]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/freescale/enetc/enetc.c
slip: Fix use-after-free Read in slip_open
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / freescale / enetc / enetc.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/of_mdio.h>
8 #include <linux/vmalloc.h>
9
10 /* ENETC overhead: optional extension BD + 1 BD gap */
11 #define ENETC_TXBDS_NEEDED(val) ((val) + 2)
12 /* max # of chained Tx BDs is 15, including head and extension BD */
13 #define ENETC_MAX_SKB_FRAGS 13
14 #define ENETC_TXBDS_MAX_NEEDED ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
15
16 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
17 int active_offloads);
18
19 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
20 {
21 struct enetc_ndev_priv *priv = netdev_priv(ndev);
22 struct enetc_bdr *tx_ring;
23 int count;
24
25 tx_ring = priv->tx_ring[skb->queue_mapping];
26
27 if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
28 if (unlikely(skb_linearize(skb)))
29 goto drop_packet_err;
30
31 count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
32 if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
33 netif_stop_subqueue(ndev, tx_ring->index);
34 return NETDEV_TX_BUSY;
35 }
36
37 count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 if (unlikely(!count))
39 goto drop_packet_err;
40
41 if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
42 netif_stop_subqueue(ndev, tx_ring->index);
43
44 return NETDEV_TX_OK;
45
46 drop_packet_err:
47 dev_kfree_skb_any(skb);
48 return NETDEV_TX_OK;
49 }
50
51 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
52 {
53 int l3_start, l3_hsize;
54 u16 l3_flags, l4_flags;
55
56 if (skb->ip_summed != CHECKSUM_PARTIAL)
57 return false;
58
59 switch (skb->csum_offset) {
60 case offsetof(struct tcphdr, check):
61 l4_flags = ENETC_TXBD_L4_TCP;
62 break;
63 case offsetof(struct udphdr, check):
64 l4_flags = ENETC_TXBD_L4_UDP;
65 break;
66 default:
67 skb_checksum_help(skb);
68 return false;
69 }
70
71 l3_start = skb_network_offset(skb);
72 l3_hsize = skb_network_header_len(skb);
73
74 l3_flags = 0;
75 if (skb->protocol == htons(ETH_P_IPV6))
76 l3_flags = ENETC_TXBD_L3_IPV6;
77
78 /* write BD fields */
79 txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
80 txbd->l4_csoff = l4_flags;
81
82 return true;
83 }
84
85 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
86 struct enetc_tx_swbd *tx_swbd)
87 {
88 if (tx_swbd->is_dma_page)
89 dma_unmap_page(tx_ring->dev, tx_swbd->dma,
90 tx_swbd->len, DMA_TO_DEVICE);
91 else
92 dma_unmap_single(tx_ring->dev, tx_swbd->dma,
93 tx_swbd->len, DMA_TO_DEVICE);
94 tx_swbd->dma = 0;
95 }
96
97 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
98 struct enetc_tx_swbd *tx_swbd)
99 {
100 if (tx_swbd->dma)
101 enetc_unmap_tx_buff(tx_ring, tx_swbd);
102
103 if (tx_swbd->skb) {
104 dev_kfree_skb_any(tx_swbd->skb);
105 tx_swbd->skb = NULL;
106 }
107 }
108
109 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
110 int active_offloads)
111 {
112 struct enetc_tx_swbd *tx_swbd;
113 skb_frag_t *frag;
114 int len = skb_headlen(skb);
115 union enetc_tx_bd temp_bd;
116 union enetc_tx_bd *txbd;
117 bool do_vlan, do_tstamp;
118 int i, count = 0;
119 unsigned int f;
120 dma_addr_t dma;
121 u8 flags = 0;
122
123 i = tx_ring->next_to_use;
124 txbd = ENETC_TXBD(*tx_ring, i);
125 prefetchw(txbd);
126
127 dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
128 if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
129 goto dma_err;
130
131 temp_bd.addr = cpu_to_le64(dma);
132 temp_bd.buf_len = cpu_to_le16(len);
133 temp_bd.lstatus = 0;
134
135 tx_swbd = &tx_ring->tx_swbd[i];
136 tx_swbd->dma = dma;
137 tx_swbd->len = len;
138 tx_swbd->is_dma_page = 0;
139 count++;
140
141 do_vlan = skb_vlan_tag_present(skb);
142 do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
143 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
144 tx_swbd->do_tstamp = do_tstamp;
145 tx_swbd->check_wb = tx_swbd->do_tstamp;
146
147 if (do_vlan || do_tstamp)
148 flags |= ENETC_TXBD_FLAGS_EX;
149
150 if (enetc_tx_csum(skb, &temp_bd))
151 flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
152
153 /* first BD needs frm_len and offload flags set */
154 temp_bd.frm_len = cpu_to_le16(skb->len);
155 temp_bd.flags = flags;
156
157 if (flags & ENETC_TXBD_FLAGS_EX) {
158 u8 e_flags = 0;
159 *txbd = temp_bd;
160 enetc_clear_tx_bd(&temp_bd);
161
162 /* add extension BD for VLAN and/or timestamping */
163 flags = 0;
164 tx_swbd++;
165 txbd++;
166 i++;
167 if (unlikely(i == tx_ring->bd_count)) {
168 i = 0;
169 tx_swbd = tx_ring->tx_swbd;
170 txbd = ENETC_TXBD(*tx_ring, 0);
171 }
172 prefetchw(txbd);
173
174 if (do_vlan) {
175 temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
176 temp_bd.ext.tpid = 0; /* < C-TAG */
177 e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
178 }
179
180 if (do_tstamp) {
181 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
182 e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
183 }
184
185 temp_bd.ext.e_flags = e_flags;
186 count++;
187 }
188
189 frag = &skb_shinfo(skb)->frags[0];
190 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
191 len = skb_frag_size(frag);
192 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
193 DMA_TO_DEVICE);
194 if (dma_mapping_error(tx_ring->dev, dma))
195 goto dma_err;
196
197 *txbd = temp_bd;
198 enetc_clear_tx_bd(&temp_bd);
199
200 flags = 0;
201 tx_swbd++;
202 txbd++;
203 i++;
204 if (unlikely(i == tx_ring->bd_count)) {
205 i = 0;
206 tx_swbd = tx_ring->tx_swbd;
207 txbd = ENETC_TXBD(*tx_ring, 0);
208 }
209 prefetchw(txbd);
210
211 temp_bd.addr = cpu_to_le64(dma);
212 temp_bd.buf_len = cpu_to_le16(len);
213
214 tx_swbd->dma = dma;
215 tx_swbd->len = len;
216 tx_swbd->is_dma_page = 1;
217 count++;
218 }
219
220 /* last BD needs 'F' bit set */
221 flags |= ENETC_TXBD_FLAGS_F;
