]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/dlink/sundance.c
sections: fix section conflicts in drivers/net
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / dlink / sundance.c
1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2 /*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
22
23 */
24
25 #define DRV_NAME "sundance"
26 #define DRV_VERSION "1.2"
27 #define DRV_RELDATE "11-Sep-2006"
28
29
30 /* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35 static const int multicast_filter_limit = 32;
36
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41 static int rx_copybreak;
42 static int flowctrl=1;
43
44 /* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55 */
56 #define MAX_UNITS 8
57 static char *media[MAX_UNITS];
58
59
60 /* Operational parameters that are set at compile time. */
61
62 /* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68 #define TX_RING_SIZE 32
69 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70 #define RX_RING_SIZE 64
71 #define RX_BUDGET 32
72 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75 /* Operational parameters that usually are not changed. */
76 /* Time in jiffies before concluding the transmitter is hung. */
77 #define TX_TIMEOUT (4*HZ)
78 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80 /* Include files, designed to support most kernel versions 2.0.0 and later. */
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/string.h>
84 #include <linux/timer.h>
85 #include <linux/errno.h>
86 #include <linux/ioport.h>
87 #include <linux/interrupt.h>
88 #include <linux/pci.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/skbuff.h>
92 #include <linux/init.h>
93 #include <linux/bitops.h>
94 #include <asm/uaccess.h>
95 #include <asm/processor.h> /* Processor type for cache alignment. */
96 #include <asm/io.h>
97 #include <linux/delay.h>
98 #include <linux/spinlock.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/crc32.h>
101 #include <linux/ethtool.h>
102 #include <linux/mii.h>
103
104 /* These identify the driver base version and may not be removed. */
105 static const char version[] __devinitconst =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
108
109 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111 MODULE_LICENSE("GPL");
112
113 module_param(debug, int, 0);
114 module_param(rx_copybreak, int, 0);
115 module_param_array(media, charp, NULL, 0);
116 module_param(flowctrl, int, 0);
117 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121 /*
122 Theory of Operation
123
124 I. Board Compatibility
125
126 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128 II. Board-specific settings
129
130 III. Driver operation
131
132 IIIa. Ring buffers
133
134 This driver uses two statically allocated fixed-size descriptor lists
135 formed into rings by a branch from the final descriptor to the beginning of
136 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137 Some chips explicitly use only 2^N sized rings, while others use a
138 'next descriptor' pointer that the driver forms into rings.
139
140 IIIb/c. Transmit/Receive Structure
141
142 This driver uses a zero-copy receive and transmit scheme.
143 The driver allocates full frame size skbuffs for the Rx ring buffers at
144 open() time and passes the skb->data field to the chip as receive data
145 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146 a fresh skbuff is allocated and the frame is copied to the new skbuff.
147 When the incoming frame is larger, the skbuff is passed directly up the
148 protocol stack. Buffers consumed this way are replaced by newly allocated
149 skbuffs in a later phase of receives.
150
151 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152 using a full-sized skbuff for small frames vs. the copying costs of larger
153 frames. New boards are typically used in generously configured machines
154 and the underfilled buffers have negligible impact compared to the benefit of
155 a single allocation size, so the default value of zero results in never
156 copying packets. When copying is done, the cost is usually mitigated by using
157 a combined copy/checksum routine. Copying also preloads the cache, which is
158 most useful with small frames.
159
160 A subtle aspect of the operation is that the IP header at offset 14 in an
161 ethernet frame isn't longword aligned for further processing.
162 Unaligned buffers are permitted by the Sundance hardware, so
163 frames are received into the skbuff at an offset of "+2", 16-byte aligning
164 the IP header.
165
166 IIId. Synchronization
167
168 The driver runs as two independent, single-threaded flows of control. One
169 is the send-packet routine, which enforces single-threaded use by the
170 dev->tbusy flag. The other thread is the interrupt handler, which is single
171 threaded by the hardware and interrupt handling software.
172
173 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176 the 'lp->tx_full' flag.
177
178 The interrupt handler has exclusive control over the Rx ring and records stats
179 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181 clears both the tx_full and tbusy flags.
182
183 IV. Notes
184
185 IVb. References
186
187 The Sundance ST201 datasheet, preliminary version.
188 The Kendin KS8723 datasheet, preliminary version.
189 The ICplus IP100 datasheet, preliminary version.
190 http://www.scyld.com/expert/100mbps.html
191 http://www.scyld.com/expert/NWay.html
192
193 IVc. Errata
194
195 */
196
197 /* Work-around for Kendin chip bugs. */
198 #ifndef CONFIG_SUNDANCE_MMIO
199 #define USE_IO_OPS 1
200 #endif
201
202 static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
211 };
212 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214 enum {
215 netdev_io_size = 128
216 };
217
218 struct pci_id_info {
219 const char *name;
220 };
221 static const struct pci_id_info pci_id_tbl[] __devinitconst = {
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
229 { } /* terminate list. */
230 };
231
232 /* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235 /* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242 */
243 enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 TxStatus = 0x46,
263 TxFrameId = 0x47,
264 DownCounter = 0x18,
265 IntrClear = 0x4a,
266 IntrEnable = 0x4c,
267 IntrStatus = 0x4e,
268 MACCtrl0 = 0x50,
269 MACCtrl1 = 0x52,
270 StationAddr = 0x54,
271 MaxFrameSize = 0x5A,
272 RxMode = 0x5c,
273 MIICtrl = 0x5e,
274 MulticastFilter0 = 0x60,
275 MulticastFilter1 = 0x64,
276 RxOctetsLow = 0x68,
277 RxOctetsHigh = 0x6a,
278 TxOctetsLow = 0x6c,
279 TxOctetsHigh = 0x6e,
280 TxFramesOK = 0x70,
281 RxFramesOK = 0x72,
282 StatsCarrierError = 0x74,
283 StatsLateColl = 0x75,
284 StatsMultiColl = 0x76,
285 StatsOneColl = 0x77,
286 StatsTxDefer = 0x78,
287 RxMissed = 0x79,
288 StatsTxXSDefer = 0x7a,
289 StatsTxAbort = 0x7b,
290 StatsBcastTx = 0x7c,
291 StatsBcastRx = 0x7d,
292 StatsMcastTx = 0x7e,
293 StatsMcastRx = 0x7f,
294 /* Aliased and bogus values! */
295 RxStatus = 0x0c,
296 };
297
298 #define ASIC_HI_WORD(x) ((x) + 2)
299
300 enum ASICCtrl_HiWord_bit {
301 GlobalReset = 0x0001,
302 RxReset = 0x0002,
