]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c
net: fs_enet: don't unmap DMA when packet len is below copybreak
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48
49 #include "fs_enet.h"
50
51 /*************************************************/
52
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63 #define RX_RING_SIZE 32
64 #define TX_RING_SIZE 64
65
66 #ifdef CONFIG_NET_POLL_CONTROLLER
67 static void fs_enet_netpoll(struct net_device *dev);
68 #endif
69
70 static void fs_set_multicast_list(struct net_device *dev)
71 {
72 struct fs_enet_private *fep = netdev_priv(dev);
73
74 (*fep->ops->set_multicast_list)(dev);
75 }
76
77 static void skb_align(struct sk_buff *skb, int align)
78 {
79 int off = ((unsigned long)skb->data) & (align - 1);
80
81 if (off)
82 skb_reserve(skb, align - off);
83 }
84
85 /* NAPI function */
86 static int fs_enet_napi(struct napi_struct *napi, int budget)
87 {
88 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
89 struct net_device *dev = fep->ndev;
90 const struct fs_platform_info *fpi = fep->fpi;
91 cbd_t __iomem *bdp;
92 struct sk_buff *skb, *skbn;
93 int received = 0;
94 u16 pkt_len, sc;
95 int curidx;
96 int dirtyidx, do_wake, do_restart;
97 int tx_left = TX_RING_SIZE;
98
99 spin_lock(&fep->tx_lock);
100 bdp = fep->dirty_tx;
101
102 /* clear status bits for napi*/
103 (*fep->ops->napi_clear_event)(dev);
104
105 do_wake = do_restart = 0;
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107 dirtyidx = bdp - fep->tx_bd_base;
108
109 if (fep->tx_free == fep->tx_ring)
110 break;
111
112 skb = fep->tx_skbuff[dirtyidx];
113
114 /*
115 * Check for errors.
116 */
117 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
119
120 if (sc & BD_ENET_TX_HB) /* No heartbeat */
121 fep->stats.tx_heartbeat_errors++;
122 if (sc & BD_ENET_TX_LC) /* Late collision */
123 fep->stats.tx_window_errors++;
124 if (sc & BD_ENET_TX_RL) /* Retrans limit */
125 fep->stats.tx_aborted_errors++;
126 if (sc & BD_ENET_TX_UN) /* Underrun */
127 fep->stats.tx_fifo_errors++;
128 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
129 fep->stats.tx_carrier_errors++;
130
131 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132 fep->stats.tx_errors++;
133 do_restart = 1;
134 }
135 } else
136 fep->stats.tx_packets++;
137
138 if (sc & BD_ENET_TX_READY) {
139 dev_warn(fep->dev,
140 "HEY! Enet xmit interrupt and TX_READY.\n");
141 }
142
143 /*
144 * Deferred means some collisions occurred during transmit,
145 * but we eventually sent the packet OK.
146 */
147 if (sc & BD_ENET_TX_DEF)
148 fep->stats.collisions++;
149
150 /* unmap */
151 if (fep->mapped_as_page[dirtyidx])
152 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154 else
155 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
157
158 /*
159 * Free the sk buffer associated with this last transmit.
160 */
161 if (skb) {
162 dev_kfree_skb(skb);
163 fep->tx_skbuff[dirtyidx] = NULL;
164 }
165
166 /*
167 * Update pointer to next buffer descriptor to be transmitted.
168 */
169 if ((sc & BD_ENET_TX_WRAP) == 0)
170 bdp++;
171 else
172 bdp = fep->tx_bd_base;
173
174 /*
175 * Since we have freed up a buffer, the ring is no longer
176 * full.
177 */
178 if (++fep->tx_free == MAX_SKB_FRAGS)
179 do_wake = 1;
180 tx_left--;
181 }
182
183 fep->dirty_tx = bdp;
184
185 if (do_restart)
186 (*fep->ops->tx_restart)(dev);
187
188 spin_unlock(&fep->tx_lock);
189
190 if (do_wake)
191 netif_wake_queue(dev);
192
193 /*
194 * First, grab all of the stats for the incoming packet.
