]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/freescale/gianfar.c
iommu/amd: Use BUG_ON instead of if () BUG()
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (1*HZ)
111
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 dma_addr_t buf)
158 {
159 u32 lstatus;
160
161 bdp->bufPtr = cpu_to_be32(buf);
162
163 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 lstatus |= BD_LFLAG(RXBD_WRAP);
166
167 gfar_wmb();
168
169 bdp->lstatus = cpu_to_be32(lstatus);
170 }
171
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 struct gfar_private *priv = netdev_priv(ndev);
175 struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 struct gfar_priv_tx_q *tx_queue = NULL;
177 struct gfar_priv_rx_q *rx_queue = NULL;
178 struct txbd8 *txbdp;
179 struct rxbd8 *rxbdp;
180 u32 __iomem *rfbptr;
181 int i, j;
182 dma_addr_t bufaddr;
183
184 for (i = 0; i < priv->num_tx_queues; i++) {
185 tx_queue = priv->tx_queue[i];
186 /* Initialize some variables in our dev structure */
187 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 tx_queue->cur_tx = tx_queue->tx_bd_base;
190 tx_queue->skb_curtx = 0;
191 tx_queue->skb_dirtytx = 0;
192
193 /* Initialize Transmit Descriptor Ring */
194 txbdp = tx_queue->tx_bd_base;
195 for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 txbdp->lstatus = 0;
197 txbdp->bufPtr = 0;
198 txbdp++;
199 }
200
201 /* Set the last descriptor in the ring to indicate wrap */
202 txbdp--;
203 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204 TXBD_WRAP);
205 }
206
207 rfbptr = &regs->rfbptr0;
208 for (i = 0; i < priv->num_rx_queues; i++) {
209 rx_queue = priv->rx_queue[i];
210 rx_queue->cur_rx = rx_queue->rx_bd_base;
211 rx_queue->skb_currx = 0;
212 rxbdp = rx_queue->rx_bd_base;
213
214 for (j = 0; j < rx_queue->rx_ring_size; j++) {
215 struct sk_buff *skb = rx_queue->rx_skbuff[j];
216
217 if (skb) {
218 bufaddr = be32_to_cpu(rxbdp->bufPtr);
219 } else {
220 skb = gfar_new_skb(ndev, &bufaddr);
221 if (!skb) {
222 netdev_err(ndev, "Can't allocate RX buffers\n");
223 return -ENOMEM;
224 }
225 rx_queue->rx_skbuff[j] = skb;
226 }
227
228 gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229 rxbdp++;
230 }
231
232 rx_queue->rfbptr = rfbptr;
233 rfbptr += 2;
234 }
235
236 return 0;
237 }
238
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241 void *vaddr;
242 dma_addr_t addr;
243 int i, j, k;
244 struct gfar_private *priv = netdev_priv(ndev);
245 struct device *dev = priv->dev;
246 struct gfar_priv_tx_q *tx_queue = NULL;
247 struct gfar_priv_rx_q *rx_queue = NULL;
248
249 priv->total_tx_ring_size = 0;
250 for (i = 0; i < priv->num_tx_queues; i++)
251 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252
253 priv->total_rx_ring_size = 0;
254 for (i = 0; i < priv->num_rx_queues; i++)
255 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256
257 /* Allocate memory for the buffer descriptors */
258 vaddr = dma_alloc_coherent(dev,
259 (priv->total_tx_ring_size *
260 sizeof(struct txbd8)) +
261 (priv->total_rx_ring_size *
262 sizeof(struct rxbd8)),
263 &addr, GFP_KERNEL);
264 if (!vaddr)
265 return -ENOMEM;
266
267 for (i = 0; i < priv->num_tx_queues; i++) {
268 tx_queue = priv->tx_queue[i];
269 tx_queue->tx_bd_base = vaddr;
270 tx_queue->tx_bd_dma_base = addr;
271 tx_queue->dev = ndev;
272 /* enet DMA only understands physical addresses */
273 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275 }
276
277 /* Start the rx descriptor ring where the tx ring leaves off */
278 for (i = 0; i < priv->num_rx_queues; i++) {
279 rx_queue = priv->rx_queue[i];
280 rx_queue->rx_bd_base = vaddr;
281 rx_queue->rx_bd_dma_base = addr;
282 rx_queue->dev = ndev;
283 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285 }
286
287 /* Setup the skbuff rings */
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 tx_queue = priv->tx_queue[i];
290 tx_queue->tx_skbuff =
291 kmalloc_array(tx_queue->tx_ring_size,
292 sizeof(*tx_queue->tx_skbuff),
293 GFP_KERNEL);
294 if (!tx_queue->tx_skbuff)
295 goto cleanup;
296
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
299 }
300
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff =
304 kmalloc_array(rx_queue->rx_ring_size,
305 sizeof(*rx_queue->rx_skbuff),
306 GFP_KERNEL);
307 if (!rx_queue->rx_skbuff)
308 goto cleanup;
309
310 for (j = 0; j < rx_queue->rx_ring_size; j++)
311 rx_queue->rx_skbuff[j] = NULL;
312 }
313
314 if (gfar_init_bds(ndev))
315 goto cleanup;
316
317 return 0;
318
319 cleanup:
320 free_skb_resources(priv);
321 return -ENOMEM;
322 }
323
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 u32 __iomem *baddr;
328 int i;
329
330 baddr = &regs->tbase0;
331 for (i = 0; i < priv->num_tx_queues; i++) {
332 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 baddr += 2;
334 }
335
336 baddr = &regs->rbase0;
337 for (i = 0; i < priv->num_rx_queues; i++) {
338 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 baddr += 2;
340 }
341 }
342
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345 struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 u32 __iomem *baddr;
347 int i;
348
349 baddr = &regs->rqprm0;
350 for (i = 0; i < priv->num_rx_queues; i++) {
351 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353 baddr++;
354 }
355 }
356
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360
361 /* set this when rx hw offload (TOE) functions are being used */
362 priv->uses_rxfcb = 0;
363
364 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365 priv->uses_rxfcb = 1;
366
367 if (priv->hwts_rx_en)
368 priv->uses_rxfcb = 1;
369
370 if (priv->uses_rxfcb)
371 frame_size += GMAC_FCB_LEN;
372
373 frame_size += priv->padding;
374
375 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376 INCREMENTAL_BUFFER_SIZE;
377
378 priv->rx_buffer_size = frame_size;
379 }
380
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383 struct gfar __iomem *regs = priv->gfargrp[0].regs;
384 u32 rctrl = 0;
385
386 if (priv->rx_filer_enable) {
387 rctrl |= RCTRL_FILREN;
388 /* Program the RIR0 reg with the required distribution */
389 if (priv->poll_mode == GFAR_SQ_POLLING)
390 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391 else /* GFAR_MQ_POLLING */
392 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393 }
394
395 /* Restore PROMISC mode */
396 if (priv->ndev->flags & IFF_PROMISC)
397 rctrl |= RCTRL_PROM;
398
399 if (priv->ndev->features & NETIF_F_RXCSUM)
400 rctrl |= RCTRL_CHECKSUMMING;
401
402 if (priv->extended_hash)
403 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404
405 if (priv->padding) {
406 rctrl &= ~RCTRL_PAL_MASK;
407 rctrl |= RCTRL_PADDING(priv->padding);
408 }
409
410 /* Enable HW time stamping if requested from user space */
411 if (priv->hwts_rx_en)
412 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413
414 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416
417 /* Clear the LFC bit */
418 gfar_write(&regs->rctrl, rctrl);
419 /* Init flow control threshold values */
420 gfar_init_rqprm(priv);
421 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422 rctrl |= RCTRL_LFC;
423
424 /* Init rctrl based on our settings */
425 gfar_write(&regs->rctrl, rctrl);
426 }
427
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430 struct gfar __iomem *regs = priv->gfargrp[0].regs;
431 u32 tctrl = 0;
432
433 if (priv->ndev->features & NETIF_F_IP_CSUM)
434 tctrl |= TCTRL_INIT_CSUM;
435
436 if (priv->prio_sched_en)
437 tctrl |= TCTRL_TXSCHED_PRIO;
438 else {
439 tctrl |= TCTRL_TXSCHED_WRRS;
440 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442 }
443
444 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445 tctrl |= TCTRL_VLINS;
446
447 gfar_write(&regs->tctrl, tctrl);
448 }
449
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451 unsigned long tx_mask, unsigned long rx_mask)
452 {
453 struct gfar __iomem *regs = priv->gfargrp[0].regs;
454 u32 __iomem *baddr;
455
456 if (priv->mode == MQ_MG_MODE) {
457 int i = 0;
458
459 baddr = &regs->txic0;
460 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461 gfar_write(baddr + i, 0);
462 if (likely(priv->tx_queue[i]->txcoalescing))
463 gfar_write(baddr + i, priv->tx_queue[i]->txic);
464 }
465
466 baddr = &regs->rxic0;
467 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468 gfar_write(baddr + i, 0);
469 if (likely(priv->rx_queue[i]->rxcoalescing))
470 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471 }
472 } else {
473 /* Backward compatible case -- even if we enable
474 * multiple queues, there's only single reg to program
475 */
476 gfar_write(&regs->txic, 0);
477 if (likely(priv->tx_queue[0]->txcoalescing))
478 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479
480 gfar_write(&regs->rxic, 0);
481 if (unlikely(priv->rx_queue[0]->rxcoalescing))
482 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483 }
484 }
485
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488 gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493 struct gfar_private *priv = netdev_priv(dev);
494 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495 unsigned long tx_packets = 0, tx_bytes = 0;
496 int i;
497
498 for (i = 0; i < priv->num_rx_queues; i++) {
499 rx_packets += priv->rx_queue[i]->stats.rx_packets;
500 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
501 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502 }
503
504 dev->stats.rx_packets = rx_packets;
505 dev->stats.rx_bytes = rx_bytes;
506 dev->stats.rx_dropped = rx_dropped;
507
508 for (i = 0; i < priv->num_tx_queues; i++) {
509 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510 tx_packets += priv->tx_queue[i]->stats.tx_packets;
511 }
512
513 dev->stats.tx_bytes = tx_bytes;
514 dev->stats.tx_packets = tx_packets;
515
516 return &dev->stats;
517 }
518
519 static int gfar_set_mac_addr(struct net_device *dev, void *p)
520 {
521 eth_mac_addr(dev, p);
522
523 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
524
525 return 0;
526 }
527
528 static const struct net_device_ops gfar_netdev_ops = {
529 .ndo_open = gfar_enet_open,
530 .ndo_start_xmit = gfar_start_xmit,
531 .ndo_stop = gfar_close,
532 .ndo_change_mtu = gfar_change_mtu,
533 .ndo_set_features = gfar_set_features,
534 .ndo_set_rx_mode = gfar_set_multi,
535 .ndo_tx_timeout = gfar_timeout,
536 .ndo_do_ioctl = gfar_ioctl,
537 .ndo_get_stats = gfar_get_stats,
538 .ndo_set_mac_address = gfar_set_mac_addr,
539 .ndo_validate_addr = eth_validate_addr,
540 #ifdef CONFIG_NET_POLL_CONTROLLER
541 .ndo_poll_controller = gfar_netpoll,
542 #endif
543 };
544
545 static void gfar_ints_disable(struct gfar_private *priv)
546 {
547 int i;
548 for (i = 0; i < priv->num_grps; i++) {
549 struct gfar __iomem *regs = priv->gfargrp[i].regs;
550 /* Clear IEVENT */
551 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
552
553 /* Initialize IMASK */
554 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
555 }
556 }
557
558 static void gfar_ints_enable(struct gfar_private *priv)
559 {
560 int i;
561 for (i = 0; i < priv->num_grps; i++) {
562 struct gfar __iomem *regs = priv->gfargrp[i].regs;
563 /* Unmask the interrupts we look for */
564 gfar_write(&regs->imask, IMASK_DEFAULT);
565 }
566 }
567
568 static int gfar_alloc_tx_queues(struct gfar_private *priv)
569 {
570 int i;
571
572 for (i = 0; i < priv->num_tx_queues; i++) {
573 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
574 GFP_KERNEL);
575 if (!priv->tx_queue[i])
576 return -ENOMEM;
577
578 priv->tx_queue[i]->tx_skbuff = NULL;
579 priv->tx_queue[i]->qindex = i;
580 priv->tx_queue[i]->dev = priv->ndev;
581 spin_lock_init(&(priv->tx_queue[i]->txlock));
582 }
583 return 0;
584 }
585
586 static int gfar_alloc_rx_queues(struct gfar_private *priv)
587 {
588 int i;
589
590 for (i = 0; i < priv->num_rx_queues; i++) {
591 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
