]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/freescale/fec_main.c
dc6f8763a5d4062c33bd553ce0899079833113be
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / freescale / fec_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68
69 #include <asm/cacheflush.h>
70
71 #include "fec.h"
72
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75
76 #define DRIVER_NAME "fec"
77
78 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
79
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE (1 << 5)
82 #define FEC_ENET_RSEM_V 0x84
83 #define FEC_ENET_RSFL_V 16
84 #define FEC_ENET_RAEM_V 0x8
85 #define FEC_ENET_RAFL_V 0x8
86 #define FEC_ENET_OPD_V 0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
88
89 struct fec_devinfo {
90 u32 quirks;
91 u8 stop_gpr_reg;
92 u8 stop_gpr_bit;
93 };
94
95 static const struct fec_devinfo fec_imx25_info = {
96 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
97 FEC_QUIRK_HAS_FRREG,
98 };
99
100 static const struct fec_devinfo fec_imx27_info = {
101 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
102 };
103
104 static const struct fec_devinfo fec_imx28_info = {
105 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
106 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
107 FEC_QUIRK_HAS_FRREG,
108 };
109
110 static const struct fec_devinfo fec_imx6q_info = {
111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 FEC_QUIRK_HAS_RACC,
115 .stop_gpr_reg = 0x34,
116 .stop_gpr_bit = 27,
117 };
118
119 static const struct fec_devinfo fec_mvf600_info = {
120 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
121 };
122
123 static const struct fec_devinfo fec_imx6x_info = {
124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
127 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
128 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
129 };
130
131 static const struct fec_devinfo fec_imx6ul_info = {
132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
135 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
136 FEC_QUIRK_HAS_COALESCE,
137 };
138
139 static struct platform_device_id fec_devtype[] = {
140 {
141 /* keep it for coldfire */
142 .name = DRIVER_NAME,
143 .driver_data = 0,
144 }, {
145 .name = "imx25-fec",
146 .driver_data = (kernel_ulong_t)&fec_imx25_info,
147 }, {
148 .name = "imx27-fec",
149 .driver_data = (kernel_ulong_t)&fec_imx27_info,
150 }, {
151 .name = "imx28-fec",
152 .driver_data = (kernel_ulong_t)&fec_imx28_info,
153 }, {
154 .name = "imx6q-fec",
155 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
156 }, {
157 .name = "mvf600-fec",
158 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
159 }, {
160 .name = "imx6sx-fec",
161 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
162 }, {
163 .name = "imx6ul-fec",
164 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
165 }, {
166 /* sentinel */
167 }
168 };
169 MODULE_DEVICE_TABLE(platform, fec_devtype);
170
171 enum imx_fec_type {
172 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
173 IMX27_FEC, /* runs on i.mx27/35/51 */
174 IMX28_FEC,
175 IMX6Q_FEC,
176 MVF600_FEC,
177 IMX6SX_FEC,
178 IMX6UL_FEC,
179 };
180
181 static const struct of_device_id fec_dt_ids[] = {
182 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
183 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
184 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
185 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
186 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
187 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
188 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
189 { /* sentinel */ }
190 };
191 MODULE_DEVICE_TABLE(of, fec_dt_ids);
192
193 static unsigned char macaddr[ETH_ALEN];
194 module_param_array(macaddr, byte, NULL, 0);
195 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
196
197 #if defined(CONFIG_M5272)
198 /*
199 * Some hardware gets it MAC address out of local flash memory.
200 * if this is non-zero then assume it is the address to get MAC from.
201 */
202 #if defined(CONFIG_NETtel)
203 #define FEC_FLASHMAC 0xf0006006
204 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
205 #define FEC_FLASHMAC 0xf0006000
206 #elif defined(CONFIG_CANCam)
207 #define FEC_FLASHMAC 0xf0020000
208 #elif defined (CONFIG_M5272C3)
209 #define FEC_FLASHMAC (0xffe04000 + 4)
210 #elif defined(CONFIG_MOD5272)
211 #define FEC_FLASHMAC 0xffc0406b
212 #else
213 #define FEC_FLASHMAC 0
214 #endif
215 #endif /* CONFIG_M5272 */
216
217 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
218 *
219 * 2048 byte skbufs are allocated. However, alignment requirements
220 * varies between FEC variants. Worst case is 64, so round down by 64.
221 */
222 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
223 #define PKT_MINBUF_SIZE 64
224
225 /* FEC receive acceleration */
226 #define FEC_RACC_IPDIS (1 << 1)
227 #define FEC_RACC_PRODIS (1 << 2)
228 #define FEC_RACC_SHIFT16 BIT(7)
229 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
230
231 /* MIB Control Register */
232 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
233
234 /*
235 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
236 * size bits. Other FEC hardware does not, so we need to take that into
237 * account when setting it.
238 */
239 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
240 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
241 defined(CONFIG_ARM64)
242 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
243 #else
244 #define OPT_FRAME_SIZE 0
245 #endif
246
247 /* FEC MII MMFR bits definition */
248 #define FEC_MMFR_ST (1 << 30)
249 #define FEC_MMFR_ST_C45 (0)
250 #define FEC_MMFR_OP_READ (2 << 28)
251 #define FEC_MMFR_OP_READ_C45 (3 << 28)
252 #define FEC_MMFR_OP_WRITE (1 << 28)
253 #define FEC_MMFR_OP_ADDR_WRITE (0)
254 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
255 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
256 #define FEC_MMFR_TA (2 << 16)
257 #define FEC_MMFR_DATA(v) (v & 0xffff)
258 /* FEC ECR bits definition */
259 #define FEC_ECR_MAGICEN (1 << 2)
260 #define FEC_ECR_SLEEP (1 << 3)
261
262 #define FEC_MII_TIMEOUT 30000 /* us */
263
264 /* Transmitter timeout */
265 #define TX_TIMEOUT (2 * HZ)
266
267 #define FEC_PAUSE_FLAG_AUTONEG 0x1
268 #define FEC_PAUSE_FLAG_ENABLE 0x2
269 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
270 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
271 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
272
273 #define COPYBREAK_DEFAULT 256
274
275 /* Max number of allowed TCP segments for software TSO */
276 #define FEC_MAX_TSO_SEGS 100
277 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
278
279 #define IS_TSO_HEADER(txq, addr) \
280 ((addr >= txq->tso_hdrs_dma) && \
281 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
282
283 static int mii_cnt;
284
285 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
286 struct bufdesc_prop *bd)
287 {
288 return (bdp >= bd->last) ? bd->base
289 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
290 }
291
292 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
293 struct bufdesc_prop *bd)
294 {
295 return (bdp <= bd->base) ? bd->last
296 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
297 }
298
299 static int fec_enet_get_bd_index(struct bufdesc *bdp,
300 struct bufdesc_prop *bd)
301 {
302 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
303 }
304
305 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
306 {
307 int entries;
308
309 entries = (((const char *)txq->dirty_tx -
310 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
311
312 return entries >= 0 ? entries : entries + txq->bd.ring_size;
313 }
314
315 static void swap_buffer(void *bufaddr, int len)
316 {
317 int i;
318 unsigned int *buf = bufaddr;
319
320 for (i = 0; i < len; i += 4, buf++)
321 swab32s(buf);
322 }
323
324 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
325 {
326 int i;
327 unsigned int *src = src_buf;
328 unsigned int *dst = dst_buf;
329
330 for (i = 0; i < len; i += 4, src++, dst++)
331 *dst = swab32p(src);
332 }
333
334 static void fec_dump(struct net_device *ndev)
335 {
336 struct fec_enet_private *fep = netdev_priv(ndev);
337 struct bufdesc *bdp;
338 struct fec_enet_priv_tx_q *txq;
339 int index = 0;
340
341 netdev_info(ndev, "TX ring dump\n");
342 pr_info("Nr SC addr len SKB\n");
343
344 txq = fep->tx_queue[0];
345 bdp = txq->bd.base;
346
347 do {
348 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
349 index,
350 bdp == txq->bd.cur ? 'S' : ' ',
351 bdp == txq->dirty_tx ? 'H' : ' ',
352 fec16_to_cpu(bdp->cbd_sc),
353 fec32_to_cpu(bdp->cbd_bufaddr),
354 fec16_to_cpu(bdp->cbd_datlen),
355 txq->tx_skbuff[index]);
356 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
357 index++;
358 } while (bdp != txq->bd.base);
359 }
360
361 static inline bool is_ipv4_pkt(struct sk_buff *skb)
362 {
363 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
364 }
365
366 static int
367 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
368 {
369 /* Only run for packets requiring a checksum. */
370 if (skb->ip_summed != CHECKSUM_PARTIAL)
371 return 0;
372
373 if (unlikely(skb_cow_head(skb, 0)))
374 return -1;
375
376 if (is_ipv4_pkt(skb))
377 ip_hdr(skb)->check = 0;
378 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
379
380 return 0;
381 }
382
383 static struct bufdesc *
384 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
385 struct sk_buff *skb,
386 struct net_device *ndev)
387 {
388 struct fec_enet_private *fep = netdev_priv(ndev);
389 struct bufdesc *bdp = txq->bd.cur;
390 struct bufdesc_ex *ebdp;
391 int nr_frags = skb_shinfo(skb)->nr_frags;
392 int frag, frag_len;
393 unsigned short status;
394 unsigned int estatus = 0;
395 skb_frag_t *this_frag;
396 unsigned int index;
397 void *bufaddr;
398 dma_addr_t addr;
399 int i;
400
401 for (frag = 0; frag < nr_frags; frag++) {
402 this_frag = &skb_shinfo(skb)->frags[frag];
403 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404 ebdp = (struct bufdesc_ex *)bdp;
405
406 status = fec16_to_cpu(bdp->cbd_sc);
407 status &= ~BD_ENET_TX_STATS;
408 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
409 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
410
411 /* Handle the last BD specially */
412 if (frag == nr_frags - 1) {
413 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
414 if (fep->bufdesc_ex) {
415 estatus |= BD_ENET_TX_INT;
416 if (unlikely(skb_shinfo(skb)->tx_flags &
417 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
418 estatus |= BD_ENET_TX_TS;
419 }
420 }
421
422 if (fep->bufdesc_ex) {
423 if (fep->quirks & FEC_QUIRK_HAS_AVB)
424 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
425 if (skb->ip_summed == CHECKSUM_PARTIAL)
426 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
427 ebdp->cbd_bdu = 0;
428 ebdp->cbd_esc = cpu_to_fec32(estatus);
429 }
430
431 bufaddr = skb_frag_address(this_frag);
432
433 index = fec_enet_get_bd_index(bdp, &txq->bd);
434 if (((unsigned long) bufaddr) & fep->tx_align ||
435 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
436 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
437 bufaddr = txq->tx_bounce[index];
438
439 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
440 swap_buffer(bufaddr, frag_len);
441 }
442
443 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
444 DMA_TO_DEVICE);
445 if (dma_mapping_error(&fep->pdev->dev, addr)) {
446 if (net_ratelimit())
447 netdev_err(ndev, "Tx DMA memory map failed\n");
448 goto dma_mapping_error;
449 }
450
451 bdp->cbd_bufaddr = cpu_to_fec32(addr);
452 bdp->cbd_datlen = cpu_to_fec16(frag_len);
453 /* Make sure the updates to rest of the descriptor are
454 * performed before transferring ownership.
455 */
456 wmb();
457 bdp->cbd_sc = cpu_to_fec16(status);
458 }
459
460 return bdp;
461 dma_mapping_error:
462 bdp = txq->bd.cur;
463 for (i = 0; i < frag; i++) {
464 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
465 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
466 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
467 }
468 return ERR_PTR(-ENOMEM);
469 }
470
471 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
472 struct sk_buff *skb, struct net_device *ndev)
473 {
474 struct fec_enet_private *fep = netdev_priv(ndev);
475 int nr_frags = skb_shinfo(skb)->nr_frags;
476 struct bufdesc *bdp, *last_bdp;
477 void *bufaddr;
478 dma_addr_t addr;
479 unsigned short status;
480 unsigned short buflen;
481 unsigned int estatus = 0;
482 unsigned int index;
483 int entries_free;
484
485 entries_free = fec_enet_get_free_txdesc_num(txq);
486 if (entries_free < MAX_SKB_FRAGS + 1) {
487 dev_kfree_skb_any(skb);
488 if (net_ratelimit())
489 netdev_err(ndev, "NOT enough BD for SG!\n");
490 return NETDEV_TX_OK;
491 }
492
493 /* Protocol checksum off-load for TCP and UDP. */
494 if (fec_enet_clear_csum(skb, ndev)) {
495 dev_kfree_skb_any(skb);
496 return NETDEV_TX_OK;
497 }
498
499 /* Fill in a Tx ring entry */
500 bdp = txq->bd.cur;
501 last_bdp = bdp;
502 status = fec16_to_cpu(bdp->cbd_sc);
503 status &= ~BD_ENET_TX_STATS;
504
505 /* Set buffer length and buffer pointer */
506 bufaddr = skb->data;
507 buflen = skb_headlen(skb);
508
509 index = fec_enet_get_bd_index(bdp, &txq->bd);
510 if (((unsigned long) bufaddr) & fep->tx_align ||
511 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
512 memcpy(txq->tx_bounce[index], skb->data, buflen);
513 bufaddr = txq->tx_bounce[index];
514
515 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
516 swap_buffer(bufaddr, buflen);
517 }
518
519 /* Push the data cache so the CPM does not get stale memory data. */
520 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
521 if (dma_mapping_error(&fep->pdev->dev, addr)) {
522 dev_kfree_skb_any(skb);
523 if (net_ratelimit())
524 netdev_err(ndev, "Tx DMA memory map failed\n");
525 return NETDEV_TX_OK;
526 }
527
528 if (nr_frags) {
529 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
530 if (IS_ERR(last_bdp)) {
531 dma_unmap_single(&fep->pdev->dev, addr,
532 buflen, DMA_TO_DEVICE);
533 dev_kfree_skb_any(skb);
534 return NETDEV_TX_OK;
535 }
536 } else {
537 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
538 if (fep->bufdesc_ex) {
539 estatus = BD_ENET_TX_INT;
540 if (unlikely(skb_shinfo(skb)->tx_flags &
541 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
542 estatus |= BD_ENET_TX_TS;
543 }
544 }
545 bdp->cbd_bufaddr = cpu_to_fec32(addr);
546 bdp->cbd_datlen = cpu_to_fec16(buflen);
547
548 if (fep->bufdesc_ex) {
549
550 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
551
552 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
553 fep->hwts_tx_en))
554 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
555
556 if (fep->quirks & FEC_QUIRK_HAS_AVB)
557 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
558
559 if (skb->ip_summed == CHECKSUM_PARTIAL)
560 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
561
562 ebdp->cbd_bdu = 0;
563 ebdp->cbd_esc = cpu_to_fec32(estatus);
564 }
565
566 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
567 /* Save skb pointer */
568 txq->tx_skbuff[index] = skb;
569
570 /* Make sure the updates to rest of the descriptor are performed before
571 * transferring ownership.