303 TxReset = 0x0004,
304 DMAReset = 0x0008,
305 FIFOReset = 0x0010,
306 NetworkReset = 0x0020,
307 HostReset = 0x0040,
308 ResetBusy = 0x0400,
309 };
310
311 /* Bits in the interrupt status/mask registers. */
312 enum intr_status_bits {
313 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
314 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
315 IntrDrvRqst=0x0040,
316 StatsMax=0x0080, LinkChange=0x0100,
317 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
318 };
319
320 /* Bits in the RxMode register. */
321 enum rx_mode_bits {
322 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
323 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
324 };
325 /* Bits in MACCtrl. */
326 enum mac_ctrl0_bits {
327 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
328 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
329 };
330 enum mac_ctrl1_bits {
331 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
332 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
333 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
334 };
335
336 /* The Rx and Tx buffer descriptors. */
337 /* Note that using only 32 bit fields simplifies conversion to big-endian
338 architectures. */
339 struct netdev_desc {
340 __le32 next_desc;
341 __le32 status;
342 struct desc_frag { __le32 addr, length; } frag[1];
343 };
344
345 /* Bits in netdev_desc.status */
346 enum desc_status_bits {
347 DescOwn=0x8000,
348 DescEndPacket=0x4000,
349 DescEndRing=0x2000,
350 LastFrag=0x80000000,
351 DescIntrOnTx=0x8000,
352 DescIntrOnDMADone=0x80000000,
353 DisableAlign = 0x00000001,
354 };
355
356 #define PRIV_ALIGN 15 /* Required alignment mask */
357 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
358 within the structure. */
359 #define MII_CNT 4
360 struct netdev_private {
361 /* Descriptor rings first for alignment. */
362 struct netdev_desc *rx_ring;
363 struct netdev_desc *tx_ring;
364 struct sk_buff* rx_skbuff[RX_RING_SIZE];
365 struct sk_buff* tx_skbuff[TX_RING_SIZE];
366 dma_addr_t tx_ring_dma;
367 dma_addr_t rx_ring_dma;
368 struct timer_list timer; /* Media monitoring timer. */
369 /* ethtool extra stats */
370 struct {
371 u64 tx_multiple_collisions;
372 u64 tx_single_collisions;
373 u64 tx_late_collisions;
374 u64 tx_deferred;
375 u64 tx_deferred_excessive;
376 u64 tx_aborted;
377 u64 tx_bcasts;
378 u64 rx_bcasts;
379 u64 tx_mcasts;
380 u64 rx_mcasts;
381 } xstats;
382 /* Frequently used values: keep some adjacent for cache effect. */
383 spinlock_t lock;
384 int msg_enable;
385 int chip_id;
386 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
387 unsigned int rx_buf_sz; /* Based on MTU+slack. */
388 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
389 unsigned int cur_tx, dirty_tx;
390 /* These values are keep track of the transceiver/media in use. */
391 unsigned int flowctrl:1;
392 unsigned int default_port:4; /* Last dev->if_port value. */
393 unsigned int an_enable:1;
394 unsigned int speed;
395 struct tasklet_struct rx_tasklet;
396 struct tasklet_struct tx_tasklet;
397 int budget;
398 int cur_task;
399 /* Multicast and receive mode. */
400 spinlock_t mcastlock; /* SMP lock multicast updates. */
401 u16 mcast_filter[4];
402 /* MII transceiver section. */
403 struct mii_if_info mii_if;
404 int mii_preamble_required;
405 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
406 struct pci_dev *pci_dev;
407 void __iomem *base;
408 spinlock_t statlock;
409 };
410
411 /* The station address location in the EEPROM. */
412 #define EEPROM_SA_OFFSET 0x10
413 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
414 IntrDrvRqst | IntrTxDone | StatsMax | \
415 LinkChange)
416
417 static int change_mtu(struct net_device *dev, int new_mtu);
418 static int eeprom_read(void __iomem *ioaddr, int location);
419 static int mdio_read(struct net_device *dev, int phy_id, int location);
420 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
421 static int mdio_wait_link(struct net_device *dev, int wait);
422 static int netdev_open(struct net_device *dev);
423 static void check_duplex(struct net_device *dev);
424 static void netdev_timer(unsigned long data);
425 static void tx_timeout(struct net_device *dev);
426 static void init_ring(struct net_device *dev);
427 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
428 static int reset_tx (struct net_device *dev);
429 static irqreturn_t intr_handler(int irq, void *dev_instance);
430 static void rx_poll(unsigned long data);
431 static void tx_poll(unsigned long data);
432 static void refill_rx (struct net_device *dev);
433 static void netdev_error(struct net_device *dev, int intr_status);
434 static void netdev_error(struct net_device *dev, int intr_status);
435 static void set_rx_mode(struct net_device *dev);
436 static int __set_mac_addr(struct net_device *dev);
437 static int sundance_set_mac_addr(struct net_device *dev, void *data);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static int netdev_close(struct net_device *dev);
441 static const struct ethtool_ops ethtool_ops;
442
443 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
444 {
445 struct netdev_private *np = netdev_priv(dev);
446 void __iomem *ioaddr = np->base + ASICCtrl;
447 int countdown;
448
449 /* ST201 documentation states ASICCtrl is a 32bit register */
450 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
451 /* ST201 documentation states reset can take up to 1 ms */
452 countdown = 10 + 1;
453 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
454 if (--countdown == 0) {
455 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
456 break;
457 }
458 udelay(100);
459 }
460 }
461
462 static const struct net_device_ops netdev_ops = {
463 .ndo_open = netdev_open,
464 .ndo_stop = netdev_close,
465 .ndo_start_xmit = start_tx,
466 .ndo_get_stats = get_stats,
467 .ndo_set_rx_mode = set_rx_mode,
468 .ndo_do_ioctl = netdev_ioctl,
469 .ndo_tx_timeout = tx_timeout,
470 .ndo_change_mtu = change_mtu,
471 .ndo_set_mac_address = sundance_set_mac_addr,
472 .ndo_validate_addr = eth_validate_addr,
473 };
474
475 static int __devinit sundance_probe1 (struct pci_dev *pdev,
476 const struct pci_device_id *ent)
477 {
478 struct net_device *dev;
479 struct netdev_private *np;
480 static int card_idx;
481 int chip_idx = ent->driver_data;
482 int irq;
483 int i;
484 void __iomem *ioaddr;
485 u16 mii_ctl;
486 void *ring_space;
487 dma_addr_t ring_dma;
488 #ifdef USE_IO_OPS
489 int bar = 0;
490 #else
491 int bar = 1;
492 #endif
493 int phy, phy_end, phy_idx = 0;
494
495 /* when built into the kernel, we only print version if device is found */
496 #ifndef MODULE
497 static int printed_version;
498 if (!printed_version++)
499 printk(version);
500 #endif
501
502 if (pci_enable_device(pdev))
503 return -EIO;
504 pci_set_master(pdev);
505
506 irq = pdev->irq;
507
508 dev = alloc_etherdev(sizeof(*np));
509 if (!dev)
510 return -ENOMEM;
511 SET_NETDEV_DEV(dev, &pdev->dev);
512
513 if (pci_request_regions(pdev, DRV_NAME))
514 goto err_out_netdev;
515
516 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
517 if (!ioaddr)
518 goto err_out_res;
519
