]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/freescale/fec_main.c
Merge remote-tracking branch 'asoc/topic/pcm512x' into asoc-next
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64
65 #include <asm/cacheflush.h>
66
67 #include "fec.h"
68
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71
72 #define DRIVER_NAME "fec"
73
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE (1 << 5)
78 #define FEC_ENET_RSEM_V 0x84
79 #define FEC_ENET_RSFL_V 16
80 #define FEC_ENET_RAEM_V 0x8
81 #define FEC_ENET_RAFL_V 0x8
82 #define FEC_ENET_OPD_V 0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
84
85 static struct platform_device_id fec_devtype[] = {
86 {
87 /* keep it for coldfire */
88 .name = DRIVER_NAME,
89 .driver_data = 0,
90 }, {
91 .name = "imx25-fec",
92 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 }, {
94 .name = "imx27-fec",
95 .driver_data = FEC_QUIRK_MIB_CLEAR,
96 }, {
97 .name = "imx28-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 }, {
101 .name = "imx6q-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 FEC_QUIRK_HAS_RACC,
106 }, {
107 .name = "mvf600-fec",
108 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 }, {
110 .name = "imx6sx-fec",
111 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 }, {
117 .name = "imx6ul-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 FEC_QUIRK_HAS_COALESCE,
123 }, {
124 /* sentinel */
125 }
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128
129 enum imx_fec_type {
130 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
131 IMX27_FEC, /* runs on i.mx27/35/51 */
132 IMX28_FEC,
133 IMX6Q_FEC,
134 MVF600_FEC,
135 IMX6SX_FEC,
136 IMX6UL_FEC,
137 };
138
139 static const struct of_device_id fec_dt_ids[] = {
140 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 { /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154
155 #if defined(CONFIG_M5272)
156 /*
157 * Some hardware gets it MAC address out of local flash memory.
158 * if this is non-zero then assume it is the address to get MAC from.
159 */
160 #if defined(CONFIG_NETtel)
161 #define FEC_FLASHMAC 0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define FEC_FLASHMAC 0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define FEC_FLASHMAC 0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define FEC_FLASHMAC (0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC 0xffc0406b
170 #else
171 #define FEC_FLASHMAC 0
172 #endif
173 #endif /* CONFIG_M5272 */
174
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176 *
177 * 2048 byte skbufs are allocated. However, alignment requirements
178 * varies between FEC variants. Worst case is 64, so round down by 64.
179 */
180 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE 64
182
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS (1 << 1)
185 #define FEC_RACC_PRODIS (1 << 2)
186 #define FEC_RACC_SHIFT16 BIT(7)
187 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
188
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
191
192 /*
193 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194 * size bits. Other FEC hardware does not, so we need to take that into
195 * account when setting it.
196 */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
200 #else
201 #define OPT_FRAME_SIZE 0
202 #endif
203
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST (1 << 30)
206 #define FEC_MMFR_OP_READ (2 << 28)
207 #define FEC_MMFR_OP_WRITE (1 << 28)
208 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
210 #define FEC_MMFR_TA (2 << 16)
211 #define FEC_MMFR_DATA(v) (v & 0xffff)
212 /* FEC ECR bits definition */
213 #define FEC_ECR_MAGICEN (1 << 2)
214 #define FEC_ECR_SLEEP (1 << 3)
215
216 #define FEC_MII_TIMEOUT 30000 /* us */
217
218 /* Transmitter timeout */
219 #define TX_TIMEOUT (2 * HZ)
220
221 #define FEC_PAUSE_FLAG_AUTONEG 0x1
222 #define FEC_PAUSE_FLAG_ENABLE 0x2
223 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
224 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
225 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
226
227 #define COPYBREAK_DEFAULT 256
228
229 /* Max number of allowed TCP segments for software TSO */
230 #define FEC_MAX_TSO_SEGS 100
231 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
232
233 #define IS_TSO_HEADER(txq, addr) \
234 ((addr >= txq->tso_hdrs_dma) && \
235 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
236
237 static int mii_cnt;
238
239 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
240 struct bufdesc_prop *bd)
241 {
242 return (bdp >= bd->last) ? bd->base
243 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
244 }
245
246 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
247 struct bufdesc_prop *bd)
248 {
249 return (bdp <= bd->base) ? bd->last
250 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
251 }
252
253 static int fec_enet_get_bd_index(struct bufdesc *bdp,
254 struct bufdesc_prop *bd)
255 {
256 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
257 }
258
259 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
260 {
261 int entries;
262
263 entries = (((const char *)txq->dirty_tx -
264 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
265
266 return entries >= 0 ? entries : entries + txq->bd.ring_size;
267 }
268
269 static void swap_buffer(void *bufaddr, int len)
270 {
271 int i;
272 unsigned int *buf = bufaddr;
273
274 for (i = 0; i < len; i += 4, buf++)
275 swab32s(buf);
276 }
277
278 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
279 {
280 int i;
281 unsigned int *src = src_buf;
282 unsigned int *dst = dst_buf;
283
284 for (i = 0; i < len; i += 4, src++, dst++)
285 *dst = swab32p(src);
286 }
287
288 static void fec_dump(struct net_device *ndev)
289 {
290 struct fec_enet_private *fep = netdev_priv(ndev);
291 struct bufdesc *bdp;
292 struct fec_enet_priv_tx_q *txq;
293 int index = 0;
294
295 netdev_info(ndev, "TX ring dump\n");
296 pr_info("Nr SC addr len SKB\n");
297
298 txq = fep->tx_queue[0];
299 bdp = txq->bd.base;
300
301 do {
302 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
303 index,
304 bdp == txq->bd.cur ? 'S' : ' ',
305 bdp == txq->dirty_tx ? 'H' : ' ',
306 fec16_to_cpu(bdp->cbd_sc),
307 fec32_to_cpu(bdp->cbd_bufaddr),
308 fec16_to_cpu(bdp->cbd_datlen),
309 txq->tx_skbuff[index]);
310 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
311 index++;
312 } while (bdp != txq->bd.base);
313 }
314
315 static inline bool is_ipv4_pkt(struct sk_buff *skb)
316 {
317 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
318 }
319
320 static int
321 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
322 {
323 /* Only run for packets requiring a checksum. */
324 if (skb->ip_summed != CHECKSUM_PARTIAL)
325 return 0;
326
327 if (unlikely(skb_cow_head(skb, 0)))
328 return -1;
329
330 if (is_ipv4_pkt(skb))
331 ip_hdr(skb)->check = 0;
332 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
333
334 return 0;
335 }
336
337 static struct bufdesc *
338 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
339 struct sk_buff *skb,
340 struct net_device *ndev)
341 {
342 struct fec_enet_private *fep = netdev_priv(ndev);
343 struct bufdesc *bdp = txq->bd.cur;
344 struct bufdesc_ex *ebdp;
345 int nr_frags = skb_shinfo(skb)->nr_frags;
346 int frag, frag_len;
347 unsigned short status;
348 unsigned int estatus = 0;
349 skb_frag_t *this_frag;
350 unsigned int index;
351 void *bufaddr;
352 dma_addr_t addr;
353 int i;
354
355 for (frag = 0; frag < nr_frags; frag++) {
356 this_frag = &skb_shinfo(skb)->frags[frag];
357 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
358 ebdp = (struct bufdesc_ex *)bdp;
359
360 status = fec16_to_cpu(bdp->cbd_sc);
361 status &= ~BD_ENET_TX_STATS;
362 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
363 frag_len = skb_shinfo(skb)->frags[frag].size;
364
365 /* Handle the last BD specially */
366 if (frag == nr_frags - 1) {
367 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
368 if (fep->bufdesc_ex) {
369 estatus |= BD_ENET_TX_INT;
370 if (unlikely(skb_shinfo(skb)->tx_flags &
371 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
372 estatus |= BD_ENET_TX_TS;
373 }
374 }
375
376 if (fep->bufdesc_ex) {
377 if (fep->quirks & FEC_QUIRK_HAS_AVB)
378 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
379 if (skb->ip_summed == CHECKSUM_PARTIAL)
380 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
381 ebdp->cbd_bdu = 0;
382 ebdp->cbd_esc = cpu_to_fec32(estatus);
383 }
384
385 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
386
387 index = fec_enet_get_bd_index(bdp, &txq->bd);
388 if (((unsigned long) bufaddr) & fep->tx_align ||
389 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
390 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
391 bufaddr = txq->tx_bounce[index];
392
393 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
394 swap_buffer(bufaddr, frag_len);
395 }
396
397 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
398 DMA_TO_DEVICE);
399 if (dma_mapping_error(&fep->pdev->dev, addr)) {
400 if (net_ratelimit())
401 netdev_err(ndev, "Tx DMA memory map failed\n");
402 goto dma_mapping_error;
403 }
404
405 bdp->cbd_bufaddr = cpu_to_fec32(addr);
406 bdp->cbd_datlen = cpu_to_fec16(frag_len);
407 /* Make sure the updates to rest of the descriptor are
408 * performed before transferring ownership.
409 */
410 wmb();
411 bdp->cbd_sc = cpu_to_fec16(status);
412 }
413
414 return bdp;
415 dma_mapping_error:
416 bdp = txq->bd.cur;
417 for (i = 0; i < frag; i++) {
418 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
419 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
420 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
421 }
422 return ERR_PTR(-ENOMEM);
423 }
424
425 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
426 struct sk_buff *skb, struct net_device *ndev)
427 {
428 struct fec_enet_private *fep = netdev_priv(ndev);
429 int nr_frags = skb_shinfo(skb)->nr_frags;
430 struct bufdesc *bdp, *last_bdp;
431 void *bufaddr;
432 dma_addr_t addr;
433 unsigned short status;
434 unsigned short buflen;
435 unsigned int estatus = 0;
436 unsigned int index;
437 int entries_free;
438
439 entries_free = fec_enet_get_free_txdesc_num(txq);
440 if (entries_free < MAX_SKB_FRAGS + 1) {
441 dev_kfree_skb_any(skb);
442 if (net_ratelimit())
443 netdev_err(ndev, "NOT enough BD for SG!\n");
444 return NETDEV_TX_OK;
445 }
446
447 /* Protocol checksum off-load for TCP and UDP. */
448 if (fec_enet_clear_csum(skb, ndev)) {
449 dev_kfree_skb_any(skb);
450 return NETDEV_TX_OK;
451 }
452
453 /* Fill in a Tx ring entry */
454 bdp = txq->bd.cur;
455 last_bdp = bdp;
456 status = fec16_to_cpu(bdp->cbd_sc);
457 status &= ~BD_ENET_TX_STATS;
458
459 /* Set buffer length and buffer pointer */
460 bufaddr = skb->data;
461 buflen = skb_headlen(skb);
462
463 index = fec_enet_get_bd_index(bdp, &txq->bd);
464 if (((unsigned long) bufaddr) & fep->tx_align ||
465 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 memcpy(txq->tx_bounce[index], skb->data, buflen);
467 bufaddr = txq->tx_bounce[index];
468
469 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 swap_buffer(bufaddr, buflen);
471 }
472
473 /* Push the data cache so the CPM does not get stale memory data. */
474 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
475 if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 dev_kfree_skb_any(skb);
477 if (net_ratelimit())
478 netdev_err(ndev, "Tx DMA memory map failed\n");
479 return NETDEV_TX_OK;
480 }
481
482 if (nr_frags) {
483 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
484 if (IS_ERR(last_bdp)) {
485 dma_unmap_single(&fep->pdev->dev, addr,
486 buflen, DMA_TO_DEVICE);
487 dev_kfree_skb_any(skb);
488 return NETDEV_TX_OK;
489 }
490 } else {
491 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
492 if (fep->bufdesc_ex) {
493 estatus = BD_ENET_TX_INT;
494 if (unlikely(skb_shinfo(skb)->tx_flags &
495 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
496 estatus |= BD_ENET_TX_TS;
497 }
498 }
499 bdp->cbd_bufaddr = cpu_to_fec32(addr);
500 bdp->cbd_datlen = cpu_to_fec16(buflen);
501
502 if (fep->bufdesc_ex) {
503
504 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
505
506 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
507 fep->hwts_tx_en))
508 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
509
510 if (fep->quirks & FEC_QUIRK_HAS_AVB)
511 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
512
513 if (skb->ip_summed == CHECKSUM_PARTIAL)
514 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515
516 ebdp->cbd_bdu = 0;
517 ebdp->cbd_esc = cpu_to_fec32(estatus);
518 }
519
520 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
521 /* Save skb pointer */
522 txq->tx_skbuff[index] = skb;
523
524 /* Make sure the updates to rest of the descriptor are performed before
525 * transferring ownership.
526 */
527 wmb();
528
529 /* Send it on its way. Tell FEC it's ready, interrupt when done,
530 * it's the last BD of the frame, and to put the CRC on the end.
531 */
532 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
533 bdp->cbd_sc = cpu_to_fec16(status);
534
535 /* If this was the last BD in the ring, start at the beginning again. */
536 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
537
538 skb_tx_timestamp(skb);
539
540 /* Make sure the update to bdp and tx_skbuff are performed before
541 * txq->bd.cur.