572 */
573 wmb();
574
575 /* Send it on its way. Tell FEC it's ready, interrupt when done,
576 * it's the last BD of the frame, and to put the CRC on the end.
577 */
578 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
579 bdp->cbd_sc = cpu_to_fec16(status);
580
581 /* If this was the last BD in the ring, start at the beginning again. */
582 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
583
584 skb_tx_timestamp(skb);
585
586 /* Make sure the update to bdp and tx_skbuff are performed before
587 * txq->bd.cur.
588 */
589 wmb();
590 txq->bd.cur = bdp;
591
592 /* Trigger transmission start */
593 writel(0, txq->bd.reg_desc_active);
594
595 return 0;
596 }
597
598 static int
599 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
600 struct net_device *ndev,
601 struct bufdesc *bdp, int index, char *data,
602 int size, bool last_tcp, bool is_last)
603 {
604 struct fec_enet_private *fep = netdev_priv(ndev);
605 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
606 unsigned short status;
607 unsigned int estatus = 0;
608 dma_addr_t addr;
609
610 status = fec16_to_cpu(bdp->cbd_sc);
611 status &= ~BD_ENET_TX_STATS;
612
613 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
614
615 if (((unsigned long) data) & fep->tx_align ||
616 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
617 memcpy(txq->tx_bounce[index], data, size);
618 data = txq->tx_bounce[index];
619
620 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
621 swap_buffer(data, size);
622 }
623
624 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
625 if (dma_mapping_error(&fep->pdev->dev, addr)) {
626 dev_kfree_skb_any(skb);
627 if (net_ratelimit())
628 netdev_err(ndev, "Tx DMA memory map failed\n");
629 return NETDEV_TX_BUSY;
630 }
631
632 bdp->cbd_datlen = cpu_to_fec16(size);
633 bdp->cbd_bufaddr = cpu_to_fec32(addr);
634
635 if (fep->bufdesc_ex) {
636 if (fep->quirks & FEC_QUIRK_HAS_AVB)
637 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
638 if (skb->ip_summed == CHECKSUM_PARTIAL)
639 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
640 ebdp->cbd_bdu = 0;
641 ebdp->cbd_esc = cpu_to_fec32(estatus);
642 }
643
644 /* Handle the last BD specially */
645 if (last_tcp)
646 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
647 if (is_last) {
648 status |= BD_ENET_TX_INTR;
649 if (fep->bufdesc_ex)
650 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
651 }
652
653 bdp->cbd_sc = cpu_to_fec16(status);
654
655 return 0;
656 }
657
658 static int
659 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
660 struct sk_buff *skb, struct net_device *ndev,
661 struct bufdesc *bdp, int index)
662 {
663 struct fec_enet_private *fep = netdev_priv(ndev);
664 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
665 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
666 void *bufaddr;
667 unsigned long dmabuf;
668 unsigned short status;
669 unsigned int estatus = 0;
670
671 status = fec16_to_cpu(bdp->cbd_sc);
672 status &= ~BD_ENET_TX_STATS;
673 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
674
675 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
676 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
677 if (((unsigned long)bufaddr) & fep->tx_align ||
678 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
679 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
680 bufaddr = txq->tx_bounce[index];
681
682 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
683 swap_buffer(bufaddr, hdr_len);
684
685 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
686 hdr_len, DMA_TO_DEVICE);
687 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
688 dev_kfree_skb_any(skb);
689 if (net_ratelimit())
690 netdev_err(ndev, "Tx DMA memory map failed\n");
691 return NETDEV_TX_BUSY;
692 }
693 }
694
695 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
696 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
697
698 if (fep->bufdesc_ex) {
699 if (fep->quirks & FEC_QUIRK_HAS_AVB)
700 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
701 if (skb->ip_summed == CHECKSUM_PARTIAL)
702 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
703 ebdp->cbd_bdu = 0;
704 ebdp->cbd_esc = cpu_to_fec32(estatus);
705 }
706
707 bdp->cbd_sc = cpu_to_fec16(status);
708
709 return 0;
710 }
711
712 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
713 struct sk_buff *skb,
714 struct net_device *ndev)
715 {
716 struct fec_enet_private *fep = netdev_priv(ndev);
717 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
718 int total_len, data_left;
719 struct bufdesc *bdp = txq->bd.cur;
720 struct tso_t tso;
721 unsigned int index = 0;
722 int ret;
723
724 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
725 dev_kfree_skb_any(skb);
726 if (net_ratelimit())
727 netdev_err(ndev, "NOT enough BD for TSO!\n");
728 return NETDEV_TX_OK;
729 }
730
731 /* Protocol checksum off-load for TCP and UDP. */
732 if (fec_enet_clear_csum(skb, ndev)) {
733 dev_kfree_skb_any(skb);
734 return NETDEV_TX_OK;
735 }
736
737 /* Initialize the TSO handler, and prepare the first payload */
738 tso_start(skb, &tso);
739
740 total_len = skb->len - hdr_len;
741 while (total_len > 0) {
742 char *hdr;
743
744 index = fec_enet_get_bd_index(bdp, &txq->bd);
745 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
746 total_len -= data_left;
747
748 /* prepare packet headers: MAC + IP + TCP */
749 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
750 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
751 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
752 if (ret)
753 goto err_release;
754
755 while (data_left > 0) {
756 int size;
757
758 size = min_t(int, tso.size, data_left);
759 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
760 index = fec_enet_get_bd_index(bdp, &txq->bd);
761 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
762 bdp, index,
763 tso.data, size,
764 size == data_left,
765 total_len == 0);
766 if (ret)
767 goto err_release;
768
769 data_left -= size;
770 tso_build_data(skb, &tso, size);
771 }
772
773 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
774 }
775
776 /* Save skb pointer */
777 txq->tx_skbuff[index] = skb;
778
779 skb_tx_timestamp(skb);
780 txq->bd.cur = bdp;
781
782 /* Trigger transmission start */
783 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
784 !readl(txq->bd.reg_desc_active) ||
785 !readl(txq->bd.reg_desc_active) ||
786 !readl(txq->bd.reg_desc_active) ||
787 !readl(txq->bd.reg_desc_active))
788 writel(0, txq->bd.reg_desc_active);
789
790 return 0;
791
792 err_release:
793 /* TODO: Release all used data descriptors for TSO */
794 return ret;
795 }
796
797 static netdev_tx_t
798 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
799 {
800 struct fec_enet_private *fep = netdev_priv(ndev);
801 int entries_free;
802 unsigned short queue;
803 struct fec_enet_priv_tx_q *txq;
804 struct netdev_queue *nq;
805 int ret;
806
807 queue = skb_get_queue_mapping(skb);
808 txq = fep->tx_queue[queue];
809 nq = netdev_get_tx_queue(ndev, queue);
810
811 if (skb_is_gso(skb))
812 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
813 else
814 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
815 if (ret)
816 return ret;
817
818 entries_free = fec_enet_get_free_txdesc_num(txq);
819 if (entries_free <= txq->tx_stop_threshold)
820 netif_tx_stop_queue(nq);
821
822 return NETDEV_TX_OK;
823 }
824
825 /* Init RX & TX buffer descriptors
826 */
827 static void fec_enet_bd_init(struct net_device *dev)
828 {
829 struct fec_enet_private *fep = netdev_priv(dev);
830 struct fec_enet_priv_tx_q *txq;
831 struct fec_enet_priv_rx_q *rxq;
832 struct bufdesc *bdp;
833 unsigned int i;
834 unsigned int q;
835
836 for (q = 0; q < fep->num_rx_queues; q++) {
837 /* Initialize the receive buffer descriptors. */
838 rxq = fep->rx_queue[q];
839 bdp = rxq->bd.base;
840
841 for (i = 0; i < rxq->bd.ring_size; i++) {
842
843 /* Initialize the BD for every fragment in the page. */
844 if (bdp->cbd_bufaddr)
845 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
846 else
847 bdp->cbd_sc = cpu_to_fec16(0);
848 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
849 }
850
851 /* Set the last buffer to wrap */
852 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
853 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
854
855 rxq->bd.cur = rxq->bd.base;
856 }
857
858 for (q = 0; q < fep->num_tx_queues; q++) {
859 /* ...and the same for transmit */
860 txq = fep->tx_queue[q];
861 bdp = txq->bd.base;
862 txq->bd.cur = bdp;
863
864 for (i = 0; i < txq->bd.ring_size; i++) {
865 /* Initialize the BD for every fragment in the page. */
866 bdp->cbd_sc = cpu_to_fec16(0);
867 if (bdp->cbd_bufaddr &&
868 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
869 dma_unmap_single(&fep->pdev->dev,
870 fec32_to_cpu(bdp->cbd_bufaddr),
871 fec16_to_cpu(bdp->cbd_datlen),
872 DMA_TO_DEVICE);
873 if (txq->tx_skbuff[i]) {
874 dev_kfree_skb_any(txq->tx_skbuff[i]);
875 txq->tx_skbuff[i] = NULL;
876 }
877 bdp->cbd_bufaddr = cpu_to_fec32(0);
878 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
879 }
880
881 /* Set the last buffer to wrap */
882 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
883 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
884 txq->dirty_tx = bdp;
885 }
886 }
887
888 static void fec_enet_active_rxring(struct net_device *ndev)
889 {
890 struct fec_enet_private *fep = netdev_priv(ndev);
891 int i;
892
893 for (i = 0; i < fep->num_rx_queues; i++)
894 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
895 }
896
897 static void fec_enet_enable_ring(struct net_device *ndev)
898 {
899 struct fec_enet_private *fep = netdev_priv(ndev);
900 struct fec_enet_priv_tx_q *txq;
901 struct fec_enet_priv_rx_q *rxq;
902 int i;
903
904 for (i = 0; i < fep->num_rx_queues; i++) {
905 rxq = fep->rx_queue[i];
906 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
907 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
908
909 /* enable DMA1/2 */
910 if (i)
911 writel(RCMR_MATCHEN | RCMR_CMP(i),
912 fep->hwp + FEC_RCMR(i));
913 }
914
915 for (i = 0; i < fep->num_tx_queues; i++) {
916 txq = fep->tx_queue[i];
917 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
918
919 /* enable DMA1/2 */
920 if (i)
921 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
922 fep->hwp + FEC_DMA_CFG(i));
923 }
924 }
925
926 static void fec_enet_reset_skb(struct net_device *ndev)
927 {
928 struct fec_enet_private *fep = netdev_priv(ndev);
929 struct fec_enet_priv_tx_q *txq;
930 int i, j;
931
932 for (i = 0; i < fep->num_tx_queues; i++) {
933 txq = fep->tx_queue[i];
934
935 for (j = 0; j < txq->bd.ring_size; j++) {
936 if (txq->tx_skbuff[j]) {
937 dev_kfree_skb_any(txq->tx_skbuff[j]);
938 txq->tx_skbuff[j] = NULL;
939 }
940 }
941 }
942 }
943
944 /*
945 * This function is called to start or restart the FEC during a link
946 * change, transmit timeout, or to reconfigure the FEC. The network
947 * packet processing for this device must be stopped before this call.
948 */
949 static void
950 fec_restart(struct net_device *ndev)
951 {
952 struct fec_enet_private *fep = netdev_priv(ndev);
953 u32 val;
954 u32 temp_mac[2];
955 u32 rcntl = OPT_FRAME_SIZE | 0x04;
956 u32 ecntl = 0x2; /* ETHEREN */
957
958 /* Whack a reset. We should wait for this.
959 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
960 * instead of reset MAC itself.
961 */
962 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
963 writel(0, fep->hwp + FEC_ECNTRL);
964 } else {
965 writel(1, fep->hwp + FEC_ECNTRL);
966 udelay(10);
967 }
968
969 /*
970 * enet-mac reset will reset mac address registers too,
971 * so need to reconfigure it.
972 */
973 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
974 writel((__force u32)cpu_to_be32(temp_mac[0]),
975 fep->hwp + FEC_ADDR_LOW);
976 writel((__force u32)cpu_to_be32(temp_mac[1]),
977 fep->hwp + FEC_ADDR_HIGH);
978
979 /* Clear any outstanding interrupt. */
980 writel(0xffffffff, fep->hwp + FEC_IEVENT);
981
982 fec_enet_bd_init(ndev);
983
984 fec_enet_enable_ring(ndev);
985
986 /* Reset tx SKB buffers. */
987 fec_enet_reset_skb(ndev);
988
989 /* Enable MII mode */
990 if (fep->full_duplex == DUPLEX_FULL) {
991 /* FD enable */
992 writel(0x04, fep->hwp + FEC_X_CNTRL);
993 } else {
994 /* No Rcv on Xmit */
995 rcntl |= 0x02;
996 writel(0x0, fep->hwp + FEC_X_CNTRL);
997 }
998
999 /* Set MII speed */
1000 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1001
1002 #if !defined(CONFIG_M5272)
1003 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1004 val = readl(fep->hwp + FEC_RACC);
1005 /* align IP header */
1006 val |= FEC_RACC_SHIFT16;
1007 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1008 /* set RX checksum */
1009 val |= FEC_RACC_OPTIONS;
1010 else
1011 val &= ~FEC_RACC_OPTIONS;
1012 writel(val, fep->hwp + FEC_RACC);
1013 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1014 }
1015 #endif
1016
1017 /*
1018 * The phy interface and speed need to get configured
1019 * differently on enet-mac.