222 temp_bd.flags = flags;
223 *txbd = temp_bd;
224
225 tx_ring->tx_swbd[i].skb = skb;
226
227 enetc_bdr_idx_inc(tx_ring, &i);
228 tx_ring->next_to_use = i;
229
230 /* let H/W know BD ring has been updated */
231 enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */
232
233 return count;
234
235 dma_err:
236 dev_err(tx_ring->dev, "DMA map error");
237
238 do {
239 tx_swbd = &tx_ring->tx_swbd[i];
240 enetc_free_tx_skb(tx_ring, tx_swbd);
241 if (i == 0)
242 i = tx_ring->bd_count;
243 i--;
244 } while (count--);
245
246 return 0;
247 }
248
249 static irqreturn_t enetc_msix(int irq, void *data)
250 {
251 struct enetc_int_vector *v = data;
252 int i;
253
254 /* disable interrupts */
255 enetc_wr_reg(v->rbier, 0);
256
257 for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
258 enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0);
259
260 napi_schedule_irqoff(&v->napi);
261
262 return IRQ_HANDLED;
263 }
264
265 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
266 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
267 struct napi_struct *napi, int work_limit);
268
269 static int enetc_poll(struct napi_struct *napi, int budget)
270 {
271 struct enetc_int_vector
272 *v = container_of(napi, struct enetc_int_vector, napi);
273 bool complete = true;
274 int work_done;
275 int i;
276
277 for (i = 0; i < v->count_tx_rings; i++)
278 if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
279 complete = false;
280
281 work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
282 if (work_done == budget)
283 complete = false;
284
285 if (!complete)
286 return budget;
287
288 napi_complete_done(napi, work_done);
289
290 /* enable interrupts */
291 enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE);
292
293 for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
294 enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i),
295 ENETC_TBIER_TXTIE);
296
297 return work_done;
298 }
299
300 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
301 {
302 int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
303
304 return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
305 }
306
307 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
308 u64 *tstamp)
309 {
310 u32 lo, hi, tstamp_lo;
311
312 lo = enetc_rd(hw, ENETC_SICTR0);
313 hi = enetc_rd(hw, ENETC_SICTR1);
314 tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
315 if (lo <= tstamp_lo)
316 hi -= 1;
317 *tstamp = (u64)hi << 32 | tstamp_lo;
318 }
319
320 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
321 {
322 struct skb_shared_hwtstamps shhwtstamps;
323
324 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
325 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
326 shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
327 skb_tstamp_tx(skb, &shhwtstamps);
328 }
329 }
330
331 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
332 {
333 struct net_device *ndev = tx_ring->ndev;
334 int tx_frm_cnt = 0, tx_byte_cnt = 0;
335 struct enetc_tx_swbd *tx_swbd;
336 int i, bds_to_clean;
337 bool do_tstamp;
338 u64 tstamp = 0;
339
340 i = tx_ring->next_to_clean;
341 tx_swbd = &tx_ring->tx_swbd[i];
342 bds_to_clean = enetc_bd_ready_count(tx_ring, i);
343
344 do_tstamp = false;
345
346 while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
347 bool is_eof = !!tx_swbd->skb;
348
349 if (unlikely(tx_swbd->check_wb)) {
350 struct enetc_ndev_priv *priv = netdev_priv(ndev);
351 union enetc_tx_bd *txbd;
352
353 txbd = ENETC_TXBD(*tx_ring, i);
354
355 if (txbd->flags & ENETC_TXBD_FLAGS_W &&
356 tx_swbd->do_tstamp) {
357 enetc_get_tx_tstamp(&priv->si->hw, txbd,
358 &tstamp);
359 do_tstamp = true;
360 }
361 }
362
363 if (likely(tx_swbd->dma))
364 enetc_unmap_tx_buff(tx_ring, tx_swbd);
365
366 if (is_eof) {
367 if (unlikely(do_tstamp)) {
368 enetc_tstamp_tx(tx_swbd->skb, tstamp);
369 do_tstamp = false;
370 }
371 napi_consume_skb(tx_swbd->skb, napi_budget);
372 tx_swbd->skb = NULL;
373 }
374
375 tx_byte_cnt += tx_swbd->len;
376
377 bds_to_clean--;
378 tx_swbd++;
379 i++;
380 if (unlikely(i == tx_ring->bd_count)) {
381 i = 0;
382 tx_swbd = tx_ring->tx_swbd;
383 }
384
385 /* BD iteration loop end */
386 if (is_eof) {
387 tx_frm_cnt++;
388 /* re-arm interrupt source */
389 enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) |
390 BIT(16 + tx_ring->index));
391 }
392
393 if (unlikely(!bds_to_clean))
394 bds_to_clean = enetc_bd_ready_count(tx_ring, i);
395 }
396
397 tx_ring->next_to_clean = i;
398 tx_ring->stats.packets += tx_frm_cnt;
399 tx_ring->stats.bytes += tx_byte_cnt;
400
401 if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
402 __netif_subqueue_stopped(ndev, tx_ring->index) &&
403 (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
404 netif_wake_subqueue(ndev, tx_ring->index);
405 }
406
407 return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
408 }
409
410 static bool enetc_new_page(struct enetc_bdr *rx_ring,
411 struct enetc_rx_swbd *rx_swbd)
412 {
413 struct page *page;
414 dma_addr_t addr;
415
416 page = dev_alloc_page();
417 if (unlikely(!page))
418 return false;
419
420 addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
421 if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
422 __free_page(page);
423
424 return false;
425 }
426
427 rx_swbd->dma = addr;
428 rx_swbd->page = page;
429 rx_swbd->page_offset = ENETC_RXB_PAD;
430
431 return true;
432 }
433
434 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
435 {
436 struct enetc_rx_swbd *rx_swbd;
437 union enetc_rx_bd *rxbd;
438 int i, j;
439
440 i = rx_ring->next_to_use;
441 rx_swbd = &rx_ring->rx_swbd[i];
442 rxbd = ENETC_RXBD(*rx_ring, i);
443
444 for (j = 0; j < buff_cnt; j++) {
445 /* try reuse page */
446 if (unlikely(!rx_swbd->page)) {
447 if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
448 rx_ring->stats.rx_alloc_errs++;
449 break;
450 }
451 }
452
453 /* update RxBD */
