]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/freescale/fec_main.c
Merge tag 'reset-fixes-for-4.14' of git://git.pengutronix.de/git/pza/linux into fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64
65 #include <asm/cacheflush.h>
66
67 #include "fec.h"
68
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71
72 #define DRIVER_NAME "fec"
73
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
84
85 static struct platform_device_id fec_devtype[] = {
86 {
87 /* keep it for coldfire */
88 .name = DRIVER_NAME,
89 .driver_data = 0,
90 }, {
91 .name = "imx25-fec",
92 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 }, {
94 .name = "imx27-fec",
95 .driver_data = FEC_QUIRK_MIB_CLEAR,
96 }, {
97 .name = "imx28-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 }, {
101 .name = "imx6q-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 FEC_QUIRK_HAS_RACC,
106 }, {
107 .name = "mvf600-fec",
108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 }, {
110 .name = "imx6sx-fec",
111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 }, {
117 .name = "imx6ul-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 FEC_QUIRK_HAS_COALESCE,
123 }, {
124 /* sentinel */
125 }
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128
129 enum imx_fec_type {
130 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
131 IMX27_FEC, /* runs on i.mx27/35/51 */
132 IMX28_FEC,
133 IMX6Q_FEC,
134 MVF600_FEC,
135 IMX6SX_FEC,
136 IMX6UL_FEC,
137 };
138
139 static const struct of_device_id fec_dt_ids[] = {
140 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 { /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154
155 #if defined(CONFIG_M5272)
156 /*
157 * Some hardware gets it MAC address out of local flash memory.
158 * if this is non-zero then assume it is the address to get MAC from.
159 */
160 #if defined(CONFIG_NETtel)
161 #define FEC_FLASHMAC 0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define FEC_FLASHMAC 0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define FEC_FLASHMAC 0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define FEC_FLASHMAC (0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC 0xffc0406b
170 #else
171 #define FEC_FLASHMAC 0
172 #endif
173 #endif /* CONFIG_M5272 */
174
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176 *
177 * 2048 byte skbufs are allocated. However, alignment requirements
178 * varies between FEC variants. Worst case is 64, so round down by 64.
179 */
180 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE 64
182
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS (1 << 1)
185 #define FEC_RACC_PRODIS (1 << 2)
186 #define FEC_RACC_SHIFT16 BIT(7)
187 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
188
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
191
192 /*
193 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194 * size bits. Other FEC hardware does not, so we need to take that into
195 * account when setting it.
196 */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
200 #else
201 #define OPT_FRAME_SIZE 0
202 #endif
203
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST (1 << 30)
206 #define FEC_MMFR_OP_READ (2 << 28)
207 #define FEC_MMFR_OP_WRITE (1 << 28)
208 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
210 #define FEC_MMFR_TA (2 << 16)
211 #define FEC_MMFR_DATA(v) (v & 0xffff)
212 /* FEC ECR bits definition */
213 #define FEC_ECR_MAGICEN (1 << 2)
214 #define FEC_ECR_SLEEP (1 << 3)
215
216 #define FEC_MII_TIMEOUT 30000 /* us */
217
218 /* Transmitter timeout */
219 #define TX_TIMEOUT (2 * HZ)
220
221 #define FEC_PAUSE_FLAG_AUTONEG 0x1
222 #define FEC_PAUSE_FLAG_ENABLE 0x2
223 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
224 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
225 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
226
227 #define COPYBREAK_DEFAULT 256
228
229 /* Max number of allowed TCP segments for software TSO */
230 #define FEC_MAX_TSO_SEGS 100
231 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
232
233 #define IS_TSO_HEADER(txq, addr) \
234 ((addr >= txq->tso_hdrs_dma) && \
235 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
236
237 static int mii_cnt;
238
239 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
240 struct bufdesc_prop *bd)
241 {
242 return (bdp >= bd->last) ? bd->base
243 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
244 }
245
246 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
247 struct bufdesc_prop *bd)
248 {
249 return (bdp <= bd->base) ? bd->last
250 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
251 }
252
253 static int fec_enet_get_bd_index(struct bufdesc *bdp,
254 struct bufdesc_prop *bd)
255 {
256 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
257 }
258
259 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
260 {
261 int entries;
262
263 entries = (((const char *)txq->dirty_tx -
264 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
265
266 return entries >= 0 ? entries : entries + txq->bd.ring_size;
267 }
268
269 static void swap_buffer(void *bufaddr, int len)
270 {
271 int i;
272 unsigned int *buf = bufaddr;
273
274 for (i = 0; i < len; i += 4, buf++)
275 swab32s(buf);
276 }
277
278 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
279 {
280 int i;
281 unsigned int *src = src_buf;
282 unsigned int *dst = dst_buf;
283
284 for (i = 0; i < len; i += 4, src++, dst++)
285 *dst = swab32p(src);
286 }
287
288 static void fec_dump(struct net_device *ndev)
289 {
290 struct fec_enet_private *fep = netdev_priv(ndev);
291 struct bufdesc *bdp;
292 struct fec_enet_priv_tx_q *txq;
293 int index = 0;
294
295 netdev_info(ndev, "TX ring dump\n");
296 pr_info("Nr SC addr len SKB\n");
297
298 txq = fep->tx_queue[0];
299 bdp = txq->bd.base;
300
301 do {
302 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
303 index,
304 bdp == txq->bd.cur ? 'S' : ' ',
305 bdp == txq->dirty_tx ? 'H' : ' ',
306 fec16_to_cpu(bdp->cbd_sc),
307 fec32_to_cpu(bdp->cbd_bufaddr),
308 fec16_to_cpu(bdp->cbd_datlen),
309 txq->tx_skbuff[index]);
310 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
311 index++;
312 } while (bdp != txq->bd.base);
313 }
314
315 static inline bool is_ipv4_pkt(struct sk_buff *skb)
316 {
317 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
318 }
319
320 static int
321 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
322 {
323 /* Only run for packets requiring a checksum. */
324 if (skb->ip_summed != CHECKSUM_PARTIAL)
325 return 0;
326
327 if (unlikely(skb_cow_head(skb, 0)))
328 return -1;
329
330 if (is_ipv4_pkt(skb))
331 ip_hdr(skb)->check = 0;
332 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
333
334 return 0;
335 }
336
337 static struct bufdesc *
338 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
339 struct sk_buff *skb,
340 struct net_device *ndev)
341 {
342 struct fec_enet_private *fep = netdev_priv(ndev);
343 struct bufdesc *bdp = txq->bd.cur;
344 struct bufdesc_ex *ebdp;
345 int nr_frags = skb_shinfo(skb)->nr_frags;
346 int frag, frag_len;
347 unsigned short status;
348 unsigned int estatus = 0;
349 skb_frag_t *this_frag;
350 unsigned int index;
351 void *bufaddr;
352 dma_addr_t addr;
353 int i;
354
355 for (frag = 0; frag < nr_frags; frag++) {
356 this_frag = &skb_shinfo(skb)->frags[frag];
357 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
358 ebdp = (struct bufdesc_ex *)bdp;
359
360 status = fec16_to_cpu(bdp->cbd_sc);
361 status &= ~BD_ENET_TX_STATS;
362 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
363 frag_len = skb_shinfo(skb)->frags[frag].size;
364
365 /* Handle the last BD specially */
366 if (frag == nr_frags - 1) {
367 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
368 if (fep->bufdesc_ex) {
369 estatus |= BD_ENET_TX_INT;
370 if (unlikely(skb_shinfo(skb)->tx_flags &
371 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
372 estatus |= BD_ENET_TX_TS;
373 }
374 }
375
376 if (fep->bufdesc_ex) {
377 if (fep->quirks & FEC_QUIRK_HAS_AVB)
378 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
379 if (skb->ip_summed == CHECKSUM_PARTIAL)
380 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
381 ebdp->cbd_bdu = 0;
382 ebdp->cbd_esc = cpu_to_fec32(estatus);
383 }
384
385 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
386
387 index = fec_enet_get_bd_index(bdp, &txq->bd);
388 if (((unsigned long) bufaddr) & fep->tx_align ||
389 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
390 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
391 bufaddr = txq->tx_bounce[index];
392
393 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
394 swap_buffer(bufaddr, frag_len);
395 }
396
397 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
398 DMA_TO_DEVICE);
399 if (dma_mapping_error(&fep->pdev->dev, addr)) {
400 if (net_ratelimit())
401 netdev_err(ndev, "Tx DMA memory map failed\n");
402 goto dma_mapping_error;
403 }
404
405 bdp->cbd_bufaddr = cpu_to_fec32(addr);
406 bdp->cbd_datlen = cpu_to_fec16(frag_len);
407 /* Make sure the updates to rest of the descriptor are
408 * performed before transferring ownership.
409 */
410 wmb();
411 bdp->cbd_sc = cpu_to_fec16(status);
412 }
413
414 return bdp;
415 dma_mapping_error:
416 bdp = txq->bd.cur;
417 for (i = 0; i < frag; i++) {
418 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
419 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
420 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
421 }
422 return ERR_PTR(-ENOMEM);
423 }
424
425 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
426 struct sk_buff *skb, struct net_device *ndev)
427 {
428 struct fec_enet_private *fep = netdev_priv(ndev);
429 int nr_frags = skb_shinfo(skb)->nr_frags;
430 struct bufdesc *bdp, *last_bdp;
431 void *bufaddr;
432 dma_addr_t addr;
433 unsigned short status;
434 unsigned short buflen;
435 unsigned int estatus = 0;
436 unsigned int index;
437 int entries_free;
438
439 entries_free = fec_enet_get_free_txdesc_num(txq);
440 if (entries_free < MAX_SKB_FRAGS + 1) {
441 dev_kfree_skb_any(skb);
442 if (net_ratelimit())
443 netdev_err(ndev, "NOT enough BD for SG!\n");
444 return NETDEV_TX_OK;
445 }
446
447 /* Protocol checksum off-load for TCP and UDP. */
448 if (fec_enet_clear_csum(skb, ndev)) {
449 dev_kfree_skb_any(skb);
450 return NETDEV_TX_OK;
451 }
452
453 /* Fill in a Tx ring entry */
454 bdp = txq->bd.cur;
455 last_bdp = bdp;
456 status = fec16_to_cpu(bdp->cbd_sc);
457 status &= ~BD_ENET_TX_STATS;
458
459 /* Set buffer length and buffer pointer */
460 bufaddr = skb->data;
461 buflen = skb_headlen(skb);
462
463 index = fec_enet_get_bd_index(bdp, &txq->bd);
464 if (((unsigned long) bufaddr) & fep->tx_align ||
465 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 memcpy(txq->tx_bounce[index], skb->data, buflen);
467 bufaddr = txq->tx_bounce[index];
468
469 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 swap_buffer(bufaddr, buflen);
471 }
472
473 /* Push the data cache so the CPM does not get stale memory data. */
474 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
475 if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 dev_kfree_skb_any(skb);
477 if (net_ratelimit())
478 netdev_err(ndev, "Tx DMA memory map failed\n");
479 return NETDEV_TX_OK;
480 }
481
482 if (nr_frags) {
483 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
484 if (IS_ERR(last_bdp)) {
485 dma_unmap_single(&fep->pdev->dev, addr,
486 buflen, DMA_TO_DEVICE);
487 dev_kfree_skb_any(skb);
488 return NETDEV_TX_OK;
489 }
490 } else {
491 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
492 if (fep->bufdesc_ex) {
493 estatus = BD_ENET_TX_INT;
494 if (unlikely(skb_shinfo(skb)->tx_flags &
495 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
496 estatus |= BD_ENET_TX_TS;
497 }
498 }
499 bdp->cbd_bufaddr = cpu_to_fec32(addr);
500 bdp->cbd_datlen = cpu_to_fec16(buflen);
501
502 if (fep->bufdesc_ex) {
503
504 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
505
506 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
507 fep->hwts_tx_en))
508 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
509
510 if (fep->quirks & FEC_QUIRK_HAS_AVB)
511 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
512
513 if (skb->ip_summed == CHECKSUM_PARTIAL)
514 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515
516 ebdp->cbd_bdu = 0;
517 ebdp->cbd_esc = cpu_to_fec32(estatus);
518 }
519
520 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
521 /* Save skb pointer */
522 txq->tx_skbuff[index] = skb;
523
524 /* Make sure the updates to rest of the descriptor are performed before
525 * transferring ownership.
526 */
527 wmb();
528
529 /* Send it on its way. Tell FEC it's ready, interrupt when done,
530 * it's the last BD of the frame, and to put the CRC on the end.
531 */
532 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
533 bdp->cbd_sc = cpu_to_fec16(status);
534
535 /* If this was the last BD in the ring, start at the beginning again. */
536 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
537
538 skb_tx_timestamp(skb);
539
540 /* Make sure the update to bdp and tx_skbuff are performed before
541 * txq->bd.cur.
