]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/faraday/ftgmac100.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / faraday / ftgmac100.c
1 /*
2 * Faraday FTGMAC100 Gigabit Ethernet
3 *
4 * (C) Copyright 2009-2011 Faraday Technology
5 * Po-Yu Chuang <ratbert@faraday-tech.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/dma-mapping.h>
25 #include <linux/etherdevice.h>
26 #include <linux/ethtool.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/module.h>
30 #include <linux/netdevice.h>
31 #include <linux/of.h>
32 #include <linux/phy.h>
33 #include <linux/platform_device.h>
34 #include <linux/property.h>
35 #include <linux/crc32.h>
36 #include <linux/if_vlan.h>
37 #include <linux/of_net.h>
38 #include <net/ip.h>
39 #include <net/ncsi.h>
40
41 #include "ftgmac100.h"
42
43 #define DRV_NAME "ftgmac100"
44 #define DRV_VERSION "0.7"
45
46 /* Arbitrary values, I am not sure the HW has limits */
47 #define MAX_RX_QUEUE_ENTRIES 1024
48 #define MAX_TX_QUEUE_ENTRIES 1024
49 #define MIN_RX_QUEUE_ENTRIES 32
50 #define MIN_TX_QUEUE_ENTRIES 32
51
52 /* Defaults */
53 #define DEF_RX_QUEUE_ENTRIES 128
54 #define DEF_TX_QUEUE_ENTRIES 128
55
56 #define MAX_PKT_SIZE 1536
57 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
58
59 /* Min number of tx ring entries before stopping queue */
60 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
61
62 struct ftgmac100 {
63 /* Registers */
64 struct resource *res;
65 void __iomem *base;
66
67 /* Rx ring */
68 unsigned int rx_q_entries;
69 struct ftgmac100_rxdes *rxdes;
70 dma_addr_t rxdes_dma;
71 struct sk_buff **rx_skbs;
72 unsigned int rx_pointer;
73 u32 rxdes0_edorr_mask;
74
75 /* Tx ring */
76 unsigned int tx_q_entries;
77 struct ftgmac100_txdes *txdes;
78 dma_addr_t txdes_dma;
79 struct sk_buff **tx_skbs;
80 unsigned int tx_clean_pointer;
81 unsigned int tx_pointer;
82 u32 txdes0_edotr_mask;
83
84 /* Used to signal the reset task of ring change request */
85 unsigned int new_rx_q_entries;
86 unsigned int new_tx_q_entries;
87
88 /* Scratch page to use when rx skb alloc fails */
89 void *rx_scratch;
90 dma_addr_t rx_scratch_dma;
91
92 /* Component structures */
93 struct net_device *netdev;
94 struct device *dev;
95 struct ncsi_dev *ndev;
96 struct napi_struct napi;
97 struct work_struct reset_task;
98 struct mii_bus *mii_bus;
99
100 /* Link management */
101 int cur_speed;
102 int cur_duplex;
103 bool use_ncsi;
104
105 /* Multicast filter settings */
106 u32 maht0;
107 u32 maht1;
108
109 /* Flow control settings */
110 bool tx_pause;
111 bool rx_pause;
112 bool aneg_pause;
113
114 /* Misc */
115 bool need_mac_restart;
116 bool is_aspeed;
117 };
118
119 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
120 {
121 struct net_device *netdev = priv->netdev;
122 int i;
123
124 /* NOTE: reset clears all registers */
125 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
126 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
127 priv->base + FTGMAC100_OFFSET_MACCR);
128 for (i = 0; i < 200; i++) {
129 unsigned int maccr;
130
131 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
132 if (!(maccr & FTGMAC100_MACCR_SW_RST))
133 return 0;
134
135 udelay(1);
136 }
137
138 netdev_err(netdev, "Hardware reset failed\n");
139 return -EIO;
140 }
141
142 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
143 {
144 u32 maccr = 0;
145
146 switch (priv->cur_speed) {
147 case SPEED_10:
148 case 0: /* no link */
149 break;
150
151 case SPEED_100:
152 maccr |= FTGMAC100_MACCR_FAST_MODE;
153 break;
154
155 case SPEED_1000:
156 maccr |= FTGMAC100_MACCR_GIGA_MODE;
157 break;
158 default:
159 netdev_err(priv->netdev, "Unknown speed %d !\n",
160 priv->cur_speed);
161 break;
162 }
163
164 /* (Re)initialize the queue pointers */
165 priv->rx_pointer = 0;
166 priv->tx_clean_pointer = 0;
167 priv->tx_pointer = 0;
168
169 /* The doc says reset twice with 10us interval */
170 if (ftgmac100_reset_mac(priv, maccr))
171 return -EIO;
172 usleep_range(10, 1000);
173 return ftgmac100_reset_mac(priv, maccr);
174 }
175
176 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
177 {
178 unsigned int maddr = mac[0] << 8 | mac[1];
179 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
180
181 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
182 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
183 }
184
185 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
186 {
187 u8 mac[ETH_ALEN];
188 unsigned int m;
189 unsigned int l;
190 void *addr;
191
192 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
193 if (addr) {
194 ether_addr_copy(priv->netdev->dev_addr, mac);
195 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
196 mac);
197 return;
198 }
199
200 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
201 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
202
203 mac[0] = (m >> 8) & 0xff;
204 mac[1] = m & 0xff;
205 mac[2] = (l >> 24) & 0xff;
206 mac[3] = (l >> 16) & 0xff;
207 mac[4] = (l >> 8) & 0xff;
208 mac[5] = l & 0xff;
209
210 if (is_valid_ether_addr(mac)) {
211 ether_addr_copy(priv->netdev->dev_addr, mac);
212 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
213 } else {
214 eth_hw_addr_random(priv->netdev);
215 dev_info(priv->dev, "Generated random MAC address %pM\n",
216 priv->netdev->dev_addr);
217 }
218 }
219
220 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
221 {
222 int ret;
223
224 ret = eth_prepare_mac_addr_change(dev, p);
225 if (ret < 0)
226 return ret;
227
228 eth_commit_mac_addr_change(dev, p);
229 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
230
231 return 0;
232 }
233
234 static void ftgmac100_config_pause(struct ftgmac100 *priv)
235 {
236 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
237
238 /* Throttle tx queue when receiving pause frames */
239 if (priv->rx_pause)
240 fcr |= FTGMAC100_FCR_FC_EN;
241
242 /* Enables sending pause frames when the RX queue is past a
243 * certain threshold.
244 */
245 if (priv->tx_pause)
246 fcr |= FTGMAC100_FCR_FCTHR_EN;
247
248 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
249 }
250
251 static void ftgmac100_init_hw(struct ftgmac100 *priv)
252 {
253 u32 reg, rfifo_sz, tfifo_sz;
254
255 /* Clear stale interrupts */
256 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
257 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
258
259 /* Setup RX ring buffer base */
260 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
261
262 /* Setup TX ring buffer base */
263 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
264
265 /* Configure RX buffer size */
266 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
267 priv->base + FTGMAC100_OFFSET_RBSR);
268
269 /* Set RX descriptor autopoll */
270 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
271 priv->base + FTGMAC100_OFFSET_APTC);
272
273 /* Write MAC address */
274 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
275
276 /* Write multicast filter */
277 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
278 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
279
280 /* Configure descriptor sizes and increase burst sizes according
281 * to values in Aspeed SDK. The FIFO arbitration is enabled and
282 * the thresholds set based on the recommended values in the
283 * AST2400 specification.