592 GFP_KERNEL);
593 if (!priv->rx_queue[i])
594 return -ENOMEM;
595
596 priv->rx_queue[i]->rx_skbuff = NULL;
597 priv->rx_queue[i]->qindex = i;
598 priv->rx_queue[i]->dev = priv->ndev;
599 }
600 return 0;
601 }
602
603 static void gfar_free_tx_queues(struct gfar_private *priv)
604 {
605 int i;
606
607 for (i = 0; i < priv->num_tx_queues; i++)
608 kfree(priv->tx_queue[i]);
609 }
610
611 static void gfar_free_rx_queues(struct gfar_private *priv)
612 {
613 int i;
614
615 for (i = 0; i < priv->num_rx_queues; i++)
616 kfree(priv->rx_queue[i]);
617 }
618
619 static void unmap_group_regs(struct gfar_private *priv)
620 {
621 int i;
622
623 for (i = 0; i < MAXGROUPS; i++)
624 if (priv->gfargrp[i].regs)
625 iounmap(priv->gfargrp[i].regs);
626 }
627
628 static void free_gfar_dev(struct gfar_private *priv)
629 {
630 int i, j;
631
632 for (i = 0; i < priv->num_grps; i++)
633 for (j = 0; j < GFAR_NUM_IRQS; j++) {
634 kfree(priv->gfargrp[i].irqinfo[j]);
635 priv->gfargrp[i].irqinfo[j] = NULL;
636 }
637
638 free_netdev(priv->ndev);
639 }
640
641 static void disable_napi(struct gfar_private *priv)
642 {
643 int i;
644
645 for (i = 0; i < priv->num_grps; i++) {
646 napi_disable(&priv->gfargrp[i].napi_rx);
647 napi_disable(&priv->gfargrp[i].napi_tx);
648 }
649 }
650
651 static void enable_napi(struct gfar_private *priv)
652 {
653 int i;
654
655 for (i = 0; i < priv->num_grps; i++) {
656 napi_enable(&priv->gfargrp[i].napi_rx);
657 napi_enable(&priv->gfargrp[i].napi_tx);
658 }
659 }
660
661 static int gfar_parse_group(struct device_node *np,
662 struct gfar_private *priv, const char *model)
663 {
664 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
665 int i;
666
667 for (i = 0; i < GFAR_NUM_IRQS; i++) {
668 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
669 GFP_KERNEL);
670 if (!grp->irqinfo[i])
671 return -ENOMEM;
672 }
673
674 grp->regs = of_iomap(np, 0);
675 if (!grp->regs)
676 return -ENOMEM;
677
678 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
679
680 /* If we aren't the FEC we have multiple interrupts */
681 if (model && strcasecmp(model, "FEC")) {
682 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
683 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
684 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
685 gfar_irq(grp, RX)->irq == NO_IRQ ||
686 gfar_irq(grp, ER)->irq == NO_IRQ)
687 return -EINVAL;
688 }
689
690 grp->priv = priv;
691 spin_lock_init(&grp->grplock);
692 if (priv->mode == MQ_MG_MODE) {
693 u32 rxq_mask, txq_mask;
694 int ret;
695
696 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
697 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
698
699 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
700 if (!ret) {
701 grp->rx_bit_map = rxq_mask ?
702 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
703 }
704
705 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
706 if (!ret) {
707 grp->tx_bit_map = txq_mask ?
708 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
709 }
710
711 if (priv->poll_mode == GFAR_SQ_POLLING) {
712 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
713 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
714 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
715 }
716 } else {
717 grp->rx_bit_map = 0xFF;
718 grp->tx_bit_map = 0xFF;
719 }
720
721 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
722 * right to left, so we need to revert the 8 bits to get the q index
723 */
724 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
725 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
726
727 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
728 * also assign queues to groups
729 */
730 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
731 if (!grp->rx_queue)
732 grp->rx_queue = priv->rx_queue[i];
733 grp->num_rx_queues++;
734 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
735 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
736 priv->rx_queue[i]->grp = grp;
737 }
738
739 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
740 if (!grp->tx_queue)
741 grp->tx_queue = priv->tx_queue[i];
742 grp->num_tx_queues++;
743 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
744 priv->tqueue |= (TQUEUE_EN0 >> i);
745 priv->tx_queue[i]->grp = grp;
746 }
747
748 priv->num_grps++;
749
750 return 0;
751 }
752
753 static int gfar_of_group_count(struct device_node *np)
754 {
755 struct device_node *child;
756 int num = 0;
757
758 for_each_available_child_of_node(np, child)
759 if (!of_node_cmp(child->name, "queue-group"))
760 num++;
761
762 return num;
763 }
764
765 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
766 {
767 const char *model;
768 const char *ctype;
769 const void *mac_addr;
770 int err = 0, i;
771 struct net_device *dev = NULL;
772 struct gfar_private *priv = NULL;
773 struct device_node *np = ofdev->dev.of_node;
774 struct device_node *child = NULL;
775 struct property *stash;
776 u32 stash_len = 0;
777 u32 stash_idx = 0;
778 unsigned int num_tx_qs, num_rx_qs;
779 unsigned short mode, poll_mode;
780
781 if (!np)
782 return -ENODEV;
783
784 if (of_device_is_compatible(np, "fsl,etsec2")) {
785 mode = MQ_MG_MODE;
786 poll_mode = GFAR_SQ_POLLING;
787 } else {
788 mode = SQ_SG_MODE;
789 poll_mode = GFAR_SQ_POLLING;
790 }
791
792 if (mode == SQ_SG_MODE) {
793 num_tx_qs = 1;
794 num_rx_qs = 1;
795 } else { /* MQ_MG_MODE */
796 /* get the actual number of supported groups */
797 unsigned int num_grps = gfar_of_group_count(np);
798
799 if (num_grps == 0 || num_grps > MAXGROUPS) {
800 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
801 num_grps);
802 pr_err("Cannot do alloc_etherdev, aborting\n");
803 return -EINVAL;
804 }
805
806 if (poll_mode == GFAR_SQ_POLLING) {
807 num_tx_qs = num_grps; /* one txq per int group */
808 num_rx_qs = num_grps; /* one rxq per int group */
809 } else { /* GFAR_MQ_POLLING */
810 u32 tx_queues, rx_queues;
811 int ret;
812
813 /* parse the num of HW tx and rx queues */
814 ret = of_property_read_u32(np, "fsl,num_tx_queues",
815 &tx_queues);
816 num_tx_qs = ret ? 1 : tx_queues;
817
818 ret = of_property_read_u32(np, "fsl,num_rx_queues",
819 &rx_queues);
820 num_rx_qs = ret ? 1 : rx_queues;
821 }
822 }
823
824 if (num_tx_qs > MAX_TX_QS) {
825 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
826 num_tx_qs, MAX_TX_QS);
827 pr_err("Cannot do alloc_etherdev, aborting\n");
828 return -EINVAL;
829 }
830
831 if (num_rx_qs > MAX_RX_QS) {
832 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
833 num_rx_qs, MAX_RX_QS);
834 pr_err("Cannot do alloc_etherdev, aborting\n");
835 return -EINVAL;
836 }
837
838 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
839 dev = *pdev;
840 if (NULL == dev)
841 return -ENOMEM;
842
843 priv = netdev_priv(dev);
844 priv->ndev = dev;
845
846 priv->mode = mode;
847 priv->poll_mode = poll_mode;
848
849 priv->num_tx_queues = num_tx_qs;
850 netif_set_real_num_rx_queues(dev, num_rx_qs);
851 priv->num_rx_queues = num_rx_qs;
852
853 err = gfar_alloc_tx_queues(priv);
854 if (err)
855 goto tx_alloc_failed;
856
857 err = gfar_alloc_rx_queues(priv);
858 if (err)
859 goto rx_alloc_failed;
860
861 err = of_property_read_string(np, "model", &model);
862 if (err) {
863 pr_err("Device model property missing, aborting\n");
864 goto rx_alloc_failed;
865 }
866
867 /* Init Rx queue filer rule set linked list */
868 INIT_LIST_HEAD(&priv->rx_list.list);
869 priv->rx_list.count = 0;
870 mutex_init(&priv->rx_queue_access);
871
872 for (i = 0; i < MAXGROUPS; i++)
873 priv->gfargrp[i].regs = NULL;
874
875 /* Parse and initialize group specific information */
876 if (priv->mode == MQ_MG_MODE) {
877 for_each_available_child_of_node(np, child) {
878 if (of_node_cmp(child->name, "queue-group"))
879 continue;
880
881 err = gfar_parse_group(child, priv, model);
882 if (err)
883 goto err_grp_init;
884 }
885 } else { /* SQ_SG_MODE */
886 err = gfar_parse_group(np, priv, model);
887 if (err)
888 goto err_grp_init;
889 }
890
891 stash = of_find_property(np, "bd-stash", NULL);
892
893 if (stash) {
894 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
895 priv->bd_stash_en = 1;
896 }
897
898 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
899
900 if (err == 0)
901 priv->rx_stash_size = stash_len;
902
903 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
904
905 if (err == 0)
906 priv->rx_stash_index = stash_idx;
907
908 if (stash_len || stash_idx)
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
910
911 mac_addr = of_get_mac_address(np);
912
913 if (mac_addr)
914 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
915
916 if (model && !strcasecmp(model, "TSEC"))
917 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
918 FSL_GIANFAR_DEV_HAS_COALESCE |
919 FSL_GIANFAR_DEV_HAS_RMON |
920 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
921
922 if (model && !strcasecmp(model, "eTSEC"))
923 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
924 FSL_GIANFAR_DEV_HAS_COALESCE |
925 FSL_GIANFAR_DEV_HAS_RMON |
926 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
927 FSL_GIANFAR_DEV_HAS_CSUM |
928 FSL_GIANFAR_DEV_HAS_VLAN |
929 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
930 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
931 FSL_GIANFAR_DEV_HAS_TIMER;
932
933 err = of_property_read_string(np, "phy-connection-type", &ctype);
934
935 /* We only care about rgmii-id. The rest are autodetected */
936 if (err == 0 && !strcmp(ctype, "rgmii-id"))
937 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
938 else
939 priv->interface = PHY_INTERFACE_MODE_MII;
940
941 if (of_find_property(np, "fsl,magic-packet", NULL))
942 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
943
944 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
945
946 /* In the case of a fixed PHY, the DT node associated
947 * to the PHY is the Ethernet MAC DT node.
948 */
949 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
950 err = of_phy_register_fixed_link(np);
951 if (err)
952 goto err_grp_init;
953
954 priv->phy_node = of_node_get(np);
955 }
956
957 /* Find the TBI PHY. If it's not there, we don't support SGMII */
958 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
959
960 return 0;
961
962 err_grp_init:
963 unmap_group_regs(priv);
964 rx_alloc_failed:
965 gfar_free_rx_queues(priv);
966 tx_alloc_failed:
967 gfar_free_tx_queues(priv);
968 free_gfar_dev(priv);
969 return err;
970 }
971
972 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
973 {
974 struct hwtstamp_config config;
975 struct gfar_private *priv = netdev_priv(netdev);
976
977 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
978 return -EFAULT;
979
980 /* reserved for future extensions */
981 if (config.flags)
982 return -EINVAL;
983
984 switch (config.tx_type) {
985 case HWTSTAMP_TX_OFF:
986 priv->hwts_tx_en = 0;
987 break;
988 case HWTSTAMP_TX_ON:
989 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
990 return -ERANGE;
991 priv->hwts_tx_en = 1;
992 break;
993 default:
994 return -ERANGE;
995 }
996
997 switch (config.rx_filter) {
998 case HWTSTAMP_FILTER_NONE:
999 if (priv->hwts_rx_en) {
1000 priv->hwts_rx_en = 0;
1001 reset_gfar(netdev);
1002 }
1003 break;
1004 default:
1005 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1006 return -ERANGE;
1007 if (!priv->hwts_rx_en) {
1008 priv->hwts_rx_en = 1;
1009 reset_gfar(netdev);
1010 }
1011 config.rx_filter = HWTSTAMP_FILTER_ALL;
1012 break;
1013 }
1014
1015 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1016 -EFAULT : 0;
1017 }
1018
1019 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1020 {
1021 struct hwtstamp_config config;
1022 struct gfar_private *priv = netdev_priv(netdev);
1023
1024 config.flags = 0;
1025 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1026 config.rx_filter = (priv->hwts_rx_en ?