1020 */
1021 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1022 /* Enable flow control and length check */
1023 rcntl |= 0x40000000 | 0x00000020;
1024
1025 /* RGMII, RMII or MII */
1026 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1027 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1028 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1029 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1030 rcntl |= (1 << 6);
1031 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1032 rcntl |= (1 << 8);
1033 else
1034 rcntl &= ~(1 << 8);
1035
1036 /* 1G, 100M or 10M */
1037 if (ndev->phydev) {
1038 if (ndev->phydev->speed == SPEED_1000)
1039 ecntl |= (1 << 5);
1040 else if (ndev->phydev->speed == SPEED_100)
1041 rcntl &= ~(1 << 9);
1042 else
1043 rcntl |= (1 << 9);
1044 }
1045 } else {
1046 #ifdef FEC_MIIGSK_ENR
1047 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1048 u32 cfgr;
1049 /* disable the gasket and wait */
1050 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1051 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1052 udelay(1);
1053
1054 /*
1055 * configure the gasket:
1056 * RMII, 50 MHz, no loopback, no echo
1057 * MII, 25 MHz, no loopback, no echo
1058 */
1059 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1060 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1061 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1062 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1063 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1064
1065 /* re-enable the gasket */
1066 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1067 }
1068 #endif
1069 }
1070
1071 #if !defined(CONFIG_M5272)
1072 /* enable pause frame*/
1073 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1074 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1075 ndev->phydev && ndev->phydev->pause)) {
1076 rcntl |= FEC_ENET_FCE;
1077
1078 /* set FIFO threshold parameter to reduce overrun */
1079 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1080 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1081 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1082 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1083
1084 /* OPD */
1085 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1086 } else {
1087 rcntl &= ~FEC_ENET_FCE;
1088 }
1089 #endif /* !defined(CONFIG_M5272) */
1090
1091 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1092
1093 /* Setup multicast filter. */
1094 set_multicast_list(ndev);
1095 #ifndef CONFIG_M5272
1096 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1097 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1098 #endif
1099
1100 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1101 /* enable ENET endian swap */
1102 ecntl |= (1 << 8);
1103 /* enable ENET store and forward mode */
1104 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1105 }
1106
1107 if (fep->bufdesc_ex)
1108 ecntl |= (1 << 4);
1109
1110 #ifndef CONFIG_M5272
1111 /* Enable the MIB statistic event counters */
1112 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1113 #endif
1114
1115 /* And last, enable the transmit and receive processing */
1116 writel(ecntl, fep->hwp + FEC_ECNTRL);
1117 fec_enet_active_rxring(ndev);
1118
1119 if (fep->bufdesc_ex)
1120 fec_ptp_start_cyclecounter(ndev);
1121
1122 /* Enable interrupts we wish to service */
1123 if (fep->link)
1124 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1125 else
1126 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1127
1128 /* Init the interrupt coalescing */
1129 fec_enet_itr_coal_init(ndev);
1130
1131 }
1132
1133 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1134 {
1135 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1136 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1137
1138 if (stop_gpr->gpr) {
1139 if (enabled)
1140 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 BIT(stop_gpr->bit),
1142 BIT(stop_gpr->bit));
1143 else
1144 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1145 BIT(stop_gpr->bit), 0);
1146 } else if (pdata && pdata->sleep_mode_enable) {
1147 pdata->sleep_mode_enable(enabled);
1148 }
1149 }
1150
1151 static void
1152 fec_stop(struct net_device *ndev)
1153 {
1154 struct fec_enet_private *fep = netdev_priv(ndev);
1155 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1156 u32 val;
1157
1158 /* We cannot expect a graceful transmit stop without link !!! */
1159 if (fep->link) {
1160 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1161 udelay(10);
1162 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1163 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1164 }
1165
1166 /* Whack a reset. We should wait for this.
1167 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1168 * instead of reset MAC itself.
1169 */
1170 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1171 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1172 writel(0, fep->hwp + FEC_ECNTRL);
1173 } else {
1174 writel(1, fep->hwp + FEC_ECNTRL);
1175 udelay(10);
1176 }
1177 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1178 } else {
1179 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1180 val = readl(fep->hwp + FEC_ECNTRL);
1181 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1182 writel(val, fep->hwp + FEC_ECNTRL);
1183 fec_enet_stop_mode(fep, true);
1184 }
1185 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1186
1187 /* We have to keep ENET enabled to have MII interrupt stay working */
1188 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1189 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1190 writel(2, fep->hwp + FEC_ECNTRL);
1191 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1192 }
1193 }
1194
1195
1196 static void
1197 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1198 {
1199 struct fec_enet_private *fep = netdev_priv(ndev);
1200
1201 fec_dump(ndev);
1202
1203 ndev->stats.tx_errors++;
1204
1205 schedule_work(&fep->tx_timeout_work);
1206 }
1207
1208 static void fec_enet_timeout_work(struct work_struct *work)
1209 {
1210 struct fec_enet_private *fep =
1211 container_of(work, struct fec_enet_private, tx_timeout_work);
1212 struct net_device *ndev = fep->netdev;
1213
1214 rtnl_lock();
1215 if (netif_device_present(ndev) || netif_running(ndev)) {
1216 napi_disable(&fep->napi);
1217 netif_tx_lock_bh(ndev);
1218 fec_restart(ndev);
1219 netif_tx_wake_all_queues(ndev);
1220 netif_tx_unlock_bh(ndev);
1221 napi_enable(&fep->napi);
1222 }
1223 rtnl_unlock();
1224 }
1225
1226 static void
1227 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1228 struct skb_shared_hwtstamps *hwtstamps)
1229 {
1230 unsigned long flags;
1231 u64 ns;
1232
1233 spin_lock_irqsave(&fep->tmreg_lock, flags);
1234 ns = timecounter_cyc2time(&fep->tc, ts);
1235 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1236
1237 memset(hwtstamps, 0, sizeof(*hwtstamps));
1238 hwtstamps->hwtstamp = ns_to_ktime(ns);
1239 }
1240
1241 static void
1242 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1243 {
1244 struct fec_enet_private *fep;
1245 struct bufdesc *bdp;
1246 unsigned short status;
1247 struct sk_buff *skb;
1248 struct fec_enet_priv_tx_q *txq;
1249 struct netdev_queue *nq;
1250 int index = 0;
1251 int entries_free;
1252
1253 fep = netdev_priv(ndev);
1254
1255 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1256
1257 txq = fep->tx_queue[queue_id];
1258 /* get next bdp of dirty_tx */
1259 nq = netdev_get_tx_queue(ndev, queue_id);
1260 bdp = txq->dirty_tx;
1261
1262 /* get next bdp of dirty_tx */
1263 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1264
1265 while (bdp != READ_ONCE(txq->bd.cur)) {
1266 /* Order the load of bd.cur and cbd_sc */
1267 rmb();
1268 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1269 if (status & BD_ENET_TX_READY)
1270 break;
1271
1272 index = fec_enet_get_bd_index(bdp, &txq->bd);
1273
1274 skb = txq->tx_skbuff[index];
1275 txq->tx_skbuff[index] = NULL;
1276 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1277 dma_unmap_single(&fep->pdev->dev,
1278 fec32_to_cpu(bdp->cbd_bufaddr),
1279 fec16_to_cpu(bdp->cbd_datlen),
1280 DMA_TO_DEVICE);
1281 bdp->cbd_bufaddr = cpu_to_fec32(0);
1282 if (!skb)
1283 goto skb_done;
1284
1285 /* Check for errors. */
1286 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1287 BD_ENET_TX_RL | BD_ENET_TX_UN |
1288 BD_ENET_TX_CSL)) {
1289 ndev->stats.tx_errors++;
1290 if (status & BD_ENET_TX_HB) /* No heartbeat */
1291 ndev->stats.tx_heartbeat_errors++;
1292 if (status & BD_ENET_TX_LC) /* Late collision */
1293 ndev->stats.tx_window_errors++;
1294 if (status & BD_ENET_TX_RL) /* Retrans limit */
1295 ndev->stats.tx_aborted_errors++;
1296 if (status & BD_ENET_TX_UN) /* Underrun */
1297 ndev->stats.tx_fifo_errors++;
1298 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1299 ndev->stats.tx_carrier_errors++;
1300 } else {
1301 ndev->stats.tx_packets++;
1302 ndev->stats.tx_bytes += skb->len;
1303 }
1304
1305 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1306 fep->bufdesc_ex) {
1307 struct skb_shared_hwtstamps shhwtstamps;
1308 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1309
1310 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1311 skb_tstamp_tx(skb, &shhwtstamps);
1312 }
1313
1314 /* Deferred means some collisions occurred during transmit,
1315 * but we eventually sent the packet OK.
1316 */
1317 if (status & BD_ENET_TX_DEF)
1318 ndev->stats.collisions++;
1319
1320 /* Free the sk buffer associated with this last transmit */
1321 dev_kfree_skb_any(skb);
1322 skb_done:
1323 /* Make sure the update to bdp and tx_skbuff are performed
1324 * before dirty_tx
1325 */
1326 wmb();
1327 txq->dirty_tx = bdp;
1328
1329 /* Update pointer to next buffer descriptor to be transmitted */
1330 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1331
1332 /* Since we have freed up a buffer, the ring is no longer full
1333 */
1334 if (netif_tx_queue_stopped(nq)) {
1335 entries_free = fec_enet_get_free_txdesc_num(txq);
1336 if (entries_free >= txq->tx_wake_threshold)
1337 netif_tx_wake_queue(nq);
1338 }
1339 }
1340
1341 /* ERR006358: Keep the transmitter going */
1342 if (bdp != txq->bd.cur &&
1343 readl(txq->bd.reg_desc_active) == 0)
1344 writel(0, txq->bd.reg_desc_active);
1345 }
1346
1347 static void
1348 fec_enet_tx(struct net_device *ndev)
1349 {
1350 struct fec_enet_private *fep = netdev_priv(ndev);
1351 u16 queue_id;
1352 /* First process class A queue, then Class B and Best Effort queue */
1353 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1354 clear_bit(queue_id, &fep->work_tx);
1355 fec_enet_tx_queue(ndev, queue_id);
1356 }
1357 return;
1358 }
1359
1360 static int
1361 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1362 {
1363 struct fec_enet_private *fep = netdev_priv(ndev);
1364 int off;
1365
1366 off = ((unsigned long)skb->data) & fep->rx_align;
1367 if (off)
1368 skb_reserve(skb, fep->rx_align + 1 - off);
1369
1370 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1371 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1372 if (net_ratelimit())
1373 netdev_err(ndev, "Rx DMA memory map failed\n");
1374 return -ENOMEM;
1375 }
1376
1377 return 0;
1378 }
1379
1380 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1381 struct bufdesc *bdp, u32 length, bool swap)
1382 {
1383 struct fec_enet_private *fep = netdev_priv(ndev);
1384 struct sk_buff *new_skb;
1385
1386 if (length > fep->rx_copybreak)
1387 return false;
1388
1389 new_skb = netdev_alloc_skb(ndev, length);
1390 if (!new_skb)
1391 return false;
1392
1393 dma_sync_single_for_cpu(&fep->pdev->dev,
1394 fec32_to_cpu(bdp->cbd_bufaddr),
1395 FEC_ENET_RX_FRSIZE - fep->rx_align,
1396 DMA_FROM_DEVICE);
1397 if (!swap)
1398 memcpy(new_skb->data, (*skb)->data, length);
1399 else
1400 swap_buffer2(new_skb->data, (*skb)->data, length);
1401 *skb = new_skb;
1402
1403 return true;
1404 }
1405
1406 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1407 * When we update through the ring, if the next incoming buffer has
1408 * not been given to the system, we just set the empty indicator,
1409 * effectively tossing the packet.
1410 */
1411 static int
1412 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1413 {
1414 struct fec_enet_private *fep = netdev_priv(ndev);
1415 struct fec_enet_priv_rx_q *rxq;
1416 struct bufdesc *bdp;
1417 unsigned short status;
1418 struct sk_buff *skb_new = NULL;
1419 struct sk_buff *skb;
1420 ushort pkt_len;
1421 __u8 *data;
1422 int pkt_received = 0;
1423 struct bufdesc_ex *ebdp = NULL;
1424 bool vlan_packet_rcvd = false;
1425 u16 vlan_tag;
1426 int index = 0;
1427 bool is_copybreak;
1428 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1429
1430 #ifdef CONFIG_M532x
1431 flush_cache_all();
1432 #endif
1433 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1434 rxq = fep->rx_queue[queue_id];
1435
1436 /* First, grab all of the stats for the incoming packet.
1437 * These get messed up if we get called due to a busy condition.
1438 */
1439 bdp = rxq->bd.cur;
1440
1441 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1442
1443 if (pkt_received >= budget)
1444 break;
1445 pkt_received++;
1446
1447 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1448
1449 /* Check for errors. */
1450 status ^= BD_ENET_RX_LAST;
1451 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1452 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1453 BD_ENET_RX_CL)) {
1454 ndev->stats.rx_errors++;
1455 if (status & BD_ENET_RX_OV) {
1456 /* FIFO overrun */
1457 ndev->stats.rx_fifo_errors++;
1458 goto rx_processing_done;
1459 }
1460 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1461 | BD_ENET_RX_LAST)) {
1462 /* Frame too long or too short. */
1463 ndev->stats.rx_length_errors++;
1464 if (status & BD_ENET_RX_LAST)
1465 netdev_err(ndev, "rcv is not +last\n");
1466 }
1467 if (status & BD_ENET_RX_CR) /* CRC Error */
1468 ndev->stats.rx_crc_errors++;
1469 /* Report late collisions as a frame error. */
1470 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1471 ndev->stats.rx_frame_errors++;
1472 goto rx_processing_done;
1473 }
1474
1475 /* Process the incoming frame. */
1476 ndev->stats.rx_packets++;
1477 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1478 ndev->stats.rx_bytes += pkt_len;
1479
1480 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1481 skb = rxq->rx_skbuff[index];
1482
1483 /* The packet length includes FCS, but we don't want to
1484 * include that when passing upstream as it messes up
1485 * bridging applications.