284 */
285 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
286 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
287 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
288 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
289 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
290 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
291 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
292 priv->base + FTGMAC100_OFFSET_DBLAC);
293
294 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
295 * mitigation doesn't seem to provide any benefit with NAPI so leave
296 * it at that.
297 */
298 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
299 FTGMAC100_ITC_TXINT_THR(1),
300 priv->base + FTGMAC100_OFFSET_ITC);
301
302 /* Configure FIFO sizes in the TPAFCR register */
303 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
304 rfifo_sz = reg & 0x00000007;
305 tfifo_sz = (reg >> 3) & 0x00000007;
306 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
307 reg &= ~0x3f000000;
308 reg |= (tfifo_sz << 27);
309 reg |= (rfifo_sz << 24);
310 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
311 }
312
313 static void ftgmac100_start_hw(struct ftgmac100 *priv)
314 {
315 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
316
317 /* Keep the original GMAC and FAST bits */
318 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
319
320 /* Add all the main enable bits */
321 maccr |= FTGMAC100_MACCR_TXDMA_EN |
322 FTGMAC100_MACCR_RXDMA_EN |
323 FTGMAC100_MACCR_TXMAC_EN |
324 FTGMAC100_MACCR_RXMAC_EN |
325 FTGMAC100_MACCR_CRC_APD |
326 FTGMAC100_MACCR_PHY_LINK_LEVEL |
327 FTGMAC100_MACCR_RX_RUNT |
328 FTGMAC100_MACCR_RX_BROADPKT;
329
330 /* Add other bits as needed */
331 if (priv->cur_duplex == DUPLEX_FULL)
332 maccr |= FTGMAC100_MACCR_FULLDUP;
333 if (priv->netdev->flags & IFF_PROMISC)
334 maccr |= FTGMAC100_MACCR_RX_ALL;
335 if (priv->netdev->flags & IFF_ALLMULTI)
336 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
337 else if (netdev_mc_count(priv->netdev))
338 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
339
340 /* Vlan filtering enabled */
341 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
342 maccr |= FTGMAC100_MACCR_RM_VLAN;
343
344 /* Hit the HW */
345 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
346 }
347
348 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
349 {
350 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
351 }
352
353 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
354 {
355 struct netdev_hw_addr *ha;
356
357 priv->maht1 = 0;
358 priv->maht0 = 0;
359 netdev_for_each_mc_addr(ha, priv->netdev) {
360 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
361
362 crc_val = (~(crc_val >> 2)) & 0x3f;
363 if (crc_val >= 32)
364 priv->maht1 |= 1ul << (crc_val - 32);
365 else
366 priv->maht0 |= 1ul << (crc_val);
367 }
368 }
369
370 static void ftgmac100_set_rx_mode(struct net_device *netdev)
371 {
372 struct ftgmac100 *priv = netdev_priv(netdev);
373
374 /* Setup the hash filter */
375 ftgmac100_calc_mc_hash(priv);
376
377 /* Interface down ? that's all there is to do */
378 if (!netif_running(netdev))
379 return;
380
381 /* Update the HW */
382 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
383 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
384
385 /* Reconfigure MACCR */
386 ftgmac100_start_hw(priv);
387 }
388
389 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
390 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
391 {
392 struct net_device *netdev = priv->netdev;
393 struct sk_buff *skb;
394 dma_addr_t map;
395 int err = 0;
396
397 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
398 if (unlikely(!skb)) {
399 if (net_ratelimit())
400 netdev_warn(netdev, "failed to allocate rx skb\n");
401 err = -ENOMEM;
402 map = priv->rx_scratch_dma;
403 } else {
404 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
405 DMA_FROM_DEVICE);
406 if (unlikely(dma_mapping_error(priv->dev, map))) {
407 if (net_ratelimit())
408 netdev_err(netdev, "failed to map rx page\n");
409 dev_kfree_skb_any(skb);
410 map = priv->rx_scratch_dma;
411 skb = NULL;
412 err = -ENOMEM;
413 }
414 }
415
416 /* Store skb */
417 priv->rx_skbs[entry] = skb;
418
419 /* Store DMA address into RX desc */
420 rxdes->rxdes3 = cpu_to_le32(map);
421
422 /* Ensure the above is ordered vs clearing the OWN bit */
423 dma_wmb();
424
425 /* Clean status (which resets own bit) */
426 if (entry == (priv->rx_q_entries - 1))
427 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
428 else
429 rxdes->rxdes0 = 0;
430
431 return err;
432 }
433
434 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
435 unsigned int pointer)
436 {
437 return (pointer + 1) & (priv->rx_q_entries - 1);
438 }
439
440 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
441 {
442 struct net_device *netdev = priv->netdev;
443
444 if (status & FTGMAC100_RXDES0_RX_ERR)
445 netdev->stats.rx_errors++;
446
447 if (status & FTGMAC100_RXDES0_CRC_ERR)
448 netdev->stats.rx_crc_errors++;
449
450 if (status & (FTGMAC100_RXDES0_FTL |
451 FTGMAC100_RXDES0_RUNT |
452 FTGMAC100_RXDES0_RX_ODD_NB))
453 netdev->stats.rx_length_errors++;
454 }
455
456 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
457 {
458 struct net_device *netdev = priv->netdev;
459 struct ftgmac100_rxdes *rxdes;
460 struct sk_buff *skb;
461 unsigned int pointer, size;
462 u32 status, csum_vlan;
463 dma_addr_t map;
464
465 /* Grab next RX descriptor */
466 pointer = priv->rx_pointer;
467 rxdes = &priv->rxdes[pointer];
468
469 /* Grab descriptor status */
470 status = le32_to_cpu(rxdes->rxdes0);
471
472 /* Do we have a packet ? */
473 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
474 return false;
475
476 /* Order subsequent reads with the test for the ready bit */
477 dma_rmb();
478
479 /* We don't cope with fragmented RX packets */
480 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
481 !(status & FTGMAC100_RXDES0_LRS)))
482 goto drop;
483
484 /* Grab received size and csum vlan field in the descriptor */
485 size = status & FTGMAC100_RXDES0_VDBC;
486 csum_vlan = le32_to_cpu(rxdes->rxdes1);
487
488 /* Any error (other than csum offload) flagged ? */
489 if (unlikely(status & RXDES0_ANY_ERROR)) {
490 /* Correct for incorrect flagging of runt packets
491 * with vlan tags... Just accept a runt packet that
492 * has been flagged as vlan and whose size is at
493 * least 60 bytes.