542 */
543 wmb();
544 txq->bd.cur = bdp;
545
546 /* Trigger transmission start */
547 writel(0, txq->bd.reg_desc_active);
548
549 return 0;
550 }
551
552 static int
553 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
554 struct net_device *ndev,
555 struct bufdesc *bdp, int index, char *data,
556 int size, bool last_tcp, bool is_last)
557 {
558 struct fec_enet_private *fep = netdev_priv(ndev);
559 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
560 unsigned short status;
561 unsigned int estatus = 0;
562 dma_addr_t addr;
563
564 status = fec16_to_cpu(bdp->cbd_sc);
565 status &= ~BD_ENET_TX_STATS;
566
567 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
568
569 if (((unsigned long) data) & fep->tx_align ||
570 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
571 memcpy(txq->tx_bounce[index], data, size);
572 data = txq->tx_bounce[index];
573
574 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
575 swap_buffer(data, size);
576 }
577
578 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
579 if (dma_mapping_error(&fep->pdev->dev, addr)) {
580 dev_kfree_skb_any(skb);
581 if (net_ratelimit())
582 netdev_err(ndev, "Tx DMA memory map failed\n");
583 return NETDEV_TX_BUSY;
584 }
585
586 bdp->cbd_datlen = cpu_to_fec16(size);
587 bdp->cbd_bufaddr = cpu_to_fec32(addr);
588
589 if (fep->bufdesc_ex) {
590 if (fep->quirks & FEC_QUIRK_HAS_AVB)
591 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
592 if (skb->ip_summed == CHECKSUM_PARTIAL)
593 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
594 ebdp->cbd_bdu = 0;
595 ebdp->cbd_esc = cpu_to_fec32(estatus);
596 }
597
598 /* Handle the last BD specially */
599 if (last_tcp)
600 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
601 if (is_last) {
602 status |= BD_ENET_TX_INTR;
603 if (fep->bufdesc_ex)
604 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
605 }
606
607 bdp->cbd_sc = cpu_to_fec16(status);
608
609 return 0;
610 }
611
612 static int
613 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
614 struct sk_buff *skb, struct net_device *ndev,
615 struct bufdesc *bdp, int index)
616 {
617 struct fec_enet_private *fep = netdev_priv(ndev);
618 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
619 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
620 void *bufaddr;
621 unsigned long dmabuf;
622 unsigned short status;
623 unsigned int estatus = 0;
624
625 status = fec16_to_cpu(bdp->cbd_sc);
626 status &= ~BD_ENET_TX_STATS;
627 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
628
629 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
630 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
631 if (((unsigned long)bufaddr) & fep->tx_align ||
632 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
633 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
634 bufaddr = txq->tx_bounce[index];
635
636 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
637 swap_buffer(bufaddr, hdr_len);
638
639 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
640 hdr_len, DMA_TO_DEVICE);
641 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
642 dev_kfree_skb_any(skb);
643 if (net_ratelimit())
644 netdev_err(ndev, "Tx DMA memory map failed\n");
645 return NETDEV_TX_BUSY;
646 }
647 }
648
649 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
650 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
651
652 if (fep->bufdesc_ex) {
653 if (fep->quirks & FEC_QUIRK_HAS_AVB)
654 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
655 if (skb->ip_summed == CHECKSUM_PARTIAL)
656 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
657 ebdp->cbd_bdu = 0;
658 ebdp->cbd_esc = cpu_to_fec32(estatus);
659 }
660
661 bdp->cbd_sc = cpu_to_fec16(status);
662
663 return 0;
664 }
665
666 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
667 struct sk_buff *skb,
668 struct net_device *ndev)
669 {
670 struct fec_enet_private *fep = netdev_priv(ndev);
671 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
672 int total_len, data_left;
673 struct bufdesc *bdp = txq->bd.cur;
674 struct tso_t tso;
675 unsigned int index = 0;
676 int ret;
677
678 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
679 dev_kfree_skb_any(skb);
680 if (net_ratelimit())
681 netdev_err(ndev, "NOT enough BD for TSO!\n");
682 return NETDEV_TX_OK;
683 }
684
685 /* Protocol checksum off-load for TCP and UDP. */
686 if (fec_enet_clear_csum(skb, ndev)) {
687 dev_kfree_skb_any(skb);
688 return NETDEV_TX_OK;
689 }
690
691 /* Initialize the TSO handler, and prepare the first payload */
692 tso_start(skb, &tso);
693
694 total_len = skb->len - hdr_len;
695 while (total_len > 0) {
696 char *hdr;
697
698 index = fec_enet_get_bd_index(bdp, &txq->bd);
699 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
700 total_len -= data_left;
701
702 /* prepare packet headers: MAC + IP + TCP */
703 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
704 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
705 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
706 if (ret)
707 goto err_release;
708
709 while (data_left > 0) {
710 int size;
711
712 size = min_t(int, tso.size, data_left);
713 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
714 index = fec_enet_get_bd_index(bdp, &txq->bd);
715 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
716 bdp, index,
717 tso.data, size,
718 size == data_left,
719 total_len == 0);
720 if (ret)
721 goto err_release;
722
723 data_left -= size;
724 tso_build_data(skb, &tso, size);
725 }
726
727 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
728 }
729
730 /* Save skb pointer */
731 txq->tx_skbuff[index] = skb;
732
733 skb_tx_timestamp(skb);
734 txq->bd.cur = bdp;
735
736 /* Trigger transmission start */
737 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
738 !readl(txq->bd.reg_desc_active) ||
739 !readl(txq->bd.reg_desc_active) ||
740 !readl(txq->bd.reg_desc_active) ||
741 !readl(txq->bd.reg_desc_active))
742 writel(0, txq->bd.reg_desc_active);
743
744 return 0;
745
746 err_release:
747 /* TODO: Release all used data descriptors for TSO */
748 return ret;
749 }
750
751 static netdev_tx_t
752 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
753 {
754 struct fec_enet_private *fep = netdev_priv(ndev);
755 int entries_free;
756 unsigned short queue;
757 struct fec_enet_priv_tx_q *txq;
758 struct netdev_queue *nq;
759 int ret;
760
761 queue = skb_get_queue_mapping(skb);
762 txq = fep->tx_queue[queue];
763 nq = netdev_get_tx_queue(ndev, queue);
764
765 if (skb_is_gso(skb))
766 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
767 else
768 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
769 if (ret)
770 return ret;
771
772 entries_free = fec_enet_get_free_txdesc_num(txq);
773 if (entries_free <= txq->tx_stop_threshold)
774 netif_tx_stop_queue(nq);
775
776 return NETDEV_TX_OK;
777 }
778
779 /* Init RX & TX buffer descriptors
780 */
781 static void fec_enet_bd_init(struct net_device *dev)
782 {
783 struct fec_enet_private *fep = netdev_priv(dev);
784 struct fec_enet_priv_tx_q *txq;
785 struct fec_enet_priv_rx_q *rxq;
786 struct bufdesc *bdp;
787 unsigned int i;
788 unsigned int q;
789
790 for (q = 0; q < fep->num_rx_queues; q++) {
791 /* Initialize the receive buffer descriptors. */
792 rxq = fep->rx_queue[q];
793 bdp = rxq->bd.base;
794
795 for (i = 0; i < rxq->bd.ring_size; i++) {
796
797 /* Initialize the BD for every fragment in the page. */
798 if (bdp->cbd_bufaddr)
799 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
800 else
801 bdp->cbd_sc = cpu_to_fec16(0);
802 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
803 }
804
805 /* Set the last buffer to wrap */
806 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
807 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
808
809 rxq->bd.cur = rxq->bd.base;
810 }
811
812 for (q = 0; q < fep->num_tx_queues; q++) {
813 /* ...and the same for transmit */
814 txq = fep->tx_queue[q];
815 bdp = txq->bd.base;
816 txq->bd.cur = bdp;
817
818 for (i = 0; i < txq->bd.ring_size; i++) {
819 /* Initialize the BD for every fragment in the page. */
820 bdp->cbd_sc = cpu_to_fec16(0);
821 if (bdp->cbd_bufaddr &&
822 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
823 dma_unmap_single(&fep->pdev->dev,
824 fec32_to_cpu(bdp->cbd_bufaddr),
825 fec16_to_cpu(bdp->cbd_datlen),
826 DMA_TO_DEVICE);
827 if (txq->tx_skbuff[i]) {
828 dev_kfree_skb_any(txq->tx_skbuff[i]);
829 txq->tx_skbuff[i] = NULL;
830 }
831 bdp->cbd_bufaddr = cpu_to_fec32(0);
832 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
833 }
834
835 /* Set the last buffer to wrap */
836 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
837 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
838 txq->dirty_tx = bdp;
839 }
840 }
841
842 static void fec_enet_active_rxring(struct net_device *ndev)
843 {
844 struct fec_enet_private *fep = netdev_priv(ndev);
845 int i;
846
847 for (i = 0; i < fep->num_rx_queues; i++)
848 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
849 }
850
851 static void fec_enet_enable_ring(struct net_device *ndev)
852 {
853 struct fec_enet_private *fep = netdev_priv(ndev);
854 struct fec_enet_priv_tx_q *txq;
855 struct fec_enet_priv_rx_q *rxq;
856 int i;
857
858 for (i = 0; i < fep->num_rx_queues; i++) {
859 rxq = fep->rx_queue[i];
860 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
861 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
862
863 /* enable DMA1/2 */
864 if (i)
865 writel(RCMR_MATCHEN | RCMR_CMP(i),
866 fep->hwp + FEC_RCMR(i));
867 }
868
869 for (i = 0; i < fep->num_tx_queues; i++) {
870 txq = fep->tx_queue[i];
871 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
872
873 /* enable DMA1/2 */
874 if (i)
875 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
876 fep->hwp + FEC_DMA_CFG(i));
877 }
878 }
879
880 static void fec_enet_reset_skb(struct net_device *ndev)
881 {
882 struct fec_enet_private *fep = netdev_priv(ndev);
883 struct fec_enet_priv_tx_q *txq;
884 int i, j;
885
886 for (i = 0; i < fep->num_tx_queues; i++) {
887 txq = fep->tx_queue[i];
888
889 for (j = 0; j < txq->bd.ring_size; j++) {
890 if (txq->tx_skbuff[j]) {
891 dev_kfree_skb_any(txq->tx_skbuff[j]);
892 txq->tx_skbuff[j] = NULL;
893 }
894 }
895 }
896 }
897
898 /*
899 * This function is called to start or restart the FEC during a link
900 * change, transmit timeout, or to reconfigure the FEC. The network
901 * packet processing for this device must be stopped before this call.
902 */
903 static void
904 fec_restart(struct net_device *ndev)
905 {
906 struct fec_enet_private *fep = netdev_priv(ndev);
907 u32 val;
908 u32 temp_mac[2];
909 u32 rcntl = OPT_FRAME_SIZE | 0x04;
910 u32 ecntl = 0x2; /* ETHEREN */
911
912 /* Whack a reset. We should wait for this.
913 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
914 * instead of reset MAC itself.
915 */
916 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
917 writel(0, fep->hwp + FEC_ECNTRL);
918 } else {
919 writel(1, fep->hwp + FEC_ECNTRL);
920 udelay(10);
921 }
922
923 /*
924 * enet-mac reset will reset mac address registers too,
925 * so need to reconfigure it.
926 */
927 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
928 writel((__force u32)cpu_to_be32(temp_mac[0]),
929 fep->hwp + FEC_ADDR_LOW);
930 writel((__force u32)cpu_to_be32(temp_mac[1]),
931 fep->hwp + FEC_ADDR_HIGH);
932
933 /* Clear any outstanding interrupt. */
934 writel(0xffffffff, fep->hwp + FEC_IEVENT);
935
936 fec_enet_bd_init(ndev);
937
938 fec_enet_enable_ring(ndev);
939
940 /* Reset tx SKB buffers. */
941 fec_enet_reset_skb(ndev);
942
943 /* Enable MII mode */
944 if (fep->full_duplex == DUPLEX_FULL) {
945 /* FD enable */
946 writel(0x04, fep->hwp + FEC_X_CNTRL);
947 } else {
948 /* No Rcv on Xmit */
949 rcntl |= 0x02;
950 writel(0x0, fep->hwp + FEC_X_CNTRL);
951 }
952
953 /* Set MII speed */
954 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
955
956 #if !defined(CONFIG_M5272)
957 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
958 val = readl(fep->hwp + FEC_RACC);
959 /* align IP header */
960 val |= FEC_RACC_SHIFT16;
961 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
962 /* set RX checksum */
963 val |= FEC_RACC_OPTIONS;
964 else
965 val &= ~FEC_RACC_OPTIONS;
966 writel(val, fep->hwp + FEC_RACC);
967 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
968 }
969 #endif
970
971 /*
972 * The phy interface and speed need to get configured
973 * differently on enet-mac.
974 */
975 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
976 /* Enable flow control and length check */
977 rcntl |= 0x40000000 | 0x00000020;
978
979 /* RGMII, RMII or MII */
980 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
981 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
982 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
983 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
984 rcntl |= (1 << 6);
985 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
986 rcntl |= (1 << 8);
987 else
988 rcntl &= ~(1 << 8);
989
990 /* 1G, 100M or 10M */
991 if (ndev->phydev) {
992 if (ndev->phydev->speed == SPEED_1000)
993 ecntl |= (1 << 5);
994 else if (ndev->phydev->speed == SPEED_100)
995 rcntl &= ~(1 << 9);
996 else
997 rcntl |= (1 << 9);
998 }
999 } else {
1000 #ifdef FEC_MIIGSK_ENR
1001 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1002 u32 cfgr;
1003 /* disable the gasket and wait */
1004 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1005 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1006 udelay(1);
1007
1008 /*
1009 * configure the gasket:
1010 * RMII, 50 MHz, no loopback, no echo
1011 * MII, 25 MHz, no loopback, no echo
1012 */
1013 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1014 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1015 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1016 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1017 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1018
1019 /* re-enable the gasket */
1020 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1021 }
1022 #endif
1023 }
1024
1025 #if !defined(CONFIG_M5272)
1026 /* enable pause frame*/
1027 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1028 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1029 ndev->phydev && ndev->phydev->pause)) {
1030 rcntl |= FEC_ENET_FCE;
1031
1032 /* set FIFO threshold parameter to reduce overrun */
1033 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1034 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1035 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1036 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1037
1038 /* OPD */
1039 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1040 } else {
1041 rcntl &= ~FEC_ENET_FCE;
1042 }
1043 #endif /* !defined(CONFIG_M5272) */
1044
1045 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1046
1047 /* Setup multicast filter. */
1048 set_multicast_list(ndev);
1049 #ifndef CONFIG_M5272
1050 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1051 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1052 #endif
1053
1054 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1055 /* enable ENET endian swap */
1056 ecntl |= (1 << 8);
1057 /* enable ENET store and forward mode */
1058 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1059 }
1060
1061 if (fep->bufdesc_ex)
1062 ecntl |= (1 << 4);
1063
1064 #ifndef CONFIG_M5272
1065 /* Enable the MIB statistic event counters */
1066 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1067 #endif
1068
1069 /* And last, enable the transmit and receive processing */
1070 writel(ecntl, fep->hwp + FEC_ECNTRL);
1071 fec_enet_active_rxring(ndev);
1072
1073 if (fep->bufdesc_ex)
1074 fec_ptp_start_cyclecounter(ndev);
1075
1076 /* Enable interrupts we wish to service */
1077 if (fep->link)
1078 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1079 else
1080 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1081
1082 /* Init the interrupt coalescing */
1083 fec_enet_itr_coal_init(ndev);
1084
1085 }
1086
1087 static void
1088 fec_stop(struct net_device *ndev)
1089 {
1090 struct fec_enet_private *fep = netdev_priv(ndev);
1091 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1092 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1093 u32 val;
1094
1095 /* We cannot expect a graceful transmit stop without link !!! */
1096 if (fep->link) {
1097 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1098 udelay(10);
1099 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1100 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1101 }
1102
1103 /* Whack a reset. We should wait for this.