1486 */
1487 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1488 need_swap);
1489 if (!is_copybreak) {
1490 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1491 if (unlikely(!skb_new)) {
1492 ndev->stats.rx_dropped++;
1493 goto rx_processing_done;
1494 }
1495 dma_unmap_single(&fep->pdev->dev,
1496 fec32_to_cpu(bdp->cbd_bufaddr),
1497 FEC_ENET_RX_FRSIZE - fep->rx_align,
1498 DMA_FROM_DEVICE);
1499 }
1500
1501 prefetch(skb->data - NET_IP_ALIGN);
1502 skb_put(skb, pkt_len - 4);
1503 data = skb->data;
1504
1505 if (!is_copybreak && need_swap)
1506 swap_buffer(data, pkt_len);
1507
1508 #if !defined(CONFIG_M5272)
1509 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1510 data = skb_pull_inline(skb, 2);
1511 #endif
1512
1513 /* Extract the enhanced buffer descriptor */
1514 ebdp = NULL;
1515 if (fep->bufdesc_ex)
1516 ebdp = (struct bufdesc_ex *)bdp;
1517
1518 /* If this is a VLAN packet remove the VLAN Tag */
1519 vlan_packet_rcvd = false;
1520 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1521 fep->bufdesc_ex &&
1522 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1523 /* Push and remove the vlan tag */
1524 struct vlan_hdr *vlan_header =
1525 (struct vlan_hdr *) (data + ETH_HLEN);
1526 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1527
1528 vlan_packet_rcvd = true;
1529
1530 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1531 skb_pull(skb, VLAN_HLEN);
1532 }
1533
1534 skb->protocol = eth_type_trans(skb, ndev);
1535
1536 /* Get receive timestamp from the skb */
1537 if (fep->hwts_rx_en && fep->bufdesc_ex)
1538 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1539 skb_hwtstamps(skb));
1540
1541 if (fep->bufdesc_ex &&
1542 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1543 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1544 /* don't check it */
1545 skb->ip_summed = CHECKSUM_UNNECESSARY;
1546 } else {
1547 skb_checksum_none_assert(skb);
1548 }
1549 }
1550
1551 /* Handle received VLAN packets */
1552 if (vlan_packet_rcvd)
1553 __vlan_hwaccel_put_tag(skb,
1554 htons(ETH_P_8021Q),
1555 vlan_tag);
1556
1557 napi_gro_receive(&fep->napi, skb);
1558
1559 if (is_copybreak) {
1560 dma_sync_single_for_device(&fep->pdev->dev,
1561 fec32_to_cpu(bdp->cbd_bufaddr),
1562 FEC_ENET_RX_FRSIZE - fep->rx_align,
1563 DMA_FROM_DEVICE);
1564 } else {
1565 rxq->rx_skbuff[index] = skb_new;
1566 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1567 }
1568
1569 rx_processing_done:
1570 /* Clear the status flags for this buffer */
1571 status &= ~BD_ENET_RX_STATS;
1572
1573 /* Mark the buffer empty */
1574 status |= BD_ENET_RX_EMPTY;
1575
1576 if (fep->bufdesc_ex) {
1577 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1578
1579 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1580 ebdp->cbd_prot = 0;
1581 ebdp->cbd_bdu = 0;
1582 }
1583 /* Make sure the updates to rest of the descriptor are
1584 * performed before transferring ownership.
1585 */
1586 wmb();
1587 bdp->cbd_sc = cpu_to_fec16(status);
1588
1589 /* Update BD pointer to next entry */
1590 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1591
1592 /* Doing this here will keep the FEC running while we process
1593 * incoming frames. On a heavily loaded network, we should be
1594 * able to keep up at the expense of system resources.
1595 */
1596 writel(0, rxq->bd.reg_desc_active);
1597 }
1598 rxq->bd.cur = bdp;
1599 return pkt_received;
1600 }
1601
1602 static int
1603 fec_enet_rx(struct net_device *ndev, int budget)
1604 {
1605 int pkt_received = 0;
1606 u16 queue_id;
1607 struct fec_enet_private *fep = netdev_priv(ndev);
1608
1609 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1610 int ret;
1611
1612 ret = fec_enet_rx_queue(ndev,
1613 budget - pkt_received, queue_id);
1614
1615 if (ret < budget - pkt_received)
1616 clear_bit(queue_id, &fep->work_rx);
1617
1618 pkt_received += ret;
1619 }
1620 return pkt_received;
1621 }
1622
1623 static bool
1624 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1625 {
1626 if (int_events == 0)
1627 return false;
1628
1629 if (int_events & FEC_ENET_RXF_0)
1630 fep->work_rx |= (1 << 2);
1631 if (int_events & FEC_ENET_RXF_1)
1632 fep->work_rx |= (1 << 0);
1633 if (int_events & FEC_ENET_RXF_2)
1634 fep->work_rx |= (1 << 1);
1635
1636 if (int_events & FEC_ENET_TXF_0)
1637 fep->work_tx |= (1 << 2);
1638 if (int_events & FEC_ENET_TXF_1)
1639 fep->work_tx |= (1 << 0);
1640 if (int_events & FEC_ENET_TXF_2)
1641 fep->work_tx |= (1 << 1);
1642
1643 return true;
1644 }
1645
1646 static irqreturn_t
1647 fec_enet_interrupt(int irq, void *dev_id)
1648 {
1649 struct net_device *ndev = dev_id;
1650 struct fec_enet_private *fep = netdev_priv(ndev);
1651 uint int_events;
1652 irqreturn_t ret = IRQ_NONE;
1653
1654 int_events = readl(fep->hwp + FEC_IEVENT);
1655 writel(int_events, fep->hwp + FEC_IEVENT);
1656 fec_enet_collect_events(fep, int_events);
1657
1658 if ((fep->work_tx || fep->work_rx) && fep->link) {
1659 ret = IRQ_HANDLED;
1660
1661 if (napi_schedule_prep(&fep->napi)) {
1662 /* Disable the NAPI interrupts */
1663 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1664 __napi_schedule(&fep->napi);
1665 }
1666 }
1667
1668 if (int_events & FEC_ENET_MII) {
1669 ret = IRQ_HANDLED;
1670 complete(&fep->mdio_done);
1671 }
1672 return ret;
1673 }
1674
1675 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1676 {
1677 struct net_device *ndev = napi->dev;
1678 struct fec_enet_private *fep = netdev_priv(ndev);
1679 int pkts;
1680
1681 pkts = fec_enet_rx(ndev, budget);
1682
1683 fec_enet_tx(ndev);
1684
1685 if (pkts < budget) {
1686 napi_complete_done(napi, pkts);
1687 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1688 }
1689 return pkts;
1690 }
1691
1692 /* ------------------------------------------------------------------------- */
1693 static void fec_get_mac(struct net_device *ndev)
1694 {
1695 struct fec_enet_private *fep = netdev_priv(ndev);
1696 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1697 unsigned char *iap, tmpaddr[ETH_ALEN];
1698
1699 /*
1700 * try to get mac address in following order:
1701 *
1702 * 1) module parameter via kernel command line in form
1703 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1704 */
1705 iap = macaddr;
1706
1707 /*
1708 * 2) from device tree data
1709 */
1710 if (!is_valid_ether_addr(iap)) {
1711 struct device_node *np = fep->pdev->dev.of_node;
1712 if (np) {
1713 const char *mac = of_get_mac_address(np);
1714 if (!IS_ERR(mac))
1715 iap = (unsigned char *) mac;
1716 }
1717 }
1718
1719 /*
1720 * 3) from flash or fuse (via platform data)
1721 */
1722 if (!is_valid_ether_addr(iap)) {
1723 #ifdef CONFIG_M5272
1724 if (FEC_FLASHMAC)
1725 iap = (unsigned char *)FEC_FLASHMAC;
1726 #else
1727 if (pdata)
1728 iap = (unsigned char *)&pdata->mac;
1729 #endif
1730 }
1731
1732 /*
1733 * 4) FEC mac registers set by bootloader
1734 */
1735 if (!is_valid_ether_addr(iap)) {
1736 *((__be32 *) &tmpaddr[0]) =
1737 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1738 *((__be16 *) &tmpaddr[4]) =
1739 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1740 iap = &tmpaddr[0];
1741 }
1742
1743 /*
1744 * 5) random mac address
1745 */
1746 if (!is_valid_ether_addr(iap)) {
1747 /* Report it and use a random ethernet address instead */
1748 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1749 eth_hw_addr_random(ndev);
1750 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1751 ndev->dev_addr);
1752 return;
1753 }
1754
1755 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1756
1757 /* Adjust MAC if using macaddr */
1758 if (iap == macaddr)
1759 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1760 }
1761
1762 /* ------------------------------------------------------------------------- */
1763
1764 /*
1765 * Phy section
1766 */
1767 static void fec_enet_adjust_link(struct net_device *ndev)
1768 {
1769 struct fec_enet_private *fep = netdev_priv(ndev);
1770 struct phy_device *phy_dev = ndev->phydev;
1771 int status_change = 0;
1772
1773 /*
1774 * If the netdev is down, or is going down, we're not interested
1775 * in link state events, so just mark our idea of the link as down
1776 * and ignore the event.
1777 */
1778 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1779 fep->link = 0;
1780 } else if (phy_dev->link) {
1781 if (!fep->link) {
1782 fep->link = phy_dev->link;
1783 status_change = 1;
1784 }
1785
1786 if (fep->full_duplex != phy_dev->duplex) {
1787 fep->full_duplex = phy_dev->duplex;
1788 status_change = 1;
1789 }
1790
1791 if (phy_dev->speed != fep->speed) {
1792 fep->speed = phy_dev->speed;
1793 status_change = 1;
1794 }
1795
1796 /* if any of the above changed restart the FEC */
1797 if (status_change) {
1798 napi_disable(&fep->napi);
1799 netif_tx_lock_bh(ndev);
1800 fec_restart(ndev);
1801 netif_tx_wake_all_queues(ndev);
1802 netif_tx_unlock_bh(ndev);
1803 napi_enable(&fep->napi);
1804 }
1805 } else {
1806 if (fep->link) {
1807 napi_disable(&fep->napi);
1808 netif_tx_lock_bh(ndev);
1809 fec_stop(ndev);
1810 netif_tx_unlock_bh(ndev);
1811 napi_enable(&fep->napi);
1812 fep->link = phy_dev->link;
1813 status_change = 1;
1814 }
1815 }
1816
1817 if (status_change)
1818 phy_print_status(phy_dev);
1819 }
1820
1821 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1822 {
1823 struct fec_enet_private *fep = bus->priv;
1824 struct device *dev = &fep->pdev->dev;
1825 unsigned long time_left;
1826 int ret = 0, frame_start, frame_addr, frame_op;
1827 bool is_c45 = !!(regnum & MII_ADDR_C45);
1828
1829 ret = pm_runtime_get_sync(dev);
1830 if (ret < 0)
1831 return ret;
1832
1833 reinit_completion(&fep->mdio_done);
1834
1835 if (is_c45) {
1836 frame_start = FEC_MMFR_ST_C45;
1837
1838 /* write address */
1839 frame_addr = (regnum >> 16);
1840 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1841 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1842 FEC_MMFR_TA | (regnum & 0xFFFF),
1843 fep->hwp + FEC_MII_DATA);
1844
1845 /* wait for end of transfer */
1846 time_left = wait_for_completion_timeout(&fep->mdio_done,
1847 usecs_to_jiffies(FEC_MII_TIMEOUT));
1848 if (time_left == 0) {
1849 netdev_err(fep->netdev, "MDIO address write timeout\n");
1850 ret = -ETIMEDOUT;
1851 goto out;
1852 }
1853
1854 frame_op = FEC_MMFR_OP_READ_C45;
1855
1856 } else {
1857 /* C22 read */
1858 frame_op = FEC_MMFR_OP_READ;
1859 frame_start = FEC_MMFR_ST;
1860 frame_addr = regnum;
1861 }
1862
1863 /* start a read op */
1864 writel(frame_start | frame_op |
1865 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1866 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1867
1868 /* wait for end of transfer */
1869 time_left = wait_for_completion_timeout(&fep->mdio_done,
1870 usecs_to_jiffies(FEC_MII_TIMEOUT));
1871 if (time_left == 0) {
1872 netdev_err(fep->netdev, "MDIO read timeout\n");
1873 ret = -ETIMEDOUT;
1874 goto out;
1875 }
1876
1877 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1878
1879 out:
1880 pm_runtime_mark_last_busy(dev);
1881 pm_runtime_put_autosuspend(dev);
1882
1883 return ret;
1884 }
1885
1886 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1887 u16 value)
1888 {
1889 struct fec_enet_private *fep = bus->priv;
1890 struct device *dev = &fep->pdev->dev;
1891 unsigned long time_left;
1892 int ret, frame_start, frame_addr;
1893 bool is_c45 = !!(regnum & MII_ADDR_C45);
1894
1895 ret = pm_runtime_get_sync(dev);
1896 if (ret < 0)
1897 return ret;
1898 else
1899 ret = 0;
1900
1901 reinit_completion(&fep->mdio_done);
1902
1903 if (is_c45) {
1904 frame_start = FEC_MMFR_ST_C45;
1905
1906 /* write address */
1907 frame_addr = (regnum >> 16);
1908 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1909 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1910 FEC_MMFR_TA | (regnum & 0xFFFF),
1911 fep->hwp + FEC_MII_DATA);
1912
1913 /* wait for end of transfer */
1914 time_left = wait_for_completion_timeout(&fep->mdio_done,
1915 usecs_to_jiffies(FEC_MII_TIMEOUT));
1916 if (time_left == 0) {
1917 netdev_err(fep->netdev, "MDIO address write timeout\n");
1918 ret = -ETIMEDOUT;
1919 goto out;
1920 }
1921 } else {
1922 /* C22 write */
1923 frame_start = FEC_MMFR_ST;
1924 frame_addr = regnum;
1925 }
1926
1927 /* start a write op */
1928 writel(frame_start | FEC_MMFR_OP_WRITE |
1929 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1930 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1931 fep->hwp + FEC_MII_DATA);
1932
1933 /* wait for end of transfer */
1934 time_left = wait_for_completion_timeout(&fep->mdio_done,
1935 usecs_to_jiffies(FEC_MII_TIMEOUT));
1936 if (time_left == 0) {
1937 netdev_err(fep->netdev, "MDIO write timeout\n");
1938 ret = -ETIMEDOUT;
1939 }
1940
1941 out:
1942 pm_runtime_mark_last_busy(dev);
1943 pm_runtime_put_autosuspend(dev);
1944
1945 return ret;
1946 }
1947
1948 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1949 {
1950 struct fec_enet_private *fep = netdev_priv(ndev);
1951 int ret;
1952
1953 if (enable) {
1954 ret = clk_prepare_enable(fep->clk_enet_out);
1955 if (ret)
1956 return ret;
1957
1958 if (fep->clk_ptp) {
1959 mutex_lock(&fep->ptp_clk_mutex);
1960 ret = clk_prepare_enable(fep->clk_ptp);
1961 if (ret) {
1962 mutex_unlock(&fep->ptp_clk_mutex);
1963 goto failed_clk_ptp;
1964 } else {
1965 fep->ptp_clk_on = true;
1966 }
1967 mutex_unlock(&fep->ptp_clk_mutex);
1968 }
1969
1970 ret = clk_prepare_enable(fep->clk_ref);
1971 if (ret)
1972 goto failed_clk_ref;
1973
1974 phy_reset_after_clk_enable(ndev->phydev);
1975 } else {
1976 clk_disable_unprepare(fep->clk_enet_out);
1977 if (fep->clk_ptp) {
1978 mutex_lock(&fep->ptp_clk_mutex);
1979 clk_disable_unprepare(fep->clk_ptp);
1980 fep->ptp_clk_on = false;
1981 mutex_unlock(&fep->ptp_clk_mutex);
1982 }
1983 clk_disable_unprepare(fep->clk_ref);
1984 }
1985
1986 return 0;
1987
1988 failed_clk_ref:
1989 if (fep->clk_ref)
1990 clk_disable_unprepare(fep->clk_ref);
1991 failed_clk_ptp:
1992 if (fep->clk_enet_out)
1993 clk_disable_unprepare(fep->clk_enet_out);
1994
1995 return ret;
1996 }
1997
1998 static int fec_enet_mii_probe(struct net_device *ndev)
1999 {
2000 struct fec_enet_private *fep = netdev_priv(ndev);
2001 struct phy_device *phy_dev = NULL;
2002 char mdio_bus_id[MII_BUS_ID_SIZE];
2003 char phy_name[MII_BUS_ID_SIZE + 3];
2004 int phy_id;
2005 int dev_id = fep->dev_id;
2006
2007 if (fep->phy_node) {
2008 phy_dev = of_phy_connect(ndev, fep->phy_node,
2009 &fec_enet_adjust_link, 0,
2010 fep->phy_interface);
2011 if (!phy_dev) {
2012 netdev_err(ndev, "Unable to connect to phy\n");
2013 return -ENODEV;
2014 }
2015 } else {
2016 /* check for attached phy */
2017 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2018 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2019 continue;
2020 if (dev_id--)
2021 continue;
2022 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2023 break;
2024 }
2025
2026 if (phy_id >= PHY_MAX_ADDR) {
2027 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2028 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2029 phy_id = 0;
2030 }
2031
2032 snprintf(phy_name, sizeof(phy_name),
2033 PHY_ID_FMT, mdio_bus_id, phy_id);
2034 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2035 fep->phy_interface);
2036 }
2037
2038 if (IS_ERR(phy_dev)) {
2039 netdev_err(ndev, "could not attach to PHY\n");
2040 return PTR_ERR(phy_dev);
2041 }
2042
2043 /* mask with MAC supported features */
2044 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2045 phy_set_max_speed(phy_dev, 1000);
2046 phy_remove_link_mode(phy_dev,
2047 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2048 #if !defined(CONFIG_M5272)
2049 phy_support_sym_pause(phy_dev);
2050 #endif
2051 }
2052 else
2053 phy_set_max_speed(phy_dev, 100);
2054
2055 fep->link = 0;
2056 fep->full_duplex = 0;
2057
2058 phy_attached_info(phy_dev);
2059
2060 return 0;
2061 }
2062
2063 static int fec_enet_mii_init(struct platform_device *pdev)
2064 {
2065 static struct mii_bus *fec0_mii_bus;
2066 struct net_device *ndev = platform_get_drvdata(pdev);
2067 struct fec_enet_private *fep = netdev_priv(ndev);
2068 struct device_node *node;
2069 int err = -ENXIO;
2070 u32 mii_speed, holdtime;
2071
2072 /*
2073 * The i.MX28 dual fec interfaces are not equal.
