]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/faraday/ftgmac100.c
Merge tag 'drm-misc-next-2019-04-10' of git://anongit.freedesktop.org/drm/drm-misc...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / faraday / ftgmac100.c
1 /*
2 * Faraday FTGMAC100 Gigabit Ethernet
3 *
4 * (C) Copyright 2009-2011 Faraday Technology
5 * Po-Yu Chuang <ratbert@faraday-tech.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/clk.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/module.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/phy.h>
34 #include <linux/platform_device.h>
35 #include <linux/property.h>
36 #include <linux/crc32.h>
37 #include <linux/if_vlan.h>
38 #include <linux/of_net.h>
39 #include <net/ip.h>
40 #include <net/ncsi.h>
41
42 #include "ftgmac100.h"
43
44 #define DRV_NAME "ftgmac100"
45 #define DRV_VERSION "0.7"
46
47 /* Arbitrary values, I am not sure the HW has limits */
48 #define MAX_RX_QUEUE_ENTRIES 1024
49 #define MAX_TX_QUEUE_ENTRIES 1024
50 #define MIN_RX_QUEUE_ENTRIES 32
51 #define MIN_TX_QUEUE_ENTRIES 32
52
53 /* Defaults */
54 #define DEF_RX_QUEUE_ENTRIES 128
55 #define DEF_TX_QUEUE_ENTRIES 128
56
57 #define MAX_PKT_SIZE 1536
58 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
59
60 /* Min number of tx ring entries before stopping queue */
61 #define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
62
63 #define FTGMAC_100MHZ 100000000
64 #define FTGMAC_25MHZ 25000000
65
66 struct ftgmac100 {
67 /* Registers */
68 struct resource *res;
69 void __iomem *base;
70
71 /* Rx ring */
72 unsigned int rx_q_entries;
73 struct ftgmac100_rxdes *rxdes;
74 dma_addr_t rxdes_dma;
75 struct sk_buff **rx_skbs;
76 unsigned int rx_pointer;
77 u32 rxdes0_edorr_mask;
78
79 /* Tx ring */
80 unsigned int tx_q_entries;
81 struct ftgmac100_txdes *txdes;
82 dma_addr_t txdes_dma;
83 struct sk_buff **tx_skbs;
84 unsigned int tx_clean_pointer;
85 unsigned int tx_pointer;
86 u32 txdes0_edotr_mask;
87
88 /* Used to signal the reset task of ring change request */
89 unsigned int new_rx_q_entries;
90 unsigned int new_tx_q_entries;
91
92 /* Scratch page to use when rx skb alloc fails */
93 void *rx_scratch;
94 dma_addr_t rx_scratch_dma;
95
96 /* Component structures */
97 struct net_device *netdev;
98 struct device *dev;
99 struct ncsi_dev *ndev;
100 struct napi_struct napi;
101 struct work_struct reset_task;
102 struct mii_bus *mii_bus;
103 struct clk *clk;
104
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
109
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
113
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
118
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
122 };
123
124 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125 {
126 struct net_device *netdev = priv->netdev;
127 int i;
128
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
135
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
139
140 udelay(1);
141 }
142
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
145 }
146
147 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148 {
149 u32 maccr = 0;
150
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
155
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
159
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
167 }
168
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
173
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
179 }
180
181 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182 {
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188 }
189
190 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
191 {
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 void *addr;
196
197 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
198 if (addr) {
199 ether_addr_copy(priv->netdev->dev_addr, mac);
200 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
201 mac);
202 return;
203 }
204
205 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
206 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
207
208 mac[0] = (m >> 8) & 0xff;
209 mac[1] = m & 0xff;
210 mac[2] = (l >> 24) & 0xff;
211 mac[3] = (l >> 16) & 0xff;
212 mac[4] = (l >> 8) & 0xff;
213 mac[5] = l & 0xff;
214
215 if (is_valid_ether_addr(mac)) {
216 ether_addr_copy(priv->netdev->dev_addr, mac);
217 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
218 } else {
219 eth_hw_addr_random(priv->netdev);
220 dev_info(priv->dev, "Generated random MAC address %pM\n",
221 priv->netdev->dev_addr);
222 }
223 }
224
225 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
226 {
227 int ret;
228
229 ret = eth_prepare_mac_addr_change(dev, p);
230 if (ret < 0)
231 return ret;
232
233 eth_commit_mac_addr_change(dev, p);
234 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
235
236 return 0;
237 }
238
239 static void ftgmac100_config_pause(struct ftgmac100 *priv)
240 {
241 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
242
243 /* Throttle tx queue when receiving pause frames */
244 if (priv->rx_pause)
245 fcr |= FTGMAC100_FCR_FC_EN;
246
247 /* Enables sending pause frames when the RX queue is past a
248 * certain threshold.
249 */
250 if (priv->tx_pause)
251 fcr |= FTGMAC100_FCR_FCTHR_EN;
252
253 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
254 }
255
256 static void ftgmac100_init_hw(struct ftgmac100 *priv)
257 {
258 u32 reg, rfifo_sz, tfifo_sz;
259
260 /* Clear stale interrupts */
261 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
262 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
263
264 /* Setup RX ring buffer base */
265 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
266
267 /* Setup TX ring buffer base */
268 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
269
270 /* Configure RX buffer size */
271 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
272 priv->base + FTGMAC100_OFFSET_RBSR);
273
274 /* Set RX descriptor autopoll */
275 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
276 priv->base + FTGMAC100_OFFSET_APTC);
277
278 /* Write MAC address */
279 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
280
281 /* Write multicast filter */
282 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
283 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
284
285 /* Configure descriptor sizes and increase burst sizes according
286 * to values in Aspeed SDK. The FIFO arbitration is enabled and
287 * the thresholds set based on the recommended values in the
288 * AST2400 specification.
289 */
290 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
291 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
292 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
293 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
294 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
295 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
296 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
297 priv->base + FTGMAC100_OFFSET_DBLAC);
298
299 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
300 * mitigation doesn't seem to provide any benefit with NAPI so leave
301 * it at that.