494 */
495 if ((status & FTGMAC100_RXDES0_RUNT) &&
496 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
497 (size >= 60))
498 status &= ~FTGMAC100_RXDES0_RUNT;
499
500 /* Any error still in there ? */
501 if (status & RXDES0_ANY_ERROR) {
502 ftgmac100_rx_packet_error(priv, status);
503 goto drop;
504 }
505 }
506
507 /* If the packet had no skb (failed to allocate earlier)
508 * then try to allocate one and skip
509 */
510 skb = priv->rx_skbs[pointer];
511 if (!unlikely(skb)) {
512 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
513 goto drop;
514 }
515
516 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
517 netdev->stats.multicast++;
518
519 /* If the HW found checksum errors, bounce it to software.
520 *
521 * If we didn't, we need to see if the packet was recognized
522 * by HW as one of the supported checksummed protocols before
523 * we accept the HW test results.
524 */
525 if (netdev->features & NETIF_F_RXCSUM) {
526 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
527 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
528 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
529 if ((csum_vlan & err_bits) ||
530 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
531 skb->ip_summed = CHECKSUM_NONE;
532 else
533 skb->ip_summed = CHECKSUM_UNNECESSARY;
534 }
535
536 /* Transfer received size to skb */
537 skb_put(skb, size);
538
539 /* Extract vlan tag */
540 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
541 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
542 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
543 csum_vlan & 0xffff);
544
545 /* Tear down DMA mapping, do necessary cache management */
546 map = le32_to_cpu(rxdes->rxdes3);
547
548 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
549 /* When we don't have an iommu, we can save cycles by not
550 * invalidating the cache for the part of the packet that
551 * wasn't received.
552 */
553 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
554 #else
555 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
556 #endif
557
558
559 /* Resplenish rx ring */
560 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
561 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
562
563 skb->protocol = eth_type_trans(skb, netdev);
564
565 netdev->stats.rx_packets++;
566 netdev->stats.rx_bytes += size;
567
568 /* push packet to protocol stack */
569 if (skb->ip_summed == CHECKSUM_NONE)
570 netif_receive_skb(skb);
571 else
572 napi_gro_receive(&priv->napi, skb);
573
574 (*processed)++;
575 return true;
576
577 drop:
578 /* Clean rxdes0 (which resets own bit) */
579 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
580 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
581 netdev->stats.rx_dropped++;
582 return true;
583 }
584
585 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
586 unsigned int index)
587 {
588 if (index == (priv->tx_q_entries - 1))
589 return priv->txdes0_edotr_mask;
590 else
591 return 0;
592 }
593
594 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
595 unsigned int pointer)
596 {
597 return (pointer + 1) & (priv->tx_q_entries - 1);
598 }
599
600 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
601 {
602 /* Returns the number of available slots in the TX queue
603 *
604 * This always leaves one free slot so we don't have to
605 * worry about empty vs. full, and this simplifies the
606 * test for ftgmac100_tx_buf_cleanable() below
607 */
608 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
609 (priv->tx_q_entries - 1);
610 }
611
612 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
613 {
614 return priv->tx_pointer != priv->tx_clean_pointer;
615 }
616
617 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
618 unsigned int pointer,
619 struct sk_buff *skb,
620 struct ftgmac100_txdes *txdes,
621 u32 ctl_stat)
622 {
623 dma_addr_t map = le32_to_cpu(txdes->txdes3);
624 size_t len;
625
626 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
627 len = skb_headlen(skb);
628 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
629 } else {
630 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
631 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
632 }
633
634 /* Free SKB on last segment */
635 if (ctl_stat & FTGMAC100_TXDES0_LTS)
636 dev_kfree_skb(skb);
637 priv->tx_skbs[pointer] = NULL;
638 }
639
640 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
641 {
642 struct net_device *netdev = priv->netdev;
643 struct ftgmac100_txdes *txdes;
644 struct sk_buff *skb;
645 unsigned int pointer;
646 u32 ctl_stat;
647
648 pointer = priv->tx_clean_pointer;
649 txdes = &priv->txdes[pointer];
650
651 ctl_stat = le32_to_cpu(txdes->txdes0);
652 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
653 return false;
654
655 skb = priv->tx_skbs[pointer];
656 netdev->stats.tx_packets++;
657 netdev->stats.tx_bytes += skb->len;
658 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
659 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
660
661 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
662
663 return true;
664 }
665
666 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
667 {
668 struct net_device *netdev = priv->netdev;
669
670 /* Process all completed packets */
671 while (ftgmac100_tx_buf_cleanable(priv) &&
672 ftgmac100_tx_complete_packet(priv))
673 ;
674
675 /* Restart queue if needed */
676 smp_mb();
677 if (unlikely(netif_queue_stopped(netdev) &&
678 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
679 struct netdev_queue *txq;
680
681 txq = netdev_get_tx_queue(netdev, 0);
682 __netif_tx_lock(txq, smp_processor_id());
683 if (netif_queue_stopped(netdev) &&
684 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
685 netif_wake_queue(netdev);
686 __netif_tx_unlock(txq);
687 }
688 }
689
690 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
691 {
692 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
693 u8 ip_proto = ip_hdr(skb)->protocol;
694
695 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
696 switch(ip_proto) {
697 case IPPROTO_TCP:
698 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
699 return true;
700 case IPPROTO_UDP:
701 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
702 return true;
703 case IPPROTO_IP:
704 return true;
705 }
706 }
707 return skb_checksum_help(skb) == 0;
708 }
709
710 static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
711 struct net_device *netdev)
712 {
713 struct ftgmac100 *priv = netdev_priv(netdev);
714 struct ftgmac100_txdes *txdes, *first;
715 unsigned int pointer, nfrags, len, i, j;
716 u32 f_ctl_stat, ctl_stat, csum_vlan;
717 dma_addr_t map;
718
719 /* The HW doesn't pad small frames */
720 if (eth_skb_pad(skb)) {
721 netdev->stats.tx_dropped++;
722 return NETDEV_TX_OK;
723 }
724
725 /* Reject oversize packets */
726 if (unlikely(skb->len > MAX_PKT_SIZE)) {
727 if (net_ratelimit())
728 netdev_dbg(netdev, "tx packet too big\n");
729 goto drop;
730 }
731
732 /* Do we have a limit on #fragments ? I yet have to get a reply
733 * from Aspeed. If there's one I haven't hit it.