2074 * Here are the differences:
2075 *
2076 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2077 * - fec0 acts as the 1588 time master while fec1 is slave
2078 * - external phys can only be configured by fec0
2079 *
2080 * That is to say fec1 can not work independently. It only works
2081 * when fec0 is working. The reason behind this design is that the
2082 * second interface is added primarily for Switch mode.
2083 *
2084 * Because of the last point above, both phys are attached on fec0
2085 * mdio interface in board design, and need to be configured by
2086 * fec0 mii_bus.
2087 */
2088 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2089 /* fec1 uses fec0 mii_bus */
2090 if (mii_cnt && fec0_mii_bus) {
2091 fep->mii_bus = fec0_mii_bus;
2092 mii_cnt++;
2093 return 0;
2094 }
2095 return -ENOENT;
2096 }
2097
2098 /*
2099 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2100 *
2101 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2102 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2103 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2104 * document.
2105 */
2106 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2107 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2108 mii_speed--;
2109 if (mii_speed > 63) {
2110 dev_err(&pdev->dev,
2111 "fec clock (%lu) too fast to get right mii speed\n",
2112 clk_get_rate(fep->clk_ipg));
2113 err = -EINVAL;
2114 goto err_out;
2115 }
2116
2117 /*
2118 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2119 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2120 * versions are RAZ there, so just ignore the difference and write the
2121 * register always.
2122 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2123 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2124 * output.
2125 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2126 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2127 * holdtime cannot result in a value greater than 3.
2128 */
2129 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2130
2131 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2132
2133 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2134
2135 fep->mii_bus = mdiobus_alloc();
2136 if (fep->mii_bus == NULL) {
2137 err = -ENOMEM;
2138 goto err_out;
2139 }
2140
2141 fep->mii_bus->name = "fec_enet_mii_bus";
2142 fep->mii_bus->read = fec_enet_mdio_read;
2143 fep->mii_bus->write = fec_enet_mdio_write;
2144 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2145 pdev->name, fep->dev_id + 1);
2146 fep->mii_bus->priv = fep;
2147 fep->mii_bus->parent = &pdev->dev;
2148
2149 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2150 err = of_mdiobus_register(fep->mii_bus, node);
2151 of_node_put(node);
2152 if (err)
2153 goto err_out_free_mdiobus;
2154
2155 mii_cnt++;
2156
2157 /* save fec0 mii_bus */
2158 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2159 fec0_mii_bus = fep->mii_bus;
2160
2161 return 0;
2162
2163 err_out_free_mdiobus:
2164 mdiobus_free(fep->mii_bus);
2165 err_out:
2166 return err;
2167 }
2168
2169 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2170 {
2171 if (--mii_cnt == 0) {
2172 mdiobus_unregister(fep->mii_bus);
2173 mdiobus_free(fep->mii_bus);
2174 }
2175 }
2176
2177 static void fec_enet_get_drvinfo(struct net_device *ndev,
2178 struct ethtool_drvinfo *info)
2179 {
2180 struct fec_enet_private *fep = netdev_priv(ndev);
2181
2182 strlcpy(info->driver, fep->pdev->dev.driver->name,
2183 sizeof(info->driver));
2184 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2185 }
2186
2187 static int fec_enet_get_regs_len(struct net_device *ndev)
2188 {
2189 struct fec_enet_private *fep = netdev_priv(ndev);
2190 struct resource *r;
2191 int s = 0;
2192
2193 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2194 if (r)
2195 s = resource_size(r);
2196
2197 return s;
2198 }
2199
2200 /* List of registers that can be safety be read to dump them with ethtool */
2201 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2202 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2203 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2204 static __u32 fec_enet_register_version = 2;
2205 static u32 fec_enet_register_offset[] = {
2206 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2207 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2208 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2209 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2210 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2211 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2212 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2213 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2214 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2215 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2216 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2217 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2218 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2219 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2220 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2221 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2222 RMON_T_P_GTE2048, RMON_T_OCTETS,
2223 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2224 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2225 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2226 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2227 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2228 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2229 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2230 RMON_R_P_GTE2048, RMON_R_OCTETS,
2231 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2232 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2233 };
2234 #else
2235 static __u32 fec_enet_register_version = 1;
2236 static u32 fec_enet_register_offset[] = {
2237 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2238 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2239 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2240 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2241 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2242 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2243 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2244 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2245 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2246 };
2247 #endif
2248
2249 static void fec_enet_get_regs(struct net_device *ndev,
2250 struct ethtool_regs *regs, void *regbuf)
2251 {
2252 struct fec_enet_private *fep = netdev_priv(ndev);
2253 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2254 struct device *dev = &fep->pdev->dev;
2255 u32 *buf = (u32 *)regbuf;
2256 u32 i, off;
2257 int ret;
2258
2259 ret = pm_runtime_get_sync(dev);
2260 if (ret < 0)
2261 return;
2262
2263 regs->version = fec_enet_register_version;
2264
2265 memset(buf, 0, regs->len);
2266
2267 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2268 off = fec_enet_register_offset[i];
2269
2270 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2271 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2272 continue;
2273
2274 off >>= 2;
2275 buf[off] = readl(&theregs[off]);
2276 }
2277
2278 pm_runtime_mark_last_busy(dev);
2279 pm_runtime_put_autosuspend(dev);
2280 }
2281
2282 static int fec_enet_get_ts_info(struct net_device *ndev,
2283 struct ethtool_ts_info *info)
2284 {
2285 struct fec_enet_private *fep = netdev_priv(ndev);
2286
2287 if (fep->bufdesc_ex) {
2288
2289 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2290 SOF_TIMESTAMPING_RX_SOFTWARE |
2291 SOF_TIMESTAMPING_SOFTWARE |
2292 SOF_TIMESTAMPING_TX_HARDWARE |
2293 SOF_TIMESTAMPING_RX_HARDWARE |
2294 SOF_TIMESTAMPING_RAW_HARDWARE;
2295 if (fep->ptp_clock)
2296 info->phc_index = ptp_clock_index(fep->ptp_clock);
2297 else
2298 info->phc_index = -1;
2299
2300 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2301 (1 << HWTSTAMP_TX_ON);
2302
2303 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2304 (1 << HWTSTAMP_FILTER_ALL);
2305 return 0;
2306 } else {
2307 return ethtool_op_get_ts_info(ndev, info);
2308 }
2309 }
2310
2311 #if !defined(CONFIG_M5272)
2312
2313 static void fec_enet_get_pauseparam(struct net_device *ndev,
2314 struct ethtool_pauseparam *pause)
2315 {
2316 struct fec_enet_private *fep = netdev_priv(ndev);
2317
2318 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2319 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2320 pause->rx_pause = pause->tx_pause;
2321 }
2322
2323 static int fec_enet_set_pauseparam(struct net_device *ndev,
2324 struct ethtool_pauseparam *pause)
2325 {
2326 struct fec_enet_private *fep = netdev_priv(ndev);
2327
2328 if (!ndev->phydev)
2329 return -ENODEV;
2330
2331 if (pause->tx_pause != pause->rx_pause) {
2332 netdev_info(ndev,
2333 "hardware only support enable/disable both tx and rx");
2334 return -EINVAL;
2335 }
2336
2337 fep->pause_flag = 0;
2338
2339 /* tx pause must be same as rx pause */
2340 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2341 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2342
2343 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2344 pause->autoneg);
2345
2346 if (pause->autoneg) {
2347 if (netif_running(ndev))
2348 fec_stop(ndev);
2349 phy_start_aneg(ndev->phydev);
2350 }
2351 if (netif_running(ndev)) {
2352 napi_disable(&fep->napi);
2353 netif_tx_lock_bh(ndev);
2354 fec_restart(ndev);
2355 netif_tx_wake_all_queues(ndev);
2356 netif_tx_unlock_bh(ndev);
2357 napi_enable(&fep->napi);
2358 }
2359
2360 return 0;
2361 }
2362
2363 static const struct fec_stat {
2364 char name[ETH_GSTRING_LEN];
2365 u16 offset;
2366 } fec_stats[] = {
2367 /* RMON TX */
2368 { "tx_dropped", RMON_T_DROP },
2369 { "tx_packets", RMON_T_PACKETS },
2370 { "tx_broadcast", RMON_T_BC_PKT },
2371 { "tx_multicast", RMON_T_MC_PKT },
2372 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2373 { "tx_undersize", RMON_T_UNDERSIZE },
2374 { "tx_oversize", RMON_T_OVERSIZE },
2375 { "tx_fragment", RMON_T_FRAG },
2376 { "tx_jabber", RMON_T_JAB },
2377 { "tx_collision", RMON_T_COL },
2378 { "tx_64byte", RMON_T_P64 },
2379 { "tx_65to127byte", RMON_T_P65TO127 },
2380 { "tx_128to255byte", RMON_T_P128TO255 },
2381 { "tx_256to511byte", RMON_T_P256TO511 },
2382 { "tx_512to1023byte", RMON_T_P512TO1023 },
2383 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2384 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2385 { "tx_octets", RMON_T_OCTETS },
2386
2387 /* IEEE TX */
2388 { "IEEE_tx_drop", IEEE_T_DROP },
2389 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2390 { "IEEE_tx_1col", IEEE_T_1COL },
2391 { "IEEE_tx_mcol", IEEE_T_MCOL },
2392 { "IEEE_tx_def", IEEE_T_DEF },
2393 { "IEEE_tx_lcol", IEEE_T_LCOL },
2394 { "IEEE_tx_excol", IEEE_T_EXCOL },
2395 { "IEEE_tx_macerr", IEEE_T_MACERR },
2396 { "IEEE_tx_cserr", IEEE_T_CSERR },
2397 { "IEEE_tx_sqe", IEEE_T_SQE },
2398 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2399 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2400
2401 /* RMON RX */
2402 { "rx_packets", RMON_R_PACKETS },
2403 { "rx_broadcast", RMON_R_BC_PKT },
2404 { "rx_multicast", RMON_R_MC_PKT },
2405 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2406 { "rx_undersize", RMON_R_UNDERSIZE },
2407 { "rx_oversize", RMON_R_OVERSIZE },
2408 { "rx_fragment", RMON_R_FRAG },
2409 { "rx_jabber", RMON_R_JAB },
2410 { "rx_64byte", RMON_R_P64 },
2411 { "rx_65to127byte", RMON_R_P65TO127 },
2412 { "rx_128to255byte", RMON_R_P128TO255 },
2413 { "rx_256to511byte", RMON_R_P256TO511 },
2414 { "rx_512to1023byte", RMON_R_P512TO1023 },
2415 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2416 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2417 { "rx_octets", RMON_R_OCTETS },
2418
2419 /* IEEE RX */
2420 { "IEEE_rx_drop", IEEE_R_DROP },
2421 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2422 { "IEEE_rx_crc", IEEE_R_CRC },
2423 { "IEEE_rx_align", IEEE_R_ALIGN },
2424 { "IEEE_rx_macerr", IEEE_R_MACERR },
2425 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2426 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2427 };
2428
2429 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2430
2431 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2432 {
2433 struct fec_enet_private *fep = netdev_priv(dev);
2434 int i;
2435
2436 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2437 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2438 }
2439
2440 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2441 struct ethtool_stats *stats, u64 *data)
2442 {
2443 struct fec_enet_private *fep = netdev_priv(dev);
2444
2445 if (netif_running(dev))
2446 fec_enet_update_ethtool_stats(dev);
2447
2448 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2449 }
2450
2451 static void fec_enet_get_strings(struct net_device *netdev,
2452 u32 stringset, u8 *data)
2453 {
2454 int i;
2455 switch (stringset) {
2456 case ETH_SS_STATS:
2457 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2458 memcpy(data + i * ETH_GSTRING_LEN,
2459 fec_stats[i].name, ETH_GSTRING_LEN);
2460 break;
2461 }
2462 }
2463
2464 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2465 {
2466 switch (sset) {
2467 case ETH_SS_STATS:
2468 return ARRAY_SIZE(fec_stats);
2469 default:
2470 return -EOPNOTSUPP;
2471 }
2472 }
2473
2474 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2475 {
2476 struct fec_enet_private *fep = netdev_priv(dev);
2477 int i;
2478
2479 /* Disable MIB statistics counters */
2480 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2481
2482 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2483 writel(0, fep->hwp + fec_stats[i].offset);
2484
2485 /* Don't disable MIB statistics counters */
2486 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2487 }
2488
2489 #else /* !defined(CONFIG_M5272) */
2490 #define FEC_STATS_SIZE 0
2491 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2492 {
2493 }
2494
2495 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2496 {
2497 }
2498 #endif /* !defined(CONFIG_M5272) */
2499
2500 /* ITR clock source is enet system clock (clk_ahb).