520 for (i = 0; i < 3; i++)
521 ((__le16 *)dev->dev_addr)[i] =
522 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
523 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
524
525 np = netdev_priv(dev);
526 np->base = ioaddr;
527 np->pci_dev = pdev;
528 np->chip_id = chip_idx;
529 np->msg_enable = (1 << debug) - 1;
530 spin_lock_init(&np->lock);
531 spin_lock_init(&np->statlock);
532 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
533 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
534
535 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
536 &ring_dma, GFP_KERNEL);
537 if (!ring_space)
538 goto err_out_cleardev;
539 np->tx_ring = (struct netdev_desc *)ring_space;
540 np->tx_ring_dma = ring_dma;
541
542 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
543 &ring_dma, GFP_KERNEL);
544 if (!ring_space)
545 goto err_out_unmap_tx;
546 np->rx_ring = (struct netdev_desc *)ring_space;
547 np->rx_ring_dma = ring_dma;
548
549 np->mii_if.dev = dev;
550 np->mii_if.mdio_read = mdio_read;
551 np->mii_if.mdio_write = mdio_write;
552 np->mii_if.phy_id_mask = 0x1f;
553 np->mii_if.reg_num_mask = 0x1f;
554
555 /* The chip-specific entries in the device structure. */
556 dev->netdev_ops = &netdev_ops;
557 SET_ETHTOOL_OPS(dev, &ethtool_ops);
558 dev->watchdog_timeo = TX_TIMEOUT;
559
560 pci_set_drvdata(pdev, dev);
561
562 i = register_netdev(dev);
563 if (i)
564 goto err_out_unmap_rx;
565
566 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
567 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
568 dev->dev_addr, irq);
569
570 np->phys[0] = 1; /* Default setting */
571 np->mii_preamble_required++;
572
573 /*
574 * It seems some phys doesn't deal well with address 0 being accessed
575 * first
576 */
577 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
578 phy = 0;
579 phy_end = 31;
580 } else {
581 phy = 1;
582 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
583 }
584 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
585 int phyx = phy & 0x1f;
586 int mii_status = mdio_read(dev, phyx, MII_BMSR);
587 if (mii_status != 0xffff && mii_status != 0x0000) {
588 np->phys[phy_idx++] = phyx;
589 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
590 if ((mii_status & 0x0040) == 0)
591 np->mii_preamble_required++;
592 printk(KERN_INFO "%s: MII PHY found at address %d, status "
593 "0x%4.4x advertising %4.4x.\n",
594 dev->name, phyx, mii_status, np->mii_if.advertising);
595 }
596 }
597 np->mii_preamble_required--;
598
599 if (phy_idx == 0) {
600 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
601 dev->name, ioread32(ioaddr + ASICCtrl));
602 goto err_out_unregister;
603 }
604
605 np->mii_if.phy_id = np->phys[0];
606
607 /* Parse override configuration */
608 np->an_enable = 1;
609 if (card_idx < MAX_UNITS) {
610 if (media[card_idx] != NULL) {
611 np->an_enable = 0;
612 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
613 strcmp (media[card_idx], "4") == 0) {
614 np->speed = 100;
615 np->mii_if.full_duplex = 1;
616 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
617 strcmp (media[card_idx], "3") == 0) {
618 np->speed = 100;
619 np->mii_if.full_duplex = 0;
620 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
621 strcmp (media[card_idx], "2") == 0) {
622 np->speed = 10;
623 np->mii_if.full_duplex = 1;
624 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
625 strcmp (media[card_idx], "1") == 0) {
626 np->speed = 10;
627 np->mii_if.full_duplex = 0;
628 } else {
629 np->an_enable = 1;
630 }
631 }
632 if (flowctrl == 1)
633 np->flowctrl = 1;
634 }
635
636 /* Fibre PHY? */
637 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
638 /* Default 100Mbps Full */
639 if (np->an_enable) {
640 np->speed = 100;
641 np->mii_if.full_duplex = 1;
642 np->an_enable = 0;
643 }
644 }
645 /* Reset PHY */
646 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
647 mdelay (300);
648 /* If flow control enabled, we need to advertise it.*/
649 if (np->flowctrl)
650 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
651 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
652 /* Force media type */
653 if (!np->an_enable) {
654 mii_ctl = 0;
655 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
656 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
657 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
658 printk (KERN_INFO "Override speed=%d, %s duplex\n",
659 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
660
661 }
662
663 /* Perhaps move the reset here? */
664 /* Reset the chip to erase previous misconfiguration. */
665 if (netif_msg_hw(np))
666 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
667 sundance_reset(dev, 0x00ff << 16);
668 if (netif_msg_hw(np))
669 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
670
671 card_idx++;
672 return 0;
673
674 err_out_unregister:
675 unregister_netdev(dev);
676 err_out_unmap_rx:
677 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
678 np->rx_ring, np->rx_ring_dma);
679 err_out_unmap_tx:
680 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
681 np->tx_ring, np->tx_ring_dma);
682 err_out_cleardev:
683 pci_set_drvdata(pdev, NULL);
684 pci_iounmap(pdev, ioaddr);
685 err_out_res:
686 pci_release_regions(pdev);
687 err_out_netdev:
688 free_netdev (dev);
689 return -ENODEV;
690 }
691
692 static int change_mtu(struct net_device *dev, int new_mtu)
693 {
694 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
695 return -EINVAL;
696 if (netif_running(dev))
697 return -EBUSY;
698 dev->mtu = new_mtu;
699 return 0;
700 }
701
702 #define eeprom_delay(ee_addr) ioread32(ee_addr)
703 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
704 static int __devinit eeprom_read(void __iomem *ioaddr, int location)
705 {
706 int boguscnt = 10000; /* Typical 1900 ticks. */
707 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
708 do {
709 eeprom_delay(ioaddr + EECtrl);
710 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
711 return ioread16(ioaddr + EEData);
712 }
713 } while (--boguscnt > 0);
714 return 0;
715 }
716
717 /* MII transceiver control section.
718 Read and write the MII registers using software-generated serial
719 MDIO protocol. See the MII specifications or DP83840A data sheet
720 for details.
721
722 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
723 met by back-to-back 33Mhz PCI cycles. */
724 #define mdio_delay() ioread8(mdio_addr)
725
726 enum mii_reg_bits {
727 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
728 };
729 #define MDIO_EnbIn (0)
730 #define MDIO_WRITE0 (MDIO_EnbOutput)
731 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
732
733 /* Generate the preamble required for initial synchronization and
734 a few older transceivers. */
735 static void mdio_sync(void __iomem *mdio_addr)
736 {
737 int bits = 32;
738
739 /* Establish sync by sending at least 32 logic ones. */
740 while (--bits >= 0) {
741 iowrite8(MDIO_WRITE1, mdio_addr);
742 mdio_delay();
743 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
744 mdio_delay();
745 }
746 }
747
748 static int mdio_read(struct net_device *dev, int phy_id, int location)
749 {