302 */
303 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
304 FTGMAC100_ITC_TXINT_THR(1),
305 priv->base + FTGMAC100_OFFSET_ITC);
306
307 /* Configure FIFO sizes in the TPAFCR register */
308 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
309 rfifo_sz = reg & 0x00000007;
310 tfifo_sz = (reg >> 3) & 0x00000007;
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
312 reg &= ~0x3f000000;
313 reg |= (tfifo_sz << 27);
314 reg |= (rfifo_sz << 24);
315 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
316 }
317
318 static void ftgmac100_start_hw(struct ftgmac100 *priv)
319 {
320 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
321
322 /* Keep the original GMAC and FAST bits */
323 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
324
325 /* Add all the main enable bits */
326 maccr |= FTGMAC100_MACCR_TXDMA_EN |
327 FTGMAC100_MACCR_RXDMA_EN |
328 FTGMAC100_MACCR_TXMAC_EN |
329 FTGMAC100_MACCR_RXMAC_EN |
330 FTGMAC100_MACCR_CRC_APD |
331 FTGMAC100_MACCR_PHY_LINK_LEVEL |
332 FTGMAC100_MACCR_RX_RUNT |
333 FTGMAC100_MACCR_RX_BROADPKT;
334
335 /* Add other bits as needed */
336 if (priv->cur_duplex == DUPLEX_FULL)
337 maccr |= FTGMAC100_MACCR_FULLDUP;
338 if (priv->netdev->flags & IFF_PROMISC)
339 maccr |= FTGMAC100_MACCR_RX_ALL;
340 if (priv->netdev->flags & IFF_ALLMULTI)
341 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
342 else if (netdev_mc_count(priv->netdev))
343 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
344
345 /* Vlan filtering enabled */
346 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
347 maccr |= FTGMAC100_MACCR_RM_VLAN;
348
349 /* Hit the HW */
350 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
351 }
352
353 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
354 {
355 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
356 }
357
358 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
359 {
360 struct netdev_hw_addr *ha;
361
362 priv->maht1 = 0;
363 priv->maht0 = 0;
364 netdev_for_each_mc_addr(ha, priv->netdev) {
365 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
366
367 crc_val = (~(crc_val >> 2)) & 0x3f;
368 if (crc_val >= 32)
369 priv->maht1 |= 1ul << (crc_val - 32);
370 else
371 priv->maht0 |= 1ul << (crc_val);
372 }
373 }
374
375 static void ftgmac100_set_rx_mode(struct net_device *netdev)
376 {
377 struct ftgmac100 *priv = netdev_priv(netdev);
378
379 /* Setup the hash filter */
380 ftgmac100_calc_mc_hash(priv);
381
382 /* Interface down ? that's all there is to do */
383 if (!netif_running(netdev))
384 return;
385
386 /* Update the HW */
387 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
388 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
389
390 /* Reconfigure MACCR */
391 ftgmac100_start_hw(priv);
392 }
393
394 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
395 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
396 {
397 struct net_device *netdev = priv->netdev;
398 struct sk_buff *skb;
399 dma_addr_t map;
400 int err = 0;
401
402 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
403 if (unlikely(!skb)) {
404 if (net_ratelimit())
405 netdev_warn(netdev, "failed to allocate rx skb\n");
406 err = -ENOMEM;
407 map = priv->rx_scratch_dma;
408 } else {
409 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
410 DMA_FROM_DEVICE);
411 if (unlikely(dma_mapping_error(priv->dev, map))) {
412 if (net_ratelimit())
413 netdev_err(netdev, "failed to map rx page\n");
414 dev_kfree_skb_any(skb);
415 map = priv->rx_scratch_dma;
416 skb = NULL;
417 err = -ENOMEM;
418 }
419 }
420
421 /* Store skb */
422 priv->rx_skbs[entry] = skb;
423
424 /* Store DMA address into RX desc */
425 rxdes->rxdes3 = cpu_to_le32(map);
426
427 /* Ensure the above is ordered vs clearing the OWN bit */
428 dma_wmb();
429
430 /* Clean status (which resets own bit) */
431 if (entry == (priv->rx_q_entries - 1))
432 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
433 else
434 rxdes->rxdes0 = 0;
435
436 return err;
437 }
438
439 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
440 unsigned int pointer)
441 {
442 return (pointer + 1) & (priv->rx_q_entries - 1);
443 }
444
445 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
446 {
447 struct net_device *netdev = priv->netdev;
448
449 if (status & FTGMAC100_RXDES0_RX_ERR)
450 netdev->stats.rx_errors++;
451
452 if (status & FTGMAC100_RXDES0_CRC_ERR)
453 netdev->stats.rx_crc_errors++;
454
455 if (status & (FTGMAC100_RXDES0_FTL |
456 FTGMAC100_RXDES0_RUNT |
457 FTGMAC100_RXDES0_RX_ODD_NB))
458 netdev->stats.rx_length_errors++;
459 }
460
461 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
462 {
463 struct net_device *netdev = priv->netdev;
464 struct ftgmac100_rxdes *rxdes;
465 struct sk_buff *skb;
466 unsigned int pointer, size;
467 u32 status, csum_vlan;
468 dma_addr_t map;
469
470 /* Grab next RX descriptor */
471 pointer = priv->rx_pointer;
472 rxdes = &priv->rxdes[pointer];
473
474 /* Grab descriptor status */
475 status = le32_to_cpu(rxdes->rxdes0);
476
477 /* Do we have a packet ? */
478 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
479 return false;
480
481 /* Order subsequent reads with the test for the ready bit */
482 dma_rmb();
483
484 /* We don't cope with fragmented RX packets */
485 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
486 !(status & FTGMAC100_RXDES0_LRS)))
487 goto drop;
488
489 /* Grab received size and csum vlan field in the descriptor */
490 size = status & FTGMAC100_RXDES0_VDBC;
491 csum_vlan = le32_to_cpu(rxdes->rxdes1);
492
493 /* Any error (other than csum offload) flagged ? */
494 if (unlikely(status & RXDES0_ANY_ERROR)) {
495 /* Correct for incorrect flagging of runt packets
496 * with vlan tags... Just accept a runt packet that
497 * has been flagged as vlan and whose size is at
498 * least 60 bytes.
499 */
500 if ((status & FTGMAC100_RXDES0_RUNT) &&
501 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
502 (size >= 60))
503 status &= ~FTGMAC100_RXDES0_RUNT;
504
505 /* Any error still in there ? */
506 if (status & RXDES0_ANY_ERROR) {
507 ftgmac100_rx_packet_error(priv, status);
508 goto drop;
509 }
510 }
511
512 /* If the packet had no skb (failed to allocate earlier)
513 * then try to allocate one and skip
514 */
515 skb = priv->rx_skbs[pointer];
516 if (!unlikely(skb)) {
517 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
518 goto drop;
519 }
520
521 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
522 netdev->stats.multicast++;
523
524 /* If the HW found checksum errors, bounce it to software.
525 *
526 * If we didn't, we need to see if the packet was recognized
527 * by HW as one of the supported checksummed protocols before
528 * we accept the HW test results.
529 */
530 if (netdev->features & NETIF_F_RXCSUM) {
531 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
532 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
533 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
534 if ((csum_vlan & err_bits) ||
535 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
536 skb->ip_summed = CHECKSUM_NONE;
537 else
538 skb->ip_summed = CHECKSUM_UNNECESSARY;
539 }
540
541 /* Transfer received size to skb */
542 skb_put(skb, size);
543
544 /* Extract vlan tag */
545 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
546 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
547 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
548 csum_vlan & 0xffff);
549
550 /* Tear down DMA mapping, do necessary cache management */
551 map = le32_to_cpu(rxdes->rxdes3);
552
553 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
554 /* When we don't have an iommu, we can save cycles by not
555 * invalidating the cache for the part of the packet that
556 * wasn't received.