734 */
735 nfrags = skb_shinfo(skb)->nr_frags;
736
737 /* Get header len */
738 len = skb_headlen(skb);
739
740 /* Map the packet head */
741 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
742 if (dma_mapping_error(priv->dev, map)) {
743 if (net_ratelimit())
744 netdev_err(netdev, "map tx packet head failed\n");
745 goto drop;
746 }
747
748 /* Grab the next free tx descriptor */
749 pointer = priv->tx_pointer;
750 txdes = first = &priv->txdes[pointer];
751
752 /* Setup it up with the packet head. Don't write the head to the
753 * ring just yet
754 */
755 priv->tx_skbs[pointer] = skb;
756 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
757 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
758 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
759 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
760 if (nfrags == 0)
761 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
762 txdes->txdes3 = cpu_to_le32(map);
763
764 /* Setup HW checksumming */
765 csum_vlan = 0;
766 if (skb->ip_summed == CHECKSUM_PARTIAL &&
767 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
768 goto drop;
769
770 /* Add VLAN tag */
771 if (skb_vlan_tag_present(skb)) {
772 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
773 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
774 }
775
776 txdes->txdes1 = cpu_to_le32(csum_vlan);
777
778 /* Next descriptor */
779 pointer = ftgmac100_next_tx_pointer(priv, pointer);
780
781 /* Add the fragments */
782 for (i = 0; i < nfrags; i++) {
783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
784
785 len = frag->size;
786
787 /* Map it */
788 map = skb_frag_dma_map(priv->dev, frag, 0, len,
789 DMA_TO_DEVICE);
790 if (dma_mapping_error(priv->dev, map))
791 goto dma_err;
792
793 /* Setup descriptor */
794 priv->tx_skbs[pointer] = skb;
795 txdes = &priv->txdes[pointer];
796 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
797 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
798 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
799 if (i == (nfrags - 1))
800 ctl_stat |= FTGMAC100_TXDES0_LTS;
801 txdes->txdes0 = cpu_to_le32(ctl_stat);
802 txdes->txdes1 = 0;
803 txdes->txdes3 = cpu_to_le32(map);
804
805 /* Next one */
806 pointer = ftgmac100_next_tx_pointer(priv, pointer);
807 }
808
809 /* Order the previous packet and descriptor udpates
810 * before setting the OWN bit on the first descriptor.
811 */
812 dma_wmb();
813 first->txdes0 = cpu_to_le32(f_ctl_stat);
814
815 /* Update next TX pointer */
816 priv->tx_pointer = pointer;
817
818 /* If there isn't enough room for all the fragments of a new packet
819 * in the TX ring, stop the queue. The sequence below is race free
820 * vs. a concurrent restart in ftgmac100_poll()
821 */
822 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
823 netif_stop_queue(netdev);
824 /* Order the queue stop with the test below */
825 smp_mb();
826 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
827 netif_wake_queue(netdev);
828 }
829
830 /* Poke transmitter to read the updated TX descriptors */
831 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
832
833 return NETDEV_TX_OK;
834
835 dma_err:
836 if (net_ratelimit())
837 netdev_err(netdev, "map tx fragment failed\n");
838
839 /* Free head */
840 pointer = priv->tx_pointer;
841 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
842 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
843
844 /* Then all fragments */
845 for (j = 0; j < i; j++) {
846 pointer = ftgmac100_next_tx_pointer(priv, pointer);
847 txdes = &priv->txdes[pointer];
848 ctl_stat = le32_to_cpu(txdes->txdes0);
849 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
850 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
851 }
852
853 /* This cannot be reached if we successfully mapped the
854 * last fragment, so we know ftgmac100_free_tx_packet()
855 * hasn't freed the skb yet.
856 */
857 drop:
858 /* Drop the packet */
859 dev_kfree_skb_any(skb);
860 netdev->stats.tx_dropped++;
861
862 return NETDEV_TX_OK;
863 }
864
865 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
866 {
867 int i;
868
869 /* Free all RX buffers */
870 for (i = 0; i < priv->rx_q_entries; i++) {
871 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
872 struct sk_buff *skb = priv->rx_skbs[i];
873 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
874
875 if (!skb)
876 continue;
877
878 priv->rx_skbs[i] = NULL;
879 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
880 dev_kfree_skb_any(skb);
881 }
882
883 /* Free all TX buffers */
884 for (i = 0; i < priv->tx_q_entries; i++) {
885 struct ftgmac100_txdes *txdes = &priv->txdes[i];
886 struct sk_buff *skb = priv->tx_skbs[i];
887
888 if (!skb)
889 continue;
890 ftgmac100_free_tx_packet(priv, i, skb, txdes,
891 le32_to_cpu(txdes->txdes0));
892 }
893 }
894
895 static void ftgmac100_free_rings(struct ftgmac100 *priv)
896 {
897 /* Free skb arrays */
898 kfree(priv->rx_skbs);
899 kfree(priv->tx_skbs);
900
901 /* Free descriptors */
902 if (priv->rxdes)
903 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
904 sizeof(struct ftgmac100_rxdes),
905 priv->rxdes, priv->rxdes_dma);
906 priv->rxdes = NULL;
907
908 if (priv->txdes)
909 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
910 sizeof(struct ftgmac100_txdes),
911 priv->txdes, priv->txdes_dma);
912 priv->txdes = NULL;
913
914 /* Free scratch packet buffer */
915 if (priv->rx_scratch)
916 dma_free_coherent(priv->dev, RX_BUF_SIZE,
917 priv->rx_scratch, priv->rx_scratch_dma);
918 }
919
920 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
921 {
922 /* Allocate skb arrays */
923 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
924 GFP_KERNEL);
925 if (!priv->rx_skbs)
926 return -ENOMEM;
927 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
928 GFP_KERNEL);
929 if (!priv->tx_skbs)
930 return -ENOMEM;
931
932 /* Allocate descriptors */
933 priv->rxdes = dma_zalloc_coherent(priv->dev,
934 MAX_RX_QUEUE_ENTRIES *
935 sizeof(struct ftgmac100_rxdes),
936 &priv->rxdes_dma, GFP_KERNEL);
937 if (!priv->rxdes)
938 return -ENOMEM;
939 priv->txdes = dma_zalloc_coherent(priv->dev,
940 MAX_TX_QUEUE_ENTRIES *
941 sizeof(struct ftgmac100_txdes),
942 &priv->txdes_dma, GFP_KERNEL);
943 if (!priv->txdes)
944 return -ENOMEM;
945
946 /* Allocate scratch packet buffer */
947 priv->rx_scratch = dma_alloc_coherent(priv->dev,
948 RX_BUF_SIZE,
949 &priv->rx_scratch_dma,
950 GFP_KERNEL);
951 if (!priv->rx_scratch)
952 return -ENOMEM;
953
954 return 0;
955 }
956
957 static void ftgmac100_init_rings(struct ftgmac100 *priv)
958 {
959 struct ftgmac100_rxdes *rxdes = NULL;
960 struct ftgmac100_txdes *txdes = NULL;
961 int i;
962
963 /* Update entries counts */
964 priv->rx_q_entries = priv->new_rx_q_entries;
965 priv->tx_q_entries = priv->new_tx_q_entries;
966
967 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
968 return;
969
970 /* Initialize RX ring */
971 for (i = 0; i < priv->rx_q_entries; i++) {
972 rxdes = &priv->rxdes[i];
973 rxdes->rxdes0 = 0;
974 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
975 }
976 /* Mark the end of the ring */
977 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
978
979 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
980 return;
981
982 /* Initialize TX ring */
983 for (i = 0; i < priv->tx_q_entries; i++) {
984 txdes = &priv->txdes[i];
985 txdes->txdes0 = 0;
986 }
987 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
988 }
989
990 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
991 {
992 int i;
993
994 for (i = 0; i < priv->rx_q_entries; i++) {
995 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
996
997 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
998 return -ENOMEM;
999 }
1000 return 0;
1001 }
1002
1003 static void ftgmac100_adjust_link(struct net_device *netdev)
1004 {
1005 struct ftgmac100 *priv = netdev_priv(netdev);
1006 struct phy_device *phydev = netdev->phydev;
1007 bool tx_pause, rx_pause;
1008 int new_speed;
1009
1010 /* We store "no link" as speed 0 */
1011 if (!phydev->link)
1012 new_speed = 0;
1013 else
1014 new_speed = phydev->speed;
1015
1016 /* Grab pause settings from PHY if configured to do so */
1017 if (priv->aneg_pause) {
1018 rx_pause = tx_pause = phydev->pause;
1019 if (phydev->asym_pause)
1020 tx_pause = !rx_pause;
1021 } else {
1022 rx_pause = priv->rx_pause;
1023 tx_pause = priv->tx_pause;
1024 }
1025
1026 /* Link hasn't changed, do nothing */
1027 if (phydev->speed == priv->cur_speed &&
1028 phydev->duplex == priv->cur_duplex &&
1029 rx_pause == priv->rx_pause &&
1030 tx_pause == priv->tx_pause)
1031 return;
1032
1033 /* Print status if we have a link or we had one and just lost it,
1034 * don't print otherwise.