1104 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1105 * instead of reset MAC itself.
1106 */
1107 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1109 writel(0, fep->hwp + FEC_ECNTRL);
1110 } else {
1111 writel(1, fep->hwp + FEC_ECNTRL);
1112 udelay(10);
1113 }
1114 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1115 } else {
1116 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1117 val = readl(fep->hwp + FEC_ECNTRL);
1118 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1119 writel(val, fep->hwp + FEC_ECNTRL);
1120
1121 if (pdata && pdata->sleep_mode_enable)
1122 pdata->sleep_mode_enable(true);
1123 }
1124 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1125
1126 /* We have to keep ENET enabled to have MII interrupt stay working */
1127 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1128 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1129 writel(2, fep->hwp + FEC_ECNTRL);
1130 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1131 }
1132 }
1133
1134
1135 static void
1136 fec_timeout(struct net_device *ndev)
1137 {
1138 struct fec_enet_private *fep = netdev_priv(ndev);
1139
1140 fec_dump(ndev);
1141
1142 ndev->stats.tx_errors++;
1143
1144 schedule_work(&fep->tx_timeout_work);
1145 }
1146
1147 static void fec_enet_timeout_work(struct work_struct *work)
1148 {
1149 struct fec_enet_private *fep =
1150 container_of(work, struct fec_enet_private, tx_timeout_work);
1151 struct net_device *ndev = fep->netdev;
1152
1153 rtnl_lock();
1154 if (netif_device_present(ndev) || netif_running(ndev)) {
1155 napi_disable(&fep->napi);
1156 netif_tx_lock_bh(ndev);
1157 fec_restart(ndev);
1158 netif_wake_queue(ndev);
1159 netif_tx_unlock_bh(ndev);
1160 napi_enable(&fep->napi);
1161 }
1162 rtnl_unlock();
1163 }
1164
1165 static void
1166 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1167 struct skb_shared_hwtstamps *hwtstamps)
1168 {
1169 unsigned long flags;
1170 u64 ns;
1171
1172 spin_lock_irqsave(&fep->tmreg_lock, flags);
1173 ns = timecounter_cyc2time(&fep->tc, ts);
1174 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1175
1176 memset(hwtstamps, 0, sizeof(*hwtstamps));
1177 hwtstamps->hwtstamp = ns_to_ktime(ns);
1178 }
1179
1180 static void
1181 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1182 {
1183 struct fec_enet_private *fep;
1184 struct bufdesc *bdp;
1185 unsigned short status;
1186 struct sk_buff *skb;
1187 struct fec_enet_priv_tx_q *txq;
1188 struct netdev_queue *nq;
1189 int index = 0;
1190 int entries_free;
1191
1192 fep = netdev_priv(ndev);
1193
1194 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1195
1196 txq = fep->tx_queue[queue_id];
1197 /* get next bdp of dirty_tx */
1198 nq = netdev_get_tx_queue(ndev, queue_id);
1199 bdp = txq->dirty_tx;
1200
1201 /* get next bdp of dirty_tx */
1202 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1203
1204 while (bdp != READ_ONCE(txq->bd.cur)) {
1205 /* Order the load of bd.cur and cbd_sc */
1206 rmb();
1207 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1208 if (status & BD_ENET_TX_READY)
1209 break;
1210
1211 index = fec_enet_get_bd_index(bdp, &txq->bd);
1212
1213 skb = txq->tx_skbuff[index];
1214 txq->tx_skbuff[index] = NULL;
1215 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1216 dma_unmap_single(&fep->pdev->dev,
1217 fec32_to_cpu(bdp->cbd_bufaddr),
1218 fec16_to_cpu(bdp->cbd_datlen),
1219 DMA_TO_DEVICE);
1220 bdp->cbd_bufaddr = cpu_to_fec32(0);
1221 if (!skb)
1222 goto skb_done;
1223
1224 /* Check for errors. */
1225 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1226 BD_ENET_TX_RL | BD_ENET_TX_UN |
1227 BD_ENET_TX_CSL)) {
1228 ndev->stats.tx_errors++;
1229 if (status & BD_ENET_TX_HB) /* No heartbeat */
1230 ndev->stats.tx_heartbeat_errors++;
1231 if (status & BD_ENET_TX_LC) /* Late collision */
1232 ndev->stats.tx_window_errors++;
1233 if (status & BD_ENET_TX_RL) /* Retrans limit */
1234 ndev->stats.tx_aborted_errors++;
1235 if (status & BD_ENET_TX_UN) /* Underrun */
1236 ndev->stats.tx_fifo_errors++;
1237 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1238 ndev->stats.tx_carrier_errors++;
1239 } else {
1240 ndev->stats.tx_packets++;
1241 ndev->stats.tx_bytes += skb->len;
1242 }
1243
1244 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1245 fep->bufdesc_ex) {
1246 struct skb_shared_hwtstamps shhwtstamps;
1247 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1248
1249 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1250 skb_tstamp_tx(skb, &shhwtstamps);
1251 }
1252
1253 /* Deferred means some collisions occurred during transmit,
1254 * but we eventually sent the packet OK.
1255 */
1256 if (status & BD_ENET_TX_DEF)
1257 ndev->stats.collisions++;
1258
1259 /* Free the sk buffer associated with this last transmit */
1260 dev_kfree_skb_any(skb);
1261 skb_done:
1262 /* Make sure the update to bdp and tx_skbuff are performed
1263 * before dirty_tx
1264 */
1265 wmb();
1266 txq->dirty_tx = bdp;
1267
1268 /* Update pointer to next buffer descriptor to be transmitted */
1269 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1270
1271 /* Since we have freed up a buffer, the ring is no longer full
1272 */
1273 if (netif_queue_stopped(ndev)) {
1274 entries_free = fec_enet_get_free_txdesc_num(txq);
1275 if (entries_free >= txq->tx_wake_threshold)
1276 netif_tx_wake_queue(nq);
1277 }
1278 }
1279
1280 /* ERR006358: Keep the transmitter going */
1281 if (bdp != txq->bd.cur &&
1282 readl(txq->bd.reg_desc_active) == 0)
1283 writel(0, txq->bd.reg_desc_active);
1284 }
1285
1286 static void
1287 fec_enet_tx(struct net_device *ndev)
1288 {
1289 struct fec_enet_private *fep = netdev_priv(ndev);
1290 u16 queue_id;
1291 /* First process class A queue, then Class B and Best Effort queue */
1292 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1293 clear_bit(queue_id, &fep->work_tx);
1294 fec_enet_tx_queue(ndev, queue_id);
1295 }
1296 return;
1297 }
1298
1299 static int
1300 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1301 {
1302 struct fec_enet_private *fep = netdev_priv(ndev);
1303 int off;
1304
1305 off = ((unsigned long)skb->data) & fep->rx_align;
1306 if (off)
1307 skb_reserve(skb, fep->rx_align + 1 - off);
1308
1309 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1310 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1311 if (net_ratelimit())
1312 netdev_err(ndev, "Rx DMA memory map failed\n");
1313 return -ENOMEM;
1314 }
1315
1316 return 0;
1317 }
1318
1319 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1320 struct bufdesc *bdp, u32 length, bool swap)
1321 {
1322 struct fec_enet_private *fep = netdev_priv(ndev);
1323 struct sk_buff *new_skb;
1324
1325 if (length > fep->rx_copybreak)
1326 return false;
1327
1328 new_skb = netdev_alloc_skb(ndev, length);
1329 if (!new_skb)
1330 return false;
1331
1332 dma_sync_single_for_cpu(&fep->pdev->dev,
1333 fec32_to_cpu(bdp->cbd_bufaddr),
1334 FEC_ENET_RX_FRSIZE - fep->rx_align,
1335 DMA_FROM_DEVICE);
1336 if (!swap)
1337 memcpy(new_skb->data, (*skb)->data, length);
1338 else
1339 swap_buffer2(new_skb->data, (*skb)->data, length);
1340 *skb = new_skb;
1341
1342 return true;
1343 }
1344
1345 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1346 * When we update through the ring, if the next incoming buffer has
1347 * not been given to the system, we just set the empty indicator,
1348 * effectively tossing the packet.
1349 */
1350 static int
1351 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1352 {
1353 struct fec_enet_private *fep = netdev_priv(ndev);
1354 struct fec_enet_priv_rx_q *rxq;
1355 struct bufdesc *bdp;
1356 unsigned short status;
1357 struct sk_buff *skb_new = NULL;
1358 struct sk_buff *skb;
1359 ushort pkt_len;
1360 __u8 *data;
1361 int pkt_received = 0;
1362 struct bufdesc_ex *ebdp = NULL;
1363 bool vlan_packet_rcvd = false;
1364 u16 vlan_tag;
1365 int index = 0;
1366 bool is_copybreak;
1367 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1368
1369 #ifdef CONFIG_M532x
1370 flush_cache_all();
1371 #endif
1372 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1373 rxq = fep->rx_queue[queue_id];
1374
1375 /* First, grab all of the stats for the incoming packet.
1376 * These get messed up if we get called due to a busy condition.
1377 */
1378 bdp = rxq->bd.cur;
1379
1380 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1381
1382 if (pkt_received >= budget)
1383 break;
1384 pkt_received++;
1385
1386 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1387
1388 /* Check for errors. */
1389 status ^= BD_ENET_RX_LAST;
1390 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1391 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1392 BD_ENET_RX_CL)) {
1393 ndev->stats.rx_errors++;
1394 if (status & BD_ENET_RX_OV) {
1395 /* FIFO overrun */
1396 ndev->stats.rx_fifo_errors++;
1397 goto rx_processing_done;
1398 }
1399 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1400 | BD_ENET_RX_LAST)) {
1401 /* Frame too long or too short. */
1402 ndev->stats.rx_length_errors++;
1403 if (status & BD_ENET_RX_LAST)
1404 netdev_err(ndev, "rcv is not +last\n");
1405 }
1406 if (status & BD_ENET_RX_CR) /* CRC Error */
1407 ndev->stats.rx_crc_errors++;
1408 /* Report late collisions as a frame error. */
1409 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1410 ndev->stats.rx_frame_errors++;
1411 goto rx_processing_done;
1412 }
1413
1414 /* Process the incoming frame. */
1415 ndev->stats.rx_packets++;
1416 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1417 ndev->stats.rx_bytes += pkt_len;
1418
1419 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1420 skb = rxq->rx_skbuff[index];
1421
1422 /* The packet length includes FCS, but we don't want to
1423 * include that when passing upstream as it messes up
1424 * bridging applications.
1425 */
1426 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1427 need_swap);
1428 if (!is_copybreak) {
1429 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1430 if (unlikely(!skb_new)) {
1431 ndev->stats.rx_dropped++;
1432 goto rx_processing_done;
1433 }
1434 dma_unmap_single(&fep->pdev->dev,
1435 fec32_to_cpu(bdp->cbd_bufaddr),
1436 FEC_ENET_RX_FRSIZE - fep->rx_align,
1437 DMA_FROM_DEVICE);
1438 }
1439
1440 prefetch(skb->data - NET_IP_ALIGN);
1441 skb_put(skb, pkt_len - 4);
1442 data = skb->data;
1443
1444 if (!is_copybreak && need_swap)
1445 swap_buffer(data, pkt_len);
1446
1447 #if !defined(CONFIG_M5272)
1448 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1449 data = skb_pull_inline(skb, 2);
1450 #endif
1451
1452 /* Extract the enhanced buffer descriptor */
1453 ebdp = NULL;
1454 if (fep->bufdesc_ex)
1455 ebdp = (struct bufdesc_ex *)bdp;
1456
1457 /* If this is a VLAN packet remove the VLAN Tag */
1458 vlan_packet_rcvd = false;
1459 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1460 fep->bufdesc_ex &&
1461 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1462 /* Push and remove the vlan tag */
1463 struct vlan_hdr *vlan_header =
1464 (struct vlan_hdr *) (data + ETH_HLEN);
1465 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1466
1467 vlan_packet_rcvd = true;
1468
1469 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1470 skb_pull(skb, VLAN_HLEN);
1471 }
1472
1473 skb->protocol = eth_type_trans(skb, ndev);
1474
1475 /* Get receive timestamp from the skb */
1476 if (fep->hwts_rx_en && fep->bufdesc_ex)
1477 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1478 skb_hwtstamps(skb));
1479
1480 if (fep->bufdesc_ex &&
1481 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1482 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1483 /* don't check it */
1484 skb->ip_summed = CHECKSUM_UNNECESSARY;
1485 } else {
1486 skb_checksum_none_assert(skb);
1487 }
1488 }
1489
1490 /* Handle received VLAN packets */
1491 if (vlan_packet_rcvd)
1492 __vlan_hwaccel_put_tag(skb,
1493 htons(ETH_P_8021Q),
1494 vlan_tag);
1495
1496 napi_gro_receive(&fep->napi, skb);
1497
1498 if (is_copybreak) {
1499 dma_sync_single_for_device(&fep->pdev->dev,
1500 fec32_to_cpu(bdp->cbd_bufaddr),
1501 FEC_ENET_RX_FRSIZE - fep->rx_align,
1502 DMA_FROM_DEVICE);
1503 } else {
1504 rxq->rx_skbuff[index] = skb_new;
1505 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1506 }
1507
1508 rx_processing_done:
1509 /* Clear the status flags for this buffer */
1510 status &= ~BD_ENET_RX_STATS;
1511
1512 /* Mark the buffer empty */
1513 status |= BD_ENET_RX_EMPTY;
1514
1515 if (fep->bufdesc_ex) {
1516 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1517
1518 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1519 ebdp->cbd_prot = 0;
1520 ebdp->cbd_bdu = 0;
1521 }
1522 /* Make sure the updates to rest of the descriptor are
1523 * performed before transferring ownership.
