]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/freescale/dpaa/dpaa_eth.c
bc5a3347fd4aaf8f5166f17e379f660186bb7f49
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2 *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions are met:
5 * * Redistributions of source code must retain the above copyright
6 * notice, this list of conditions and the following disclaimer.
7 * * Redistributions in binary form must reproduce the above copyright
8 * notice, this list of conditions and the following disclaimer in the
9 * documentation and/or other materials provided with the distribution.
10 * * Neither the name of Freescale Semiconductor nor the
11 * names of its contributors may be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * ALTERNATIVELY, this software may be distributed under the terms of the
15 * GNU General Public License ("GPL") as published by the Free Software
16 * Foundation, either version 2 of that License or (at your option) any
17 * later version.
18 *
19 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63 * using trace events only need to #include <trace/events/sched.h>
64 */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS \
77 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
78 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
80 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93 * The size in bytes of the ingress tail-drop threshold on FMan ports.
94 * Traffic piling up above this value will be rejected by QMan and discarded
95 * by FMan.
96 */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103 * The size in bytes of the egress Congestion State notification threshold on
104 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106 * and the larger the frame size, the more acute the problem.
107 * So we have to find a balance between these factors:
108 * - avoiding the device staying congested for a prolonged time (risking
109 * the netdev watchdog to fire - see also the tx_timeout module param);
110 * - affecting performance of protocols such as TCP, which otherwise
111 * behave well under the congestion notification mechanism;
112 * - preventing the Tx cores from tightly-looping (as if the congestion
113 * threshold was too low to be effective);
114 * - running out of memory if the CS threshold is set too high.
115 */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119 * 10G ports, range 0x1000 .. 0x10000000
120 */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL 127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT 16
127
128 /* Values for the L3R field of the FM Parse Results
129 */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4 0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6 0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP 0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP 0x20
139
140 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
141 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
142
143 #define FSL_DPAA_BPID_INV 0xff
144 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
145 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
146
147 #define DPAA_TX_PRIV_DATA_SIZE 16
148 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
149 #define DPAA_TIME_STAMP_SIZE 8
150 #define DPAA_HASH_RESULTS_SIZE 8
151 #define DPAA_RX_PRIV_DATA_SIZE (u16)(DPAA_TX_PRIV_DATA_SIZE + \
152 dpaa_rx_extra_headroom)
153
154 #define DPAA_ETH_RX_QUEUES 128
155
156 #define DPAA_ENQUEUE_RETRIES 100000
157
158 enum port_type {RX, TX};
159
160 struct fm_port_fqs {
161 struct dpaa_fq *tx_defq;
162 struct dpaa_fq *tx_errq;
163 struct dpaa_fq *rx_defq;
164 struct dpaa_fq *rx_errq;
165 };
166
167 /* All the dpa bps in use at any moment */
168 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
169
170 /* The raw buffer size must be cacheline aligned */
171 #define DPAA_BP_RAW_SIZE 4096
172 /* When using more than one buffer pool, the raw sizes are as follows:
173 * 1 bp: 4KB
174 * 2 bp: 2KB, 4KB
175 * 3 bp: 1KB, 2KB, 4KB
176 * 4 bp: 1KB, 2KB, 4KB, 8KB
177 */
178 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
179 {
180 size_t res = DPAA_BP_RAW_SIZE / 4;
181 u8 i;
182
183 for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
184 res *= 2;
185 return res;
186 }
187
188 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
189 * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
190 * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
191 * half-page-aligned buffers, so we reserve some more space for start-of-buffer
192 * alignment.
193 */
194 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
195
196 static int dpaa_max_frm;
197
198 static int dpaa_rx_extra_headroom;
199
200 #define dpaa_get_max_mtu() \
201 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
202
203 static int dpaa_netdev_init(struct net_device *net_dev,
204 const struct net_device_ops *dpaa_ops,
205 u16 tx_timeout)
206 {
207 struct dpaa_priv *priv = netdev_priv(net_dev);
208 struct device *dev = net_dev->dev.parent;
209 struct dpaa_percpu_priv *percpu_priv;
210 const u8 *mac_addr;
211 int i, err;
212
213 /* Although we access another CPU's private data here
214 * we do it at initialization so it is safe
215 */
216 for_each_possible_cpu(i) {
217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 percpu_priv->net_dev = net_dev;
219 }
220
221 net_dev->netdev_ops = dpaa_ops;
222 mac_addr = priv->mac_dev->addr;
223
224 net_dev->mem_start = priv->mac_dev->res->start;
225 net_dev->mem_end = priv->mac_dev->res->end;
226
227 net_dev->min_mtu = ETH_MIN_MTU;
228 net_dev->max_mtu = dpaa_get_max_mtu();
229
230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 NETIF_F_LLTX);
232
233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 * For conformity, we'll still declare GSO explicitly.
236 */
237 net_dev->features |= NETIF_F_GSO;
238
239 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
240 /* we do not want shared skbs on TX */
241 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
242
243 net_dev->features |= net_dev->hw_features;
244 net_dev->vlan_features = net_dev->features;
245
246 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
247 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
248
249 net_dev->ethtool_ops = &dpaa_ethtool_ops;
250
251 net_dev->needed_headroom = priv->tx_headroom;
252 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
253
254 /* start without the RUNNING flag, phylib controls it later */
255 netif_carrier_off(net_dev);
256
257 err = register_netdev(net_dev);
258 if (err < 0) {
259 dev_err(dev, "register_netdev() = %d\n", err);
260 return err;
261 }
262
263 return 0;
264 }
265
266 static int dpaa_stop(struct net_device *net_dev)
267 {
268 struct mac_device *mac_dev;
269 struct dpaa_priv *priv;
270 int i, err, error;
271
272 priv = netdev_priv(net_dev);
273 mac_dev = priv->mac_dev;
274
275 netif_tx_stop_all_queues(net_dev);
276 /* Allow the Fman (Tx) port to process in-flight frames before we
277 * try switching it off.
278 */
279 usleep_range(5000, 10000);
280
281 err = mac_dev->stop(mac_dev);
282 if (err < 0)
283 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
284 err);
285
286 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
287 error = fman_port_disable(mac_dev->port[i]);
288 if (error)
289 err = error;
290 }
291
292 if (net_dev->phydev)
293 phy_disconnect(net_dev->phydev);
294 net_dev->phydev = NULL;
295
296 return err;
297 }
298
299 static void dpaa_tx_timeout(struct net_device *net_dev)
300 {
301 struct dpaa_percpu_priv *percpu_priv;
302 const struct dpaa_priv *priv;
303
304 priv = netdev_priv(net_dev);
305 percpu_priv = this_cpu_ptr(priv->percpu_priv);
306
307 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
308 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
309
310 percpu_priv->stats.tx_errors++;
311 }
312
313 /* Calculates the statistics for the given device by adding the statistics
314 * collected by each CPU.
315 */
316 static void dpaa_get_stats64(struct net_device *net_dev,
317 struct rtnl_link_stats64 *s)
318 {
319 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
320 struct dpaa_priv *priv = netdev_priv(net_dev);
321 struct dpaa_percpu_priv *percpu_priv;
322 u64 *netstats = (u64 *)s;
323 u64 *cpustats;
324 int i, j;
325
326 for_each_possible_cpu(i) {
327 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
328
329 cpustats = (u64 *)&percpu_priv->stats;
330
331 /* add stats from all CPUs */
332 for (j = 0; j < numstats; j++)
333 netstats[j] += cpustats[j];
334 }
335 }
336
337 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
338 {
339 struct platform_device *of_dev;
340 struct dpaa_eth_data *eth_data;
341 struct device *dpaa_dev, *dev;
342 struct device_node *mac_node;
343 struct mac_device *mac_dev;
344
345 dpaa_dev = &pdev->dev;
346 eth_data = dpaa_dev->platform_data;
347 if (!eth_data)
348 return ERR_PTR(-ENODEV);
349
350 mac_node = eth_data->mac_node;
351
352 of_dev = of_find_device_by_node(mac_node);
353 if (!of_dev) {
354 dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
355 mac_node->full_name);
356 of_node_put(mac_node);
357 return ERR_PTR(-EINVAL);
358 }
359 of_node_put(mac_node);
360
361 dev = &of_dev->dev;
362
363 mac_dev = dev_get_drvdata(dev);
364 if (!mac_dev) {
365 dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
366 dev_name(dev));
367 return ERR_PTR(-EINVAL);
368 }
369
370 return mac_dev;
371 }
372
373 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
374 {
375 const struct dpaa_priv *priv;
376 struct mac_device *mac_dev;
377 struct sockaddr old_addr;
378 int err;
379
380 priv = netdev_priv(net_dev);
381
382 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
383
384 err = eth_mac_addr(net_dev, addr);
385 if (err < 0) {
386 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
387 return err;
388 }
389
390 mac_dev = priv->mac_dev;
391
392 err = mac_dev->change_addr(mac_dev->fman_mac,
393 (enet_addr_t *)net_dev->dev_addr);
394 if (err < 0) {
395 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
396 err);
397 /* reverting to previous address */
398 eth_mac_addr(net_dev, &old_addr);
399
400 return err;
401 }
402
403 return 0;
404 }
405
406 static void dpaa_set_rx_mode(struct net_device *net_dev)
407 {
408 const struct dpaa_priv *priv;
409 int err;
410
411 priv = netdev_priv(net_dev);
412
413 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
414 priv->mac_dev->promisc = !priv->mac_dev->promisc;
415 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
416 priv->mac_dev->promisc);
417 if (err < 0)
418 netif_err(priv, drv, net_dev,
419 "mac_dev->set_promisc() = %d\n",
420 err);
421 }
422
423 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
424 if (err < 0)