2501 * TCTT unit is cycle_ns * 64 cycle
2502 * So, the ICTT value = X us / (cycle_ns * 64)
2503 */
2504 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2505 {
2506 struct fec_enet_private *fep = netdev_priv(ndev);
2507
2508 return us * (fep->itr_clk_rate / 64000) / 1000;
2509 }
2510
2511 /* Set threshold for interrupt coalescing */
2512 static void fec_enet_itr_coal_set(struct net_device *ndev)
2513 {
2514 struct fec_enet_private *fep = netdev_priv(ndev);
2515 int rx_itr, tx_itr;
2516
2517 /* Must be greater than zero to avoid unpredictable behavior */
2518 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2519 !fep->tx_time_itr || !fep->tx_pkts_itr)
2520 return;
2521
2522 /* Select enet system clock as Interrupt Coalescing
2523 * timer Clock Source
2524 */
2525 rx_itr = FEC_ITR_CLK_SEL;
2526 tx_itr = FEC_ITR_CLK_SEL;
2527
2528 /* set ICFT and ICTT */
2529 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2530 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2531 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2532 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2533
2534 rx_itr |= FEC_ITR_EN;
2535 tx_itr |= FEC_ITR_EN;
2536
2537 writel(tx_itr, fep->hwp + FEC_TXIC0);
2538 writel(rx_itr, fep->hwp + FEC_RXIC0);
2539 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2540 writel(tx_itr, fep->hwp + FEC_TXIC1);
2541 writel(rx_itr, fep->hwp + FEC_RXIC1);
2542 writel(tx_itr, fep->hwp + FEC_TXIC2);
2543 writel(rx_itr, fep->hwp + FEC_RXIC2);
2544 }
2545 }
2546
2547 static int
2548 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2549 {
2550 struct fec_enet_private *fep = netdev_priv(ndev);
2551
2552 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2553 return -EOPNOTSUPP;
2554
2555 ec->rx_coalesce_usecs = fep->rx_time_itr;
2556 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2557
2558 ec->tx_coalesce_usecs = fep->tx_time_itr;
2559 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2560
2561 return 0;
2562 }
2563
2564 static int
2565 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2566 {
2567 struct fec_enet_private *fep = netdev_priv(ndev);
2568 struct device *dev = &fep->pdev->dev;
2569 unsigned int cycle;
2570
2571 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2572 return -EOPNOTSUPP;
2573
2574 if (ec->rx_max_coalesced_frames > 255) {
2575 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2576 return -EINVAL;
2577 }
2578
2579 if (ec->tx_max_coalesced_frames > 255) {
2580 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2581 return -EINVAL;
2582 }
2583
2584 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2585 if (cycle > 0xFFFF) {
2586 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2587 return -EINVAL;
2588 }
2589
2590 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2591 if (cycle > 0xFFFF) {
2592 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2593 return -EINVAL;
2594 }
2595
2596 fep->rx_time_itr = ec->rx_coalesce_usecs;
2597 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2598
2599 fep->tx_time_itr = ec->tx_coalesce_usecs;
2600 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2601
2602 fec_enet_itr_coal_set(ndev);
2603
2604 return 0;
2605 }
2606
2607 static void fec_enet_itr_coal_init(struct net_device *ndev)
2608 {
2609 struct ethtool_coalesce ec;
2610
2611 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2612 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2613
2614 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2615 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2616
2617 fec_enet_set_coalesce(ndev, &ec);
2618 }
2619
2620 static int fec_enet_get_tunable(struct net_device *netdev,
2621 const struct ethtool_tunable *tuna,
2622 void *data)
2623 {
2624 struct fec_enet_private *fep = netdev_priv(netdev);
2625 int ret = 0;
2626
2627 switch (tuna->id) {
2628 case ETHTOOL_RX_COPYBREAK:
2629 *(u32 *)data = fep->rx_copybreak;
2630 break;
2631 default:
2632 ret = -EINVAL;
2633 break;
2634 }
2635
2636 return ret;
2637 }
2638
2639 static int fec_enet_set_tunable(struct net_device *netdev,
2640 const struct ethtool_tunable *tuna,
2641 const void *data)
2642 {
2643 struct fec_enet_private *fep = netdev_priv(netdev);
2644 int ret = 0;
2645
2646 switch (tuna->id) {
2647 case ETHTOOL_RX_COPYBREAK:
2648 fep->rx_copybreak = *(u32 *)data;
2649 break;
2650 default:
2651 ret = -EINVAL;
2652 break;
2653 }
2654
2655 return ret;
2656 }
2657
2658 static void
2659 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2660 {
2661 struct fec_enet_private *fep = netdev_priv(ndev);
2662
2663 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2664 wol->supported = WAKE_MAGIC;
2665 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2666 } else {
2667 wol->supported = wol->wolopts = 0;
2668 }
2669 }
2670
2671 static int
2672 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2673 {
2674 struct fec_enet_private *fep = netdev_priv(ndev);
2675
2676 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2677 return -EINVAL;
2678
2679 if (wol->wolopts & ~WAKE_MAGIC)
2680 return -EINVAL;
2681
2682 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2683 if (device_may_wakeup(&ndev->dev)) {
2684 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2685 if (fep->irq[0] > 0)
2686 enable_irq_wake(fep->irq[0]);
2687 } else {
2688 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2689 if (fep->irq[0] > 0)
2690 disable_irq_wake(fep->irq[0]);
2691 }
2692
2693 return 0;
2694 }
2695
2696 static const struct ethtool_ops fec_enet_ethtool_ops = {
2697 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2698 ETHTOOL_COALESCE_MAX_FRAMES,
2699 .get_drvinfo = fec_enet_get_drvinfo,
2700 .get_regs_len = fec_enet_get_regs_len,
2701 .get_regs = fec_enet_get_regs,
2702 .nway_reset = phy_ethtool_nway_reset,
2703 .get_link = ethtool_op_get_link,
2704 .get_coalesce = fec_enet_get_coalesce,
2705 .set_coalesce = fec_enet_set_coalesce,
2706 #ifndef CONFIG_M5272
2707 .get_pauseparam = fec_enet_get_pauseparam,
2708 .set_pauseparam = fec_enet_set_pauseparam,
2709 .get_strings = fec_enet_get_strings,
2710 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2711 .get_sset_count = fec_enet_get_sset_count,
2712 #endif
2713 .get_ts_info = fec_enet_get_ts_info,
2714 .get_tunable = fec_enet_get_tunable,
2715 .set_tunable = fec_enet_set_tunable,
2716 .get_wol = fec_enet_get_wol,
2717 .set_wol = fec_enet_set_wol,
2718 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2719 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2720 };
2721
2722 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2723 {
2724 struct fec_enet_private *fep = netdev_priv(ndev);
2725 struct phy_device *phydev = ndev->phydev;
2726
2727 if (!netif_running(ndev))
2728 return -EINVAL;
2729
2730 if (!phydev)
2731 return -ENODEV;
2732
2733 if (fep->bufdesc_ex) {
2734 if (cmd == SIOCSHWTSTAMP)
2735 return fec_ptp_set(ndev, rq);
2736 if (cmd == SIOCGHWTSTAMP)
2737 return fec_ptp_get(ndev, rq);
2738 }
2739
2740 return phy_mii_ioctl(phydev, rq, cmd);
2741 }
2742
2743 static void fec_enet_free_buffers(struct net_device *ndev)
2744 {
2745 struct fec_enet_private *fep = netdev_priv(ndev);
2746 unsigned int i;
2747 struct sk_buff *skb;
2748 struct bufdesc *bdp;
2749 struct fec_enet_priv_tx_q *txq;
2750 struct fec_enet_priv_rx_q *rxq;
2751 unsigned int q;
2752
2753 for (q = 0; q < fep->num_rx_queues; q++) {
2754 rxq = fep->rx_queue[q];
2755 bdp = rxq->bd.base;
2756 for (i = 0; i < rxq->bd.ring_size; i++) {
2757 skb = rxq->rx_skbuff[i];
2758 rxq->rx_skbuff[i] = NULL;
2759 if (skb) {
2760 dma_unmap_single(&fep->pdev->dev,
2761 fec32_to_cpu(bdp->cbd_bufaddr),
2762 FEC_ENET_RX_FRSIZE - fep->rx_align,
2763 DMA_FROM_DEVICE);
2764 dev_kfree_skb(skb);
2765 }
2766 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2767 }
2768 }
2769
2770 for (q = 0; q < fep->num_tx_queues; q++) {
2771 txq = fep->tx_queue[q];
2772 for (i = 0; i < txq->bd.ring_size; i++) {
2773 kfree(txq->tx_bounce[i]);
2774 txq->tx_bounce[i] = NULL;
2775 skb = txq->tx_skbuff[i];
2776 txq->tx_skbuff[i] = NULL;
2777 dev_kfree_skb(skb);
2778 }
2779 }
2780 }
2781
2782 static void fec_enet_free_queue(struct net_device *ndev)
2783 {
2784 struct fec_enet_private *fep = netdev_priv(ndev);
2785 int i;
2786 struct fec_enet_priv_tx_q *txq;
2787
2788 for (i = 0; i < fep->num_tx_queues; i++)
2789 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2790 txq = fep->tx_queue[i];
2791 dma_free_coherent(&fep->pdev->dev,
2792 txq->bd.ring_size * TSO_HEADER_SIZE,
2793 txq->tso_hdrs,
2794 txq->tso_hdrs_dma);
2795 }
2796
2797 for (i = 0; i < fep->num_rx_queues; i++)
2798 kfree(fep->rx_queue[i]);
2799 for (i = 0; i < fep->num_tx_queues; i++)
2800 kfree(fep->tx_queue[i]);
2801 }
2802
2803 static int fec_enet_alloc_queue(struct net_device *ndev)
2804 {
2805 struct fec_enet_private *fep = netdev_priv(ndev);
2806 int i;
2807 int ret = 0;
2808 struct fec_enet_priv_tx_q *txq;
2809
2810 for (i = 0; i < fep->num_tx_queues; i++) {
2811 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2812 if (!txq) {
2813 ret = -ENOMEM;
2814 goto alloc_failed;
2815 }
2816
2817 fep->tx_queue[i] = txq;
2818 txq->bd.ring_size = TX_RING_SIZE;
2819 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2820
2821 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2822 txq->tx_wake_threshold =
2823 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2824
2825 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2826 txq->bd.ring_size * TSO_HEADER_SIZE,
2827 &txq->tso_hdrs_dma,
2828 GFP_KERNEL);
2829 if (!txq->tso_hdrs) {
2830 ret = -ENOMEM;
2831 goto alloc_failed;
2832 }
2833 }
2834
2835 for (i = 0; i < fep->num_rx_queues; i++) {
2836 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2837 GFP_KERNEL);
2838 if (!fep->rx_queue[i]) {
2839 ret = -ENOMEM;
2840 goto alloc_failed;
2841 }
2842
2843 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2844 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2845 }
2846 return ret;
2847
2848 alloc_failed:
2849 fec_enet_free_queue(ndev);
2850 return ret;
2851 }
2852
2853 static int
2854 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2855 {
2856 struct fec_enet_private *fep = netdev_priv(ndev);
2857 unsigned int i;
2858 struct sk_buff *skb;
2859 struct bufdesc *bdp;
2860 struct fec_enet_priv_rx_q *rxq;
2861
2862 rxq = fep->rx_queue[queue];
2863 bdp = rxq->bd.base;
2864 for (i = 0; i < rxq->bd.ring_size; i++) {
2865 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2866 if (!skb)
2867 goto err_alloc;
2868
2869 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2870 dev_kfree_skb(skb);
2871 goto err_alloc;
2872 }
2873
2874 rxq->rx_skbuff[i] = skb;
2875 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2876
2877 if (fep->bufdesc_ex) {
2878 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2879 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2880 }
2881
2882 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2883 }
2884
2885 /* Set the last buffer to wrap. */
2886 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2887 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2888 return 0;
2889
2890 err_alloc:
2891 fec_enet_free_buffers(ndev);
2892 return -ENOMEM;
2893 }
2894
2895 static int
2896 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2897 {
2898 struct fec_enet_private *fep = netdev_priv(ndev);
2899 unsigned int i;
2900 struct bufdesc *bdp;
2901 struct fec_enet_priv_tx_q *txq;
2902
2903 txq = fep->tx_queue[queue];
2904 bdp = txq->bd.base;
2905 for (i = 0; i < txq->bd.ring_size; i++) {
2906 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2907 if (!txq->tx_bounce[i])
2908 goto err_alloc;
2909
2910 bdp->cbd_sc = cpu_to_fec16(0);
2911 bdp->cbd_bufaddr = cpu_to_fec32(0);
2912
2913 if (fep->bufdesc_ex) {
2914 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2915 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2916 }
2917
2918 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2919 }
2920
2921 /* Set the last buffer to wrap. */
2922 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2923 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2924
2925 return 0;
2926
2927 err_alloc:
2928 fec_enet_free_buffers(ndev);
2929 return -ENOMEM;
2930 }
2931
2932 static int fec_enet_alloc_buffers(struct net_device *ndev)
2933 {
2934 struct fec_enet_private *fep = netdev_priv(ndev);
2935 unsigned int i;
2936
2937 for (i = 0; i < fep->num_rx_queues; i++)
2938 if (fec_enet_alloc_rxq_buffers(ndev, i))
2939 return -ENOMEM;
2940
2941 for (i = 0; i < fep->num_tx_queues; i++)
2942 if (fec_enet_alloc_txq_buffers(ndev, i))
2943 return -ENOMEM;
2944 return 0;
2945 }
2946
2947 static int
2948 fec_enet_open(struct net_device *ndev)
2949 {
2950 struct fec_enet_private *fep = netdev_priv(ndev);
2951 int ret;
2952 bool reset_again;
2953
2954 ret = pm_runtime_get_sync(&fep->pdev->dev);
2955 if (ret < 0)
2956 return ret;
2957
2958 pinctrl_pm_select_default_state(&fep->pdev->dev);
2959 ret = fec_enet_clk_enable(ndev, true);
2960 if (ret)
2961 goto clk_enable;
2962
2963 /* During the first fec_enet_open call the PHY isn't probed at this
2964 * point. Therefore the phy_reset_after_clk_enable() call within
2965 * fec_enet_clk_enable() fails. As we need this reset in order to be
2966 * sure the PHY is working correctly we check if we need to reset again
2967 * later when the PHY is probed
2968 */
2969 if (ndev->phydev && ndev->phydev->drv)
2970 reset_again = false;
2971 else
2972 reset_again = true;
2973
2974 /* I should reset the ring buffers here, but I don't yet know
2975 * a simple way to do that.