1524 */
1525 wmb();
1526 bdp->cbd_sc = cpu_to_fec16(status);
1527
1528 /* Update BD pointer to next entry */
1529 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1530
1531 /* Doing this here will keep the FEC running while we process
1532 * incoming frames. On a heavily loaded network, we should be
1533 * able to keep up at the expense of system resources.
1534 */
1535 writel(0, rxq->bd.reg_desc_active);
1536 }
1537 rxq->bd.cur = bdp;
1538 return pkt_received;
1539 }
1540
1541 static int
1542 fec_enet_rx(struct net_device *ndev, int budget)
1543 {
1544 int pkt_received = 0;
1545 u16 queue_id;
1546 struct fec_enet_private *fep = netdev_priv(ndev);
1547
1548 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1549 int ret;
1550
1551 ret = fec_enet_rx_queue(ndev,
1552 budget - pkt_received, queue_id);
1553
1554 if (ret < budget - pkt_received)
1555 clear_bit(queue_id, &fep->work_rx);
1556
1557 pkt_received += ret;
1558 }
1559 return pkt_received;
1560 }
1561
1562 static bool
1563 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1564 {
1565 if (int_events == 0)
1566 return false;
1567
1568 if (int_events & FEC_ENET_RXF_0)
1569 fep->work_rx |= (1 << 2);
1570 if (int_events & FEC_ENET_RXF_1)
1571 fep->work_rx |= (1 << 0);
1572 if (int_events & FEC_ENET_RXF_2)
1573 fep->work_rx |= (1 << 1);
1574
1575 if (int_events & FEC_ENET_TXF_0)
1576 fep->work_tx |= (1 << 2);
1577 if (int_events & FEC_ENET_TXF_1)
1578 fep->work_tx |= (1 << 0);
1579 if (int_events & FEC_ENET_TXF_2)
1580 fep->work_tx |= (1 << 1);
1581
1582 return true;
1583 }
1584
1585 static irqreturn_t
1586 fec_enet_interrupt(int irq, void *dev_id)
1587 {
1588 struct net_device *ndev = dev_id;
1589 struct fec_enet_private *fep = netdev_priv(ndev);
1590 uint int_events;
1591 irqreturn_t ret = IRQ_NONE;
1592
1593 int_events = readl(fep->hwp + FEC_IEVENT);
1594 writel(int_events, fep->hwp + FEC_IEVENT);
1595 fec_enet_collect_events(fep, int_events);
1596
1597 if ((fep->work_tx || fep->work_rx) && fep->link) {
1598 ret = IRQ_HANDLED;
1599
1600 if (napi_schedule_prep(&fep->napi)) {
1601 /* Disable the NAPI interrupts */
1602 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1603 __napi_schedule(&fep->napi);
1604 }
1605 }
1606
1607 if (int_events & FEC_ENET_MII) {
1608 ret = IRQ_HANDLED;
1609 complete(&fep->mdio_done);
1610 }
1611 return ret;
1612 }
1613
1614 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1615 {
1616 struct net_device *ndev = napi->dev;
1617 struct fec_enet_private *fep = netdev_priv(ndev);
1618 int pkts;
1619
1620 pkts = fec_enet_rx(ndev, budget);
1621
1622 fec_enet_tx(ndev);
1623
1624 if (pkts < budget) {
1625 napi_complete_done(napi, pkts);
1626 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1627 }
1628 return pkts;
1629 }
1630
1631 /* ------------------------------------------------------------------------- */
1632 static void fec_get_mac(struct net_device *ndev)
1633 {
1634 struct fec_enet_private *fep = netdev_priv(ndev);
1635 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1636 unsigned char *iap, tmpaddr[ETH_ALEN];
1637
1638 /*
1639 * try to get mac address in following order:
1640 *
1641 * 1) module parameter via kernel command line in form
1642 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1643 */
1644 iap = macaddr;
1645
1646 /*
1647 * 2) from device tree data
1648 */
1649 if (!is_valid_ether_addr(iap)) {
1650 struct device_node *np = fep->pdev->dev.of_node;
1651 if (np) {
1652 const char *mac = of_get_mac_address(np);
1653 if (mac)
1654 iap = (unsigned char *) mac;
1655 }
1656 }
1657
1658 /*
1659 * 3) from flash or fuse (via platform data)
1660 */
1661 if (!is_valid_ether_addr(iap)) {
1662 #ifdef CONFIG_M5272
1663 if (FEC_FLASHMAC)
1664 iap = (unsigned char *)FEC_FLASHMAC;
1665 #else
1666 if (pdata)
1667 iap = (unsigned char *)&pdata->mac;
1668 #endif
1669 }
1670
1671 /*
1672 * 4) FEC mac registers set by bootloader
1673 */
1674 if (!is_valid_ether_addr(iap)) {
1675 *((__be32 *) &tmpaddr[0]) =
1676 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1677 *((__be16 *) &tmpaddr[4]) =
1678 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1679 iap = &tmpaddr[0];
1680 }
1681
1682 /*
1683 * 5) random mac address
1684 */
1685 if (!is_valid_ether_addr(iap)) {
1686 /* Report it and use a random ethernet address instead */
1687 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1688 eth_hw_addr_random(ndev);
1689 netdev_info(ndev, "Using random MAC address: %pM\n",
1690 ndev->dev_addr);
1691 return;
1692 }
1693
1694 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1695
1696 /* Adjust MAC if using macaddr */
1697 if (iap == macaddr)
1698 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1699 }
1700
1701 /* ------------------------------------------------------------------------- */
1702
1703 /*
1704 * Phy section
1705 */
1706 static void fec_enet_adjust_link(struct net_device *ndev)
1707 {
1708 struct fec_enet_private *fep = netdev_priv(ndev);
1709 struct phy_device *phy_dev = ndev->phydev;
1710 int status_change = 0;
1711
1712 /* Prevent a state halted on mii error */
1713 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1714 phy_dev->state = PHY_RESUMING;
1715 return;
1716 }
1717
1718 /*
1719 * If the netdev is down, or is going down, we're not interested
1720 * in link state events, so just mark our idea of the link as down
1721 * and ignore the event.
1722 */
1723 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1724 fep->link = 0;
1725 } else if (phy_dev->link) {
1726 if (!fep->link) {
1727 fep->link = phy_dev->link;
1728 status_change = 1;
1729 }
1730
1731 if (fep->full_duplex != phy_dev->duplex) {
1732 fep->full_duplex = phy_dev->duplex;
1733 status_change = 1;
1734 }
1735
1736 if (phy_dev->speed != fep->speed) {
1737 fep->speed = phy_dev->speed;
1738 status_change = 1;
1739 }
1740
1741 /* if any of the above changed restart the FEC */
1742 if (status_change) {
1743 napi_disable(&fep->napi);
1744 netif_tx_lock_bh(ndev);
1745 fec_restart(ndev);
1746 netif_wake_queue(ndev);
1747 netif_tx_unlock_bh(ndev);
1748 napi_enable(&fep->napi);
1749 }
1750 } else {
1751 if (fep->link) {
1752 napi_disable(&fep->napi);
1753 netif_tx_lock_bh(ndev);
1754 fec_stop(ndev);
1755 netif_tx_unlock_bh(ndev);
1756 napi_enable(&fep->napi);
1757 fep->link = phy_dev->link;
1758 status_change = 1;
1759 }
1760 }
1761
1762 if (status_change)
1763 phy_print_status(phy_dev);
1764 }
1765
1766 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1767 {
1768 struct fec_enet_private *fep = bus->priv;
1769 struct device *dev = &fep->pdev->dev;
1770 unsigned long time_left;
1771 int ret = 0;
1772
1773 ret = pm_runtime_get_sync(dev);
1774 if (ret < 0)
1775 return ret;
1776
1777 fep->mii_timeout = 0;
1778 reinit_completion(&fep->mdio_done);
1779
1780 /* start a read op */
1781 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1782 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1783 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1784
1785 /* wait for end of transfer */
1786 time_left = wait_for_completion_timeout(&fep->mdio_done,
1787 usecs_to_jiffies(FEC_MII_TIMEOUT));
1788 if (time_left == 0) {
1789 fep->mii_timeout = 1;
1790 netdev_err(fep->netdev, "MDIO read timeout\n");
1791 ret = -ETIMEDOUT;
1792 goto out;
1793 }
1794
1795 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1796
1797 out:
1798 pm_runtime_mark_last_busy(dev);
1799 pm_runtime_put_autosuspend(dev);
1800
1801 return ret;
1802 }
1803
1804 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1805 u16 value)
1806 {
1807 struct fec_enet_private *fep = bus->priv;
1808 struct device *dev = &fep->pdev->dev;
1809 unsigned long time_left;
1810 int ret;
1811
1812 ret = pm_runtime_get_sync(dev);
1813 if (ret < 0)
1814 return ret;
1815 else
1816 ret = 0;
1817
1818 fep->mii_timeout = 0;
1819 reinit_completion(&fep->mdio_done);
1820
1821 /* start a write op */
1822 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1823 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1824 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1825 fep->hwp + FEC_MII_DATA);
1826
1827 /* wait for end of transfer */
1828 time_left = wait_for_completion_timeout(&fep->mdio_done,
1829 usecs_to_jiffies(FEC_MII_TIMEOUT));
1830 if (time_left == 0) {
1831 fep->mii_timeout = 1;
1832 netdev_err(fep->netdev, "MDIO write timeout\n");
1833 ret = -ETIMEDOUT;
1834 }
1835
1836 pm_runtime_mark_last_busy(dev);
1837 pm_runtime_put_autosuspend(dev);
1838
1839 return ret;
1840 }
1841
1842 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1843 {
1844 struct fec_enet_private *fep = netdev_priv(ndev);
1845 int ret;
1846
1847 if (enable) {
1848 ret = clk_prepare_enable(fep->clk_ahb);
1849 if (ret)
1850 return ret;
1851
1852 ret = clk_prepare_enable(fep->clk_enet_out);
1853 if (ret)
1854 goto failed_clk_enet_out;
1855
1856 if (fep->clk_ptp) {
1857 mutex_lock(&fep->ptp_clk_mutex);
1858 ret = clk_prepare_enable(fep->clk_ptp);
1859 if (ret) {
1860 mutex_unlock(&fep->ptp_clk_mutex);
1861 goto failed_clk_ptp;
1862 } else {
1863 fep->ptp_clk_on = true;
1864 }
1865 mutex_unlock(&fep->ptp_clk_mutex);
1866 }
1867
1868 ret = clk_prepare_enable(fep->clk_ref);
1869 if (ret)
1870 goto failed_clk_ref;
1871 } else {
1872 clk_disable_unprepare(fep->clk_ahb);
1873 clk_disable_unprepare(fep->clk_enet_out);
1874 if (fep->clk_ptp) {
1875 mutex_lock(&fep->ptp_clk_mutex);
1876 clk_disable_unprepare(fep->clk_ptp);
1877 fep->ptp_clk_on = false;
1878 mutex_unlock(&fep->ptp_clk_mutex);
1879 }
1880 clk_disable_unprepare(fep->clk_ref);
1881 }
1882
1883 return 0;
1884
1885 failed_clk_ref:
1886 if (fep->clk_ref)
1887 clk_disable_unprepare(fep->clk_ref);
1888 failed_clk_ptp:
1889 if (fep->clk_enet_out)
1890 clk_disable_unprepare(fep->clk_enet_out);
1891 failed_clk_enet_out:
1892 clk_disable_unprepare(fep->clk_ahb);
1893
1894 return ret;
1895 }
1896
1897 static int fec_enet_mii_probe(struct net_device *ndev)
1898 {
1899 struct fec_enet_private *fep = netdev_priv(ndev);
1900 struct phy_device *phy_dev = NULL;
1901 char mdio_bus_id[MII_BUS_ID_SIZE];
1902 char phy_name[MII_BUS_ID_SIZE + 3];
1903 int phy_id;
1904 int dev_id = fep->dev_id;
1905
1906 if (fep->phy_node) {
1907 phy_dev = of_phy_connect(ndev, fep->phy_node,
1908 &fec_enet_adjust_link, 0,
1909 fep->phy_interface);
1910 if (!phy_dev) {
1911 netdev_err(ndev, "Unable to connect to phy\n");
1912 return -ENODEV;
1913 }
1914 } else {
1915 /* check for attached phy */
1916 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1917 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1918 continue;
1919 if (dev_id--)
1920 continue;
1921 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1922 break;
1923 }
1924
1925 if (phy_id >= PHY_MAX_ADDR) {
1926 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1927 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1928 phy_id = 0;
1929 }
1930
1931 snprintf(phy_name, sizeof(phy_name),
1932 PHY_ID_FMT, mdio_bus_id, phy_id);
1933 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1934 fep->phy_interface);
1935 }
1936
1937 if (IS_ERR(phy_dev)) {
1938 netdev_err(ndev, "could not attach to PHY\n");
1939 return PTR_ERR(phy_dev);
1940 }
1941
1942 /* mask with MAC supported features */
1943 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1944 phy_dev->supported &= PHY_GBIT_FEATURES;
1945 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1946 #if !defined(CONFIG_M5272)
1947 phy_dev->supported |= SUPPORTED_Pause;
1948 #endif
1949 }
1950 else
1951 phy_dev->supported &= PHY_BASIC_FEATURES;
1952
1953 phy_dev->advertising = phy_dev->supported;
1954
1955 fep->link = 0;
1956 fep->full_duplex = 0;
1957
1958 phy_attached_info(phy_dev);
1959
1960 return 0;
1961 }
1962
1963 static int fec_enet_mii_init(struct platform_device *pdev)
1964 {
1965 static struct mii_bus *fec0_mii_bus;
1966 struct net_device *ndev = platform_get_drvdata(pdev);
1967 struct fec_enet_private *fep = netdev_priv(ndev);
1968 struct device_node *node;
1969 int err = -ENXIO;
1970 u32 mii_speed, holdtime;
1971
1972 /*
1973 * The i.MX28 dual fec interfaces are not equal.
