]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/faraday/ftgmac100.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / faraday / ftgmac100.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/of_mdio.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/property.h>
24 #include <linux/crc32.h>
25 #include <linux/if_vlan.h>
26 #include <linux/of_net.h>
27 #include <net/ip.h>
28 #include <net/ncsi.h>
29
30 #include "ftgmac100.h"
31
32 #define DRV_NAME "ftgmac100"
33 #define DRV_VERSION "0.7"
34
35 /* Arbitrary values, I am not sure the HW has limits */
36 #define MAX_RX_QUEUE_ENTRIES 1024
37 #define MAX_TX_QUEUE_ENTRIES 1024
38 #define MIN_RX_QUEUE_ENTRIES 32
39 #define MIN_TX_QUEUE_ENTRIES 32
40
41 /* Defaults */
42 #define DEF_RX_QUEUE_ENTRIES 128
43 #define DEF_TX_QUEUE_ENTRIES 128
44
45 #define MAX_PKT_SIZE 1536
46 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
47
48 /* Min number of tx ring entries before stopping queue */
49 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
50
51 #define FTGMAC_100MHZ 100000000
52 #define FTGMAC_25MHZ 25000000
53
54 struct ftgmac100 {
55 /* Registers */
56 struct resource *res;
57 void __iomem *base;
58
59 /* Rx ring */
60 unsigned int rx_q_entries;
61 struct ftgmac100_rxdes *rxdes;
62 dma_addr_t rxdes_dma;
63 struct sk_buff **rx_skbs;
64 unsigned int rx_pointer;
65 u32 rxdes0_edorr_mask;
66
67 /* Tx ring */
68 unsigned int tx_q_entries;
69 struct ftgmac100_txdes *txdes;
70 dma_addr_t txdes_dma;
71 struct sk_buff **tx_skbs;
72 unsigned int tx_clean_pointer;
73 unsigned int tx_pointer;
74 u32 txdes0_edotr_mask;
75
76 /* Used to signal the reset task of ring change request */
77 unsigned int new_rx_q_entries;
78 unsigned int new_tx_q_entries;
79
80 /* Scratch page to use when rx skb alloc fails */
81 void *rx_scratch;
82 dma_addr_t rx_scratch_dma;
83
84 /* Component structures */
85 struct net_device *netdev;
86 struct device *dev;
87 struct ncsi_dev *ndev;
88 struct napi_struct napi;
89 struct work_struct reset_task;
90 struct mii_bus *mii_bus;
91 struct clk *clk;
92
93 /* AST2500/AST2600 RMII ref clock gate */
94 struct clk *rclk;
95
96 /* Link management */
97 int cur_speed;
98 int cur_duplex;
99 bool use_ncsi;
100
101 /* Multicast filter settings */
102 u32 maht0;
103 u32 maht1;
104
105 /* Flow control settings */
106 bool tx_pause;
107 bool rx_pause;
108 bool aneg_pause;
109
110 /* Misc */
111 bool need_mac_restart;
112 bool is_aspeed;
113 };
114
115 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
116 {
117 struct net_device *netdev = priv->netdev;
118 int i;
119
120 /* NOTE: reset clears all registers */
121 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
122 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
123 priv->base + FTGMAC100_OFFSET_MACCR);
124 for (i = 0; i < 200; i++) {
125 unsigned int maccr;
126
127 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
128 if (!(maccr & FTGMAC100_MACCR_SW_RST))
129 return 0;
130
131 udelay(1);
132 }
133
134 netdev_err(netdev, "Hardware reset failed\n");
135 return -EIO;
136 }
137
138 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
139 {
140 u32 maccr = 0;
141
142 switch (priv->cur_speed) {
143 case SPEED_10:
144 case 0: /* no link */
145 break;
146
147 case SPEED_100:
148 maccr |= FTGMAC100_MACCR_FAST_MODE;
149 break;
150
151 case SPEED_1000:
152 maccr |= FTGMAC100_MACCR_GIGA_MODE;
153 break;
154 default:
155 netdev_err(priv->netdev, "Unknown speed %d !\n",
156 priv->cur_speed);
157 break;
158 }
159
160 /* (Re)initialize the queue pointers */
161 priv->rx_pointer = 0;
162 priv->tx_clean_pointer = 0;
163 priv->tx_pointer = 0;
164
165 /* The doc says reset twice with 10us interval */
166 if (ftgmac100_reset_mac(priv, maccr))
167 return -EIO;
168 usleep_range(10, 1000);
169 return ftgmac100_reset_mac(priv, maccr);
170 }
171
172 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
173 {
174 unsigned int maddr = mac[0] << 8 | mac[1];
175 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
176
177 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
178 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
179 }
180
181 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
182 {
183 u8 mac[ETH_ALEN];
184 unsigned int m;
185 unsigned int l;
186 void *addr;
187
188 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
189 if (addr) {
190 ether_addr_copy(priv->netdev->dev_addr, mac);
191 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
192 mac);
193 return;
194 }
195
196 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
197 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
198
199 mac[0] = (m >> 8) & 0xff;
200 mac[1] = m & 0xff;
201 mac[2] = (l >> 24) & 0xff;
202 mac[3] = (l >> 16) & 0xff;
203 mac[4] = (l >> 8) & 0xff;
204 mac[5] = l & 0xff;
205
206 if (is_valid_ether_addr(mac)) {
207 ether_addr_copy(priv->netdev->dev_addr, mac);
208 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
209 } else {
210 eth_hw_addr_random(priv->netdev);
211 dev_info(priv->dev, "Generated random MAC address %pM\n",
212 priv->netdev->dev_addr);
213 }
214 }
215
216 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
217 {
218 int ret;
219
220 ret = eth_prepare_mac_addr_change(dev, p);
221 if (ret < 0)
222 return ret;
223
224 eth_commit_mac_addr_change(dev, p);
225 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
226
227 return 0;
228 }
229
230 static void ftgmac100_config_pause(struct ftgmac100 *priv)
231 {
232 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
233
234 /* Throttle tx queue when receiving pause frames */
235 if (priv->rx_pause)
236 fcr |= FTGMAC100_FCR_FC_EN;
237
238 /* Enables sending pause frames when the RX queue is past a
239 * certain threshold.
240 */
241 if (priv->tx_pause)
242 fcr |= FTGMAC100_FCR_FCTHR_EN;
243
244 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
245 }
246
247 static void ftgmac100_init_hw(struct ftgmac100 *priv)
248 {
249 u32 reg, rfifo_sz, tfifo_sz;
250
251 /* Clear stale interrupts */
252 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
253 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
254
255 /* Setup RX ring buffer base */
256 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
257
258 /* Setup TX ring buffer base */
259 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
260
261 /* Configure RX buffer size */
262 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
263 priv->base + FTGMAC100_OFFSET_RBSR);
264
265 /* Set RX descriptor autopoll */
266 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
267 priv->base + FTGMAC100_OFFSET_APTC);
268
269 /* Write MAC address */
270 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
271
272 /* Write multicast filter */
273 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
274 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
275
276 /* Configure descriptor sizes and increase burst sizes according
277 * to values in Aspeed SDK. The FIFO arbitration is enabled and
278 * the thresholds set based on the recommended values in the
279 * AST2400 specification.