454 rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
455 rx_swbd->page_offset);
456 /* clear 'R" as well */
457 rxbd->r.lstatus = 0;
458
459 rx_swbd++;
460 rxbd++;
461 i++;
462 if (unlikely(i == rx_ring->bd_count)) {
463 i = 0;
464 rx_swbd = rx_ring->rx_swbd;
465 rxbd = ENETC_RXBD(*rx_ring, 0);
466 }
467 }
468
469 if (likely(j)) {
470 rx_ring->next_to_alloc = i; /* keep track from page reuse */
471 rx_ring->next_to_use = i;
472 /* update ENETC's consumer index */
473 enetc_wr_reg(rx_ring->rcir, i);
474 }
475
476 return j;
477 }
478
479 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
480 static void enetc_get_rx_tstamp(struct net_device *ndev,
481 union enetc_rx_bd *rxbd,
482 struct sk_buff *skb)
483 {
484 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
485 struct enetc_ndev_priv *priv = netdev_priv(ndev);
486 struct enetc_hw *hw = &priv->si->hw;
487 u32 lo, hi, tstamp_lo;
488 u64 tstamp;
489
490 if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
491 lo = enetc_rd(hw, ENETC_SICTR0);
492 hi = enetc_rd(hw, ENETC_SICTR1);
493 tstamp_lo = le32_to_cpu(rxbd->r.tstamp);
494 if (lo <= tstamp_lo)
495 hi -= 1;
496
497 tstamp = (u64)hi << 32 | tstamp_lo;
498 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
499 shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
500 }
501 }
502 #endif
503
504 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
505 union enetc_rx_bd *rxbd, struct sk_buff *skb)
506 {
507 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
508 struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
509 #endif
510 /* TODO: hashing */
511 if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
512 u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
513
514 skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
515 skb->ip_summed = CHECKSUM_COMPLETE;
516 }
517
518 /* copy VLAN to skb, if one is extracted, for now we assume it's a
519 * standard TPID, but HW also supports custom values
520 */
521 if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
522 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
523 le16_to_cpu(rxbd->r.vlan_opt));
524 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
525 if (priv->active_offloads & ENETC_F_RX_TSTAMP)
526 enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
527 #endif
528 }
529
530 static void enetc_process_skb(struct enetc_bdr *rx_ring,
531 struct sk_buff *skb)
532 {
533 skb_record_rx_queue(skb, rx_ring->index);
534 skb->protocol = eth_type_trans(skb, rx_ring->ndev);
535 }
536
537 static bool enetc_page_reusable(struct page *page)
538 {
539 return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
540 }
541
542 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
543 struct enetc_rx_swbd *old)
544 {
545 struct enetc_rx_swbd *new;
546
547 new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
548
549 /* next buf that may reuse a page */
550 enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
551
552 /* copy page reference */
553 *new = *old;
554 }
555
556 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
557 int i, u16 size)
558 {
559 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
560
561 dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
562 rx_swbd->page_offset,
563 size, DMA_FROM_DEVICE);
564 return rx_swbd;
565 }
566
567 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
568 struct enetc_rx_swbd *rx_swbd)
569 {
570 if (likely(enetc_page_reusable(rx_swbd->page))) {
571 rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
572 page_ref_inc(rx_swbd->page);
573
574 enetc_reuse_page(rx_ring, rx_swbd);
575
576 /* sync for use by the device */
577 dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
578 rx_swbd->page_offset,
579 ENETC_RXB_DMA_SIZE,
580 DMA_FROM_DEVICE);
581 } else {
582 dma_unmap_page(rx_ring->dev, rx_swbd->dma,
583 PAGE_SIZE, DMA_FROM_DEVICE);
584 }
585
586 rx_swbd->page = NULL;
587 }
588
589 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
590 int i, u16 size)
591 {
592 struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
593 struct sk_buff *skb;
594 void *ba;
595
596 ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
597 skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
598 if (unlikely(!skb)) {
599 rx_ring->stats.rx_alloc_errs++;
600 return NULL;
601 }
602
603 skb_reserve(skb, ENETC_RXB_PAD);
604 __skb_put(skb, size);
605
606 enetc_put_rx_buff(rx_ring, rx_swbd);
607
608 return skb;
609 }
610
611 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
612 u16 size, struct sk_buff *skb)
613 {
614 struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
615
616 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
617 rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
618
619 enetc_put_rx_buff(rx_ring, rx_swbd);
620 }
621
622 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
623
624 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
625 struct napi_struct *napi, int work_limit)
626 {
627 int rx_frm_cnt = 0, rx_byte_cnt = 0;
628 int cleaned_cnt, i;
629
630 cleaned_cnt = enetc_bd_unused(rx_ring);
631 /* next descriptor to process */
632 i = rx_ring->next_to_clean;
633
634 while (likely(rx_frm_cnt < work_limit)) {
635 union enetc_rx_bd *rxbd;
636 struct sk_buff *skb;
637 u32 bd_status;
638 u16 size;
639
640 if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
641 int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
642
643 cleaned_cnt -= count;
644 }
645
646 rxbd = ENETC_RXBD(*rx_ring, i);
647 bd_status = le32_to_cpu(rxbd->r.lstatus);
648 if (!bd_status)
649 break;
650
651 enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index));
652 dma_rmb(); /* for reading other rxbd fields */
653 size = le16_to_cpu(rxbd->r.buf_len);
654 skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
655 if (!skb)
656 break;
657
658 enetc_get_offloads(rx_ring, rxbd, skb);
659
660 cleaned_cnt++;