1974 * Here are the differences:
1975 *
1976 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1977 * - fec0 acts as the 1588 time master while fec1 is slave
1978 * - external phys can only be configured by fec0
1979 *
1980 * That is to say fec1 can not work independently. It only works
1981 * when fec0 is working. The reason behind this design is that the
1982 * second interface is added primarily for Switch mode.
1983 *
1984 * Because of the last point above, both phys are attached on fec0
1985 * mdio interface in board design, and need to be configured by
1986 * fec0 mii_bus.
1987 */
1988 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1989 /* fec1 uses fec0 mii_bus */
1990 if (mii_cnt && fec0_mii_bus) {
1991 fep->mii_bus = fec0_mii_bus;
1992 mii_cnt++;
1993 return 0;
1994 }
1995 return -ENOENT;
1996 }
1997
1998 fep->mii_timeout = 0;
1999
2000 /*
2001 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2002 *
2003 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2004 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2005 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2006 * document.
2007 */
2008 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2009 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2010 mii_speed--;
2011 if (mii_speed > 63) {
2012 dev_err(&pdev->dev,
2013 "fec clock (%lu) too fast to get right mii speed\n",
2014 clk_get_rate(fep->clk_ipg));
2015 err = -EINVAL;
2016 goto err_out;
2017 }
2018
2019 /*
2020 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2021 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2022 * versions are RAZ there, so just ignore the difference and write the
2023 * register always.
2024 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2025 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2026 * output.
2027 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2028 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2029 * holdtime cannot result in a value greater than 3.
2030 */
2031 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2032
2033 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2034
2035 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2036
2037 fep->mii_bus = mdiobus_alloc();
2038 if (fep->mii_bus == NULL) {
2039 err = -ENOMEM;
2040 goto err_out;
2041 }
2042
2043 fep->mii_bus->name = "fec_enet_mii_bus";
2044 fep->mii_bus->read = fec_enet_mdio_read;
2045 fep->mii_bus->write = fec_enet_mdio_write;
2046 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2047 pdev->name, fep->dev_id + 1);
2048 fep->mii_bus->priv = fep;
2049 fep->mii_bus->parent = &pdev->dev;
2050
2051 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2052 if (node) {
2053 err = of_mdiobus_register(fep->mii_bus, node);
2054 of_node_put(node);
2055 } else {
2056 err = mdiobus_register(fep->mii_bus);
2057 }
2058
2059 if (err)
2060 goto err_out_free_mdiobus;
2061
2062 mii_cnt++;
2063
2064 /* save fec0 mii_bus */
2065 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2066 fec0_mii_bus = fep->mii_bus;
2067
2068 return 0;
2069
2070 err_out_free_mdiobus:
2071 mdiobus_free(fep->mii_bus);
2072 err_out:
2073 return err;
2074 }
2075
2076 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2077 {
2078 if (--mii_cnt == 0) {
2079 mdiobus_unregister(fep->mii_bus);
2080 mdiobus_free(fep->mii_bus);
2081 }
2082 }
2083
2084 static void fec_enet_get_drvinfo(struct net_device *ndev,
2085 struct ethtool_drvinfo *info)
2086 {
2087 struct fec_enet_private *fep = netdev_priv(ndev);
2088
2089 strlcpy(info->driver, fep->pdev->dev.driver->name,
2090 sizeof(info->driver));
2091 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2092 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2093 }
2094
2095 static int fec_enet_get_regs_len(struct net_device *ndev)
2096 {
2097 struct fec_enet_private *fep = netdev_priv(ndev);
2098 struct resource *r;
2099 int s = 0;
2100
2101 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2102 if (r)
2103 s = resource_size(r);
2104
2105 return s;
2106 }
2107
2108 /* List of registers that can be safety be read to dump them with ethtool */
2109 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2110 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2111 static u32 fec_enet_register_offset[] = {
2112 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2113 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2114 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2115 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2116 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2117 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2118 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2119 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2120 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2121 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2122 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2123 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2124 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2125 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2126 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2127 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2128 RMON_T_P_GTE2048, RMON_T_OCTETS,
2129 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2130 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2131 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2132 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2133 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2134 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2135 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2136 RMON_R_P_GTE2048, RMON_R_OCTETS,
2137 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2138 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2139 };
2140 #else
2141 static u32 fec_enet_register_offset[] = {
2142 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2143 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2144 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2145 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2146 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2147 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2148 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2149 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2150 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2151 };
2152 #endif
2153
2154 static void fec_enet_get_regs(struct net_device *ndev,
2155 struct ethtool_regs *regs, void *regbuf)
2156 {
2157 struct fec_enet_private *fep = netdev_priv(ndev);
2158 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2159 u32 *buf = (u32 *)regbuf;
2160 u32 i, off;
2161
2162 memset(buf, 0, regs->len);
2163
2164 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2165 off = fec_enet_register_offset[i] / 4;
2166 buf[off] = readl(&theregs[off]);
2167 }
2168 }
2169
2170 static int fec_enet_get_ts_info(struct net_device *ndev,
2171 struct ethtool_ts_info *info)
2172 {
2173 struct fec_enet_private *fep = netdev_priv(ndev);
2174
2175 if (fep->bufdesc_ex) {
2176
2177 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2178 SOF_TIMESTAMPING_RX_SOFTWARE |
2179 SOF_TIMESTAMPING_SOFTWARE |
2180 SOF_TIMESTAMPING_TX_HARDWARE |
2181 SOF_TIMESTAMPING_RX_HARDWARE |
2182 SOF_TIMESTAMPING_RAW_HARDWARE;
2183 if (fep->ptp_clock)
2184 info->phc_index = ptp_clock_index(fep->ptp_clock);
2185 else
2186 info->phc_index = -1;
2187
2188 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2189 (1 << HWTSTAMP_TX_ON);
2190
2191 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2192 (1 << HWTSTAMP_FILTER_ALL);
2193 return 0;
2194 } else {
2195 return ethtool_op_get_ts_info(ndev, info);
2196 }
2197 }
2198
2199 #if !defined(CONFIG_M5272)
2200
2201 static void fec_enet_get_pauseparam(struct net_device *ndev,
2202 struct ethtool_pauseparam *pause)
2203 {
2204 struct fec_enet_private *fep = netdev_priv(ndev);
2205
2206 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2207 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2208 pause->rx_pause = pause->tx_pause;
2209 }
2210
2211 static int fec_enet_set_pauseparam(struct net_device *ndev,
2212 struct ethtool_pauseparam *pause)
2213 {
2214 struct fec_enet_private *fep = netdev_priv(ndev);
2215
2216 if (!ndev->phydev)
2217 return -ENODEV;
2218
2219 if (pause->tx_pause != pause->rx_pause) {
2220 netdev_info(ndev,
2221 "hardware only support enable/disable both tx and rx");
2222 return -EINVAL;
2223 }
2224
2225 fep->pause_flag = 0;
2226
2227 /* tx pause must be same as rx pause */
2228 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2229 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2230
2231 if (pause->rx_pause || pause->autoneg) {
2232 ndev->phydev->supported |= ADVERTISED_Pause;
2233 ndev->phydev->advertising |= ADVERTISED_Pause;
2234 } else {
2235 ndev->phydev->supported &= ~ADVERTISED_Pause;
2236 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2237 }
2238
2239 if (pause->autoneg) {
2240 if (netif_running(ndev))
2241 fec_stop(ndev);
2242 phy_start_aneg(ndev->phydev);
2243 }
2244 if (netif_running(ndev)) {
2245 napi_disable(&fep->napi);
2246 netif_tx_lock_bh(ndev);
2247 fec_restart(ndev);
2248 netif_wake_queue(ndev);
2249 netif_tx_unlock_bh(ndev);
2250 napi_enable(&fep->napi);
2251 }
2252
2253 return 0;
2254 }
2255
2256 static const struct fec_stat {
2257 char name[ETH_GSTRING_LEN];
2258 u16 offset;
2259 } fec_stats[] = {
2260 /* RMON TX */
2261 { "tx_dropped", RMON_T_DROP },
2262 { "tx_packets", RMON_T_PACKETS },
2263 { "tx_broadcast", RMON_T_BC_PKT },
2264 { "tx_multicast", RMON_T_MC_PKT },
2265 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2266 { "tx_undersize", RMON_T_UNDERSIZE },
2267 { "tx_oversize", RMON_T_OVERSIZE },
2268 { "tx_fragment", RMON_T_FRAG },
2269 { "tx_jabber", RMON_T_JAB },
2270 { "tx_collision", RMON_T_COL },
2271 { "tx_64byte", RMON_T_P64 },
2272 { "tx_65to127byte", RMON_T_P65TO127 },
2273 { "tx_128to255byte", RMON_T_P128TO255 },
2274 { "tx_256to511byte", RMON_T_P256TO511 },
2275 { "tx_512to1023byte", RMON_T_P512TO1023 },
2276 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2277 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2278 { "tx_octets", RMON_T_OCTETS },
2279
2280 /* IEEE TX */
2281 { "IEEE_tx_drop", IEEE_T_DROP },
2282 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2283 { "IEEE_tx_1col", IEEE_T_1COL },
2284 { "IEEE_tx_mcol", IEEE_T_MCOL },
2285 { "IEEE_tx_def", IEEE_T_DEF },
2286 { "IEEE_tx_lcol", IEEE_T_LCOL },
2287 { "IEEE_tx_excol", IEEE_T_EXCOL },
2288 { "IEEE_tx_macerr", IEEE_T_MACERR },
2289 { "IEEE_tx_cserr", IEEE_T_CSERR },
2290 { "IEEE_tx_sqe", IEEE_T_SQE },
2291 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2292 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2293
2294 /* RMON RX */
2295 { "rx_packets", RMON_R_PACKETS },
2296 { "rx_broadcast", RMON_R_BC_PKT },
2297 { "rx_multicast", RMON_R_MC_PKT },
2298 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2299 { "rx_undersize", RMON_R_UNDERSIZE },
2300 { "rx_oversize", RMON_R_OVERSIZE },
2301 { "rx_fragment", RMON_R_FRAG },
2302 { "rx_jabber", RMON_R_JAB },
2303 { "rx_64byte", RMON_R_P64 },
2304 { "rx_65to127byte", RMON_R_P65TO127 },
2305 { "rx_128to255byte", RMON_R_P128TO255 },
2306 { "rx_256to511byte", RMON_R_P256TO511 },
2307 { "rx_512to1023byte", RMON_R_P512TO1023 },
2308 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2309 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2310 { "rx_octets", RMON_R_OCTETS },
2311
2312 /* IEEE RX */
2313 { "IEEE_rx_drop", IEEE_R_DROP },
2314 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2315 { "IEEE_rx_crc", IEEE_R_CRC },
2316 { "IEEE_rx_align", IEEE_R_ALIGN },
2317 { "IEEE_rx_macerr", IEEE_R_MACERR },
2318 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2319 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2320 };
2321
2322 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2323
2324 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2325 {
2326 struct fec_enet_private *fep = netdev_priv(dev);
2327 int i;
2328
2329 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2330 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2331 }
2332
2333 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2334 struct ethtool_stats *stats, u64 *data)
2335 {
2336 struct fec_enet_private *fep = netdev_priv(dev);
2337
2338 if (netif_running(dev))
2339 fec_enet_update_ethtool_stats(dev);
2340
2341 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2342 }
2343
2344 static void fec_enet_get_strings(struct net_device *netdev,
2345 u32 stringset, u8 *data)
2346 {
2347 int i;
2348 switch (stringset) {
2349 case ETH_SS_STATS:
2350 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2351 memcpy(data + i * ETH_GSTRING_LEN,
2352 fec_stats[i].name, ETH_GSTRING_LEN);
2353 break;
2354 }
2355 }
2356
2357 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2358 {
2359 switch (sset) {
2360 case ETH_SS_STATS:
2361 return ARRAY_SIZE(fec_stats);
2362 default:
2363 return -EOPNOTSUPP;
2364 }
2365 }
2366
2367 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2368 {
2369 struct fec_enet_private *fep = netdev_priv(dev);
2370 int i;
2371
2372 /* Disable MIB statistics counters */
2373 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2374
2375 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2376 writel(0, fep->hwp + fec_stats[i].offset);
2377
2378 /* Don't disable MIB statistics counters */
2379 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2380 }
2381
2382 #else /* !defined(CONFIG_M5272) */
2383 #define FEC_STATS_SIZE 0
2384 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2385 {
2386 }
2387
2388 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2389 {
2390 }
2391 #endif /* !defined(CONFIG_M5272) */
2392
2393 /* ITR clock source is enet system clock (clk_ahb).