280 */
281 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
282 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
283 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
284 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
285 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
286 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
287 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
288 priv->base + FTGMAC100_OFFSET_DBLAC);
289
290 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
291 * mitigation doesn't seem to provide any benefit with NAPI so leave
292 * it at that.
293 */
294 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
295 FTGMAC100_ITC_TXINT_THR(1),
296 priv->base + FTGMAC100_OFFSET_ITC);
297
298 /* Configure FIFO sizes in the TPAFCR register */
299 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
300 rfifo_sz = reg & 0x00000007;
301 tfifo_sz = (reg >> 3) & 0x00000007;
302 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
303 reg &= ~0x3f000000;
304 reg |= (tfifo_sz << 27);
305 reg |= (rfifo_sz << 24);
306 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
307 }
308
309 static void ftgmac100_start_hw(struct ftgmac100 *priv)
310 {
311 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
312
313 /* Keep the original GMAC and FAST bits */
314 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
315
316 /* Add all the main enable bits */
317 maccr |= FTGMAC100_MACCR_TXDMA_EN |
318 FTGMAC100_MACCR_RXDMA_EN |
319 FTGMAC100_MACCR_TXMAC_EN |
320 FTGMAC100_MACCR_RXMAC_EN |
321 FTGMAC100_MACCR_CRC_APD |
322 FTGMAC100_MACCR_PHY_LINK_LEVEL |
323 FTGMAC100_MACCR_RX_RUNT |
324 FTGMAC100_MACCR_RX_BROADPKT;
325
326 /* Add other bits as needed */
327 if (priv->cur_duplex == DUPLEX_FULL)
328 maccr |= FTGMAC100_MACCR_FULLDUP;
329 if (priv->netdev->flags & IFF_PROMISC)
330 maccr |= FTGMAC100_MACCR_RX_ALL;
331 if (priv->netdev->flags & IFF_ALLMULTI)
332 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
333 else if (netdev_mc_count(priv->netdev))
334 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
335
336 /* Vlan filtering enabled */
337 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
338 maccr |= FTGMAC100_MACCR_RM_VLAN;
339
340 /* Hit the HW */
341 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
342 }
343
344 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
345 {
346 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
347 }
348
349 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
350 {
351 struct netdev_hw_addr *ha;
352
353 priv->maht1 = 0;
354 priv->maht0 = 0;
355 netdev_for_each_mc_addr(ha, priv->netdev) {
356 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
357
358 crc_val = (~(crc_val >> 2)) & 0x3f;
359 if (crc_val >= 32)
360 priv->maht1 |= 1ul << (crc_val - 32);
361 else
362 priv->maht0 |= 1ul << (crc_val);
363 }
364 }
365
366 static void ftgmac100_set_rx_mode(struct net_device *netdev)
367 {
368 struct ftgmac100 *priv = netdev_priv(netdev);
369
370 /* Setup the hash filter */
371 ftgmac100_calc_mc_hash(priv);
372
373 /* Interface down ? that's all there is to do */
374 if (!netif_running(netdev))
375 return;
376
377 /* Update the HW */
378 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
379 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
380
381 /* Reconfigure MACCR */
382 ftgmac100_start_hw(priv);
383 }
384
385 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
386 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
387 {
388 struct net_device *netdev = priv->netdev;
389 struct sk_buff *skb;
390 dma_addr_t map;
391 int err = 0;
392
393 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
394 if (unlikely(!skb)) {
395 if (net_ratelimit())
396 netdev_warn(netdev, "failed to allocate rx skb\n");
397 err = -ENOMEM;
398 map = priv->rx_scratch_dma;
399 } else {
400 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
401 DMA_FROM_DEVICE);
402 if (unlikely(dma_mapping_error(priv->dev, map))) {
403 if (net_ratelimit())
404 netdev_err(netdev, "failed to map rx page\n");
405 dev_kfree_skb_any(skb);
406 map = priv->rx_scratch_dma;
407 skb = NULL;
408 err = -ENOMEM;
409 }
410 }
411
412 /* Store skb */
413 priv->rx_skbs[entry] = skb;
414
415 /* Store DMA address into RX desc */
416 rxdes->rxdes3 = cpu_to_le32(map);
417
418 /* Ensure the above is ordered vs clearing the OWN bit */
419 dma_wmb();
420
421 /* Clean status (which resets own bit) */
422 if (entry == (priv->rx_q_entries - 1))
423 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
424 else
425 rxdes->rxdes0 = 0;
426
427 return err;
428 }
429
430 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
431 unsigned int pointer)
432 {
433 return (pointer + 1) & (priv->rx_q_entries - 1);
434 }
435
436 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
437 {
438 struct net_device *netdev = priv->netdev;
439
440 if (status & FTGMAC100_RXDES0_RX_ERR)
441 netdev->stats.rx_errors++;
442
443 if (status & FTGMAC100_RXDES0_CRC_ERR)
444 netdev->stats.rx_crc_errors++;
445
446 if (status & (FTGMAC100_RXDES0_FTL |
447 FTGMAC100_RXDES0_RUNT |
448 FTGMAC100_RXDES0_RX_ODD_NB))
449 netdev->stats.rx_length_errors++;
450 }
451
452 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
453 {
454 struct net_device *netdev = priv->netdev;
455 struct ftgmac100_rxdes *rxdes;
456 struct sk_buff *skb;
457 unsigned int pointer, size;
458 u32 status, csum_vlan;
459 dma_addr_t map;
460
461 /* Grab next RX descriptor */
462 pointer = priv->rx_pointer;
463 rxdes = &priv->rxdes[pointer];
464
465 /* Grab descriptor status */
466 status = le32_to_cpu(rxdes->rxdes0);
467
468 /* Do we have a packet ? */
469 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
470 return false;
471
472 /* Order subsequent reads with the test for the ready bit */
473 dma_rmb();
474
475 /* We don't cope with fragmented RX packets */
476 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
477 !(status & FTGMAC100_RXDES0_LRS)))
478 goto drop;
479
480 /* Grab received size and csum vlan field in the descriptor */
481 size = status & FTGMAC100_RXDES0_VDBC;
482 csum_vlan = le32_to_cpu(rxdes->rxdes1);
483
484 /* Any error (other than csum offload) flagged ? */
485 if (unlikely(status & RXDES0_ANY_ERROR)) {
486 /* Correct for incorrect flagging of runt packets
487 * with vlan tags... Just accept a runt packet that
488 * has been flagged as vlan and whose size is at
489 * least 60 bytes.
490 */
491 if ((status & FTGMAC100_RXDES0_RUNT) &&
492 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
493 (size >= 60))
494 status &= ~FTGMAC100_RXDES0_RUNT;
495
496 /* Any error still in there ? */
497 if (status & RXDES0_ANY_ERROR) {
498 ftgmac100_rx_packet_error(priv, status);
499 goto drop;
500 }
501 }
502
503 /* If the packet had no skb (failed to allocate earlier)
504 * then try to allocate one and skip
505 */
506 skb = priv->rx_skbs[pointer];
507 if (!unlikely(skb)) {
508 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
509 goto drop;
510 }
511
512 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
513 netdev->stats.multicast++;
514
515 /* If the HW found checksum errors, bounce it to software.
516 *
517 * If we didn't, we need to see if the packet was recognized
518 * by HW as one of the supported checksummed protocols before
519 * we accept the HW test results.