661 rxbd++;
662 i++;
663 if (unlikely(i == rx_ring->bd_count)) {
664 i = 0;
665 rxbd = ENETC_RXBD(*rx_ring, 0);
666 }
667
668 if (unlikely(bd_status &
669 ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
670 dev_kfree_skb(skb);
671 while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
672 dma_rmb();
673 bd_status = le32_to_cpu(rxbd->r.lstatus);
674 rxbd++;
675 i++;
676 if (unlikely(i == rx_ring->bd_count)) {
677 i = 0;
678 rxbd = ENETC_RXBD(*rx_ring, 0);
679 }
680 }
681
682 rx_ring->ndev->stats.rx_dropped++;
683 rx_ring->ndev->stats.rx_errors++;
684
685 break;
686 }
687
688 /* not last BD in frame? */
689 while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
690 bd_status = le32_to_cpu(rxbd->r.lstatus);
691 size = ENETC_RXB_DMA_SIZE;
692
693 if (bd_status & ENETC_RXBD_LSTATUS_F) {
694 dma_rmb();
695 size = le16_to_cpu(rxbd->r.buf_len);
696 }
697
698 enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
699
700 cleaned_cnt++;
701 rxbd++;
702 i++;
703 if (unlikely(i == rx_ring->bd_count)) {
704 i = 0;
705 rxbd = ENETC_RXBD(*rx_ring, 0);
706 }
707 }
708
709 rx_byte_cnt += skb->len;
710
711 enetc_process_skb(rx_ring, skb);
712
713 napi_gro_receive(napi, skb);
714
715 rx_frm_cnt++;
716 }
717
718 rx_ring->next_to_clean = i;
719
720 rx_ring->stats.packets += rx_frm_cnt;
721 rx_ring->stats.bytes += rx_byte_cnt;
722
723 return rx_frm_cnt;
724 }
725
726 /* Probing and Init */
727 #define ENETC_MAX_RFS_SIZE 64
728 void enetc_get_si_caps(struct enetc_si *si)
729 {
730 struct enetc_hw *hw = &si->hw;
731 u32 val;
732
733 /* find out how many of various resources we have to work with */
734 val = enetc_rd(hw, ENETC_SICAPR0);
735 si->num_rx_rings = (val >> 16) & 0xff;
736 si->num_tx_rings = val & 0xff;
737
738 val = enetc_rd(hw, ENETC_SIRFSCAPR);
739 si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
740 si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
741
742 si->num_rss = 0;
743 val = enetc_rd(hw, ENETC_SIPCAPR0);
744 if (val & ENETC_SIPCAPR0_RSS) {
745 val = enetc_rd(hw, ENETC_SIRSSCAPR);
746 si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(val);
747 }
748 }
749
750 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
751 {
752 r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
753 &r->bd_dma_base, GFP_KERNEL);
754 if (!r->bd_base)
755 return -ENOMEM;
756
757 /* h/w requires 128B alignment */
758 if (!IS_ALIGNED(r->bd_dma_base, 128)) {
759 dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
760 r->bd_dma_base);
761 return -EINVAL;
762 }
763
764 return 0;
765 }
766
767 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
768 {
769 int err;
770
771 txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
772 if (!txr->tx_swbd)
773 return -ENOMEM;
774
775 err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
776 if (err) {
777 vfree(txr->tx_swbd);
778 return err;
779 }
780
781 txr->next_to_clean = 0;
782 txr->next_to_use = 0;
783
784 return 0;
785 }
786
787 static void enetc_free_txbdr(struct enetc_bdr *txr)
788 {
789 int size, i;
790
791 for (i = 0; i < txr->bd_count; i++)
792 enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
793
794 size = txr->bd_count * sizeof(union enetc_tx_bd);
795
796 dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
797 txr->bd_base = NULL;
798
799 vfree(txr->tx_swbd);
800 txr->tx_swbd = NULL;
801 }
802
803 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
804 {
805 int i, err;
806
807 for (i = 0; i < priv->num_tx_rings; i++) {
808 err = enetc_alloc_txbdr(priv->tx_ring[i]);
809
810 if (err)
811 goto fail;
812 }
813
814 return 0;
815
816 fail:
817 while (i-- > 0)
818 enetc_free_txbdr(priv->tx_ring[i]);
819
820 return err;
821 }
822
823 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
824 {
825 int i;
826
827 for (i = 0; i < priv->num_tx_rings; i++)
828 enetc_free_txbdr(priv->tx_ring[i]);
829 }
830
831 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr)
832 {
833 int err;
834
835 rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
836 if (!rxr->rx_swbd)
837 return -ENOMEM;
838
839 err = enetc_dma_alloc_bdr(rxr, sizeof(union enetc_rx_bd));
840 if (err) {
841 vfree(rxr->rx_swbd);
842 return err;
843 }
844
845 rxr->next_to_clean = 0;
846 rxr->next_to_use = 0;
847 rxr->next_to_alloc = 0;
848
849 return 0;
850 }
851
852 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
853 {
854 int size;
855
856 size = rxr->bd_count * sizeof(union enetc_rx_bd);
857
858 dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
859 rxr->bd_base = NULL;
860
861 vfree(rxr->rx_swbd);
862 rxr->rx_swbd = NULL;
863 }
864
865 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
866 {
867 int i, err;
868
869 for (i = 0; i < priv->num_rx_rings; i++) {
870 err = enetc_alloc_rxbdr(priv->rx_ring[i]);
871
872 if (err)
873 goto fail;
874 }
875
876 return 0;
877
878 fail:
879 while (i-- > 0)
880 enetc_free_rxbdr(priv->rx_ring[i]);
881
882 return err;
883 }
884
885 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
886 {
887 int i;
888
889 for (i = 0; i < priv->num_rx_rings; i++)
890 enetc_free_rxbdr(priv->rx_ring[i]);
891 }
892
893 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
894 {
895 int i;
896
897 if (!tx_ring->tx_swbd)
898 return;
899
900 for (i = 0; i < tx_ring->bd_count; i++) {
901 struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
902
903 enetc_free_tx_skb(tx_ring, tx_swbd);
904 }
905
906 tx_ring->next_to_clean = 0;
907 tx_ring->next_to_use = 0;
908 }
909
910 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
911 {
912 int i;
913
914 if (!rx_ring->rx_swbd)
915 return;
916
917 for (i = 0; i < rx_ring->bd_count; i++) {
918 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
919
920 if (!rx_swbd->page)
921 continue;
922
923 dma_unmap_page(rx_ring->dev, rx_swbd->dma,
924 PAGE_SIZE, DMA_FROM_DEVICE);
925 __free_page(rx_swbd->page);
926 rx_swbd->page = NULL;