557 */
558 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
559 #else
560 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
561 #endif
562
563
564 /* Resplenish rx ring */
565 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
566 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
567
568 skb->protocol = eth_type_trans(skb, netdev);
569
570 netdev->stats.rx_packets++;
571 netdev->stats.rx_bytes += size;
572
573 /* push packet to protocol stack */
574 if (skb->ip_summed == CHECKSUM_NONE)
575 netif_receive_skb(skb);
576 else
577 napi_gro_receive(&priv->napi, skb);
578
579 (*processed)++;
580 return true;
581
582 drop:
583 /* Clean rxdes0 (which resets own bit) */
584 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
585 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
586 netdev->stats.rx_dropped++;
587 return true;
588 }
589
590 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
591 unsigned int index)
592 {
593 if (index == (priv->tx_q_entries - 1))
594 return priv->txdes0_edotr_mask;
595 else
596 return 0;
597 }
598
599 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
600 unsigned int pointer)
601 {
602 return (pointer + 1) & (priv->tx_q_entries - 1);
603 }
604
605 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
606 {
607 /* Returns the number of available slots in the TX queue
608 *
609 * This always leaves one free slot so we don't have to
610 * worry about empty vs. full, and this simplifies the
611 * test for ftgmac100_tx_buf_cleanable() below
612 */
613 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
614 (priv->tx_q_entries - 1);
615 }
616
617 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
618 {
619 return priv->tx_pointer != priv->tx_clean_pointer;
620 }
621
622 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
623 unsigned int pointer,
624 struct sk_buff *skb,
625 struct ftgmac100_txdes *txdes,
626 u32 ctl_stat)
627 {
628 dma_addr_t map = le32_to_cpu(txdes->txdes3);
629 size_t len;
630
631 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
632 len = skb_headlen(skb);
633 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
634 } else {
635 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
636 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
637 }
638
639 /* Free SKB on last segment */
640 if (ctl_stat & FTGMAC100_TXDES0_LTS)
641 dev_kfree_skb(skb);
642 priv->tx_skbs[pointer] = NULL;
643 }
644
645 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
646 {
647 struct net_device *netdev = priv->netdev;
648 struct ftgmac100_txdes *txdes;
649 struct sk_buff *skb;
650 unsigned int pointer;
651 u32 ctl_stat;
652
653 pointer = priv->tx_clean_pointer;
654 txdes = &priv->txdes[pointer];
655
656 ctl_stat = le32_to_cpu(txdes->txdes0);
657 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
658 return false;
659
660 skb = priv->tx_skbs[pointer];
661 netdev->stats.tx_packets++;
662 netdev->stats.tx_bytes += skb->len;
663 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
664 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
665
666 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
667
668 return true;
669 }
670
671 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
672 {
673 struct net_device *netdev = priv->netdev;
674
675 /* Process all completed packets */
676 while (ftgmac100_tx_buf_cleanable(priv) &&
677 ftgmac100_tx_complete_packet(priv))
678 ;
679
680 /* Restart queue if needed */
681 smp_mb();
682 if (unlikely(netif_queue_stopped(netdev) &&
683 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
684 struct netdev_queue *txq;
685
686 txq = netdev_get_tx_queue(netdev, 0);
687 __netif_tx_lock(txq, smp_processor_id());
688 if (netif_queue_stopped(netdev) &&
689 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
690 netif_wake_queue(netdev);
691 __netif_tx_unlock(txq);
692 }
693 }
694
695 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
696 {
697 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
698 u8 ip_proto = ip_hdr(skb)->protocol;
699
700 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
701 switch(ip_proto) {
702 case IPPROTO_TCP:
703 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
704 return true;
705 case IPPROTO_UDP:
706 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
707 return true;
708 case IPPROTO_IP:
709 return true;
710 }
711 }
712 return skb_checksum_help(skb) == 0;
713 }
714
715 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
716 struct net_device *netdev)
717 {
718 struct ftgmac100 *priv = netdev_priv(netdev);
719 struct ftgmac100_txdes *txdes, *first;
720 unsigned int pointer, nfrags, len, i, j;
721 u32 f_ctl_stat, ctl_stat, csum_vlan;
722 dma_addr_t map;
723
724 /* The HW doesn't pad small frames */
725 if (eth_skb_pad(skb)) {
726 netdev->stats.tx_dropped++;
727 return NETDEV_TX_OK;
728 }
729
730 /* Reject oversize packets */
731 if (unlikely(skb->len > MAX_PKT_SIZE)) {
732 if (net_ratelimit())
733 netdev_dbg(netdev, "tx packet too big\n");
734 goto drop;
735 }
736
737 /* Do we have a limit on #fragments ? I yet have to get a reply
738 * from Aspeed. If there's one I haven't hit it.
739 */
740 nfrags = skb_shinfo(skb)->nr_frags;
741
742 /* Get header len */
743 len = skb_headlen(skb);
744
745 /* Map the packet head */
746 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 if (dma_mapping_error(priv->dev, map)) {
748 if (net_ratelimit())
749 netdev_err(netdev, "map tx packet head failed\n");
750 goto drop;
751 }
752
753 /* Grab the next free tx descriptor */
754 pointer = priv->tx_pointer;
755 txdes = first = &priv->txdes[pointer];
756
757 /* Setup it up with the packet head. Don't write the head to the
758 * ring just yet
759 */
760 priv->tx_skbs[pointer] = skb;
761 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 if (nfrags == 0)
766 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 txdes->txdes3 = cpu_to_le32(map);
768
769 /* Setup HW checksumming */
770 csum_vlan = 0;
771 if (skb->ip_summed == CHECKSUM_PARTIAL &&
772 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
773 goto drop;
774
775 /* Add VLAN tag */
776 if (skb_vlan_tag_present(skb)) {
777 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
778 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
779 }
780
781 txdes->txdes1 = cpu_to_le32(csum_vlan);
782
783 /* Next descriptor */
784 pointer = ftgmac100_next_tx_pointer(priv, pointer);
785
786 /* Add the fragments */
787 for (i = 0; i < nfrags; i++) {
788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
789
790 len = frag->size;
791
792 /* Map it */
793 map = skb_frag_dma_map(priv->dev, frag, 0, len,
794 DMA_TO_DEVICE);
795 if (dma_mapping_error(priv->dev, map))
796 goto dma_err;
797
798 /* Setup descriptor */
799 priv->tx_skbs[pointer] = skb;
800 txdes = &priv->txdes[pointer];
801 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
802 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
803 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
804 if (i == (nfrags - 1))
805 ctl_stat |= FTGMAC100_TXDES0_LTS;
806 txdes->txdes0 = cpu_to_le32(ctl_stat);
807 txdes->txdes1 = 0;
808 txdes->txdes3 = cpu_to_le32(map);
809
810 /* Next one */
811 pointer = ftgmac100_next_tx_pointer(priv, pointer);
812 }
813
814 /* Order the previous packet and descriptor udpates
815 * before setting the OWN bit on the first descriptor.