520 */
521 if (netdev->features & NETIF_F_RXCSUM) {
522 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
523 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
524 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
525 if ((csum_vlan & err_bits) ||
526 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
527 skb->ip_summed = CHECKSUM_NONE;
528 else
529 skb->ip_summed = CHECKSUM_UNNECESSARY;
530 }
531
532 /* Transfer received size to skb */
533 skb_put(skb, size);
534
535 /* Extract vlan tag */
536 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
537 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
538 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
539 csum_vlan & 0xffff);
540
541 /* Tear down DMA mapping, do necessary cache management */
542 map = le32_to_cpu(rxdes->rxdes3);
543
544 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
545 /* When we don't have an iommu, we can save cycles by not
546 * invalidating the cache for the part of the packet that
547 * wasn't received.
548 */
549 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
550 #else
551 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
552 #endif
553
554
555 /* Resplenish rx ring */
556 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
557 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
558
559 skb->protocol = eth_type_trans(skb, netdev);
560
561 netdev->stats.rx_packets++;
562 netdev->stats.rx_bytes += size;
563
564 /* push packet to protocol stack */
565 if (skb->ip_summed == CHECKSUM_NONE)
566 netif_receive_skb(skb);
567 else
568 napi_gro_receive(&priv->napi, skb);
569
570 (*processed)++;
571 return true;
572
573 drop:
574 /* Clean rxdes0 (which resets own bit) */
575 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
576 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
577 netdev->stats.rx_dropped++;
578 return true;
579 }
580
581 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
582 unsigned int index)
583 {
584 if (index == (priv->tx_q_entries - 1))
585 return priv->txdes0_edotr_mask;
586 else
587 return 0;
588 }
589
590 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
591 unsigned int pointer)
592 {
593 return (pointer + 1) & (priv->tx_q_entries - 1);
594 }
595
596 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
597 {
598 /* Returns the number of available slots in the TX queue
599 *
600 * This always leaves one free slot so we don't have to
601 * worry about empty vs. full, and this simplifies the
602 * test for ftgmac100_tx_buf_cleanable() below
603 */
604 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
605 (priv->tx_q_entries - 1);
606 }
607
608 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
609 {
610 return priv->tx_pointer != priv->tx_clean_pointer;
611 }
612
613 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
614 unsigned int pointer,
615 struct sk_buff *skb,
616 struct ftgmac100_txdes *txdes,
617 u32 ctl_stat)
618 {
619 dma_addr_t map = le32_to_cpu(txdes->txdes3);
620 size_t len;
621
622 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
623 len = skb_headlen(skb);
624 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
625 } else {
626 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
627 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
628 }
629
630 /* Free SKB on last segment */
631 if (ctl_stat & FTGMAC100_TXDES0_LTS)
632 dev_kfree_skb(skb);
633 priv->tx_skbs[pointer] = NULL;
634 }
635
636 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
637 {
638 struct net_device *netdev = priv->netdev;
639 struct ftgmac100_txdes *txdes;
640 struct sk_buff *skb;
641 unsigned int pointer;
642 u32 ctl_stat;
643
644 pointer = priv->tx_clean_pointer;
645 txdes = &priv->txdes[pointer];
646
647 ctl_stat = le32_to_cpu(txdes->txdes0);
648 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
649 return false;
650
651 skb = priv->tx_skbs[pointer];
652 netdev->stats.tx_packets++;
653 netdev->stats.tx_bytes += skb->len;
654 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
655 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
656
657 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
658
659 return true;
660 }
661
662 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
663 {
664 struct net_device *netdev = priv->netdev;
665
666 /* Process all completed packets */
667 while (ftgmac100_tx_buf_cleanable(priv) &&
668 ftgmac100_tx_complete_packet(priv))
669 ;
670
671 /* Restart queue if needed */
672 smp_mb();
673 if (unlikely(netif_queue_stopped(netdev) &&
674 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
675 struct netdev_queue *txq;
676
677 txq = netdev_get_tx_queue(netdev, 0);
678 __netif_tx_lock(txq, smp_processor_id());
679 if (netif_queue_stopped(netdev) &&
680 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
681 netif_wake_queue(netdev);
682 __netif_tx_unlock(txq);
683 }
684 }
685
686 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
687 {
688 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
689 u8 ip_proto = ip_hdr(skb)->protocol;
690
691 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
692 switch(ip_proto) {
693 case IPPROTO_TCP:
694 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
695 return true;
696 case IPPROTO_UDP:
697 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
698 return true;
699 case IPPROTO_IP:
700 return true;
701 }
702 }
703 return skb_checksum_help(skb) == 0;
704 }
705
706 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
707 struct net_device *netdev)
708 {
709 struct ftgmac100 *priv = netdev_priv(netdev);
710 struct ftgmac100_txdes *txdes, *first;
711 unsigned int pointer, nfrags, len, i, j;
712 u32 f_ctl_stat, ctl_stat, csum_vlan;
713 dma_addr_t map;
714
715 /* The HW doesn't pad small frames */
716 if (eth_skb_pad(skb)) {
717 netdev->stats.tx_dropped++;
718 return NETDEV_TX_OK;
719 }
720
721 /* Reject oversize packets */
722 if (unlikely(skb->len > MAX_PKT_SIZE)) {
723 if (net_ratelimit())
724 netdev_dbg(netdev, "tx packet too big\n");
725 goto drop;
726 }
727
728 /* Do we have a limit on #fragments ? I yet have to get a reply
729 * from Aspeed. If there's one I haven't hit it.
730 */
731 nfrags = skb_shinfo(skb)->nr_frags;
732
733 /* Setup HW checksumming */
734 csum_vlan = 0;
735 if (skb->ip_summed == CHECKSUM_PARTIAL &&
736 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
737 goto drop;
738
739 /* Add VLAN tag */
740 if (skb_vlan_tag_present(skb)) {
741 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
742 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
743 }
744
745 /* Get header len */
746 len = skb_headlen(skb);
747
748 /* Map the packet head */
749 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
750 if (dma_mapping_error(priv->dev, map)) {
751 if (net_ratelimit())
752 netdev_err(netdev, "map tx packet head failed\n");
753 goto drop;
754 }
755
756 /* Grab the next free tx descriptor */
757 pointer = priv->tx_pointer;
758 txdes = first = &priv->txdes[pointer];
759
760 /* Setup it up with the packet head. Don't write the head to the
761 * ring just yet
762 */
763 priv->tx_skbs[pointer] = skb;
764 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
765 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
766 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
767 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
768 if (nfrags == 0)
769 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
770 txdes->txdes3 = cpu_to_le32(map);
771 txdes->txdes1 = cpu_to_le32(csum_vlan);
772
773 /* Next descriptor */
774 pointer = ftgmac100_next_tx_pointer(priv, pointer);
775
776 /* Add the fragments */
777 for (i = 0; i < nfrags; i++) {
778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779
780 len = skb_frag_size(frag);
781
782 /* Map it */
783 map = skb_frag_dma_map(priv->dev, frag, 0, len,
784 DMA_TO_DEVICE);
785 if (dma_mapping_error(priv->dev, map))
786 goto dma_err;
787
788 /* Setup descriptor */
789 priv->tx_skbs[pointer] = skb;
790 txdes = &priv->txdes[pointer];
791 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
792 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
793 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
794 if (i == (nfrags - 1))
795 ctl_stat |= FTGMAC100_TXDES0_LTS;
796 txdes->txdes0 = cpu_to_le32(ctl_stat);
797 txdes->txdes1 = 0;
798 txdes->txdes3 = cpu_to_le32(map);
799
800 /* Next one */
801 pointer = ftgmac100_next_tx_pointer(priv, pointer);
802 }
803
804 /* Order the previous packet and descriptor udpates
805 * before setting the OWN bit on the first descriptor.