425 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
426 err);
427 }
428
429 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
430 {
431 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
432 return NULL;
433
434 return dpaa_bp_array[bpid];
435 }
436
437 /* checks if this bpool is already allocated */
438 static bool dpaa_bpid2pool_use(int bpid)
439 {
440 if (dpaa_bpid2pool(bpid)) {
441 atomic_inc(&dpaa_bp_array[bpid]->refs);
442 return true;
443 }
444
445 return false;
446 }
447
448 /* called only once per bpid by dpaa_bp_alloc_pool() */
449 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
450 {
451 dpaa_bp_array[bpid] = dpaa_bp;
452 atomic_set(&dpaa_bp->refs, 1);
453 }
454
455 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
456 {
457 int err;
458
459 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
460 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
461 __func__);
462 return -EINVAL;
463 }
464
465 /* If the pool is already specified, we only create one per bpid */
466 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
467 dpaa_bpid2pool_use(dpaa_bp->bpid))
468 return 0;
469
470 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
471 dpaa_bp->pool = bman_new_pool();
472 if (!dpaa_bp->pool) {
473 pr_err("%s: bman_new_pool() failed\n",
474 __func__);
475 return -ENODEV;
476 }
477
478 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
479 }
480
481 if (dpaa_bp->seed_cb) {
482 err = dpaa_bp->seed_cb(dpaa_bp);
483 if (err)
484 goto pool_seed_failed;
485 }
486
487 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
488
489 return 0;
490
491 pool_seed_failed:
492 pr_err("%s: pool seeding failed\n", __func__);
493 bman_free_pool(dpaa_bp->pool);
494
495 return err;
496 }
497
498 /* remove and free all the buffers from the given buffer pool */
499 static void dpaa_bp_drain(struct dpaa_bp *bp)
500 {
501 u8 num = 8;
502 int ret;
503
504 do {
505 struct bm_buffer bmb[8];
506 int i;
507
508 ret = bman_acquire(bp->pool, bmb, num);
509 if (ret < 0) {
510 if (num == 8) {
511 /* we have less than 8 buffers left;
512 * drain them one by one
513 */
514 num = 1;
515 ret = 1;
516 continue;
517 } else {
518 /* Pool is fully drained */
519 break;
520 }
521 }
522
523 if (bp->free_buf_cb)
524 for (i = 0; i < num; i++)
525 bp->free_buf_cb(bp, &bmb[i]);
526 } while (ret > 0);
527 }
528
529 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
530 {
531 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
532
533 /* the mapping between bpid and dpaa_bp is done very late in the
534 * allocation procedure; if something failed before the mapping, the bp
535 * was not configured, therefore we don't need the below instructions
536 */
537 if (!bp)
538 return;
539
540 if (!atomic_dec_and_test(&bp->refs))
541 return;
542
543 if (bp->free_buf_cb)
544 dpaa_bp_drain(bp);
545
546 dpaa_bp_array[bp->bpid] = NULL;
547 bman_free_pool(bp->pool);
548 }
549
550 static void dpaa_bps_free(struct dpaa_priv *priv)
551 {
552 int i;
553
554 for (i = 0; i < DPAA_BPS_NUM; i++)
555 dpaa_bp_free(priv->dpaa_bps[i]);
556 }
557
558 /* Use multiple WQs for FQ assignment:
559 * - Tx Confirmation queues go to WQ1.
560 * - Rx Error and Tx Error queues go to WQ2 (giving them a better chance
561 * to be scheduled, in case there are many more FQs in WQ3).
562 * - Rx Default and Tx queues go to WQ3 (no differentiation between
563 * Rx and Tx traffic).
564 * This ensures that Tx-confirmed buffers are timely released. In particular,
565 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
566 * are greatly outnumbered by other FQs in the system, while
567 * dequeue scheduling is round-robin.
568 */
569 static inline void dpaa_assign_wq(struct dpaa_fq *fq)
570 {
571 switch (fq->fq_type) {
572 case FQ_TYPE_TX_CONFIRM:
573 case FQ_TYPE_TX_CONF_MQ:
574 fq->wq = 1;
575 break;
576 case FQ_TYPE_RX_ERROR:
577 case FQ_TYPE_TX_ERROR:
578 fq->wq = 2;
579 break;
580 case FQ_TYPE_RX_DEFAULT:
581 case FQ_TYPE_TX:
582 fq->wq = 3;
583 break;
584 default:
585 WARN(1, "Invalid FQ type %d for FQID %d!\n",
586 fq->fq_type, fq->fqid);
587 }
588 }
589
590 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
591 u32 start, u32 count,
592 struct list_head *list,
593 enum dpaa_fq_type fq_type)
594 {
595 struct dpaa_fq *dpaa_fq;
596 int i;
597
598 dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
599 GFP_KERNEL);
600 if (!dpaa_fq)
601 return NULL;
602
603 for (i = 0; i < count; i++) {
604 dpaa_fq[i].fq_type = fq_type;
605 dpaa_fq[i].fqid = start ? start + i : 0;
606 list_add_tail(&dpaa_fq[i].list, list);
607 }
608
609 for (i = 0; i < count; i++)
610 dpaa_assign_wq(dpaa_fq + i);
611
612 return dpaa_fq;
613 }
614
615 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
616 struct fm_port_fqs *port_fqs)
617 {
618 struct dpaa_fq *dpaa_fq;
619
620 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
621 if (!dpaa_fq)
622 goto fq_alloc_failed;
623
624 port_fqs->rx_errq = &dpaa_fq[0];
625
626 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
627 if (!dpaa_fq)
628 goto fq_alloc_failed;
629
630 port_fqs->rx_defq = &dpaa_fq[0];
631
632 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
633 goto fq_alloc_failed;
634
635 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
636 if (!dpaa_fq)
637 goto fq_alloc_failed;
638
639 port_fqs->tx_errq = &dpaa_fq[0];
640
641 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
642 if (!dpaa_fq)
643 goto fq_alloc_failed;
644
645 port_fqs->tx_defq = &dpaa_fq[0];
646
647 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
648 goto fq_alloc_failed;
649
650 return 0;
651
652 fq_alloc_failed:
653 dev_err(dev, "dpaa_fq_alloc() failed\n");
654 return -ENOMEM;
655 }
656
657 static u32 rx_pool_channel;
658 static DEFINE_SPINLOCK(rx_pool_channel_init);
659
660 static int dpaa_get_channel(void)
661 {
662 spin_lock(&rx_pool_channel_init);
663 if (!rx_pool_channel) {
664 u32 pool;
665 int ret;
666
667 ret = qman_alloc_pool(&pool);
668
669 if (!ret)
670 rx_pool_channel = pool;
671 }
672 spin_unlock(&rx_pool_channel_init);
673 if (!rx_pool_channel)
674 return -ENOMEM;
675 return rx_pool_channel;
676 }
677
678 static void dpaa_release_channel(void)
679 {
680 qman_release_pool(rx_pool_channel);
681 }
682
683 static void dpaa_eth_add_channel(u16 channel)
684 {
685 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
686 const cpumask_t *cpus = qman_affine_cpus();
687 struct qman_portal *portal;
688 int cpu;
689
690 for_each_cpu(cpu, cpus) {
691 portal = qman_get_affine_portal(cpu);
692 qman_p_static_dequeue_add(portal, pool);
693 }
694 }
695
696 /* Congestion group state change notification callback.
697 * Stops the device's egress queues while they are congested and
698 * wakes them upon exiting congested state.
699 * Also updates some CGR-related stats.
700 */
701 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
702 int congested)
703 {
704 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
705 struct dpaa_priv, cgr_data.cgr);
706
707 if (congested) {
708 priv->cgr_data.congestion_start_jiffies = jiffies;
709 netif_tx_stop_all_queues(priv->net_dev);
710 priv->cgr_data.cgr_congested_count++;
711 } else {
712 priv->cgr_data.congested_jiffies +=
713 (jiffies - priv->cgr_data.congestion_start_jiffies);
714 netif_tx_wake_all_queues(priv->net_dev);
715 }
716 }
717
718 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
719 {
720 struct qm_mcc_initcgr initcgr;
721 u32 cs_th;
722 int err;
723
724 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
725 if (err < 0) {
726 if (netif_msg_drv(priv))
727 pr_err("%s: Error %d allocating CGR ID\n",
728 __func__, err);
729 goto out_error;
730 }
731 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
732
733 /* Enable Congestion State Change Notifications and CS taildrop */
734 memset(&initcgr, 0, sizeof(initcgr));
735 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
736 initcgr.cgr.cscn_en = QM_CGR_EN;
737
738 /* Set different thresholds based on the MAC speed.
739 * This may turn suboptimal if the MAC is reconfigured at a speed
740 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
741 * In such cases, we ought to reconfigure the threshold, too.
742 */
743 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
744 cs_th = DPAA_CS_THRESHOLD_10G;
745 else
746 cs_th = DPAA_CS_THRESHOLD_1G;
747 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
748
749 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
750 initcgr.cgr.cstd_en = QM_CGR_EN;
751
752 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
753 &initcgr);
754 if (err < 0) {
755 if (netif_msg_drv(priv))
756 pr_err("%s: Error %d creating CGR with ID %d\n",
757 __func__, err, priv->cgr_data.cgr.cgrid);
758 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
759 goto out_error;
760 }
761 if (netif_msg_drv(priv))
762 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
763 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
764 priv->cgr_data.cgr.chan);
765
766 out_error:
767 return err;
768 }
769
770 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
771 struct dpaa_fq *fq,
772 const struct qman_fq *template)
773 {
774 fq->fq_base = *template;
775 fq->net_dev = priv->net_dev;
776
777 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
778 fq->channel = priv->channel;
779 }
780
781 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
782 struct dpaa_fq *fq,
783 struct fman_port *port,
784 const struct qman_fq *template)
785 {
786 fq->fq_base = *template;
787 fq->net_dev = priv->net_dev;
788
789 if (port) {
790 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
791 fq->channel = (u16)fman_port_get_qman_channel_id(port);
792 } else {
793 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
794 }
795 }
796
797 static void dpaa_fq_setup(struct dpaa_priv *priv,
798 const struct dpaa_fq_cbs *fq_cbs,
799 struct fman_port *tx_port)
800 {
801 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
802 const cpumask_t *affine_cpus = qman_affine_cpus();
803 u16 portals[NR_CPUS];
804 struct dpaa_fq *fq;
805
806 for_each_cpu(cpu, affine_cpus)
807 portals[num_portals++] = qman_affine_channel(cpu);
808 if (num_portals == 0)
809 dev_err(priv->net_dev->dev.parent,
810 "No Qman software (affine) channels found");
811
812 /* Initialize each FQ in the list */
813 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
814 switch (fq->fq_type) {
815 case FQ_TYPE_RX_DEFAULT:
816 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
817 break;
818 case FQ_TYPE_RX_ERROR:
819 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
820 break;
821 case FQ_TYPE_TX:
822 dpaa_setup_egress(priv, fq, tx_port,
823 &fq_cbs->egress_ern);
824 /* If we have more Tx queues than the number of cores,
825 * just ignore the extra ones.