816 */
817 dma_wmb();
818 first->txdes0 = cpu_to_le32(f_ctl_stat);
819
820 /* Update next TX pointer */
821 priv->tx_pointer = pointer;
822
823 /* If there isn't enough room for all the fragments of a new packet
824 * in the TX ring, stop the queue. The sequence below is race free
825 * vs. a concurrent restart in ftgmac100_poll()
826 */
827 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
828 netif_stop_queue(netdev);
829 /* Order the queue stop with the test below */
830 smp_mb();
831 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
832 netif_wake_queue(netdev);
833 }
834
835 /* Poke transmitter to read the updated TX descriptors */
836 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
837
838 return NETDEV_TX_OK;
839
840 dma_err:
841 if (net_ratelimit())
842 netdev_err(netdev, "map tx fragment failed\n");
843
844 /* Free head */
845 pointer = priv->tx_pointer;
846 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
847 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
848
849 /* Then all fragments */
850 for (j = 0; j < i; j++) {
851 pointer = ftgmac100_next_tx_pointer(priv, pointer);
852 txdes = &priv->txdes[pointer];
853 ctl_stat = le32_to_cpu(txdes->txdes0);
854 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
855 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
856 }
857
858 /* This cannot be reached if we successfully mapped the
859 * last fragment, so we know ftgmac100_free_tx_packet()
860 * hasn't freed the skb yet.
861 */
862 drop:
863 /* Drop the packet */
864 dev_kfree_skb_any(skb);
865 netdev->stats.tx_dropped++;
866
867 return NETDEV_TX_OK;
868 }
869
870 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
871 {
872 int i;
873
874 /* Free all RX buffers */
875 for (i = 0; i < priv->rx_q_entries; i++) {
876 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
877 struct sk_buff *skb = priv->rx_skbs[i];
878 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
879
880 if (!skb)
881 continue;
882
883 priv->rx_skbs[i] = NULL;
884 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
885 dev_kfree_skb_any(skb);
886 }
887
888 /* Free all TX buffers */
889 for (i = 0; i < priv->tx_q_entries; i++) {
890 struct ftgmac100_txdes *txdes = &priv->txdes[i];
891 struct sk_buff *skb = priv->tx_skbs[i];
892
893 if (!skb)
894 continue;
895 ftgmac100_free_tx_packet(priv, i, skb, txdes,
896 le32_to_cpu(txdes->txdes0));
897 }
898 }
899
900 static void ftgmac100_free_rings(struct ftgmac100 *priv)
901 {
902 /* Free skb arrays */
903 kfree(priv->rx_skbs);
904 kfree(priv->tx_skbs);
905
906 /* Free descriptors */
907 if (priv->rxdes)
908 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
909 sizeof(struct ftgmac100_rxdes),
910 priv->rxdes, priv->rxdes_dma);
911 priv->rxdes = NULL;
912
913 if (priv->txdes)
914 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
915 sizeof(struct ftgmac100_txdes),
916 priv->txdes, priv->txdes_dma);
917 priv->txdes = NULL;
918
919 /* Free scratch packet buffer */
920 if (priv->rx_scratch)
921 dma_free_coherent(priv->dev, RX_BUF_SIZE,
922 priv->rx_scratch, priv->rx_scratch_dma);
923 }
924
925 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
926 {
927 /* Allocate skb arrays */
928 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
929 GFP_KERNEL);
930 if (!priv->rx_skbs)
931 return -ENOMEM;
932 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
933 GFP_KERNEL);
934 if (!priv->tx_skbs)
935 return -ENOMEM;
936
937 /* Allocate descriptors */
938 priv->rxdes = dma_alloc_coherent(priv->dev,
939 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
940 &priv->rxdes_dma, GFP_KERNEL);
941 if (!priv->rxdes)
942 return -ENOMEM;
943 priv->txdes = dma_alloc_coherent(priv->dev,
944 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
945 &priv->txdes_dma, GFP_KERNEL);
946 if (!priv->txdes)
947 return -ENOMEM;
948
949 /* Allocate scratch packet buffer */
950 priv->rx_scratch = dma_alloc_coherent(priv->dev,
951 RX_BUF_SIZE,
952 &priv->rx_scratch_dma,
953 GFP_KERNEL);
954 if (!priv->rx_scratch)
955 return -ENOMEM;
956
957 return 0;
958 }
959
960 static void ftgmac100_init_rings(struct ftgmac100 *priv)
961 {
962 struct ftgmac100_rxdes *rxdes = NULL;
963 struct ftgmac100_txdes *txdes = NULL;
964 int i;
965
966 /* Update entries counts */
967 priv->rx_q_entries = priv->new_rx_q_entries;
968 priv->tx_q_entries = priv->new_tx_q_entries;
969
970 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
971 return;
972
973 /* Initialize RX ring */
974 for (i = 0; i < priv->rx_q_entries; i++) {
975 rxdes = &priv->rxdes[i];
976 rxdes->rxdes0 = 0;
977 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
978 }
979 /* Mark the end of the ring */
980 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
981
982 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
983 return;
984
985 /* Initialize TX ring */
986 for (i = 0; i < priv->tx_q_entries; i++) {
987 txdes = &priv->txdes[i];
988 txdes->txdes0 = 0;
989 }
990 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
991 }
992
993 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
994 {
995 int i;
996
997 for (i = 0; i < priv->rx_q_entries; i++) {
998 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
999
1000 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1001 return -ENOMEM;
1002 }
1003 return 0;
1004 }
1005
1006 static void ftgmac100_adjust_link(struct net_device *netdev)
1007 {
1008 struct ftgmac100 *priv = netdev_priv(netdev);
1009 struct phy_device *phydev = netdev->phydev;
1010 bool tx_pause, rx_pause;
1011 int new_speed;
1012
1013 /* We store "no link" as speed 0 */
1014 if (!phydev->link)
1015 new_speed = 0;
1016 else
1017 new_speed = phydev->speed;
1018
1019 /* Grab pause settings from PHY if configured to do so */
1020 if (priv->aneg_pause) {
1021 rx_pause = tx_pause = phydev->pause;
1022 if (phydev->asym_pause)
1023 tx_pause = !rx_pause;
1024 } else {
1025 rx_pause = priv->rx_pause;
1026 tx_pause = priv->tx_pause;
1027 }
1028
1029 /* Link hasn't changed, do nothing */
1030 if (phydev->speed == priv->cur_speed &&
1031 phydev->duplex == priv->cur_duplex &&
1032 rx_pause == priv->rx_pause &&
1033 tx_pause == priv->tx_pause)
1034 return;
1035
1036 /* Print status if we have a link or we had one and just lost it,
1037 * don't print otherwise.