750 struct netdev_private *np = netdev_priv(dev);
751 void __iomem *mdio_addr = np->base + MIICtrl;
752 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
753 int i, retval = 0;
754
755 if (np->mii_preamble_required)
756 mdio_sync(mdio_addr);
757
758 /* Shift the read command bits out. */
759 for (i = 15; i >= 0; i--) {
760 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
761
762 iowrite8(dataval, mdio_addr);
763 mdio_delay();
764 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
765 mdio_delay();
766 }
767 /* Read the two transition, 16 data, and wire-idle bits. */
768 for (i = 19; i > 0; i--) {
769 iowrite8(MDIO_EnbIn, mdio_addr);
770 mdio_delay();
771 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
772 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
773 mdio_delay();
774 }
775 return (retval>>1) & 0xffff;
776 }
777
778 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
779 {
780 struct netdev_private *np = netdev_priv(dev);
781 void __iomem *mdio_addr = np->base + MIICtrl;
782 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
783 int i;
784
785 if (np->mii_preamble_required)
786 mdio_sync(mdio_addr);
787
788 /* Shift the command bits out. */
789 for (i = 31; i >= 0; i--) {
790 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
791
792 iowrite8(dataval, mdio_addr);
793 mdio_delay();
794 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
795 mdio_delay();
796 }
797 /* Clear out extra bits. */
798 for (i = 2; i > 0; i--) {
799 iowrite8(MDIO_EnbIn, mdio_addr);
800 mdio_delay();
801 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
802 mdio_delay();
803 }
804 }
805
806 static int mdio_wait_link(struct net_device *dev, int wait)
807 {
808 int bmsr;
809 int phy_id;
810 struct netdev_private *np;
811
812 np = netdev_priv(dev);
813 phy_id = np->phys[0];
814
815 do {
816 bmsr = mdio_read(dev, phy_id, MII_BMSR);
817 if (bmsr & 0x0004)
818 return 0;
819 mdelay(1);
820 } while (--wait > 0);
821 return -1;
822 }
823
824 static int netdev_open(struct net_device *dev)
825 {
826 struct netdev_private *np = netdev_priv(dev);
827 void __iomem *ioaddr = np->base;
828 const int irq = np->pci_dev->irq;
829 unsigned long flags;
830 int i;
831
832 /* Do we need to reset the chip??? */
833
834 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
835 if (i)
836 return i;
837
838 if (netif_msg_ifup(np))
839 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
840
841 init_ring(dev);
842
843 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
844 /* The Tx list pointer is written as packets are queued. */
845
846 /* Initialize other registers. */
847 __set_mac_addr(dev);
848 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
849 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
850 #else
851 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
852 #endif
853 if (dev->mtu > 2047)
854 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
855
856 /* Configure the PCI bus bursts and FIFO thresholds. */
857
858 if (dev->if_port == 0)
859 dev->if_port = np->default_port;
860
861 spin_lock_init(&np->mcastlock);
862
863 set_rx_mode(dev);
864 iowrite16(0, ioaddr + IntrEnable);
865 iowrite16(0, ioaddr + DownCounter);
866 /* Set the chip to poll every N*320nsec. */
867 iowrite8(100, ioaddr + RxDMAPollPeriod);
868 iowrite8(127, ioaddr + TxDMAPollPeriod);
869 /* Fix DFE-580TX packet drop issue */
870 if (np->pci_dev->revision >= 0x14)
871 iowrite8(0x01, ioaddr + DebugCtrl1);
872 netif_start_queue(dev);
873
874 spin_lock_irqsave(&np->lock, flags);
875 reset_tx(dev);
876 spin_unlock_irqrestore(&np->lock, flags);
877
878 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
879
880 if (netif_msg_ifup(np))
881 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
882 "MAC Control %x, %4.4x %4.4x.\n",
883 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
884 ioread32(ioaddr + MACCtrl0),
885 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
886
887 /* Set the timer to check for link beat. */
888 init_timer(&np->timer);
889 np->timer.expires = jiffies + 3*HZ;
890 np->timer.data = (unsigned long)dev;
891 np->timer.function = netdev_timer; /* timer handler */
892 add_timer(&np->timer);
893
894 /* Enable interrupts by setting the interrupt mask. */
895 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
896
897 return 0;
898 }
899
900 static void check_duplex(struct net_device *dev)
901 {
902 struct netdev_private *np = netdev_priv(dev);
903 void __iomem *ioaddr = np->base;
904 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
905 int negotiated = mii_lpa & np->mii_if.advertising;
906 int duplex;
907
908 /* Force media */
909 if (!np->an_enable || mii_lpa == 0xffff) {
910 if (np->mii_if.full_duplex)
911 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
912 ioaddr + MACCtrl0);
913 return;
914 }
915
916 /* Autonegotiation */
917 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
918 if (np->mii_if.full_duplex != duplex) {
919 np->mii_if.full_duplex = duplex;
920 if (netif_msg_link(np))
921 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
922 "negotiated capability %4.4x.\n", dev->name,
923 duplex ? "full" : "half", np->phys[0], negotiated);
924 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
925 }
926 }
927
928 static void netdev_timer(unsigned long data)
929 {
930 struct net_device *dev = (struct net_device *)data;
931 struct netdev_private *np = netdev_priv(dev);
932 void __iomem *ioaddr = np->base;
933 int next_tick = 10*HZ;
934
935 if (netif_msg_timer(np)) {
936 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
937 "Tx %x Rx %x.\n",
938 dev->name, ioread16(ioaddr + IntrEnable),
939 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
940 }
941 check_duplex(dev);
942 np->timer.expires = jiffies + next_tick;
943 add_timer(&np->timer);
944 }
945
946 static void tx_timeout(struct net_device *dev)
947 {
948 struct netdev_private *np = netdev_priv(dev);
949 void __iomem *ioaddr = np->base;
950 unsigned long flag;
951
952 netif_stop_queue(dev);
953 tasklet_disable(&np->tx_tasklet);
954 iowrite16(0, ioaddr + IntrEnable);
955 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
956 "TxFrameId %2.2x,"
957 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
958 ioread8(ioaddr + TxFrameId));
959
960 {
961 int i;
962 for (i=0; i<TX_RING_SIZE; i++) {
963 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
964 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
965 le32_to_cpu(np->tx_ring[i].next_desc),
966 le32_to_cpu(np->tx_ring[i].status),
967 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
968 le32_to_cpu(np->tx_ring[i].frag[0].addr),
969 le32_to_cpu(np->tx_ring[i].frag[0].length));
970 }
971 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
972 ioread32(np->base + TxListPtr),
973 netif_queue_stopped(dev));
974 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
975 np->cur_tx, np->cur_tx % TX_RING_SIZE,
976 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
977 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
978 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
979 }
980 spin_lock_irqsave(&np->lock, flag);
981