195 * These get messed up if we get called due to a busy condition.
196 */
197 bdp = fep->cur_rx;
198
199 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200 received < budget) {
201 curidx = bdp - fep->rx_bd_base;
202
203 /*
204 * Since we have allocated space to hold a complete frame,
205 * the last indicator should be set.
206 */
207 if ((sc & BD_ENET_RX_LAST) == 0)
208 dev_warn(fep->dev, "rcv is not +last\n");
209
210 /*
211 * Check for errors.
212 */
213 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215 fep->stats.rx_errors++;
216 /* Frame too long or too short. */
217 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218 fep->stats.rx_length_errors++;
219 /* Frame alignment */
220 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221 fep->stats.rx_frame_errors++;
222 /* CRC Error */
223 if (sc & BD_ENET_RX_CR)
224 fep->stats.rx_crc_errors++;
225 /* FIFO overrun */
226 if (sc & BD_ENET_RX_OV)
227 fep->stats.rx_crc_errors++;
228
229 skbn = fep->rx_skbuff[curidx];
230 } else {
231 skb = fep->rx_skbuff[curidx];
232
233 /*
234 * Process the incoming frame.
235 */
236 fep->stats.rx_packets++;
237 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
238 fep->stats.rx_bytes += pkt_len + 4;
239
240 if (pkt_len <= fpi->rx_copybreak) {
241 /* +2 to make IP header L1 cache aligned */
242 skbn = netdev_alloc_skb(dev, pkt_len + 2);
243 if (skbn != NULL) {
244 skb_reserve(skbn, 2); /* align IP header */
245 skb_copy_from_linear_data(skb,
246 skbn->data, pkt_len);
247 swap(skb, skbn);
248 dma_sync_single_for_cpu(fep->dev,
249 CBDR_BUFADDR(bdp),
250 L1_CACHE_ALIGN(pkt_len),
251 DMA_FROM_DEVICE);
252 }
253 } else {
254 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
255
256 if (skbn) {
257 dma_addr_t dma;
258
259 skb_align(skbn, ENET_RX_ALIGN);
260
261 dma_unmap_single(fep->dev,
262 CBDR_BUFADDR(bdp),
263 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264 DMA_FROM_DEVICE);
265
266 dma = dma_map_single(fep->dev,
267 skbn->data,
268 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269 DMA_FROM_DEVICE);
270 CBDW_BUFADDR(bdp, dma);
271 }
272 }
273
274 if (skbn != NULL) {
275 skb_put(skb, pkt_len); /* Make room */
276 skb->protocol = eth_type_trans(skb, dev);
277 received++;
278 netif_receive_skb(skb);
279 } else {
280 fep->stats.rx_dropped++;
281 skbn = skb;
282 }
283 }
284
285 fep->rx_skbuff[curidx] = skbn;
286 CBDW_DATLEN(bdp, 0);
287 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
288
289 /*
290 * Update BD pointer to next entry.
291 */
292 if ((sc & BD_ENET_RX_WRAP) == 0)
293 bdp++;
294 else
295 bdp = fep->rx_bd_base;
296
297 (*fep->ops->rx_bd_done)(dev);
298 }
299
300 fep->cur_rx = bdp;
301
302 if (received < budget && tx_left) {
303 /* done */
304 napi_complete(napi);
305 (*fep->ops->napi_enable)(dev);
306
307 return received;
308 }
309
310 return budget;
311 }
312
313 /*
314 * The interrupt handler.
315 * This is called from the MPC core interrupt.