826 */
827 if (egress_cnt < DPAA_ETH_TXQ_NUM)
828 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
829 break;
830 case FQ_TYPE_TX_CONF_MQ:
831 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
832 /* fall through */
833 case FQ_TYPE_TX_CONFIRM:
834 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
835 break;
836 case FQ_TYPE_TX_ERROR:
837 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
838 break;
839 default:
840 dev_warn(priv->net_dev->dev.parent,
841 "Unknown FQ type detected!\n");
842 break;
843 }
844 }
845
846 /* Make sure all CPUs receive a corresponding Tx queue. */
847 while (egress_cnt < DPAA_ETH_TXQ_NUM) {
848 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
849 if (fq->fq_type != FQ_TYPE_TX)
850 continue;
851 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
852 if (egress_cnt == DPAA_ETH_TXQ_NUM)
853 break;
854 }
855 }
856 }
857
858 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
859 struct qman_fq *tx_fq)
860 {
861 int i;
862
863 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
864 if (priv->egress_fqs[i] == tx_fq)
865 return i;
866
867 return -EINVAL;
868 }
869
870 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
871 {
872 const struct dpaa_priv *priv;
873 struct qman_fq *confq = NULL;
874 struct qm_mcc_initfq initfq;
875 struct device *dev;
876 struct qman_fq *fq;
877 int queue_id;
878 int err;
879
880 priv = netdev_priv(dpaa_fq->net_dev);
881 dev = dpaa_fq->net_dev->dev.parent;
882
883 if (dpaa_fq->fqid == 0)
884 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
885
886 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
887
888 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
889 if (err) {
890 dev_err(dev, "qman_create_fq() failed\n");
891 return err;
892 }
893 fq = &dpaa_fq->fq_base;
894
895 if (dpaa_fq->init) {
896 memset(&initfq, 0, sizeof(initfq));
897
898 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
899 /* Note: we may get to keep an empty FQ in cache */
900 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
901
902 /* Try to reduce the number of portal interrupts for
903 * Tx Confirmation FQs.
904 */
905 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
906 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE);
907
908 /* FQ placement */
909 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
910
911 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
912
913 /* Put all egress queues in a congestion group of their own.
914 * Sensu stricto, the Tx confirmation queues are Rx FQs,
915 * rather than Tx - but they nonetheless account for the
916 * memory footprint on behalf of egress traffic. We therefore
917 * place them in the netdev's CGR, along with the Tx FQs.
918 */
919 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
920 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
921 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
922 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
923 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
924 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
925 /* Set a fixed overhead accounting, in an attempt to
926 * reduce the impact of fixed-size skb shells and the
927 * driver's needed headroom on system memory. This is
928 * especially the case when the egress traffic is
929 * composed of small datagrams.
930 * Unfortunately, QMan's OAL value is capped to an
931 * insufficient value, but even that is better than
932 * no overhead accounting at all.
933 */
934 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
935 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
936 qm_fqd_set_oal(&initfq.fqd,
937 min(sizeof(struct sk_buff) +
938 priv->tx_headroom,
939 (size_t)FSL_QMAN_MAX_OAL));
940 }
941
942 if (td_enable) {
943 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
944 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
945 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
946 }
947
948 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
949 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
950 if (queue_id >= 0)
951 confq = priv->conf_fqs[queue_id];
952 if (confq) {
953 initfq.we_mask |=
954 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
955 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
956 * A2V=1 (contextA A2 field is valid)
957 * A0V=1 (contextA A0 field is valid)
958 * B0V=1 (contextB field is valid)
959 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
960 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
961 */
962 qm_fqd_context_a_set64(&initfq.fqd,
963 0x1e00000080000000ULL);
964 }
965 }
966
967 /* Put all the ingress queues in our "ingress CGR". */
968 if (priv->use_ingress_cgr &&
969 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
970 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
971 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
972 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
973 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
974 /* Set a fixed overhead accounting, just like for the
975 * egress CGR.
976 */
977 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
978 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
979 qm_fqd_set_oal(&initfq.fqd,
980 min(sizeof(struct sk_buff) +
981 priv->tx_headroom,
982 (size_t)FSL_QMAN_MAX_OAL));
983 }
984
985 /* Initialization common to all ingress queues */
986 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
987 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
988 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE);
989 initfq.fqd.context_a.stashing.exclusive =
990 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
991 QM_STASHING_EXCL_ANNOTATION;
992 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
993 DIV_ROUND_UP(sizeof(struct qman_fq),
994 64));
995 }
996
997 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
998 if (err < 0) {
999 dev_err(dev, "qman_init_fq(%u) = %d\n",
1000 qman_fq_fqid(fq), err);
1001 qman_destroy_fq(fq);
1002 return err;
1003 }
1004 }
1005
1006 dpaa_fq->fqid = qman_fq_fqid(fq);
1007
1008 return 0;
1009 }
1010
1011 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1012 {
1013 const struct dpaa_priv *priv;
1014 struct dpaa_fq *dpaa_fq;
1015 int err, error;
1016
1017 err = 0;
1018
1019 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1020 priv = netdev_priv(dpaa_fq->net_dev);
1021
1022 if (dpaa_fq->init) {
1023 err = qman_retire_fq(fq, NULL);
1024 if (err < 0 && netif_msg_drv(priv))
1025 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1026 qman_fq_fqid(fq), err);
1027
1028 error = qman_oos_fq(fq);
1029 if (error < 0 && netif_msg_drv(priv)) {
1030 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1031 qman_fq_fqid(fq), error);
1032 if (err >= 0)
1033 err = error;
1034 }
1035 }
1036
1037 qman_destroy_fq(fq);
1038 list_del(&dpaa_fq->list);
1039
1040 return err;
1041 }
1042
1043 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1044 {
1045 struct dpaa_fq *dpaa_fq, *tmp;
1046 int err, error;
1047
1048 err = 0;
1049 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1050 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1051 if (error < 0 && err >= 0)
1052 err = error;
1053 }
1054
1055 return err;
1056 }
1057
1058 static void dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1059 struct dpaa_fq *defq,
1060 struct dpaa_buffer_layout *buf_layout)
1061 {
1062 struct fman_buffer_prefix_content buf_prefix_content;
1063 struct fman_port_params params;
1064 int err;
1065
1066 memset(&params, 0, sizeof(params));
1067 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1068
1069 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1070 buf_prefix_content.pass_prs_result = true;
1071 buf_prefix_content.pass_hash_result = true;
1072 buf_prefix_content.pass_time_stamp = false;
1073 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1074
1075 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1076 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1077
1078 err = fman_port_config(port, &params);
1079 if (err)
1080 pr_err("%s: fman_port_config failed\n", __func__);
1081
1082 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1083 if (err)
1084 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1085 __func__);
1086
1087 err = fman_port_init(port);
1088 if (err)
1089 pr_err("%s: fm_port_init failed\n", __func__);
1090 }
1091
1092 static void dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1093 size_t count, struct dpaa_fq *errq,
1094 struct dpaa_fq *defq,
1095 struct dpaa_buffer_layout *buf_layout)
1096 {
1097 struct fman_buffer_prefix_content buf_prefix_content;
1098 struct fman_port_rx_params *rx_p;
1099 struct fman_port_params params;
1100 int i, err;
1101
1102 memset(&params, 0, sizeof(params));
1103 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1104
1105 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1106 buf_prefix_content.pass_prs_result = true;
1107 buf_prefix_content.pass_hash_result = true;
1108 buf_prefix_content.pass_time_stamp = false;
1109 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1110
1111 rx_p = &params.specific_params.rx_params;
1112 rx_p->err_fqid = errq->fqid;
1113 rx_p->dflt_fqid = defq->fqid;
1114
1115 count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1116 rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1117 for (i = 0; i < count; i++) {
1118 rx_p->ext_buf_pools.ext_buf_pool[i].id = bps[i]->bpid;
1119 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1120 }
1121
1122 err = fman_port_config(port, &params);
1123 if (err)
1124 pr_err("%s: fman_port_config failed\n", __func__);
1125
1126 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1127 if (err)
1128 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1129 __func__);
1130
1131 err = fman_port_init(port);
1132 if (err)
1133 pr_err("%s: fm_port_init failed\n", __func__);
1134 }
1135
1136 static void dpaa_eth_init_ports(struct mac_device *mac_dev,
1137 struct dpaa_bp **bps, size_t count,