542 */
543 wmb();
544 txq->bd.cur = bdp;
545
546 /* Trigger transmission start */
547 writel(0, txq->bd.reg_desc_active);
548
549 return 0;
550 }
551
552 static int
553 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
554 struct net_device *ndev,
555 struct bufdesc *bdp, int index, char *data,
556 int size, bool last_tcp, bool is_last)
557 {
558 struct fec_enet_private *fep = netdev_priv(ndev);
559 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
560 unsigned short status;
561 unsigned int estatus = 0;
562 dma_addr_t addr;
563
564 status = fec16_to_cpu(bdp->cbd_sc);
565 status &= ~BD_ENET_TX_STATS;
566
567 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
568
569 if (((unsigned long) data) & fep->tx_align ||
570 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
571 memcpy(txq->tx_bounce[index], data, size);
572 data = txq->tx_bounce[index];
573
574 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
575 swap_buffer(data, size);
576 }
577
578 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
579 if (dma_mapping_error(&fep->pdev->dev, addr)) {
580 dev_kfree_skb_any(skb);
581 if (net_ratelimit())
582 netdev_err(ndev, "Tx DMA memory map failed\n");
583 return NETDEV_TX_BUSY;
584 }
585
586 bdp->cbd_datlen = cpu_to_fec16(size);
587 bdp->cbd_bufaddr = cpu_to_fec32(addr);
588
589 if (fep->bufdesc_ex) {
590 if (fep->quirks & FEC_QUIRK_HAS_AVB)
591 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
592 if (skb->ip_summed == CHECKSUM_PARTIAL)
593 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
594 ebdp->cbd_bdu = 0;
595 ebdp->cbd_esc = cpu_to_fec32(estatus);
596 }
597
598 /* Handle the last BD specially */
599 if (last_tcp)
600 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
601 if (is_last) {
602 status |= BD_ENET_TX_INTR;
603 if (fep->bufdesc_ex)
604 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
605 }
606
607 bdp->cbd_sc = cpu_to_fec16(status);
608
609 return 0;
610 }
611
612 static int
613 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
614 struct sk_buff *skb, struct net_device *ndev,
615 struct bufdesc *bdp, int index)
616 {
617 struct fec_enet_private *fep = netdev_priv(ndev);
618 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
619 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
620 void *bufaddr;
621 unsigned long dmabuf;
622 unsigned short status;
623 unsigned int estatus = 0;
624
625 status = fec16_to_cpu(bdp->cbd_sc);
626 status &= ~BD_ENET_TX_STATS;
627 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
628
629 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
630 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
631 if (((unsigned long)bufaddr) & fep->tx_align ||
632 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
633 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
634 bufaddr = txq->tx_bounce[index];
635
636 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
637 swap_buffer(bufaddr, hdr_len);
638
639 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
640 hdr_len, DMA_TO_DEVICE);
641 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
642 dev_kfree_skb_any(skb);
643 if (net_ratelimit())
644 netdev_err(ndev, "Tx DMA memory map failed\n");
645 return NETDEV_TX_BUSY;
646 }
647 }
648
649 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
650 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
651
652 if (fep->bufdesc_ex) {
653 if (fep->quirks & FEC_QUIRK_HAS_AVB)
654 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
655 if (skb->ip_summed == CHECKSUM_PARTIAL)
656 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657 ebdp->cbd_bdu = 0;
658 ebdp->cbd_esc = cpu_to_fec32(estatus);
659 }
660
661 bdp->cbd_sc = cpu_to_fec16(status);
662
663 return 0;
664 }
665
666 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
667 struct sk_buff *skb,
668 struct net_device *ndev)
669 {
670 struct fec_enet_private *fep = netdev_priv(ndev);
671 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 int total_len, data_left;
673 struct bufdesc *bdp = txq->bd.cur;
674 struct tso_t tso;
675 unsigned int index = 0;
676 int ret;
677
678 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
679 dev_kfree_skb_any(skb);
680 if (net_ratelimit())
681 netdev_err(ndev, "NOT enough BD for TSO!\n");
682 return NETDEV_TX_OK;
683 }
684
685 /* Protocol checksum off-load for TCP and UDP. */
686 if (fec_enet_clear_csum(skb, ndev)) {
687 dev_kfree_skb_any(skb);
688 return NETDEV_TX_OK;
689 }
690
691 /* Initialize the TSO handler, and prepare the first payload */
692 tso_start(skb, &tso);
693
694 total_len = skb->len - hdr_len;
695 while (total_len > 0) {
696 char *hdr;
697
698 index = fec_enet_get_bd_index(bdp, &txq->bd);
699 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
700 total_len -= data_left;
701
702 /* prepare packet headers: MAC + IP + TCP */
703 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
704 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
705 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
706 if (ret)
707 goto err_release;
708
709 while (data_left > 0) {
710 int size;
711
712 size = min_t(int, tso.size, data_left);
713 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
714 index = fec_enet_get_bd_index(bdp, &txq->bd);
715 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
716 bdp, index,
717 tso.data, size,
718 size == data_left,
719 total_len == 0);
720 if (ret)
721 goto err_release;
722
723 data_left -= size;
724 tso_build_data(skb, &tso, size);
725 }
726
727 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
728 }
729
730 /* Save skb pointer */
731 txq->tx_skbuff[index] = skb;
732
733 skb_tx_timestamp(skb);
734 txq->bd.cur = bdp;
735
736 /* Trigger transmission start */
737 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
738 !readl(txq->bd.reg_desc_active) ||
739 !readl(txq->bd.reg_desc_active) ||
740 !readl(txq->bd.reg_desc_active) ||
741 !readl(txq->bd.reg_desc_active))
742 writel(0, txq->bd.reg_desc_active);
743
744 return 0;
745
746 err_release:
747 /* TODO: Release all used data descriptors for TSO */
748 return ret;
749 }
750
751 static netdev_tx_t
752 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
753 {
754 struct fec_enet_private *fep = netdev_priv(ndev);
755 int entries_free;
756 unsigned short queue;
757 struct fec_enet_priv_tx_q *txq;
758 struct netdev_queue *nq;
759 int ret;
760
761 queue = skb_get_queue_mapping(skb);
762 txq = fep->tx_queue[queue];
763 nq = netdev_get_tx_queue(ndev, queue);
764
765 if (skb_is_gso(skb))
766 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
767 else
768 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
769 if (ret)
770 return ret;
771
772 entries_free = fec_enet_get_free_txdesc_num(txq);
773 if (entries_free <= txq->tx_stop_threshold)
774 netif_tx_stop_queue(nq);
775
776 return NETDEV_TX_OK;
777 }
778
779 /* Init RX & TX buffer descriptors
780 */
781 static void fec_enet_bd_init(struct net_device *dev)
782 {
783 struct fec_enet_private *fep = netdev_priv(dev);
784 struct fec_enet_priv_tx_q *txq;
785 struct fec_enet_priv_rx_q *rxq;
786 struct bufdesc *bdp;
787 unsigned int i;
788 unsigned int q;
789
790 for (q = 0; q < fep->num_rx_queues; q++) {
791 /* Initialize the receive buffer descriptors. */
792 rxq = fep->rx_queue[q];
793 bdp = rxq->bd.base;
794
795 for (i = 0; i < rxq->bd.ring_size; i++) {
796
797 /* Initialize the BD for every fragment in the page. */
798 if (bdp->cbd_bufaddr)
799 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
800 else
801 bdp->cbd_sc = cpu_to_fec16(0);
802 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
803 }
804
805 /* Set the last buffer to wrap */
806 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
807 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
808
809 rxq->bd.cur = rxq->bd.base;
810 }
811
812 for (q = 0; q < fep->num_tx_queues; q++) {
813 /* ...and the same for transmit */
814 txq = fep->tx_queue[q];
815 bdp = txq->bd.base;
816 txq->bd.cur = bdp;
817
818 for (i = 0; i < txq->bd.ring_size; i++) {
819 /* Initialize the BD for every fragment in the page. */
820 bdp->cbd_sc = cpu_to_fec16(0);
821 if (txq->tx_skbuff[i]) {
822 dev_kfree_skb_any(txq->tx_skbuff[i]);
823 txq->tx_skbuff[i] = NULL;
824 }
825 bdp->cbd_bufaddr = cpu_to_fec32(0);
826 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
827 }
828
829 /* Set the last buffer to wrap */
830 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
831 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
832 txq->dirty_tx = bdp;
833 }
834 }
835
836 static void fec_enet_active_rxring(struct net_device *ndev)
837 {
838 struct fec_enet_private *fep = netdev_priv(ndev);
839 int i;
840
841 for (i = 0; i < fep->num_rx_queues; i++)
842 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
843 }
844
845 static void fec_enet_enable_ring(struct net_device *ndev)
846 {
847 struct fec_enet_private *fep = netdev_priv(ndev);
848 struct fec_enet_priv_tx_q *txq;
849 struct fec_enet_priv_rx_q *rxq;
850 int i;
851
852 for (i = 0; i < fep->num_rx_queues; i++) {
853 rxq = fep->rx_queue[i];
854 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
855 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
856
857 /* enable DMA1/2 */
858 if (i)
859 writel(RCMR_MATCHEN | RCMR_CMP(i),
860 fep->hwp + FEC_RCMR(i));
861 }
862
863 for (i = 0; i < fep->num_tx_queues; i++) {
864 txq = fep->tx_queue[i];
865 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
866
867 /* enable DMA1/2 */
868 if (i)
869 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
870 fep->hwp + FEC_DMA_CFG(i));
871 }
872 }
873
874 static void fec_enet_reset_skb(struct net_device *ndev)
875 {
876 struct fec_enet_private *fep = netdev_priv(ndev);
877 struct fec_enet_priv_tx_q *txq;
878 int i, j;
879
880 for (i = 0; i < fep->num_tx_queues; i++) {
881 txq = fep->tx_queue[i];
882
883 for (j = 0; j < txq->bd.ring_size; j++) {
884 if (txq->tx_skbuff[j]) {
885 dev_kfree_skb_any(txq->tx_skbuff[j]);
886 txq->tx_skbuff[j] = NULL;
887 }
888 }
889 }
890 }
891
892 /*
893 * This function is called to start or restart the FEC during a link
894 * change, transmit timeout, or to reconfigure the FEC. The network
895 * packet processing for this device must be stopped before this call.
896 */
897 static void
898 fec_restart(struct net_device *ndev)
899 {
900 struct fec_enet_private *fep = netdev_priv(ndev);
901 u32 val;
902 u32 temp_mac[2];
903 u32 rcntl = OPT_FRAME_SIZE | 0x04;
904 u32 ecntl = 0x2; /* ETHEREN */
905
906 /* Whack a reset. We should wait for this.
907 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
908 * instead of reset MAC itself.
909 */
910 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
911 writel(0, fep->hwp + FEC_ECNTRL);
912 } else {
913 writel(1, fep->hwp + FEC_ECNTRL);
914 udelay(10);
915 }
916
917 /*
918 * enet-mac reset will reset mac address registers too,
919 * so need to reconfigure it.
920 */
921 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
922 writel((__force u32)cpu_to_be32(temp_mac[0]),
923 fep->hwp + FEC_ADDR_LOW);
924 writel((__force u32)cpu_to_be32(temp_mac[1]),
925 fep->hwp + FEC_ADDR_HIGH);
926
927 /* Clear any outstanding interrupt. */
928 writel(0xffffffff, fep->hwp + FEC_IEVENT);
929
930 fec_enet_bd_init(ndev);
931
932 fec_enet_enable_ring(ndev);
933
934 /* Reset tx SKB buffers. */
935 fec_enet_reset_skb(ndev);
936
937 /* Enable MII mode */
938 if (fep->full_duplex == DUPLEX_FULL) {
939 /* FD enable */
940 writel(0x04, fep->hwp + FEC_X_CNTRL);
941 } else {
942 /* No Rcv on Xmit */
943 rcntl |= 0x02;
944 writel(0x0, fep->hwp + FEC_X_CNTRL);
945 }
946
947 /* Set MII speed */
948 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
949
950 #if !defined(CONFIG_M5272)
951 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
952 val = readl(fep->hwp + FEC_RACC);
953 /* align IP header */
954 val |= FEC_RACC_SHIFT16;
955 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
956 /* set RX checksum */
957 val |= FEC_RACC_OPTIONS;
958 else
959 val &= ~FEC_RACC_OPTIONS;
960 writel(val, fep->hwp + FEC_RACC);
961 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
962 }
963 #endif
964
965 /*
966 * The phy interface and speed need to get configured
967 * differently on enet-mac.
968 */
969 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
970 /* Enable flow control and length check */
971 rcntl |= 0x40000000 | 0x00000020;
972
973 /* RGMII, RMII or MII */
974 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
975 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
976 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
977 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
978 rcntl |= (1 << 6);
979 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
980 rcntl |= (1 << 8);
981 else
982 rcntl &= ~(1 << 8);
983
984 /* 1G, 100M or 10M */
985 if (ndev->phydev) {
986 if (ndev->phydev->speed == SPEED_1000)
987 ecntl |= (1 << 5);
988 else if (ndev->phydev->speed == SPEED_100)
989 rcntl &= ~(1 << 9);
990 else
991 rcntl |= (1 << 9);
992 }
993 } else {
994 #ifdef FEC_MIIGSK_ENR
995 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
996 u32 cfgr;
997 /* disable the gasket and wait */
998 writel(0, fep->hwp + FEC_MIIGSK_ENR);
999 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1000 udelay(1);
1001
1002 /*
1003 * configure the gasket:
1004 * RMII, 50 MHz, no loopback, no echo
1005 * MII, 25 MHz, no loopback, no echo
1006 */
1007 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1008 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1009 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1010 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1011 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1012
1013 /* re-enable the gasket */
1014 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1015 }
1016 #endif
1017 }
1018
1019 #if !defined(CONFIG_M5272)
1020 /* enable pause frame*/
1021 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1022 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1023 ndev->phydev && ndev->phydev->pause)) {
1024 rcntl |= FEC_ENET_FCE;
1025
1026 /* set FIFO threshold parameter to reduce overrun */
1027 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1028 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1029 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1030 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1031
1032 /* OPD */
1033 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1034 } else {
1035 rcntl &= ~FEC_ENET_FCE;
1036 }
1037 #endif /* !defined(CONFIG_M5272) */
1038
1039 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1040
1041 /* Setup multicast filter. */
1042 set_multicast_list(ndev);
1043 #ifndef CONFIG_M5272
1044 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1045 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1046 #endif
1047
1048 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1049 /* enable ENET endian swap */
1050 ecntl |= (1 << 8);
1051 /* enable ENET store and forward mode */
1052 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1053 }
1054
1055 if (fep->bufdesc_ex)
1056 ecntl |= (1 << 4);
1057
1058 #ifndef CONFIG_M5272
1059 /* Enable the MIB statistic event counters */
1060 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1061 #endif
1062
1063 /* And last, enable the transmit and receive processing */
1064 writel(ecntl, fep->hwp + FEC_ECNTRL);
1065 fec_enet_active_rxring(ndev);
1066
1067 if (fep->bufdesc_ex)
1068 fec_ptp_start_cyclecounter(ndev);
1069
1070 /* Enable interrupts we wish to service */
1071 if (fep->link)
1072 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1073 else
1074 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1075
1076 /* Init the interrupt coalescing */
1077 fec_enet_itr_coal_init(ndev);
1078
1079 }
1080
1081 static void
1082 fec_stop(struct net_device *ndev)
1083 {
1084 struct fec_enet_private *fep = netdev_priv(ndev);
1085 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1086 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1087 u32 val;
1088
1089 /* We cannot expect a graceful transmit stop without link !!! */
1090 if (fep->link) {
1091 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1092 udelay(10);
1093 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1094 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1095 }
1096
1097 /* Whack a reset. We should wait for this.