2976 */
2977
2978 ret = fec_enet_alloc_buffers(ndev);
2979 if (ret)
2980 goto err_enet_alloc;
2981
2982 /* Init MAC prior to mii bus probe */
2983 fec_restart(ndev);
2984
2985 /* Probe and connect to PHY when open the interface */
2986 ret = fec_enet_mii_probe(ndev);
2987 if (ret)
2988 goto err_enet_mii_probe;
2989
2990 /* Call phy_reset_after_clk_enable() again if it failed during
2991 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2992 */
2993 if (reset_again)
2994 phy_reset_after_clk_enable(ndev->phydev);
2995
2996 if (fep->quirks & FEC_QUIRK_ERR006687)
2997 imx6q_cpuidle_fec_irqs_used();
2998
2999 napi_enable(&fep->napi);
3000 phy_start(ndev->phydev);
3001 netif_tx_start_all_queues(ndev);
3002
3003 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3004 FEC_WOL_FLAG_ENABLE);
3005
3006 return 0;
3007
3008 err_enet_mii_probe:
3009 fec_enet_free_buffers(ndev);
3010 err_enet_alloc:
3011 fec_enet_clk_enable(ndev, false);
3012 clk_enable:
3013 pm_runtime_mark_last_busy(&fep->pdev->dev);
3014 pm_runtime_put_autosuspend(&fep->pdev->dev);
3015 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3016 return ret;
3017 }
3018
3019 static int
3020 fec_enet_close(struct net_device *ndev)
3021 {
3022 struct fec_enet_private *fep = netdev_priv(ndev);
3023
3024 phy_stop(ndev->phydev);
3025
3026 if (netif_device_present(ndev)) {
3027 napi_disable(&fep->napi);
3028 netif_tx_disable(ndev);
3029 fec_stop(ndev);
3030 }
3031
3032 phy_disconnect(ndev->phydev);
3033
3034 if (fep->quirks & FEC_QUIRK_ERR006687)
3035 imx6q_cpuidle_fec_irqs_unused();
3036
3037 fec_enet_update_ethtool_stats(ndev);
3038
3039 fec_enet_clk_enable(ndev, false);
3040 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3041 pm_runtime_mark_last_busy(&fep->pdev->dev);
3042 pm_runtime_put_autosuspend(&fep->pdev->dev);
3043
3044 fec_enet_free_buffers(ndev);
3045
3046 return 0;
3047 }
3048
3049 /* Set or clear the multicast filter for this adaptor.
3050 * Skeleton taken from sunlance driver.
3051 * The CPM Ethernet implementation allows Multicast as well as individual
3052 * MAC address filtering. Some of the drivers check to make sure it is
3053 * a group multicast address, and discard those that are not. I guess I
3054 * will do the same for now, but just remove the test if you want
3055 * individual filtering as well (do the upper net layers want or support
3056 * this kind of feature?).
3057 */
3058
3059 #define FEC_HASH_BITS 6 /* #bits in hash */
3060
3061 static void set_multicast_list(struct net_device *ndev)
3062 {
3063 struct fec_enet_private *fep = netdev_priv(ndev);
3064 struct netdev_hw_addr *ha;
3065 unsigned int crc, tmp;
3066 unsigned char hash;
3067 unsigned int hash_high = 0, hash_low = 0;
3068
3069 if (ndev->flags & IFF_PROMISC) {
3070 tmp = readl(fep->hwp + FEC_R_CNTRL);
3071 tmp |= 0x8;
3072 writel(tmp, fep->hwp + FEC_R_CNTRL);
3073 return;
3074 }
3075
3076 tmp = readl(fep->hwp + FEC_R_CNTRL);
3077 tmp &= ~0x8;
3078 writel(tmp, fep->hwp + FEC_R_CNTRL);
3079
3080 if (ndev->flags & IFF_ALLMULTI) {
3081 /* Catch all multicast addresses, so set the
3082 * filter to all 1's
3083 */
3084 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3085 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3086
3087 return;
3088 }
3089
3090 /* Add the addresses in hash register */
3091 netdev_for_each_mc_addr(ha, ndev) {
3092 /* calculate crc32 value of mac address */
3093 crc = ether_crc_le(ndev->addr_len, ha->addr);
3094
3095 /* only upper 6 bits (FEC_HASH_BITS) are used
3096 * which point to specific bit in the hash registers
3097 */
3098 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3099
3100 if (hash > 31)
3101 hash_high |= 1 << (hash - 32);
3102 else
3103 hash_low |= 1 << hash;
3104 }
3105
3106 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3107 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3108 }
3109
3110 /* Set a MAC change in hardware. */
3111 static int
3112 fec_set_mac_address(struct net_device *ndev, void *p)
3113 {
3114 struct fec_enet_private *fep = netdev_priv(ndev);
3115 struct sockaddr *addr = p;
3116
3117 if (addr) {
3118 if (!is_valid_ether_addr(addr->sa_data))
3119 return -EADDRNOTAVAIL;
3120 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3121 }
3122
3123 /* Add netif status check here to avoid system hang in below case:
3124 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3125 * After ethx down, fec all clocks are gated off and then register
3126 * access causes system hang.
3127 */
3128 if (!netif_running(ndev))
3129 return 0;
3130
3131 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3132 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3133 fep->hwp + FEC_ADDR_LOW);
3134 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3135 fep->hwp + FEC_ADDR_HIGH);
3136 return 0;
3137 }
3138
3139 #ifdef CONFIG_NET_POLL_CONTROLLER
3140 /**
3141 * fec_poll_controller - FEC Poll controller function
3142 * @dev: The FEC network adapter
3143 *
3144 * Polled functionality used by netconsole and others in non interrupt mode
3145 *
3146 */
3147 static void fec_poll_controller(struct net_device *dev)
3148 {
3149 int i;
3150 struct fec_enet_private *fep = netdev_priv(dev);
3151
3152 for (i = 0; i < FEC_IRQ_NUM; i++) {
3153 if (fep->irq[i] > 0) {
3154 disable_irq(fep->irq[i]);
3155 fec_enet_interrupt(fep->irq[i], dev);
3156 enable_irq(fep->irq[i]);
3157 }
3158 }
3159 }
3160 #endif
3161
3162 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3163 netdev_features_t features)
3164 {
3165 struct fec_enet_private *fep = netdev_priv(netdev);
3166 netdev_features_t changed = features ^ netdev->features;
3167
3168 netdev->features = features;
3169
3170 /* Receive checksum has been changed */
3171 if (changed & NETIF_F_RXCSUM) {
3172 if (features & NETIF_F_RXCSUM)
3173 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3174 else
3175 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3176 }
3177 }
3178
3179 static int fec_set_features(struct net_device *netdev,
3180 netdev_features_t features)
3181 {
3182 struct fec_enet_private *fep = netdev_priv(netdev);
3183 netdev_features_t changed = features ^ netdev->features;
3184
3185 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3186 napi_disable(&fep->napi);
3187 netif_tx_lock_bh(netdev);
3188 fec_stop(netdev);
3189 fec_enet_set_netdev_features(netdev, features);
3190 fec_restart(netdev);
3191 netif_tx_wake_all_queues(netdev);
3192 netif_tx_unlock_bh(netdev);
3193 napi_enable(&fep->napi);
3194 } else {
3195 fec_enet_set_netdev_features(netdev, features);
3196 }
3197
3198 return 0;
3199 }
3200
3201 static const struct net_device_ops fec_netdev_ops = {
3202 .ndo_open = fec_enet_open,
3203 .ndo_stop = fec_enet_close,
3204 .ndo_start_xmit = fec_enet_start_xmit,
3205 .ndo_set_rx_mode = set_multicast_list,
3206 .ndo_validate_addr = eth_validate_addr,
3207 .ndo_tx_timeout = fec_timeout,
3208 .ndo_set_mac_address = fec_set_mac_address,
3209 .ndo_do_ioctl = fec_enet_ioctl,
3210 #ifdef CONFIG_NET_POLL_CONTROLLER
3211 .ndo_poll_controller = fec_poll_controller,
3212 #endif
3213 .ndo_set_features = fec_set_features,
3214 };
3215
3216 static const unsigned short offset_des_active_rxq[] = {
3217 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3218 };
3219
3220 static const unsigned short offset_des_active_txq[] = {
3221 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3222 };
3223
3224 /*
3225 * XXX: We need to clean up on failure exits here.
3226 *
3227 */
3228 static int fec_enet_init(struct net_device *ndev)
3229 {
3230 struct fec_enet_private *fep = netdev_priv(ndev);
3231 struct bufdesc *cbd_base;
3232 dma_addr_t bd_dma;
3233 int bd_size;
3234 unsigned int i;
3235 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3236 sizeof(struct bufdesc);
3237 unsigned dsize_log2 = __fls(dsize);
3238 int ret;
3239
3240 WARN_ON(dsize != (1 << dsize_log2));
3241 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3242 fep->rx_align = 0xf;
3243 fep->tx_align = 0xf;
3244 #else
3245 fep->rx_align = 0x3;
3246 fep->tx_align = 0x3;
3247 #endif
3248
3249 /* Check mask of the streaming and coherent API */
3250 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3251 if (ret < 0) {
3252 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3253 return ret;
3254 }
3255
3256 fec_enet_alloc_queue(ndev);
3257
3258 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3259
3260 /* Allocate memory for buffer descriptors. */
3261 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3262 GFP_KERNEL);
3263 if (!cbd_base) {
3264 return -ENOMEM;
3265 }
3266
3267 /* Get the Ethernet address */
3268 fec_get_mac(ndev);
3269 /* make sure MAC we just acquired is programmed into the hw */
3270 fec_set_mac_address(ndev, NULL);
3271
3272 /* Set receive and transmit descriptor base. */
3273 for (i = 0; i < fep->num_rx_queues; i++) {
3274 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3275 unsigned size = dsize * rxq->bd.ring_size;
3276
3277 rxq->bd.qid = i;
3278 rxq->bd.base = cbd_base;
3279 rxq->bd.cur = cbd_base;
3280 rxq->bd.dma = bd_dma;
3281 rxq->bd.dsize = dsize;
3282 rxq->bd.dsize_log2 = dsize_log2;
3283 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3284 bd_dma += size;
3285 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3286 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3287 }
3288
3289 for (i = 0; i < fep->num_tx_queues; i++) {
3290 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3291 unsigned size = dsize * txq->bd.ring_size;
3292
3293 txq->bd.qid = i;
3294 txq->bd.base = cbd_base;
3295 txq->bd.cur = cbd_base;
3296 txq->bd.dma = bd_dma;
3297 txq->bd.dsize = dsize;
3298 txq->bd.dsize_log2 = dsize_log2;
3299 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3300 bd_dma += size;
3301 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3302 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3303 }
3304
3305
3306 /* The FEC Ethernet specific entries in the device structure */
3307 ndev->watchdog_timeo = TX_TIMEOUT;
3308 ndev->netdev_ops = &fec_netdev_ops;
3309 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3310
3311 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3312 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3313
3314 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3315 /* enable hw VLAN support */
3316 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3317
3318 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3319 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3320
3321 /* enable hw accelerator */
3322 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3323 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3324 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3325 }
3326
3327 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3328 fep->tx_align = 0;
3329 fep->rx_align = 0x3f;
3330 }
3331
3332 ndev->hw_features = ndev->features;
3333
3334 fec_restart(ndev);
3335
3336 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3337 fec_enet_clear_ethtool_stats(ndev);
3338 else
3339 fec_enet_update_ethtool_stats(ndev);
3340
3341 return 0;
3342 }
3343
3344 #ifdef CONFIG_OF
3345 static int fec_reset_phy(struct platform_device *pdev)
3346 {
3347 int err, phy_reset;
3348 bool active_high = false;
3349 int msec = 1, phy_post_delay = 0;
3350 struct device_node *np = pdev->dev.of_node;
3351
3352 if (!np)
3353 return 0;
3354
3355 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3356 /* A sane reset duration should not be longer than 1s */
3357 if (!err && msec > 1000)
3358 msec = 1;
3359
3360 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3361 if (phy_reset == -EPROBE_DEFER)
3362 return phy_reset;
3363 else if (!gpio_is_valid(phy_reset))
3364 return 0;
3365
3366 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3367 /* valid reset duration should be less than 1s */
3368 if (!err && phy_post_delay > 1000)
3369 return -EINVAL;
3370
3371 active_high = of_property_read_bool(np, "phy-reset-active-high");
3372
3373 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3374 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3375 "phy-reset");
3376 if (err) {
3377 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3378 return err;
3379 }
3380
3381 if (msec > 20)
3382 msleep(msec);
3383 else
3384 usleep_range(msec * 1000, msec * 1000 + 1000);
3385
3386 gpio_set_value_cansleep(phy_reset, !active_high);
3387
3388 if (!phy_post_delay)
3389 return 0;
3390
3391 if (phy_post_delay > 20)
3392 msleep(phy_post_delay);
3393 else
3394 usleep_range(phy_post_delay * 1000,
3395 phy_post_delay * 1000 + 1000);
3396
3397 return 0;
3398 }
3399 #else /* CONFIG_OF */
3400 static int fec_reset_phy(struct platform_device *pdev)
3401 {
3402 /*
3403 * In case of platform probe, the reset has been done
3404 * by machine code.