1138 struct fm_port_fqs *port_fqs,
1139 struct dpaa_buffer_layout *buf_layout,
1140 struct device *dev)
1141 {
1142 struct fman_port *rxport = mac_dev->port[RX];
1143 struct fman_port *txport = mac_dev->port[TX];
1144
1145 dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1146 port_fqs->tx_defq, &buf_layout[TX]);
1147 dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1148 port_fqs->rx_defq, &buf_layout[RX]);
1149 }
1150
1151 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1152 struct bm_buffer *bmb, int cnt)
1153 {
1154 int err;
1155
1156 err = bman_release(dpaa_bp->pool, bmb, cnt);
1157 /* Should never occur, address anyway to avoid leaking the buffers */
1158 if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1159 while (cnt-- > 0)
1160 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1161
1162 return cnt;
1163 }
1164
1165 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1166 {
1167 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1168 struct dpaa_bp *dpaa_bp;
1169 int i = 0, j;
1170
1171 memset(bmb, 0, sizeof(bmb));
1172
1173 do {
1174 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1175 if (!dpaa_bp)
1176 return;
1177
1178 j = 0;
1179 do {
1180 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1181
1182 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1183
1184 j++; i++;
1185 } while (j < ARRAY_SIZE(bmb) &&
1186 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1187 sgt[i - 1].bpid == sgt[i].bpid);
1188
1189 dpaa_bman_release(dpaa_bp, bmb, j);
1190 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1191 }
1192
1193 static void dpaa_fd_release(const struct net_device *net_dev,
1194 const struct qm_fd *fd)
1195 {
1196 struct qm_sg_entry *sgt;
1197 struct dpaa_bp *dpaa_bp;
1198 struct bm_buffer bmb;
1199 dma_addr_t addr;
1200 void *vaddr;
1201
1202 bmb.data = 0;
1203 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1204
1205 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1206 if (!dpaa_bp)
1207 return;
1208
1209 if (qm_fd_get_format(fd) == qm_fd_sg) {
1210 vaddr = phys_to_virt(qm_fd_addr(fd));
1211 sgt = vaddr + qm_fd_get_offset(fd);
1212
1213 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1214 DMA_FROM_DEVICE);
1215
1216 dpaa_release_sgt_members(sgt);
1217
1218 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1219 DMA_FROM_DEVICE);
1220 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1221 dev_err(dpaa_bp->dev, "DMA mapping failed");
1222 return;
1223 }
1224 bm_buffer_set64(&bmb, addr);
1225 }
1226
1227 dpaa_bman_release(dpaa_bp, &bmb, 1);
1228 }
1229
1230 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1231 const union qm_mr_entry *msg)
1232 {
1233 switch (msg->ern.rc & QM_MR_RC_MASK) {
1234 case QM_MR_RC_CGR_TAILDROP:
1235 percpu_priv->ern_cnt.cg_tdrop++;
1236 break;
1237 case QM_MR_RC_WRED:
1238 percpu_priv->ern_cnt.wred++;
1239 break;
1240 case QM_MR_RC_ERROR:
1241 percpu_priv->ern_cnt.err_cond++;
1242 break;
1243 case QM_MR_RC_ORPWINDOW_EARLY:
1244 percpu_priv->ern_cnt.early_window++;
1245 break;
1246 case QM_MR_RC_ORPWINDOW_LATE:
1247 percpu_priv->ern_cnt.late_window++;
1248 break;
1249 case QM_MR_RC_FQ_TAILDROP:
1250 percpu_priv->ern_cnt.fq_tdrop++;
1251 break;
1252 case QM_MR_RC_ORPWINDOW_RETIRED:
1253 percpu_priv->ern_cnt.fq_retired++;
1254 break;
1255 case QM_MR_RC_ORP_ZERO:
1256 percpu_priv->ern_cnt.orp_zero++;
1257 break;
1258 }
1259 }
1260
1261 /* Turn on HW checksum computation for this outgoing frame.
1262 * If the current protocol is not something we support in this regard
1263 * (or if the stack has already computed the SW checksum), we do nothing.
1264 *
1265 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1266 * otherwise.
1267 *
1268 * Note that this function may modify the fd->cmd field and the skb data buffer
1269 * (the Parse Results area).
1270 */
1271 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1272 struct sk_buff *skb,
1273 struct qm_fd *fd,
1274 char *parse_results)
1275 {
1276 struct fman_prs_result *parse_result;
1277 u16 ethertype = ntohs(skb->protocol);
1278 struct ipv6hdr *ipv6h = NULL;
1279 struct iphdr *iph;
1280 int retval = 0;
1281 u8 l4_proto;
1282
1283 if (skb->ip_summed != CHECKSUM_PARTIAL)
1284 return 0;
1285
1286 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1287 * L4 alone from the FM configuration anyway.
1288 */
1289
1290 /* Fill in some fields of the Parse Results array, so the FMan
1291 * can find them as if they came from the FMan Parser.
1292 */
1293 parse_result = (struct fman_prs_result *)parse_results;
1294
1295 /* If we're dealing with VLAN, get the real Ethernet type */
1296 if (ethertype == ETH_P_8021Q) {
1297 /* We can't always assume the MAC header is set correctly
1298 * by the stack, so reset to beginning of skb->data
1299 */
1300 skb_reset_mac_header(skb);
1301 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1302 }
1303
1304 /* Fill in the relevant L3 parse result fields
1305 * and read the L4 protocol type
1306 */
1307 switch (ethertype) {
1308 case ETH_P_IP:
1309 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1310 iph = ip_hdr(skb);
1311 WARN_ON(!iph);
1312 l4_proto = iph->protocol;
1313 break;
1314 case ETH_P_IPV6:
1315 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1316 ipv6h = ipv6_hdr(skb);
1317 WARN_ON(!ipv6h);
1318 l4_proto = ipv6h->nexthdr;
1319 break;
1320 default:
1321 /* We shouldn't even be here */
1322 if (net_ratelimit())
1323 netif_alert(priv, tx_err, priv->net_dev,
1324 "Can't compute HW csum for L3 proto 0x%x\n",
1325 ntohs(skb->protocol));
1326 retval = -EIO;
1327 goto return_error;
1328 }
1329
1330 /* Fill in the relevant L4 parse result fields */
1331 switch (l4_proto) {
1332 case IPPROTO_UDP:
1333 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1334 break;
1335 case IPPROTO_TCP:
1336 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1337 break;
1338 default:
1339 if (net_ratelimit())
1340 netif_alert(priv, tx_err, priv->net_dev,
1341 "Can't compute HW csum for L4 proto 0x%x\n",
1342 l4_proto);
1343 retval = -EIO;
1344 goto return_error;
1345 }
1346
1347 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1348 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1349 parse_result->l4_off = (u8)skb_transport_offset(skb);
1350
1351 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1352 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1353
1354 /* On P1023 and similar platforms fd->cmd interpretation could
1355 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1356 * is not set so we do not need to check; in the future, if/when
1357 * using context_a we need to check this bit
1358 */
1359
1360 return_error:
1361 return retval;
1362 }
1363
1364 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1365 {
1366 struct device *dev = dpaa_bp->dev;
1367 struct bm_buffer bmb[8];
1368 dma_addr_t addr;
1369 void *new_buf;
1370 u8 i;
1371
1372 for (i = 0; i < 8; i++) {
1373 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1374 if (unlikely(!new_buf)) {
1375 dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1376 dpaa_bp->raw_size);
1377 goto release_previous_buffs;
1378 }
1379 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1380
1381 addr = dma_map_single(dev, new_buf,
1382 dpaa_bp->size, DMA_FROM_DEVICE);
1383 if (unlikely(dma_mapping_error(dev, addr))) {
1384 dev_err(dpaa_bp->dev, "DMA map failed");
1385 goto release_previous_buffs;
1386 }
1387
1388 bmb[i].data = 0;
1389 bm_buffer_set64(&bmb[i], addr);
1390 }
1391
1392 release_bufs:
1393 return dpaa_bman_release(dpaa_bp, bmb, i);
1394
1395 release_previous_buffs:
1396 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1397
1398 bm_buffer_set64(&bmb[i], 0);
1399 /* Avoid releasing a completely null buffer; bman_release() requires
1400 * at least one buffer.
1401 */
1402 if (likely(i))
1403 goto release_bufs;
1404
1405 return 0;
1406 }
1407
1408 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1409 {
1410 int i;
1411
1412 /* Give each CPU an allotment of "config_count" buffers */
1413 for_each_possible_cpu(i) {
1414 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1415 int j;
1416
1417 /* Although we access another CPU's counters here
1418 * we do it at boot time so it is safe
1419 */
1420 for (j = 0; j < dpaa_bp->config_count; j += 8)
1421 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1422 }
1423 return 0;
1424 }
1425
1426 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1427 * REFILL_THRESHOLD.
1428 */
1429 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1430 {
1431 int count = *countptr;
1432 int new_bufs;
1433
1434 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1435 do {
1436 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1437 if (unlikely(!new_bufs)) {
1438 /* Avoid looping forever if we've temporarily
1439 * run out of memory. We'll try again at the
1440 * next NAPI cycle.
1441 */
1442 break;
1443 }
1444 count += new_bufs;
1445 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1446
1447 *countptr = count;
1448 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1449 return -ENOMEM;
1450 }
1451
1452 return 0;
1453 }
1454
1455 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1456 {
1457 struct dpaa_bp *dpaa_bp;
1458 int *countptr;
1459 int res, i;
1460
1461 for (i = 0; i < DPAA_BPS_NUM; i++) {
1462 dpaa_bp = priv->dpaa_bps[i];
1463 if (!dpaa_bp)
1464 return -EINVAL;
1465 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1466 res = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1467 if (res)
1468 return res;
1469 }
1470 return 0;
1471 }
1472
1473 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1474 * either contiguous frames or scatter/gather ones.
1475 * Skb freeing is not handled here.
1476 *
1477 * This function may be called on error paths in the Tx function, so guard
1478 * against cases when not all fd relevant fields were filled in.
1479 *
1480 * Return the skb backpointer, since for S/G frames the buffer containing it
1481 * gets freed here.