2394 * TCTT unit is cycle_ns * 64 cycle
2395 * So, the ICTT value = X us / (cycle_ns * 64)
2396 */
2397 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2398 {
2399 struct fec_enet_private *fep = netdev_priv(ndev);
2400
2401 return us * (fep->itr_clk_rate / 64000) / 1000;
2402 }
2403
2404 /* Set threshold for interrupt coalescing */
2405 static void fec_enet_itr_coal_set(struct net_device *ndev)
2406 {
2407 struct fec_enet_private *fep = netdev_priv(ndev);
2408 int rx_itr, tx_itr;
2409
2410 /* Must be greater than zero to avoid unpredictable behavior */
2411 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2412 !fep->tx_time_itr || !fep->tx_pkts_itr)
2413 return;
2414
2415 /* Select enet system clock as Interrupt Coalescing
2416 * timer Clock Source
2417 */
2418 rx_itr = FEC_ITR_CLK_SEL;
2419 tx_itr = FEC_ITR_CLK_SEL;
2420
2421 /* set ICFT and ICTT */
2422 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2423 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2424 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2425 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2426
2427 rx_itr |= FEC_ITR_EN;
2428 tx_itr |= FEC_ITR_EN;
2429
2430 writel(tx_itr, fep->hwp + FEC_TXIC0);
2431 writel(rx_itr, fep->hwp + FEC_RXIC0);
2432 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2433 writel(tx_itr, fep->hwp + FEC_TXIC1);
2434 writel(rx_itr, fep->hwp + FEC_RXIC1);
2435 writel(tx_itr, fep->hwp + FEC_TXIC2);
2436 writel(rx_itr, fep->hwp + FEC_RXIC2);
2437 }
2438 }
2439
2440 static int
2441 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2442 {
2443 struct fec_enet_private *fep = netdev_priv(ndev);
2444
2445 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2446 return -EOPNOTSUPP;
2447
2448 ec->rx_coalesce_usecs = fep->rx_time_itr;
2449 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2450
2451 ec->tx_coalesce_usecs = fep->tx_time_itr;
2452 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2453
2454 return 0;
2455 }
2456
2457 static int
2458 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2459 {
2460 struct fec_enet_private *fep = netdev_priv(ndev);
2461 unsigned int cycle;
2462
2463 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2464 return -EOPNOTSUPP;
2465
2466 if (ec->rx_max_coalesced_frames > 255) {
2467 pr_err("Rx coalesced frames exceed hardware limitation\n");
2468 return -EINVAL;
2469 }
2470
2471 if (ec->tx_max_coalesced_frames > 255) {
2472 pr_err("Tx coalesced frame exceed hardware limitation\n");
2473 return -EINVAL;
2474 }
2475
2476 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2477 if (cycle > 0xFFFF) {
2478 pr_err("Rx coalesced usec exceed hardware limitation\n");
2479 return -EINVAL;
2480 }
2481
2482 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2483 if (cycle > 0xFFFF) {
2484 pr_err("Rx coalesced usec exceed hardware limitation\n");
2485 return -EINVAL;
2486 }
2487
2488 fep->rx_time_itr = ec->rx_coalesce_usecs;
2489 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2490
2491 fep->tx_time_itr = ec->tx_coalesce_usecs;
2492 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2493
2494 fec_enet_itr_coal_set(ndev);
2495
2496 return 0;
2497 }
2498
2499 static void fec_enet_itr_coal_init(struct net_device *ndev)
2500 {
2501 struct ethtool_coalesce ec;
2502
2503 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2504 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2505
2506 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2507 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2508
2509 fec_enet_set_coalesce(ndev, &ec);
2510 }
2511
2512 static int fec_enet_get_tunable(struct net_device *netdev,
2513 const struct ethtool_tunable *tuna,
2514 void *data)
2515 {
2516 struct fec_enet_private *fep = netdev_priv(netdev);
2517 int ret = 0;
2518
2519 switch (tuna->id) {
2520 case ETHTOOL_RX_COPYBREAK:
2521 *(u32 *)data = fep->rx_copybreak;
2522 break;
2523 default:
2524 ret = -EINVAL;
2525 break;
2526 }
2527
2528 return ret;
2529 }
2530
2531 static int fec_enet_set_tunable(struct net_device *netdev,
2532 const struct ethtool_tunable *tuna,
2533 const void *data)
2534 {
2535 struct fec_enet_private *fep = netdev_priv(netdev);
2536 int ret = 0;
2537
2538 switch (tuna->id) {
2539 case ETHTOOL_RX_COPYBREAK:
2540 fep->rx_copybreak = *(u32 *)data;
2541 break;
2542 default:
2543 ret = -EINVAL;
2544 break;
2545 }
2546
2547 return ret;
2548 }
2549
2550 static void
2551 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2552 {
2553 struct fec_enet_private *fep = netdev_priv(ndev);
2554
2555 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2556 wol->supported = WAKE_MAGIC;
2557 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2558 } else {
2559 wol->supported = wol->wolopts = 0;
2560 }
2561 }
2562
2563 static int
2564 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2565 {
2566 struct fec_enet_private *fep = netdev_priv(ndev);
2567
2568 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2569 return -EINVAL;
2570
2571 if (wol->wolopts & ~WAKE_MAGIC)
2572 return -EINVAL;
2573
2574 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2575 if (device_may_wakeup(&ndev->dev)) {
2576 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2577 if (fep->irq[0] > 0)
2578 enable_irq_wake(fep->irq[0]);
2579 } else {
2580 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2581 if (fep->irq[0] > 0)
2582 disable_irq_wake(fep->irq[0]);
2583 }
2584
2585 return 0;
2586 }
2587
2588 static const struct ethtool_ops fec_enet_ethtool_ops = {
2589 .get_drvinfo = fec_enet_get_drvinfo,
2590 .get_regs_len = fec_enet_get_regs_len,
2591 .get_regs = fec_enet_get_regs,
2592 .nway_reset = phy_ethtool_nway_reset,
2593 .get_link = ethtool_op_get_link,
2594 .get_coalesce = fec_enet_get_coalesce,
2595 .set_coalesce = fec_enet_set_coalesce,
2596 #ifndef CONFIG_M5272
2597 .get_pauseparam = fec_enet_get_pauseparam,
2598 .set_pauseparam = fec_enet_set_pauseparam,
2599 .get_strings = fec_enet_get_strings,
2600 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2601 .get_sset_count = fec_enet_get_sset_count,
2602 #endif
2603 .get_ts_info = fec_enet_get_ts_info,
2604 .get_tunable = fec_enet_get_tunable,
2605 .set_tunable = fec_enet_set_tunable,
2606 .get_wol = fec_enet_get_wol,
2607 .set_wol = fec_enet_set_wol,
2608 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2609 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2610 };
2611
2612 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2613 {
2614 struct fec_enet_private *fep = netdev_priv(ndev);
2615 struct phy_device *phydev = ndev->phydev;
2616
2617 if (!netif_running(ndev))
2618 return -EINVAL;
2619
2620 if (!phydev)
2621 return -ENODEV;
2622
2623 if (fep->bufdesc_ex) {
2624 if (cmd == SIOCSHWTSTAMP)
2625 return fec_ptp_set(ndev, rq);
2626 if (cmd == SIOCGHWTSTAMP)
2627 return fec_ptp_get(ndev, rq);
2628 }
2629
2630 return phy_mii_ioctl(phydev, rq, cmd);
2631 }
2632
2633 static void fec_enet_free_buffers(struct net_device *ndev)
2634 {
2635 struct fec_enet_private *fep = netdev_priv(ndev);
2636 unsigned int i;
2637 struct sk_buff *skb;
2638 struct bufdesc *bdp;
2639 struct fec_enet_priv_tx_q *txq;
2640 struct fec_enet_priv_rx_q *rxq;
2641 unsigned int q;
2642
2643 for (q = 0; q < fep->num_rx_queues; q++) {
2644 rxq = fep->rx_queue[q];
2645 bdp = rxq->bd.base;
2646 for (i = 0; i < rxq->bd.ring_size; i++) {
2647 skb = rxq->rx_skbuff[i];
2648 rxq->rx_skbuff[i] = NULL;
2649 if (skb) {
2650 dma_unmap_single(&fep->pdev->dev,
2651 fec32_to_cpu(bdp->cbd_bufaddr),
2652 FEC_ENET_RX_FRSIZE - fep->rx_align,
2653 DMA_FROM_DEVICE);
2654 dev_kfree_skb(skb);
2655 }
2656 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2657 }
2658 }
2659
2660 for (q = 0; q < fep->num_tx_queues; q++) {
2661 txq = fep->tx_queue[q];
2662 bdp = txq->bd.base;
2663 for (i = 0; i < txq->bd.ring_size; i++) {
2664 kfree(txq->tx_bounce[i]);
2665 txq->tx_bounce[i] = NULL;
2666 skb = txq->tx_skbuff[i];
2667 txq->tx_skbuff[i] = NULL;
2668 dev_kfree_skb(skb);
2669 }
2670 }
2671 }
2672
2673 static void fec_enet_free_queue(struct net_device *ndev)
2674 {
2675 struct fec_enet_private *fep = netdev_priv(ndev);
2676 int i;
2677 struct fec_enet_priv_tx_q *txq;
2678
2679 for (i = 0; i < fep->num_tx_queues; i++)
2680 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2681 txq = fep->tx_queue[i];
2682 dma_free_coherent(&fep->pdev->dev,
2683 txq->bd.ring_size * TSO_HEADER_SIZE,
2684 txq->tso_hdrs,
2685 txq->tso_hdrs_dma);
2686 }
2687
2688 for (i = 0; i < fep->num_rx_queues; i++)
2689 kfree(fep->rx_queue[i]);
2690 for (i = 0; i < fep->num_tx_queues; i++)
2691 kfree(fep->tx_queue[i]);
2692 }
2693
2694 static int fec_enet_alloc_queue(struct net_device *ndev)
2695 {
2696 struct fec_enet_private *fep = netdev_priv(ndev);
2697 int i;
2698 int ret = 0;
2699 struct fec_enet_priv_tx_q *txq;
2700
2701 for (i = 0; i < fep->num_tx_queues; i++) {
2702 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2703 if (!txq) {
2704 ret = -ENOMEM;
2705 goto alloc_failed;
2706 }
2707
2708 fep->tx_queue[i] = txq;
2709 txq->bd.ring_size = TX_RING_SIZE;
2710 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2711
2712 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2713 txq->tx_wake_threshold =
2714 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2715
2716 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2717 txq->bd.ring_size * TSO_HEADER_SIZE,
2718 &txq->tso_hdrs_dma,
2719 GFP_KERNEL);
2720 if (!txq->tso_hdrs) {
2721 ret = -ENOMEM;
2722 goto alloc_failed;
2723 }
2724 }
2725
2726 for (i = 0; i < fep->num_rx_queues; i++) {
2727 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2728 GFP_KERNEL);
2729 if (!fep->rx_queue[i]) {
2730 ret = -ENOMEM;
2731 goto alloc_failed;
2732 }
2733
2734 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2735 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2736 }
2737 return ret;
2738
2739 alloc_failed:
2740 fec_enet_free_queue(ndev);
2741 return ret;
2742 }
2743
2744 static int
2745 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2746 {
2747 struct fec_enet_private *fep = netdev_priv(ndev);
2748 unsigned int i;
2749 struct sk_buff *skb;
2750 struct bufdesc *bdp;
2751 struct fec_enet_priv_rx_q *rxq;
2752
2753 rxq = fep->rx_queue[queue];
2754 bdp = rxq->bd.base;
2755 for (i = 0; i < rxq->bd.ring_size; i++) {
2756 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2757 if (!skb)
2758 goto err_alloc;
2759
2760 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2761 dev_kfree_skb(skb);
2762 goto err_alloc;
2763 }
2764
2765 rxq->rx_skbuff[i] = skb;
2766 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2767
2768 if (fep->bufdesc_ex) {
2769 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2770 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2771 }
2772
2773 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2774 }
2775
2776 /* Set the last buffer to wrap. */
2777 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2778 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2779 return 0;
2780
2781 err_alloc:
2782 fec_enet_free_buffers(ndev);
2783 return -ENOMEM;
2784 }
2785
2786 static int
2787 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2788 {
2789 struct fec_enet_private *fep = netdev_priv(ndev);
2790 unsigned int i;
2791 struct bufdesc *bdp;
2792 struct fec_enet_priv_tx_q *txq;
2793
2794 txq = fep->tx_queue[queue];
2795 bdp = txq->bd.base;
2796 for (i = 0; i < txq->bd.ring_size; i++) {
2797 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2798 if (!txq->tx_bounce[i])
2799 goto err_alloc;
2800
2801 bdp->cbd_sc = cpu_to_fec16(0);
2802 bdp->cbd_bufaddr = cpu_to_fec32(0);
2803
2804 if (fep->bufdesc_ex) {
2805 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2806 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2807 }
2808
2809 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2810 }
2811
2812 /* Set the last buffer to wrap. */
2813 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2814 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2815
2816 return 0;
2817
2818 err_alloc:
2819 fec_enet_free_buffers(ndev);
2820 return -ENOMEM;
2821 }
2822
2823 static int fec_enet_alloc_buffers(struct net_device *ndev)
2824 {
2825 struct fec_enet_private *fep = netdev_priv(ndev);
2826 unsigned int i;
2827
2828 for (i = 0; i < fep->num_rx_queues; i++)
2829 if (fec_enet_alloc_rxq_buffers(ndev, i))
2830 return -ENOMEM;
2831
2832 for (i = 0; i < fep->num_tx_queues; i++)
2833 if (fec_enet_alloc_txq_buffers(ndev, i))
2834 return -ENOMEM;
2835 return 0;
2836 }
2837
2838 static int
2839 fec_enet_open(struct net_device *ndev)
2840 {
2841 struct fec_enet_private *fep = netdev_priv(ndev);
2842 int ret;
2843
2844 ret = pm_runtime_get_sync(&fep->pdev->dev);
2845 if (ret < 0)
2846 return ret;
2847
2848 pinctrl_pm_select_default_state(&fep->pdev->dev);
2849 ret = fec_enet_clk_enable(ndev, true);
2850 if (ret)
2851 goto clk_enable;
2852
2853 /* I should reset the ring buffers here, but I don't yet know
2854 * a simple way to do that.