316 */
317 static irqreturn_t
318 fs_enet_interrupt(int irq, void *dev_id)
319 {
320 struct net_device *dev = dev_id;
321 struct fs_enet_private *fep;
322 const struct fs_platform_info *fpi;
323 u32 int_events;
324 u32 int_clr_events;
325 int nr, napi_ok;
326 int handled;
327
328 fep = netdev_priv(dev);
329 fpi = fep->fpi;
330
331 nr = 0;
332 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333 nr++;
334
335 int_clr_events = int_events;
336 int_clr_events &= ~fep->ev_napi;
337
338 (*fep->ops->clear_int_events)(dev, int_clr_events);
339
340 if (int_events & fep->ev_err)
341 (*fep->ops->ev_error)(dev, int_events);
342
343 if (int_events & fep->ev) {
344 napi_ok = napi_schedule_prep(&fep->napi);
345
346 (*fep->ops->napi_disable)(dev);
347 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
348
349 /* NOTE: it is possible for FCCs in NAPI mode */
350 /* to submit a spurious interrupt while in poll */
351 if (napi_ok)
352 __napi_schedule(&fep->napi);
353 }
354
355 }
356
357 handled = nr > 0;
358 return IRQ_RETVAL(handled);
359 }
360
361 void fs_init_bds(struct net_device *dev)
362 {
363 struct fs_enet_private *fep = netdev_priv(dev);
364 cbd_t __iomem *bdp;
365 struct sk_buff *skb;
366 int i;
367
368 fs_cleanup_bds(dev);
369
370 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371 fep->tx_free = fep->tx_ring;
372 fep->cur_rx = fep->rx_bd_base;
373
374 /*
375 * Initialize the receive buffer descriptors.
376 */
377 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379 if (skb == NULL)
380 break;
381
382 skb_align(skb, ENET_RX_ALIGN);
383 fep->rx_skbuff[i] = skb;
384 CBDW_BUFADDR(bdp,
385 dma_map_single(fep->dev, skb->data,
386 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387 DMA_FROM_DEVICE));
388 CBDW_DATLEN(bdp, 0); /* zero */
389 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
391 }
392 /*
393 * if we failed, fillup remainder
394 */
395 for (; i < fep->rx_ring; i++, bdp++) {
396 fep->rx_skbuff[i] = NULL;
397 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
398 }
399
400 /*
401 * ...and the same for transmit.
402 */
403 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404 fep->tx_skbuff[i] = NULL;
405 CBDW_BUFADDR(bdp, 0);
406 CBDW_DATLEN(bdp, 0);
407 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
408 }
409 }
410
411 void fs_cleanup_bds(struct net_device *dev)
412 {
413 struct fs_enet_private *fep = netdev_priv(dev);
414 struct sk_buff *skb;
415 cbd_t __iomem *bdp;
416 int i;
417
418 /*
419 * Reset SKB transmit buffers.
420 */
421 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422 if ((skb = fep->tx_skbuff[i]) == NULL)
423 continue;
424
425 /* unmap */
426 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427 skb->len, DMA_TO_DEVICE);
428
429 fep->tx_skbuff[i] = NULL;
430 dev_kfree_skb(skb);
431 }
432
433 /*
434 * Reset SKB receive buffers
435 */
436 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437 if ((skb = fep->rx_skbuff[i]) == NULL)
438 continue;
439
440 /* unmap */
441 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443 DMA_FROM_DEVICE);
444
445 fep->rx_skbuff[i] = NULL;
446
447 dev_kfree_skb(skb);
448 }
449 }
450