1482 */
1483 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1484 const struct qm_fd *fd)
1485 {
1486 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1487 struct device *dev = priv->net_dev->dev.parent;
1488 dma_addr_t addr = qm_fd_addr(fd);
1489 const struct qm_sg_entry *sgt;
1490 struct sk_buff **skbh, *skb;
1491 int nr_frags, i;
1492
1493 skbh = (struct sk_buff **)phys_to_virt(addr);
1494 skb = *skbh;
1495
1496 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1497 nr_frags = skb_shinfo(skb)->nr_frags;
1498 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1499 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1500 dma_dir);
1501
1502 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1503 * it's from lowmem.
1504 */
1505 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1506
1507 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1508 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1509 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1510
1511 /* remaining pages were mapped with skb_frag_dma_map() */
1512 for (i = 1; i < nr_frags; i++) {
1513 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1514
1515 dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1516 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1517 }
1518
1519 /* Free the page frag that we allocated on Tx */
1520 skb_free_frag(phys_to_virt(addr));
1521 } else {
1522 dma_unmap_single(dev, addr,
1523 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1524 }
1525
1526 return skb;
1527 }
1528
1529 /* Build a linear skb around the received buffer.
1530 * We are guaranteed there is enough room at the end of the data buffer to
1531 * accommodate the shared info area of the skb.
1532 */
1533 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1534 const struct qm_fd *fd)
1535 {
1536 ssize_t fd_off = qm_fd_get_offset(fd);
1537 dma_addr_t addr = qm_fd_addr(fd);
1538 struct dpaa_bp *dpaa_bp;
1539 struct sk_buff *skb;
1540 void *vaddr;
1541
1542 vaddr = phys_to_virt(addr);
1543 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1544
1545 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1546 if (!dpaa_bp)
1547 goto free_buffer;
1548
1549 skb = build_skb(vaddr, dpaa_bp->size +
1550 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1551 if (unlikely(!skb)) {
1552 WARN_ONCE(1, "Build skb failure on Rx\n");
1553 goto free_buffer;
1554 }
1555 WARN_ON(fd_off != priv->rx_headroom);
1556 skb_reserve(skb, fd_off);
1557 skb_put(skb, qm_fd_get_length(fd));
1558
1559 skb->ip_summed = CHECKSUM_NONE;
1560
1561 return skb;
1562
1563 free_buffer:
1564 skb_free_frag(vaddr);
1565 return NULL;
1566 }
1567
1568 /* Build an skb with the data of the first S/G entry in the linear portion and
1569 * the rest of the frame as skb fragments.
1570 *
1571 * The page fragment holding the S/G Table is recycled here.
1572 */
1573 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1574 const struct qm_fd *fd)
1575 {
1576 ssize_t fd_off = qm_fd_get_offset(fd);
1577 dma_addr_t addr = qm_fd_addr(fd);
1578 const struct qm_sg_entry *sgt;
1579 struct page *page, *head_page;
1580 struct dpaa_bp *dpaa_bp;
1581 void *vaddr, *sg_vaddr;
1582 int frag_off, frag_len;
1583 struct sk_buff *skb;
1584 dma_addr_t sg_addr;
1585 int page_offset;
1586 unsigned int sz;
1587 int *count_ptr;
1588 int i;
1589
1590 vaddr = phys_to_virt(addr);
1591 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1592
1593 /* Iterate through the SGT entries and add data buffers to the skb */
1594 sgt = vaddr + fd_off;
1595 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1596 /* Extension bit is not supported */
1597 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1598
1599 sg_addr = qm_sg_addr(&sgt[i]);
1600 sg_vaddr = phys_to_virt(sg_addr);
1601 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1602 SMP_CACHE_BYTES));
1603
1604 /* We may use multiple Rx pools */
1605 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1606 if (!dpaa_bp)
1607 goto free_buffers;
1608
1609 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1610 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1611 DMA_FROM_DEVICE);
1612 if (i == 0) {
1613 sz = dpaa_bp->size +
1614 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1615 skb = build_skb(sg_vaddr, sz);
1616 if (WARN_ON(unlikely(!skb)))
1617 goto free_buffers;
1618
1619 skb->ip_summed = CHECKSUM_NONE;
1620
1621 /* Make sure forwarded skbs will have enough space
1622 * on Tx, if extra headers are added.
1623 */
1624 WARN_ON(fd_off != priv->rx_headroom);
1625 skb_reserve(skb, fd_off);
1626 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1627 } else {
1628 /* Not the first S/G entry; all data from buffer will
1629 * be added in an skb fragment; fragment index is offset
1630 * by one since first S/G entry was incorporated in the
1631 * linear part of the skb.
1632 *
1633 * Caution: 'page' may be a tail page.
1634 */
1635 page = virt_to_page(sg_vaddr);
1636 head_page = virt_to_head_page(sg_vaddr);
1637
1638 /* Compute offset in (possibly tail) page */
1639 page_offset = ((unsigned long)sg_vaddr &
1640 (PAGE_SIZE - 1)) +
1641 (page_address(page) - page_address(head_page));
1642 /* page_offset only refers to the beginning of sgt[i];
1643 * but the buffer itself may have an internal offset.
1644 */
1645 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1646 frag_len = qm_sg_entry_get_len(&sgt[i]);
1647 /* skb_add_rx_frag() does no checking on the page; if
1648 * we pass it a tail page, we'll end up with
1649 * bad page accounting and eventually with segafults.
1650 */
1651 skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1652 frag_len, dpaa_bp->size);
1653 }
1654 /* Update the pool count for the current {cpu x bpool} */
1655 (*count_ptr)--;
1656
1657 if (qm_sg_entry_is_final(&sgt[i]))
1658 break;
1659 }
1660 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1661
1662 /* free the SG table buffer */
1663 skb_free_frag(vaddr);
1664
1665 return skb;
1666
1667 free_buffers:
1668 /* compensate sw bpool counter changes */
1669 for (i--; i >= 0; i--) {
1670 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1671 if (dpaa_bp) {
1672 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1673 (*count_ptr)++;
1674 }
1675 }
1676 /* free all the SG entries */
1677 for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1678 sg_addr = qm_sg_addr(&sgt[i]);
1679 sg_vaddr = phys_to_virt(sg_addr);
1680 skb_free_frag(sg_vaddr);
1681 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1682 if (dpaa_bp) {
1683 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1684 (*count_ptr)--;
1685 }
1686
1687 if (qm_sg_entry_is_final(&sgt[i]))
1688 break;
1689 }
1690 /* free the SGT fragment */
1691 skb_free_frag(vaddr);
1692
1693 return NULL;
1694 }
1695
1696 static int skb_to_contig_fd(struct dpaa_priv *priv,
1697 struct sk_buff *skb, struct qm_fd *fd,
1698 int *offset)
1699 {
1700 struct net_device *net_dev = priv->net_dev;
1701 struct device *dev = net_dev->dev.parent;
1702 enum dma_data_direction dma_dir;
1703 unsigned char *buffer_start;
1704 struct sk_buff **skbh;
1705 dma_addr_t addr;
1706 int err;
1707
1708 /* We are guaranteed to have at least tx_headroom bytes
1709 * available, so just use that for offset.
1710 */
1711 fd->bpid = FSL_DPAA_BPID_INV;
1712 buffer_start = skb->data - priv->tx_headroom;
1713 dma_dir = DMA_TO_DEVICE;
1714
1715 skbh = (struct sk_buff **)buffer_start;
1716 *skbh = skb;
1717
1718 /* Enable L3/L4 hardware checksum computation.
1719 *
1720 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1721 * need to write into the skb.
1722 */
1723 err = dpaa_enable_tx_csum(priv, skb, fd,
1724 ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1725 if (unlikely(err < 0)) {
1726 if (net_ratelimit())
1727 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1728 err);
1729 return err;
1730 }
1731
1732 /* Fill in the rest of the FD fields */
1733 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1734 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1735
1736 /* Map the entire buffer size that may be seen by FMan, but no more */
1737 addr = dma_map_single(dev, skbh,
1738 skb_tail_pointer(skb) - buffer_start, dma_dir);
1739 if (unlikely(dma_mapping_error(dev, addr))) {
1740 if (net_ratelimit())
1741 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1742 return -EINVAL;
1743 }
1744 qm_fd_addr_set64(fd, addr);
1745
1746 return 0;
1747 }
1748
1749 static int skb_to_sg_fd(struct dpaa_priv *priv,
1750 struct sk_buff *skb, struct qm_fd *fd)
1751 {
1752 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1753 const int nr_frags = skb_shinfo(skb)->nr_frags;
1754 struct net_device *net_dev = priv->net_dev;
1755 struct device *dev = net_dev->dev.parent;
1756 struct qm_sg_entry *sgt;
1757 struct sk_buff **skbh;
1758 int i, j, err, sz;
1759 void *buffer_start;
1760 skb_frag_t *frag;
1761 dma_addr_t addr;
1762 size_t frag_len;
1763 void *sgt_buf;
1764
1765 /* get a page frag to store the SGTable */
1766 sz = SKB_DATA_ALIGN(priv->tx_headroom +
1767 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1768 sgt_buf = netdev_alloc_frag(sz);
1769 if (unlikely(!sgt_buf)) {
1770 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1771 sz);
1772 return -ENOMEM;
1773 }
1774
1775 /* Enable L3/L4 hardware checksum computation.
1776 *
1777 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1778 * need to write into the skb.