1035 */
1036 if (new_speed || priv->cur_speed)
1037 phy_print_status(phydev);
1038
1039 priv->cur_speed = new_speed;
1040 priv->cur_duplex = phydev->duplex;
1041 priv->rx_pause = rx_pause;
1042 priv->tx_pause = tx_pause;
1043
1044 /* Link is down, do nothing else */
1045 if (!new_speed)
1046 return;
1047
1048 /* Disable all interrupts */
1049 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1050
1051 /* Reset the adapter asynchronously */
1052 schedule_work(&priv->reset_task);
1053 }
1054
1055 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1056 {
1057 struct net_device *netdev = priv->netdev;
1058 struct phy_device *phydev;
1059
1060 phydev = phy_find_first(priv->mii_bus);
1061 if (!phydev) {
1062 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1063 return -ENODEV;
1064 }
1065
1066 phydev = phy_connect(netdev, phydev_name(phydev),
1067 &ftgmac100_adjust_link, intf);
1068
1069 if (IS_ERR(phydev)) {
1070 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1071 return PTR_ERR(phydev);
1072 }
1073
1074 /* Indicate that we support PAUSE frames (see comment in
1075 * Documentation/networking/phy.txt)
1076 */
1077 phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1078 phydev->advertising = phydev->supported;
1079
1080 /* Display what we found */
1081 phy_attached_info(phydev);
1082
1083 return 0;
1084 }
1085
1086 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1087 {
1088 struct net_device *netdev = bus->priv;
1089 struct ftgmac100 *priv = netdev_priv(netdev);
1090 unsigned int phycr;
1091 int i;
1092
1093 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1094
1095 /* preserve MDC cycle threshold */
1096 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1097
1098 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1099 FTGMAC100_PHYCR_REGAD(regnum) |
1100 FTGMAC100_PHYCR_MIIRD;
1101
1102 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1103
1104 for (i = 0; i < 10; i++) {
1105 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1106
1107 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1108 int data;
1109
1110 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1111 return FTGMAC100_PHYDATA_MIIRDATA(data);
1112 }
1113
1114 udelay(100);
1115 }
1116
1117 netdev_err(netdev, "mdio read timed out\n");
1118 return -EIO;
1119 }
1120
1121 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1122 int regnum, u16 value)
1123 {
1124 struct net_device *netdev = bus->priv;
1125 struct ftgmac100 *priv = netdev_priv(netdev);
1126 unsigned int phycr;
1127 int data;
1128 int i;
1129
1130 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1131
1132 /* preserve MDC cycle threshold */
1133 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1134
1135 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1136 FTGMAC100_PHYCR_REGAD(regnum) |
1137 FTGMAC100_PHYCR_MIIWR;
1138
1139 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1140
1141 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1142 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1143
1144 for (i = 0; i < 10; i++) {
1145 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1146
1147 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1148 return 0;
1149
1150 udelay(100);
1151 }
1152
1153 netdev_err(netdev, "mdio write timed out\n");
1154 return -EIO;
1155 }
1156
1157 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1158 struct ethtool_drvinfo *info)
1159 {
1160 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1161 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1162 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1163 }
1164
1165 static void ftgmac100_get_ringparam(struct net_device *netdev,
1166 struct ethtool_ringparam *ering)
1167 {
1168 struct ftgmac100 *priv = netdev_priv(netdev);
1169
1170 memset(ering, 0, sizeof(*ering));
1171 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1172 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1173 ering->rx_pending = priv->rx_q_entries;
1174 ering->tx_pending = priv->tx_q_entries;
1175 }
1176
1177 static int ftgmac100_set_ringparam(struct net_device *netdev,
1178 struct ethtool_ringparam *ering)
1179 {
1180 struct ftgmac100 *priv = netdev_priv(netdev);
1181
1182 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1183 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1184 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1185 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1186 !is_power_of_2(ering->rx_pending) ||
1187 !is_power_of_2(ering->tx_pending))
1188 return -EINVAL;
1189
1190 priv->new_rx_q_entries = ering->rx_pending;
1191 priv->new_tx_q_entries = ering->tx_pending;
1192 if (netif_running(netdev))
1193 schedule_work(&priv->reset_task);
1194
1195 return 0;
1196 }
1197
1198 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1199 struct ethtool_pauseparam *pause)
1200 {
1201 struct ftgmac100 *priv = netdev_priv(netdev);
1202
1203 pause->autoneg = priv->aneg_pause;
1204 pause->tx_pause = priv->tx_pause;
1205 pause->rx_pause = priv->rx_pause;
1206 }
1207
1208 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1209 struct ethtool_pauseparam *pause)
1210 {
1211 struct ftgmac100 *priv = netdev_priv(netdev);
1212 struct phy_device *phydev = netdev->phydev;
1213
1214 priv->aneg_pause = pause->autoneg;
1215 priv->tx_pause = pause->tx_pause;
1216 priv->rx_pause = pause->rx_pause;
1217
1218 if (phydev) {
1219 phydev->advertising &= ~ADVERTISED_Pause;
1220 phydev->advertising &= ~ADVERTISED_Asym_Pause;
1221
1222 if (pause->rx_pause) {
1223 phydev->advertising |= ADVERTISED_Pause;
1224 phydev->advertising |= ADVERTISED_Asym_Pause;
1225 }
1226
1227 if (pause->tx_pause)
1228 phydev->advertising ^= ADVERTISED_Asym_Pause;
1229 }
1230 if (netif_running(netdev)) {
1231 if (phydev && priv->aneg_pause)
1232 phy_start_aneg(phydev);
1233 else
1234 ftgmac100_config_pause(priv);
1235 }
1236
1237 return 0;
1238 }
1239
1240 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1241 .get_drvinfo = ftgmac100_get_drvinfo,
1242 .get_link = ethtool_op_get_link,
1243 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1244 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1245 .nway_reset = phy_ethtool_nway_reset,
1246 .get_ringparam = ftgmac100_get_ringparam,
1247 .set_ringparam = ftgmac100_set_ringparam,
1248 .get_pauseparam = ftgmac100_get_pauseparam,