1098 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1099 * instead of reset MAC itself.
1100 */
1101 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1102 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1103 writel(0, fep->hwp + FEC_ECNTRL);
1104 } else {
1105 writel(1, fep->hwp + FEC_ECNTRL);
1106 udelay(10);
1107 }
1108 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1109 } else {
1110 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1111 val = readl(fep->hwp + FEC_ECNTRL);
1112 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1113 writel(val, fep->hwp + FEC_ECNTRL);
1114
1115 if (pdata && pdata->sleep_mode_enable)
1116 pdata->sleep_mode_enable(true);
1117 }
1118 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1119
1120 /* We have to keep ENET enabled to have MII interrupt stay working */
1121 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1122 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1123 writel(2, fep->hwp + FEC_ECNTRL);
1124 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1125 }
1126 }
1127
1128
1129 static void
1130 fec_timeout(struct net_device *ndev)
1131 {
1132 struct fec_enet_private *fep = netdev_priv(ndev);
1133
1134 fec_dump(ndev);
1135
1136 ndev->stats.tx_errors++;
1137
1138 schedule_work(&fep->tx_timeout_work);
1139 }
1140
1141 static void fec_enet_timeout_work(struct work_struct *work)
1142 {
1143 struct fec_enet_private *fep =
1144 container_of(work, struct fec_enet_private, tx_timeout_work);
1145 struct net_device *ndev = fep->netdev;
1146
1147 rtnl_lock();
1148 if (netif_device_present(ndev) || netif_running(ndev)) {
1149 napi_disable(&fep->napi);
1150 netif_tx_lock_bh(ndev);
1151 fec_restart(ndev);
1152 netif_wake_queue(ndev);
1153 netif_tx_unlock_bh(ndev);
1154 napi_enable(&fep->napi);
1155 }
1156 rtnl_unlock();
1157 }
1158
1159 static void
1160 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1161 struct skb_shared_hwtstamps *hwtstamps)
1162 {
1163 unsigned long flags;
1164 u64 ns;
1165
1166 spin_lock_irqsave(&fep->tmreg_lock, flags);
1167 ns = timecounter_cyc2time(&fep->tc, ts);
1168 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1169
1170 memset(hwtstamps, 0, sizeof(*hwtstamps));
1171 hwtstamps->hwtstamp = ns_to_ktime(ns);
1172 }
1173
1174 static void
1175 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1176 {
1177 struct fec_enet_private *fep;
1178 struct bufdesc *bdp;
1179 unsigned short status;
1180 struct sk_buff *skb;
1181 struct fec_enet_priv_tx_q *txq;
1182 struct netdev_queue *nq;
1183 int index = 0;
1184 int entries_free;
1185
1186 fep = netdev_priv(ndev);
1187
1188 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1189
1190 txq = fep->tx_queue[queue_id];
1191 /* get next bdp of dirty_tx */
1192 nq = netdev_get_tx_queue(ndev, queue_id);
1193 bdp = txq->dirty_tx;
1194
1195 /* get next bdp of dirty_tx */
1196 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1197
1198 while (bdp != READ_ONCE(txq->bd.cur)) {
1199 /* Order the load of bd.cur and cbd_sc */
1200 rmb();
1201 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1202 if (status & BD_ENET_TX_READY)
1203 break;
1204
1205 index = fec_enet_get_bd_index(bdp, &txq->bd);
1206
1207 skb = txq->tx_skbuff[index];
1208 txq->tx_skbuff[index] = NULL;
1209 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1210 dma_unmap_single(&fep->pdev->dev,
1211 fec32_to_cpu(bdp->cbd_bufaddr),
1212 fec16_to_cpu(bdp->cbd_datlen),
1213 DMA_TO_DEVICE);
1214 bdp->cbd_bufaddr = cpu_to_fec32(0);
1215 if (!skb)
1216 goto skb_done;
1217
1218 /* Check for errors. */
1219 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1220 BD_ENET_TX_RL | BD_ENET_TX_UN |
1221 BD_ENET_TX_CSL)) {
1222 ndev->stats.tx_errors++;
1223 if (status & BD_ENET_TX_HB) /* No heartbeat */
1224 ndev->stats.tx_heartbeat_errors++;
1225 if (status & BD_ENET_TX_LC) /* Late collision */
1226 ndev->stats.tx_window_errors++;
1227 if (status & BD_ENET_TX_RL) /* Retrans limit */
1228 ndev->stats.tx_aborted_errors++;
1229 if (status & BD_ENET_TX_UN) /* Underrun */
1230 ndev->stats.tx_fifo_errors++;
1231 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1232 ndev->stats.tx_carrier_errors++;
1233 } else {
1234 ndev->stats.tx_packets++;
1235 ndev->stats.tx_bytes += skb->len;
1236 }
1237
1238 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1239 fep->bufdesc_ex) {
1240 struct skb_shared_hwtstamps shhwtstamps;
1241 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1242
1243 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1244 skb_tstamp_tx(skb, &shhwtstamps);
1245 }
1246
1247 /* Deferred means some collisions occurred during transmit,
1248 * but we eventually sent the packet OK.
1249 */
1250 if (status & BD_ENET_TX_DEF)
1251 ndev->stats.collisions++;
1252
1253 /* Free the sk buffer associated with this last transmit */
1254 dev_kfree_skb_any(skb);
1255 skb_done:
1256 /* Make sure the update to bdp and tx_skbuff are performed
1257 * before dirty_tx
1258 */
1259 wmb();
1260 txq->dirty_tx = bdp;
1261
1262 /* Update pointer to next buffer descriptor to be transmitted */
1263 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264
1265 /* Since we have freed up a buffer, the ring is no longer full
1266 */
1267 if (netif_queue_stopped(ndev)) {
1268 entries_free = fec_enet_get_free_txdesc_num(txq);
1269 if (entries_free >= txq->tx_wake_threshold)
1270 netif_tx_wake_queue(nq);
1271 }
1272 }
1273
1274 /* ERR006358: Keep the transmitter going */
1275 if (bdp != txq->bd.cur &&
1276 readl(txq->bd.reg_desc_active) == 0)
1277 writel(0, txq->bd.reg_desc_active);
1278 }
1279
1280 static void
1281 fec_enet_tx(struct net_device *ndev)
1282 {
1283 struct fec_enet_private *fep = netdev_priv(ndev);
1284 u16 queue_id;
1285 /* First process class A queue, then Class B and Best Effort queue */
1286 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1287 clear_bit(queue_id, &fep->work_tx);
1288 fec_enet_tx_queue(ndev, queue_id);
1289 }
1290 return;
1291 }
1292
1293 static int
1294 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1295 {
1296 struct fec_enet_private *fep = netdev_priv(ndev);
1297 int off;
1298
1299 off = ((unsigned long)skb->data) & fep->rx_align;
1300 if (off)
1301 skb_reserve(skb, fep->rx_align + 1 - off);
1302
1303 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1304 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1305 if (net_ratelimit())
1306 netdev_err(ndev, "Rx DMA memory map failed\n");
1307 return -ENOMEM;
1308 }
1309
1310 return 0;
1311 }
1312
1313 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1314 struct bufdesc *bdp, u32 length, bool swap)
1315 {
1316 struct fec_enet_private *fep = netdev_priv(ndev);
1317 struct sk_buff *new_skb;
1318
1319 if (length > fep->rx_copybreak)
1320 return false;
1321
1322 new_skb = netdev_alloc_skb(ndev, length);
1323 if (!new_skb)
1324 return false;
1325
1326 dma_sync_single_for_cpu(&fep->pdev->dev,
1327 fec32_to_cpu(bdp->cbd_bufaddr),
1328 FEC_ENET_RX_FRSIZE - fep->rx_align,
1329 DMA_FROM_DEVICE);
1330 if (!swap)
1331 memcpy(new_skb->data, (*skb)->data, length);
1332 else
1333 swap_buffer2(new_skb->data, (*skb)->data, length);
1334 *skb = new_skb;
1335
1336 return true;
1337 }
1338
1339 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1340 * When we update through the ring, if the next incoming buffer has
1341 * not been given to the system, we just set the empty indicator,
1342 * effectively tossing the packet.
1343 */
1344 static int
1345 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1346 {
1347 struct fec_enet_private *fep = netdev_priv(ndev);
1348 struct fec_enet_priv_rx_q *rxq;
1349 struct bufdesc *bdp;
1350 unsigned short status;
1351 struct sk_buff *skb_new = NULL;
1352 struct sk_buff *skb;
1353 ushort pkt_len;
1354 __u8 *data;
1355 int pkt_received = 0;
1356 struct bufdesc_ex *ebdp = NULL;
1357 bool vlan_packet_rcvd = false;
1358 u16 vlan_tag;
1359 int index = 0;
1360 bool is_copybreak;
1361 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1362
1363 #ifdef CONFIG_M532x
1364 flush_cache_all();
1365 #endif
1366 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1367 rxq = fep->rx_queue[queue_id];
1368
1369 /* First, grab all of the stats for the incoming packet.
1370 * These get messed up if we get called due to a busy condition.
1371 */
1372 bdp = rxq->bd.cur;
1373
1374 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1375
1376 if (pkt_received >= budget)
1377 break;
1378 pkt_received++;
1379
1380 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1381
1382 /* Check for errors. */
1383 status ^= BD_ENET_RX_LAST;
1384 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1385 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1386 BD_ENET_RX_CL)) {
1387 ndev->stats.rx_errors++;
1388 if (status & BD_ENET_RX_OV) {
1389 /* FIFO overrun */
1390 ndev->stats.rx_fifo_errors++;
1391 goto rx_processing_done;
1392 }
1393 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1394 | BD_ENET_RX_LAST)) {
1395 /* Frame too long or too short. */
1396 ndev->stats.rx_length_errors++;
1397 if (status & BD_ENET_RX_LAST)
1398 netdev_err(ndev, "rcv is not +last\n");
1399 }
1400 if (status & BD_ENET_RX_CR) /* CRC Error */
1401 ndev->stats.rx_crc_errors++;
1402 /* Report late collisions as a frame error. */
1403 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1404 ndev->stats.rx_frame_errors++;
1405 goto rx_processing_done;
1406 }
1407
1408 /* Process the incoming frame. */
1409 ndev->stats.rx_packets++;
1410 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1411 ndev->stats.rx_bytes += pkt_len;
1412
1413 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1414 skb = rxq->rx_skbuff[index];
1415
1416 /* The packet length includes FCS, but we don't want to
1417 * include that when passing upstream as it messes up
1418 * bridging applications.
1419 */
1420 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1421 need_swap);
1422 if (!is_copybreak) {
1423 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1424 if (unlikely(!skb_new)) {
1425 ndev->stats.rx_dropped++;
1426 goto rx_processing_done;
1427 }
1428 dma_unmap_single(&fep->pdev->dev,
1429 fec32_to_cpu(bdp->cbd_bufaddr),
1430 FEC_ENET_RX_FRSIZE - fep->rx_align,
1431 DMA_FROM_DEVICE);
1432 }
1433
1434 prefetch(skb->data - NET_IP_ALIGN);
1435 skb_put(skb, pkt_len - 4);
1436 data = skb->data;
1437
1438 if (!is_copybreak && need_swap)
1439 swap_buffer(data, pkt_len);
1440
1441 #if !defined(CONFIG_M5272)
1442 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1443 data = skb_pull_inline(skb, 2);
1444 #endif
1445
1446 /* Extract the enhanced buffer descriptor */
1447 ebdp = NULL;
1448 if (fep->bufdesc_ex)
1449 ebdp = (struct bufdesc_ex *)bdp;
1450
1451 /* If this is a VLAN packet remove the VLAN Tag */
1452 vlan_packet_rcvd = false;
1453 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1454 fep->bufdesc_ex &&
1455 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1456 /* Push and remove the vlan tag */
1457 struct vlan_hdr *vlan_header =
1458 (struct vlan_hdr *) (data + ETH_HLEN);
1459 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1460
1461 vlan_packet_rcvd = true;
1462
1463 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1464 skb_pull(skb, VLAN_HLEN);
1465 }
1466
1467 skb->protocol = eth_type_trans(skb, ndev);
1468
1469 /* Get receive timestamp from the skb */
1470 if (fep->hwts_rx_en && fep->bufdesc_ex)
1471 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1472 skb_hwtstamps(skb));
1473
1474 if (fep->bufdesc_ex &&
1475 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1476 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1477 /* don't check it */
1478 skb->ip_summed = CHECKSUM_UNNECESSARY;
1479 } else {
1480 skb_checksum_none_assert(skb);
1481 }
1482 }
1483
1484 /* Handle received VLAN packets */
1485 if (vlan_packet_rcvd)
1486 __vlan_hwaccel_put_tag(skb,
1487 htons(ETH_P_8021Q),
1488 vlan_tag);
1489
1490 napi_gro_receive(&fep->napi, skb);
1491
1492 if (is_copybreak) {
1493 dma_sync_single_for_device(&fep->pdev->dev,
1494 fec32_to_cpu(bdp->cbd_bufaddr),
1495 FEC_ENET_RX_FRSIZE - fep->rx_align,
1496 DMA_FROM_DEVICE);
1497 } else {
1498 rxq->rx_skbuff[index] = skb_new;
1499 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1500 }
1501
1502 rx_processing_done:
1503 /* Clear the status flags for this buffer */
1504 status &= ~BD_ENET_RX_STATS;
1505
1506 /* Mark the buffer empty */
1507 status |= BD_ENET_RX_EMPTY;
1508
1509 if (fep->bufdesc_ex) {
1510 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1511
1512 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1513 ebdp->cbd_prot = 0;
1514 ebdp->cbd_bdu = 0;
1515 }
1516 /* Make sure the updates to rest of the descriptor are
1517 * performed before transferring ownership.
