manual full duplex\n");
1666 } else {
1667 bmcr = 0;
1668 printk (KERN_INFO "Manual half duplex\n");
1669 }
1670 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1671 mdelay(10);
1672
1673 /* Advertise nothing */
1674 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1675 }
1676 return 0;
1677 }
1678
1679
1680 static int
1681 rio_close (struct net_device *dev)
1682 {
1683 struct netdev_private *np = netdev_priv(dev);
1684 void __iomem *ioaddr = np->ioaddr;
1685
1686 struct pci_dev *pdev = np->pdev;
1687 struct sk_buff *skb;
1688 int i;
1689
1690 netif_stop_queue (dev);
1691
1692 /* Disable interrupts */
1693 dw16(IntEnable, 0);
1694
1695 /* Stop Tx and Rx logics */
1696 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1697
1698 free_irq(pdev->irq, dev);
1699 del_timer_sync (&np->timer);
1700
1701 /* Free all the skbuffs in the queue. */
1702 for (i = 0; i < RX_RING_SIZE; i++) {
1703 skb = np->rx_skbuff[i];
1704 if (skb) {
1705 pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1706 skb->len, PCI_DMA_FROMDEVICE);
1707 dev_kfree_skb (skb);
1708 np->rx_skbuff[i] = NULL;
1709 }
1710 np->rx_ring[i].status = 0;
1711 np->rx_ring[i].fraginfo = 0;
1712 }
1713 for (i = 0; i < TX_RING_SIZE; i++) {
1714 skb = np->tx_skbuff[i];
1715 if (skb) {
1716 pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1717 skb->len, PCI_DMA_TODEVICE);
1718 dev_kfree_skb (skb);
1719 np->tx_skbuff[i] = NULL;
1720 }
1721 }
1722
1723 return 0;
1724 }
1725
1726 static void
1727 rio_remove1 (struct pci_dev *pdev)
1728 {
1729 struct net_device *dev = pci_get_drvdata (pdev);
1730
1731 if (dev) {
1732 struct netdev_private *np = netdev_priv(dev);
1733
1734 unregister_netdev (dev);
1735 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1736 np->rx_ring_dma);
1737 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1738 np->tx_ring_dma);
1739 #ifdef MEM_MAPPING
1740 pci_iounmap(pdev, np->ioaddr);
1741 #endif
1742 pci_iounmap(pdev, np->eeprom_addr);
1743 free_netdev (dev);
1744 pci_release_regions (pdev);
1745 pci_disable_device (pdev);
1746 }
1747 }
1748
1749 static struct pci_driver rio_driver = {
1750 .name = "dl2k",
1751 .id_table = rio_pci_tbl,
1752 .probe = rio_probe1,
1753 .remove = rio_remove1,
1754 };
1755
1756 module_pci_driver(rio_driver);
1757 /*
1758
1759 Compile command:
1760
1761 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1762
1763 Read Documentation/networking/dl2k.txt for details.
1764
1765 */
1766