1038 */
1039 if (new_speed || priv->cur_speed)
1040 phy_print_status(phydev);
1041
1042 priv->cur_speed = new_speed;
1043 priv->cur_duplex = phydev->duplex;
1044 priv->rx_pause = rx_pause;
1045 priv->tx_pause = tx_pause;
1046
1047 /* Link is down, do nothing else */
1048 if (!new_speed)
1049 return;
1050
1051 /* Disable all interrupts */
1052 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1053
1054 /* Reset the adapter asynchronously */
1055 schedule_work(&priv->reset_task);
1056 }
1057
1058 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1059 {
1060 struct net_device *netdev = priv->netdev;
1061 struct phy_device *phydev;
1062
1063 phydev = phy_find_first(priv->mii_bus);
1064 if (!phydev) {
1065 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1066 return -ENODEV;
1067 }
1068
1069 phydev = phy_connect(netdev, phydev_name(phydev),
1070 &ftgmac100_adjust_link, intf);
1071
1072 if (IS_ERR(phydev)) {
1073 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1074 return PTR_ERR(phydev);
1075 }
1076
1077 /* Indicate that we support PAUSE frames (see comment in
1078 * Documentation/networking/phy.txt)
1079 */
1080 phy_support_asym_pause(phydev);
1081
1082 /* Display what we found */
1083 phy_attached_info(phydev);
1084
1085 return 0;
1086 }
1087
1088 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1089 {
1090 struct net_device *netdev = bus->priv;
1091 struct ftgmac100 *priv = netdev_priv(netdev);
1092 unsigned int phycr;
1093 int i;
1094
1095 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1096
1097 /* preserve MDC cycle threshold */
1098 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1099
1100 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1101 FTGMAC100_PHYCR_REGAD(regnum) |
1102 FTGMAC100_PHYCR_MIIRD;
1103
1104 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1105
1106 for (i = 0; i < 10; i++) {
1107 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1108
1109 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1110 int data;
1111
1112 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1113 return FTGMAC100_PHYDATA_MIIRDATA(data);
1114 }
1115
1116 udelay(100);
1117 }
1118
1119 netdev_err(netdev, "mdio read timed out\n");
1120 return -EIO;
1121 }
1122
1123 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1124 int regnum, u16 value)
1125 {
1126 struct net_device *netdev = bus->priv;
1127 struct ftgmac100 *priv = netdev_priv(netdev);
1128 unsigned int phycr;
1129 int data;
1130 int i;
1131
1132 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1133
1134 /* preserve MDC cycle threshold */
1135 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1136
1137 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1138 FTGMAC100_PHYCR_REGAD(regnum) |
1139 FTGMAC100_PHYCR_MIIWR;
1140
1141 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1142
1143 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1144 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1145
1146 for (i = 0; i < 10; i++) {
1147 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1148
1149 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1150 return 0;
1151
1152 udelay(100);
1153 }
1154
1155 netdev_err(netdev, "mdio write timed out\n");
1156 return -EIO;
1157 }
1158
1159 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1160 struct ethtool_drvinfo *info)
1161 {
1162 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1163 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1164 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1165 }
1166
1167 static void ftgmac100_get_ringparam(struct net_device *netdev,
1168 struct ethtool_ringparam *ering)
1169 {
1170 struct ftgmac100 *priv = netdev_priv(netdev);
1171
1172 memset(ering, 0, sizeof(*ering));
1173 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1174 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1175 ering->rx_pending = priv->rx_q_entries;
1176 ering->tx_pending = priv->tx_q_entries;
1177 }
1178
1179 static int ftgmac100_set_ringparam(struct net_device *netdev,
1180 struct ethtool_ringparam *ering)
1181 {
1182 struct ftgmac100 *priv = netdev_priv(netdev);
1183
1184 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1185 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1186 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1187 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1188 !is_power_of_2(ering->rx_pending) ||
1189 !is_power_of_2(ering->tx_pending))
1190 return -EINVAL;
1191
1192 priv->new_rx_q_entries = ering->rx_pending;
1193 priv->new_tx_q_entries = ering->tx_pending;
1194 if (netif_running(netdev))
1195 schedule_work(&priv->reset_task);
1196
1197 return 0;
1198 }
1199
1200 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1201 struct ethtool_pauseparam *pause)
1202 {
1203 struct ftgmac100 *priv = netdev_priv(netdev);
1204
1205 pause->autoneg = priv->aneg_pause;
1206 pause->tx_pause = priv->tx_pause;
1207 pause->rx_pause = priv->rx_pause;
1208 }
1209
1210 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1211 struct ethtool_pauseparam *pause)
1212 {
1213 struct ftgmac100 *priv = netdev_priv(netdev);
1214 struct phy_device *phydev = netdev->phydev;
1215
1216 priv->aneg_pause = pause->autoneg;
1217 priv->tx_pause = pause->tx_pause;
1218 priv->rx_pause = pause->rx_pause;
1219
1220 if (phydev)
1221 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1222
1223 if (netif_running(netdev)) {
1224 if (!(phydev && priv->aneg_pause))
1225 ftgmac100_config_pause(priv);
1226 }
1227
1228 return 0;
1229 }
1230
1231 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1232 .get_drvinfo = ftgmac100_get_drvinfo,
1233 .get_link = ethtool_op_get_link,
1234 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1235 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1236 .nway_reset = phy_ethtool_nway_reset,
1237 .get_ringparam = ftgmac100_get_ringparam,
1238 .set_ringparam = ftgmac100_set_ringparam,
1239 .get_pauseparam = ftgmac100_get_pauseparam,
1240 .set_pauseparam = ftgmac100_set_pauseparam,
1241 };
1242
1243 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1244 {
1245 struct net_device *netdev = dev_id;