982 /* Stop and restart the chip's Tx processes . */
983 reset_tx(dev);
984 spin_unlock_irqrestore(&np->lock, flag);
985
986 dev->if_port = 0;
987
988 dev->trans_start = jiffies; /* prevent tx timeout */
989 dev->stats.tx_errors++;
990 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
991 netif_wake_queue(dev);
992 }
993 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
994 tasklet_enable(&np->tx_tasklet);
995 }
996
997
998 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
999 static void init_ring(struct net_device *dev)
1000 {
1001 struct netdev_private *np = netdev_priv(dev);
1002 int i;
1003
1004 np->cur_rx = np->cur_tx = 0;
1005 np->dirty_rx = np->dirty_tx = 0;
1006 np->cur_task = 0;
1007
1008 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1009
1010 /* Initialize all Rx descriptors. */
1011 for (i = 0; i < RX_RING_SIZE; i++) {
1012 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1013 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1014 np->rx_ring[i].status = 0;
1015 np->rx_ring[i].frag[0].length = 0;
1016 np->rx_skbuff[i] = NULL;
1017 }
1018
1019 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1020 for (i = 0; i < RX_RING_SIZE; i++) {
1021 struct sk_buff *skb =
1022 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1023 np->rx_skbuff[i] = skb;
1024 if (skb == NULL)
1025 break;
1026 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1027 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1028 dma_map_single(&np->pci_dev->dev, skb->data,
1029 np->rx_buf_sz, DMA_FROM_DEVICE));
1030 if (dma_mapping_error(&np->pci_dev->dev,
1031 np->rx_ring[i].frag[0].addr)) {
1032 dev_kfree_skb(skb);
1033 np->rx_skbuff[i] = NULL;
1034 break;
1035 }
1036 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1037 }
1038 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1039
1040 for (i = 0; i < TX_RING_SIZE; i++) {
1041 np->tx_skbuff[i] = NULL;
1042 np->tx_ring[i].status = 0;
1043 }
1044 }
1045
1046 static void tx_poll (unsigned long data)
1047 {
1048 struct net_device *dev = (struct net_device *)data;
1049 struct netdev_private *np = netdev_priv(dev);
1050 unsigned head = np->cur_task % TX_RING_SIZE;
1051 struct netdev_desc *txdesc =
1052 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1053
1054 /* Chain the next pointer */
1055 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1056 int entry = np->cur_task % TX_RING_SIZE;
1057 txdesc = &np->tx_ring[entry];
1058 if (np->last_tx) {
1059 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1060 entry*sizeof(struct netdev_desc));
1061 }
1062 np->last_tx = txdesc;
1063 }
1064 /* Indicate the latest descriptor of tx ring */
1065 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1066
1067 if (ioread32 (np->base + TxListPtr) == 0)
1068 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1069 np->base + TxListPtr);
1070 }
1071
1072 static netdev_tx_t
1073 start_tx (struct sk_buff *skb, struct net_device *dev)
1074 {
1075 struct netdev_private *np = netdev_priv(dev);
1076 struct netdev_desc *txdesc;
1077 unsigned entry;
1078
1079 /* Calculate the next Tx descriptor entry. */
1080 entry = np->cur_tx % TX_RING_SIZE;
1081 np->tx_skbuff[entry] = skb;
1082 txdesc = &np->tx_ring[entry];
1083
1084 txdesc->next_desc = 0;
1085 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1086 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1087 skb->data, skb->len, DMA_TO_DEVICE));
1088 if (dma_mapping_error(&np->pci_dev->dev,
1089 txdesc->frag[0].addr))
1090 goto drop_frame;
1091 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1092
1093 /* Increment cur_tx before tasklet_schedule() */
1094 np->cur_tx++;
1095 mb();
1096 /* Schedule a tx_poll() task */
1097 tasklet_schedule(&np->tx_tasklet);
1098
1099 /* On some architectures: explicitly flush cache lines here. */
1100 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1101 !netif_queue_stopped(dev)) {
1102 /* do nothing */
1103 } else {
1104 netif_stop_queue (dev);
1105 }
1106 if (netif_msg_tx_queued(np)) {
1107 printk (KERN_DEBUG
1108 "%s: Transmit frame #%d queued in slot %d.\n",
1109 dev->name, np->cur_tx, entry);
1110 }
1111 return NETDEV_TX_OK;
1112
1113 drop_frame:
1114 dev_kfree_skb(skb);
1115 np->tx_skbuff[entry] = NULL;
1116 dev->stats.tx_dropped++;
1117 return NETDEV_TX_OK;
1118 }
1119
1120 /* Reset hardware tx and free all of tx buffers */
1121 static int
1122 reset_tx (struct net_device *dev)
1123 {
1124 struct netdev_private *np = netdev_priv(dev);
1125 void __iomem *ioaddr = np->base;
1126 struct sk_buff *skb;
1127 int i;
1128
1129 /* Reset tx logic, TxListPtr will be cleaned */
1130 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1131 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1132
1133 /* free all tx skbuff */
1134 for (i = 0; i < TX_RING_SIZE; i++) {
1135 np->tx_ring[i].next_desc = 0;
1136
1137 skb = np->tx_skbuff[i];
1138 if (skb) {
1139 dma_unmap_single(&np->pci_dev->dev,
1140 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1141 skb->len, DMA_TO_DEVICE);
1142 dev_kfree_skb_any(skb);
1143 np->tx_skbuff[i] = NULL;
1144 dev->stats.tx_dropped++;
1145 }
1146 }
1147 np->cur_tx = np->dirty_tx = 0;
1148 np->cur_task = 0;
1149
1150 np->last_tx = NULL;
1151 iowrite8(127, ioaddr + TxDMAPollPeriod);
1152
1153 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1154 return 0;
1155 }
1156
1157 /* The interrupt handler cleans up after the Tx thread,
1158 and schedule a Rx thread work */
1159 static irqreturn_t intr_handler(int irq, void *dev_instance)
1160 {
1161 struct net_device *dev = (struct net_device *)dev_instance;
1162 struct netdev_private *np = netdev_priv(dev);
1163 void __iomem *ioaddr = np->base;
1164 int hw_frame_id;
1165 int tx_cnt;
1166 int tx_status;
1167 int handled = 0;
1168 int i;
1169
1170
1171 do {
1172 int intr_status = ioread16(ioaddr + IntrStatus);
1173 iowrite16(intr_status, ioaddr + IntrStatus);
1174
1175 if (netif_msg_intr(np))
1176 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1177 dev->name, intr_status);
1178
1179 if (!(intr_status & DEFAULT_INTR))
1180 break;
1181
1182 handled = 1;
1183
1184 if (intr_status & (IntrRxDMADone)) {
1185 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1186 ioaddr + IntrEnable);
1187 if (np->budget < 0)
1188 np->budget = RX_BUDGET;
1189 tasklet_schedule(&np->rx_tasklet);
1190 }
1191 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1192 tx_status = ioread16 (ioaddr + TxStatus);
1193 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1194 if (netif_msg_tx_done(np))
1195 printk
1196 ("%s: Transmit status is %2.2x.\n",
1197 dev->name, tx_status);
1198 if (tx_status & 0x1e) {
1199 if (netif_msg_tx_err(np))
1200 printk("%s: Transmit error status %4.4x.\n",
1201 dev->name, tx_status);
1202 dev->stats.tx_errors++;
1203 if (tx_status & 0x10)
1204 dev->stats.tx_fifo_errors++;
1205 if (tx_status & 0x08)
1206 dev->stats.collisions++;
1207 if (tx_status & 0x04)
1208 dev->stats.tx_fifo_errors++;
1209 if (tx_status & 0x02)
1210 dev->stats.tx_window_errors++;
1211
1212 /*
1213 ** This reset has been verified on
1214 ** DFE-580TX boards ! phdm@macqel.be.