1518 */
1519 wmb();
1520 bdp->cbd_sc = cpu_to_fec16(status);
1521
1522 /* Update BD pointer to next entry */
1523 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1524
1525 /* Doing this here will keep the FEC running while we process
1526 * incoming frames. On a heavily loaded network, we should be
1527 * able to keep up at the expense of system resources.
1528 */
1529 writel(0, rxq->bd.reg_desc_active);
1530 }
1531 rxq->bd.cur = bdp;
1532 return pkt_received;
1533 }
1534
1535 static int
1536 fec_enet_rx(struct net_device *ndev, int budget)
1537 {
1538 int pkt_received = 0;
1539 u16 queue_id;
1540 struct fec_enet_private *fep = netdev_priv(ndev);
1541
1542 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1543 int ret;
1544
1545 ret = fec_enet_rx_queue(ndev,
1546 budget - pkt_received, queue_id);
1547
1548 if (ret < budget - pkt_received)
1549 clear_bit(queue_id, &fep->work_rx);
1550
1551 pkt_received += ret;
1552 }
1553 return pkt_received;
1554 }
1555
1556 static bool
1557 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1558 {
1559 if (int_events == 0)
1560 return false;
1561
1562 if (int_events & FEC_ENET_RXF_0)
1563 fep->work_rx |= (1 << 2);
1564 if (int_events & FEC_ENET_RXF_1)
1565 fep->work_rx |= (1 << 0);
1566 if (int_events & FEC_ENET_RXF_2)
1567 fep->work_rx |= (1 << 1);
1568
1569 if (int_events & FEC_ENET_TXF_0)
1570 fep->work_tx |= (1 << 2);
1571 if (int_events & FEC_ENET_TXF_1)
1572 fep->work_tx |= (1 << 0);
1573 if (int_events & FEC_ENET_TXF_2)
1574 fep->work_tx |= (1 << 1);
1575
1576 return true;
1577 }
1578
1579 static irqreturn_t
1580 fec_enet_interrupt(int irq, void *dev_id)
1581 {
1582 struct net_device *ndev = dev_id;
1583 struct fec_enet_private *fep = netdev_priv(ndev);
1584 uint int_events;
1585 irqreturn_t ret = IRQ_NONE;
1586
1587 int_events = readl(fep->hwp + FEC_IEVENT);
1588 writel(int_events, fep->hwp + FEC_IEVENT);
1589 fec_enet_collect_events(fep, int_events);
1590
1591 if ((fep->work_tx || fep->work_rx) && fep->link) {
1592 ret = IRQ_HANDLED;
1593
1594 if (napi_schedule_prep(&fep->napi)) {
1595 /* Disable the NAPI interrupts */
1596 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1597 __napi_schedule(&fep->napi);
1598 }
1599 }
1600
1601 if (int_events & FEC_ENET_MII) {
1602 ret = IRQ_HANDLED;
1603 complete(&fep->mdio_done);
1604 }
1605
1606 if (fep->ptp_clock)
1607 if (fec_ptp_check_pps_event(fep))
1608 ret = IRQ_HANDLED;
1609 return ret;
1610 }
1611
1612 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1613 {
1614 struct net_device *ndev = napi->dev;
1615 struct fec_enet_private *fep = netdev_priv(ndev);
1616 int pkts;
1617
1618 pkts = fec_enet_rx(ndev, budget);
1619
1620 fec_enet_tx(ndev);
1621
1622 if (pkts < budget) {
1623 napi_complete_done(napi, pkts);
1624 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1625 }
1626 return pkts;
1627 }
1628
1629 /* ------------------------------------------------------------------------- */
1630 static void fec_get_mac(struct net_device *ndev)
1631 {
1632 struct fec_enet_private *fep = netdev_priv(ndev);
1633 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1634 unsigned char *iap, tmpaddr[ETH_ALEN];
1635
1636 /*
1637 * try to get mac address in following order:
1638 *
1639 * 1) module parameter via kernel command line in form
1640 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1641 */
1642 iap = macaddr;
1643
1644 /*
1645 * 2) from device tree data
1646 */
1647 if (!is_valid_ether_addr(iap)) {
1648 struct device_node *np = fep->pdev->dev.of_node;
1649 if (np) {
1650 const char *mac = of_get_mac_address(np);
1651 if (mac)
1652 iap = (unsigned char *) mac;
1653 }
1654 }
1655
1656 /*
1657 * 3) from flash or fuse (via platform data)
1658 */
1659 if (!is_valid_ether_addr(iap)) {
1660 #ifdef CONFIG_M5272
1661 if (FEC_FLASHMAC)
1662 iap = (unsigned char *)FEC_FLASHMAC;
1663 #else
1664 if (pdata)
1665 iap = (unsigned char *)&pdata->mac;
1666 #endif
1667 }
1668
1669 /*
1670 * 4) FEC mac registers set by bootloader
1671 */
1672 if (!is_valid_ether_addr(iap)) {
1673 *((__be32 *) &tmpaddr[0]) =
1674 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1675 *((__be16 *) &tmpaddr[4]) =
1676 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1677 iap = &tmpaddr[0];
1678 }
1679
1680 /*
1681 * 5) random mac address
1682 */
1683 if (!is_valid_ether_addr(iap)) {
1684 /* Report it and use a random ethernet address instead */
1685 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1686 eth_hw_addr_random(ndev);
1687 netdev_info(ndev, "Using random MAC address: %pM\n",
1688 ndev->dev_addr);
1689 return;
1690 }
1691
1692 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1693
1694 /* Adjust MAC if using macaddr */
1695 if (iap == macaddr)
1696 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1697 }
1698
1699 /* ------------------------------------------------------------------------- */
1700
1701 /*
1702 * Phy section
1703 */
1704 static void fec_enet_adjust_link(struct net_device *ndev)
1705 {
1706 struct fec_enet_private *fep = netdev_priv(ndev);
1707 struct phy_device *phy_dev = ndev->phydev;
1708 int status_change = 0;
1709
1710 /* Prevent a state halted on mii error */
1711 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1712 phy_dev->state = PHY_RESUMING;
1713 return;
1714 }
1715
1716 /*
1717 * If the netdev is down, or is going down, we're not interested
1718 * in link state events, so just mark our idea of the link as down
1719 * and ignore the event.
1720 */
1721 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1722 fep->link = 0;
1723 } else if (phy_dev->link) {
1724 if (!fep->link) {
1725 fep->link = phy_dev->link;
1726 status_change = 1;
1727 }
1728
1729 if (fep->full_duplex != phy_dev->duplex) {
1730 fep->full_duplex = phy_dev->duplex;
1731 status_change = 1;
1732 }
1733
1734 if (phy_dev->speed != fep->speed) {
1735 fep->speed = phy_dev->speed;
1736 status_change = 1;
1737 }
1738
1739 /* if any of the above changed restart the FEC */
1740 if (status_change) {
1741 napi_disable(&fep->napi);
1742 netif_tx_lock_bh(ndev);
1743 fec_restart(ndev);
1744 netif_wake_queue(ndev);
1745 netif_tx_unlock_bh(ndev);
1746 napi_enable(&fep->napi);
1747 }
1748 } else {
1749 if (fep->link) {
1750 napi_disable(&fep->napi);
1751 netif_tx_lock_bh(ndev);
1752 fec_stop(ndev);
1753 netif_tx_unlock_bh(ndev);
1754 napi_enable(&fep->napi);
1755 fep->link = phy_dev->link;
1756 status_change = 1;
1757 }
1758 }
1759
1760 if (status_change)
1761 phy_print_status(phy_dev);
1762 }
1763
1764 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1765 {
1766 struct fec_enet_private *fep = bus->priv;
1767 struct device *dev = &fep->pdev->dev;
1768 unsigned long time_left;
1769 int ret = 0;
1770
1771 ret = pm_runtime_get_sync(dev);
1772 if (ret < 0)
1773 return ret;
1774
1775 fep->mii_timeout = 0;
1776 reinit_completion(&fep->mdio_done);
1777
1778 /* start a read op */
1779 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1780 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1781 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1782
1783 /* wait for end of transfer */
1784 time_left = wait_for_completion_timeout(&fep->mdio_done,
1785 usecs_to_jiffies(FEC_MII_TIMEOUT));
1786 if (time_left == 0) {
1787 fep->mii_timeout = 1;
1788 netdev_err(fep->netdev, "MDIO read timeout\n");
1789 ret = -ETIMEDOUT;
1790 goto out;
1791 }
1792
1793 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1794
1795 out:
1796 pm_runtime_mark_last_busy(dev);
1797 pm_runtime_put_autosuspend(dev);
1798
1799 return ret;
1800 }
1801
1802 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1803 u16 value)
1804 {
1805 struct fec_enet_private *fep = bus->priv;
1806 struct device *dev = &fep->pdev->dev;
1807 unsigned long time_left;
1808 int ret;
1809
1810 ret = pm_runtime_get_sync(dev);
1811 if (ret < 0)
1812 return ret;
1813 else
1814 ret = 0;
1815
1816 fep->mii_timeout = 0;
1817 reinit_completion(&fep->mdio_done);
1818
1819 /* start a write op */
1820 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1821 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1822 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1823 fep->hwp + FEC_MII_DATA);
1824
1825 /* wait for end of transfer */
1826 time_left = wait_for_completion_timeout(&fep->mdio_done,
1827 usecs_to_jiffies(FEC_MII_TIMEOUT));
1828 if (time_left == 0) {
1829 fep->mii_timeout = 1;
1830 netdev_err(fep->netdev, "MDIO write timeout\n");
1831 ret = -ETIMEDOUT;
1832 }
1833
1834 pm_runtime_mark_last_busy(dev);
1835 pm_runtime_put_autosuspend(dev);
1836
1837 return ret;
1838 }
1839
1840 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1841 {
1842 struct fec_enet_private *fep = netdev_priv(ndev);
1843 int ret;
1844
1845 if (enable) {
1846 ret = clk_prepare_enable(fep->clk_ahb);
1847 if (ret)
1848 return ret;
1849
1850 ret = clk_prepare_enable(fep->clk_enet_out);
1851 if (ret)
1852 goto failed_clk_enet_out;
1853
1854 if (fep->clk_ptp) {
1855 mutex_lock(&fep->ptp_clk_mutex);
1856 ret = clk_prepare_enable(fep->clk_ptp);
1857 if (ret) {
1858 mutex_unlock(&fep->ptp_clk_mutex);
1859 goto failed_clk_ptp;
1860 } else {
1861 fep->ptp_clk_on = true;
1862 }
1863 mutex_unlock(&fep->ptp_clk_mutex);
1864 }
1865
1866 ret = clk_prepare_enable(fep->clk_ref);
1867 if (ret)
1868 goto failed_clk_ref;
1869 } else {
1870 clk_disable_unprepare(fep->clk_ahb);
1871 clk_disable_unprepare(fep->clk_enet_out);
1872 if (fep->clk_ptp) {
1873 mutex_lock(&fep->ptp_clk_mutex);
1874 clk_disable_unprepare(fep->clk_ptp);
1875 fep->ptp_clk_on = false;
1876 mutex_unlock(&fep->ptp_clk_mutex);
1877 }
1878 clk_disable_unprepare(fep->clk_ref);
1879 }
1880
1881 return 0;
1882
1883 failed_clk_ref:
1884 if (fep->clk_ref)
1885 clk_disable_unprepare(fep->clk_ref);
1886 failed_clk_ptp:
1887 if (fep->clk_enet_out)
1888 clk_disable_unprepare(fep->clk_enet_out);
1889 failed_clk_enet_out:
1890 clk_disable_unprepare(fep->clk_ahb);
1891
1892 return ret;
1893 }
1894
1895 static int fec_enet_mii_probe(struct net_device *ndev)
1896 {
1897 struct fec_enet_private *fep = netdev_priv(ndev);
1898 struct phy_device *phy_dev = NULL;
1899 char mdio_bus_id[MII_BUS_ID_SIZE];
1900 char phy_name[MII_BUS_ID_SIZE + 3];
1901 int phy_id;
1902 int dev_id = fep->dev_id;
1903
1904 if (fep->phy_node) {
1905 phy_dev = of_phy_connect(ndev, fep->phy_node,
1906 &fec_enet_adjust_link, 0,
1907 fep->phy_interface);
1908 if (!phy_dev) {
1909 netdev_err(ndev, "Unable to connect to phy\n");
1910 return -ENODEV;
1911 }
1912 } else {
1913 /* check for attached phy */
1914 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1915 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1916 continue;
1917 if (dev_id--)
1918 continue;
1919 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1920 break;
1921 }
1922
1923 if (phy_id >= PHY_MAX_ADDR) {
1924 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1925 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1926 phy_id = 0;
1927 }
1928
1929 snprintf(phy_name, sizeof(phy_name),
1930 PHY_ID_FMT, mdio_bus_id, phy_id);
1931 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1932 fep->phy_interface);
1933 }
1934
1935 if (IS_ERR(phy_dev)) {
1936 netdev_err(ndev, "could not attach to PHY\n");
1937 return PTR_ERR(phy_dev);
1938 }
1939
1940 /* mask with MAC supported features */
1941 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1942 phy_dev->supported &= PHY_GBIT_FEATURES;
1943 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1944 #if !defined(CONFIG_M5272)
1945 phy_dev->supported |= SUPPORTED_Pause;
1946 #endif
1947 }
1948 else
1949 phy_dev->supported &= PHY_BASIC_FEATURES;
1950
1951 phy_dev->advertising = phy_dev->supported;
1952
1953 fep->link = 0;
1954 fep->full_duplex = 0;
1955
1956 phy_attached_info(phy_dev);
1957
1958 return 0;
1959 }
1960
1961 static int fec_enet_mii_init(struct platform_device *pdev)
1962 {
1963 static struct mii_bus *fec0_mii_bus;
1964 struct net_device *ndev = platform_get_drvdata(pdev);
1965 struct fec_enet_private *fep = netdev_priv(ndev);
1966 struct device_node *node;
1967 int err = -ENXIO;
1968 u32 mii_speed, holdtime;
1969
1970 /*
1971 * The i.MX28 dual fec interfaces are not equal.