451 /**********************************************************************************/
452
453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
454 /*
455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
456 */
457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458 struct sk_buff *skb)
459 {
460 struct sk_buff *new_skb;
461
462 if (skb_linearize(skb))
463 return NULL;
464
465 /* Alloc new skb */
466 new_skb = netdev_alloc_skb(dev, skb->len + 4);
467 if (!new_skb)
468 return NULL;
469
470 /* Make sure new skb is properly aligned */
471 skb_align(new_skb, 4);
472
473 /* Copy data to new skb ... */
474 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475 skb_put(new_skb, skb->len);
476
477 /* ... and free an old one */
478 dev_kfree_skb_any(skb);
479
480 return new_skb;
481 }
482 #endif
483
484 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485 {
486 struct fs_enet_private *fep = netdev_priv(dev);
487 cbd_t __iomem *bdp;
488 int curidx;
489 u16 sc;
490 int nr_frags;
491 skb_frag_t *frag;
492 int len;
493 #ifdef CONFIG_FS_ENET_MPC5121_FEC
494 int is_aligned = 1;
495 int i;
496
497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498 is_aligned = 0;
499 } else {
500 nr_frags = skb_shinfo(skb)->nr_frags;
501 frag = skb_shinfo(skb)->frags;
502 for (i = 0; i < nr_frags; i++, frag++) {
503 if (!IS_ALIGNED(frag->page_offset, 4)) {
504 is_aligned = 0;
505 break;
506 }
507 }
508 }
509
510 if (!is_aligned) {
511 skb = tx_skb_align_workaround(dev, skb);
512 if (!skb) {
513 /*
514 * We have lost packet due to memory allocation error
515 * in tx_skb_align_workaround(). Hopefully original
516 * skb is still valid, so try transmit it later.
517 */
518 return NETDEV_TX_BUSY;
519 }
520 }
521 #endif
522
523 spin_lock(&fep->tx_lock);
524
525 /*
526 * Fill in a Tx ring entry
527 */
528 bdp = fep->cur_tx;
529
530 nr_frags = skb_shinfo(skb)->nr_frags;
531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532 netif_stop_queue(dev);
533 spin_unlock(&fep->tx_lock);
534
535 /*
536 * Ooops. All transmit buffers are full. Bail out.
537 * This should not happen, since the tx queue should be stopped.
538 */
539 dev_warn(fep->dev, "tx queue full!.\n");
540 return NETDEV_TX_BUSY;
541 }
542
543 curidx = bdp - fep->tx_bd_base;
544
545 len = skb->len;
546 fep->stats.tx_bytes += len;
547 if (nr_frags)
548 len -= skb->data_len;
549 fep->tx_free -= nr_frags + 1;
550 /*
551 * Push the data cache so the CPM does not get stale memory data.
552 */
553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554 skb->data, len, DMA_TO_DEVICE));
555 CBDW_DATLEN(bdp, len);
556
557 fep->mapped_as_page[curidx] = 0;
558 frag = skb_shinfo(skb)->frags;
559 while (nr_frags) {
560 CBDC_SC(bdp,
561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562 BD_ENET_TX_TC);
563 CBDS_SC(bdp, BD_ENET_TX_READY);
564
565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
566 bdp++, curidx++;
567 else
568 bdp = fep->tx_bd_base, curidx = 0;
569
570 len = skb_frag_size(frag);
571 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572 DMA_TO_DEVICE));
573 CBDW_DATLEN(bdp, len);
574
575 fep->tx_skbuff[curidx] = NULL;
576 fep->mapped_as_page[curidx] = 1;
577
578 frag++;
579 nr_frags--;