1215 */
1216 if (tx_status & 0x10) { /* TxUnderrun */
1217 /* Restart Tx FIFO and transmitter */
1218 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1219 /* No need to reset the Tx pointer here */
1220 }
1221 /* Restart the Tx. Need to make sure tx enabled */
1222 i = 10;
1223 do {
1224 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1225 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1226 break;
1227 mdelay(1);
1228 } while (--i);
1229 }
1230 /* Yup, this is a documentation bug. It cost me *hours*. */
1231 iowrite16 (0, ioaddr + TxStatus);
1232 if (tx_cnt < 0) {
1233 iowrite32(5000, ioaddr + DownCounter);
1234 break;
1235 }
1236 tx_status = ioread16 (ioaddr + TxStatus);
1237 }
1238 hw_frame_id = (tx_status >> 8) & 0xff;
1239 } else {
1240 hw_frame_id = ioread8(ioaddr + TxFrameId);
1241 }
1242
1243 if (np->pci_dev->revision >= 0x14) {
1244 spin_lock(&np->lock);
1245 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1246 int entry = np->dirty_tx % TX_RING_SIZE;
1247 struct sk_buff *skb;
1248 int sw_frame_id;
1249 sw_frame_id = (le32_to_cpu(
1250 np->tx_ring[entry].status) >> 2) & 0xff;
1251 if (sw_frame_id == hw_frame_id &&
1252 !(le32_to_cpu(np->tx_ring[entry].status)
1253 & 0x00010000))
1254 break;
1255 if (sw_frame_id == (hw_frame_id + 1) %
1256 TX_RING_SIZE)
1257 break;
1258 skb = np->tx_skbuff[entry];
1259 /* Free the original skb. */
1260 dma_unmap_single(&np->pci_dev->dev,
1261 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1262 skb->len, DMA_TO_DEVICE);
1263 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1264 np->tx_skbuff[entry] = NULL;
1265 np->tx_ring[entry].frag[0].addr = 0;
1266 np->tx_ring[entry].frag[0].length = 0;
1267 }
1268 spin_unlock(&np->lock);
1269 } else {
1270 spin_lock(&np->lock);
1271 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1272 int entry = np->dirty_tx % TX_RING_SIZE;
1273 struct sk_buff *skb;
1274 if (!(le32_to_cpu(np->tx_ring[entry].status)
1275 & 0x00010000))
1276 break;
1277 skb = np->tx_skbuff[entry];
1278 /* Free the original skb. */
1279 dma_unmap_single(&np->pci_dev->dev,
1280 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1281 skb->len, DMA_TO_DEVICE);
1282 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1283 np->tx_skbuff[entry] = NULL;
1284 np->tx_ring[entry].frag[0].addr = 0;
1285 np->tx_ring[entry].frag[0].length = 0;
1286 }
1287 spin_unlock(&np->lock);
1288 }
1289
1290 if (netif_queue_stopped(dev) &&
1291 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1292 /* The ring is no longer full, clear busy flag. */
1293 netif_wake_queue (dev);
1294 }
1295 /* Abnormal error summary/uncommon events handlers. */
1296 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1297 netdev_error(dev, intr_status);
1298 } while (0);
1299 if (netif_msg_intr(np))
1300 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1301 dev->name, ioread16(ioaddr + IntrStatus));
1302 return IRQ_RETVAL(handled);
1303 }
1304
1305 static void rx_poll(unsigned long data)
1306 {
1307 struct net_device *dev = (struct net_device *)data;
1308 struct netdev_private *np = netdev_priv(dev);
1309 int entry = np->cur_rx % RX_RING_SIZE;
1310 int boguscnt = np->budget;
1311 void __iomem *ioaddr = np->base;
1312 int received = 0;
1313
1314 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1315 while (1) {
1316 struct netdev_desc *desc = &(np->rx_ring[entry]);
1317 u32 frame_status = le32_to_cpu(desc->status);
1318 int pkt_len;
1319
1320 if (--boguscnt < 0) {
1321 goto not_done;
1322 }
1323 if (!(frame_status & DescOwn))
1324 break;
1325 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1326 if (netif_msg_rx_status(np))
1327 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1328 frame_status);
1329 if (frame_status & 0x001f4000) {
1330 /* There was a error. */
1331 if (netif_msg_rx_err(np))
1332 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1333 frame_status);
1334 dev->stats.rx_errors++;
1335 if (frame_status & 0x00100000)
1336 dev->stats.rx_length_errors++;
1337 if (frame_status & 0x00010000)
1338 dev->stats.rx_fifo_errors++;
1339 if (frame_status & 0x00060000)
1340 dev->stats.rx_frame_errors++;
1341 if (frame_status & 0x00080000)
1342 dev->stats.rx_crc_errors++;
1343 if (frame_status & 0x00100000) {
1344 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1345 " status %8.8x.\n",
1346 dev->name, frame_status);
1347 }
1348 } else {
1349 struct sk_buff *skb;
1350 #ifndef final_version
1351 if (netif_msg_rx_status(np))
1352 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1353 ", bogus_cnt %d.\n",
1354 pkt_len, boguscnt);
1355 #endif
1356 /* Check if the packet is long enough to accept without copying
1357 to a minimally-sized skbuff. */
1358 if (pkt_len < rx_copybreak &&
1359 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1360 skb_reserve(skb, 2); /* 16 byte align the IP header */
1361 dma_sync_single_for_cpu(&np->pci_dev->dev,
1362 le32_to_cpu(desc->frag[0].addr),
1363 np->rx_buf_sz, DMA_FROM_DEVICE);
1364 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1365 dma_sync_single_for_device(&np->pci_dev->dev,
1366 le32_to_cpu(desc->frag[0].addr),
1367 np->rx_buf_sz, DMA_FROM_DEVICE);
1368 skb_put(skb, pkt_len);
1369 } else {
1370 dma_unmap_single(&np->pci_dev->dev,
1371 le32_to_cpu(desc->frag[0].addr),
1372 np->rx_buf_sz, DMA_FROM_DEVICE);
1373 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1374 np->rx_skbuff[entry] = NULL;
1375 }
1376 skb->protocol = eth_type_trans(skb, dev);
1377 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1378 netif_rx(skb);
1379 }
1380 entry = (entry + 1) % RX_RING_SIZE;
1381 received++;
1382 }
1383 np->cur_rx = entry;
1384 refill_rx (dev);
1385 np->budget -= received;
1386 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1387 return;
1388
1389 not_done:
1390 np->cur_rx = entry;
1391 refill_rx (dev);
1392 if (!received)
1393 received = 1;
1394 np->budget -= received;
1395 if (np->budget <= 0)
1396 np->budget = RX_BUDGET;
1397 tasklet_schedule(&np->rx_tasklet);
1398 }
1399
1400 static void refill_rx (struct net_device *dev)
1401 {
1402 struct netdev_private *np = netdev_priv(dev);
1403 int entry;
1404 int cnt = 0;
1405
1406 /* Refill the Rx ring buffers. */
1407 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1408 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1409 struct sk_buff *skb;
1410 entry = np->dirty_rx % RX_RING_SIZE;
1411 if (np->rx_skbuff[entry] == NULL) {
1412 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1413 np->rx_skbuff[entry] = skb;
1414 if (skb == NULL)
1415 break; /* Better luck next round. */
1416 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1417 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1418 dma_map_single(&np->pci_dev->dev, skb->data,
1419 np->rx_buf_sz, DMA_FROM_DEVICE));
1420 if (dma_mapping_error(&np->pci_dev->dev,
1421 np->rx_ring[entry].frag[0].addr)) {
1422 dev_kfree_skb_irq(skb);
1423 np->rx_skbuff[entry] = NULL;
1424 break;
1425 }
1426 }
1427 /* Perhaps we need not reset this field. */
1428 np->rx_ring[entry].frag[0].length =
1429 cpu_to_le32(np->rx_buf_sz | LastFrag);
1430 np->rx_ring[entry].status = 0;
1431 cnt++;
1432 }
1433 }
1434 static void netdev_error(struct net_device *dev, int intr_status)
1435 {
1436 struct netdev_private *np = netdev_priv(dev);
1437 void __iomem *ioaddr = np->base;
1438 u16 mii_ctl, mii_advertise, mii_lpa;
1439 int speed;
1440
1441 if (intr_status & LinkChange) {
1442 if (mdio_wait_link(dev, 10) == 0) {
1443 printk(KERN_INFO "%s: Link up\n", dev->name);
1444 if (np->an_enable) {
1445 mii_advertise = mdio_read(dev, np->phys[0],
1446 MII_ADVERTISE);
1447 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1448 mii_advertise &= mii_lpa;
1449 printk(KERN_INFO "%s: Link changed: ",
1450 dev->name);
1451 if (mii_advertise & ADVERTISE_100FULL) {
1452 np->speed = 100;
1453 printk("100Mbps, full duplex\n");
1454 } else if (mii_advertise & ADVERTISE_100HALF) {
1455 np->speed = 100;
1456 printk("100Mbps, half duplex\n");
1457 } else if (mii_advertise & ADVERTISE_10FULL) {
1458 np->speed = 10;
1459 printk("10Mbps, full duplex\n");
1460 } else if (mii_advertise & ADVERTISE_10HALF) {
1461 np->speed = 10;
1462 printk("10Mbps, half duplex\n");
1463 } else
1464 printk("\n");
1465
1466 } else {
1467 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1468 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1469 np->speed = speed;
1470 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1471 dev->name, speed);
1472 printk("%s duplex.\n",
1473 (mii_ctl & BMCR_FULLDPLX) ?