927 }
928
929 rx_ring->next_to_clean = 0;
930 rx_ring->next_to_use = 0;
931 rx_ring->next_to_alloc = 0;
932 }
933
934 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
935 {
936 int i;
937
938 for (i = 0; i < priv->num_rx_rings; i++)
939 enetc_free_rx_ring(priv->rx_ring[i]);
940
941 for (i = 0; i < priv->num_tx_rings; i++)
942 enetc_free_tx_ring(priv->tx_ring[i]);
943 }
944
945 static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
946 {
947 int size = cbdr->bd_count * sizeof(struct enetc_cbd);
948
949 cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
950 GFP_KERNEL);
951 if (!cbdr->bd_base)
952 return -ENOMEM;
953
954 /* h/w requires 128B alignment */
955 if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
956 dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
957 return -EINVAL;
958 }
959
960 cbdr->next_to_clean = 0;
961 cbdr->next_to_use = 0;
962
963 return 0;
964 }
965
966 static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
967 {
968 int size = cbdr->bd_count * sizeof(struct enetc_cbd);
969
970 dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
971 cbdr->bd_base = NULL;
972 }
973
974 static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
975 {
976 /* set CBDR cache attributes */
977 enetc_wr(hw, ENETC_SICAR2,
978 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
979
980 enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
981 enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
982 enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
983
984 enetc_wr(hw, ENETC_SICBDRPIR, 0);
985 enetc_wr(hw, ENETC_SICBDRCIR, 0);
986
987 /* enable ring */
988 enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
989
990 cbdr->pir = hw->reg + ENETC_SICBDRPIR;
991 cbdr->cir = hw->reg + ENETC_SICBDRCIR;
992 }
993
994 static void enetc_clear_cbdr(struct enetc_hw *hw)
995 {
996 enetc_wr(hw, ENETC_SICBDRMR, 0);
997 }
998
999 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1000 {
1001 int *rss_table;
1002 int i;
1003
1004 rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1005 if (!rss_table)
1006 return -ENOMEM;
1007
1008 /* Set up RSS table defaults */
1009 for (i = 0; i < si->num_rss; i++)
1010 rss_table[i] = i % num_groups;
1011
1012 enetc_set_rss_table(si, rss_table, si->num_rss);
1013
1014 kfree(rss_table);
1015
1016 return 0;
1017 }
1018
1019 static int enetc_configure_si(struct enetc_ndev_priv *priv)
1020 {
1021 struct enetc_si *si = priv->si;
1022 struct enetc_hw *hw = &si->hw;
1023 int err;
1024
1025 enetc_setup_cbdr(hw, &si->cbd_ring);
1026 /* set SI cache attributes */
1027 enetc_wr(hw, ENETC_SICAR0,
1028 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1029 enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1030 /* enable SI */
1031 enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1032
1033 if (si->num_rss) {
1034 err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1035 if (err)
1036 return err;
1037 }
1038
1039 return 0;
1040 }
1041
1042 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1043 {
1044 struct enetc_si *si = priv->si;
1045 int cpus = num_online_cpus();
1046
1047 priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1048 priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1049
1050 /* Enable all available TX rings in order to configure as many
1051 * priorities as possible, when needed.
1052 * TODO: Make # of TX rings run-time configurable
1053 */
1054 priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1055 priv->num_tx_rings = si->num_tx_rings;
1056 priv->bdr_int_num = cpus;
1057
1058 /* SI specific */
1059 si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1060 }
1061
1062 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1063 {
1064 struct enetc_si *si = priv->si;
1065 int err;
1066
1067 err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1068 if (err)
1069 return err;
1070
1071 priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1072 GFP_KERNEL);
1073 if (!priv->cls_rules) {
1074 err = -ENOMEM;
1075 goto err_alloc_cls;
1076 }
1077
1078 err = enetc_configure_si(priv);
1079 if (err)
1080 goto err_config_si;
1081
1082 return 0;
1083
1084 err_config_si:
1085 kfree(priv->cls_rules);
1086 err_alloc_cls:
1087 enetc_clear_cbdr(&si->hw);
1088 enetc_free_cbdr(priv->dev, &si->cbd_ring);
1089
1090 return err;
1091 }
1092
1093 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1094 {
1095 struct enetc_si *si = priv->si;
1096
1097 enetc_clear_cbdr(&si->hw);
1098 enetc_free_cbdr(priv->dev, &si->cbd_ring);
1099
1100 kfree(priv->cls_rules);
1101 }
1102
1103 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1104 {
1105 int idx = tx_ring->index;
1106 u32 tbmr;
1107
1108 enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1109 lower_32_bits(tx_ring->bd_dma_base));
1110
1111 enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1112 upper_32_bits(tx_ring->bd_dma_base));
1113
1114 WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1115 enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1116 ENETC_RTBLENR_LEN(tx_ring->bd_count));
1117
1118 /* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1119 tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1120 tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1121
1122 /* enable Tx ints by setting pkt thr to 1 */
1123 enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1);
1124
1125 tbmr = ENETC_TBMR_EN;
1126 if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1127 tbmr |= ENETC_TBMR_VIH;
1128
1129 /* enable ring */
1130 enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1131
1132 tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1133 tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1134 tx_ring->idr = hw->reg + ENETC_SITXIDR;
1135 }
1136
1137 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1138 {
1139 int idx = rx_ring->index;
1140 u32 rbmr;
1141