2855 */
2856
2857 ret = fec_enet_alloc_buffers(ndev);
2858 if (ret)
2859 goto err_enet_alloc;
2860
2861 /* Init MAC prior to mii bus probe */
2862 fec_restart(ndev);
2863
2864 /* Probe and connect to PHY when open the interface */
2865 ret = fec_enet_mii_probe(ndev);
2866 if (ret)
2867 goto err_enet_mii_probe;
2868
2869 if (fep->quirks & FEC_QUIRK_ERR006687)
2870 imx6q_cpuidle_fec_irqs_used();
2871
2872 napi_enable(&fep->napi);
2873 phy_start(ndev->phydev);
2874 netif_tx_start_all_queues(ndev);
2875
2876 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2877 FEC_WOL_FLAG_ENABLE);
2878
2879 return 0;
2880
2881 err_enet_mii_probe:
2882 fec_enet_free_buffers(ndev);
2883 err_enet_alloc:
2884 fec_enet_clk_enable(ndev, false);
2885 clk_enable:
2886 pm_runtime_mark_last_busy(&fep->pdev->dev);
2887 pm_runtime_put_autosuspend(&fep->pdev->dev);
2888 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2889 return ret;
2890 }
2891
2892 static int
2893 fec_enet_close(struct net_device *ndev)
2894 {
2895 struct fec_enet_private *fep = netdev_priv(ndev);
2896
2897 phy_stop(ndev->phydev);
2898
2899 if (netif_device_present(ndev)) {
2900 napi_disable(&fep->napi);
2901 netif_tx_disable(ndev);
2902 fec_stop(ndev);
2903 }
2904
2905 phy_disconnect(ndev->phydev);
2906
2907 if (fep->quirks & FEC_QUIRK_ERR006687)
2908 imx6q_cpuidle_fec_irqs_unused();
2909
2910 fec_enet_update_ethtool_stats(ndev);
2911
2912 fec_enet_clk_enable(ndev, false);
2913 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2914 pm_runtime_mark_last_busy(&fep->pdev->dev);
2915 pm_runtime_put_autosuspend(&fep->pdev->dev);
2916
2917 fec_enet_free_buffers(ndev);
2918
2919 return 0;
2920 }
2921
2922 /* Set or clear the multicast filter for this adaptor.
2923 * Skeleton taken from sunlance driver.
2924 * The CPM Ethernet implementation allows Multicast as well as individual
2925 * MAC address filtering. Some of the drivers check to make sure it is
2926 * a group multicast address, and discard those that are not. I guess I
2927 * will do the same for now, but just remove the test if you want
2928 * individual filtering as well (do the upper net layers want or support
2929 * this kind of feature?).
2930 */
2931
2932 #define FEC_HASH_BITS 6 /* #bits in hash */
2933 #define CRC32_POLY 0xEDB88320
2934
2935 static void set_multicast_list(struct net_device *ndev)
2936 {
2937 struct fec_enet_private *fep = netdev_priv(ndev);
2938 struct netdev_hw_addr *ha;
2939 unsigned int i, bit, data, crc, tmp;
2940 unsigned char hash;
2941 unsigned int hash_high = 0, hash_low = 0;
2942
2943 if (ndev->flags & IFF_PROMISC) {
2944 tmp = readl(fep->hwp + FEC_R_CNTRL);
2945 tmp |= 0x8;
2946 writel(tmp, fep->hwp + FEC_R_CNTRL);
2947 return;
2948 }
2949
2950 tmp = readl(fep->hwp + FEC_R_CNTRL);
2951 tmp &= ~0x8;
2952 writel(tmp, fep->hwp + FEC_R_CNTRL);
2953
2954 if (ndev->flags & IFF_ALLMULTI) {
2955 /* Catch all multicast addresses, so set the
2956 * filter to all 1's
2957 */
2958 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2959 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2960
2961 return;
2962 }
2963
2964 /* Add the addresses in hash register */
2965 netdev_for_each_mc_addr(ha, ndev) {
2966 /* calculate crc32 value of mac address */
2967 crc = 0xffffffff;
2968
2969 for (i = 0; i < ndev->addr_len; i++) {
2970 data = ha->addr[i];
2971 for (bit = 0; bit < 8; bit++, data >>= 1) {
2972 crc = (crc >> 1) ^
2973 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2974 }
2975 }
2976
2977 /* only upper 6 bits (FEC_HASH_BITS) are used
2978 * which point to specific bit in the hash registers
2979 */
2980 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2981
2982 if (hash > 31)
2983 hash_high |= 1 << (hash - 32);
2984 else
2985 hash_low |= 1 << hash;
2986 }
2987
2988 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2989 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2990 }
2991
2992 /* Set a MAC change in hardware. */
2993 static int
2994 fec_set_mac_address(struct net_device *ndev, void *p)
2995 {
2996 struct fec_enet_private *fep = netdev_priv(ndev);
2997 struct sockaddr *addr = p;
2998
2999 if (addr) {
3000 if (!is_valid_ether_addr(addr->sa_data))
3001 return -EADDRNOTAVAIL;
3002 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3003 }
3004
3005 /* Add netif status check here to avoid system hang in below case:
3006 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3007 * After ethx down, fec all clocks are gated off and then register
3008 * access causes system hang.
3009 */
3010 if (!netif_running(ndev))
3011 return 0;
3012
3013 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3014 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3015 fep->hwp + FEC_ADDR_LOW);
3016 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3017 fep->hwp + FEC_ADDR_HIGH);
3018 return 0;
3019 }
3020
3021 #ifdef CONFIG_NET_POLL_CONTROLLER
3022 /**
3023 * fec_poll_controller - FEC Poll controller function
3024 * @dev: The FEC network adapter
3025 *
3026 * Polled functionality used by netconsole and others in non interrupt mode
3027 *
3028 */
3029 static void fec_poll_controller(struct net_device *dev)
3030 {
3031 int i;
3032 struct fec_enet_private *fep = netdev_priv(dev);
3033
3034 for (i = 0; i < FEC_IRQ_NUM; i++) {
3035 if (fep->irq[i] > 0) {
3036 disable_irq(fep->irq[i]);
3037 fec_enet_interrupt(fep->irq[i], dev);
3038 enable_irq(fep->irq[i]);
3039 }
3040 }
3041 }
3042 #endif
3043
3044 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3045 netdev_features_t features)
3046 {
3047 struct fec_enet_private *fep = netdev_priv(netdev);
3048 netdev_features_t changed = features ^ netdev->features;
3049
3050 netdev->features = features;
3051
3052 /* Receive checksum has been changed */
3053 if (changed & NETIF_F_RXCSUM) {
3054 if (features & NETIF_F_RXCSUM)
3055 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3056 else
3057 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3058 }
3059 }
3060
3061 static int fec_set_features(struct net_device *netdev,
3062 netdev_features_t features)
3063 {
3064 struct fec_enet_private *fep = netdev_priv(netdev);
3065 netdev_features_t changed = features ^ netdev->features;
3066
3067 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3068 napi_disable(&fep->napi);
3069 netif_tx_lock_bh(netdev);
3070 fec_stop(netdev);
3071 fec_enet_set_netdev_features(netdev, features);
3072 fec_restart(netdev);
3073 netif_tx_wake_all_queues(netdev);
3074 netif_tx_unlock_bh(netdev);
3075 napi_enable(&fep->napi);
3076 } else {
3077 fec_enet_set_netdev_features(netdev, features);
3078 }
3079
3080 return 0;
3081 }
3082
3083 static const struct net_device_ops fec_netdev_ops = {
3084 .ndo_open = fec_enet_open,
3085 .ndo_stop = fec_enet_close,
3086 .ndo_start_xmit = fec_enet_start_xmit,
3087 .ndo_set_rx_mode = set_multicast_list,
3088 .ndo_validate_addr = eth_validate_addr,
3089 .ndo_tx_timeout = fec_timeout,
3090 .ndo_set_mac_address = fec_set_mac_address,
3091 .ndo_do_ioctl = fec_enet_ioctl,
3092 #ifdef CONFIG_NET_POLL_CONTROLLER
3093 .ndo_poll_controller = fec_poll_controller,
3094 #endif
3095 .ndo_set_features = fec_set_features,
3096 };
3097
3098 static const unsigned short offset_des_active_rxq[] = {
3099 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3100 };
3101
3102 static const unsigned short offset_des_active_txq[] = {
3103 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3104 };
3105
3106 /*
3107 * XXX: We need to clean up on failure exits here.
3108 *
3109 */
3110 static int fec_enet_init(struct net_device *ndev)
3111 {
3112 struct fec_enet_private *fep = netdev_priv(ndev);
3113 struct bufdesc *cbd_base;
3114 dma_addr_t bd_dma;
3115 int bd_size;
3116 unsigned int i;
3117 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3118 sizeof(struct bufdesc);
3119 unsigned dsize_log2 = __fls(dsize);
3120
3121 WARN_ON(dsize != (1 << dsize_log2));
3122 #if defined(CONFIG_ARM)
3123 fep->rx_align = 0xf;
3124 fep->tx_align = 0xf;
3125 #else
3126 fep->rx_align = 0x3;
3127 fep->tx_align = 0x3;
3128 #endif
3129
3130 fec_enet_alloc_queue(ndev);
3131
3132 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3133
3134 /* Allocate memory for buffer descriptors. */
3135 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3136 GFP_KERNEL);
3137 if (!cbd_base) {
3138 return -ENOMEM;
3139 }
3140
3141 memset(cbd_base, 0, bd_size);
3142
3143 /* Get the Ethernet address */
3144 fec_get_mac(ndev);
3145 /* make sure MAC we just acquired is programmed into the hw */
3146 fec_set_mac_address(ndev, NULL);
3147
3148 /* Set receive and transmit descriptor base. */
3149 for (i = 0; i < fep->num_rx_queues; i++) {
3150 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3151 unsigned size = dsize * rxq->bd.ring_size;
3152
3153 rxq->bd.qid = i;
3154 rxq->bd.base = cbd_base;
3155 rxq->bd.cur = cbd_base;
3156 rxq->bd.dma = bd_dma;
3157 rxq->bd.dsize = dsize;
3158 rxq->bd.dsize_log2 = dsize_log2;
3159 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3160 bd_dma += size;
3161 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3162 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3163 }
3164
3165 for (i = 0; i < fep->num_tx_queues; i++) {
3166 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3167 unsigned size = dsize * txq->bd.ring_size;
3168
3169 txq->bd.qid = i;
3170 txq->bd.base = cbd_base;
3171 txq->bd.cur = cbd_base;
3172 txq->bd.dma = bd_dma;
3173 txq->bd.dsize = dsize;
3174 txq->bd.dsize_log2 = dsize_log2;
3175 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3176 bd_dma += size;
3177 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3178 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3179 }
3180
3181
3182 /* The FEC Ethernet specific entries in the device structure */
3183 ndev->watchdog_timeo = TX_TIMEOUT;
3184 ndev->netdev_ops = &fec_netdev_ops;
3185 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3186
3187 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3188 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3189
3190 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3191 /* enable hw VLAN support */
3192 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3193
3194 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3195 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3196
3197 /* enable hw accelerator */
3198 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3199 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3200 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3201 }
3202
3203 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3204 fep->tx_align = 0;
3205 fep->rx_align = 0x3f;
3206 }
3207
3208 ndev->hw_features = ndev->features;
3209
3210 fec_restart(ndev);
3211
3212 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3213 fec_enet_clear_ethtool_stats(ndev);
3214 else
3215 fec_enet_update_ethtool_stats(ndev);
3216
3217 return 0;
3218 }
3219
3220 #ifdef CONFIG_OF
3221 static int fec_reset_phy(struct platform_device *pdev)
3222 {
3223 int err, phy_reset;
3224 bool active_high = false;
3225 int msec = 1, phy_post_delay = 0;
3226 struct device_node *np = pdev->dev.of_node;
3227
3228 if (!np)
3229 return 0;
3230
3231 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3232 /* A sane reset duration should not be longer than 1s */
3233 if (!err && msec > 1000)
3234 msec = 1;
3235
3236 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3237 if (phy_reset == -EPROBE_DEFER)
3238 return phy_reset;
3239 else if (!gpio_is_valid(phy_reset))
3240 return 0;
3241
3242 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3243 /* valid reset duration should be less than 1s */
3244 if (!err && phy_post_delay > 1000)
3245 return -EINVAL;
3246
3247 active_high = of_property_read_bool(np, "phy-reset-active-high");
3248
3249 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3250 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3251 "phy-reset");
3252 if (err) {
3253 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3254 return err;
3255 }
3256
3257 if (msec > 20)
3258 msleep(msec);
3259 else
3260 usleep_range(msec * 1000, msec * 1000 + 1000);
3261
3262 gpio_set_value_cansleep(phy_reset, !active_high);
3263
3264 if (!phy_post_delay)
3265 return 0;
3266
3267 if (phy_post_delay > 20)
3268 msleep(phy_post_delay);
3269 else
3270 usleep_range(phy_post_delay * 1000,
3271 phy_post_delay * 1000 + 1000);
3272
3273 return 0;
3274 }
3275 #else /* CONFIG_OF */
3276 static int fec_reset_phy(struct platform_device *pdev)
3277 {
3278 /*
3279 * In case of platform probe, the reset has been done
3280 * by machine code.