806 */
807 dma_wmb();
808 first->txdes0 = cpu_to_le32(f_ctl_stat);
809
810 /* Update next TX pointer */
811 priv->tx_pointer = pointer;
812
813 /* If there isn't enough room for all the fragments of a new packet
814 * in the TX ring, stop the queue. The sequence below is race free
815 * vs. a concurrent restart in ftgmac100_poll()
816 */
817 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
818 netif_stop_queue(netdev);
819 /* Order the queue stop with the test below */
820 smp_mb();
821 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
822 netif_wake_queue(netdev);
823 }
824
825 /* Poke transmitter to read the updated TX descriptors */
826 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
827
828 return NETDEV_TX_OK;
829
830 dma_err:
831 if (net_ratelimit())
832 netdev_err(netdev, "map tx fragment failed\n");
833
834 /* Free head */
835 pointer = priv->tx_pointer;
836 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
837 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
838
839 /* Then all fragments */
840 for (j = 0; j < i; j++) {
841 pointer = ftgmac100_next_tx_pointer(priv, pointer);
842 txdes = &priv->txdes[pointer];
843 ctl_stat = le32_to_cpu(txdes->txdes0);
844 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
845 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
846 }
847
848 /* This cannot be reached if we successfully mapped the
849 * last fragment, so we know ftgmac100_free_tx_packet()
850 * hasn't freed the skb yet.
851 */
852 drop:
853 /* Drop the packet */
854 dev_kfree_skb_any(skb);
855 netdev->stats.tx_dropped++;
856
857 return NETDEV_TX_OK;
858 }
859
860 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
861 {
862 int i;
863
864 /* Free all RX buffers */
865 for (i = 0; i < priv->rx_q_entries; i++) {
866 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
867 struct sk_buff *skb = priv->rx_skbs[i];
868 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
869
870 if (!skb)
871 continue;
872
873 priv->rx_skbs[i] = NULL;
874 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
875 dev_kfree_skb_any(skb);
876 }
877
878 /* Free all TX buffers */
879 for (i = 0; i < priv->tx_q_entries; i++) {
880 struct ftgmac100_txdes *txdes = &priv->txdes[i];
881 struct sk_buff *skb = priv->tx_skbs[i];
882
883 if (!skb)
884 continue;
885 ftgmac100_free_tx_packet(priv, i, skb, txdes,
886 le32_to_cpu(txdes->txdes0));
887 }
888 }
889
890 static void ftgmac100_free_rings(struct ftgmac100 *priv)
891 {
892 /* Free skb arrays */
893 kfree(priv->rx_skbs);
894 kfree(priv->tx_skbs);
895
896 /* Free descriptors */
897 if (priv->rxdes)
898 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
899 sizeof(struct ftgmac100_rxdes),
900 priv->rxdes, priv->rxdes_dma);
901 priv->rxdes = NULL;
902
903 if (priv->txdes)
904 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
905 sizeof(struct ftgmac100_txdes),
906 priv->txdes, priv->txdes_dma);
907 priv->txdes = NULL;
908
909 /* Free scratch packet buffer */
910 if (priv->rx_scratch)
911 dma_free_coherent(priv->dev, RX_BUF_SIZE,
912 priv->rx_scratch, priv->rx_scratch_dma);
913 }
914
915 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
916 {
917 /* Allocate skb arrays */
918 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
919 GFP_KERNEL);
920 if (!priv->rx_skbs)
921 return -ENOMEM;
922 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
923 GFP_KERNEL);
924 if (!priv->tx_skbs)
925 return -ENOMEM;
926
927 /* Allocate descriptors */
928 priv->rxdes = dma_alloc_coherent(priv->dev,
929 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
930 &priv->rxdes_dma, GFP_KERNEL);
931 if (!priv->rxdes)
932 return -ENOMEM;
933 priv->txdes = dma_alloc_coherent(priv->dev,
934 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
935 &priv->txdes_dma, GFP_KERNEL);
936 if (!priv->txdes)
937 return -ENOMEM;
938
939 /* Allocate scratch packet buffer */
940 priv->rx_scratch = dma_alloc_coherent(priv->dev,
941 RX_BUF_SIZE,
942 &priv->rx_scratch_dma,
943 GFP_KERNEL);
944 if (!priv->rx_scratch)
945 return -ENOMEM;
946
947 return 0;
948 }
949
950 static void ftgmac100_init_rings(struct ftgmac100 *priv)
951 {
952 struct ftgmac100_rxdes *rxdes = NULL;
953 struct ftgmac100_txdes *txdes = NULL;
954 int i;
955
956 /* Update entries counts */
957 priv->rx_q_entries = priv->new_rx_q_entries;
958 priv->tx_q_entries = priv->new_tx_q_entries;
959
960 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
961 return;
962
963 /* Initialize RX ring */
964 for (i = 0; i < priv->rx_q_entries; i++) {
965 rxdes = &priv->rxdes[i];
966 rxdes->rxdes0 = 0;
967 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
968 }
969 /* Mark the end of the ring */
970 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
971
972 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
973 return;
974
975 /* Initialize TX ring */
976 for (i = 0; i < priv->tx_q_entries; i++) {
977 txdes = &priv->txdes[i];
978 txdes->txdes0 = 0;
979 }
980 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
981 }
982
983 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
984 {
985 int i;
986
987 for (i = 0; i < priv->rx_q_entries; i++) {
988 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
989
990 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
991 return -ENOMEM;
992 }
993 return 0;
994 }
995
996 static void ftgmac100_adjust_link(struct net_device *netdev)
997 {
998 struct ftgmac100 *priv = netdev_priv(netdev);
999 struct phy_device *phydev = netdev->phydev;
1000 bool tx_pause, rx_pause;
1001 int new_speed;
1002
1003 /* We store "no link" as speed 0 */
1004 if (!phydev->link)
1005 new_speed = 0;
1006 else
1007 new_speed = phydev->speed;
1008
1009 /* Grab pause settings from PHY if configured to do so */
1010 if (priv->aneg_pause) {
1011 rx_pause = tx_pause = phydev->pause;
1012 if (phydev->asym_pause)
1013 tx_pause = !rx_pause;
1014 } else {
1015 rx_pause = priv->rx_pause;
1016 tx_pause = priv->tx_pause;
1017 }
1018
1019 /* Link hasn't changed, do nothing */
1020 if (phydev->speed == priv->cur_speed &&
1021 phydev->duplex == priv->cur_duplex &&
1022 rx_pause == priv->rx_pause &&
1023 tx_pause == priv->tx_pause)
1024 return;
1025
1026 /* Print status if we have a link or we had one and just lost it,
1027 * don't print otherwise.