580 }
581
582 /* Trigger transmission start */
583 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584 BD_ENET_TX_LAST | BD_ENET_TX_TC;
585
586 /* note that while FEC does not have this bit
587 * it marks it as available for software use
588 * yay for hw reuse :) */
589 if (skb->len <= 60)
590 sc |= BD_ENET_TX_PAD;
591 CBDC_SC(bdp, BD_ENET_TX_STATS);
592 CBDS_SC(bdp, sc);
593
594 /* Save skb pointer. */
595 fep->tx_skbuff[curidx] = skb;
596
597 /* If this was the last BD in the ring, start at the beginning again. */
598 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599 bdp++;
600 else
601 bdp = fep->tx_bd_base;
602 fep->cur_tx = bdp;
603
604 if (fep->tx_free < MAX_SKB_FRAGS)
605 netif_stop_queue(dev);
606
607 skb_tx_timestamp(skb);
608
609 (*fep->ops->tx_kickstart)(dev);
610
611 spin_unlock(&fep->tx_lock);
612
613 return NETDEV_TX_OK;
614 }
615
616 static void fs_timeout(struct net_device *dev)
617 {
618 struct fs_enet_private *fep = netdev_priv(dev);
619 unsigned long flags;
620 int wake = 0;
621
622 fep->stats.tx_errors++;
623
624 spin_lock_irqsave(&fep->lock, flags);
625
626 if (dev->flags & IFF_UP) {
627 phy_stop(dev->phydev);
628 (*fep->ops->stop)(dev);
629 (*fep->ops->restart)(dev);
630 phy_start(dev->phydev);
631 }
632
633 phy_start(dev->phydev);
634 wake = fep->tx_free >= MAX_SKB_FRAGS &&
635 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
636 spin_unlock_irqrestore(&fep->lock, flags);
637
638 if (wake)
639 netif_wake_queue(dev);
640 }
641
642 /*-----------------------------------------------------------------------------
643 * generic link-change handler - should be sufficient for most cases
644 *-----------------------------------------------------------------------------*/
645 static void generic_adjust_link(struct net_device *dev)
646 {
647 struct fs_enet_private *fep = netdev_priv(dev);
648 struct phy_device *phydev = dev->phydev;
649 int new_state = 0;
650
651 if (phydev->link) {
652 /* adjust to duplex mode */
653 if (phydev->duplex != fep->oldduplex) {
654 new_state = 1;
655 fep->oldduplex = phydev->duplex;
656 }
657
658 if (phydev->speed != fep->oldspeed) {
659 new_state = 1;
660 fep->oldspeed = phydev->speed;
661 }
662
663 if (!fep->oldlink) {
664 new_state = 1;
665 fep->oldlink = 1;
666 }
667
668 if (new_state)
669 fep->ops->restart(dev);
670 } else if (fep->oldlink) {
671 new_state = 1;
672 fep->oldlink = 0;
673 fep->oldspeed = 0;
674 fep->oldduplex = -1;
675 }
676
677 if (new_state && netif_msg_link(fep))
678 phy_print_status(phydev);
679 }
680
681
682 static void fs_adjust_link(struct net_device *dev)
683 {
684 struct fs_enet_private *fep = netdev_priv(dev);
685 unsigned long flags;
686
687 spin_lock_irqsave(&fep->lock, flags);
688
689 if(fep->ops->adjust_link)
690 fep->ops->adjust_link(dev);
691 else
692 generic_adjust_link(dev);
693
694 spin_unlock_irqrestore(&fep->lock, flags);
695 }
696
697 static int fs_init_phy(struct net_device *dev)
698 {
699 struct fs_enet_private *fep = netdev_priv(dev);
700 struct phy_device *phydev;
701 phy_interface_t iface;
702
703 fep->oldlink = 0;
704 fep->oldspeed = 0;
705 fep->oldduplex = -1;
706
707 iface = fep->fpi->use_rmii ?