1027 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1028
1029 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1030 -EFAULT : 0;
1031 }
1032
1033 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1034 {
1035 struct gfar_private *priv = netdev_priv(dev);
1036
1037 if (!netif_running(dev))
1038 return -EINVAL;
1039
1040 if (cmd == SIOCSHWTSTAMP)
1041 return gfar_hwtstamp_set(dev, rq);
1042 if (cmd == SIOCGHWTSTAMP)
1043 return gfar_hwtstamp_get(dev, rq);
1044
1045 if (!priv->phydev)
1046 return -ENODEV;
1047
1048 return phy_mii_ioctl(priv->phydev, rq, cmd);
1049 }
1050
1051 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1052 u32 class)
1053 {
1054 u32 rqfpr = FPR_FILER_MASK;
1055 u32 rqfcr = 0x0;
1056
1057 rqfar--;
1058 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1059 priv->ftp_rqfpr[rqfar] = rqfpr;
1060 priv->ftp_rqfcr[rqfar] = rqfcr;
1061 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1062
1063 rqfar--;
1064 rqfcr = RQFCR_CMP_NOMATCH;
1065 priv->ftp_rqfpr[rqfar] = rqfpr;
1066 priv->ftp_rqfcr[rqfar] = rqfcr;
1067 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1068
1069 rqfar--;
1070 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1071 rqfpr = class;
1072 priv->ftp_rqfcr[rqfar] = rqfcr;
1073 priv->ftp_rqfpr[rqfar] = rqfpr;
1074 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1075
1076 rqfar--;
1077 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1078 rqfpr = class;
1079 priv->ftp_rqfcr[rqfar] = rqfcr;
1080 priv->ftp_rqfpr[rqfar] = rqfpr;
1081 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1082
1083 return rqfar;
1084 }
1085
1086 static void gfar_init_filer_table(struct gfar_private *priv)
1087 {
1088 int i = 0x0;
1089 u32 rqfar = MAX_FILER_IDX;
1090 u32 rqfcr = 0x0;
1091 u32 rqfpr = FPR_FILER_MASK;
1092
1093 /* Default rule */
1094 rqfcr = RQFCR_CMP_MATCH;
1095 priv->ftp_rqfcr[rqfar] = rqfcr;
1096 priv->ftp_rqfpr[rqfar] = rqfpr;
1097 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1098
1099 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1100 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1101 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1102 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1103 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1104 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1105
1106 /* cur_filer_idx indicated the first non-masked rule */
1107 priv->cur_filer_idx = rqfar;
1108
1109 /* Rest are masked rules */
1110 rqfcr = RQFCR_CMP_NOMATCH;
1111 for (i = 0; i < rqfar; i++) {
1112 priv->ftp_rqfcr[i] = rqfcr;
1113 priv->ftp_rqfpr[i] = rqfpr;
1114 gfar_write_filer(priv, i, rqfcr, rqfpr);
1115 }
1116 }
1117
1118 #ifdef CONFIG_PPC
1119 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1120 {
1121 unsigned int pvr = mfspr(SPRN_PVR);
1122 unsigned int svr = mfspr(SPRN_SVR);
1123 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1124 unsigned int rev = svr & 0xffff;
1125
1126 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1127 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1128 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1129 priv->errata |= GFAR_ERRATA_74;
1130
1131 /* MPC8313 and MPC837x all rev */
1132 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1133 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1134 priv->errata |= GFAR_ERRATA_76;
1135
1136 /* MPC8313 Rev < 2.0 */
1137 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1138 priv->errata |= GFAR_ERRATA_12;
1139 }
1140
1141 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1142 {
1143 unsigned int svr = mfspr(SPRN_SVR);
1144
1145 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1146 priv->errata |= GFAR_ERRATA_12;
1147 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1148 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1149 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1150 }
1151 #endif
1152
1153 static void gfar_detect_errata(struct gfar_private *priv)
1154 {
1155 struct device *dev = &priv->ofdev->dev;
1156
1157 /* no plans to fix */
1158 priv->errata |= GFAR_ERRATA_A002;
1159
1160 #ifdef CONFIG_PPC
1161 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1162 __gfar_detect_errata_85xx(priv);
1163 else /* non-mpc85xx parts, i.e. e300 core based */
1164 __gfar_detect_errata_83xx(priv);
1165 #endif
1166
1167 if (priv->errata)
1168 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1169 priv->errata);
1170 }
1171
1172 void gfar_mac_reset(struct gfar_private *priv)
1173 {
1174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1175 u32 tempval;
1176
1177 /* Reset MAC layer */
1178 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1179
1180 /* We need to delay at least 3 TX clocks */
1181 udelay(3);
1182
1183 /* the soft reset bit is not self-resetting, so we need to
1184 * clear it before resuming normal operation
1185 */
1186 gfar_write(&regs->maccfg1, 0);
1187
1188 udelay(3);
1189
1190 /* Compute rx_buff_size based on config flags */
1191 gfar_rx_buff_size_config(priv);
1192
1193 /* Initialize the max receive frame/buffer lengths */
1194 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1195 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1196
1197 /* Initialize the Minimum Frame Length Register */
1198 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1199
1200 /* Initialize MACCFG2. */
1201 tempval = MACCFG2_INIT_SETTINGS;
1202
1203 /* If the mtu is larger than the max size for standard
1204 * ethernet frames (ie, a jumbo frame), then set maccfg2
1205 * to allow huge frames, and to check the length
1206 */
1207 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1208 gfar_has_errata(priv, GFAR_ERRATA_74))
1209 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1210
1211 gfar_write(&regs->maccfg2, tempval);
1212
1213 /* Clear mac addr hash registers */
1214 gfar_write(&regs->igaddr0, 0);
1215 gfar_write(&regs->igaddr1, 0);
1216 gfar_write(&regs->igaddr2, 0);
1217 gfar_write(&regs->igaddr3, 0);
1218 gfar_write(&regs->igaddr4, 0);
1219 gfar_write(&regs->igaddr5, 0);
1220 gfar_write(&regs->igaddr6, 0);
1221 gfar_write(&regs->igaddr7, 0);
1222
1223 gfar_write(&regs->gaddr0, 0);
1224 gfar_write(&regs->gaddr1, 0);
1225 gfar_write(&regs->gaddr2, 0);
1226 gfar_write(&regs->gaddr3, 0);
1227 gfar_write(&regs->gaddr4, 0);
1228 gfar_write(&regs->gaddr5, 0);
1229 gfar_write(&regs->gaddr6, 0);
1230 gfar_write(&regs->gaddr7, 0);
1231
1232 if (priv->extended_hash)
1233 gfar_clear_exact_match(priv->ndev);
1234
1235 gfar_mac_rx_config(priv);
1236
1237 gfar_mac_tx_config(priv);
1238
1239 gfar_set_mac_address(priv->ndev);
1240
1241 gfar_set_multi(priv->ndev);
1242
1243 /* clear ievent and imask before configuring coalescing */
1244 gfar_ints_disable(priv);
1245
1246 /* Configure the coalescing support */
1247 gfar_configure_coalescing_all(priv);
1248 }
1249
1250 static void gfar_hw_init(struct gfar_private *priv)
1251 {
1252 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1253 u32 attrs;
1254
1255 /* Stop the DMA engine now, in case it was running before
1256 * (The firmware could have used it, and left it running).
1257 */
1258 gfar_halt(priv);
1259
1260 gfar_mac_reset(priv);
1261
1262 /* Zero out the rmon mib registers if it has them */
1263 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1264 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1265
1266 /* Mask off the CAM interrupts */
1267 gfar_write(&regs->rmon.cam1, 0xffffffff);
1268 gfar_write(&regs->rmon.cam2, 0xffffffff);
1269 }
1270
1271 /* Initialize ECNTRL */
1272 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1273
1274 /* Set the extraction length and index */
1275 attrs = ATTRELI_EL(priv->rx_stash_size) |
1276 ATTRELI_EI(priv->rx_stash_index);
1277
1278 gfar_write(&regs->attreli, attrs);
1279
1280 /* Start with defaults, and add stashing
1281 * depending on driver parameters
1282 */
1283 attrs = ATTR_INIT_SETTINGS;
1284
1285 if (priv->bd_stash_en)
1286 attrs |= ATTR_BDSTASH;
1287
1288 if (priv->rx_stash_size != 0)
1289 attrs |= ATTR_BUFSTASH;
1290
1291 gfar_write(&regs->attr, attrs);
1292
1293 /* FIFO configs */
1294 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1295 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1296 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1297
1298 /* Program the interrupt steering regs, only for MG devices */
1299 if (priv->num_grps > 1)
1300 gfar_write_isrg(priv);
1301 }
1302
1303 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1304 {
1305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1306
1307 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1308 priv->extended_hash = 1;
1309 priv->hash_width = 9;
1310
1311 priv->hash_regs[0] = &regs->igaddr0;
1312 priv->hash_regs[1] = &regs->igaddr1;
1313 priv->hash_regs[2] = &regs->igaddr2;
1314 priv->hash_regs[3] = &regs->igaddr3;
1315 priv->hash_regs[4] = &regs->igaddr4;
1316 priv->hash_regs[5] = &regs->igaddr5;
1317 priv->hash_regs[6] = &regs->igaddr6;
1318 priv->hash_regs[7] = &regs->igaddr7;
1319 priv->hash_regs[8] = &regs->gaddr0;
1320 priv->hash_regs[9] = &regs->gaddr1;
1321 priv->hash_regs[10] = &regs->gaddr2;
1322 priv->hash_regs[11] = &regs->gaddr3;
1323 priv->hash_regs[12] = &regs->gaddr4;
1324 priv->hash_regs[13] = &regs->gaddr5;
1325 priv->hash_regs[14] = &regs->gaddr6;
1326 priv->hash_regs[15] = &regs->gaddr7;
1327
1328 } else {
1329 priv->extended_hash = 0;
1330 priv->hash_width = 8;
1331
1332 priv->hash_regs[0] = &regs->gaddr0;
1333 priv->hash_regs[1] = &regs->gaddr1;
1334 priv->hash_regs[2] = &regs->gaddr2;
1335 priv->hash_regs[3] = &regs->gaddr3;
1336 priv->hash_regs[4] = &regs->gaddr4;
1337 priv->hash_regs[5] = &regs->gaddr5;
1338 priv->hash_regs[6] = &regs->gaddr6;
1339 priv->hash_regs[7] = &regs->gaddr7;
1340 }
1341 }
1342
1343 /* Set up the ethernet device structure, private data,
1344 * and anything else we need before we start
1345 */
1346 static int gfar_probe(struct platform_device *ofdev)
1347 {
1348 struct net_device *dev = NULL;
1349 struct gfar_private *priv = NULL;
1350 int err = 0, i;
1351
1352 err = gfar_of_init(ofdev, &dev);
1353
1354 if (err)
1355 return err;
1356
1357 priv = netdev_priv(dev);
1358 priv->ndev = dev;
1359 priv->ofdev = ofdev;
1360 priv->dev = &ofdev->dev;
1361 SET_NETDEV_DEV(dev, &ofdev->dev);
1362
1363 INIT_WORK(&priv->reset_task, gfar_reset_task);
1364
1365 platform_set_drvdata(ofdev, priv);
1366
1367 gfar_detect_errata(priv);
1368
1369 /* Set the dev->base_addr to the gfar reg region */
1370 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1371
1372 /* Fill in the dev structure */
1373 dev->watchdog_timeo = TX_TIMEOUT;
1374 dev->mtu = 1500;
1375 dev->netdev_ops = &gfar_netdev_ops;
1376 dev->ethtool_ops = &gfar_ethtool_ops;
1377
1378 /* Register for napi ...We are registering NAPI for each grp */
1379 for (i = 0; i < priv->num_grps; i++) {
1380 if (priv->poll_mode == GFAR_SQ_POLLING) {
1381 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1382 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1383 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1384 gfar_poll_tx_sq, 2);
1385 } else {
1386 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1387 gfar_poll_rx, GFAR_DEV_WEIGHT);
1388 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1389 gfar_poll_tx, 2);
1390 }
1391 }
1392
1393 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1394 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1395 NETIF_F_RXCSUM;
1396 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1397 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1398 }
1399
1400 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1401 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1402 NETIF_F_HW_VLAN_CTAG_RX;
1403 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1404 }
1405
1406 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1407
1408 gfar_init_addr_hash_table(priv);
1409
1410 /* Insert receive time stamps into padding alignment bytes */
1411 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1412 priv->padding = 8;
1413
1414 if (dev->features & NETIF_F_IP_CSUM ||
1415 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1416 dev->needed_headroom = GMAC_FCB_LEN;
1417
1418 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1419
1420 /* Initializing some of the rx/tx queue level parameters */
1421 for (i = 0; i < priv->num_tx_queues; i++) {
1422 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1423 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1424 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1425 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1426 }
1427
1428 for (i = 0; i < priv->num_rx_queues; i++) {
1429 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1430 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1431 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1432 }
1433
1434 /* always enable rx filer */
1435 priv->rx_filer_enable = 1;
1436 /* Enable most messages by default */
1437 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1438 /* use pritority h/w tx queue scheduling for single queue devices */
1439 if (priv->num_tx_queues == 1)
1440 priv->prio_sched_en = 1;
1441
1442 set_bit(GFAR_DOWN, &priv->state);
1443
1444 gfar_hw_init(priv);
1445
1446 /* Carrier starts down, phylib will bring it up */
1447 netif_carrier_off(dev);
1448
1449 err = register_netdev(dev);
1450
1451 if (err) {
1452 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1453 goto register_fail;
1454 }
1455
1456 device_set_wakeup_capable(&dev->dev, priv->device_flags &
1457 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1458
1459 /* fill out IRQ number and name fields */
1460 for (i = 0; i < priv->num_grps; i++) {
1461 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1462 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1463 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1464 dev->name, "_g", '0' + i, "_tx");
1465 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1466 dev->name, "_g", '0' + i, "_rx");
1467 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1468 dev->name, "_g", '0' + i, "_er");
1469 } else
1470 strcpy(gfar_irq(grp, TX)->name, dev->name);
1471 }
1472
1473 /* Initialize the filer table */
1474 gfar_init_filer_table(priv);
1475
1476 /* Print out the device info */
1477 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1478
1479 /* Even more device info helps when determining which kernel
1480 * provided which set of benchmarks.