1474 "full" : "half");
1475 }
1476 check_duplex(dev);
1477 if (np->flowctrl && np->mii_if.full_duplex) {
1478 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1479 ioaddr + MulticastFilter1+2);
1480 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1481 ioaddr + MACCtrl0);
1482 }
1483 netif_carrier_on(dev);
1484 } else {
1485 printk(KERN_INFO "%s: Link down\n", dev->name);
1486 netif_carrier_off(dev);
1487 }
1488 }
1489 if (intr_status & StatsMax) {
1490 get_stats(dev);
1491 }
1492 if (intr_status & IntrPCIErr) {
1493 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1494 dev->name, intr_status);
1495 /* We must do a global reset of DMA to continue. */
1496 }
1497 }
1498
1499 static struct net_device_stats *get_stats(struct net_device *dev)
1500 {
1501 struct netdev_private *np = netdev_priv(dev);
1502 void __iomem *ioaddr = np->base;
1503 unsigned long flags;
1504 u8 late_coll, single_coll, mult_coll;
1505
1506 spin_lock_irqsave(&np->statlock, flags);
1507 /* The chip only need report frame silently dropped. */
1508 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1509 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1510 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1511 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1512
1513 mult_coll = ioread8(ioaddr + StatsMultiColl);
1514 np->xstats.tx_multiple_collisions += mult_coll;
1515 single_coll = ioread8(ioaddr + StatsOneColl);
1516 np->xstats.tx_single_collisions += single_coll;
1517 late_coll = ioread8(ioaddr + StatsLateColl);
1518 np->xstats.tx_late_collisions += late_coll;
1519 dev->stats.collisions += mult_coll
1520 + single_coll
1521 + late_coll;
1522
1523 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1524 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1525 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1526 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1527 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1528 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1529 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1530
1531 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1532 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1533 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1534 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1535
1536 spin_unlock_irqrestore(&np->statlock, flags);
1537
1538 return &dev->stats;
1539 }
1540
1541 static void set_rx_mode(struct net_device *dev)
1542 {
1543 struct netdev_private *np = netdev_priv(dev);
1544 void __iomem *ioaddr = np->base;
1545 u16 mc_filter[4]; /* Multicast hash filter */
1546 u32 rx_mode;
1547 int i;
1548
1549 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1550 memset(mc_filter, 0xff, sizeof(mc_filter));
1551 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1552 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1553 (dev->flags & IFF_ALLMULTI)) {
1554 /* Too many to match, or accept all multicasts. */
1555 memset(mc_filter, 0xff, sizeof(mc_filter));
1556 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1557 } else if (!netdev_mc_empty(dev)) {
1558 struct netdev_hw_addr *ha;
1559 int bit;
1560 int index;
1561 int crc;
1562 memset (mc_filter, 0, sizeof (mc_filter));
1563 netdev_for_each_mc_addr(ha, dev) {
1564 crc = ether_crc_le(ETH_ALEN, ha->addr);
1565 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1566 if (crc & 0x80000000) index |= 1 << bit;
1567 mc_filter[index/16] |= (1 << (index % 16));
1568 }
1569 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1570 } else {
1571 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1572 return;
1573 }
1574 if (np->mii_if.full_duplex && np->flowctrl)
1575 mc_filter[3] |= 0x0200;
1576
1577 for (i = 0; i < 4; i++)
1578 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1579 iowrite8(rx_mode, ioaddr + RxMode);
1580 }
1581
1582 static int __set_mac_addr(struct net_device *dev)
1583 {
1584 struct netdev_private *np = netdev_priv(dev);
1585 u16 addr16;
1586
1587 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1588 iowrite16(addr16, np->base + StationAddr);
1589 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1590 iowrite16(addr16, np->base + StationAddr+2);
1591 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1592 iowrite16(addr16, np->base + StationAddr+4);
1593 return 0;
1594 }
1595
1596 /* Invoked with rtnl_lock held */
1597 static int sundance_set_mac_addr(struct net_device *dev, void *data)
1598 {
1599 const struct sockaddr *addr = data;
1600
1601 if (!is_valid_ether_addr(addr->sa_data))
1602 return -EADDRNOTAVAIL;
1603 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1604 __set_mac_addr(dev);
1605
1606 return 0;
1607 }
1608
1609 static const struct {
1610 const char name[ETH_GSTRING_LEN];
1611 } sundance_stats[] = {
1612 { "tx_multiple_collisions" },
1613 { "tx_single_collisions" },
1614 { "tx_late_collisions" },
1615 { "tx_deferred" },
1616 { "tx_deferred_excessive" },
1617 { "tx_aborted" },
1618 { "tx_bcasts" },
1619 { "rx_bcasts" },
1620 { "tx_mcasts" },
1621 { "rx_mcasts" },
1622 };
1623
1624 static int check_if_running(struct net_device *dev)
1625 {
1626 if (!netif_running(dev))
1627 return -EINVAL;
1628 return 0;
1629 }
1630
1631 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1632 {
1633 struct netdev_private *np = netdev_priv(dev);
1634 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1635 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1636 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1637 }
1638
1639 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1640 {
1641 struct netdev_private *np = netdev_priv(dev);
1642 spin_lock_irq(&np->lock);
1643 mii_ethtool_gset(&np->mii_if, ecmd);
1644 spin_unlock_irq(&np->lock);
1645 return 0;
1646 }
1647
1648 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1649 {
1650 struct netdev_private *np = netdev_priv(dev);
1651 int res;
1652 spin_lock_irq(&np->lock);
1653 res = mii_ethtool_sset(&np->mii_if, ecmd);
1654 spin_unlock_irq(&np->lock);
1655 return res;
1656 }
1657
1658 static int nway_reset(struct net_device *dev)
1659 {
1660 struct netdev_private *np = netdev_priv(dev);
1661 return mii_nway_restart(&np->mii_if);
1662 }
1663
1664 static u32 get_link(struct net_device *dev)
1665 {
1666 struct netdev_private *np = netdev_priv(dev);
1667 return mii_link_ok(&np->mii_if);
1668 }
1669
1670 static u32 get_msglevel(struct net_device *dev)
1671 {
1672 struct netdev_private *np = netdev_priv(dev);
1673 return np->msg_enable;
1674 }
1675
1676 static void set_msglevel(struct net_device *dev, u32 val)
1677 {
1678 struct netdev_private *np = netdev_priv(dev);
1679 np->msg_enable = val;
1680 }
1681
1682 static void get_strings(struct net_device *dev, u32 stringset,
1683 u8 *data)
1684 {
1685 if (stringset == ETH_SS_STATS)
1686 memcpy(data, sundance_stats, sizeof(sundance_stats));
1687 }
1688