708 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
709
710 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
711 iface);
712 if (!phydev) {
713 dev_err(&dev->dev, "Could not attach to PHY\n");
714 return -ENODEV;
715 }
716
717 return 0;
718 }
719
720 static int fs_enet_open(struct net_device *dev)
721 {
722 struct fs_enet_private *fep = netdev_priv(dev);
723 int r;
724 int err;
725
726 /* to initialize the fep->cur_rx,... */
727 /* not doing this, will cause a crash in fs_enet_napi */
728 fs_init_bds(fep->ndev);
729
730 napi_enable(&fep->napi);
731
732 /* Install our interrupt handler. */
733 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
734 "fs_enet-mac", dev);
735 if (r != 0) {
736 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
737 napi_disable(&fep->napi);
738 return -EINVAL;
739 }
740
741 err = fs_init_phy(dev);
742 if (err) {
743 free_irq(fep->interrupt, dev);
744 napi_disable(&fep->napi);
745 return err;
746 }
747 phy_start(dev->phydev);
748
749 netif_start_queue(dev);
750
751 return 0;
752 }
753
754 static int fs_enet_close(struct net_device *dev)
755 {
756 struct fs_enet_private *fep = netdev_priv(dev);
757 unsigned long flags;
758
759 netif_stop_queue(dev);
760 netif_carrier_off(dev);
761 napi_disable(&fep->napi);
762 phy_stop(dev->phydev);
763
764 spin_lock_irqsave(&fep->lock, flags);
765 spin_lock(&fep->tx_lock);
766 (*fep->ops->stop)(dev);
767 spin_unlock(&fep->tx_lock);
768 spin_unlock_irqrestore(&fep->lock, flags);
769
770 /* release any irqs */
771 phy_disconnect(dev->phydev);
772 free_irq(fep->interrupt, dev);
773
774 return 0;
775 }
776
777 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
778 {
779 struct fs_enet_private *fep = netdev_priv(dev);
780 return &fep->stats;
781 }
782
783 /*************************************************************************/
784
785 static void fs_get_drvinfo(struct net_device *dev,
786 struct ethtool_drvinfo *info)
787 {
788 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
789 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
790 }
791
792 static int fs_get_regs_len(struct net_device *dev)
793 {
794 struct fs_enet_private *fep = netdev_priv(dev);
795
796 return (*fep->ops->get_regs_len)(dev);
797 }
798
799 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
800 void *p)
801 {
802 struct fs_enet_private *fep = netdev_priv(dev);
803 unsigned long flags;
804 int r, len;
805
806 len = regs->len;
807
808 spin_lock_irqsave(&fep->lock, flags);
809 r = (*fep->ops->get_regs)(dev, p, &len);
810 spin_unlock_irqrestore(&fep->lock, flags);
811
812 if (r == 0)
813 regs->version = 0;
814 }
815
816 static int fs_nway_reset(struct net_device *dev)
817 {
818 return 0;
819 }
820
821 static u32 fs_get_msglevel(struct net_device *dev)
822 {
823 struct fs_enet_private *fep = netdev_priv(dev);
824 return fep->msg_enable;
825 }
826
827 static void fs_set_msglevel(struct net_device *dev, u32 value)
828 {
829 struct fs_enet_private *fep = netdev_priv(dev);
830 fep->msg_enable = value;
831 }
832
833 static const struct ethtool_ops fs_ethtool_ops = {
834 .get_drvinfo = fs_get_drvinfo,
835 .get_regs_len = fs_get_regs_len,
836 .nway_reset = fs_nway_reset,
837 .get_link = ethtool_op_get_link,
838 .get_msglevel = fs_get_msglevel,
839 .set_msglevel = fs_set_msglevel,
840 .get_regs = fs_get_regs,
841 .get_ts_info = ethtool_op_get_ts_info,
842 .get_link_ksettings = phy_ethtool_get_link_ksettings,