1249 .set_pauseparam = ftgmac100_set_pauseparam,
1250 };
1251
1252 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1253 {
1254 struct net_device *netdev = dev_id;
1255 struct ftgmac100 *priv = netdev_priv(netdev);
1256 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1257
1258 /* Fetch and clear interrupt bits, process abnormal ones */
1259 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1260 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1261 if (unlikely(status & FTGMAC100_INT_BAD)) {
1262
1263 /* RX buffer unavailable */
1264 if (status & FTGMAC100_INT_NO_RXBUF)
1265 netdev->stats.rx_over_errors++;
1266
1267 /* received packet lost due to RX FIFO full */
1268 if (status & FTGMAC100_INT_RPKT_LOST)
1269 netdev->stats.rx_fifo_errors++;
1270
1271 /* sent packet lost due to excessive TX collision */
1272 if (status & FTGMAC100_INT_XPKT_LOST)
1273 netdev->stats.tx_fifo_errors++;
1274
1275 /* AHB error -> Reset the chip */
1276 if (status & FTGMAC100_INT_AHB_ERR) {
1277 if (net_ratelimit())
1278 netdev_warn(netdev,
1279 "AHB bus error ! Resetting chip.\n");
1280 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1281 schedule_work(&priv->reset_task);
1282 return IRQ_HANDLED;
1283 }
1284
1285 /* We may need to restart the MAC after such errors, delay
1286 * this until after we have freed some Rx buffers though
1287 */
1288 priv->need_mac_restart = true;
1289
1290 /* Disable those errors until we restart */
1291 new_mask &= ~status;
1292 }
1293
1294 /* Only enable "bad" interrupts while NAPI is on */
1295 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1296
1297 /* Schedule NAPI bh */
1298 napi_schedule_irqoff(&priv->napi);
1299
1300 return IRQ_HANDLED;
1301 }
1302
1303 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1304 {
1305 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1306
1307 /* Do we have a packet ? */
1308 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1309 }
1310
1311 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1312 {
1313 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1314 int work_done = 0;
1315 bool more;
1316
1317 /* Handle TX completions */
1318 if (ftgmac100_tx_buf_cleanable(priv))
1319 ftgmac100_tx_complete(priv);
1320
1321 /* Handle RX packets */
1322 do {
1323 more = ftgmac100_rx_packet(priv, &work_done);
1324 } while (more && work_done < budget);
1325
1326
1327 /* The interrupt is telling us to kick the MAC back to life
1328 * after an RX overflow
1329 */
1330 if (unlikely(priv->need_mac_restart)) {
1331 ftgmac100_start_hw(priv);
1332
1333 /* Re-enable "bad" interrupts */
1334 iowrite32(FTGMAC100_INT_BAD,
1335 priv->base + FTGMAC100_OFFSET_IER);
1336 }
1337
1338 /* As long as we are waiting for transmit packets to be
1339 * completed we keep NAPI going
1340 */
1341 if (ftgmac100_tx_buf_cleanable(priv))
1342 work_done = budget;
1343
1344 if (work_done < budget) {
1345 /* We are about to re-enable all interrupts. However
1346 * the HW has been latching RX/TX packet interrupts while
1347 * they were masked. So we clear them first, then we need
1348 * to re-check if there's something to process
1349 */
1350 iowrite32(FTGMAC100_INT_RXTX,
1351 priv->base + FTGMAC100_OFFSET_ISR);
1352
1353 /* Push the above (and provides a barrier vs. subsequent
1354 * reads of the descriptor).
1355 */
1356 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1357
1358 /* Check RX and TX descriptors for more work to do */
1359 if (ftgmac100_check_rx(priv) ||
1360 ftgmac100_tx_buf_cleanable(priv))
1361 return budget;
1362
1363 /* deschedule NAPI */
1364 napi_complete(napi);
1365
1366 /* enable all interrupts */
1367 iowrite32(FTGMAC100_INT_ALL,
1368 priv->base + FTGMAC100_OFFSET_IER);
1369 }
1370
1371 return work_done;
1372 }
1373
1374 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1375 {
1376 int err = 0;
1377
1378 /* Re-init descriptors (adjust queue sizes) */
1379 ftgmac100_init_rings(priv);
1380
1381 /* Realloc rx descriptors */
1382 err = ftgmac100_alloc_rx_buffers(priv);
1383 if (err && !ignore_alloc_err)
1384 return err;
1385
1386 /* Reinit and restart HW */
1387 ftgmac100_init_hw(priv);
1388 ftgmac100_config_pause(priv);
1389 ftgmac100_start_hw(priv);
1390
1391 /* Re-enable the device */
1392 napi_enable(&priv->napi);
1393 netif_start_queue(priv->netdev);
1394
1395 /* Enable all interrupts */
1396 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1397
1398 return err;
1399 }
1400
1401 static void ftgmac100_reset_task(struct work_struct *work)
1402 {
1403 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1404 reset_task);
1405 struct net_device *netdev = priv->netdev;
1406 int err;
1407
1408 netdev_dbg(netdev, "Resetting NIC...\n");
1409
1410 /* Lock the world */
1411 rtnl_lock();
1412 if (netdev->phydev)
1413 mutex_lock(&netdev->phydev->lock);
1414 if (priv->mii_bus)
1415 mutex_lock(&priv->mii_bus->mdio_lock);
1416
1417
1418 /* Check if the interface is still up */
1419 if (!netif_running(netdev))
1420 goto bail;
1421
1422 /* Stop the network stack */
1423 netif_trans_update(netdev);
1424 napi_disable(&priv->napi);
1425 netif_tx_disable(netdev);
1426
1427 /* Stop and reset the MAC */
1428 ftgmac100_stop_hw(priv);
1429 err = ftgmac100_reset_and_config_mac(priv);
1430 if (err) {
1431 /* Not much we can do ... it might come back... */
1432 netdev_err(netdev, "attempting to continue...\n");
1433 }
1434
1435 /* Free all rx and tx buffers */
1436 ftgmac100_free_buffers(priv);
1437
1438 /* Setup everything again and restart chip */
1439 ftgmac100_init_all(priv, true);
1440
1441 netdev_dbg(netdev, "Reset done !\n");
1442 bail:
1443 if (priv->mii_bus)
1444 mutex_unlock(&priv->mii_bus->mdio_lock);
1445 if (netdev->phydev)
1446 mutex_unlock(&netdev->phydev->lock);
1447 rtnl_unlock();
1448 }
1449
1450 static int ftgmac100_open(struct net_device *netdev)
1451 {
1452 struct ftgmac100 *priv = netdev_priv(netdev);
1453 int err;
1454
1455 /* Allocate ring buffers */
1456 err = ftgmac100_alloc_rings(priv);
1457 if (err) {
1458 netdev_err(netdev, "Failed to allocate descriptors\n");
1459 return err;
1460 }
1461
1462 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1463 *
1464 * Otherwise we leave it set to 0 (no link), the link
1465 * message from the PHY layer will handle setting it up to
1466 * something else if needed.