1481 */
1482 netdev_info(dev, "Running with NAPI enabled\n");
1483 for (i = 0; i < priv->num_rx_queues; i++)
1484 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1485 i, priv->rx_queue[i]->rx_ring_size);
1486 for (i = 0; i < priv->num_tx_queues; i++)
1487 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1488 i, priv->tx_queue[i]->tx_ring_size);
1489
1490 return 0;
1491
1492 register_fail:
1493 unmap_group_regs(priv);
1494 gfar_free_rx_queues(priv);
1495 gfar_free_tx_queues(priv);
1496 of_node_put(priv->phy_node);
1497 of_node_put(priv->tbi_node);
1498 free_gfar_dev(priv);
1499 return err;
1500 }
1501
1502 static int gfar_remove(struct platform_device *ofdev)
1503 {
1504 struct gfar_private *priv = platform_get_drvdata(ofdev);
1505
1506 of_node_put(priv->phy_node);
1507 of_node_put(priv->tbi_node);
1508
1509 unregister_netdev(priv->ndev);
1510 unmap_group_regs(priv);
1511 gfar_free_rx_queues(priv);
1512 gfar_free_tx_queues(priv);
1513 free_gfar_dev(priv);
1514
1515 return 0;
1516 }
1517
1518 #ifdef CONFIG_PM
1519
1520 static int gfar_suspend(struct device *dev)
1521 {
1522 struct gfar_private *priv = dev_get_drvdata(dev);
1523 struct net_device *ndev = priv->ndev;
1524 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1525 u32 tempval;
1526 int magic_packet = priv->wol_en &&
1527 (priv->device_flags &
1528 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1529
1530 if (!netif_running(ndev))
1531 return 0;
1532
1533 disable_napi(priv);
1534 netif_tx_lock(ndev);
1535 netif_device_detach(ndev);
1536 netif_tx_unlock(ndev);
1537
1538 gfar_halt(priv);
1539
1540 if (magic_packet) {
1541 /* Enable interrupt on Magic Packet */
1542 gfar_write(&regs->imask, IMASK_MAG);
1543
1544 /* Enable Magic Packet mode */
1545 tempval = gfar_read(&regs->maccfg2);
1546 tempval |= MACCFG2_MPEN;
1547 gfar_write(&regs->maccfg2, tempval);
1548
1549 /* re-enable the Rx block */
1550 tempval = gfar_read(&regs->maccfg1);
1551 tempval |= MACCFG1_RX_EN;
1552 gfar_write(&regs->maccfg1, tempval);
1553
1554 } else {
1555 phy_stop(priv->phydev);
1556 }
1557
1558 return 0;
1559 }
1560
1561 static int gfar_resume(struct device *dev)
1562 {
1563 struct gfar_private *priv = dev_get_drvdata(dev);
1564 struct net_device *ndev = priv->ndev;
1565 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1566 u32 tempval;
1567 int magic_packet = priv->wol_en &&
1568 (priv->device_flags &
1569 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1570
1571 if (!netif_running(ndev))
1572 return 0;
1573
1574 if (magic_packet) {
1575 /* Disable Magic Packet mode */
1576 tempval = gfar_read(&regs->maccfg2);
1577 tempval &= ~MACCFG2_MPEN;
1578 gfar_write(&regs->maccfg2, tempval);
1579 } else {
1580 phy_start(priv->phydev);
1581 }
1582
1583 gfar_start(priv);
1584
1585 netif_device_attach(ndev);
1586 enable_napi(priv);
1587
1588 return 0;
1589 }
1590
1591 static int gfar_restore(struct device *dev)
1592 {
1593 struct gfar_private *priv = dev_get_drvdata(dev);
1594 struct net_device *ndev = priv->ndev;
1595
1596 if (!netif_running(ndev)) {
1597 netif_device_attach(ndev);
1598
1599 return 0;
1600 }
1601
1602 if (gfar_init_bds(ndev)) {
1603 free_skb_resources(priv);
1604 return -ENOMEM;
1605 }
1606
1607 gfar_mac_reset(priv);
1608
1609 gfar_init_tx_rx_base(priv);
1610
1611 gfar_start(priv);
1612
1613 priv->oldlink = 0;
1614 priv->oldspeed = 0;
1615 priv->oldduplex = -1;
1616
1617 if (priv->phydev)
1618 phy_start(priv->phydev);
1619
1620 netif_device_attach(ndev);
1621 enable_napi(priv);
1622
1623 return 0;
1624 }
1625
1626 static struct dev_pm_ops gfar_pm_ops = {
1627 .suspend = gfar_suspend,
1628 .resume = gfar_resume,
1629 .freeze = gfar_suspend,
1630 .thaw = gfar_resume,
1631 .restore = gfar_restore,
1632 };
1633
1634 #define GFAR_PM_OPS (&gfar_pm_ops)
1635
1636 #else
1637
1638 #define GFAR_PM_OPS NULL
1639
1640 #endif
1641
1642 /* Reads the controller's registers to determine what interface
1643 * connects it to the PHY.
1644 */
1645 static phy_interface_t gfar_get_interface(struct net_device *dev)
1646 {
1647 struct gfar_private *priv = netdev_priv(dev);
1648 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649 u32 ecntrl;
1650
1651 ecntrl = gfar_read(&regs->ecntrl);
1652
1653 if (ecntrl & ECNTRL_SGMII_MODE)
1654 return PHY_INTERFACE_MODE_SGMII;
1655
1656 if (ecntrl & ECNTRL_TBI_MODE) {
1657 if (ecntrl & ECNTRL_REDUCED_MODE)
1658 return PHY_INTERFACE_MODE_RTBI;
1659 else
1660 return PHY_INTERFACE_MODE_TBI;
1661 }
1662
1663 if (ecntrl & ECNTRL_REDUCED_MODE) {
1664 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1665 return PHY_INTERFACE_MODE_RMII;
1666 }
1667 else {
1668 phy_interface_t interface = priv->interface;
1669
1670 /* This isn't autodetected right now, so it must
1671 * be set by the device tree or platform code.
1672 */
1673 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1674 return PHY_INTERFACE_MODE_RGMII_ID;
1675
1676 return PHY_INTERFACE_MODE_RGMII;
1677 }
1678 }
1679
1680 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1681 return PHY_INTERFACE_MODE_GMII;
1682
1683 return PHY_INTERFACE_MODE_MII;
1684 }
1685
1686
1687 /* Initializes driver's PHY state, and attaches to the PHY.
1688 * Returns 0 on success.
1689 */
1690 static int init_phy(struct net_device *dev)
1691 {
1692 struct gfar_private *priv = netdev_priv(dev);
1693 uint gigabit_support =
1694 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1695 GFAR_SUPPORTED_GBIT : 0;
1696 phy_interface_t interface;
1697
1698 priv->oldlink = 0;
1699 priv->oldspeed = 0;
1700 priv->oldduplex = -1;
1701
1702 interface = gfar_get_interface(dev);
1703
1704 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1705 interface);
1706 if (!priv->phydev) {
1707 dev_err(&dev->dev, "could not attach to PHY\n");
1708 return -ENODEV;
1709 }
1710
1711 if (interface == PHY_INTERFACE_MODE_SGMII)
1712 gfar_configure_serdes(dev);
1713
1714 /* Remove any features not supported by the controller */
1715 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1716 priv->phydev->advertising = priv->phydev->supported;
1717
1718 /* Add support for flow control, but don't advertise it by default */
1719 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1720
1721 return 0;
1722 }
1723
1724 /* Initialize TBI PHY interface for communicating with the
1725 * SERDES lynx PHY on the chip. We communicate with this PHY
1726 * through the MDIO bus on each controller, treating it as a
1727 * "normal" PHY at the address found in the TBIPA register. We assume
1728 * that the TBIPA register is valid. Either the MDIO bus code will set
1729 * it to a value that doesn't conflict with other PHYs on the bus, or the
1730 * value doesn't matter, as there are no other PHYs on the bus.
1731 */
1732 static void gfar_configure_serdes(struct net_device *dev)
1733 {
1734 struct gfar_private *priv = netdev_priv(dev);
1735 struct phy_device *tbiphy;
1736
1737 if (!priv->tbi_node) {
1738 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1739 "device tree specify a tbi-handle\n");
1740 return;
1741 }
1742
1743 tbiphy = of_phy_find_device(priv->tbi_node);
1744 if (!tbiphy) {
1745 dev_err(&dev->dev, "error: Could not get TBI device\n");
1746 return;
1747 }
1748
1749 /* If the link is already up, we must already be ok, and don't need to
1750 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1751 * everything for us? Resetting it takes the link down and requires
1752 * several seconds for it to come back.
1753 */
1754 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1755 return;
1756
1757 /* Single clk mode, mii mode off(for serdes communication) */
1758 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1759
1760 phy_write(tbiphy, MII_ADVERTISE,
1761 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1762 ADVERTISE_1000XPSE_ASYM);
1763
1764 phy_write(tbiphy, MII_BMCR,
1765 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1766 BMCR_SPEED1000);
1767 }
1768
1769 static int __gfar_is_rx_idle(struct gfar_private *priv)
1770 {
1771 u32 res;
1772
1773 /* Normaly TSEC should not hang on GRS commands, so we should
1774 * actually wait for IEVENT_GRSC flag.