843 .set_link_ksettings = phy_ethtool_set_link_ksettings,
844 };
845
846 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848 if (!netif_running(dev))
849 return -EINVAL;
850
851 return phy_mii_ioctl(dev->phydev, rq, cmd);
852 }
853
854 extern int fs_mii_connect(struct net_device *dev);
855 extern void fs_mii_disconnect(struct net_device *dev);
856
857 /**************************************************************************************/
858
859 #ifdef CONFIG_FS_ENET_HAS_FEC
860 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
861 #else
862 #define IS_FEC(match) 0
863 #endif
864
865 static const struct net_device_ops fs_enet_netdev_ops = {
866 .ndo_open = fs_enet_open,
867 .ndo_stop = fs_enet_close,
868 .ndo_get_stats = fs_enet_get_stats,
869 .ndo_start_xmit = fs_enet_start_xmit,
870 .ndo_tx_timeout = fs_timeout,
871 .ndo_set_rx_mode = fs_set_multicast_list,
872 .ndo_do_ioctl = fs_ioctl,
873 .ndo_validate_addr = eth_validate_addr,
874 .ndo_set_mac_address = eth_mac_addr,
875 .ndo_change_mtu = eth_change_mtu,
876 #ifdef CONFIG_NET_POLL_CONTROLLER
877 .ndo_poll_controller = fs_enet_netpoll,
878 #endif
879 };
880
881 static const struct of_device_id fs_enet_match[];
882 static int fs_enet_probe(struct platform_device *ofdev)
883 {
884 const struct of_device_id *match;
885 struct net_device *ndev;
886 struct fs_enet_private *fep;
887 struct fs_platform_info *fpi;
888 const u32 *data;
889 struct clk *clk;
890 int err;
891 const u8 *mac_addr;
892 const char *phy_connection_type;
893 int privsize, len, ret = -ENODEV;
894
895 match = of_match_device(fs_enet_match, &ofdev->dev);
896 if (!match)
897 return -EINVAL;
898
899 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
900 if (!fpi)
901 return -ENOMEM;
902
903 if (!IS_FEC(match)) {
904 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
905 if (!data || len != 4)
906 goto out_free_fpi;
907
908 fpi->cp_command = *data;
909 }
910
911 fpi->rx_ring = RX_RING_SIZE;
912 fpi->tx_ring = TX_RING_SIZE;
913 fpi->rx_copybreak = 240;
914 fpi->napi_weight = 17;
915 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
916 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
917 err = of_phy_register_fixed_link(ofdev->dev.of_node);
918 if (err)
919 goto out_free_fpi;
920
921 /* In the case of a fixed PHY, the DT node associated
922 * to the PHY is the Ethernet MAC DT node.
923 */
924 fpi->phy_node = of_node_get(ofdev->dev.of_node);
925 }
926
927 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
928 phy_connection_type = of_get_property(ofdev->dev.of_node,
929 "phy-connection-type", NULL);
930 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
931 fpi->use_rmii = 1;
932 }
933
934 /* make clock lookup non-fatal (the driver is shared among platforms),
935 * but require enable to succeed when a clock was specified/found,
936 * keep a reference to the clock upon successful acquisition
937 */
938 clk = devm_clk_get(&ofdev->dev, "per");
939 if (!IS_ERR(clk)) {
940 err = clk_prepare_enable(clk);
941 if (err) {
942 ret = err;
943 goto out_free_fpi;
944 }
945 fpi->clk_per = clk;
946 }
947
948 privsize = sizeof(*fep) +
949 sizeof(struct sk_buff **) *
950 (fpi->rx_ring + fpi->tx_ring) +
951 sizeof(char) * fpi->tx_ring;
952
953 ndev = alloc_etherdev(privsize);
954 if (!ndev) {
955 ret = -ENOMEM;
956 goto out_put;
957 }
958
959 SET_NETDEV_DEV(ndev, &ofdev->dev);
960 platform_set_drvdata(ofdev, ndev);
961
962 fep = netdev_priv(ndev);
963 fep->dev = &ofdev->dev;