1779 */
1780 err = dpaa_enable_tx_csum(priv, skb, fd,
1781 sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1782 if (unlikely(err < 0)) {
1783 if (net_ratelimit())
1784 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1785 err);
1786 goto csum_failed;
1787 }
1788
1789 sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1790 qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1791 sgt[0].bpid = FSL_DPAA_BPID_INV;
1792 sgt[0].offset = 0;
1793 addr = dma_map_single(dev, skb->data,
1794 skb_headlen(skb), dma_dir);
1795 if (unlikely(dma_mapping_error(dev, addr))) {
1796 dev_err(dev, "DMA mapping failed");
1797 err = -EINVAL;
1798 goto sg0_map_failed;
1799 }
1800 qm_sg_entry_set64(&sgt[0], addr);
1801
1802 /* populate the rest of SGT entries */
1803 frag = &skb_shinfo(skb)->frags[0];
1804 frag_len = frag->size;
1805 for (i = 1; i <= nr_frags; i++, frag++) {
1806 WARN_ON(!skb_frag_page(frag));
1807 addr = skb_frag_dma_map(dev, frag, 0,
1808 frag_len, dma_dir);
1809 if (unlikely(dma_mapping_error(dev, addr))) {
1810 dev_err(dev, "DMA mapping failed");
1811 err = -EINVAL;
1812 goto sg_map_failed;
1813 }
1814
1815 qm_sg_entry_set_len(&sgt[i], frag_len);
1816 sgt[i].bpid = FSL_DPAA_BPID_INV;
1817 sgt[i].offset = 0;
1818
1819 /* keep the offset in the address */
1820 qm_sg_entry_set64(&sgt[i], addr);
1821 frag_len = frag->size;
1822 }
1823 qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1824
1825 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1826
1827 /* DMA map the SGT page */
1828 buffer_start = (void *)sgt - priv->tx_headroom;
1829 skbh = (struct sk_buff **)buffer_start;
1830 *skbh = skb;
1831
1832 addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1833 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1834 dma_dir);
1835 if (unlikely(dma_mapping_error(dev, addr))) {
1836 dev_err(dev, "DMA mapping failed");
1837 err = -EINVAL;
1838 goto sgt_map_failed;
1839 }
1840
1841 fd->bpid = FSL_DPAA_BPID_INV;
1842 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1843 qm_fd_addr_set64(fd, addr);
1844
1845 return 0;
1846
1847 sgt_map_failed:
1848 sg_map_failed:
1849 for (j = 0; j < i; j++)
1850 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1851 qm_sg_entry_get_len(&sgt[j]), dma_dir);
1852 sg0_map_failed:
1853 csum_failed:
1854 skb_free_frag(sgt_buf);
1855
1856 return err;
1857 }
1858
1859 static inline int dpaa_xmit(struct dpaa_priv *priv,
1860 struct rtnl_link_stats64 *percpu_stats,
1861 int queue,
1862 struct qm_fd *fd)
1863 {
1864 struct qman_fq *egress_fq;
1865 int err, i;
1866
1867 egress_fq = priv->egress_fqs[queue];
1868 if (fd->bpid == FSL_DPAA_BPID_INV)
1869 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
1870
1871 /* Trace this Tx fd */
1872 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1873
1874 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1875 err = qman_enqueue(egress_fq, fd);
1876 if (err != -EBUSY)
1877 break;
1878 }
1879
1880 if (unlikely(err < 0)) {
1881 percpu_stats->tx_errors++;
1882 percpu_stats->tx_fifo_errors++;
1883 return err;
1884 }
1885
1886 percpu_stats->tx_packets++;
1887 percpu_stats->tx_bytes += qm_fd_get_length(fd);
1888
1889 return 0;
1890 }
1891
1892 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1893 {
1894 const int queue_mapping = skb_get_queue_mapping(skb);
1895 bool nonlinear = skb_is_nonlinear(skb);
1896 struct rtnl_link_stats64 *percpu_stats;
1897 struct dpaa_percpu_priv *percpu_priv;
1898 struct dpaa_priv *priv;
1899 struct qm_fd fd;
1900 int offset = 0;
1901 int err = 0;
1902
1903 priv = netdev_priv(net_dev);
1904 percpu_priv = this_cpu_ptr(priv->percpu_priv);
1905 percpu_stats = &percpu_priv->stats;
1906
1907 qm_fd_clear_fd(&fd);
1908
1909 if (!nonlinear) {
1910 /* We're going to store the skb backpointer at the beginning
1911 * of the data buffer, so we need a privately owned skb
1912 *
1913 * We've made sure skb is not shared in dev->priv_flags,
1914 * we need to verify the skb head is not cloned
1915 */
1916 if (skb_cow_head(skb, priv->tx_headroom))
1917 goto enomem;
1918
1919 WARN_ON(skb_is_nonlinear(skb));
1920 }
1921
1922 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
1923 * make sure we don't feed FMan with more fragments than it supports.
1924 */
1925 if (nonlinear &&
1926 likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
1927 /* Just create a S/G fd based on the skb */
1928 err = skb_to_sg_fd(priv, skb, &fd);
1929 percpu_priv->tx_frag_skbuffs++;
1930 } else {
1931 /* If the egress skb contains more fragments than we support
1932 * we have no choice but to linearize it ourselves.
1933 */
1934 if (unlikely(nonlinear) && __skb_linearize(skb))
1935 goto enomem;
1936
1937 /* Finally, create a contig FD from this skb */
1938 err = skb_to_contig_fd(priv, skb, &fd, &offset);
1939 }
1940 if (unlikely(err < 0))
1941 goto skb_to_fd_failed;
1942
1943 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
1944 return NETDEV_TX_OK;
1945
1946 dpaa_cleanup_tx_fd(priv, &fd);
1947 skb_to_fd_failed:
1948 enomem:
1949 percpu_stats->tx_errors++;
1950 dev_kfree_skb(skb);
1951 return NETDEV_TX_OK;
1952 }
1953
1954 static void dpaa_rx_error(struct net_device *net_dev,
1955 const struct dpaa_priv *priv,
1956 struct dpaa_percpu_priv *percpu_priv,
1957 const struct qm_fd *fd,
1958 u32 fqid)
1959 {
1960 if (net_ratelimit())
1961 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
1962 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
1963
1964 percpu_priv->stats.rx_errors++;
1965
1966 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
1967 percpu_priv->rx_errors.dme++;
1968 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
1969 percpu_priv->rx_errors.fpe++;
1970 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
1971 percpu_priv->rx_errors.fse++;
1972 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
1973 percpu_priv->rx_errors.phe++;
1974
1975 dpaa_fd_release(net_dev, fd);
1976 }
1977
1978 static void dpaa_tx_error(struct net_device *net_dev,
1979 const struct dpaa_priv *priv,
1980 struct dpaa_percpu_priv *percpu_priv,
1981 const struct qm_fd *fd,
1982 u32 fqid)
1983 {
1984 struct sk_buff *skb;
1985
1986 if (net_ratelimit())
1987 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
1988 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
1989
1990 percpu_priv->stats.tx_errors++;
1991
1992 skb = dpaa_cleanup_tx_fd(priv, fd);
1993 dev_kfree_skb(skb);
1994 }
1995
1996 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
1997 {
1998 struct dpaa_napi_portal *np =
1999 container_of(napi, struct dpaa_napi_portal, napi);
2000
2001 int cleaned = qman_p_poll_dqrr(np->p, budget);
2002
2003 if (cleaned < budget) {
2004 napi_complete_done(napi, cleaned);
2005 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2006
2007 } else if (np->down) {
2008 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2009 }
2010
2011 return cleaned;
2012 }
2013
2014 static void dpaa_tx_conf(struct net_device *net_dev,
2015 const struct dpaa_priv *priv,
2016 struct dpaa_percpu_priv *percpu_priv,
2017 const struct qm_fd *fd,
2018 u32 fqid)
2019 {
2020 struct sk_buff *skb;
2021
2022 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2023 if (net_ratelimit())
2024 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2025 be32_to_cpu(fd->status) &
2026 FM_FD_STAT_TX_ERRORS);
2027
2028 percpu_priv->stats.tx_errors++;
2029 }
2030
2031 percpu_priv->tx_confirm++;
2032
2033 skb = dpaa_cleanup_tx_fd(priv, fd);
2034
2035 consume_skb(skb);
2036 }
2037
2038 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2039 struct qman_portal *portal)
2040 {
2041 if (unlikely(in_irq() || !in_serving_softirq())) {
2042 /* Disable QMan IRQ and invoke NAPI */
2043 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2044
2045 percpu_priv->np.p = portal;
2046 napi_schedule(&percpu_priv->np.napi);
2047 percpu_priv->in_interrupt++;
2048 return 1;
2049 }
2050 return 0;
2051 }
2052
2053 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2054 struct qman_fq *fq,
2055 const struct qm_dqrr_entry *dq)
2056 {
2057 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2058 struct dpaa_percpu_priv *percpu_priv;
2059 struct net_device *net_dev;
2060 struct dpaa_bp *dpaa_bp;
2061 struct dpaa_priv *priv;
2062
2063 net_dev = dpaa_fq->net_dev;
2064 priv = netdev_priv(net_dev);
2065 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2066 if (!dpaa_bp)
2067 return qman_cb_dqrr_consume;
2068
2069 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2070
2071 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2072 return qman_cb_dqrr_stop;
2073
2074 if (dpaa_eth_refill_bpools(priv))
2075 /* Unable to refill the buffer pool due to insufficient
2076 * system memory. Just release the frame back into the pool,
2077 * otherwise we'll soon end up with an empty buffer pool.