1775 */
1776 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1777 return 0;
1778
1779 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1780 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1781 * and the Rx can be safely reset.
1782 */
1783 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1784 res &= 0x7f807f80;
1785 if ((res & 0xffff) == (res >> 16))
1786 return 1;
1787
1788 return 0;
1789 }
1790
1791 /* Halt the receive and transmit queues */
1792 static void gfar_halt_nodisable(struct gfar_private *priv)
1793 {
1794 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1795 u32 tempval;
1796 unsigned int timeout;
1797 int stopped;
1798
1799 gfar_ints_disable(priv);
1800
1801 if (gfar_is_dma_stopped(priv))
1802 return;
1803
1804 /* Stop the DMA, and wait for it to stop */
1805 tempval = gfar_read(&regs->dmactrl);
1806 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1807 gfar_write(&regs->dmactrl, tempval);
1808
1809 retry:
1810 timeout = 1000;
1811 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1812 cpu_relax();
1813 timeout--;
1814 }
1815
1816 if (!timeout)
1817 stopped = gfar_is_dma_stopped(priv);
1818
1819 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1820 !__gfar_is_rx_idle(priv))
1821 goto retry;
1822 }
1823
1824 /* Halt the receive and transmit queues */
1825 void gfar_halt(struct gfar_private *priv)
1826 {
1827 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1828 u32 tempval;
1829
1830 /* Dissable the Rx/Tx hw queues */
1831 gfar_write(&regs->rqueue, 0);
1832 gfar_write(&regs->tqueue, 0);
1833
1834 mdelay(10);
1835
1836 gfar_halt_nodisable(priv);
1837
1838 /* Disable Rx/Tx DMA */
1839 tempval = gfar_read(&regs->maccfg1);
1840 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1841 gfar_write(&regs->maccfg1, tempval);
1842 }
1843
1844 void stop_gfar(struct net_device *dev)
1845 {
1846 struct gfar_private *priv = netdev_priv(dev);
1847
1848 netif_tx_stop_all_queues(dev);
1849
1850 smp_mb__before_atomic();
1851 set_bit(GFAR_DOWN, &priv->state);
1852 smp_mb__after_atomic();
1853
1854 disable_napi(priv);
1855
1856 /* disable ints and gracefully shut down Rx/Tx DMA */
1857 gfar_halt(priv);
1858
1859 phy_stop(priv->phydev);
1860
1861 free_skb_resources(priv);
1862 }
1863
1864 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1865 {
1866 struct txbd8 *txbdp;
1867 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1868 int i, j;
1869
1870 txbdp = tx_queue->tx_bd_base;
1871
1872 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1873 if (!tx_queue->tx_skbuff[i])
1874 continue;
1875
1876 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1877 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1878 txbdp->lstatus = 0;
1879 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1880 j++) {
1881 txbdp++;
1882 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1883 be16_to_cpu(txbdp->length),
1884 DMA_TO_DEVICE);
1885 }
1886 txbdp++;
1887 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1888 tx_queue->tx_skbuff[i] = NULL;
1889 }
1890 kfree(tx_queue->tx_skbuff);
1891 tx_queue->tx_skbuff = NULL;
1892 }
1893
1894 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1895 {
1896 struct rxbd8 *rxbdp;
1897 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1898 int i;
1899
1900 rxbdp = rx_queue->rx_bd_base;
1901
1902 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1903 if (rx_queue->rx_skbuff[i]) {
1904 dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1905 priv->rx_buffer_size,
1906 DMA_FROM_DEVICE);
1907 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1908 rx_queue->rx_skbuff[i] = NULL;
1909 }
1910 rxbdp->lstatus = 0;
1911 rxbdp->bufPtr = 0;
1912 rxbdp++;
1913 }
1914 kfree(rx_queue->rx_skbuff);
1915 rx_queue->rx_skbuff = NULL;
1916 }
1917
1918 /* If there are any tx skbs or rx skbs still around, free them.
1919 * Then free tx_skbuff and rx_skbuff
1920 */
1921 static void free_skb_resources(struct gfar_private *priv)
1922 {
1923 struct gfar_priv_tx_q *tx_queue = NULL;
1924 struct gfar_priv_rx_q *rx_queue = NULL;
1925 int i;
1926
1927 /* Go through all the buffer descriptors and free their data buffers */
1928 for (i = 0; i < priv->num_tx_queues; i++) {
1929 struct netdev_queue *txq;
1930
1931 tx_queue = priv->tx_queue[i];
1932 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1933 if (tx_queue->tx_skbuff)
1934 free_skb_tx_queue(tx_queue);
1935 netdev_tx_reset_queue(txq);
1936 }
1937
1938 for (i = 0; i < priv->num_rx_queues; i++) {
1939 rx_queue = priv->rx_queue[i];
1940 if (rx_queue->rx_skbuff)
1941 free_skb_rx_queue(rx_queue);
1942 }
1943
1944 dma_free_coherent(priv->dev,
1945 sizeof(struct txbd8) * priv->total_tx_ring_size +
1946 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1947 priv->tx_queue[0]->tx_bd_base,
1948 priv->tx_queue[0]->tx_bd_dma_base);
1949 }
1950
1951 void gfar_start(struct gfar_private *priv)
1952 {
1953 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1954 u32 tempval;
1955 int i = 0;
1956
1957 /* Enable Rx/Tx hw queues */
1958 gfar_write(&regs->rqueue, priv->rqueue);
1959 gfar_write(&regs->tqueue, priv->tqueue);
1960
1961 /* Initialize DMACTRL to have WWR and WOP */
1962 tempval = gfar_read(&regs->dmactrl);
1963 tempval |= DMACTRL_INIT_SETTINGS;
1964 gfar_write(&regs->dmactrl, tempval);
1965
1966 /* Make sure we aren't stopped */
1967 tempval = gfar_read(&regs->dmactrl);
1968 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1969 gfar_write(&regs->dmactrl, tempval);
1970
1971 for (i = 0; i < priv->num_grps; i++) {
1972 regs = priv->gfargrp[i].regs;
1973 /* Clear THLT/RHLT, so that the DMA starts polling now */
1974 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1975 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1976 }
1977
1978 /* Enable Rx/Tx DMA */
1979 tempval = gfar_read(&regs->maccfg1);
1980 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1981 gfar_write(&regs->maccfg1, tempval);
1982
1983 gfar_ints_enable(priv);
1984
1985 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1986 }
1987
1988 static void free_grp_irqs(struct gfar_priv_grp *grp)
1989 {
1990 free_irq(gfar_irq(grp, TX)->irq, grp);
1991 free_irq(gfar_irq(grp, RX)->irq, grp);
1992 free_irq(gfar_irq(grp, ER)->irq, grp);
1993 }
1994
1995 static int register_grp_irqs(struct gfar_priv_grp *grp)
1996 {
1997 struct gfar_private *priv = grp->priv;
1998 struct net_device *dev = priv->ndev;
1999 int err;
2000
2001 /* If the device has multiple interrupts, register for
2002 * them. Otherwise, only register for the one
2003 */
2004 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2005 /* Install our interrupt handlers for Error,
2006 * Transmit, and Receive
2007 */
2008 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error,
2009 IRQF_NO_SUSPEND,
2010 gfar_irq(grp, ER)->name, grp);
2011 if (err < 0) {
2012 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2013 gfar_irq(grp, ER)->irq);
2014
2015 goto err_irq_fail;
2016 }
2017 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2018 gfar_irq(grp, TX)->name, grp);
2019 if (err < 0) {
2020 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2021 gfar_irq(grp, TX)->irq);
2022 goto tx_irq_fail;
2023 }
2024 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2025 gfar_irq(grp, RX)->name, grp);
2026 if (err < 0) {
2027 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2028 gfar_irq(grp, RX)->irq);
2029 goto rx_irq_fail;
2030 }
2031 } else {
2032 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt,
2033 IRQF_NO_SUSPEND,
2034 gfar_irq(grp, TX)->name, grp);
2035 if (err < 0) {
2036 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2037 gfar_irq(grp, TX)->irq);
2038 goto err_irq_fail;
2039 }
2040 }
2041
2042 return 0;
2043
2044 rx_irq_fail:
2045 free_irq(gfar_irq(grp, TX)->irq, grp);
2046 tx_irq_fail:
2047 free_irq(gfar_irq(grp, ER)->irq, grp);
2048 err_irq_fail:
2049 return err;
2050
2051 }
2052
2053 static void gfar_free_irq(struct gfar_private *priv)
2054 {
2055 int i;
2056
2057 /* Free the IRQs */
2058 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2059 for (i = 0; i < priv->num_grps; i++)
2060 free_grp_irqs(&priv->gfargrp[i]);
2061 } else {
2062 for (i = 0; i < priv->num_grps; i++)
2063 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2064 &priv->gfargrp[i]);
2065 }
2066 }
2067
2068 static int gfar_request_irq(struct gfar_private *priv)
2069 {
2070 int err, i, j;
2071
2072 for (i = 0; i < priv->num_grps; i++) {
2073 err = register_grp_irqs(&priv->gfargrp[i]);
2074 if (err) {
2075 for (j = 0; j < i; j++)
2076 free_grp_irqs(&priv->gfargrp[j]);
2077 return err;
2078 }
2079 }
2080
2081 return 0;
2082 }
2083
2084 /* Bring the controller up and running */
2085 int startup_gfar(struct net_device *ndev)
2086 {
2087 struct gfar_private *priv = netdev_priv(ndev);
2088 int err;
2089
2090 gfar_mac_reset(priv);
2091
2092 err = gfar_alloc_skb_resources(ndev);
2093 if (err)
2094 return err;
2095
2096 gfar_init_tx_rx_base(priv);
2097
2098 smp_mb__before_atomic();
2099 clear_bit(GFAR_DOWN, &priv->state);
2100 smp_mb__after_atomic();
2101
2102 /* Start Rx/Tx DMA and enable the interrupts */
2103 gfar_start(priv);
2104
2105 phy_start(priv->phydev);
2106
2107 enable_napi(priv);
2108
2109 netif_tx_wake_all_queues(ndev);
2110
2111 return 0;
2112 }
2113
2114 /* Called when something needs to use the ethernet device
2115 * Returns 0 for success.
2116 */
2117 static int gfar_enet_open(struct net_device *dev)
2118 {
2119 struct gfar_private *priv = netdev_priv(dev);
2120 int err;
2121
2122 err = init_phy(dev);
2123 if (err)
2124 return err;
2125
2126 err = gfar_request_irq(priv);
2127 if (err)
2128 return err;
2129
2130 err = startup_gfar(dev);
2131 if (err)
2132 return err;
2133
2134 return err;
2135 }
2136
2137 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2138 {
2139 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2140
2141 memset(fcb, 0, GMAC_FCB_LEN);
2142
2143 return fcb;
2144 }
2145
2146 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2147 int fcb_length)
2148 {
2149 /* If we're here, it's a IP packet with a TCP or UDP
2150 * payload. We set it to checksum, using a pseudo-header
2151 * we provide
2152 */
2153 u8 flags = TXFCB_DEFAULT;
2154
2155 /* Tell the controller what the protocol is
2156 * And provide the already calculated phcs
2157 */
2158 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2159 flags |= TXFCB_UDP;
2160 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2161 } else
2162 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2163
2164 /* l3os is the distance between the start of the
2165 * frame (skb->data) and the start of the IP hdr.