1246 struct ftgmac100 *priv = netdev_priv(netdev);
1247 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1248
1249 /* Fetch and clear interrupt bits, process abnormal ones */
1250 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1251 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1252 if (unlikely(status & FTGMAC100_INT_BAD)) {
1253
1254 /* RX buffer unavailable */
1255 if (status & FTGMAC100_INT_NO_RXBUF)
1256 netdev->stats.rx_over_errors++;
1257
1258 /* received packet lost due to RX FIFO full */
1259 if (status & FTGMAC100_INT_RPKT_LOST)
1260 netdev->stats.rx_fifo_errors++;
1261
1262 /* sent packet lost due to excessive TX collision */
1263 if (status & FTGMAC100_INT_XPKT_LOST)
1264 netdev->stats.tx_fifo_errors++;
1265
1266 /* AHB error -> Reset the chip */
1267 if (status & FTGMAC100_INT_AHB_ERR) {
1268 if (net_ratelimit())
1269 netdev_warn(netdev,
1270 "AHB bus error ! Resetting chip.\n");
1271 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1272 schedule_work(&priv->reset_task);
1273 return IRQ_HANDLED;
1274 }
1275
1276 /* We may need to restart the MAC after such errors, delay
1277 * this until after we have freed some Rx buffers though
1278 */
1279 priv->need_mac_restart = true;
1280
1281 /* Disable those errors until we restart */
1282 new_mask &= ~status;
1283 }
1284
1285 /* Only enable "bad" interrupts while NAPI is on */
1286 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1287
1288 /* Schedule NAPI bh */
1289 napi_schedule_irqoff(&priv->napi);
1290
1291 return IRQ_HANDLED;
1292 }
1293
1294 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1295 {
1296 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1297
1298 /* Do we have a packet ? */
1299 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1300 }
1301
1302 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1303 {
1304 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1305 int work_done = 0;
1306 bool more;
1307
1308 /* Handle TX completions */
1309 if (ftgmac100_tx_buf_cleanable(priv))
1310 ftgmac100_tx_complete(priv);
1311
1312 /* Handle RX packets */
1313 do {
1314 more = ftgmac100_rx_packet(priv, &work_done);
1315 } while (more && work_done < budget);
1316
1317
1318 /* The interrupt is telling us to kick the MAC back to life
1319 * after an RX overflow
1320 */
1321 if (unlikely(priv->need_mac_restart)) {
1322 ftgmac100_start_hw(priv);
1323
1324 /* Re-enable "bad" interrupts */
1325 iowrite32(FTGMAC100_INT_BAD,
1326 priv->base + FTGMAC100_OFFSET_IER);
1327 }
1328
1329 /* As long as we are waiting for transmit packets to be
1330 * completed we keep NAPI going
1331 */
1332 if (ftgmac100_tx_buf_cleanable(priv))
1333 work_done = budget;
1334
1335 if (work_done < budget) {
1336 /* We are about to re-enable all interrupts. However
1337 * the HW has been latching RX/TX packet interrupts while
1338 * they were masked. So we clear them first, then we need
1339 * to re-check if there's something to process
1340 */
1341 iowrite32(FTGMAC100_INT_RXTX,
1342 priv->base + FTGMAC100_OFFSET_ISR);
1343
1344 /* Push the above (and provides a barrier vs. subsequent
1345 * reads of the descriptor).
1346 */
1347 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1348
1349 /* Check RX and TX descriptors for more work to do */
1350 if (ftgmac100_check_rx(priv) ||
1351 ftgmac100_tx_buf_cleanable(priv))
1352 return budget;
1353
1354 /* deschedule NAPI */
1355 napi_complete(napi);
1356
1357 /* enable all interrupts */
1358 iowrite32(FTGMAC100_INT_ALL,
1359 priv->base + FTGMAC100_OFFSET_IER);
1360 }
1361
1362 return work_done;
1363 }
1364
1365 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1366 {
1367 int err = 0;
1368
1369 /* Re-init descriptors (adjust queue sizes) */
1370 ftgmac100_init_rings(priv);
1371
1372 /* Realloc rx descriptors */
1373 err = ftgmac100_alloc_rx_buffers(priv);
1374 if (err && !ignore_alloc_err)
1375 return err;
1376
1377 /* Reinit and restart HW */
1378 ftgmac100_init_hw(priv);
1379 ftgmac100_config_pause(priv);
1380 ftgmac100_start_hw(priv);
1381
1382 /* Re-enable the device */
1383 napi_enable(&priv->napi);
1384 netif_start_queue(priv->netdev);
1385
1386 /* Enable all interrupts */
1387 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1388
1389 return err;
1390 }
1391
1392 static void ftgmac100_reset_task(struct work_struct *work)
1393 {
1394 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1395 reset_task);
1396 struct net_device *netdev = priv->netdev;
1397 int err;
1398
1399 netdev_dbg(netdev, "Resetting NIC...\n");
1400
1401 /* Lock the world */
1402 rtnl_lock();
1403 if (netdev->phydev)
1404 mutex_lock(&netdev->phydev->lock);
1405 if (priv->mii_bus)
1406 mutex_lock(&priv->mii_bus->mdio_lock);
1407
1408
1409 /* Check if the interface is still up */
1410 if (!netif_running(netdev))
1411 goto bail;
1412
1413 /* Stop the network stack */
1414 netif_trans_update(netdev);
1415 napi_disable(&priv->napi);
1416 netif_tx_disable(netdev);
1417
1418 /* Stop and reset the MAC */
1419 ftgmac100_stop_hw(priv);
1420 err = ftgmac100_reset_and_config_mac(priv);
1421 if (err) {
1422 /* Not much we can do ... it might come back... */
1423 netdev_err(netdev, "attempting to continue...\n");
1424 }
1425
1426 /* Free all rx and tx buffers */
1427 ftgmac100_free_buffers(priv);
1428
1429 /* Setup everything again and restart chip */
1430 ftgmac100_init_all(priv, true);
1431
1432 netdev_dbg(netdev, "Reset done !\n");
1433 bail:
1434 if (priv->mii_bus)
1435 mutex_unlock(&priv->mii_bus->mdio_lock);
1436 if (netdev->phydev)
1437 mutex_unlock(&netdev->phydev->lock);
1438 rtnl_unlock();
1439 }
1440
1441 static int ftgmac100_open(struct net_device *netdev)
1442 {
1443 struct ftgmac100 *priv = netdev_priv(netdev);
1444 int err;
1445
1446 /* Allocate ring buffers */
1447 err = ftgmac100_alloc_rings(priv);
1448 if (err) {
1449 netdev_err(netdev, "Failed to allocate descriptors\n");
1450 return err;
1451 }
1452
1453 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1454 *
1455 * Otherwise we leave it set to 0 (no link), the link
1456 * message from the PHY layer will handle setting it up to
1457 * something else if needed.