1028 */
1029 if (new_speed || priv->cur_speed)
1030 phy_print_status(phydev);
1031
1032 priv->cur_speed = new_speed;
1033 priv->cur_duplex = phydev->duplex;
1034 priv->rx_pause = rx_pause;
1035 priv->tx_pause = tx_pause;
1036
1037 /* Link is down, do nothing else */
1038 if (!new_speed)
1039 return;
1040
1041 /* Disable all interrupts */
1042 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1043
1044 /* Reset the adapter asynchronously */
1045 schedule_work(&priv->reset_task);
1046 }
1047
1048 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1049 {
1050 struct net_device *netdev = priv->netdev;
1051 struct phy_device *phydev;
1052
1053 phydev = phy_find_first(priv->mii_bus);
1054 if (!phydev) {
1055 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1056 return -ENODEV;
1057 }
1058
1059 phydev = phy_connect(netdev, phydev_name(phydev),
1060 &ftgmac100_adjust_link, intf);
1061
1062 if (IS_ERR(phydev)) {
1063 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1064 return PTR_ERR(phydev);
1065 }
1066
1067 /* Indicate that we support PAUSE frames (see comment in
1068 * Documentation/networking/phy.rst)
1069 */
1070 phy_support_asym_pause(phydev);
1071
1072 /* Display what we found */
1073 phy_attached_info(phydev);
1074
1075 return 0;
1076 }
1077
1078 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1079 {
1080 struct net_device *netdev = bus->priv;
1081 struct ftgmac100 *priv = netdev_priv(netdev);
1082 unsigned int phycr;
1083 int i;
1084
1085 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1086
1087 /* preserve MDC cycle threshold */
1088 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1089
1090 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1091 FTGMAC100_PHYCR_REGAD(regnum) |
1092 FTGMAC100_PHYCR_MIIRD;
1093
1094 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1095
1096 for (i = 0; i < 10; i++) {
1097 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1098
1099 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1100 int data;
1101
1102 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1103 return FTGMAC100_PHYDATA_MIIRDATA(data);
1104 }
1105
1106 udelay(100);
1107 }
1108
1109 netdev_err(netdev, "mdio read timed out\n");
1110 return -EIO;
1111 }
1112
1113 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1114 int regnum, u16 value)
1115 {
1116 struct net_device *netdev = bus->priv;
1117 struct ftgmac100 *priv = netdev_priv(netdev);
1118 unsigned int phycr;
1119 int data;
1120 int i;
1121
1122 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1123
1124 /* preserve MDC cycle threshold */
1125 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1126
1127 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1128 FTGMAC100_PHYCR_REGAD(regnum) |
1129 FTGMAC100_PHYCR_MIIWR;
1130
1131 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1132
1133 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1134 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1135
1136 for (i = 0; i < 10; i++) {
1137 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1138
1139 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1140 return 0;
1141
1142 udelay(100);
1143 }
1144
1145 netdev_err(netdev, "mdio write timed out\n");
1146 return -EIO;
1147 }
1148
1149 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1150 struct ethtool_drvinfo *info)
1151 {
1152 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1153 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1154 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1155 }
1156
1157 static void ftgmac100_get_ringparam(struct net_device *netdev,
1158 struct ethtool_ringparam *ering)
1159 {
1160 struct ftgmac100 *priv = netdev_priv(netdev);
1161
1162 memset(ering, 0, sizeof(*ering));
1163 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1164 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1165 ering->rx_pending = priv->rx_q_entries;
1166 ering->tx_pending = priv->tx_q_entries;
1167 }
1168
1169 static int ftgmac100_set_ringparam(struct net_device *netdev,
1170 struct ethtool_ringparam *ering)
1171 {
1172 struct ftgmac100 *priv = netdev_priv(netdev);
1173
1174 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1175 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1176 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1177 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1178 !is_power_of_2(ering->rx_pending) ||
1179 !is_power_of_2(ering->tx_pending))
1180 return -EINVAL;
1181
1182 priv->new_rx_q_entries = ering->rx_pending;
1183 priv->new_tx_q_entries = ering->tx_pending;
1184 if (netif_running(netdev))
1185 schedule_work(&priv->reset_task);
1186
1187 return 0;
1188 }
1189
1190 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1191 struct ethtool_pauseparam *pause)
1192 {
1193 struct ftgmac100 *priv = netdev_priv(netdev);
1194
1195 pause->autoneg = priv->aneg_pause;
1196 pause->tx_pause = priv->tx_pause;
1197 pause->rx_pause = priv->rx_pause;
1198 }
1199
1200 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1201 struct ethtool_pauseparam *pause)
1202 {
1203 struct ftgmac100 *priv = netdev_priv(netdev);
1204 struct phy_device *phydev = netdev->phydev;
1205
1206 priv->aneg_pause = pause->autoneg;
1207 priv->tx_pause = pause->tx_pause;
1208 priv->rx_pause = pause->rx_pause;
1209
1210 if (phydev)
1211 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1212
1213 if (netif_running(netdev)) {
1214 if (!(phydev && priv->aneg_pause))
1215 ftgmac100_config_pause(priv);
1216 }
1217
1218 return 0;
1219 }
1220
1221 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1222 .get_drvinfo = ftgmac100_get_drvinfo,
1223 .get_link = ethtool_op_get_link,
1224 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1225 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1226 .nway_reset = phy_ethtool_nway_reset,
1227 .get_ringparam = ftgmac100_get_ringparam,
1228 .set_ringparam = ftgmac100_set_ringparam,
1229 .get_pauseparam = ftgmac100_get_pauseparam,
1230 .set_pauseparam = ftgmac100_set_pauseparam,
1231 };
1232
1233 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1234 {
1235 struct net_device *netdev = dev_id;
1236 struct ftgmac100 *priv = netdev_priv(netdev);
1237 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1238
1239 /* Fetch and clear interrupt bits, process abnormal ones */
1240 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1241 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1242 if (unlikely(status & FTGMAC100_INT_BAD)) {
1243
1244 /* RX buffer unavailable */
1245 if (status & FTGMAC100_INT_NO_RXBUF)
1246 netdev->stats.rx_over_errors++;
1247
1248 /* received packet lost due to RX FIFO full */
1249 if (status & FTGMAC100_INT_RPKT_LOST)
1250 netdev->stats.rx_fifo_errors++;
1251
1252 /* sent packet lost due to excessive TX collision */
1253 if (status & FTGMAC100_INT_XPKT_LOST)
1254 netdev->stats.tx_fifo_errors++;
1255
1256 /* AHB error -> Reset the chip */
1257 if (status & FTGMAC100_INT_AHB_ERR) {
1258 if (net_ratelimit())
1259 netdev_warn(netdev,
1260 "AHB bus error ! Resetting chip.\n");
1261 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1262 schedule_work(&priv->reset_task);
1263 return IRQ_HANDLED;
1264 }
1265
1266 /* We may need to restart the MAC after such errors, delay
1267 * this until after we have freed some Rx buffers though
1268 */
1269 priv->need_mac_restart = true;
1270
1271 /* Disable those errors until we restart */
1272 new_mask &= ~status;
1273 }
1274
1275 /* Only enable "bad" interrupts while NAPI is on */
1276 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1277
1278 /* Schedule NAPI bh */
1279 napi_schedule_irqoff(&priv->napi);
1280
1281 return IRQ_HANDLED;
1282 }
1283
1284 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1285 {
1286 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1287
1288 /* Do we have a packet ? */
1289 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1290 }
1291
1292 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1293 {
1294 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1295 int work_done = 0;
1296 bool more;
1297
1298 /* Handle TX completions */
1299 if (ftgmac100_tx_buf_cleanable(priv))
1300 ftgmac100_tx_complete(priv);
1301
1302 /* Handle RX packets */
1303 do {
1304 more = ftgmac100_rx_packet(priv, &work_done);
1305 } while (more && work_done < budget);
1306
1307
1308 /* The interrupt is telling us to kick the MAC back to life
1309 * after an RX overflow
1310 */
1311 if (unlikely(priv->need_mac_restart)) {
1312 ftgmac100_start_hw(priv);
1313
1314 /* Re-enable "bad" interrupts */
1315 iowrite32(FTGMAC100_INT_BAD,
1316 priv->base + FTGMAC100_OFFSET_IER);
1317 }
1318
1319 /* As long as we are waiting for transmit packets to be
1320 * completed we keep NAPI going
1321 */
1322 if (ftgmac100_tx_buf_cleanable(priv))
1323 work_done = budget;
1324
1325 if (work_done < budget) {
1326 /* We are about to re-enable all interrupts. However
1327 * the HW has been latching RX/TX packet interrupts while
1328 * they were masked. So we clear them first, then we need
1329 * to re-check if there's something to process
1330 */
1331 iowrite32(FTGMAC100_INT_RXTX,
1332 priv->base + FTGMAC100_OFFSET_ISR);
1333
1334 /* Push the above (and provides a barrier vs. subsequent
1335 * reads of the descriptor).