2166 * l4os is the distance between the start of the
2167 * l3 hdr and the l4 hdr
2168 */
2169 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2170 fcb->l4os = skb_network_header_len(skb);
2171
2172 fcb->flags = flags;
2173 }
2174
2175 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2176 {
2177 fcb->flags |= TXFCB_VLN;
2178 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2179 }
2180
2181 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2182 struct txbd8 *base, int ring_size)
2183 {
2184 struct txbd8 *new_bd = bdp + stride;
2185
2186 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2187 }
2188
2189 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2190 int ring_size)
2191 {
2192 return skip_txbd(bdp, 1, base, ring_size);
2193 }
2194
2195 /* eTSEC12: csum generation not supported for some fcb offsets */
2196 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2197 unsigned long fcb_addr)
2198 {
2199 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2200 (fcb_addr % 0x20) > 0x18);
2201 }
2202
2203 /* eTSEC76: csum generation for frames larger than 2500 may
2204 * cause excess delays before start of transmission
2205 */
2206 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2207 unsigned int len)
2208 {
2209 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2210 (len > 2500));
2211 }
2212
2213 /* This is called by the kernel when a frame is ready for transmission.
2214 * It is pointed to by the dev->hard_start_xmit function pointer
2215 */
2216 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2217 {
2218 struct gfar_private *priv = netdev_priv(dev);
2219 struct gfar_priv_tx_q *tx_queue = NULL;
2220 struct netdev_queue *txq;
2221 struct gfar __iomem *regs = NULL;
2222 struct txfcb *fcb = NULL;
2223 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2224 u32 lstatus;
2225 int i, rq = 0;
2226 int do_tstamp, do_csum, do_vlan;
2227 u32 bufaddr;
2228 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2229
2230 rq = skb->queue_mapping;
2231 tx_queue = priv->tx_queue[rq];
2232 txq = netdev_get_tx_queue(dev, rq);
2233 base = tx_queue->tx_bd_base;
2234 regs = tx_queue->grp->regs;
2235
2236 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2237 do_vlan = skb_vlan_tag_present(skb);
2238 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2239 priv->hwts_tx_en;
2240
2241 if (do_csum || do_vlan)
2242 fcb_len = GMAC_FCB_LEN;
2243
2244 /* check if time stamp should be generated */
2245 if (unlikely(do_tstamp))
2246 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2247
2248 /* make space for additional header when fcb is needed */
2249 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2250 struct sk_buff *skb_new;
2251
2252 skb_new = skb_realloc_headroom(skb, fcb_len);
2253 if (!skb_new) {
2254 dev->stats.tx_errors++;
2255 dev_kfree_skb_any(skb);
2256 return NETDEV_TX_OK;
2257 }
2258
2259 if (skb->sk)
2260 skb_set_owner_w(skb_new, skb->sk);
2261 dev_consume_skb_any(skb);
2262 skb = skb_new;
2263 }
2264
2265 /* total number of fragments in the SKB */
2266 nr_frags = skb_shinfo(skb)->nr_frags;
2267
2268 /* calculate the required number of TxBDs for this skb */
2269 if (unlikely(do_tstamp))
2270 nr_txbds = nr_frags + 2;
2271 else
2272 nr_txbds = nr_frags + 1;
2273
2274 /* check if there is space to queue this packet */
2275 if (nr_txbds > tx_queue->num_txbdfree) {
2276 /* no space, stop the queue */
2277 netif_tx_stop_queue(txq);
2278 dev->stats.tx_fifo_errors++;
2279 return NETDEV_TX_BUSY;
2280 }
2281
2282 /* Update transmit stats */
2283 bytes_sent = skb->len;
2284 tx_queue->stats.tx_bytes += bytes_sent;
2285 /* keep Tx bytes on wire for BQL accounting */
2286 GFAR_CB(skb)->bytes_sent = bytes_sent;
2287 tx_queue->stats.tx_packets++;
2288
2289 txbdp = txbdp_start = tx_queue->cur_tx;
2290 lstatus = be32_to_cpu(txbdp->lstatus);
2291
2292 /* Time stamp insertion requires one additional TxBD */
2293 if (unlikely(do_tstamp))
2294 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2295 tx_queue->tx_ring_size);
2296
2297 if (nr_frags == 0) {
2298 if (unlikely(do_tstamp)) {
2299 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2300
2301 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2302 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2303 } else {
2304 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2305 }
2306 } else {
2307 /* Place the fragment addresses and lengths into the TxBDs */
2308 for (i = 0; i < nr_frags; i++) {
2309 unsigned int frag_len;
2310 /* Point at the next BD, wrapping as needed */
2311 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2312
2313 frag_len = skb_shinfo(skb)->frags[i].size;
2314
2315 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2316 BD_LFLAG(TXBD_READY);
2317
2318 /* Handle the last BD specially */
2319 if (i == nr_frags - 1)
2320 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2321
2322 bufaddr = skb_frag_dma_map(priv->dev,
2323 &skb_shinfo(skb)->frags[i],
2324 0,
2325 frag_len,
2326 DMA_TO_DEVICE);
2327 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2328 goto dma_map_err;
2329
2330 /* set the TxBD length and buffer pointer */
2331 txbdp->bufPtr = cpu_to_be32(bufaddr);
2332 txbdp->lstatus = cpu_to_be32(lstatus);
2333 }
2334
2335 lstatus = be32_to_cpu(txbdp_start->lstatus);
2336 }
2337
2338 /* Add TxPAL between FCB and frame if required */
2339 if (unlikely(do_tstamp)) {
2340 skb_push(skb, GMAC_TXPAL_LEN);
2341 memset(skb->data, 0, GMAC_TXPAL_LEN);
2342 }
2343
2344 /* Add TxFCB if required */
2345 if (fcb_len) {
2346 fcb = gfar_add_fcb(skb);
2347 lstatus |= BD_LFLAG(TXBD_TOE);
2348 }
2349
2350 /* Set up checksumming */
2351 if (do_csum) {
2352 gfar_tx_checksum(skb, fcb, fcb_len);
2353
2354 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2355 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2356 __skb_pull(skb, GMAC_FCB_LEN);
2357 skb_checksum_help(skb);
2358 if (do_vlan || do_tstamp) {
2359 /* put back a new fcb for vlan/tstamp TOE */
2360 fcb = gfar_add_fcb(skb);
2361 } else {
2362 /* Tx TOE not used */
2363 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2364 fcb = NULL;
2365 }
2366 }
2367 }
2368
2369 if (do_vlan)
2370 gfar_tx_vlan(skb, fcb);
2371
2372 /* Setup tx hardware time stamping if requested */
2373 if (unlikely(do_tstamp)) {
2374 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2375 fcb->ptp = 1;
2376 }
2377
2378 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2379 DMA_TO_DEVICE);
2380 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2381 goto dma_map_err;
2382
2383 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2384
2385 /* If time stamping is requested one additional TxBD must be set up. The
2386 * first TxBD points to the FCB and must have a data length of
2387 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2388 * the full frame length.
2389 */
2390 if (unlikely(do_tstamp)) {
2391 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2392
2393 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2394 bufaddr += fcb_len;
2395 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2396 (skb_headlen(skb) - fcb_len);
2397
2398 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2399 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2400 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2401 } else {
2402 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2403 }
2404
2405 netdev_tx_sent_queue(txq, bytes_sent);
2406
2407 gfar_wmb();
2408
2409 txbdp_start->lstatus = cpu_to_be32(lstatus);
2410
2411 gfar_wmb(); /* force lstatus write before tx_skbuff */
2412
2413 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2414
2415 /* Update the current skb pointer to the next entry we will use
2416 * (wrapping if necessary)
2417 */
2418 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2419 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2420
2421 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2422
2423 /* We can work in parallel with gfar_clean_tx_ring(), except
2424 * when modifying num_txbdfree. Note that we didn't grab the lock
2425 * when we were reading the num_txbdfree and checking for available
2426 * space, that's because outside of this function it can only grow.
2427 */
2428 spin_lock_bh(&tx_queue->txlock);
2429 /* reduce TxBD free count */
2430 tx_queue->num_txbdfree -= (nr_txbds);
2431 spin_unlock_bh(&tx_queue->txlock);
2432
2433 /* If the next BD still needs to be cleaned up, then the bds
2434 * are full. We need to tell the kernel to stop sending us stuff.
2435 */
2436 if (!tx_queue->num_txbdfree) {
2437 netif_tx_stop_queue(txq);
2438
2439 dev->stats.tx_fifo_errors++;
2440 }
2441
2442 /* Tell the DMA to go go go */
2443 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2444
2445 return NETDEV_TX_OK;
2446
2447 dma_map_err:
2448 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2449 if (do_tstamp)
2450 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2451 for (i = 0; i < nr_frags; i++) {
2452 lstatus = be32_to_cpu(txbdp->lstatus);
2453 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2454 break;
2455
2456 lstatus &= ~BD_LFLAG(TXBD_READY);
2457 txbdp->lstatus = cpu_to_be32(lstatus);
2458 bufaddr = be32_to_cpu(txbdp->bufPtr);
2459 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2460 DMA_TO_DEVICE);
2461 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2462 }
2463 gfar_wmb();
2464 dev_kfree_skb_any(skb);
2465 return NETDEV_TX_OK;
2466 }
2467
2468 /* Stops the kernel queue, and halts the controller */
2469 static int gfar_close(struct net_device *dev)
2470 {
2471 struct gfar_private *priv = netdev_priv(dev);
2472
2473 cancel_work_sync(&priv->reset_task);
2474 stop_gfar(dev);
2475
2476 /* Disconnect from the PHY */
2477 phy_disconnect(priv->phydev);
2478 priv->phydev = NULL;
2479
2480 gfar_free_irq(priv);
2481
2482 return 0;
2483 }
2484
2485 /* Changes the mac address if the controller is not running. */
2486 static int gfar_set_mac_address(struct net_device *dev)
2487 {
2488 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2489
2490 return 0;
2491 }
2492
2493 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2494 {
2495 struct gfar_private *priv = netdev_priv(dev);
2496 int frame_size = new_mtu + ETH_HLEN;
2497
2498 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2499 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2500 return -EINVAL;
2501 }
2502
2503 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2504 cpu_relax();
2505
2506 if (dev->flags & IFF_UP)
2507 stop_gfar(dev);
2508
2509 dev->mtu = new_mtu;
2510
2511 if (dev->flags & IFF_UP)
2512 startup_gfar(dev);
2513
2514 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2515
2516 return 0;
2517 }
2518
2519 void reset_gfar(struct net_device *ndev)
2520 {
2521 struct gfar_private *priv = netdev_priv(ndev);
2522
2523 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2524 cpu_relax();
2525
2526 stop_gfar(ndev);
2527 startup_gfar(ndev);
2528
2529 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2530 }
2531
2532 /* gfar_reset_task gets scheduled when a packet has not been
2533 * transmitted after a set amount of time.
2534 * For now, assume that clearing out all the structures, and
2535 * starting over will fix the problem.
2536 */
2537 static void gfar_reset_task(struct work_struct *work)
2538 {
2539 struct gfar_private *priv = container_of(work, struct gfar_private,
2540 reset_task);
2541 reset_gfar(priv->ndev);
2542 }
2543
2544 static void gfar_timeout(struct net_device *dev)
2545 {
2546 struct gfar_private *priv = netdev_priv(dev);
2547
2548 dev->stats.tx_errors++;
2549 schedule_work(&priv->reset_task);
2550 }
2551
2552 static void gfar_align_skb(struct sk_buff *skb)
2553 {
2554 /* We need the data buffer to be aligned properly. We will reserve
2555 * as many bytes as needed to align the data properly
2556 */
2557 skb_reserve(skb, RXBUF_ALIGNMENT -
2558 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2559 }
2560
2561 /* Interrupt Handler for Transmit complete */
2562 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2563 {
2564 struct net_device *dev = tx_queue->dev;
2565 struct netdev_queue *txq;
2566 struct gfar_private *priv = netdev_priv(dev);
2567 struct txbd8 *bdp, *next = NULL;
2568 struct txbd8 *lbdp = NULL;
2569 struct txbd8 *base = tx_queue->tx_bd_base;
2570 struct sk_buff *skb;
2571 int skb_dirtytx;
2572 int tx_ring_size = tx_queue->tx_ring_size;
2573 int frags = 0, nr_txbds = 0;
2574 int i;
2575 int howmany = 0;
2576 int tqi = tx_queue->qindex;
2577 unsigned int bytes_sent = 0;
2578 u32 lstatus;
2579 size_t buflen;
2580
2581 txq = netdev_get_tx_queue(dev, tqi);
2582 bdp = tx_queue->dirty_tx;
2583 skb_dirtytx = tx_queue->skb_dirtytx;
2584
2585 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2586
2587 frags = skb_shinfo(skb)->nr_frags;
2588
2589 /* When time stamping, one additional TxBD must be freed.