1467 */
1468 if (priv->use_ncsi) {
1469 priv->cur_duplex = DUPLEX_FULL;
1470 priv->cur_speed = SPEED_100;
1471 } else {
1472 priv->cur_duplex = 0;
1473 priv->cur_speed = 0;
1474 }
1475
1476 /* Reset the hardware */
1477 err = ftgmac100_reset_and_config_mac(priv);
1478 if (err)
1479 goto err_hw;
1480
1481 /* Initialize NAPI */
1482 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1483
1484 /* Grab our interrupt */
1485 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1486 if (err) {
1487 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1488 goto err_irq;
1489 }
1490
1491 /* Start things up */
1492 err = ftgmac100_init_all(priv, false);
1493 if (err) {
1494 netdev_err(netdev, "Failed to allocate packet buffers\n");
1495 goto err_alloc;
1496 }
1497
1498 if (netdev->phydev) {
1499 /* If we have a PHY, start polling */
1500 phy_start(netdev->phydev);
1501 } else if (priv->use_ncsi) {
1502 /* If using NC-SI, set our carrier on and start the stack */
1503 netif_carrier_on(netdev);
1504
1505 /* Start the NCSI device */
1506 err = ncsi_start_dev(priv->ndev);
1507 if (err)
1508 goto err_ncsi;
1509 }
1510
1511 return 0;
1512
1513 err_ncsi:
1514 napi_disable(&priv->napi);
1515 netif_stop_queue(netdev);
1516 err_alloc:
1517 ftgmac100_free_buffers(priv);
1518 free_irq(netdev->irq, netdev);
1519 err_irq:
1520 netif_napi_del(&priv->napi);
1521 err_hw:
1522 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1523 ftgmac100_free_rings(priv);
1524 return err;
1525 }
1526
1527 static int ftgmac100_stop(struct net_device *netdev)
1528 {
1529 struct ftgmac100 *priv = netdev_priv(netdev);
1530
1531 /* Note about the reset task: We are called with the rtnl lock
1532 * held, so we are synchronized against the core of the reset
1533 * task. We must not try to synchronously cancel it otherwise
1534 * we can deadlock. But since it will test for netif_running()
1535 * which has already been cleared by the net core, we don't
1536 * anything special to do.
1537 */
1538
1539 /* disable all interrupts */
1540 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1541
1542 netif_stop_queue(netdev);
1543 napi_disable(&priv->napi);
1544 netif_napi_del(&priv->napi);
1545 if (netdev->phydev)
1546 phy_stop(netdev->phydev);
1547 else if (priv->use_ncsi)
1548 ncsi_stop_dev(priv->ndev);
1549
1550 ftgmac100_stop_hw(priv);
1551 free_irq(netdev->irq, netdev);
1552 ftgmac100_free_buffers(priv);
1553 ftgmac100_free_rings(priv);
1554
1555 return 0;
1556 }
1557
1558 /* optional */
1559 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1560 {
1561 if (!netdev->phydev)
1562 return -ENXIO;
1563
1564 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1565 }
1566
1567 static void ftgmac100_tx_timeout(struct net_device *netdev)
1568 {
1569 struct ftgmac100 *priv = netdev_priv(netdev);
1570
1571 /* Disable all interrupts */
1572 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1573
1574 /* Do the reset outside of interrupt context */
1575 schedule_work(&priv->reset_task);
1576 }
1577
1578 static int ftgmac100_set_features(struct net_device *netdev,
1579 netdev_features_t features)
1580 {
1581 struct ftgmac100 *priv = netdev_priv(netdev);
1582 netdev_features_t changed = netdev->features ^ features;
1583
1584 if (!netif_running(netdev))
1585 return 0;
1586
1587 /* Update the vlan filtering bit */
1588 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1589 u32 maccr;
1590
1591 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1592 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1593 maccr |= FTGMAC100_MACCR_RM_VLAN;
1594 else
1595 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1596 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1597 }
1598
1599 return 0;
1600 }
1601
1602 #ifdef CONFIG_NET_POLL_CONTROLLER
1603 static void ftgmac100_poll_controller(struct net_device *netdev)
1604 {
1605 unsigned long flags;
1606
1607 local_irq_save(flags);
1608 ftgmac100_interrupt(netdev->irq, netdev);
1609 local_irq_restore(flags);
1610 }
1611 #endif
1612
1613 static const struct net_device_ops ftgmac100_netdev_ops = {
1614 .ndo_open = ftgmac100_open,
1615 .ndo_stop = ftgmac100_stop,
1616 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1617 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1618 .ndo_validate_addr = eth_validate_addr,
1619 .ndo_do_ioctl = ftgmac100_do_ioctl,
1620 .ndo_tx_timeout = ftgmac100_tx_timeout,
1621 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1622 .ndo_set_features = ftgmac100_set_features,
1623 #ifdef CONFIG_NET_POLL_CONTROLLER
1624 .ndo_poll_controller = ftgmac100_poll_controller,
1625 #endif
1626 };
1627
1628 static int ftgmac100_setup_mdio(struct net_device *netdev)
1629 {
1630 struct ftgmac100 *priv = netdev_priv(netdev);
1631 struct platform_device *pdev = to_platform_device(priv->dev);
1632 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1633 struct device_node *np = pdev->dev.of_node;
1634 int i, err = 0;
1635 u32 reg;
1636
1637 /* initialize mdio bus */
1638 priv->mii_bus = mdiobus_alloc();
1639 if (!priv->mii_bus)
1640 return -EIO;
1641
1642 if (priv->is_aspeed) {
1643 /* This driver supports the old MDIO interface */
1644 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1645 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1646 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1647 };
1648
1649 /* Get PHY mode from device-tree */
1650 if (np) {
1651 /* Default to RGMII. It's a gigabit part after all */
1652 phy_intf = of_get_phy_mode(np);
1653 if (phy_intf < 0)
1654 phy_intf = PHY_INTERFACE_MODE_RGMII;
1655
1656 /* Aspeed only supports these. I don't know about other IP
1657 * block vendors so I'm going to just let them through for
1658 * now. Note that this is only a warning if for some obscure
1659 * reason the DT really means to lie about it or it's a newer
1660 * part we don't know about.
1661 *
1662 * On the Aspeed SoC there are additionally straps and SCU
1663 * control bits that could tell us what the interface is
1664 * (or allow us to configure it while the IP block is held
1665 * in reset). For now I chose to keep this driver away from
1666 * those SoC specific bits and assume the device-tree is
1667 * right and the SCU has been configured properly by pinmux
1668 * or the firmware.