1972 * Here are the differences:
1973 *
1974 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1975 * - fec0 acts as the 1588 time master while fec1 is slave
1976 * - external phys can only be configured by fec0
1977 *
1978 * That is to say fec1 can not work independently. It only works
1979 * when fec0 is working. The reason behind this design is that the
1980 * second interface is added primarily for Switch mode.
1981 *
1982 * Because of the last point above, both phys are attached on fec0
1983 * mdio interface in board design, and need to be configured by
1984 * fec0 mii_bus.
1985 */
1986 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1987 /* fec1 uses fec0 mii_bus */
1988 if (mii_cnt && fec0_mii_bus) {
1989 fep->mii_bus = fec0_mii_bus;
1990 mii_cnt++;
1991 return 0;
1992 }
1993 return -ENOENT;
1994 }
1995
1996 fep->mii_timeout = 0;
1997
1998 /*
1999 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2000 *
2001 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2002 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2003 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2004 * document.
2005 */
2006 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2007 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2008 mii_speed--;
2009 if (mii_speed > 63) {
2010 dev_err(&pdev->dev,
2011 "fec clock (%lu) too fast to get right mii speed\n",
2012 clk_get_rate(fep->clk_ipg));
2013 err = -EINVAL;
2014 goto err_out;
2015 }
2016
2017 /*
2018 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2019 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2020 * versions are RAZ there, so just ignore the difference and write the
2021 * register always.
2022 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2023 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2024 * output.
2025 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2026 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2027 * holdtime cannot result in a value greater than 3.
2028 */
2029 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2030
2031 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2032
2033 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2034
2035 fep->mii_bus = mdiobus_alloc();
2036 if (fep->mii_bus == NULL) {
2037 err = -ENOMEM;
2038 goto err_out;
2039 }
2040
2041 fep->mii_bus->name = "fec_enet_mii_bus";
2042 fep->mii_bus->read = fec_enet_mdio_read;
2043 fep->mii_bus->write = fec_enet_mdio_write;
2044 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2045 pdev->name, fep->dev_id + 1);
2046 fep->mii_bus->priv = fep;
2047 fep->mii_bus->parent = &pdev->dev;
2048
2049 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2050 if (node) {
2051 err = of_mdiobus_register(fep->mii_bus, node);
2052 of_node_put(node);
2053 } else {
2054 err = mdiobus_register(fep->mii_bus);
2055 }
2056
2057 if (err)
2058 goto err_out_free_mdiobus;
2059
2060 mii_cnt++;
2061
2062 /* save fec0 mii_bus */
2063 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2064 fec0_mii_bus = fep->mii_bus;
2065
2066 return 0;
2067
2068 err_out_free_mdiobus:
2069 mdiobus_free(fep->mii_bus);
2070 err_out:
2071 return err;
2072 }
2073
2074 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2075 {
2076 if (--mii_cnt == 0) {
2077 mdiobus_unregister(fep->mii_bus);
2078 mdiobus_free(fep->mii_bus);
2079 }
2080 }
2081
2082 static void fec_enet_get_drvinfo(struct net_device *ndev,
2083 struct ethtool_drvinfo *info)
2084 {
2085 struct fec_enet_private *fep = netdev_priv(ndev);
2086
2087 strlcpy(info->driver, fep->pdev->dev.driver->name,
2088 sizeof(info->driver));
2089 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2090 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2091 }
2092
2093 static int fec_enet_get_regs_len(struct net_device *ndev)
2094 {
2095 struct fec_enet_private *fep = netdev_priv(ndev);
2096 struct resource *r;
2097 int s = 0;
2098
2099 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2100 if (r)
2101 s = resource_size(r);
2102
2103 return s;
2104 }
2105
2106 /* List of registers that can be safety be read to dump them with ethtool */
2107 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2108 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2109 static u32 fec_enet_register_offset[] = {
2110 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2111 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2112 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2113 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2114 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2115 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2116 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2117 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2118 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2119 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2120 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2121 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2122 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2123 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2124 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2125 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2126 RMON_T_P_GTE2048, RMON_T_OCTETS,
2127 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2128 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2129 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2130 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2131 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2132 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2133 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2134 RMON_R_P_GTE2048, RMON_R_OCTETS,
2135 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2136 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2137 };
2138 #else
2139 static u32 fec_enet_register_offset[] = {
2140 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2141 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2142 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2143 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2144 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2145 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2146 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2147 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2148 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2149 };
2150 #endif
2151
2152 static void fec_enet_get_regs(struct net_device *ndev,
2153 struct ethtool_regs *regs, void *regbuf)
2154 {
2155 struct fec_enet_private *fep = netdev_priv(ndev);
2156 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2157 u32 *buf = (u32 *)regbuf;
2158 u32 i, off;
2159
2160 memset(buf, 0, regs->len);
2161
2162 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2163 off = fec_enet_register_offset[i] / 4;
2164 buf[off] = readl(&theregs[off]);
2165 }
2166 }
2167
2168 static int fec_enet_get_ts_info(struct net_device *ndev,
2169 struct ethtool_ts_info *info)
2170 {
2171 struct fec_enet_private *fep = netdev_priv(ndev);
2172
2173 if (fep->bufdesc_ex) {
2174
2175 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2176 SOF_TIMESTAMPING_RX_SOFTWARE |
2177 SOF_TIMESTAMPING_SOFTWARE |
2178 SOF_TIMESTAMPING_TX_HARDWARE |
2179 SOF_TIMESTAMPING_RX_HARDWARE |
2180 SOF_TIMESTAMPING_RAW_HARDWARE;
2181 if (fep->ptp_clock)
2182 info->phc_index = ptp_clock_index(fep->ptp_clock);
2183 else
2184 info->phc_index = -1;
2185
2186 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2187 (1 << HWTSTAMP_TX_ON);
2188
2189 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2190 (1 << HWTSTAMP_FILTER_ALL);
2191 return 0;
2192 } else {
2193 return ethtool_op_get_ts_info(ndev, info);
2194 }
2195 }
2196
2197 #if !defined(CONFIG_M5272)
2198
2199 static void fec_enet_get_pauseparam(struct net_device *ndev,
2200 struct ethtool_pauseparam *pause)
2201 {
2202 struct fec_enet_private *fep = netdev_priv(ndev);
2203
2204 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2205 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2206 pause->rx_pause = pause->tx_pause;
2207 }
2208
2209 static int fec_enet_set_pauseparam(struct net_device *ndev,
2210 struct ethtool_pauseparam *pause)
2211 {
2212 struct fec_enet_private *fep = netdev_priv(ndev);
2213
2214 if (!ndev->phydev)
2215 return -ENODEV;
2216
2217 if (pause->tx_pause != pause->rx_pause) {
2218 netdev_info(ndev,
2219 "hardware only support enable/disable both tx and rx");
2220 return -EINVAL;
2221 }
2222
2223 fep->pause_flag = 0;
2224
2225 /* tx pause must be same as rx pause */
2226 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2227 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2228
2229 if (pause->rx_pause || pause->autoneg) {
2230 ndev->phydev->supported |= ADVERTISED_Pause;
2231 ndev->phydev->advertising |= ADVERTISED_Pause;
2232 } else {
2233 ndev->phydev->supported &= ~ADVERTISED_Pause;
2234 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2235 }
2236
2237 if (pause->autoneg) {
2238 if (netif_running(ndev))
2239 fec_stop(ndev);
2240 phy_start_aneg(ndev->phydev);
2241 }
2242 if (netif_running(ndev)) {
2243 napi_disable(&fep->napi);
2244 netif_tx_lock_bh(ndev);
2245 fec_restart(ndev);
2246 netif_wake_queue(ndev);
2247 netif_tx_unlock_bh(ndev);
2248 napi_enable(&fep->napi);
2249 }
2250
2251 return 0;
2252 }
2253
2254 static const struct fec_stat {
2255 char name[ETH_GSTRING_LEN];
2256 u16 offset;
2257 } fec_stats[] = {
2258 /* RMON TX */
2259 { "tx_dropped", RMON_T_DROP },
2260 { "tx_packets", RMON_T_PACKETS },
2261 { "tx_broadcast", RMON_T_BC_PKT },
2262 { "tx_multicast", RMON_T_MC_PKT },
2263 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2264 { "tx_undersize", RMON_T_UNDERSIZE },
2265 { "tx_oversize", RMON_T_OVERSIZE },
2266 { "tx_fragment", RMON_T_FRAG },
2267 { "tx_jabber", RMON_T_JAB },
2268 { "tx_collision", RMON_T_COL },
2269 { "tx_64byte", RMON_T_P64 },
2270 { "tx_65to127byte", RMON_T_P65TO127 },
2271 { "tx_128to255byte", RMON_T_P128TO255 },
2272 { "tx_256to511byte", RMON_T_P256TO511 },
2273 { "tx_512to1023byte", RMON_T_P512TO1023 },
2274 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2275 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2276 { "tx_octets", RMON_T_OCTETS },
2277
2278 /* IEEE TX */
2279 { "IEEE_tx_drop", IEEE_T_DROP },
2280 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2281 { "IEEE_tx_1col", IEEE_T_1COL },
2282 { "IEEE_tx_mcol", IEEE_T_MCOL },
2283 { "IEEE_tx_def", IEEE_T_DEF },
2284 { "IEEE_tx_lcol", IEEE_T_LCOL },
2285 { "IEEE_tx_excol", IEEE_T_EXCOL },
2286 { "IEEE_tx_macerr", IEEE_T_MACERR },
2287 { "IEEE_tx_cserr", IEEE_T_CSERR },
2288 { "IEEE_tx_sqe", IEEE_T_SQE },
2289 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2290 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2291
2292 /* RMON RX */
2293 { "rx_packets", RMON_R_PACKETS },
2294 { "rx_broadcast", RMON_R_BC_PKT },
2295 { "rx_multicast", RMON_R_MC_PKT },
2296 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2297 { "rx_undersize", RMON_R_UNDERSIZE },
2298 { "rx_oversize", RMON_R_OVERSIZE },
2299 { "rx_fragment", RMON_R_FRAG },
2300 { "rx_jabber", RMON_R_JAB },
2301 { "rx_64byte", RMON_R_P64 },
2302 { "rx_65to127byte", RMON_R_P65TO127 },
2303 { "rx_128to255byte", RMON_R_P128TO255 },
2304 { "rx_256to511byte", RMON_R_P256TO511 },
2305 { "rx_512to1023byte", RMON_R_P512TO1023 },
2306 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2307 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2308 { "rx_octets", RMON_R_OCTETS },
2309
2310 /* IEEE RX */
2311 { "IEEE_rx_drop", IEEE_R_DROP },
2312 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2313 { "IEEE_rx_crc", IEEE_R_CRC },
2314 { "IEEE_rx_align", IEEE_R_ALIGN },
2315 { "IEEE_rx_macerr", IEEE_R_MACERR },
2316 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2317 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2318 };
2319
2320 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2321
2322 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2323 {
2324 struct fec_enet_private *fep = netdev_priv(dev);
2325 int i;
2326
2327 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2328 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2329 }
2330
2331 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2332 struct ethtool_stats *stats, u64 *data)
2333 {
2334 struct fec_enet_private *fep = netdev_priv(dev);
2335
2336 if (netif_running(dev))
2337 fec_enet_update_ethtool_stats(dev);
2338
2339 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2340 }
2341
2342 static void fec_enet_get_strings(struct net_device *netdev,
2343 u32 stringset, u8 *data)
2344 {
2345 int i;
2346 switch (stringset) {
2347 case ETH_SS_STATS:
2348 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2349 memcpy(data + i * ETH_GSTRING_LEN,
2350 fec_stats[i].name, ETH_GSTRING_LEN);
2351 break;
2352 }
2353 }
2354
2355 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2356 {
2357 switch (sset) {
2358 case ETH_SS_STATS:
2359 return ARRAY_SIZE(fec_stats);
2360 default:
2361 return -EOPNOTSUPP;
2362 }
2363 }
2364
2365 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2366 {
2367 struct fec_enet_private *fep = netdev_priv(dev);
2368 int i;
2369
2370 /* Disable MIB statistics counters */
2371 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2372
2373 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2374 writel(0, fep->hwp + fec_stats[i].offset);
2375
2376 /* Don't disable MIB statistics counters */
2377 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2378 }
2379
2380 #else /* !defined(CONFIG_M5272) */
2381 #define FEC_STATS_SIZE 0
2382 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2383 {
2384 }
2385
2386 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2387 {
2388 }
2389 #endif /* !defined(CONFIG_M5272) */
2390
2391 /* ITR clock source is enet system clock (clk_ahb).