2078 */
2079 dpaa_fd_release(net_dev, &dq->fd);
2080 else
2081 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2082
2083 return qman_cb_dqrr_consume;
2084 }
2085
2086 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2087 struct qman_fq *fq,
2088 const struct qm_dqrr_entry *dq)
2089 {
2090 struct rtnl_link_stats64 *percpu_stats;
2091 struct dpaa_percpu_priv *percpu_priv;
2092 const struct qm_fd *fd = &dq->fd;
2093 dma_addr_t addr = qm_fd_addr(fd);
2094 enum qm_fd_format fd_format;
2095 struct net_device *net_dev;
2096 u32 fd_status = fd->status;
2097 struct dpaa_bp *dpaa_bp;
2098 struct dpaa_priv *priv;
2099 unsigned int skb_len;
2100 struct sk_buff *skb;
2101 int *count_ptr;
2102
2103 fd_status = be32_to_cpu(fd->status);
2104 fd_format = qm_fd_get_format(fd);
2105 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2106 priv = netdev_priv(net_dev);
2107 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2108 if (!dpaa_bp)
2109 return qman_cb_dqrr_consume;
2110
2111 /* Trace the Rx fd */
2112 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2113
2114 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2115 percpu_stats = &percpu_priv->stats;
2116
2117 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2118 return qman_cb_dqrr_stop;
2119
2120 /* Make sure we didn't run out of buffers */
2121 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2122 /* Unable to refill the buffer pool due to insufficient
2123 * system memory. Just release the frame back into the pool,
2124 * otherwise we'll soon end up with an empty buffer pool.
2125 */
2126 dpaa_fd_release(net_dev, &dq->fd);
2127 return qman_cb_dqrr_consume;
2128 }
2129
2130 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2131 if (net_ratelimit())
2132 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2133 fd_status & FM_FD_STAT_RX_ERRORS);
2134
2135 percpu_stats->rx_errors++;
2136 dpaa_fd_release(net_dev, fd);
2137 return qman_cb_dqrr_consume;
2138 }
2139
2140 dpaa_bp = dpaa_bpid2pool(fd->bpid);
2141 if (!dpaa_bp)
2142 return qman_cb_dqrr_consume;
2143
2144 dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2145
2146 /* prefetch the first 64 bytes of the frame or the SGT start */
2147 prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2148
2149 fd_format = qm_fd_get_format(fd);
2150 /* The only FD types that we may receive are contig and S/G */
2151 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2152
2153 /* Account for either the contig buffer or the SGT buffer (depending on
2154 * which case we were in) having been removed from the pool.
2155 */
2156 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2157 (*count_ptr)--;
2158
2159 if (likely(fd_format == qm_fd_contig))
2160 skb = contig_fd_to_skb(priv, fd);
2161 else
2162 skb = sg_fd_to_skb(priv, fd);
2163 if (!skb)
2164 return qman_cb_dqrr_consume;
2165
2166 skb->protocol = eth_type_trans(skb, net_dev);
2167
2168 skb_len = skb->len;
2169
2170 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2171 return qman_cb_dqrr_consume;
2172
2173 percpu_stats->rx_packets++;
2174 percpu_stats->rx_bytes += skb_len;
2175
2176 return qman_cb_dqrr_consume;
2177 }
2178
2179 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2180 struct qman_fq *fq,
2181 const struct qm_dqrr_entry *dq)
2182 {
2183 struct dpaa_percpu_priv *percpu_priv;
2184 struct net_device *net_dev;
2185 struct dpaa_priv *priv;
2186
2187 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2188 priv = netdev_priv(net_dev);
2189
2190 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2191
2192 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2193 return qman_cb_dqrr_stop;
2194
2195 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2196
2197 return qman_cb_dqrr_consume;
2198 }
2199
2200 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2201 struct qman_fq *fq,
2202 const struct qm_dqrr_entry *dq)
2203 {
2204 struct dpaa_percpu_priv *percpu_priv;
2205 struct net_device *net_dev;
2206 struct dpaa_priv *priv;
2207
2208 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2209 priv = netdev_priv(net_dev);
2210
2211 /* Trace the fd */
2212 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2213
2214 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2215
2216 if (dpaa_eth_napi_schedule(percpu_priv, portal))
2217 return qman_cb_dqrr_stop;
2218
2219 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2220
2221 return qman_cb_dqrr_consume;
2222 }
2223
2224 static void egress_ern(struct qman_portal *portal,
2225 struct qman_fq *fq,
2226 const union qm_mr_entry *msg)
2227 {
2228 const struct qm_fd *fd = &msg->ern.fd;
2229 struct dpaa_percpu_priv *percpu_priv;
2230 const struct dpaa_priv *priv;
2231 struct net_device *net_dev;
2232 struct sk_buff *skb;
2233
2234 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2235 priv = netdev_priv(net_dev);
2236 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2237
2238 percpu_priv->stats.tx_dropped++;
2239 percpu_priv->stats.tx_fifo_errors++;
2240 count_ern(percpu_priv, msg);
2241
2242 skb = dpaa_cleanup_tx_fd(priv, fd);
2243 dev_kfree_skb_any(skb);
2244 }
2245
2246 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2247 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2248 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2249 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2250 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2251 .egress_ern = { .cb = { .ern = egress_ern } }
2252 };
2253
2254 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2255 {
2256 struct dpaa_percpu_priv *percpu_priv;
2257 int i;
2258
2259 for_each_possible_cpu(i) {
2260 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2261
2262 percpu_priv->np.down = 0;
2263 napi_enable(&percpu_priv->np.napi);
2264 }
2265 }
2266
2267 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2268 {
2269 struct dpaa_percpu_priv *percpu_priv;
2270 int i;
2271
2272 for_each_possible_cpu(i) {
2273 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2274
2275 percpu_priv->np.down = 1;
2276 napi_disable(&percpu_priv->np.napi);
2277 }
2278 }
2279
2280 static int dpaa_open(struct net_device *net_dev)
2281 {
2282 struct mac_device *mac_dev;
2283 struct dpaa_priv *priv;
2284 int err, i;
2285
2286 priv = netdev_priv(net_dev);
2287 mac_dev = priv->mac_dev;
2288 dpaa_eth_napi_enable(priv);
2289
2290 net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2291 if (!net_dev->phydev) {
2292 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2293 err = -ENODEV;
2294 goto phy_init_failed;
2295 }
2296
2297 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2298 err = fman_port_enable(mac_dev->port[i]);
2299 if (err)
2300 goto mac_start_failed;
2301 }
2302
2303 err = priv->mac_dev->start(mac_dev);
2304 if (err < 0) {
2305 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2306 goto mac_start_failed;
2307 }
2308
2309 netif_tx_start_all_queues(net_dev);
2310
2311 return 0;
2312
2313 mac_start_failed:
2314 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2315 fman_port_disable(mac_dev->port[i]);
2316
2317 phy_init_failed:
2318 dpaa_eth_napi_disable(priv);
2319
2320 return err;
2321 }
2322
2323 static int dpaa_eth_stop(struct net_device *net_dev)
2324 {
2325 struct dpaa_priv *priv;
2326 int err;
2327
2328 err = dpaa_stop(net_dev);
2329
2330 priv = netdev_priv(net_dev);
2331 dpaa_eth_napi_disable(priv);
2332
2333 return err;
2334 }
2335
2336 static const struct net_device_ops dpaa_ops = {
2337 .ndo_open = dpaa_open,
2338 .ndo_start_xmit = dpaa_start_xmit,
2339 .ndo_stop = dpaa_eth_stop,
2340 .ndo_tx_timeout = dpaa_tx_timeout,
2341 .ndo_get_stats64 = dpaa_get_stats64,
2342 .ndo_set_mac_address = dpaa_set_mac_address,
2343 .ndo_validate_addr = eth_validate_addr,
2344 .ndo_set_rx_mode = dpaa_set_rx_mode,
2345 };
2346
2347 static int dpaa_napi_add(struct net_device *net_dev)
2348 {
2349 struct dpaa_priv *priv = netdev_priv(net_dev);
2350 struct dpaa_percpu_priv *percpu_priv;
2351 int cpu;
2352
2353 for_each_possible_cpu(cpu) {
2354 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2355
2356 netif_napi_add(net_dev, &percpu_priv->np.napi,
2357 dpaa_eth_poll, NAPI_POLL_WEIGHT);
2358 }
2359
2360 return 0;
2361 }
2362
2363 static void dpaa_napi_del(struct net_device *net_dev)
2364 {
2365 struct dpaa_priv *priv = netdev_priv(net_dev);
2366 struct dpaa_percpu_priv *percpu_priv;
2367 int cpu;
2368
2369 for_each_possible_cpu(cpu) {
2370 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2371
2372 netif_napi_del(&percpu_priv->np.napi);
2373 }
2374 }
2375
2376 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2377 struct bm_buffer *bmb)
2378 {
2379 dma_addr_t addr = bm_buf_addr(bmb);
2380
2381 dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2382
2383 skb_free_frag(phys_to_virt(addr));
2384 }
2385
2386 /* Alloc the dpaa_bp struct and configure default values */
2387 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2388 {
2389 struct dpaa_bp *dpaa_bp;
2390
2391 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2392 if (!dpaa_bp)
2393 return ERR_PTR(-ENOMEM);
2394
2395 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2396 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2397 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2398
2399 dpaa_bp->seed_cb = dpaa_bp_seed;
2400 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2401
2402 return dpaa_bp;
2403 }
2404
2405 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2406 * We won't be sending congestion notifications to FMan; for now, we just use
2407 * this CGR to generate enqueue rejections to FMan in order to drop the frames
2408 * before they reach our ingress queues and eat up memory.
2409 */
2410 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2411 {
2412 struct qm_mcc_initcgr initcgr;
2413 u32 cs_th;
2414 int err;
2415
2416 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2417 if (err < 0) {
2418 if (netif_msg_drv(priv))
2419 pr_err("Error %d allocating CGR ID\n", err);
2420 goto out_error;
2421 }
2422
2423 /* Enable CS TD, but disable Congestion State Change Notifications. */
2424 memset(&initcgr, 0, sizeof(initcgr));
2425 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2426 initcgr.cgr.cscn_en = QM_CGR_EN;
2427 cs_th = DPAA_INGRESS_CS_THRESHOLD;
2428 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2429
2430 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2431 initcgr.cgr.cstd_en = QM_CGR_EN;
2432
2433 /* This CGR will be associated with the SWP affined to the current CPU.
2434 * However, we'll place all our ingress FQs in it.