2590 * Also, we need to dma_unmap_single() the TxPAL.
2591 */
2592 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2593 nr_txbds = frags + 2;
2594 else
2595 nr_txbds = frags + 1;
2596
2597 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2598
2599 lstatus = be32_to_cpu(lbdp->lstatus);
2600
2601 /* Only clean completed frames */
2602 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2603 (lstatus & BD_LENGTH_MASK))
2604 break;
2605
2606 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2607 next = next_txbd(bdp, base, tx_ring_size);
2608 buflen = be16_to_cpu(next->length) +
2609 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2610 } else
2611 buflen = be16_to_cpu(bdp->length);
2612
2613 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2614 buflen, DMA_TO_DEVICE);
2615
2616 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2617 struct skb_shared_hwtstamps shhwtstamps;
2618 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2619
2620 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2621 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2622 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2623 skb_tstamp_tx(skb, &shhwtstamps);
2624 gfar_clear_txbd_status(bdp);
2625 bdp = next;
2626 }
2627
2628 gfar_clear_txbd_status(bdp);
2629 bdp = next_txbd(bdp, base, tx_ring_size);
2630
2631 for (i = 0; i < frags; i++) {
2632 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2633 be16_to_cpu(bdp->length),
2634 DMA_TO_DEVICE);
2635 gfar_clear_txbd_status(bdp);
2636 bdp = next_txbd(bdp, base, tx_ring_size);
2637 }
2638
2639 bytes_sent += GFAR_CB(skb)->bytes_sent;
2640
2641 dev_kfree_skb_any(skb);
2642
2643 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2644
2645 skb_dirtytx = (skb_dirtytx + 1) &
2646 TX_RING_MOD_MASK(tx_ring_size);
2647
2648 howmany++;
2649 spin_lock(&tx_queue->txlock);
2650 tx_queue->num_txbdfree += nr_txbds;
2651 spin_unlock(&tx_queue->txlock);
2652 }
2653
2654 /* If we freed a buffer, we can restart transmission, if necessary */
2655 if (tx_queue->num_txbdfree &&
2656 netif_tx_queue_stopped(txq) &&
2657 !(test_bit(GFAR_DOWN, &priv->state)))
2658 netif_wake_subqueue(priv->ndev, tqi);
2659
2660 /* Update dirty indicators */
2661 tx_queue->skb_dirtytx = skb_dirtytx;
2662 tx_queue->dirty_tx = bdp;
2663
2664 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2665 }
2666
2667 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2668 {
2669 struct gfar_private *priv = netdev_priv(dev);
2670 struct sk_buff *skb;
2671
2672 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2673 if (!skb)
2674 return NULL;
2675
2676 gfar_align_skb(skb);
2677
2678 return skb;
2679 }
2680
2681 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2682 {
2683 struct gfar_private *priv = netdev_priv(dev);
2684 struct sk_buff *skb;
2685 dma_addr_t addr;
2686
2687 skb = gfar_alloc_skb(dev);
2688 if (!skb)
2689 return NULL;
2690
2691 addr = dma_map_single(priv->dev, skb->data,
2692 priv->rx_buffer_size, DMA_FROM_DEVICE);
2693 if (unlikely(dma_mapping_error(priv->dev, addr))) {
2694 dev_kfree_skb_any(skb);
2695 return NULL;
2696 }
2697
2698 *bufaddr = addr;
2699 return skb;
2700 }
2701
2702 static inline void count_errors(unsigned short status, struct net_device *dev)
2703 {
2704 struct gfar_private *priv = netdev_priv(dev);
2705 struct net_device_stats *stats = &dev->stats;
2706 struct gfar_extra_stats *estats = &priv->extra_stats;
2707
2708 /* If the packet was truncated, none of the other errors matter */
2709 if (status & RXBD_TRUNCATED) {
2710 stats->rx_length_errors++;
2711
2712 atomic64_inc(&estats->rx_trunc);
2713
2714 return;
2715 }
2716 /* Count the errors, if there were any */
2717 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2718 stats->rx_length_errors++;
2719
2720 if (status & RXBD_LARGE)
2721 atomic64_inc(&estats->rx_large);
2722 else
2723 atomic64_inc(&estats->rx_short);
2724 }
2725 if (status & RXBD_NONOCTET) {
2726 stats->rx_frame_errors++;
2727 atomic64_inc(&estats->rx_nonoctet);
2728 }
2729 if (status & RXBD_CRCERR) {
2730 atomic64_inc(&estats->rx_crcerr);
2731 stats->rx_crc_errors++;
2732 }
2733 if (status & RXBD_OVERRUN) {
2734 atomic64_inc(&estats->rx_overrun);
2735 stats->rx_crc_errors++;
2736 }
2737 }
2738
2739 irqreturn_t gfar_receive(int irq, void *grp_id)
2740 {
2741 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2742 unsigned long flags;
2743 u32 imask;
2744
2745 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2746 spin_lock_irqsave(&grp->grplock, flags);
2747 imask = gfar_read(&grp->regs->imask);
2748 imask &= IMASK_RX_DISABLED;
2749 gfar_write(&grp->regs->imask, imask);
2750 spin_unlock_irqrestore(&grp->grplock, flags);
2751 __napi_schedule(&grp->napi_rx);
2752 } else {
2753 /* Clear IEVENT, so interrupts aren't called again
2754 * because of the packets that have already arrived.
2755 */
2756 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2757 }
2758
2759 return IRQ_HANDLED;
2760 }
2761
2762 /* Interrupt Handler for Transmit complete */
2763 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2764 {
2765 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2766 unsigned long flags;
2767 u32 imask;
2768
2769 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2770 spin_lock_irqsave(&grp->grplock, flags);
2771 imask = gfar_read(&grp->regs->imask);
2772 imask &= IMASK_TX_DISABLED;
2773 gfar_write(&grp->regs->imask, imask);
2774 spin_unlock_irqrestore(&grp->grplock, flags);
2775 __napi_schedule(&grp->napi_tx);
2776 } else {
2777 /* Clear IEVENT, so interrupts aren't called again
2778 * because of the packets that have already arrived.
2779 */
2780 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2781 }
2782
2783 return IRQ_HANDLED;
2784 }
2785
2786 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2787 {
2788 /* If valid headers were found, and valid sums
2789 * were verified, then we tell the kernel that no
2790 * checksumming is necessary. Otherwise, it is [FIXME]
2791 */
2792 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2793 (RXFCB_CIP | RXFCB_CTU))
2794 skb->ip_summed = CHECKSUM_UNNECESSARY;
2795 else
2796 skb_checksum_none_assert(skb);
2797 }
2798
2799 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2800 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2801 int amount_pull, struct napi_struct *napi)
2802 {
2803 struct gfar_private *priv = netdev_priv(dev);
2804 struct rxfcb *fcb = NULL;
2805
2806 /* fcb is at the beginning if exists */
2807 fcb = (struct rxfcb *)skb->data;
2808
2809 /* Remove the FCB from the skb
2810 * Remove the padded bytes, if there are any
2811 */
2812 if (amount_pull) {
2813 skb_record_rx_queue(skb, fcb->rq);
2814 skb_pull(skb, amount_pull);
2815 }
2816
2817 /* Get receive timestamp from the skb */
2818 if (priv->hwts_rx_en) {
2819 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2820 u64 *ns = (u64 *) skb->data;
2821
2822 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2823 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2824 }
2825
2826 if (priv->padding)
2827 skb_pull(skb, priv->padding);
2828
2829 if (dev->features & NETIF_F_RXCSUM)
2830 gfar_rx_checksum(skb, fcb);
2831
2832 /* Tell the skb what kind of packet this is */
2833 skb->protocol = eth_type_trans(skb, dev);
2834
2835 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2836 * Even if vlan rx accel is disabled, on some chips
2837 * RXFCB_VLN is pseudo randomly set.
2838 */
2839 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2840 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2841 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2842 be16_to_cpu(fcb->vlctl));
2843
2844 /* Send the packet up the stack */
2845 napi_gro_receive(napi, skb);
2846
2847 }
2848
2849 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2850 * until the budget/quota has been reached. Returns the number
2851 * of frames handled
2852 */
2853 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2854 {
2855 struct net_device *dev = rx_queue->dev;
2856 struct rxbd8 *bdp, *base;
2857 struct sk_buff *skb;
2858 int pkt_len;
2859 int amount_pull;
2860 int howmany = 0;
2861 struct gfar_private *priv = netdev_priv(dev);
2862
2863 /* Get the first full descriptor */
2864 bdp = rx_queue->cur_rx;
2865 base = rx_queue->rx_bd_base;
2866
2867 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2868
2869 while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2870 struct sk_buff *newskb;
2871 dma_addr_t bufaddr;
2872
2873 rmb();
2874
2875 /* Add another skb for the future */
2876 newskb = gfar_new_skb(dev, &bufaddr);
2877
2878 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2879
2880 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2881 priv->rx_buffer_size, DMA_FROM_DEVICE);
2882
2883 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2884 be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2885 bdp->status = cpu_to_be16(RXBD_LARGE);
2886
2887 /* We drop the frame if we failed to allocate a new buffer */
2888 if (unlikely(!newskb ||
2889 !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2890 be16_to_cpu(bdp->status) & RXBD_ERR)) {
2891 count_errors(be16_to_cpu(bdp->status), dev);
2892
2893 if (unlikely(!newskb)) {
2894 newskb = skb;
2895 bufaddr = be32_to_cpu(bdp->bufPtr);
2896 } else if (skb)
2897 dev_kfree_skb(skb);
2898 } else {
2899 /* Increment the number of packets */
2900 rx_queue->stats.rx_packets++;
2901 howmany++;
2902
2903 if (likely(skb)) {
2904 pkt_len = be16_to_cpu(bdp->length) -
2905 ETH_FCS_LEN;
2906 /* Remove the FCS from the packet length */
2907 skb_put(skb, pkt_len);
2908 rx_queue->stats.rx_bytes += pkt_len;
2909 skb_record_rx_queue(skb, rx_queue->qindex);
2910 gfar_process_frame(dev, skb, amount_pull,
2911 &rx_queue->grp->napi_rx);
2912
2913 } else {
2914 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2915 rx_queue->stats.rx_dropped++;
2916 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2917 }
2918
2919 }
2920
2921 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2922
2923 /* Setup the new bdp */
2924 gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2925
2926 /* Update Last Free RxBD pointer for LFC */
2927 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2928 gfar_write(rx_queue->rfbptr, (u32)bdp);
2929
2930 /* Update to the next pointer */
2931 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2932
2933 /* update to point at the next skb */
2934 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2935 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2936 }
2937
2938 /* Update the current rxbd pointer to be the next one */
2939 rx_queue->cur_rx = bdp;
2940
2941 return howmany;
2942 }
2943
2944 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2945 {
2946 struct gfar_priv_grp *gfargrp =
2947 container_of(napi, struct gfar_priv_grp, napi_rx);
2948 struct gfar __iomem *regs = gfargrp->regs;
2949 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2950 int work_done = 0;
2951
2952 /* Clear IEVENT, so interrupts aren't called again
2953 * because of the packets that have already arrived