1336 */
1337 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1338
1339 /* Check RX and TX descriptors for more work to do */
1340 if (ftgmac100_check_rx(priv) ||
1341 ftgmac100_tx_buf_cleanable(priv))
1342 return budget;
1343
1344 /* deschedule NAPI */
1345 napi_complete(napi);
1346
1347 /* enable all interrupts */
1348 iowrite32(FTGMAC100_INT_ALL,
1349 priv->base + FTGMAC100_OFFSET_IER);
1350 }
1351
1352 return work_done;
1353 }
1354
1355 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1356 {
1357 int err = 0;
1358
1359 /* Re-init descriptors (adjust queue sizes) */
1360 ftgmac100_init_rings(priv);
1361
1362 /* Realloc rx descriptors */
1363 err = ftgmac100_alloc_rx_buffers(priv);
1364 if (err && !ignore_alloc_err)
1365 return err;
1366
1367 /* Reinit and restart HW */
1368 ftgmac100_init_hw(priv);
1369 ftgmac100_config_pause(priv);
1370 ftgmac100_start_hw(priv);
1371
1372 /* Re-enable the device */
1373 napi_enable(&priv->napi);
1374 netif_start_queue(priv->netdev);
1375
1376 /* Enable all interrupts */
1377 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1378
1379 return err;
1380 }
1381
1382 static void ftgmac100_reset_task(struct work_struct *work)
1383 {
1384 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1385 reset_task);
1386 struct net_device *netdev = priv->netdev;
1387 int err;
1388
1389 netdev_dbg(netdev, "Resetting NIC...\n");
1390
1391 /* Lock the world */
1392 rtnl_lock();
1393 if (netdev->phydev)
1394 mutex_lock(&netdev->phydev->lock);
1395 if (priv->mii_bus)
1396 mutex_lock(&priv->mii_bus->mdio_lock);
1397
1398
1399 /* Check if the interface is still up */
1400 if (!netif_running(netdev))
1401 goto bail;
1402
1403 /* Stop the network stack */
1404 netif_trans_update(netdev);
1405 napi_disable(&priv->napi);
1406 netif_tx_disable(netdev);
1407
1408 /* Stop and reset the MAC */
1409 ftgmac100_stop_hw(priv);
1410 err = ftgmac100_reset_and_config_mac(priv);
1411 if (err) {
1412 /* Not much we can do ... it might come back... */
1413 netdev_err(netdev, "attempting to continue...\n");
1414 }
1415
1416 /* Free all rx and tx buffers */
1417 ftgmac100_free_buffers(priv);
1418
1419 /* Setup everything again and restart chip */
1420 ftgmac100_init_all(priv, true);
1421
1422 netdev_dbg(netdev, "Reset done !\n");
1423 bail:
1424 if (priv->mii_bus)
1425 mutex_unlock(&priv->mii_bus->mdio_lock);
1426 if (netdev->phydev)
1427 mutex_unlock(&netdev->phydev->lock);
1428 rtnl_unlock();
1429 }
1430
1431 static int ftgmac100_open(struct net_device *netdev)
1432 {
1433 struct ftgmac100 *priv = netdev_priv(netdev);
1434 int err;
1435
1436 /* Allocate ring buffers */
1437 err = ftgmac100_alloc_rings(priv);
1438 if (err) {
1439 netdev_err(netdev, "Failed to allocate descriptors\n");
1440 return err;
1441 }
1442
1443 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1444 *
1445 * Otherwise we leave it set to 0 (no link), the link
1446 * message from the PHY layer will handle setting it up to
1447 * something else if needed.
1448 */
1449 if (priv->use_ncsi) {
1450 priv->cur_duplex = DUPLEX_FULL;
1451 priv->cur_speed = SPEED_100;
1452 } else {
1453 priv->cur_duplex = 0;
1454 priv->cur_speed = 0;
1455 }
1456
1457 /* Reset the hardware */
1458 err = ftgmac100_reset_and_config_mac(priv);
1459 if (err)
1460 goto err_hw;
1461
1462 /* Initialize NAPI */
1463 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1464
1465 /* Grab our interrupt */
1466 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1467 if (err) {
1468 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1469 goto err_irq;
1470 }
1471
1472 /* Start things up */
1473 err = ftgmac100_init_all(priv, false);
1474 if (err) {
1475 netdev_err(netdev, "Failed to allocate packet buffers\n");
1476 goto err_alloc;
1477 }
1478
1479 if (netdev->phydev) {
1480 /* If we have a PHY, start polling */
1481 phy_start(netdev->phydev);
1482 } else if (priv->use_ncsi) {
1483 /* If using NC-SI, set our carrier on and start the stack */
1484 netif_carrier_on(netdev);
1485
1486 /* Start the NCSI device */
1487 err = ncsi_start_dev(priv->ndev);
1488 if (err)
1489 goto err_ncsi;
1490 }
1491
1492 return 0;
1493
1494 err_ncsi:
1495 napi_disable(&priv->napi);
1496 netif_stop_queue(netdev);
1497 err_alloc:
1498 ftgmac100_free_buffers(priv);
1499 free_irq(netdev->irq, netdev);
1500 err_irq:
1501 netif_napi_del(&priv->napi);
1502 err_hw:
1503 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1504 ftgmac100_free_rings(priv);
1505 return err;
1506 }
1507
1508 static int ftgmac100_stop(struct net_device *netdev)
1509 {
1510 struct ftgmac100 *priv = netdev_priv(netdev);
1511
1512 /* Note about the reset task: We are called with the rtnl lock
1513 * held, so we are synchronized against the core of the reset
1514 * task. We must not try to synchronously cancel it otherwise
1515 * we can deadlock. But since it will test for netif_running()
1516 * which has already been cleared by the net core, we don't
1517 * anything special to do.