3405 */
3406 return 0;
3407 }
3408 #endif /* CONFIG_OF */
3409
3410 static void
3411 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3412 {
3413 struct device_node *np = pdev->dev.of_node;
3414
3415 *num_tx = *num_rx = 1;
3416
3417 if (!np || !of_device_is_available(np))
3418 return;
3419
3420 /* parse the num of tx and rx queues */
3421 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3422
3423 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3424
3425 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3426 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3427 *num_tx);
3428 *num_tx = 1;
3429 return;
3430 }
3431
3432 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3433 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3434 *num_rx);
3435 *num_rx = 1;
3436 return;
3437 }
3438
3439 }
3440
3441 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3442 {
3443 int irq_cnt = platform_irq_count(pdev);
3444
3445 if (irq_cnt > FEC_IRQ_NUM)
3446 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3447 else if (irq_cnt == 2)
3448 irq_cnt = 1; /* last for pps */
3449 else if (irq_cnt <= 0)
3450 irq_cnt = 1; /* At least 1 irq is needed */
3451 return irq_cnt;
3452 }
3453
3454 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3455 struct fec_devinfo *dev_info,
3456 struct device_node *np)
3457 {
3458 struct device_node *gpr_np;
3459 int ret = 0;
3460
3461 if (!dev_info)
3462 return 0;
3463
3464 gpr_np = of_parse_phandle(np, "gpr", 0);
3465 if (!gpr_np)
3466 return 0;
3467
3468 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3469 if (IS_ERR(fep->stop_gpr.gpr)) {
3470 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3471 ret = PTR_ERR(fep->stop_gpr.gpr);
3472 fep->stop_gpr.gpr = NULL;
3473 goto out;
3474 }
3475
3476 fep->stop_gpr.reg = dev_info->stop_gpr_reg;
3477 fep->stop_gpr.bit = dev_info->stop_gpr_bit;
3478
3479 out:
3480 of_node_put(gpr_np);
3481
3482 return ret;
3483 }
3484
3485 static int
3486 fec_probe(struct platform_device *pdev)
3487 {
3488 struct fec_enet_private *fep;
3489 struct fec_platform_data *pdata;
3490 phy_interface_t interface;
3491 struct net_device *ndev;
3492 int i, irq, ret = 0;
3493 const struct of_device_id *of_id;
3494 static int dev_id;
3495 struct device_node *np = pdev->dev.of_node, *phy_node;
3496 int num_tx_qs;
3497 int num_rx_qs;
3498 char irq_name[8];
3499 int irq_cnt;
3500 struct fec_devinfo *dev_info;
3501
3502 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3503
3504 /* Init network device */
3505 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3506 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3507 if (!ndev)
3508 return -ENOMEM;
3509
3510 SET_NETDEV_DEV(ndev, &pdev->dev);
3511
3512 /* setup board info structure */
3513 fep = netdev_priv(ndev);
3514
3515 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3516 if (of_id)
3517 pdev->id_entry = of_id->data;
3518 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3519 if (dev_info)
3520 fep->quirks = dev_info->quirks;
3521
3522 fep->netdev = ndev;
3523 fep->num_rx_queues = num_rx_qs;
3524 fep->num_tx_queues = num_tx_qs;
3525
3526 #if !defined(CONFIG_M5272)
3527 /* default enable pause frame auto negotiation */
3528 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3529 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3530 #endif
3531
3532 /* Select default pin state */
3533 pinctrl_pm_select_default_state(&pdev->dev);
3534
3535 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3536 if (IS_ERR(fep->hwp)) {
3537 ret = PTR_ERR(fep->hwp);
3538 goto failed_ioremap;
3539 }
3540
3541 fep->pdev = pdev;
3542 fep->dev_id = dev_id++;
3543
3544 platform_set_drvdata(pdev, ndev);
3545
3546 if ((of_machine_is_compatible("fsl,imx6q") ||
3547 of_machine_is_compatible("fsl,imx6dl")) &&
3548 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3549 fep->quirks |= FEC_QUIRK_ERR006687;
3550
3551 if (of_get_property(np, "fsl,magic-packet", NULL))
3552 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3553
3554 ret = fec_enet_init_stop_mode(fep, dev_info, np);
3555 if (ret)
3556 goto failed_stop_mode;
3557
3558 phy_node = of_parse_phandle(np, "phy-handle", 0);
3559 if (!phy_node && of_phy_is_fixed_link(np)) {
3560 ret = of_phy_register_fixed_link(np);
3561 if (ret < 0) {
3562 dev_err(&pdev->dev,
3563 "broken fixed-link specification\n");
3564 goto failed_phy;
3565 }
3566 phy_node = of_node_get(np);
3567 }
3568 fep->phy_node = phy_node;
3569
3570 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3571 if (ret) {
3572 pdata = dev_get_platdata(&pdev->dev);
3573 if (pdata)
3574 fep->phy_interface = pdata->phy;
3575 else
3576 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3577 } else {
3578 fep->phy_interface = interface;
3579 }
3580
3581 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3582 if (IS_ERR(fep->clk_ipg)) {
3583 ret = PTR_ERR(fep->clk_ipg);
3584 goto failed_clk;
3585 }
3586
3587 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3588 if (IS_ERR(fep->clk_ahb)) {
3589 ret = PTR_ERR(fep->clk_ahb);
3590 goto failed_clk;
3591 }
3592
3593 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3594
3595 /* enet_out is optional, depends on board */
3596 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3597 if (IS_ERR(fep->clk_enet_out))
3598 fep->clk_enet_out = NULL;
3599
3600 fep->ptp_clk_on = false;
3601 mutex_init(&fep->ptp_clk_mutex);
3602
3603 /* clk_ref is optional, depends on board */
3604 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3605 if (IS_ERR(fep->clk_ref))
3606 fep->clk_ref = NULL;
3607
3608 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3609 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3610 if (IS_ERR(fep->clk_ptp)) {
3611 fep->clk_ptp = NULL;
3612 fep->bufdesc_ex = false;
3613 }
3614
3615 ret = fec_enet_clk_enable(ndev, true);
3616 if (ret)
3617 goto failed_clk;
3618
3619 ret = clk_prepare_enable(fep->clk_ipg);
3620 if (ret)
3621 goto failed_clk_ipg;
3622 ret = clk_prepare_enable(fep->clk_ahb);
3623 if (ret)
3624 goto failed_clk_ahb;
3625
3626 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3627 if (!IS_ERR(fep->reg_phy)) {
3628 ret = regulator_enable(fep->reg_phy);
3629 if (ret) {
3630 dev_err(&pdev->dev,
3631 "Failed to enable phy regulator: %d\n", ret);
3632 goto failed_regulator;
3633 }
3634 } else {
3635 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3636 ret = -EPROBE_DEFER;
3637 goto failed_regulator;
3638 }
3639 fep->reg_phy = NULL;
3640 }
3641
3642 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3643 pm_runtime_use_autosuspend(&pdev->dev);
3644 pm_runtime_get_noresume(&pdev->dev);
3645 pm_runtime_set_active(&pdev->dev);
3646 pm_runtime_enable(&pdev->dev);
3647
3648 ret = fec_reset_phy(pdev);
3649 if (ret)
3650 goto failed_reset;
3651
3652 irq_cnt = fec_enet_get_irq_cnt(pdev);
3653 if (fep->bufdesc_ex)
3654 fec_ptp_init(pdev, irq_cnt);
3655
3656 ret = fec_enet_init(ndev);
3657 if (ret)
3658 goto failed_init;
3659
3660 for (i = 0; i < irq_cnt; i++) {
3661 snprintf(irq_name, sizeof(irq_name), "int%d", i);
3662 irq = platform_get_irq_byname_optional(pdev, irq_name);
3663 if (irq < 0)
3664 irq = platform_get_irq(pdev, i);
3665 if (irq < 0) {
3666 ret = irq;
3667 goto failed_irq;
3668 }
3669 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3670 0, pdev->name, ndev);
3671 if (ret)
3672 goto failed_irq;
3673
3674 fep->irq[i] = irq;
3675 }
3676
3677 init_completion(&fep->mdio_done);
3678 ret = fec_enet_mii_init(pdev);
3679 if (ret)
3680 goto failed_mii_init;
3681
3682 /* Carrier starts down, phylib will bring it up */
3683 netif_carrier_off(ndev);
3684 fec_enet_clk_enable(ndev, false);
3685 pinctrl_pm_select_sleep_state(&pdev->dev);
3686
3687 ret = register_netdev(ndev);
3688 if (ret)
3689 goto failed_register;
3690
3691 device_init_wakeup(&ndev->dev, fep->wol_flag &
3692 FEC_WOL_HAS_MAGIC_PACKET);
3693
3694 if (fep->bufdesc_ex && fep->ptp_clock)
3695 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3696
3697 fep->rx_copybreak = COPYBREAK_DEFAULT;
3698 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3699
3700 pm_runtime_mark_last_busy(&pdev->dev);
3701 pm_runtime_put_autosuspend(&pdev->dev);
3702
3703 return 0;
3704
3705 failed_register:
3706 fec_enet_mii_remove(fep);
3707 failed_mii_init:
3708 failed_irq:
3709 failed_init:
3710 fec_ptp_stop(pdev);
3711 if (fep->reg_phy)
3712 regulator_disable(fep->reg_phy);
3713 failed_reset:
3714 pm_runtime_put_noidle(&pdev->dev);
3715 pm_runtime_disable(&pdev->dev);
3716 failed_regulator:
3717 clk_disable_unprepare(fep->clk_ahb);
3718 failed_clk_ahb:
3719 clk_disable_unprepare(fep->clk_ipg);
3720 failed_clk_ipg:
3721 fec_enet_clk_enable(ndev, false);
3722 failed_clk:
3723 if (of_phy_is_fixed_link(np))
3724 of_phy_deregister_fixed_link(np);
3725 of_node_put(phy_node);
3726 failed_stop_mode:
3727 failed_phy:
3728 dev_id--;
3729 failed_ioremap:
3730 free_netdev(ndev);
3731
3732 return ret;
3733 }
3734
3735 static int
3736 fec_drv_remove(struct platform_device *pdev)
3737 {
3738 struct net_device *ndev = platform_get_drvdata(pdev);
3739 struct fec_enet_private *fep = netdev_priv(ndev);
3740 struct device_node *np = pdev->dev.of_node;
3741 int ret;
3742
3743 ret = pm_runtime_get_sync(&pdev->dev);
3744 if (ret < 0)
3745 return ret;
3746
3747 cancel_work_sync(&fep->tx_timeout_work);
3748 fec_ptp_stop(pdev);
3749 unregister_netdev(ndev);
3750 fec_enet_mii_remove(fep);
3751 if (fep->reg_phy)
3752 regulator_disable(fep->reg_phy);
3753
3754 if (of_phy_is_fixed_link(np))
3755 of_phy_deregister_fixed_link(np);
3756 of_node_put(fep->phy_node);
3757 free_netdev(ndev);
3758
3759 clk_disable_unprepare(fep->clk_ahb);
3760 clk_disable_unprepare(fep->clk_ipg);
3761 pm_runtime_put_noidle(&pdev->dev);
3762 pm_runtime_disable(&pdev->dev);
3763
3764 return 0;
3765 }
3766
3767 static int __maybe_unused fec_suspend(struct device *dev)
3768 {
3769 struct net_device *ndev = dev_get_drvdata(dev);
3770 struct fec_enet_private *fep = netdev_priv(ndev);
3771
3772 rtnl_lock();
3773 if (netif_running(ndev)) {
3774 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3775 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3776 phy_stop(ndev->phydev);
3777 napi_disable(&fep->napi);
3778 netif_tx_lock_bh(ndev);
3779 netif_device_detach(ndev);
3780 netif_tx_unlock_bh(ndev);
3781 fec_stop(ndev);
3782 fec_enet_clk_enable(ndev, false);
3783 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3784 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3785 }
3786 rtnl_unlock();
3787
3788 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3789 regulator_disable(fep->reg_phy);
3790
3791 /* SOC supply clock to phy, when clock is disabled, phy link down
3792 * SOC control phy regulator, when regulator is disabled, phy link down
3793 */
3794 if (fep->clk_enet_out || fep->reg_phy)
3795 fep->link = 0;
3796
3797 return 0;
3798 }
3799
3800 static int __maybe_unused fec_resume(struct device *dev)
3801 {
3802 struct net_device *ndev = dev_get_drvdata(dev);
3803 struct fec_enet_private *fep = netdev_priv(ndev);
3804 int ret;
3805 int val;
3806
3807 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3808 ret = regulator_enable(fep->reg_phy);
3809 if (ret)
3810 return ret;
3811 }
3812
3813 rtnl_lock();
3814 if (netif_running(ndev)) {
3815 ret = fec_enet_clk_enable(ndev, true);
3816 if (ret) {
3817 rtnl_unlock();
3818 goto failed_clk;
3819 }
3820 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3821 fec_enet_stop_mode(fep, false);
3822
3823 val = readl(fep->hwp + FEC_ECNTRL);
3824 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3825 writel(val, fep->hwp + FEC_ECNTRL);
3826 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3827 } else {
3828 pinctrl_pm_select_default_state(&fep->pdev->dev);
3829 }
3830 fec_restart(ndev);
3831 netif_tx_lock_bh(ndev);
3832 netif_device_attach(ndev);
3833 netif_tx_unlock_bh(ndev);
3834 napi_enable(&fep->napi);
3835 phy_start(ndev->phydev);
3836 }
3837 rtnl_unlock();
3838
3839 return 0;
3840
3841 failed_clk:
3842 if (fep->reg_phy)
3843 regulator_disable(fep->reg_phy);
3844 return ret;
3845 }
3846
3847 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3848 {
3849 struct net_device *ndev = dev_get_drvdata(dev);
3850 struct fec_enet_private *fep = netdev_priv(ndev);
3851
3852 clk_disable_unprepare(fep->clk_ahb);
3853 clk_disable_unprepare(fep->clk_ipg);
3854
3855 return 0;
3856 }
3857
3858 static int __maybe_unused fec_runtime_resume(struct device *dev)
3859 {
3860 struct net_device *ndev = dev_get_drvdata(dev);
3861 struct fec_enet_private *fep = netdev_priv(ndev);
3862 int ret;
3863
3864 ret = clk_prepare_enable(fep->clk_ahb);
3865 if (ret)
3866 return ret;
3867 ret = clk_prepare_enable(fep->clk_ipg);
3868 if (ret)
3869 goto failed_clk_ipg;
3870
3871 return 0;
3872
3873 failed_clk_ipg:
3874 clk_disable_unprepare(fep->clk_ahb);
3875 return ret;
3876 }
3877
3878 static const struct dev_pm_ops fec_pm_ops = {
3879 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3880 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3881 };
3882
3883 static struct platform_driver fec_driver = {
3884 .driver = {
3885 .name = DRIVER_NAME,
3886 .pm = &fec_pm_ops,
3887 .of_match_table = fec_dt_ids,
3888 .suppress_bind_attrs = true,
3889 },
3890 .id_table = fec_devtype,
3891 .probe = fec_probe,
3892 .remove = fec_drv_remove,
3893 };
3894
3895 module_platform_driver(fec_driver);
3896
3897 MODULE_ALIAS("platform:"DRIVER_NAME);
3898 MODULE_LICENSE("GPL");