2392 * TCTT unit is cycle_ns * 64 cycle
2393 * So, the ICTT value = X us / (cycle_ns * 64)
2394 */
2395 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2396 {
2397 struct fec_enet_private *fep = netdev_priv(ndev);
2398
2399 return us * (fep->itr_clk_rate / 64000) / 1000;
2400 }
2401
2402 /* Set threshold for interrupt coalescing */
2403 static void fec_enet_itr_coal_set(struct net_device *ndev)
2404 {
2405 struct fec_enet_private *fep = netdev_priv(ndev);
2406 int rx_itr, tx_itr;
2407
2408 /* Must be greater than zero to avoid unpredictable behavior */
2409 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2410 !fep->tx_time_itr || !fep->tx_pkts_itr)
2411 return;
2412
2413 /* Select enet system clock as Interrupt Coalescing
2414 * timer Clock Source
2415 */
2416 rx_itr = FEC_ITR_CLK_SEL;
2417 tx_itr = FEC_ITR_CLK_SEL;
2418
2419 /* set ICFT and ICTT */
2420 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2421 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2422 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2423 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2424
2425 rx_itr |= FEC_ITR_EN;
2426 tx_itr |= FEC_ITR_EN;
2427
2428 writel(tx_itr, fep->hwp + FEC_TXIC0);
2429 writel(rx_itr, fep->hwp + FEC_RXIC0);
2430 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2431 writel(tx_itr, fep->hwp + FEC_TXIC1);
2432 writel(rx_itr, fep->hwp + FEC_RXIC1);
2433 writel(tx_itr, fep->hwp + FEC_TXIC2);
2434 writel(rx_itr, fep->hwp + FEC_RXIC2);
2435 }
2436 }
2437
2438 static int
2439 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2440 {
2441 struct fec_enet_private *fep = netdev_priv(ndev);
2442
2443 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2444 return -EOPNOTSUPP;
2445
2446 ec->rx_coalesce_usecs = fep->rx_time_itr;
2447 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2448
2449 ec->tx_coalesce_usecs = fep->tx_time_itr;
2450 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2451
2452 return 0;
2453 }
2454
2455 static int
2456 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2457 {
2458 struct fec_enet_private *fep = netdev_priv(ndev);
2459 unsigned int cycle;
2460
2461 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2462 return -EOPNOTSUPP;
2463
2464 if (ec->rx_max_coalesced_frames > 255) {
2465 pr_err("Rx coalesced frames exceed hardware limitation\n");
2466 return -EINVAL;
2467 }
2468
2469 if (ec->tx_max_coalesced_frames > 255) {
2470 pr_err("Tx coalesced frame exceed hardware limitation\n");
2471 return -EINVAL;
2472 }
2473
2474 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2475 if (cycle > 0xFFFF) {
2476 pr_err("Rx coalesced usec exceed hardware limitation\n");
2477 return -EINVAL;
2478 }
2479
2480 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2481 if (cycle > 0xFFFF) {
2482 pr_err("Rx coalesced usec exceed hardware limitation\n");
2483 return -EINVAL;
2484 }
2485
2486 fep->rx_time_itr = ec->rx_coalesce_usecs;
2487 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2488
2489 fep->tx_time_itr = ec->tx_coalesce_usecs;
2490 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2491
2492 fec_enet_itr_coal_set(ndev);
2493
2494 return 0;
2495 }
2496
2497 static void fec_enet_itr_coal_init(struct net_device *ndev)
2498 {
2499 struct ethtool_coalesce ec;
2500
2501 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2502 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2503
2504 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2505 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2506
2507 fec_enet_set_coalesce(ndev, &ec);
2508 }
2509
2510 static int fec_enet_get_tunable(struct net_device *netdev,
2511 const struct ethtool_tunable *tuna,
2512 void *data)
2513 {
2514 struct fec_enet_private *fep = netdev_priv(netdev);
2515 int ret = 0;
2516
2517 switch (tuna->id) {
2518 case ETHTOOL_RX_COPYBREAK:
2519 *(u32 *)data = fep->rx_copybreak;
2520 break;
2521 default:
2522 ret = -EINVAL;
2523 break;
2524 }
2525
2526 return ret;
2527 }
2528
2529 static int fec_enet_set_tunable(struct net_device *netdev,
2530 const struct ethtool_tunable *tuna,
2531 const void *data)
2532 {
2533 struct fec_enet_private *fep = netdev_priv(netdev);
2534 int ret = 0;
2535
2536 switch (tuna->id) {
2537 case ETHTOOL_RX_COPYBREAK:
2538 fep->rx_copybreak = *(u32 *)data;
2539 break;
2540 default:
2541 ret = -EINVAL;
2542 break;
2543 }
2544
2545 return ret;
2546 }
2547
2548 static void
2549 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2550 {
2551 struct fec_enet_private *fep = netdev_priv(ndev);
2552
2553 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2554 wol->supported = WAKE_MAGIC;
2555 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2556 } else {
2557 wol->supported = wol->wolopts = 0;
2558 }
2559 }
2560
2561 static int
2562 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2563 {
2564 struct fec_enet_private *fep = netdev_priv(ndev);
2565
2566 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2567 return -EINVAL;
2568
2569 if (wol->wolopts & ~WAKE_MAGIC)
2570 return -EINVAL;
2571
2572 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2573 if (device_may_wakeup(&ndev->dev)) {
2574 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2575 if (fep->irq[0] > 0)
2576 enable_irq_wake(fep->irq[0]);
2577 } else {
2578 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2579 if (fep->irq[0] > 0)
2580 disable_irq_wake(fep->irq[0]);
2581 }
2582
2583 return 0;
2584 }
2585
2586 static const struct ethtool_ops fec_enet_ethtool_ops = {
2587 .get_drvinfo = fec_enet_get_drvinfo,
2588 .get_regs_len = fec_enet_get_regs_len,
2589 .get_regs = fec_enet_get_regs,
2590 .nway_reset = phy_ethtool_nway_reset,
2591 .get_link = ethtool_op_get_link,
2592 .get_coalesce = fec_enet_get_coalesce,
2593 .set_coalesce = fec_enet_set_coalesce,
2594 #ifndef CONFIG_M5272
2595 .get_pauseparam = fec_enet_get_pauseparam,
2596 .set_pauseparam = fec_enet_set_pauseparam,
2597 .get_strings = fec_enet_get_strings,
2598 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2599 .get_sset_count = fec_enet_get_sset_count,
2600 #endif
2601 .get_ts_info = fec_enet_get_ts_info,
2602 .get_tunable = fec_enet_get_tunable,
2603 .set_tunable = fec_enet_set_tunable,
2604 .get_wol = fec_enet_get_wol,
2605 .set_wol = fec_enet_set_wol,
2606 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2607 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2608 };
2609
2610 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2611 {
2612 struct fec_enet_private *fep = netdev_priv(ndev);
2613 struct phy_device *phydev = ndev->phydev;
2614
2615 if (!netif_running(ndev))
2616 return -EINVAL;
2617
2618 if (!phydev)
2619 return -ENODEV;
2620
2621 if (fep->bufdesc_ex) {
2622 if (cmd == SIOCSHWTSTAMP)
2623 return fec_ptp_set(ndev, rq);
2624 if (cmd == SIOCGHWTSTAMP)
2625 return fec_ptp_get(ndev, rq);
2626 }
2627
2628 return phy_mii_ioctl(phydev, rq, cmd);
2629 }
2630
2631 static void fec_enet_free_buffers(struct net_device *ndev)
2632 {
2633 struct fec_enet_private *fep = netdev_priv(ndev);
2634 unsigned int i;
2635 struct sk_buff *skb;
2636 struct bufdesc *bdp;
2637 struct fec_enet_priv_tx_q *txq;
2638 struct fec_enet_priv_rx_q *rxq;
2639 unsigned int q;
2640
2641 for (q = 0; q < fep->num_rx_queues; q++) {
2642 rxq = fep->rx_queue[q];
2643 bdp = rxq->bd.base;
2644 for (i = 0; i < rxq->bd.ring_size; i++) {
2645 skb = rxq->rx_skbuff[i];
2646 rxq->rx_skbuff[i] = NULL;
2647 if (skb) {
2648 dma_unmap_single(&fep->pdev->dev,
2649 fec32_to_cpu(bdp->cbd_bufaddr),
2650 FEC_ENET_RX_FRSIZE - fep->rx_align,
2651 DMA_FROM_DEVICE);
2652 dev_kfree_skb(skb);
2653 }
2654 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2655 }
2656 }
2657
2658 for (q = 0; q < fep->num_tx_queues; q++) {
2659 txq = fep->tx_queue[q];
2660 bdp = txq->bd.base;
2661 for (i = 0; i < txq->bd.ring_size; i++) {
2662 kfree(txq->tx_bounce[i]);
2663 txq->tx_bounce[i] = NULL;
2664 skb = txq->tx_skbuff[i];
2665 txq->tx_skbuff[i] = NULL;
2666 dev_kfree_skb(skb);
2667 }
2668 }
2669 }
2670
2671 static void fec_enet_free_queue(struct net_device *ndev)
2672 {
2673 struct fec_enet_private *fep = netdev_priv(ndev);
2674 int i;
2675 struct fec_enet_priv_tx_q *txq;
2676
2677 for (i = 0; i < fep->num_tx_queues; i++)
2678 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2679 txq = fep->tx_queue[i];
2680 dma_free_coherent(&fep->pdev->dev,
2681 txq->bd.ring_size * TSO_HEADER_SIZE,
2682 txq->tso_hdrs,
2683 txq->tso_hdrs_dma);
2684 }
2685
2686 for (i = 0; i < fep->num_rx_queues; i++)
2687 kfree(fep->rx_queue[i]);
2688 for (i = 0; i < fep->num_tx_queues; i++)
2689 kfree(fep->tx_queue[i]);
2690 }
2691
2692 static int fec_enet_alloc_queue(struct net_device *ndev)
2693 {
2694 struct fec_enet_private *fep = netdev_priv(ndev);
2695 int i;
2696 int ret = 0;
2697 struct fec_enet_priv_tx_q *txq;
2698
2699 for (i = 0; i < fep->num_tx_queues; i++) {
2700 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2701 if (!txq) {
2702 ret = -ENOMEM;
2703 goto alloc_failed;
2704 }
2705
2706 fep->tx_queue[i] = txq;
2707 txq->bd.ring_size = TX_RING_SIZE;
2708 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2709
2710 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2711 txq->tx_wake_threshold =
2712 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2713
2714 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2715 txq->bd.ring_size * TSO_HEADER_SIZE,
2716 &txq->tso_hdrs_dma,
2717 GFP_KERNEL);
2718 if (!txq->tso_hdrs) {
2719 ret = -ENOMEM;
2720 goto alloc_failed;
2721 }
2722 }
2723
2724 for (i = 0; i < fep->num_rx_queues; i++) {
2725 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2726 GFP_KERNEL);
2727 if (!fep->rx_queue[i]) {
2728 ret = -ENOMEM;
2729 goto alloc_failed;
2730 }
2731
2732 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2733 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2734 }
2735 return ret;
2736
2737 alloc_failed:
2738 fec_enet_free_queue(ndev);
2739 return ret;
2740 }
2741
2742 static int
2743 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2744 {
2745 struct fec_enet_private *fep = netdev_priv(ndev);
2746 unsigned int i;
2747 struct sk_buff *skb;
2748 struct bufdesc *bdp;
2749 struct fec_enet_priv_rx_q *rxq;
2750
2751 rxq = fep->rx_queue[queue];
2752 bdp = rxq->bd.base;
2753 for (i = 0; i < rxq->bd.ring_size; i++) {
2754 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2755 if (!skb)
2756 goto err_alloc;
2757
2758 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2759 dev_kfree_skb(skb);
2760 goto err_alloc;
2761 }
2762
2763 rxq->rx_skbuff[i] = skb;
2764 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2765
2766 if (fep->bufdesc_ex) {
2767 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2768 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2769 }
2770
2771 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2772 }
2773
2774 /* Set the last buffer to wrap. */
2775 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2776 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2777 return 0;
2778
2779 err_alloc:
2780 fec_enet_free_buffers(ndev);
2781 return -ENOMEM;
2782 }
2783
2784 static int
2785 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2786 {
2787 struct fec_enet_private *fep = netdev_priv(ndev);
2788 unsigned int i;
2789 struct bufdesc *bdp;
2790 struct fec_enet_priv_tx_q *txq;
2791
2792 txq = fep->tx_queue[queue];
2793 bdp = txq->bd.base;
2794 for (i = 0; i < txq->bd.ring_size; i++) {
2795 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2796 if (!txq->tx_bounce[i])
2797 goto err_alloc;
2798
2799 bdp->cbd_sc = cpu_to_fec16(0);
2800 bdp->cbd_bufaddr = cpu_to_fec32(0);
2801
2802 if (fep->bufdesc_ex) {
2803 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2804 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2805 }
2806
2807 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2808 }
2809
2810 /* Set the last buffer to wrap. */
2811 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2812 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2813
2814 return 0;
2815
2816 err_alloc:
2817 fec_enet_free_buffers(ndev);
2818 return -ENOMEM;
2819 }
2820
2821 static int fec_enet_alloc_buffers(struct net_device *ndev)
2822 {
2823 struct fec_enet_private *fep = netdev_priv(ndev);
2824 unsigned int i;
2825
2826 for (i = 0; i < fep->num_rx_queues; i++)
2827 if (fec_enet_alloc_rxq_buffers(ndev, i))
2828 return -ENOMEM;
2829
2830 for (i = 0; i < fep->num_tx_queues; i++)
2831 if (fec_enet_alloc_txq_buffers(ndev, i))
2832 return -ENOMEM;
2833 return 0;
2834 }
2835
2836 static int
2837 fec_enet_open(struct net_device *ndev)
2838 {
2839 struct fec_enet_private *fep = netdev_priv(ndev);
2840 int ret;
2841
2842 ret = pm_runtime_get_sync(&fep->pdev->dev);
2843 if (ret < 0)
2844 return ret;
2845
2846 pinctrl_pm_select_default_state(&fep->pdev->dev);
2847 ret = fec_enet_clk_enable(ndev, true);
2848 if (ret)
2849 goto clk_enable;
2850
2851 /* I should reset the ring buffers here, but I don't yet know
2852 * a simple way to do that.