1518 */
1519
1520 /* disable all interrupts */
1521 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1522
1523 netif_stop_queue(netdev);
1524 napi_disable(&priv->napi);
1525 netif_napi_del(&priv->napi);
1526 if (netdev->phydev)
1527 phy_stop(netdev->phydev);
1528 else if (priv->use_ncsi)
1529 ncsi_stop_dev(priv->ndev);
1530
1531 ftgmac100_stop_hw(priv);
1532 free_irq(netdev->irq, netdev);
1533 ftgmac100_free_buffers(priv);
1534 ftgmac100_free_rings(priv);
1535
1536 return 0;
1537 }
1538
1539 /* optional */
1540 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1541 {
1542 if (!netdev->phydev)
1543 return -ENXIO;
1544
1545 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1546 }
1547
1548 static void ftgmac100_tx_timeout(struct net_device *netdev)
1549 {
1550 struct ftgmac100 *priv = netdev_priv(netdev);
1551
1552 /* Disable all interrupts */
1553 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1554
1555 /* Do the reset outside of interrupt context */
1556 schedule_work(&priv->reset_task);
1557 }
1558
1559 static int ftgmac100_set_features(struct net_device *netdev,
1560 netdev_features_t features)
1561 {
1562 struct ftgmac100 *priv = netdev_priv(netdev);
1563 netdev_features_t changed = netdev->features ^ features;
1564
1565 if (!netif_running(netdev))
1566 return 0;
1567
1568 /* Update the vlan filtering bit */
1569 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1570 u32 maccr;
1571
1572 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1573 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1574 maccr |= FTGMAC100_MACCR_RM_VLAN;
1575 else
1576 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1577 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1578 }
1579
1580 return 0;
1581 }
1582
1583 #ifdef CONFIG_NET_POLL_CONTROLLER
1584 static void ftgmac100_poll_controller(struct net_device *netdev)
1585 {
1586 unsigned long flags;
1587
1588 local_irq_save(flags);
1589 ftgmac100_interrupt(netdev->irq, netdev);
1590 local_irq_restore(flags);
1591 }
1592 #endif
1593
1594 static const struct net_device_ops ftgmac100_netdev_ops = {
1595 .ndo_open = ftgmac100_open,
1596 .ndo_stop = ftgmac100_stop,
1597 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1598 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1599 .ndo_validate_addr = eth_validate_addr,
1600 .ndo_do_ioctl = ftgmac100_do_ioctl,
1601 .ndo_tx_timeout = ftgmac100_tx_timeout,
1602 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1603 .ndo_set_features = ftgmac100_set_features,
1604 #ifdef CONFIG_NET_POLL_CONTROLLER
1605 .ndo_poll_controller = ftgmac100_poll_controller,
1606 #endif
1607 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1608 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1609 };
1610
1611 static int ftgmac100_setup_mdio(struct net_device *netdev)
1612 {
1613 struct ftgmac100 *priv = netdev_priv(netdev);
1614 struct platform_device *pdev = to_platform_device(priv->dev);
1615 phy_interface_t phy_intf = PHY_INTERFACE_MODE_RGMII;
1616 struct device_node *np = pdev->dev.of_node;
1617 int i, err = 0;
1618 u32 reg;
1619
1620 /* initialize mdio bus */
1621 priv->mii_bus = mdiobus_alloc();
1622 if (!priv->mii_bus)
1623 return -EIO;
1624
1625 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1626 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1627 /* The AST2600 has a separate MDIO controller */
1628
1629 /* For the AST2400 and AST2500 this driver only supports the
1630 * old MDIO interface
1631 */
1632 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1633 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1634 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1635 }
1636
1637 /* Get PHY mode from device-tree */
1638 if (np) {
1639 /* Default to RGMII. It's a gigabit part after all */
1640 err = of_get_phy_mode(np, &phy_intf);
1641 if (err)
1642 phy_intf = PHY_INTERFACE_MODE_RGMII;
1643
1644 /* Aspeed only supports these. I don't know about other IP
1645 * block vendors so I'm going to just let them through for
1646 * now. Note that this is only a warning if for some obscure
1647 * reason the DT really means to lie about it or it's a newer
1648 * part we don't know about.
1649 *
1650 * On the Aspeed SoC there are additionally straps and SCU
1651 * control bits that could tell us what the interface is
1652 * (or allow us to configure it while the IP block is held
1653 * in reset). For now I chose to keep this driver away from
1654 * those SoC specific bits and assume the device-tree is
1655 * right and the SCU has been configured properly by pinmux
1656 * or the firmware.
1657 */
1658 if (priv->is_aspeed &&
1659 phy_intf != PHY_INTERFACE_MODE_RMII &&
1660 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1661 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1662 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1663 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1664 netdev_warn(netdev,
1665 "Unsupported PHY mode %s !\n",
1666 phy_modes(phy_intf));
1667 }
1668 }
1669
1670 priv->mii_bus->name = "ftgmac100_mdio";
1671 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1672 pdev->name, pdev->id);
1673 priv->mii_bus->parent = priv->dev;
1674 priv->mii_bus->priv = priv->netdev;
1675 priv->mii_bus->read = ftgmac100_mdiobus_read;
1676 priv->mii_bus->write = ftgmac100_mdiobus_write;
1677
1678 for (i = 0; i < PHY_MAX_ADDR; i++)
1679 priv->mii_bus->irq[i] = PHY_POLL;
1680
1681 err = mdiobus_register(priv->mii_bus);
1682 if (err) {
1683 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1684 goto err_register_mdiobus;
1685 }
1686
1687 err = ftgmac100_mii_probe(priv, phy_intf);
1688 if (err) {
1689 dev_err(priv->dev, "MII Probe failed!\n");
1690 goto err_mii_probe;
1691 }
1692
1693 return 0;
1694
1695 err_mii_probe:
1696 mdiobus_unregister(priv->mii_bus);
1697 err_register_mdiobus:
1698 mdiobus_free(priv->mii_bus);
1699 return err;
1700 }
1701
1702 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1703 {
1704 struct ftgmac100 *priv = netdev_priv(netdev);
1705
1706 if (!netdev->phydev)
1707 return;
1708
1709 phy_disconnect(netdev->phydev);
1710 mdiobus_unregister(priv->mii_bus);
1711 mdiobus_free(priv->mii_bus);
1712 }
1713
1714 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1715 {
1716 if (unlikely(nd->state != ncsi_dev_state_functional))
1717 return;
1718
1719 netdev_dbg(nd->dev, "NCSI interface %s\n",
1720 nd->link_up ? "up" : "down");
1721 }
1722
1723 static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1724 {
1725 struct clk *clk;
1726 int rc;
1727
1728 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1729 if (IS_ERR(clk))
1730 return PTR_ERR(clk);
1731 priv->clk = clk;
1732 rc = clk_prepare_enable(priv->clk);
1733 if (rc)
1734 return rc;
1735
1736 /* Aspeed specifies a 100MHz clock is required for up to
1737 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1738 * is sufficient
1739 */
1740 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1741 FTGMAC_100MHZ);
1742 if (rc)
1743 goto cleanup_clk;
1744
1745 /* RCLK is for RMII, typically used for NCSI. Optional because its not
1746 * necessary if it's the AST2400 MAC, or the MAC is configured for
1747 * RGMII, or the controller is not an ASPEED-based controller.