1669 */
1670 if (priv->is_aspeed &&
1671 phy_intf != PHY_INTERFACE_MODE_RMII &&
1672 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1673 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1674 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1675 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1676 netdev_warn(netdev,
1677 "Unsupported PHY mode %s !\n",
1678 phy_modes(phy_intf));
1679 }
1680 }
1681
1682 priv->mii_bus->name = "ftgmac100_mdio";
1683 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1684 pdev->name, pdev->id);
1685 priv->mii_bus->parent = priv->dev;
1686 priv->mii_bus->priv = priv->netdev;
1687 priv->mii_bus->read = ftgmac100_mdiobus_read;
1688 priv->mii_bus->write = ftgmac100_mdiobus_write;
1689
1690 for (i = 0; i < PHY_MAX_ADDR; i++)
1691 priv->mii_bus->irq[i] = PHY_POLL;
1692
1693 err = mdiobus_register(priv->mii_bus);
1694 if (err) {
1695 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1696 goto err_register_mdiobus;
1697 }
1698
1699 err = ftgmac100_mii_probe(priv, phy_intf);
1700 if (err) {
1701 dev_err(priv->dev, "MII Probe failed!\n");
1702 goto err_mii_probe;
1703 }
1704
1705 return 0;
1706
1707 err_mii_probe:
1708 mdiobus_unregister(priv->mii_bus);
1709 err_register_mdiobus:
1710 mdiobus_free(priv->mii_bus);
1711 return err;
1712 }
1713
1714 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1715 {
1716 struct ftgmac100 *priv = netdev_priv(netdev);
1717
1718 if (!netdev->phydev)
1719 return;
1720
1721 phy_disconnect(netdev->phydev);
1722 mdiobus_unregister(priv->mii_bus);
1723 mdiobus_free(priv->mii_bus);
1724 }
1725
1726 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1727 {
1728 if (unlikely(nd->state != ncsi_dev_state_functional))
1729 return;
1730
1731 netdev_info(nd->dev, "NCSI interface %s\n",
1732 nd->link_up ? "up" : "down");
1733 }
1734
1735 static int ftgmac100_probe(struct platform_device *pdev)
1736 {
1737 struct resource *res;
1738 int irq;
1739 struct net_device *netdev;
1740 struct ftgmac100 *priv;
1741 struct device_node *np;
1742 int err = 0;
1743
1744 if (!pdev)
1745 return -ENODEV;
1746
1747 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1748 if (!res)
1749 return -ENXIO;
1750
1751 irq = platform_get_irq(pdev, 0);
1752 if (irq < 0)
1753 return irq;
1754
1755 /* setup net_device */
1756 netdev = alloc_etherdev(sizeof(*priv));
1757 if (!netdev) {
1758 err = -ENOMEM;
1759 goto err_alloc_etherdev;
1760 }
1761
1762 SET_NETDEV_DEV(netdev, &pdev->dev);
1763
1764 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1765 netdev->netdev_ops = &ftgmac100_netdev_ops;
1766 netdev->watchdog_timeo = 5 * HZ;
1767
1768 platform_set_drvdata(pdev, netdev);
1769
1770 /* setup private data */
1771 priv = netdev_priv(netdev);
1772 priv->netdev = netdev;
1773 priv->dev = &pdev->dev;
1774 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1775
1776 /* map io memory */
1777 priv->res = request_mem_region(res->start, resource_size(res),
1778 dev_name(&pdev->dev));
1779 if (!priv->res) {
1780 dev_err(&pdev->dev, "Could not reserve memory region\n");
1781 err = -ENOMEM;
1782 goto err_req_mem;
1783 }
1784
1785 priv->base = ioremap(res->start, resource_size(res));
1786 if (!priv->base) {
1787 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1788 err = -EIO;
1789 goto err_ioremap;
1790 }
1791
1792 netdev->irq = irq;
1793
1794 /* Enable pause */
1795 priv->tx_pause = true;
1796 priv->rx_pause = true;
1797 priv->aneg_pause = true;
1798
1799 /* MAC address from chip or random one */
1800 ftgmac100_initial_mac(priv);
1801
1802 np = pdev->dev.of_node;
1803 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1804 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1805 priv->rxdes0_edorr_mask = BIT(30);
1806 priv->txdes0_edotr_mask = BIT(30);
1807 priv->is_aspeed = true;
1808 } else {
1809 priv->rxdes0_edorr_mask = BIT(15);
1810 priv->txdes0_edotr_mask = BIT(15);
1811 }
1812
1813 if (np && of_get_property(np, "use-ncsi", NULL)) {
1814 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1815 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1816 goto err_ncsi_dev;
1817 }
1818
1819 dev_info(&pdev->dev, "Using NCSI interface\n");
1820 priv->use_ncsi = true;
1821 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1822 if (!priv->ndev)
1823 goto err_ncsi_dev;
1824 } else {
1825 priv->use_ncsi = false;
1826 err = ftgmac100_setup_mdio(netdev);
1827 if (err)
1828 goto err_setup_mdio;
1829 }
1830
1831 /* Default ring sizes */
1832 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1833 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1834
1835 /* Base feature set */
1836 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1837 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1838 NETIF_F_HW_VLAN_CTAG_TX;
1839
1840 /* AST2400 doesn't have working HW checksum generation */
1841 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1842 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1843 if (np && of_get_property(np, "no-hw-checksum", NULL))
1844 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1845 netdev->features |= netdev->hw_features;
1846
1847 /* register network device */
1848 err = register_netdev(netdev);
1849 if (err) {
1850 dev_err(&pdev->dev, "Failed to register netdev\n");
1851 goto err_register_netdev;
1852 }
1853
1854 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1855
1856 return 0;
1857
1858 err_ncsi_dev:
1859 err_register_netdev:
1860 ftgmac100_destroy_mdio(netdev);
1861 err_setup_mdio:
1862 iounmap(priv->base);
1863 err_ioremap:
1864 release_resource(priv->res);
1865 err_req_mem:
1866 netif_napi_del(&priv->napi);
1867 free_netdev(netdev);
1868 err_alloc_etherdev:
1869 return err;
1870 }
1871
1872 static int ftgmac100_remove(struct platform_device *pdev)
1873 {
1874 struct net_device *netdev;
1875 struct ftgmac100 *priv;
1876
1877 netdev = platform_get_drvdata(pdev);
1878 priv = netdev_priv(netdev);
1879
1880 unregister_netdev(netdev);
1881
1882 /* There's a small chance the reset task will have been re-queued,
1883 * during stop, make sure it's gone before we free the structure.
1884 */
1885 cancel_work_sync(&priv->reset_task);
1886
1887 ftgmac100_destroy_mdio(netdev);
1888
1889 iounmap(priv->base);
1890 release_resource(priv->res);
1891
1892 netif_napi_del(&priv->napi);
1893 free_netdev(netdev);
1894 return 0;
1895 }
1896
1897 static const struct of_device_id ftgmac100_of_match[] = {
1898 { .compatible = "faraday,ftgmac100" },
1899 { }
1900 };
1901 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1902
1903 static struct platform_driver ftgmac100_driver = {
1904 .probe = ftgmac100_probe,
1905 .remove = ftgmac100_remove,
1906 .driver = {
1907 .name = DRV_NAME,
1908 .of_match_table = ftgmac100_of_match,
1909 },
1910 };
1911 module_platform_driver(ftgmac100_driver);
1912
1913 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1914 MODULE_DESCRIPTION("FTGMAC100 driver");
1915 MODULE_LICENSE("GPL");