1458 */
1459 if (priv->use_ncsi) {
1460 priv->cur_duplex = DUPLEX_FULL;
1461 priv->cur_speed = SPEED_100;
1462 } else {
1463 priv->cur_duplex = 0;
1464 priv->cur_speed = 0;
1465 }
1466
1467 /* Reset the hardware */
1468 err = ftgmac100_reset_and_config_mac(priv);
1469 if (err)
1470 goto err_hw;
1471
1472 /* Initialize NAPI */
1473 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1474
1475 /* Grab our interrupt */
1476 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1477 if (err) {
1478 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1479 goto err_irq;
1480 }
1481
1482 /* Start things up */
1483 err = ftgmac100_init_all(priv, false);
1484 if (err) {
1485 netdev_err(netdev, "Failed to allocate packet buffers\n");
1486 goto err_alloc;
1487 }
1488
1489 if (netdev->phydev) {
1490 /* If we have a PHY, start polling */
1491 phy_start(netdev->phydev);
1492 } else if (priv->use_ncsi) {
1493 /* If using NC-SI, set our carrier on and start the stack */
1494 netif_carrier_on(netdev);
1495
1496 /* Start the NCSI device */
1497 err = ncsi_start_dev(priv->ndev);
1498 if (err)
1499 goto err_ncsi;
1500 }
1501
1502 return 0;
1503
1504 err_ncsi:
1505 napi_disable(&priv->napi);
1506 netif_stop_queue(netdev);
1507 err_alloc:
1508 ftgmac100_free_buffers(priv);
1509 free_irq(netdev->irq, netdev);
1510 err_irq:
1511 netif_napi_del(&priv->napi);
1512 err_hw:
1513 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1514 ftgmac100_free_rings(priv);
1515 return err;
1516 }
1517
1518 static int ftgmac100_stop(struct net_device *netdev)
1519 {
1520 struct ftgmac100 *priv = netdev_priv(netdev);
1521
1522 /* Note about the reset task: We are called with the rtnl lock
1523 * held, so we are synchronized against the core of the reset
1524 * task. We must not try to synchronously cancel it otherwise
1525 * we can deadlock. But since it will test for netif_running()
1526 * which has already been cleared by the net core, we don't
1527 * anything special to do.
1528 */
1529
1530 /* disable all interrupts */
1531 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1532
1533 netif_stop_queue(netdev);
1534 napi_disable(&priv->napi);
1535 netif_napi_del(&priv->napi);
1536 if (netdev->phydev)
1537 phy_stop(netdev->phydev);
1538 else if (priv->use_ncsi)
1539 ncsi_stop_dev(priv->ndev);
1540
1541 ftgmac100_stop_hw(priv);
1542 free_irq(netdev->irq, netdev);
1543 ftgmac100_free_buffers(priv);
1544 ftgmac100_free_rings(priv);
1545
1546 return 0;
1547 }
1548
1549 /* optional */
1550 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1551 {
1552 if (!netdev->phydev)
1553 return -ENXIO;
1554
1555 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1556 }
1557
1558 static void ftgmac100_tx_timeout(struct net_device *netdev)
1559 {
1560 struct ftgmac100 *priv = netdev_priv(netdev);
1561
1562 /* Disable all interrupts */
1563 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1564
1565 /* Do the reset outside of interrupt context */
1566 schedule_work(&priv->reset_task);
1567 }
1568
1569 static int ftgmac100_set_features(struct net_device *netdev,
1570 netdev_features_t features)
1571 {
1572 struct ftgmac100 *priv = netdev_priv(netdev);
1573 netdev_features_t changed = netdev->features ^ features;
1574
1575 if (!netif_running(netdev))
1576 return 0;
1577
1578 /* Update the vlan filtering bit */
1579 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1580 u32 maccr;
1581
1582 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1583 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1584 maccr |= FTGMAC100_MACCR_RM_VLAN;
1585 else
1586 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1587 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1588 }
1589
1590 return 0;
1591 }
1592
1593 #ifdef CONFIG_NET_POLL_CONTROLLER
1594 static void ftgmac100_poll_controller(struct net_device *netdev)
1595 {
1596 unsigned long flags;
1597
1598 local_irq_save(flags);
1599 ftgmac100_interrupt(netdev->irq, netdev);
1600 local_irq_restore(flags);
1601 }
1602 #endif
1603
1604 static const struct net_device_ops ftgmac100_netdev_ops = {
1605 .ndo_open = ftgmac100_open,
1606 .ndo_stop = ftgmac100_stop,
1607 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1608 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1609 .ndo_validate_addr = eth_validate_addr,
1610 .ndo_do_ioctl = ftgmac100_do_ioctl,
1611 .ndo_tx_timeout = ftgmac100_tx_timeout,
1612 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1613 .ndo_set_features = ftgmac100_set_features,
1614 #ifdef CONFIG_NET_POLL_CONTROLLER
1615 .ndo_poll_controller = ftgmac100_poll_controller,
1616 #endif
1617 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1618 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1619 };
1620
1621 static int ftgmac100_setup_mdio(struct net_device *netdev)
1622 {
1623 struct ftgmac100 *priv = netdev_priv(netdev);
1624 struct platform_device *pdev = to_platform_device(priv->dev);
1625 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1626 struct device_node *np = pdev->dev.of_node;
1627 int i, err = 0;
1628 u32 reg;
1629
1630 /* initialize mdio bus */
1631 priv->mii_bus = mdiobus_alloc();
1632 if (!priv->mii_bus)
1633 return -EIO;
1634
1635 if (priv->is_aspeed) {
1636 /* This driver supports the old MDIO interface */
1637 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1638 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1639 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1640 }
1641
1642 /* Get PHY mode from device-tree */
1643 if (np) {
1644 /* Default to RGMII. It's a gigabit part after all */
1645 phy_intf = of_get_phy_mode(np);
1646 if (phy_intf < 0)
1647 phy_intf = PHY_INTERFACE_MODE_RGMII;
1648
1649 /* Aspeed only supports these. I don't know about other IP
1650 * block vendors so I'm going to just let them through for
1651 * now. Note that this is only a warning if for some obscure
1652 * reason the DT really means to lie about it or it's a newer
1653 * part we don't know about.
1654 *
1655 * On the Aspeed SoC there are additionally straps and SCU
1656 * control bits that could tell us what the interface is
1657 * (or allow us to configure it while the IP block is held
1658 * in reset). For now I chose to keep this driver away from
1659 * those SoC specific bits and assume the device-tree is
1660 * right and the SCU has been configured properly by pinmux
1661 * or the firmware.