1142 enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1143 lower_32_bits(rx_ring->bd_dma_base));
1144
1145 enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1146 upper_32_bits(rx_ring->bd_dma_base));
1147
1148 WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1149 enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1150 ENETC_RTBLENR_LEN(rx_ring->bd_count));
1151
1152 enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1153
1154 enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1155
1156 /* enable Rx ints by setting pkt thr to 1 */
1157 enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1);
1158
1159 rbmr = ENETC_RBMR_EN;
1160 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1161 rbmr |= ENETC_RBMR_BDS;
1162 #endif
1163 if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1164 rbmr |= ENETC_RBMR_VTE;
1165
1166 rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1167 rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1168
1169 enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1170
1171 /* enable ring */
1172 enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1173 }
1174
1175 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1176 {
1177 int i;
1178
1179 for (i = 0; i < priv->num_tx_rings; i++)
1180 enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1181
1182 for (i = 0; i < priv->num_rx_rings; i++)
1183 enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1184 }
1185
1186 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1187 {
1188 int idx = rx_ring->index;
1189
1190 /* disable EN bit on ring */
1191 enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1192 }
1193
1194 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1195 {
1196 int delay = 8, timeout = 100;
1197 int idx = tx_ring->index;
1198
1199 /* disable EN bit on ring */
1200 enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1201
1202 /* wait for busy to clear */
1203 while (delay < timeout &&
1204 enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1205 msleep(delay);
1206 delay *= 2;
1207 }
1208
1209 if (delay >= timeout)
1210 netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1211 idx);
1212 }
1213
1214 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1215 {
1216 int i;
1217
1218 for (i = 0; i < priv->num_tx_rings; i++)
1219 enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1220
1221 for (i = 0; i < priv->num_rx_rings; i++)
1222 enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1223
1224 udelay(1);
1225 }
1226
1227 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1228 {
1229 struct pci_dev *pdev = priv->si->pdev;
1230 cpumask_t cpu_mask;
1231 int i, j, err;
1232
1233 for (i = 0; i < priv->bdr_int_num; i++) {
1234 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1235 struct enetc_int_vector *v = priv->int_vector[i];
1236 int entry = ENETC_BDR_INT_BASE_IDX + i;
1237 struct enetc_hw *hw = &priv->si->hw;
1238
1239 snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1240 priv->ndev->name, i);
1241 err = request_irq(irq, enetc_msix, 0, v->name, v);
1242 if (err) {
1243 dev_err(priv->dev, "request_irq() failed!\n");
1244 goto irq_err;
1245 }
1246
1247 v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1248 v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1249
1250 enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1251
1252 for (j = 0; j < v->count_tx_rings; j++) {
1253 int idx = v->tx_ring[j].index;
1254
1255 enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1256 }
1257 cpumask_clear(&cpu_mask);
1258 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1259 irq_set_affinity_hint(irq, &cpu_mask);
1260 }
1261
1262 return 0;
1263
1264 irq_err:
1265 while (i--) {
1266 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1267
1268 irq_set_affinity_hint(irq, NULL);
1269 free_irq(irq, priv->int_vector[i]);
1270 }
1271
1272 return err;
1273 }
1274
1275 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1276 {
1277 struct pci_dev *pdev = priv->si->pdev;
1278 int i;
1279
1280 for (i = 0; i < priv->bdr_int_num; i++) {
1281 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1282
1283 irq_set_affinity_hint(irq, NULL);
1284 free_irq(irq, priv->int_vector[i]);
1285 }
1286 }
1287
1288 static void enetc_enable_interrupts(struct enetc_ndev_priv *priv)
1289 {
1290 int i;
1291
1292 /* enable Tx & Rx event indication */
1293 for (i = 0; i < priv->num_rx_rings; i++) {
1294 enetc_rxbdr_wr(&priv->si->hw, i,
1295 ENETC_RBIER, ENETC_RBIER_RXTIE);
1296 }
1297
1298 for (i = 0; i < priv->num_tx_rings; i++) {
1299 enetc_txbdr_wr(&priv->si->hw, i,
1300 ENETC_TBIER, ENETC_TBIER_TXTIE);
1301 }
1302 }
1303
1304 static void enetc_disable_interrupts(struct enetc_ndev_priv *priv)
1305 {
1306 int i;
1307
1308 for (i = 0; i < priv->num_tx_rings; i++)
1309 enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1310
1311 for (i = 0; i < priv->num_rx_rings; i++)
1312 enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1313 }
1314
1315 static void adjust_link(struct net_device *ndev)
1316 {
1317 struct phy_device *phydev = ndev->phydev;
1318
1319 phy_print_status(phydev);
1320 }
1321
1322 static int enetc_phy_connect(struct net_device *ndev)
1323 {
1324 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1325 struct phy_device *phydev;
1326
1327 if (!priv->phy_node)
1328 return 0; /* phy-less mode */
1329
1330 phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link,
1331 0, priv->if_mode);
1332 if (!phydev) {
1333 dev_err(&ndev->dev, "could not attach to PHY\n");
1334 return -ENODEV;
1335 }
1336
1337 phy_attached_info(phydev);
1338
1339 return 0;
1340 }
1341
1342 int enetc_open(struct net_device *ndev)
1343 {
1344 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1345 int i, err;
1346
1347 err = enetc_setup_irqs(priv);
1348 if (err)
1349 return err;
1350
1351 err = enetc_phy_connect(ndev);