2435 */
2436 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2437 &initcgr);
2438 if (err < 0) {
2439 if (netif_msg_drv(priv))
2440 pr_err("Error %d creating ingress CGR with ID %d\n",
2441 err, priv->ingress_cgr.cgrid);
2442 qman_release_cgrid(priv->ingress_cgr.cgrid);
2443 goto out_error;
2444 }
2445 if (netif_msg_drv(priv))
2446 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2447 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2448
2449 priv->use_ingress_cgr = true;
2450
2451 out_error:
2452 return err;
2453 }
2454
2455 static const struct of_device_id dpaa_match[];
2456
2457 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2458 {
2459 u16 headroom;
2460
2461 /* The frame headroom must accommodate:
2462 * - the driver private data area
2463 * - parse results, hash results, timestamp if selected
2464 * If either hash results or time stamp are selected, both will
2465 * be copied to/from the frame headroom, as TS is located between PR and
2466 * HR in the IC and IC copy size has a granularity of 16bytes
2467 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2468 *
2469 * Also make sure the headroom is a multiple of data_align bytes
2470 */
2471 headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2472 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2473
2474 return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2475 DPAA_FD_DATA_ALIGNMENT) :
2476 headroom;
2477 }
2478
2479 static int dpaa_eth_probe(struct platform_device *pdev)
2480 {
2481 struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2482 struct dpaa_percpu_priv *percpu_priv;
2483 struct net_device *net_dev = NULL;
2484 struct dpaa_fq *dpaa_fq, *tmp;
2485 struct dpaa_priv *priv = NULL;
2486 struct fm_port_fqs port_fqs;
2487 struct mac_device *mac_dev;
2488 int err = 0, i, channel;
2489 struct device *dev;
2490
2491 dev = &pdev->dev;
2492
2493 /* Allocate this early, so we can store relevant information in
2494 * the private area
2495 */
2496 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2497 if (!net_dev) {
2498 dev_err(dev, "alloc_etherdev_mq() failed\n");
2499 goto alloc_etherdev_mq_failed;
2500 }
2501
2502 /* Do this here, so we can be verbose early */
2503 SET_NETDEV_DEV(net_dev, dev);
2504 dev_set_drvdata(dev, net_dev);
2505
2506 priv = netdev_priv(net_dev);
2507 priv->net_dev = net_dev;
2508
2509 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2510
2511 mac_dev = dpaa_mac_dev_get(pdev);
2512 if (IS_ERR(mac_dev)) {
2513 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2514 err = PTR_ERR(mac_dev);
2515 goto mac_probe_failed;
2516 }
2517
2518 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2519 * we choose conservatively and let the user explicitly set a higher
2520 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2521 * in the same LAN.
2522 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2523 * start with the maximum allowed.
2524 */
2525 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2526
2527 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2528 net_dev->mtu);
2529
2530 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2531 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2532
2533 /* device used for DMA mapping */
2534 arch_setup_dma_ops(dev, 0, 0, NULL, false);
2535 err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2536 if (err) {
2537 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2538 goto dev_mask_failed;
2539 }
2540
2541 /* bp init */
2542 for (i = 0; i < DPAA_BPS_NUM; i++) {
2543 int err;
2544
2545 dpaa_bps[i] = dpaa_bp_alloc(dev);
2546 if (IS_ERR(dpaa_bps[i]))
2547 return PTR_ERR(dpaa_bps[i]);
2548 /* the raw size of the buffers used for reception */
2549 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2550 /* avoid runtime computations by keeping the usable size here */
2551 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2552 dpaa_bps[i]->dev = dev;
2553
2554 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2555 if (err < 0) {
2556 dpaa_bps_free(priv);
2557 priv->dpaa_bps[i] = NULL;
2558 goto bp_create_failed;
2559 }
2560 priv->dpaa_bps[i] = dpaa_bps[i];
2561 }
2562
2563 INIT_LIST_HEAD(&priv->dpaa_fq_list);
2564
2565 memset(&port_fqs, 0, sizeof(port_fqs));
2566
2567 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2568 if (err < 0) {
2569 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2570 goto fq_probe_failed;
2571 }
2572
2573 priv->mac_dev = mac_dev;
2574
2575 channel = dpaa_get_channel();
2576 if (channel < 0) {
2577 dev_err(dev, "dpaa_get_channel() failed\n");
2578 err = channel;
2579 goto get_channel_failed;
2580 }
2581
2582 priv->channel = (u16)channel;
2583
2584 /* Start a thread that will walk the CPUs with affine portals
2585 * and add this pool channel to each's dequeue mask.
2586 */
2587 dpaa_eth_add_channel(priv->channel);
2588
2589 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2590
2591 /* Create a congestion group for this netdev, with
2592 * dynamically-allocated CGR ID.
2593 * Must be executed after probing the MAC, but before
2594 * assigning the egress FQs to the CGRs.
2595 */
2596 err = dpaa_eth_cgr_init(priv);
2597 if (err < 0) {
2598 dev_err(dev, "Error initializing CGR\n");
2599 goto tx_cgr_init_failed;
2600 }
2601
2602 err = dpaa_ingress_cgr_init(priv);
2603 if (err < 0) {
2604 dev_err(dev, "Error initializing ingress CGR\n");
2605 goto rx_cgr_init_failed;
2606 }
2607
2608 /* Add the FQs to the interface, and make them active */
2609 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2610 err = dpaa_fq_init(dpaa_fq, false);
2611 if (err < 0)
2612 goto fq_alloc_failed;
2613 }
2614
2615 priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2616 priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2617
2618 /* All real interfaces need their ports initialized */
2619 dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2620 &priv->buf_layout[0], dev);
2621
2622 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2623 if (!priv->percpu_priv) {
2624 dev_err(dev, "devm_alloc_percpu() failed\n");
2625 err = -ENOMEM;
2626 goto alloc_percpu_failed;
2627 }
2628 for_each_possible_cpu(i) {
2629 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2630 memset(percpu_priv, 0, sizeof(*percpu_priv));
2631 }
2632
2633 /* Initialize NAPI */
2634 err = dpaa_napi_add(net_dev);
2635 if (err < 0)
2636 goto napi_add_failed;
2637
2638 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2639 if (err < 0)
2640 goto netdev_init_failed;
2641
2642 dpaa_eth_sysfs_init(&net_dev->dev);
2643
2644 netif_info(priv, probe, net_dev, "Probed interface %s\n",
2645 net_dev->name);
2646
2647 return 0;
2648
2649 netdev_init_failed:
2650 napi_add_failed:
2651 dpaa_napi_del(net_dev);
2652 alloc_percpu_failed:
2653 dpaa_fq_free(dev, &priv->dpaa_fq_list);
2654 fq_alloc_failed:
2655 qman_delete_cgr_safe(&priv->ingress_cgr);
2656 qman_release_cgrid(priv->ingress_cgr.cgrid);
2657 rx_cgr_init_failed:
2658 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2659 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2660 tx_cgr_init_failed:
2661 get_channel_failed:
2662 dpaa_bps_free(priv);
2663 bp_create_failed:
2664 fq_probe_failed:
2665 dev_mask_failed:
2666 mac_probe_failed:
2667 dev_set_drvdata(dev, NULL);
2668 free_netdev(net_dev);
2669 alloc_etherdev_mq_failed:
2670 for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2671 if (atomic_read(&dpaa_bps[i]->refs) == 0)
2672 devm_kfree(dev, dpaa_bps[i]);
2673 }
2674 return err;
2675 }
2676
2677 static int dpaa_remove(struct platform_device *pdev)
2678 {
2679 struct net_device *net_dev;
2680 struct dpaa_priv *priv;
2681 struct device *dev;
2682 int err;
2683
2684 dev = &pdev->dev;
2685 net_dev = dev_get_drvdata(dev);
2686
2687 priv = netdev_priv(net_dev);
2688
2689 dpaa_eth_sysfs_remove(dev);
2690
2691 dev_set_drvdata(dev, NULL);
2692 unregister_netdev(net_dev);
2693
2694 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2695
2696 qman_delete_cgr_safe(&priv->ingress_cgr);
2697 qman_release_cgrid(priv->ingress_cgr.cgrid);
2698 qman_delete_cgr_safe(&priv->cgr_data.cgr);
2699 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2700
2701 dpaa_napi_del(net_dev);
2702
2703 dpaa_bps_free(priv);
2704
2705 free_netdev(net_dev);
2706
2707 return err;
2708 }
2709
2710 static struct platform_device_id dpaa_devtype[] = {
2711 {
2712 .name = "dpaa-ethernet",
2713 .driver_data = 0,
2714 }, {
2715 }
2716 };
2717 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2718
2719 static struct platform_driver dpaa_driver = {
2720 .driver = {
2721 .name = KBUILD_MODNAME,
2722 },
2723 .id_table = dpaa_devtype,
2724 .probe = dpaa_eth_probe,
2725 .remove = dpaa_remove
2726 };
2727
2728 static int __init dpaa_load(void)
2729 {
2730 int err;
2731
2732 pr_debug("FSL DPAA Ethernet driver\n");
2733
2734 /* initialize dpaa_eth mirror values */
2735 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2736 dpaa_max_frm = fman_get_max_frm();
2737
2738 err = platform_driver_register(&dpaa_driver);
2739 if (err < 0)
2740 pr_err("Error, platform_driver_register() = %d\n", err);
2741
2742 return err;
2743 }
2744 module_init(dpaa_load);
2745
2746 static void __exit dpaa_unload(void)
2747 {
2748 platform_driver_unregister(&dpaa_driver);
2749
2750 /* Only one channel is used and needs to be released after all
2751 * interfaces are removed
2752 */
2753 dpaa_release_channel();
2754 }
2755 module_exit(dpaa_unload);
2756
2757 MODULE_LICENSE("Dual BSD/GPL");
2758 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");