2853 */
2854
2855 ret = fec_enet_alloc_buffers(ndev);
2856 if (ret)
2857 goto err_enet_alloc;
2858
2859 /* Init MAC prior to mii bus probe */
2860 fec_restart(ndev);
2861
2862 /* Probe and connect to PHY when open the interface */
2863 ret = fec_enet_mii_probe(ndev);
2864 if (ret)
2865 goto err_enet_mii_probe;
2866
2867 if (fep->quirks & FEC_QUIRK_ERR006687)
2868 imx6q_cpuidle_fec_irqs_used();
2869
2870 napi_enable(&fep->napi);
2871 phy_start(ndev->phydev);
2872 netif_tx_start_all_queues(ndev);
2873
2874 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2875 FEC_WOL_FLAG_ENABLE);
2876
2877 return 0;
2878
2879 err_enet_mii_probe:
2880 fec_enet_free_buffers(ndev);
2881 err_enet_alloc:
2882 fec_enet_clk_enable(ndev, false);
2883 clk_enable:
2884 pm_runtime_mark_last_busy(&fep->pdev->dev);
2885 pm_runtime_put_autosuspend(&fep->pdev->dev);
2886 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2887 return ret;
2888 }
2889
2890 static int
2891 fec_enet_close(struct net_device *ndev)
2892 {
2893 struct fec_enet_private *fep = netdev_priv(ndev);
2894
2895 phy_stop(ndev->phydev);
2896
2897 if (netif_device_present(ndev)) {
2898 napi_disable(&fep->napi);
2899 netif_tx_disable(ndev);
2900 fec_stop(ndev);
2901 }
2902
2903 phy_disconnect(ndev->phydev);
2904
2905 if (fep->quirks & FEC_QUIRK_ERR006687)
2906 imx6q_cpuidle_fec_irqs_unused();
2907
2908 fec_enet_update_ethtool_stats(ndev);
2909
2910 fec_enet_clk_enable(ndev, false);
2911 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2912 pm_runtime_mark_last_busy(&fep->pdev->dev);
2913 pm_runtime_put_autosuspend(&fep->pdev->dev);
2914
2915 fec_enet_free_buffers(ndev);
2916
2917 return 0;
2918 }
2919
2920 /* Set or clear the multicast filter for this adaptor.
2921 * Skeleton taken from sunlance driver.
2922 * The CPM Ethernet implementation allows Multicast as well as individual
2923 * MAC address filtering. Some of the drivers check to make sure it is
2924 * a group multicast address, and discard those that are not. I guess I
2925 * will do the same for now, but just remove the test if you want
2926 * individual filtering as well (do the upper net layers want or support
2927 * this kind of feature?).
2928 */
2929
2930 #define FEC_HASH_BITS 6 /* #bits in hash */
2931 #define CRC32_POLY 0xEDB88320
2932
2933 static void set_multicast_list(struct net_device *ndev)
2934 {
2935 struct fec_enet_private *fep = netdev_priv(ndev);
2936 struct netdev_hw_addr *ha;
2937 unsigned int i, bit, data, crc, tmp;
2938 unsigned char hash;
2939 unsigned int hash_high = 0, hash_low = 0;
2940
2941 if (ndev->flags & IFF_PROMISC) {
2942 tmp = readl(fep->hwp + FEC_R_CNTRL);
2943 tmp |= 0x8;
2944 writel(tmp, fep->hwp + FEC_R_CNTRL);
2945 return;
2946 }
2947
2948 tmp = readl(fep->hwp + FEC_R_CNTRL);
2949 tmp &= ~0x8;
2950 writel(tmp, fep->hwp + FEC_R_CNTRL);
2951
2952 if (ndev->flags & IFF_ALLMULTI) {
2953 /* Catch all multicast addresses, so set the
2954 * filter to all 1's
2955 */
2956 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2957 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2958
2959 return;
2960 }
2961
2962 /* Add the addresses in hash register */
2963 netdev_for_each_mc_addr(ha, ndev) {
2964 /* calculate crc32 value of mac address */
2965 crc = 0xffffffff;
2966
2967 for (i = 0; i < ndev->addr_len; i++) {
2968 data = ha->addr[i];
2969 for (bit = 0; bit < 8; bit++, data >>= 1) {
2970 crc = (crc >> 1) ^
2971 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2972 }
2973 }
2974
2975 /* only upper 6 bits (FEC_HASH_BITS) are used
2976 * which point to specific bit in the hash registers
2977 */
2978 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2979
2980 if (hash > 31)
2981 hash_high |= 1 << (hash - 32);
2982 else
2983 hash_low |= 1 << hash;
2984 }
2985
2986 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2987 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2988 }
2989
2990 /* Set a MAC change in hardware. */
2991 static int
2992 fec_set_mac_address(struct net_device *ndev, void *p)
2993 {
2994 struct fec_enet_private *fep = netdev_priv(ndev);
2995 struct sockaddr *addr = p;
2996
2997 if (addr) {
2998 if (!is_valid_ether_addr(addr->sa_data))
2999 return -EADDRNOTAVAIL;
3000 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3001 }
3002
3003 /* Add netif status check here to avoid system hang in below case:
3004 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3005 * After ethx down, fec all clocks are gated off and then register
3006 * access causes system hang.
3007 */
3008 if (!netif_running(ndev))
3009 return 0;
3010
3011 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3012 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3013 fep->hwp + FEC_ADDR_LOW);
3014 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3015 fep->hwp + FEC_ADDR_HIGH);
3016 return 0;
3017 }
3018
3019 #ifdef CONFIG_NET_POLL_CONTROLLER
3020 /**
3021 * fec_poll_controller - FEC Poll controller function
3022 * @dev: The FEC network adapter
3023 *
3024 * Polled functionality used by netconsole and others in non interrupt mode
3025 *
3026 */
3027 static void fec_poll_controller(struct net_device *dev)
3028 {
3029 int i;
3030 struct fec_enet_private *fep = netdev_priv(dev);
3031
3032 for (i = 0; i < FEC_IRQ_NUM; i++) {
3033 if (fep->irq[i] > 0) {
3034 disable_irq(fep->irq[i]);
3035 fec_enet_interrupt(fep->irq[i], dev);
3036 enable_irq(fep->irq[i]);
3037 }
3038 }
3039 }
3040 #endif
3041
3042 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3043 netdev_features_t features)
3044 {
3045 struct fec_enet_private *fep = netdev_priv(netdev);
3046 netdev_features_t changed = features ^ netdev->features;
3047
3048 netdev->features = features;
3049
3050 /* Receive checksum has been changed */
3051 if (changed & NETIF_F_RXCSUM) {
3052 if (features & NETIF_F_RXCSUM)
3053 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3054 else
3055 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3056 }
3057 }
3058
3059 static int fec_set_features(struct net_device *netdev,
3060 netdev_features_t features)
3061 {
3062 struct fec_enet_private *fep = netdev_priv(netdev);
3063 netdev_features_t changed = features ^ netdev->features;
3064
3065 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3066 napi_disable(&fep->napi);
3067 netif_tx_lock_bh(netdev);
3068 fec_stop(netdev);
3069 fec_enet_set_netdev_features(netdev, features);
3070 fec_restart(netdev);
3071 netif_tx_wake_all_queues(netdev);
3072 netif_tx_unlock_bh(netdev);
3073 napi_enable(&fep->napi);
3074 } else {
3075 fec_enet_set_netdev_features(netdev, features);
3076 }
3077
3078 return 0;
3079 }
3080
3081 static const struct net_device_ops fec_netdev_ops = {
3082 .ndo_open = fec_enet_open,
3083 .ndo_stop = fec_enet_close,
3084 .ndo_start_xmit = fec_enet_start_xmit,
3085 .ndo_set_rx_mode = set_multicast_list,
3086 .ndo_validate_addr = eth_validate_addr,
3087 .ndo_tx_timeout = fec_timeout,
3088 .ndo_set_mac_address = fec_set_mac_address,
3089 .ndo_do_ioctl = fec_enet_ioctl,
3090 #ifdef CONFIG_NET_POLL_CONTROLLER
3091 .ndo_poll_controller = fec_poll_controller,
3092 #endif
3093 .ndo_set_features = fec_set_features,
3094 };
3095
3096 static const unsigned short offset_des_active_rxq[] = {
3097 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3098 };
3099
3100 static const unsigned short offset_des_active_txq[] = {
3101 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3102 };
3103
3104 /*
3105 * XXX: We need to clean up on failure exits here.
3106 *
3107 */
3108 static int fec_enet_init(struct net_device *ndev)
3109 {
3110 struct fec_enet_private *fep = netdev_priv(ndev);
3111 struct bufdesc *cbd_base;
3112 dma_addr_t bd_dma;
3113 int bd_size;
3114 unsigned int i;
3115 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3116 sizeof(struct bufdesc);
3117 unsigned dsize_log2 = __fls(dsize);
3118
3119 WARN_ON(dsize != (1 << dsize_log2));
3120 #if defined(CONFIG_ARM)
3121 fep->rx_align = 0xf;
3122 fep->tx_align = 0xf;
3123 #else
3124 fep->rx_align = 0x3;
3125 fep->tx_align = 0x3;
3126 #endif
3127
3128 fec_enet_alloc_queue(ndev);
3129
3130 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3131
3132 /* Allocate memory for buffer descriptors. */
3133 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3134 GFP_KERNEL);
3135 if (!cbd_base) {
3136 return -ENOMEM;
3137 }
3138
3139 memset(cbd_base, 0, bd_size);
3140
3141 /* Get the Ethernet address */
3142 fec_get_mac(ndev);
3143 /* make sure MAC we just acquired is programmed into the hw */
3144 fec_set_mac_address(ndev, NULL);
3145
3146 /* Set receive and transmit descriptor base. */
3147 for (i = 0; i < fep->num_rx_queues; i++) {
3148 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3149 unsigned size = dsize * rxq->bd.ring_size;
3150
3151 rxq->bd.qid = i;
3152 rxq->bd.base = cbd_base;
3153 rxq->bd.cur = cbd_base;
3154 rxq->bd.dma = bd_dma;
3155 rxq->bd.dsize = dsize;
3156 rxq->bd.dsize_log2 = dsize_log2;
3157 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3158 bd_dma += size;
3159 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3160 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3161 }
3162
3163 for (i = 0; i < fep->num_tx_queues; i++) {
3164 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3165 unsigned size = dsize * txq->bd.ring_size;
3166
3167 txq->bd.qid = i;
3168 txq->bd.base = cbd_base;
3169 txq->bd.cur = cbd_base;
3170 txq->bd.dma = bd_dma;
3171 txq->bd.dsize = dsize;
3172 txq->bd.dsize_log2 = dsize_log2;
3173 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3174 bd_dma += size;
3175 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3176 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3177 }
3178
3179
3180 /* The FEC Ethernet specific entries in the device structure */
3181 ndev->watchdog_timeo = TX_TIMEOUT;
3182 ndev->netdev_ops = &fec_netdev_ops;
3183 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3184
3185 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3186 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3187
3188 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3189 /* enable hw VLAN support */
3190 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3191
3192 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3193 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3194
3195 /* enable hw accelerator */
3196 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3197 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3198 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3199 }
3200
3201 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3202 fep->tx_align = 0;
3203 fep->rx_align = 0x3f;
3204 }
3205
3206 ndev->hw_features = ndev->features;
3207
3208 fec_restart(ndev);
3209
3210 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3211 fec_enet_clear_ethtool_stats(ndev);
3212 else
3213 fec_enet_update_ethtool_stats(ndev);
3214
3215 return 0;
3216 }
3217
3218 #ifdef CONFIG_OF
3219 static int fec_reset_phy(struct platform_device *pdev)
3220 {
3221 int err, phy_reset;
3222 bool active_high = false;
3223 int msec = 1, phy_post_delay = 0;
3224 struct device_node *np = pdev->dev.of_node;
3225
3226 if (!np)
3227 return 0;
3228
3229 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3230 /* A sane reset duration should not be longer than 1s */
3231 if (!err && msec > 1000)
3232 msec = 1;
3233
3234 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3235 if (phy_reset == -EPROBE_DEFER)
3236 return phy_reset;
3237 else if (!gpio_is_valid(phy_reset))
3238 return 0;
3239
3240 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3241 /* valid reset duration should be less than 1s */
3242 if (!err && phy_post_delay > 1000)
3243 return -EINVAL;
3244
3245 active_high = of_property_read_bool(np, "phy-reset-active-high");
3246
3247 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3248 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3249 "phy-reset");
3250 if (err) {
3251 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3252 return err;
3253 }
3254
3255 if (msec > 20)
3256 msleep(msec);
3257 else
3258 usleep_range(msec * 1000, msec * 1000 + 1000);
3259
3260 gpio_set_value_cansleep(phy_reset, !active_high);
3261
3262 if (!phy_post_delay)
3263 return 0;
3264
3265 if (phy_post_delay > 20)
3266 msleep(phy_post_delay);
3267 else
3268 usleep_range(phy_post_delay * 1000,
3269 phy_post_delay * 1000 + 1000);
3270
3271 return 0;
3272 }
3273 #else /* CONFIG_OF */
3274 static int fec_reset_phy(struct platform_device *pdev)
3275 {
3276 /*
3277 * In case of platform probe, the reset has been done
3278 * by machine code.