1352 if (err)
1353 goto err_phy_connect;
1354
1355 err = enetc_alloc_tx_resources(priv);
1356 if (err)
1357 goto err_alloc_tx;
1358
1359 err = enetc_alloc_rx_resources(priv);
1360 if (err)
1361 goto err_alloc_rx;
1362
1363 enetc_setup_bdrs(priv);
1364
1365 err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1366 if (err)
1367 goto err_set_queues;
1368
1369 err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1370 if (err)
1371 goto err_set_queues;
1372
1373 for (i = 0; i < priv->bdr_int_num; i++)
1374 napi_enable(&priv->int_vector[i]->napi);
1375
1376 enetc_enable_interrupts(priv);
1377
1378 if (ndev->phydev)
1379 phy_start(ndev->phydev);
1380 else
1381 netif_carrier_on(ndev);
1382
1383 netif_tx_start_all_queues(ndev);
1384
1385 return 0;
1386
1387 err_set_queues:
1388 enetc_free_rx_resources(priv);
1389 err_alloc_rx:
1390 enetc_free_tx_resources(priv);
1391 err_alloc_tx:
1392 if (ndev->phydev)
1393 phy_disconnect(ndev->phydev);
1394 err_phy_connect:
1395 enetc_free_irqs(priv);
1396
1397 return err;
1398 }
1399
1400 int enetc_close(struct net_device *ndev)
1401 {
1402 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1403 int i;
1404
1405 netif_tx_stop_all_queues(ndev);
1406
1407 if (ndev->phydev) {
1408 phy_stop(ndev->phydev);
1409 phy_disconnect(ndev->phydev);
1410 } else {
1411 netif_carrier_off(ndev);
1412 }
1413
1414 for (i = 0; i < priv->bdr_int_num; i++) {
1415 napi_synchronize(&priv->int_vector[i]->napi);
1416 napi_disable(&priv->int_vector[i]->napi);
1417 }
1418
1419 enetc_disable_interrupts(priv);
1420 enetc_clear_bdrs(priv);
1421
1422 enetc_free_rxtx_rings(priv);
1423 enetc_free_rx_resources(priv);
1424 enetc_free_tx_resources(priv);
1425 enetc_free_irqs(priv);
1426
1427 return 0;
1428 }
1429
1430 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1431 void *type_data)
1432 {
1433 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1434 struct tc_mqprio_qopt *mqprio = type_data;
1435 struct enetc_bdr *tx_ring;
1436 u8 num_tc;
1437 int i;
1438
1439 if (type != TC_SETUP_QDISC_MQPRIO)
1440 return -EOPNOTSUPP;
1441
1442 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1443 num_tc = mqprio->num_tc;
1444
1445 if (!num_tc) {
1446 netdev_reset_tc(ndev);
1447 netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1448
1449 /* Reset all ring priorities to 0 */
1450 for (i = 0; i < priv->num_tx_rings; i++) {
1451 tx_ring = priv->tx_ring[i];
1452 enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1453 }
1454
1455 return 0;
1456 }
1457
1458 /* Check if we have enough BD rings available to accommodate all TCs */
1459 if (num_tc > priv->num_tx_rings) {
1460 netdev_err(ndev, "Max %d traffic classes supported\n",
1461 priv->num_tx_rings);
1462 return -EINVAL;
1463 }
1464
1465 /* For the moment, we use only one BD ring per TC.
1466 *
1467 * Configure num_tc BD rings with increasing priorities.
1468 */
1469 for (i = 0; i < num_tc; i++) {
1470 tx_ring = priv->tx_ring[i];
1471 enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1472 }
1473
1474 /* Reset the number of netdev queues based on the TC count */
1475 netif_set_real_num_tx_queues(ndev, num_tc);
1476
1477 netdev_set_num_tc(ndev, num_tc);
1478
1479 /* Each TC is associated with one netdev queue */
1480 for (i = 0; i < num_tc; i++)
1481 netdev_set_tc_queue(ndev, i, 1, i);
1482
1483 return 0;
1484 }
1485
1486 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1487 {
1488 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1489 struct net_device_stats *stats = &ndev->stats;
1490 unsigned long packets = 0, bytes = 0;
1491 int i;
1492
1493 for (i = 0; i < priv->num_rx_rings; i++) {
1494 packets += priv->rx_ring[i]->stats.packets;
1495 bytes += priv->rx_ring[i]->stats.bytes;
1496 }
1497
1498 stats->rx_packets = packets;
1499 stats->rx_bytes = bytes;
1500 bytes = 0;
1501 packets = 0;
1502
1503 for (i = 0; i < priv->num_tx_rings; i++) {
1504 packets += priv->tx_ring[i]->stats.packets;
1505 bytes += priv->tx_ring[i]->stats.bytes;
1506 }
1507
1508 stats->tx_packets = packets;
1509 stats->tx_bytes = bytes;
1510
1511 return stats;
1512 }
1513
1514 static int enetc_set_rss(struct net_device *ndev, int en)
1515 {
1516 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1517 struct enetc_hw *hw = &priv->si->hw;
1518 u32 reg;
1519
1520 enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1521
1522 reg = enetc_rd(hw, ENETC_SIMR);
1523 reg &= ~ENETC_SIMR_RSSE;
1524 reg |= (en) ? ENETC_SIMR_RSSE : 0;
1525 enetc_wr(hw, ENETC_SIMR, reg);
1526
1527 return 0;
1528 }
1529
1530 int enetc_set_features(struct net_device *ndev,
1531 netdev_features_t features)
1532 {
1533 netdev_features_t changed = ndev->features ^ features;
1534
1535 if (changed & NETIF_F_RXHASH)
1536 enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1537
1538 return 0;
1539 }
1540
1541 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1542 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1543 {
1544 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1545 struct hwtstamp_config config;
1546
1547 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1548 return -EFAULT;
1549
1550 switch (config.tx_type) {
1551 case HWTSTAMP_TX_OFF:
1552 priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1553 break;
1554 case HWTSTAMP_TX_ON:
1555 priv->active_offloads |= ENETC_F_TX_TSTAMP;
1556 break;
1557 default:
1558 return -ERANGE;
1559 }
1560
1561 switch (config.rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1564 break;
1565 default:
1566 priv->active_offloads |= ENETC_F_RX_TSTAMP;
1567 config.rx_filter = HWTSTAMP_FILTER_ALL;
1568 }
1569
1570 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1571 -EFAULT : 0;
1572 }
1573
1574 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1575 {
1576 struct enetc_ndev_priv *priv = netdev_priv(ndev);
1577 struct hwtstamp_config config;
1578
1579 config.flags = 0;
1580