1748 */
1749 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1750 rc = clk_prepare_enable(priv->rclk);
1751 if (!rc)
1752 return 0;
1753
1754 cleanup_clk:
1755 clk_disable_unprepare(priv->clk);
1756
1757 return rc;
1758 }
1759
1760 static int ftgmac100_probe(struct platform_device *pdev)
1761 {
1762 struct resource *res;
1763 int irq;
1764 struct net_device *netdev;
1765 struct ftgmac100 *priv;
1766 struct device_node *np;
1767 int err = 0;
1768
1769 if (!pdev)
1770 return -ENODEV;
1771
1772 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1773 if (!res)
1774 return -ENXIO;
1775
1776 irq = platform_get_irq(pdev, 0);
1777 if (irq < 0)
1778 return irq;
1779
1780 /* setup net_device */
1781 netdev = alloc_etherdev(sizeof(*priv));
1782 if (!netdev) {
1783 err = -ENOMEM;
1784 goto err_alloc_etherdev;
1785 }
1786
1787 SET_NETDEV_DEV(netdev, &pdev->dev);
1788
1789 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1790 netdev->netdev_ops = &ftgmac100_netdev_ops;
1791 netdev->watchdog_timeo = 5 * HZ;
1792
1793 platform_set_drvdata(pdev, netdev);
1794
1795 /* setup private data */
1796 priv = netdev_priv(netdev);
1797 priv->netdev = netdev;
1798 priv->dev = &pdev->dev;
1799 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1800
1801 /* map io memory */
1802 priv->res = request_mem_region(res->start, resource_size(res),
1803 dev_name(&pdev->dev));
1804 if (!priv->res) {
1805 dev_err(&pdev->dev, "Could not reserve memory region\n");
1806 err = -ENOMEM;
1807 goto err_req_mem;
1808 }
1809
1810 priv->base = ioremap(res->start, resource_size(res));
1811 if (!priv->base) {
1812 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1813 err = -EIO;
1814 goto err_ioremap;
1815 }
1816
1817 netdev->irq = irq;
1818
1819 /* Enable pause */
1820 priv->tx_pause = true;
1821 priv->rx_pause = true;
1822 priv->aneg_pause = true;
1823
1824 /* MAC address from chip or random one */
1825 ftgmac100_initial_mac(priv);
1826
1827 np = pdev->dev.of_node;
1828 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1829 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1830 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1831 priv->rxdes0_edorr_mask = BIT(30);
1832 priv->txdes0_edotr_mask = BIT(30);
1833 priv->is_aspeed = true;
1834 } else {
1835 priv->rxdes0_edorr_mask = BIT(15);
1836 priv->txdes0_edotr_mask = BIT(15);
1837 }
1838
1839 if (np && of_get_property(np, "use-ncsi", NULL)) {
1840 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1841 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1842 goto err_ncsi_dev;
1843 }
1844
1845 dev_info(&pdev->dev, "Using NCSI interface\n");
1846 priv->use_ncsi = true;
1847 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1848 if (!priv->ndev)
1849 goto err_ncsi_dev;
1850 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1851 struct phy_device *phy;
1852
1853 phy = of_phy_get_and_connect(priv->netdev, np,
1854 &ftgmac100_adjust_link);
1855 if (!phy) {
1856 dev_err(&pdev->dev, "Failed to connect to phy\n");
1857 goto err_setup_mdio;
1858 }
1859
1860 /* Indicate that we support PAUSE frames (see comment in
1861 * Documentation/networking/phy.txt)
1862 */
1863 phy_support_asym_pause(phy);
1864
1865 /* Display what we found */
1866 phy_attached_info(phy);
1867 } else if (np && !of_get_child_by_name(np, "mdio")) {
1868 /* Support legacy ASPEED devicetree descriptions that decribe a
1869 * MAC with an embedded MDIO controller but have no "mdio"
1870 * child node. Automatically scan the MDIO bus for available
1871 * PHYs.
1872 */
1873 priv->use_ncsi = false;
1874 err = ftgmac100_setup_mdio(netdev);
1875 if (err)
1876 goto err_setup_mdio;
1877 }
1878
1879 if (priv->is_aspeed) {
1880 err = ftgmac100_setup_clk(priv);
1881 if (err)
1882 goto err_ncsi_dev;
1883 }
1884
1885 /* Default ring sizes */
1886 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1887 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1888
1889 /* Base feature set */
1890 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1891 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1892 NETIF_F_HW_VLAN_CTAG_TX;
1893
1894 if (priv->use_ncsi)
1895 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1896
1897 /* AST2400 doesn't have working HW checksum generation */
1898 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1899 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1900 if (np && of_get_property(np, "no-hw-checksum", NULL))
1901 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1902 netdev->features |= netdev->hw_features;
1903
1904 /* register network device */
1905 err = register_netdev(netdev);
1906 if (err) {
1907 dev_err(&pdev->dev, "Failed to register netdev\n");
1908 goto err_register_netdev;
1909 }
1910
1911 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1912
1913 return 0;
1914
1915 err_register_netdev:
1916 clk_disable_unprepare(priv->rclk);
1917 clk_disable_unprepare(priv->clk);
1918 err_ncsi_dev:
1919 ftgmac100_destroy_mdio(netdev);
1920 err_setup_mdio:
1921 iounmap(priv->base);
1922 err_ioremap:
1923 release_resource(priv->res);
1924 err_req_mem:
1925 free_netdev(netdev);
1926 err_alloc_etherdev:
1927 return err;
1928 }
1929
1930 static int ftgmac100_remove(struct platform_device *pdev)
1931 {
1932 struct net_device *netdev;
1933 struct ftgmac100 *priv;
1934
1935 netdev = platform_get_drvdata(pdev);
1936 priv = netdev_priv(netdev);
1937
1938 unregister_netdev(netdev);
1939
1940 clk_disable_unprepare(priv->rclk);
1941 clk_disable_unprepare(priv->clk);
1942
1943 /* There's a small chance the reset task will have been re-queued,
1944 * during stop, make sure it's gone before we free the structure.
1945 */
1946 cancel_work_sync(&priv->reset_task);
1947
1948 ftgmac100_destroy_mdio(netdev);
1949
1950 iounmap(priv->base);
1951 release_resource(priv->res);
1952
1953 netif_napi_del(&priv->napi);
1954 free_netdev(netdev);
1955 return 0;
1956 }
1957
1958 static const struct of_device_id ftgmac100_of_match[] = {
1959 { .compatible = "faraday,ftgmac100" },
1960 { }
1961 };
1962 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1963
1964 static struct platform_driver ftgmac100_driver = {
1965 .probe = ftgmac100_probe,
1966 .remove = ftgmac100_remove,
1967 .driver = {
1968 .name = DRV_NAME,
1969 .of_match_table = ftgmac100_of_match,
1970 },
1971 };
1972 module_platform_driver(ftgmac100_driver);
1973
1974 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1975 MODULE_DESCRIPTION("FTGMAC100 driver");
1976 MODULE_LICENSE("GPL");