3279 */
3280 return 0;
3281 }
3282 #endif /* CONFIG_OF */
3283
3284 static void
3285 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3286 {
3287 struct device_node *np = pdev->dev.of_node;
3288
3289 *num_tx = *num_rx = 1;
3290
3291 if (!np || !of_device_is_available(np))
3292 return;
3293
3294 /* parse the num of tx and rx queues */
3295 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3296
3297 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3298
3299 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3300 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3301 *num_tx);
3302 *num_tx = 1;
3303 return;
3304 }
3305
3306 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3307 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3308 *num_rx);
3309 *num_rx = 1;
3310 return;
3311 }
3312
3313 }
3314
3315 static int
3316 fec_probe(struct platform_device *pdev)
3317 {
3318 struct fec_enet_private *fep;
3319 struct fec_platform_data *pdata;
3320 struct net_device *ndev;
3321 int i, irq, ret = 0;
3322 struct resource *r;
3323 const struct of_device_id *of_id;
3324 static int dev_id;
3325 struct device_node *np = pdev->dev.of_node, *phy_node;
3326 int num_tx_qs;
3327 int num_rx_qs;
3328
3329 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3330
3331 /* Init network device */
3332 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3333 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3334 if (!ndev)
3335 return -ENOMEM;
3336
3337 SET_NETDEV_DEV(ndev, &pdev->dev);
3338
3339 /* setup board info structure */
3340 fep = netdev_priv(ndev);
3341
3342 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3343 if (of_id)
3344 pdev->id_entry = of_id->data;
3345 fep->quirks = pdev->id_entry->driver_data;
3346
3347 fep->netdev = ndev;
3348 fep->num_rx_queues = num_rx_qs;
3349 fep->num_tx_queues = num_tx_qs;
3350
3351 #if !defined(CONFIG_M5272)
3352 /* default enable pause frame auto negotiation */
3353 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3354 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3355 #endif
3356
3357 /* Select default pin state */
3358 pinctrl_pm_select_default_state(&pdev->dev);
3359
3360 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3361 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3362 if (IS_ERR(fep->hwp)) {
3363 ret = PTR_ERR(fep->hwp);
3364 goto failed_ioremap;
3365 }
3366
3367 fep->pdev = pdev;
3368 fep->dev_id = dev_id++;
3369
3370 platform_set_drvdata(pdev, ndev);
3371
3372 if ((of_machine_is_compatible("fsl,imx6q") ||
3373 of_machine_is_compatible("fsl,imx6dl")) &&
3374 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3375 fep->quirks |= FEC_QUIRK_ERR006687;
3376
3377 if (of_get_property(np, "fsl,magic-packet", NULL))
3378 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3379
3380 phy_node = of_parse_phandle(np, "phy-handle", 0);
3381 if (!phy_node && of_phy_is_fixed_link(np)) {
3382 ret = of_phy_register_fixed_link(np);
3383 if (ret < 0) {
3384 dev_err(&pdev->dev,
3385 "broken fixed-link specification\n");
3386 goto failed_phy;
3387 }
3388 phy_node = of_node_get(np);
3389 }
3390 fep->phy_node = phy_node;
3391
3392 ret = of_get_phy_mode(pdev->dev.of_node);
3393 if (ret < 0) {
3394 pdata = dev_get_platdata(&pdev->dev);
3395 if (pdata)
3396 fep->phy_interface = pdata->phy;
3397 else
3398 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3399 } else {
3400 fep->phy_interface = ret;
3401 }
3402
3403 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3404 if (IS_ERR(fep->clk_ipg)) {
3405 ret = PTR_ERR(fep->clk_ipg);
3406 goto failed_clk;
3407 }
3408
3409 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3410 if (IS_ERR(fep->clk_ahb)) {
3411 ret = PTR_ERR(fep->clk_ahb);
3412 goto failed_clk;
3413 }
3414
3415 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3416
3417 /* enet_out is optional, depends on board */
3418 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3419 if (IS_ERR(fep->clk_enet_out))
3420 fep->clk_enet_out = NULL;
3421
3422 fep->ptp_clk_on = false;
3423 mutex_init(&fep->ptp_clk_mutex);
3424
3425 /* clk_ref is optional, depends on board */
3426 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3427 if (IS_ERR(fep->clk_ref))
3428 fep->clk_ref = NULL;
3429
3430 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3431 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3432 if (IS_ERR(fep->clk_ptp)) {
3433 fep->clk_ptp = NULL;
3434 fep->bufdesc_ex = false;
3435 }
3436
3437 ret = fec_enet_clk_enable(ndev, true);
3438 if (ret)
3439 goto failed_clk;
3440
3441 ret = clk_prepare_enable(fep->clk_ipg);
3442 if (ret)
3443 goto failed_clk_ipg;
3444
3445 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3446 if (!IS_ERR(fep->reg_phy)) {
3447 ret = regulator_enable(fep->reg_phy);
3448 if (ret) {
3449 dev_err(&pdev->dev,
3450 "Failed to enable phy regulator: %d\n", ret);
3451 clk_disable_unprepare(fep->clk_ipg);
3452 goto failed_regulator;
3453 }
3454 } else {
3455 fep->reg_phy = NULL;
3456 }
3457
3458 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3459 pm_runtime_use_autosuspend(&pdev->dev);
3460 pm_runtime_get_noresume(&pdev->dev);
3461 pm_runtime_set_active(&pdev->dev);
3462 pm_runtime_enable(&pdev->dev);
3463
3464 ret = fec_reset_phy(pdev);
3465 if (ret)
3466 goto failed_reset;
3467
3468 if (fep->bufdesc_ex)
3469 fec_ptp_init(pdev);
3470
3471 ret = fec_enet_init(ndev);
3472 if (ret)
3473 goto failed_init;
3474
3475 for (i = 0; i < FEC_IRQ_NUM; i++) {
3476 irq = platform_get_irq(pdev, i);
3477 if (irq < 0) {
3478 if (i)
3479 break;
3480 ret = irq;
3481 goto failed_irq;
3482 }
3483 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3484 0, pdev->name, ndev);
3485 if (ret)
3486 goto failed_irq;
3487
3488 fep->irq[i] = irq;
3489 }
3490
3491 init_completion(&fep->mdio_done);
3492 ret = fec_enet_mii_init(pdev);
3493 if (ret)
3494 goto failed_mii_init;
3495
3496 /* Carrier starts down, phylib will bring it up */
3497 netif_carrier_off(ndev);
3498 fec_enet_clk_enable(ndev, false);
3499 pinctrl_pm_select_sleep_state(&pdev->dev);
3500
3501 ret = register_netdev(ndev);
3502 if (ret)
3503 goto failed_register;
3504
3505 device_init_wakeup(&ndev->dev, fep->wol_flag &
3506 FEC_WOL_HAS_MAGIC_PACKET);
3507
3508 if (fep->bufdesc_ex && fep->ptp_clock)
3509 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3510
3511 fep->rx_copybreak = COPYBREAK_DEFAULT;
3512 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3513
3514 pm_runtime_mark_last_busy(&pdev->dev);
3515 pm_runtime_put_autosuspend(&pdev->dev);
3516
3517 return 0;
3518
3519 failed_register:
3520 fec_enet_mii_remove(fep);
3521 failed_mii_init:
3522 failed_irq:
3523 failed_init:
3524 fec_ptp_stop(pdev);
3525 if (fep->reg_phy)
3526 regulator_disable(fep->reg_phy);
3527 failed_reset:
3528 pm_runtime_put(&pdev->dev);
3529 pm_runtime_disable(&pdev->dev);
3530 failed_regulator:
3531 failed_clk_ipg:
3532 fec_enet_clk_enable(ndev, false);
3533 failed_clk:
3534 if (of_phy_is_fixed_link(np))
3535 of_phy_deregister_fixed_link(np);
3536 failed_phy:
3537 of_node_put(phy_node);
3538 failed_ioremap:
3539 free_netdev(ndev);
3540
3541 return ret;
3542 }
3543
3544 static int
3545 fec_drv_remove(struct platform_device *pdev)
3546 {
3547 struct net_device *ndev = platform_get_drvdata(pdev);
3548 struct fec_enet_private *fep = netdev_priv(ndev);
3549 struct device_node *np = pdev->dev.of_node;
3550
3551 cancel_work_sync(&fep->tx_timeout_work);
3552 fec_ptp_stop(pdev);
3553 unregister_netdev(ndev);
3554 fec_enet_mii_remove(fep);
3555 if (fep->reg_phy)
3556 regulator_disable(fep->reg_phy);
3557 if (of_phy_is_fixed_link(np))
3558 of_phy_deregister_fixed_link(np);
3559 of_node_put(fep->phy_node);
3560 free_netdev(ndev);
3561
3562 return 0;
3563 }
3564
3565 static int __maybe_unused fec_suspend(struct device *dev)
3566 {
3567 struct net_device *ndev = dev_get_drvdata(dev);
3568 struct fec_enet_private *fep = netdev_priv(ndev);
3569
3570 rtnl_lock();
3571 if (netif_running(ndev)) {
3572 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3573 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3574 phy_stop(ndev->phydev);
3575 napi_disable(&fep->napi);
3576 netif_tx_lock_bh(ndev);
3577 netif_device_detach(ndev);
3578 netif_tx_unlock_bh(ndev);
3579 fec_stop(ndev);
3580 fec_enet_clk_enable(ndev, false);
3581 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3582 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3583 }
3584 rtnl_unlock();
3585
3586 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3587 regulator_disable(fep->reg_phy);
3588
3589 /* SOC supply clock to phy, when clock is disabled, phy link down
3590 * SOC control phy regulator, when regulator is disabled, phy link down
3591 */
3592 if (fep->clk_enet_out || fep->reg_phy)
3593 fep->link = 0;
3594
3595 return 0;
3596 }
3597
3598 static int __maybe_unused fec_resume(struct device *dev)
3599 {
3600 struct net_device *ndev = dev_get_drvdata(dev);
3601 struct fec_enet_private *fep = netdev_priv(ndev);
3602 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3603 int ret;
3604 int val;
3605
3606 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3607 ret = regulator_enable(fep->reg_phy);
3608 if (ret)
3609 return ret;
3610 }
3611
3612 rtnl_lock();
3613 if (netif_running(ndev)) {
3614 ret = fec_enet_clk_enable(ndev, true);
3615 if (ret) {
3616 rtnl_unlock();
3617 goto failed_clk;
3618 }
3619 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3620 if (pdata && pdata->sleep_mode_enable)
3621 pdata->sleep_mode_enable(false);
3622 val = readl(fep->hwp + FEC_ECNTRL);
3623 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3624 writel(val, fep->hwp + FEC_ECNTRL);
3625 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3626 } else {
3627 pinctrl_pm_select_default_state(&fep->pdev->dev);
3628 }
3629 fec_restart(ndev);
3630 netif_tx_lock_bh(ndev);
3631 netif_device_attach(ndev);
3632 netif_tx_unlock_bh(ndev);
3633 napi_enable(&fep->napi);
3634 phy_start(ndev->phydev);
3635 }
3636 rtnl_unlock();
3637
3638 return 0;
3639
3640 failed_clk:
3641 if (fep->reg_phy)
3642 regulator_disable(fep->reg_phy);
3643 return ret;
3644 }
3645
3646 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3647 {
3648 struct net_device *ndev = dev_get_drvdata(dev);
3649 struct fec_enet_private *fep = netdev_priv(ndev);
3650
3651 clk_disable_unprepare(fep->clk_ipg);
3652
3653 return 0;
3654 }
3655
3656 static int __maybe_unused fec_runtime_resume(struct device *dev)
3657 {
3658 struct net_device *ndev = dev_get_drvdata(dev);
3659 struct fec_enet_private *fep = netdev_priv(ndev);
3660
3661 return clk_prepare_enable(fep->clk_ipg);
3662 }
3663
3664 static const struct dev_pm_ops fec_pm_ops = {
3665 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3666 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3667 };
3668
3669 static struct platform_driver fec_driver = {
3670 .driver = {
3671 .name = DRIVER_NAME,
3672 .pm = &fec_pm_ops,
3673 .of_match_table = fec_dt_ids,
3674 },
3675 .id_table = fec_devtype,
3676 .probe = fec_probe,
3677 .remove = fec_drv_remove,
3678 };
3679
3680 module_platform_driver(fec_driver);
3681
3682 MODULE_ALIAS("platform:"DRIVER_NAME);
3683 MODULE_LICENSE("GPL");