1662 */
1663 if (priv->is_aspeed &&
1664 phy_intf != PHY_INTERFACE_MODE_RMII &&
1665 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1666 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1667 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1668 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1669 netdev_warn(netdev,
1670 "Unsupported PHY mode %s !\n",
1671 phy_modes(phy_intf));
1672 }
1673 }
1674
1675 priv->mii_bus->name = "ftgmac100_mdio";
1676 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1677 pdev->name, pdev->id);
1678 priv->mii_bus->parent = priv->dev;
1679 priv->mii_bus->priv = priv->netdev;
1680 priv->mii_bus->read = ftgmac100_mdiobus_read;
1681 priv->mii_bus->write = ftgmac100_mdiobus_write;
1682
1683 for (i = 0; i < PHY_MAX_ADDR; i++)
1684 priv->mii_bus->irq[i] = PHY_POLL;
1685
1686 err = mdiobus_register(priv->mii_bus);
1687 if (err) {
1688 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1689 goto err_register_mdiobus;
1690 }
1691
1692 err = ftgmac100_mii_probe(priv, phy_intf);
1693 if (err) {
1694 dev_err(priv->dev, "MII Probe failed!\n");
1695 goto err_mii_probe;
1696 }
1697
1698 return 0;
1699
1700 err_mii_probe:
1701 mdiobus_unregister(priv->mii_bus);
1702 err_register_mdiobus:
1703 mdiobus_free(priv->mii_bus);
1704 return err;
1705 }
1706
1707 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1708 {
1709 struct ftgmac100 *priv = netdev_priv(netdev);
1710
1711 if (!netdev->phydev)
1712 return;
1713
1714 phy_disconnect(netdev->phydev);
1715 mdiobus_unregister(priv->mii_bus);
1716 mdiobus_free(priv->mii_bus);
1717 }
1718
1719 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1720 {
1721 if (unlikely(nd->state != ncsi_dev_state_functional))
1722 return;
1723
1724 netdev_dbg(nd->dev, "NCSI interface %s\n",
1725 nd->link_up ? "up" : "down");
1726 }
1727
1728 static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1729 {
1730 priv->clk = devm_clk_get(priv->dev, NULL);
1731 if (IS_ERR(priv->clk))
1732 return;
1733
1734 clk_prepare_enable(priv->clk);
1735
1736 /* Aspeed specifies a 100MHz clock is required for up to
1737 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1738 * is sufficient
1739 */
1740 clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1741 FTGMAC_100MHZ);
1742 }
1743
1744 static int ftgmac100_probe(struct platform_device *pdev)
1745 {
1746 struct resource *res;
1747 int irq;
1748 struct net_device *netdev;
1749 struct ftgmac100 *priv;
1750 struct device_node *np;
1751 int err = 0;
1752
1753 if (!pdev)
1754 return -ENODEV;
1755
1756 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1757 if (!res)
1758 return -ENXIO;
1759
1760 irq = platform_get_irq(pdev, 0);
1761 if (irq < 0)
1762 return irq;
1763
1764 /* setup net_device */
1765 netdev = alloc_etherdev(sizeof(*priv));
1766 if (!netdev) {
1767 err = -ENOMEM;
1768 goto err_alloc_etherdev;
1769 }
1770
1771 SET_NETDEV_DEV(netdev, &pdev->dev);
1772
1773 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1774 netdev->netdev_ops = &ftgmac100_netdev_ops;
1775 netdev->watchdog_timeo = 5 * HZ;
1776
1777 platform_set_drvdata(pdev, netdev);
1778
1779 /* setup private data */
1780 priv = netdev_priv(netdev);
1781 priv->netdev = netdev;
1782 priv->dev = &pdev->dev;
1783 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1784
1785 /* map io memory */
1786 priv->res = request_mem_region(res->start, resource_size(res),
1787 dev_name(&pdev->dev));
1788 if (!priv->res) {
1789 dev_err(&pdev->dev, "Could not reserve memory region\n");
1790 err = -ENOMEM;
1791 goto err_req_mem;
1792 }
1793
1794 priv->base = ioremap(res->start, resource_size(res));
1795 if (!priv->base) {
1796 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1797 err = -EIO;
1798 goto err_ioremap;
1799 }
1800
1801 netdev->irq = irq;
1802
1803 /* Enable pause */
1804 priv->tx_pause = true;
1805 priv->rx_pause = true;
1806 priv->aneg_pause = true;
1807
1808 /* MAC address from chip or random one */
1809 ftgmac100_initial_mac(priv);
1810
1811 np = pdev->dev.of_node;
1812 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1813 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1814 priv->rxdes0_edorr_mask = BIT(30);
1815 priv->txdes0_edotr_mask = BIT(30);
1816 priv->is_aspeed = true;
1817 } else {
1818 priv->rxdes0_edorr_mask = BIT(15);
1819 priv->txdes0_edotr_mask = BIT(15);
1820 }
1821
1822 if (np && of_get_property(np, "use-ncsi", NULL)) {
1823 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1824 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1825 goto err_ncsi_dev;
1826 }
1827
1828 dev_info(&pdev->dev, "Using NCSI interface\n");
1829 priv->use_ncsi = true;
1830 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1831 if (!priv->ndev)
1832 goto err_ncsi_dev;
1833 } else {
1834 priv->use_ncsi = false;
1835 err = ftgmac100_setup_mdio(netdev);
1836 if (err)
1837 goto err_setup_mdio;
1838 }
1839
1840 if (priv->is_aspeed)
1841 ftgmac100_setup_clk(priv);
1842
1843 /* Default ring sizes */
1844 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1845 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1846
1847 /* Base feature set */
1848 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1849 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1850 NETIF_F_HW_VLAN_CTAG_TX;
1851
1852 if (priv->use_ncsi)
1853 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1854
1855 /* AST2400 doesn't have working HW checksum generation */
1856 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1857 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1858 if (np && of_get_property(np, "no-hw-checksum", NULL))
1859 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1860 netdev->features |= netdev->hw_features;
1861
1862 /* register network device */
1863 err = register_netdev(netdev);
1864 if (err) {
1865 dev_err(&pdev->dev, "Failed to register netdev\n");
1866 goto err_register_netdev;
1867 }
1868
1869 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1870
1871 return 0;
1872
1873 err_ncsi_dev:
1874 err_register_netdev:
1875 ftgmac100_destroy_mdio(netdev);
1876 err_setup_mdio:
1877 iounmap(priv->base);
1878 err_ioremap:
1879 release_resource(priv->res);
1880 err_req_mem:
1881 free_netdev(netdev);
1882 err_alloc_etherdev:
1883 return err;
1884 }
1885
1886 static int ftgmac100_remove(struct platform_device *pdev)
1887 {
1888 struct net_device *netdev;
1889 struct ftgmac100 *priv;
1890
1891 netdev = platform_get_drvdata(pdev);
1892 priv = netdev_priv(netdev);
1893
1894 unregister_netdev(netdev);
1895
1896 clk_disable_unprepare(priv->clk);
1897
1898 /* There's a small chance the reset task will have been re-queued,
1899 * during stop, make sure it's gone before we free the structure.
1900 */
1901 cancel_work_sync(&priv->reset_task);
1902
1903 ftgmac100_destroy_mdio(netdev);
1904
1905 iounmap(priv->base);
1906 release_resource(priv->res);
1907
1908 netif_napi_del(&priv->napi);
1909 free_netdev(netdev);
1910 return 0;
1911 }
1912
1913 static const struct of_device_id ftgmac100_of_match[] = {
1914 { .compatible = "faraday,ftgmac100" },
1915 { }
1916 };
1917 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1918
1919 static struct platform_driver ftgmac100_driver = {
1920 .probe = ftgmac100_probe,
1921 .remove = ftgmac100_remove,
1922 .driver = {
1923 .name = DRV_NAME,
1924 .of_match_table = ftgmac100_of_match,
1925 },
1926 };
1927 module_platform_driver(ftgmac100_driver);
1928
1929 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1930 MODULE_DESCRIPTION("FTGMAC100 driver");
1931 MODULE_LICENSE("GPL");