3281 */
3282 return 0;
3283 }
3284 #endif /* CONFIG_OF */
3285
3286 static void
3287 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3288 {
3289 struct device_node *np = pdev->dev.of_node;
3290
3291 *num_tx = *num_rx = 1;
3292
3293 if (!np || !of_device_is_available(np))
3294 return;
3295
3296 /* parse the num of tx and rx queues */
3297 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3298
3299 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3300
3301 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3302 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3303 *num_tx);
3304 *num_tx = 1;
3305 return;
3306 }
3307
3308 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3309 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3310 *num_rx);
3311 *num_rx = 1;
3312 return;
3313 }
3314
3315 }
3316
3317 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3318 {
3319 int irq_cnt = platform_irq_count(pdev);
3320
3321 if (irq_cnt > FEC_IRQ_NUM)
3322 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3323 else if (irq_cnt == 2)
3324 irq_cnt = 1; /* last for pps */
3325 else if (irq_cnt <= 0)
3326 irq_cnt = 1; /* At least 1 irq is needed */
3327 return irq_cnt;
3328 }
3329
3330 static int
3331 fec_probe(struct platform_device *pdev)
3332 {
3333 struct fec_enet_private *fep;
3334 struct fec_platform_data *pdata;
3335 struct net_device *ndev;
3336 int i, irq, ret = 0;
3337 struct resource *r;
3338 const struct of_device_id *of_id;
3339 static int dev_id;
3340 struct device_node *np = pdev->dev.of_node, *phy_node;
3341 int num_tx_qs;
3342 int num_rx_qs;
3343 char irq_name[8];
3344 int irq_cnt;
3345
3346 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3347
3348 /* Init network device */
3349 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3350 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3351 if (!ndev)
3352 return -ENOMEM;
3353
3354 SET_NETDEV_DEV(ndev, &pdev->dev);
3355
3356 /* setup board info structure */
3357 fep = netdev_priv(ndev);
3358
3359 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3360 if (of_id)
3361 pdev->id_entry = of_id->data;
3362 fep->quirks = pdev->id_entry->driver_data;
3363
3364 fep->netdev = ndev;
3365 fep->num_rx_queues = num_rx_qs;
3366 fep->num_tx_queues = num_tx_qs;
3367
3368 #if !defined(CONFIG_M5272)
3369 /* default enable pause frame auto negotiation */
3370 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3371 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3372 #endif
3373
3374 /* Select default pin state */
3375 pinctrl_pm_select_default_state(&pdev->dev);
3376
3377 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3378 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3379 if (IS_ERR(fep->hwp)) {
3380 ret = PTR_ERR(fep->hwp);
3381 goto failed_ioremap;
3382 }
3383
3384 fep->pdev = pdev;
3385 fep->dev_id = dev_id++;
3386
3387 platform_set_drvdata(pdev, ndev);
3388
3389 if ((of_machine_is_compatible("fsl,imx6q") ||
3390 of_machine_is_compatible("fsl,imx6dl")) &&
3391 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3392 fep->quirks |= FEC_QUIRK_ERR006687;
3393
3394 if (of_get_property(np, "fsl,magic-packet", NULL))
3395 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3396
3397 phy_node = of_parse_phandle(np, "phy-handle", 0);
3398 if (!phy_node && of_phy_is_fixed_link(np)) {
3399 ret = of_phy_register_fixed_link(np);
3400 if (ret < 0) {
3401 dev_err(&pdev->dev,
3402 "broken fixed-link specification\n");
3403 goto failed_phy;
3404 }
3405 phy_node = of_node_get(np);
3406 }
3407 fep->phy_node = phy_node;
3408
3409 ret = of_get_phy_mode(pdev->dev.of_node);
3410 if (ret < 0) {
3411 pdata = dev_get_platdata(&pdev->dev);
3412 if (pdata)
3413 fep->phy_interface = pdata->phy;
3414 else
3415 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3416 } else {
3417 fep->phy_interface = ret;
3418 }
3419
3420 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3421 if (IS_ERR(fep->clk_ipg)) {
3422 ret = PTR_ERR(fep->clk_ipg);
3423 goto failed_clk;
3424 }
3425
3426 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3427 if (IS_ERR(fep->clk_ahb)) {
3428 ret = PTR_ERR(fep->clk_ahb);
3429 goto failed_clk;
3430 }
3431
3432 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3433
3434 /* enet_out is optional, depends on board */
3435 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3436 if (IS_ERR(fep->clk_enet_out))
3437 fep->clk_enet_out = NULL;
3438
3439 fep->ptp_clk_on = false;
3440 mutex_init(&fep->ptp_clk_mutex);
3441
3442 /* clk_ref is optional, depends on board */
3443 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3444 if (IS_ERR(fep->clk_ref))
3445 fep->clk_ref = NULL;
3446
3447 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3448 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3449 if (IS_ERR(fep->clk_ptp)) {
3450 fep->clk_ptp = NULL;
3451 fep->bufdesc_ex = false;
3452 }
3453
3454 ret = fec_enet_clk_enable(ndev, true);
3455 if (ret)
3456 goto failed_clk;
3457
3458 ret = clk_prepare_enable(fep->clk_ipg);
3459 if (ret)
3460 goto failed_clk_ipg;
3461
3462 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3463 if (!IS_ERR(fep->reg_phy)) {
3464 ret = regulator_enable(fep->reg_phy);
3465 if (ret) {
3466 dev_err(&pdev->dev,
3467 "Failed to enable phy regulator: %d\n", ret);
3468 clk_disable_unprepare(fep->clk_ipg);
3469 goto failed_regulator;
3470 }
3471 } else {
3472 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3473 ret = -EPROBE_DEFER;
3474 goto failed_regulator;
3475 }
3476 fep->reg_phy = NULL;
3477 }
3478
3479 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3480 pm_runtime_use_autosuspend(&pdev->dev);
3481 pm_runtime_get_noresume(&pdev->dev);
3482 pm_runtime_set_active(&pdev->dev);
3483 pm_runtime_enable(&pdev->dev);
3484
3485 ret = fec_reset_phy(pdev);
3486 if (ret)
3487 goto failed_reset;
3488
3489 irq_cnt = fec_enet_get_irq_cnt(pdev);
3490 if (fep->bufdesc_ex)
3491 fec_ptp_init(pdev, irq_cnt);
3492
3493 ret = fec_enet_init(ndev);
3494 if (ret)
3495 goto failed_init;
3496
3497 for (i = 0; i < irq_cnt; i++) {
3498 sprintf(irq_name, "int%d", i);
3499 irq = platform_get_irq_byname(pdev, irq_name);
3500 if (irq < 0)
3501 irq = platform_get_irq(pdev, i);
3502 if (irq < 0) {
3503 ret = irq;
3504 goto failed_irq;
3505 }
3506 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3507 0, pdev->name, ndev);
3508 if (ret)
3509 goto failed_irq;
3510
3511 fep->irq[i] = irq;
3512 }
3513
3514 init_completion(&fep->mdio_done);
3515 ret = fec_enet_mii_init(pdev);
3516 if (ret)
3517 goto failed_mii_init;
3518
3519 /* Carrier starts down, phylib will bring it up */
3520 netif_carrier_off(ndev);
3521 fec_enet_clk_enable(ndev, false);
3522 pinctrl_pm_select_sleep_state(&pdev->dev);
3523
3524 ret = register_netdev(ndev);
3525 if (ret)
3526 goto failed_register;
3527
3528 device_init_wakeup(&ndev->dev, fep->wol_flag &
3529 FEC_WOL_HAS_MAGIC_PACKET);
3530
3531 if (fep->bufdesc_ex && fep->ptp_clock)
3532 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3533
3534 fep->rx_copybreak = COPYBREAK_DEFAULT;
3535 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3536
3537 pm_runtime_mark_last_busy(&pdev->dev);
3538 pm_runtime_put_autosuspend(&pdev->dev);
3539
3540 return 0;
3541
3542 failed_register:
3543 fec_enet_mii_remove(fep);
3544 failed_mii_init:
3545 failed_irq:
3546 failed_init:
3547 fec_ptp_stop(pdev);
3548 if (fep->reg_phy)
3549 regulator_disable(fep->reg_phy);
3550 failed_reset:
3551 pm_runtime_put(&pdev->dev);
3552 pm_runtime_disable(&pdev->dev);
3553 failed_regulator:
3554 failed_clk_ipg:
3555 fec_enet_clk_enable(ndev, false);
3556 failed_clk:
3557 if (of_phy_is_fixed_link(np))
3558 of_phy_deregister_fixed_link(np);
3559 of_node_put(phy_node);
3560 failed_phy:
3561 dev_id--;
3562 failed_ioremap:
3563 free_netdev(ndev);
3564
3565 return ret;
3566 }
3567
3568 static int
3569 fec_drv_remove(struct platform_device *pdev)
3570 {
3571 struct net_device *ndev = platform_get_drvdata(pdev);
3572 struct fec_enet_private *fep = netdev_priv(ndev);
3573 struct device_node *np = pdev->dev.of_node;
3574
3575 cancel_work_sync(&fep->tx_timeout_work);
3576 fec_ptp_stop(pdev);
3577 unregister_netdev(ndev);
3578 fec_enet_mii_remove(fep);
3579 if (fep->reg_phy)
3580 regulator_disable(fep->reg_phy);
3581 if (of_phy_is_fixed_link(np))
3582 of_phy_deregister_fixed_link(np);
3583 of_node_put(fep->phy_node);
3584 free_netdev(ndev);
3585
3586 return 0;
3587 }
3588
3589 static int __maybe_unused fec_suspend(struct device *dev)
3590 {
3591 struct net_device *ndev = dev_get_drvdata(dev);
3592 struct fec_enet_private *fep = netdev_priv(ndev);
3593
3594 rtnl_lock();
3595 if (netif_running(ndev)) {
3596 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3597 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3598 phy_stop(ndev->phydev);
3599 napi_disable(&fep->napi);
3600 netif_tx_lock_bh(ndev);
3601 netif_device_detach(ndev);
3602 netif_tx_unlock_bh(ndev);
3603 fec_stop(ndev);
3604 fec_enet_clk_enable(ndev, false);
3605 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3606 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3607 }
3608 rtnl_unlock();
3609
3610 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3611 regulator_disable(fep->reg_phy);
3612
3613 /* SOC supply clock to phy, when clock is disabled, phy link down
3614 * SOC control phy regulator, when regulator is disabled, phy link down
3615 */
3616 if (fep->clk_enet_out || fep->reg_phy)
3617 fep->link = 0;
3618
3619 return 0;
3620 }
3621
3622 static int __maybe_unused fec_resume(struct device *dev)
3623 {
3624 struct net_device *ndev = dev_get_drvdata(dev);
3625 struct fec_enet_private *fep = netdev_priv(ndev);
3626 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3627 int ret;
3628 int val;
3629
3630 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3631 ret = regulator_enable(fep->reg_phy);
3632 if (ret)
3633 return ret;
3634 }
3635
3636 rtnl_lock();
3637 if (netif_running(ndev)) {
3638 ret = fec_enet_clk_enable(ndev, true);
3639 if (ret) {
3640 rtnl_unlock();
3641 goto failed_clk;
3642 }
3643 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3644 if (pdata && pdata->sleep_mode_enable)
3645 pdata->sleep_mode_enable(false);
3646 val = readl(fep->hwp + FEC_ECNTRL);
3647 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3648 writel(val, fep->hwp + FEC_ECNTRL);
3649 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3650 } else {
3651 pinctrl_pm_select_default_state(&fep->pdev->dev);
3652 }
3653 fec_restart(ndev);
3654 netif_tx_lock_bh(ndev);
3655 netif_device_attach(ndev);
3656 netif_tx_unlock_bh(ndev);
3657 napi_enable(&fep->napi);
3658 phy_start(ndev->phydev);
3659 }
3660 rtnl_unlock();
3661
3662 return 0;
3663
3664 failed_clk:
3665 if (fep->reg_phy)
3666 regulator_disable(fep->reg_phy);
3667 return ret;
3668 }
3669
3670 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3671 {
3672 struct net_device *ndev = dev_get_drvdata(dev);
3673 struct fec_enet_private *fep = netdev_priv(ndev);
3674
3675 clk_disable_unprepare(fep->clk_ipg);
3676
3677 return 0;
3678 }
3679
3680 static int __maybe_unused fec_runtime_resume(struct device *dev)
3681 {
3682 struct net_device *ndev = dev_get_drvdata(dev);
3683 struct fec_enet_private *fep = netdev_priv(ndev);
3684
3685 return clk_prepare_enable(fep->clk_ipg);
3686 }
3687
3688 static const struct dev_pm_ops fec_pm_ops = {
3689 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3690 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3691 };
3692
3693 static struct platform_driver fec_driver = {
3694 .driver = {
3695 .name = DRIVER_NAME,
3696 .pm = &fec_pm_ops,
3697 .of_match_table = fec_dt_ids,
3698 },
3699 .id_table = fec_devtype,
3700 .probe = fec_probe,
3701 .remove = fec_drv_remove,
3702 };
3703
3704 module_platform_driver(fec_driver);
3705
3706 MODULE_ALIAS("platform:"DRIVER_NAME);
3707 MODULE_LICENSE("GPL");