1581 if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1582 config.tx_type = HWTSTAMP_TX_ON;
1583 else
1584 config.tx_type = HWTSTAMP_TX_OFF;
1585
1586 config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1587 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1588
1589 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1590 -EFAULT : 0;
1591 }
1592 #endif
1593
1594 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1595 {
1596 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1597 if (cmd == SIOCSHWTSTAMP)
1598 return enetc_hwtstamp_set(ndev, rq);
1599 if (cmd == SIOCGHWTSTAMP)
1600 return enetc_hwtstamp_get(ndev, rq);
1601 #endif
1602 return -EINVAL;
1603 }
1604
1605 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1606 {
1607 struct pci_dev *pdev = priv->si->pdev;
1608 int size, v_tx_rings;
1609 int i, n, err, nvec;
1610
1611 nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1612 /* allocate MSIX for both messaging and Rx/Tx interrupts */
1613 n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1614
1615 if (n < 0)
1616 return n;
1617
1618 if (n != nvec)
1619 return -EPERM;
1620
1621 /* # of tx rings per int vector */
1622 v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1623 size = sizeof(struct enetc_int_vector) +
1624 sizeof(struct enetc_bdr) * v_tx_rings;
1625
1626 for (i = 0; i < priv->bdr_int_num; i++) {
1627 struct enetc_int_vector *v;
1628 struct enetc_bdr *bdr;
1629 int j;
1630
1631 v = kzalloc(size, GFP_KERNEL);
1632 if (!v) {
1633 err = -ENOMEM;
1634 goto fail;
1635 }
1636
1637 priv->int_vector[i] = v;
1638
1639 netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1640 NAPI_POLL_WEIGHT);
1641 v->count_tx_rings = v_tx_rings;
1642
1643 for (j = 0; j < v_tx_rings; j++) {
1644 int idx;
1645
1646 /* default tx ring mapping policy */
1647 if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1648 idx = 2 * j + i; /* 2 CPUs */
1649 else
1650 idx = j + i * v_tx_rings; /* default */
1651
1652 __set_bit(idx, &v->tx_rings_map);
1653 bdr = &v->tx_ring[j];
1654 bdr->index = idx;
1655 bdr->ndev = priv->ndev;
1656 bdr->dev = priv->dev;
1657 bdr->bd_count = priv->tx_bd_count;
1658 priv->tx_ring[idx] = bdr;
1659 }
1660
1661 bdr = &v->rx_ring;
1662 bdr->index = i;
1663 bdr->ndev = priv->ndev;
1664 bdr->dev = priv->dev;
1665 bdr->bd_count = priv->rx_bd_count;
1666 priv->rx_ring[i] = bdr;
1667 }
1668
1669 return 0;
1670
1671 fail:
1672 while (i--) {
1673 netif_napi_del(&priv->int_vector[i]->napi);
1674 kfree(priv->int_vector[i]);
1675 }
1676
1677 pci_free_irq_vectors(pdev);
1678
1679 return err;
1680 }
1681
1682 void enetc_free_msix(struct enetc_ndev_priv *priv)
1683 {
1684 int i;
1685
1686 for (i = 0; i < priv->bdr_int_num; i++) {
1687 struct enetc_int_vector *v = priv->int_vector[i];
1688
1689 netif_napi_del(&v->napi);
1690 }
1691
1692 for (i = 0; i < priv->num_rx_rings; i++)
1693 priv->rx_ring[i] = NULL;
1694
1695 for (i = 0; i < priv->num_tx_rings; i++)
1696 priv->tx_ring[i] = NULL;
1697
1698 for (i = 0; i < priv->bdr_int_num; i++) {
1699 kfree(priv->int_vector[i]);
1700 priv->int_vector[i] = NULL;
1701 }
1702
1703 /* disable all MSIX for this device */
1704 pci_free_irq_vectors(priv->si->pdev);
1705 }
1706
1707 static void enetc_kfree_si(struct enetc_si *si)
1708 {
1709 char *p = (char *)si - si->pad;
1710
1711 kfree(p);
1712 }
1713
1714 static void enetc_detect_errata(struct enetc_si *si)
1715 {
1716 if (si->pdev->revision == ENETC_REV1)
1717 si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1718 ENETC_ERR_UCMCSWP;
1719 }
1720
1721 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1722 {
1723 struct enetc_si *si, *p;
1724 struct enetc_hw *hw;
1725 size_t alloc_size;
1726 int err, len;
1727
1728 pcie_flr(pdev);
1729 err = pci_enable_device_mem(pdev);
1730 if (err) {
1731 dev_err(&pdev->dev, "device enable failed\n");
1732 return err;
1733 }
1734
1735 /* set up for high or low dma */
1736 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1737 if (err) {
1738 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1739 if (err) {
1740 dev_err(&pdev->dev,
1741 "DMA configuration failed: 0x%x\n", err);
1742 goto err_dma;
1743 }
1744 }
1745
1746 err = pci_request_mem_regions(pdev, name);
1747 if (err) {
1748 dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1749 goto err_pci_mem_reg;
1750 }
1751
1752 pci_set_master(pdev);
1753
1754 alloc_size = sizeof(struct enetc_si);
1755 if (sizeof_priv) {
1756 /* align priv to 32B */
1757 alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1758 alloc_size += sizeof_priv;
1759 }
1760 /* force 32B alignment for enetc_si */
1761 alloc_size += ENETC_SI_ALIGN - 1;
1762
1763 p = kzalloc(alloc_size, GFP_KERNEL);
1764 if (!p) {
1765 err = -ENOMEM;
1766 goto err_alloc_si;
1767 }
1768
1769 si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1770 si->pad = (char *)si - (char *)p;
1771
1772 pci_set_drvdata(pdev, si);
1773 si->pdev = pdev;
1774 hw = &si->hw;
1775
1776 len = pci_resource_len(pdev, ENETC_BAR_REGS);
1777 hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1778 if (!hw->reg) {
1779 err = -ENXIO;
1780 dev_err(&pdev->dev, "ioremap() failed\n");
1781 goto err_ioremap;
1782 }
1783 if (len > ENETC_PORT_BASE)
1784 hw->port = hw->reg + ENETC_PORT_BASE;
1785 if (len > ENETC_GLOBAL_BASE)
1786 hw->global = hw->reg + ENETC_GLOBAL_BASE;
1787
1788 enetc_detect_errata(si);
1789
1790 return 0;
1791
1792 err_ioremap:
1793 enetc_kfree_si(si);
1794 err_alloc_si:
1795 pci_release_mem_regions(pdev);
1796 err_pci_mem_reg:
1797 err_dma:
1798 pci_disable_device(pdev);
1799
1800 return err;
1801 }
1802
1803 void enetc_pci_remove(struct pci_dev *pdev)
1804 {
1805 struct enetc_si *si = pci_get_drvdata(pdev);
1806 struct enetc_hw *hw = &si->hw;
1807
1808 iounmap(hw->reg);
1809 enetc_kfree_si(si);
1810 pci_release_mem_regions(pdev);
1811 pci_disable_device(pdev);
1812 }