1689 static int get_sset_count(struct net_device *dev, int sset)
1690 {
1691 switch (sset) {
1692 case ETH_SS_STATS:
1693 return ARRAY_SIZE(sundance_stats);
1694 default:
1695 return -EOPNOTSUPP;
1696 }
1697 }
1698
1699 static void get_ethtool_stats(struct net_device *dev,
1700 struct ethtool_stats *stats, u64 *data)
1701 {
1702 struct netdev_private *np = netdev_priv(dev);
1703 int i = 0;
1704
1705 get_stats(dev);
1706 data[i++] = np->xstats.tx_multiple_collisions;
1707 data[i++] = np->xstats.tx_single_collisions;
1708 data[i++] = np->xstats.tx_late_collisions;
1709 data[i++] = np->xstats.tx_deferred;
1710 data[i++] = np->xstats.tx_deferred_excessive;
1711 data[i++] = np->xstats.tx_aborted;
1712 data[i++] = np->xstats.tx_bcasts;
1713 data[i++] = np->xstats.rx_bcasts;
1714 data[i++] = np->xstats.tx_mcasts;
1715 data[i++] = np->xstats.rx_mcasts;
1716 }
1717
1718 static const struct ethtool_ops ethtool_ops = {
1719 .begin = check_if_running,
1720 .get_drvinfo = get_drvinfo,
1721 .get_settings = get_settings,
1722 .set_settings = set_settings,
1723 .nway_reset = nway_reset,
1724 .get_link = get_link,
1725 .get_msglevel = get_msglevel,
1726 .set_msglevel = set_msglevel,
1727 .get_strings = get_strings,
1728 .get_sset_count = get_sset_count,
1729 .get_ethtool_stats = get_ethtool_stats,
1730 };
1731
1732 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1733 {
1734 struct netdev_private *np = netdev_priv(dev);
1735 int rc;
1736
1737 if (!netif_running(dev))
1738 return -EINVAL;
1739
1740 spin_lock_irq(&np->lock);
1741 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1742 spin_unlock_irq(&np->lock);
1743
1744 return rc;
1745 }
1746
1747 static int netdev_close(struct net_device *dev)
1748 {
1749 struct netdev_private *np = netdev_priv(dev);
1750 void __iomem *ioaddr = np->base;
1751 struct sk_buff *skb;
1752 int i;
1753
1754 /* Wait and kill tasklet */
1755 tasklet_kill(&np->rx_tasklet);
1756 tasklet_kill(&np->tx_tasklet);
1757 np->cur_tx = 0;
1758 np->dirty_tx = 0;
1759 np->cur_task = 0;
1760 np->last_tx = NULL;
1761
1762 netif_stop_queue(dev);
1763
1764 if (netif_msg_ifdown(np)) {
1765 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1766 "Rx %4.4x Int %2.2x.\n",
1767 dev->name, ioread8(ioaddr + TxStatus),
1768 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1769 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1770 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1771 }
1772
1773 /* Disable interrupts by clearing the interrupt mask. */
1774 iowrite16(0x0000, ioaddr + IntrEnable);
1775
1776 /* Disable Rx and Tx DMA for safely release resource */
1777 iowrite32(0x500, ioaddr + DMACtrl);
1778
1779 /* Stop the chip's Tx and Rx processes. */
1780 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1781
1782 for (i = 2000; i > 0; i--) {
1783 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1784 break;
1785 mdelay(1);
1786 }
1787
1788 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1789 ioaddr + ASIC_HI_WORD(ASICCtrl));
1790
1791 for (i = 2000; i > 0; i--) {
1792 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1793 break;
1794 mdelay(1);
1795 }
1796
1797 #ifdef __i386__
1798 if (netif_msg_hw(np)) {
1799 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1800 (int)(np->tx_ring_dma));
1801 for (i = 0; i < TX_RING_SIZE; i++)
1802 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1803 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1804 np->tx_ring[i].frag[0].length);
1805 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1806 (int)(np->rx_ring_dma));
1807 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1808 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1809 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1810 np->rx_ring[i].frag[0].length);
1811 }
1812 }
1813 #endif /* __i386__ debugging only */
1814
1815 free_irq(np->pci_dev->irq, dev);
1816
1817 del_timer_sync(&np->timer);
1818
1819 /* Free all the skbuffs in the Rx queue. */
1820 for (i = 0; i < RX_RING_SIZE; i++) {
1821 np->rx_ring[i].status = 0;
1822 skb = np->rx_skbuff[i];
1823 if (skb) {
1824 dma_unmap_single(&np->pci_dev->dev,
1825 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1826 np->rx_buf_sz, DMA_FROM_DEVICE);
1827 dev_kfree_skb(skb);
1828 np->rx_skbuff[i] = NULL;
1829 }
1830 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1831 }
1832 for (i = 0; i < TX_RING_SIZE; i++) {
1833 np->tx_ring[i].next_desc = 0;
1834 skb = np->tx_skbuff[i];
1835 if (skb) {
1836 dma_unmap_single(&np->pci_dev->dev,
1837 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1838 skb->len, DMA_TO_DEVICE);
1839 dev_kfree_skb(skb);
1840 np->tx_skbuff[i] = NULL;
1841 }
1842 }
1843
1844 return 0;
1845 }
1846
1847 static void __devexit sundance_remove1 (struct pci_dev *pdev)
1848 {
1849 struct net_device *dev = pci_get_drvdata(pdev);
1850
1851 if (dev) {
1852 struct netdev_private *np = netdev_priv(dev);
1853 unregister_netdev(dev);
1854 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1855 np->rx_ring, np->rx_ring_dma);
1856 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1857 np->tx_ring, np->tx_ring_dma);
1858 pci_iounmap(pdev, np->base);
1859 pci_release_regions(pdev);
1860 free_netdev(dev);
1861 pci_set_drvdata(pdev, NULL);
1862 }
1863 }
1864
1865 #ifdef CONFIG_PM
1866
1867 static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1868 {
1869 struct net_device *dev = pci_get_drvdata(pci_dev);
1870
1871 if (!netif_running(dev))
1872 return 0;
1873
1874 netdev_close(dev);
1875 netif_device_detach(dev);
1876
1877 pci_save_state(pci_dev);
1878 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1879
1880 return 0;
1881 }
1882
1883 static int sundance_resume(struct pci_dev *pci_dev)
1884 {
1885 struct net_device *dev = pci_get_drvdata(pci_dev);
1886 int err = 0;
1887
1888 if (!netif_running(dev))
1889 return 0;
1890
1891 pci_set_power_state(pci_dev, PCI_D0);
1892 pci_restore_state(pci_dev);
1893
1894 err = netdev_open(dev);
1895 if (err) {
1896 printk(KERN_ERR "%s: Can't resume interface!\n",
1897 dev->name);
1898 goto out;
1899 }
1900
1901 netif_device_attach(dev);
1902
1903 out:
1904 return err;
1905 }
1906
1907 #endif /* CONFIG_PM */
1908
1909 static struct pci_driver sundance_driver = {
1910 .name = DRV_NAME,
1911 .id_table = sundance_pci_tbl,
1912 .probe = sundance_probe1,
1913 .remove = __devexit_p(sundance_remove1),
1914 #ifdef CONFIG_PM
1915 .suspend = sundance_suspend,
1916 .resume = sundance_resume,
1917 #endif /* CONFIG_PM */
1918 };
1919
1920 static int __init sundance_init(void)
1921 {
1922 /* when a module, this is printed whether or not devices are found in probe */
1923 #ifdef MODULE
1924 printk(version);
1925 #endif
1926 return pci_register_driver(&sundance_driver);
1927 }
1928
1929 static void __exit sundance_exit(void)
1930 {
1931 pci_unregister_driver(&sundance_driver);
1932 }
1933
1934 module_init(sundance_init);
1935 module_exit(sundance_exit);
1936
1937