964 fep->ndev = ndev;
965 fep->fpi = fpi;
966 fep->ops = match->data;
967
968 ret = fep->ops->setup_data(ndev);
969 if (ret)
970 goto out_free_dev;
971
972 fep->rx_skbuff = (struct sk_buff **)&fep[1];
973 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
974 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
975 fpi->tx_ring);
976
977 spin_lock_init(&fep->lock);
978 spin_lock_init(&fep->tx_lock);
979
980 mac_addr = of_get_mac_address(ofdev->dev.of_node);
981 if (mac_addr)
982 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
983
984 ret = fep->ops->allocate_bd(ndev);
985 if (ret)
986 goto out_cleanup_data;
987
988 fep->rx_bd_base = fep->ring_base;
989 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
990
991 fep->tx_ring = fpi->tx_ring;
992 fep->rx_ring = fpi->rx_ring;
993
994 ndev->netdev_ops = &fs_enet_netdev_ops;
995 ndev->watchdog_timeo = 2 * HZ;
996 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
997
998 ndev->ethtool_ops = &fs_ethtool_ops;
999
1000 init_timer(&fep->phy_timer_list);
1001
1002 netif_carrier_off(ndev);
1003
1004 ndev->features |= NETIF_F_SG;
1005
1006 ret = register_netdev(ndev);
1007 if (ret)
1008 goto out_free_bd;
1009
1010 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1011
1012 return 0;
1013
1014 out_free_bd:
1015 fep->ops->free_bd(ndev);
1016 out_cleanup_data:
1017 fep->ops->cleanup_data(ndev);
1018 out_free_dev:
1019 free_netdev(ndev);
1020 out_put:
1021 of_node_put(fpi->phy_node);
1022 if (fpi->clk_per)
1023 clk_disable_unprepare(fpi->clk_per);
1024 out_free_fpi:
1025 kfree(fpi);
1026 return ret;
1027 }
1028
1029 static int fs_enet_remove(struct platform_device *ofdev)
1030 {
1031 struct net_device *ndev = platform_get_drvdata(ofdev);
1032 struct fs_enet_private *fep = netdev_priv(ndev);
1033
1034 unregister_netdev(ndev);
1035
1036 fep->ops->free_bd(ndev);
1037 fep->ops->cleanup_data(ndev);
1038 dev_set_drvdata(fep->dev, NULL);
1039 of_node_put(fep->fpi->phy_node);
1040 if (fep->fpi->clk_per)
1041 clk_disable_unprepare(fep->fpi->clk_per);
1042 free_netdev(ndev);
1043 return 0;
1044 }
1045
1046 static const struct of_device_id fs_enet_match[] = {
1047 #ifdef CONFIG_FS_ENET_HAS_SCC
1048 {
1049 .compatible = "fsl,cpm1-scc-enet",
1050 .data = (void *)&fs_scc_ops,
1051 },
1052 {
1053 .compatible = "fsl,cpm2-scc-enet",
1054 .data = (void *)&fs_scc_ops,
1055 },
1056 #endif
1057 #ifdef CONFIG_FS_ENET_HAS_FCC
1058 {
1059 .compatible = "fsl,cpm2-fcc-enet",
1060 .data = (void *)&fs_fcc_ops,
1061 },
1062 #endif
1063 #ifdef CONFIG_FS_ENET_HAS_FEC
1064 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1065 {
1066 .compatible = "fsl,mpc5121-fec",
1067 .data = (void *)&fs_fec_ops,
1068 },
1069 {
1070 .compatible = "fsl,mpc5125-fec",
1071 .data = (void *)&fs_fec_ops,
1072 },
1073 #else
1074 {
1075 .compatible = "fsl,pq1-fec-enet",
1076 .data = (void *)&fs_fec_ops,
1077 },
1078 #endif
1079 #endif
1080 {}
1081 };
1082 MODULE_DEVICE_TABLE(of, fs_enet_match);
1083
1084 static struct platform_driver fs_enet_driver = {
1085 .driver = {
1086 .name = "fs_enet",
1087 .of_match_table = fs_enet_match,
1088 },
1089 .probe = fs_enet_probe,
1090 .remove = fs_enet_remove,
1091 };
1092
1093 #ifdef CONFIG_NET_POLL_CONTROLLER
1094 static void fs_enet_netpoll(struct net_device *dev)
1095 {
1096 disable_irq(dev->irq);
1097 fs_enet_interrupt(dev->irq, dev);
1098 enable_irq(dev->irq);
1099 }
1100 #endif
1101
1102 module_platform_driver(fs_enet_driver);