2954 */
2955 gfar_write(&regs->ievent, IEVENT_RX_MASK);
2956
2957 work_done = gfar_clean_rx_ring(rx_queue, budget);
2958
2959 if (work_done < budget) {
2960 u32 imask;
2961 napi_complete(napi);
2962 /* Clear the halt bit in RSTAT */
2963 gfar_write(&regs->rstat, gfargrp->rstat);
2964
2965 spin_lock_irq(&gfargrp->grplock);
2966 imask = gfar_read(&regs->imask);
2967 imask |= IMASK_RX_DEFAULT;
2968 gfar_write(&regs->imask, imask);
2969 spin_unlock_irq(&gfargrp->grplock);
2970 }
2971
2972 return work_done;
2973 }
2974
2975 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2976 {
2977 struct gfar_priv_grp *gfargrp =
2978 container_of(napi, struct gfar_priv_grp, napi_tx);
2979 struct gfar __iomem *regs = gfargrp->regs;
2980 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2981 u32 imask;
2982
2983 /* Clear IEVENT, so interrupts aren't called again
2984 * because of the packets that have already arrived
2985 */
2986 gfar_write(&regs->ievent, IEVENT_TX_MASK);
2987
2988 /* run Tx cleanup to completion */
2989 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2990 gfar_clean_tx_ring(tx_queue);
2991
2992 napi_complete(napi);
2993
2994 spin_lock_irq(&gfargrp->grplock);
2995 imask = gfar_read(&regs->imask);
2996 imask |= IMASK_TX_DEFAULT;
2997 gfar_write(&regs->imask, imask);
2998 spin_unlock_irq(&gfargrp->grplock);
2999
3000 return 0;
3001 }
3002
3003 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3004 {
3005 struct gfar_priv_grp *gfargrp =
3006 container_of(napi, struct gfar_priv_grp, napi_rx);
3007 struct gfar_private *priv = gfargrp->priv;
3008 struct gfar __iomem *regs = gfargrp->regs;
3009 struct gfar_priv_rx_q *rx_queue = NULL;
3010 int work_done = 0, work_done_per_q = 0;
3011 int i, budget_per_q = 0;
3012 unsigned long rstat_rxf;
3013 int num_act_queues;
3014
3015 /* Clear IEVENT, so interrupts aren't called again
3016 * because of the packets that have already arrived
3017 */
3018 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3019
3020 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3021
3022 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3023 if (num_act_queues)
3024 budget_per_q = budget/num_act_queues;
3025
3026 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3027 /* skip queue if not active */
3028 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3029 continue;
3030
3031 rx_queue = priv->rx_queue[i];
3032 work_done_per_q =
3033 gfar_clean_rx_ring(rx_queue, budget_per_q);
3034 work_done += work_done_per_q;
3035
3036 /* finished processing this queue */
3037 if (work_done_per_q < budget_per_q) {
3038 /* clear active queue hw indication */
3039 gfar_write(&regs->rstat,
3040 RSTAT_CLEAR_RXF0 >> i);
3041 num_act_queues--;
3042
3043 if (!num_act_queues)
3044 break;
3045 }
3046 }
3047
3048 if (!num_act_queues) {
3049 u32 imask;
3050 napi_complete(napi);
3051
3052 /* Clear the halt bit in RSTAT */
3053 gfar_write(&regs->rstat, gfargrp->rstat);
3054
3055 spin_lock_irq(&gfargrp->grplock);
3056 imask = gfar_read(&regs->imask);
3057 imask |= IMASK_RX_DEFAULT;
3058 gfar_write(&regs->imask, imask);
3059 spin_unlock_irq(&gfargrp->grplock);
3060 }
3061
3062 return work_done;
3063 }
3064
3065 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3066 {
3067 struct gfar_priv_grp *gfargrp =
3068 container_of(napi, struct gfar_priv_grp, napi_tx);
3069 struct gfar_private *priv = gfargrp->priv;
3070 struct gfar __iomem *regs = gfargrp->regs;
3071 struct gfar_priv_tx_q *tx_queue = NULL;
3072 int has_tx_work = 0;
3073 int i;
3074
3075 /* Clear IEVENT, so interrupts aren't called again
3076 * because of the packets that have already arrived
3077 */
3078 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3079
3080 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3081 tx_queue = priv->tx_queue[i];
3082 /* run Tx cleanup to completion */
3083 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3084 gfar_clean_tx_ring(tx_queue);
3085 has_tx_work = 1;
3086 }
3087 }
3088
3089 if (!has_tx_work) {
3090 u32 imask;
3091 napi_complete(napi);
3092
3093 spin_lock_irq(&gfargrp->grplock);
3094 imask = gfar_read(&regs->imask);
3095 imask |= IMASK_TX_DEFAULT;
3096 gfar_write(&regs->imask, imask);
3097 spin_unlock_irq(&gfargrp->grplock);
3098 }
3099
3100 return 0;
3101 }
3102
3103
3104 #ifdef CONFIG_NET_POLL_CONTROLLER
3105 /* Polling 'interrupt' - used by things like netconsole to send skbs
3106 * without having to re-enable interrupts. It's not called while
3107 * the interrupt routine is executing.
3108 */
3109 static void gfar_netpoll(struct net_device *dev)
3110 {
3111 struct gfar_private *priv = netdev_priv(dev);
3112 int i;
3113
3114 /* If the device has multiple interrupts, run tx/rx */
3115 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3116 for (i = 0; i < priv->num_grps; i++) {
3117 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3118
3119 disable_irq(gfar_irq(grp, TX)->irq);
3120 disable_irq(gfar_irq(grp, RX)->irq);
3121 disable_irq(gfar_irq(grp, ER)->irq);
3122 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3123 enable_irq(gfar_irq(grp, ER)->irq);
3124 enable_irq(gfar_irq(grp, RX)->irq);
3125 enable_irq(gfar_irq(grp, TX)->irq);
3126 }
3127 } else {
3128 for (i = 0; i < priv->num_grps; i++) {
3129 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3130
3131 disable_irq(gfar_irq(grp, TX)->irq);
3132 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3133 enable_irq(gfar_irq(grp, TX)->irq);
3134 }
3135 }
3136 }
3137 #endif
3138
3139 /* The interrupt handler for devices with one interrupt */
3140 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3141 {
3142 struct gfar_priv_grp *gfargrp = grp_id;
3143
3144 /* Save ievent for future reference */
3145 u32 events = gfar_read(&gfargrp->regs->ievent);
3146
3147 /* Check for reception */
3148 if (events & IEVENT_RX_MASK)
3149 gfar_receive(irq, grp_id);
3150
3151 /* Check for transmit completion */
3152 if (events & IEVENT_TX_MASK)
3153 gfar_transmit(irq, grp_id);
3154
3155 /* Check for errors */
3156 if (events & IEVENT_ERR_MASK)
3157 gfar_error(irq, grp_id);
3158
3159 return IRQ_HANDLED;
3160 }
3161
3162 /* Called every time the controller might need to be made
3163 * aware of new link state. The PHY code conveys this
3164 * information through variables in the phydev structure, and this
3165 * function converts those variables into the appropriate
3166 * register values, and can bring down the device if needed.
3167 */
3168 static void adjust_link(struct net_device *dev)
3169 {
3170 struct gfar_private *priv = netdev_priv(dev);
3171 struct phy_device *phydev = priv->phydev;
3172
3173 if (unlikely(phydev->link != priv->oldlink ||
3174 (phydev->link && (phydev->duplex != priv->oldduplex ||
3175 phydev->speed != priv->oldspeed))))
3176 gfar_update_link_state(priv);
3177 }
3178
3179 /* Update the hash table based on the current list of multicast
3180 * addresses we subscribe to. Also, change the promiscuity of
3181 * the device based on the flags (this function is called
3182 * whenever dev->flags is changed
3183 */
3184 static void gfar_set_multi(struct net_device *dev)
3185 {
3186 struct netdev_hw_addr *ha;
3187 struct gfar_private *priv = netdev_priv(dev);
3188 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3189 u32 tempval;
3190
3191 if (dev->flags & IFF_PROMISC) {
3192 /* Set RCTRL to PROM */
3193 tempval = gfar_read(&regs->rctrl);
3194 tempval |= RCTRL_PROM;
3195 gfar_write(&regs->rctrl, tempval);
3196 } else {
3197 /* Set RCTRL to not PROM */
3198 tempval = gfar_read(&regs->rctrl);
3199 tempval &= ~(RCTRL_PROM);
3200 gfar_write(&regs->rctrl, tempval);
3201 }
3202
3203 if (dev->flags & IFF_ALLMULTI) {
3204 /* Set the hash to rx all multicast frames */
3205 gfar_write(&regs->igaddr0, 0xffffffff);
3206 gfar_write(&regs->igaddr1, 0xffffffff);
3207 gfar_write(&regs->igaddr2, 0xffffffff);
3208 gfar_write(&regs->igaddr3, 0xffffffff);
3209 gfar_write(&regs->igaddr4, 0xffffffff);
3210 gfar_write(&regs->igaddr5, 0xffffffff);
3211 gfar_write(&regs->igaddr6, 0xffffffff);
3212 gfar_write(&regs->igaddr7, 0xffffffff);
3213 gfar_write(&regs->gaddr0, 0xffffffff);
3214 gfar_write(&regs->gaddr1, 0xffffffff);
3215 gfar_write(&regs->gaddr2, 0xffffffff);
3216 gfar_write(&regs->gaddr3, 0xffffffff);
3217 gfar_write(&regs->gaddr4, 0xffffffff);
3218 gfar_write(&regs->gaddr5, 0xffffffff);
3219 gfar_write(&regs->gaddr6, 0xffffffff);
3220 gfar_write(&regs->gaddr7, 0xffffffff);
3221 } else {
3222 int em_num;
3223 int idx;
3224
3225 /* zero out the hash */
3226 gfar_write(&regs->igaddr0, 0x0);
3227 gfar_write(&regs->igaddr1, 0x0);
3228 gfar_write(&regs->igaddr2, 0x0);
3229 gfar_write(&regs->igaddr3, 0x0);
3230 gfar_write(&regs->igaddr4, 0x0);
3231 gfar_write(&regs->igaddr5, 0x0);
3232 gfar_write(&regs->igaddr6, 0x0);
3233 gfar_write(&regs->igaddr7, 0x0);
3234 gfar_write(&regs->gaddr0, 0x0);
3235 gfar_write(&regs->gaddr1, 0x0);
3236 gfar_write(&regs->gaddr2, 0x0);
3237 gfar_write(&regs->gaddr3, 0x0);
3238 gfar_write(&regs->gaddr4, 0x0);
3239 gfar_write(&regs->gaddr5, 0x0);
3240 gfar_write(&regs->gaddr6, 0x0);
3241 gfar_write(&regs->gaddr7, 0x0);
3242
3243 /* If we have extended hash tables, we need to
3244 * clear the exact match registers to prepare for
3245 * setting them
3246 */
3247 if (priv->extended_hash) {
3248 em_num = GFAR_EM_NUM + 1;
3249 gfar_clear_exact_match(dev);
3250 idx = 1;
3251 } else {
3252 idx = 0;
3253 em_num = 0;
3254 }
3255
3256 if (netdev_mc_empty(dev))
3257 return;
3258
3259 /* Parse the list, and set the appropriate bits */
3260 netdev_for_each_mc_addr(ha, dev) {
3261 if (idx < em_num) {
3262 gfar_set_mac_for_addr(dev, idx, ha->addr);
3263 idx++;
3264 } else
3265 gfar_set_hash_for_addr(dev, ha->addr);
3266 }
3267 }
3268 }
3269
3270
3271 /* Clears each of the exact match registers to zero, so they
3272 * don't interfere with normal reception
3273 */
3274 static void gfar_clear_exact_match(struct net_device *dev)
3275 {
3276 int idx;
3277 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3278
3279 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3280 gfar_set_mac_for_addr(dev, idx, zero_arr);
3281 }
3282
3283 /* Set the appropriate hash bit for the given addr */
3284 /* The algorithm works like so:
3285 * 1) Take the Destination Address (ie the multicast address), and
3286 * do a CRC on it (little endian), and reverse the bits of the
3287 * result.
3288 * 2) Use the 8 most significant bits as a hash into a 256-entry
3289 * table. The table is controlled through 8 32-bit registers:
3290 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3291 * gaddr7. This means that the 3 most significant bits in the
3292 * hash index which gaddr register to use, and the 5 other bits
3293 * indicate which bit (assuming an IBM numbering scheme, which
3294 * for PowerPC (tm) is usually the case) in the register holds
3295 * the entry.
3296 */
3297 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3298 {
3299 u32 tempval;
3300 struct gfar_private *priv = netdev_priv(dev);
3301 u32 result = ether_crc(ETH_ALEN, addr);
3302 int width = priv->hash_width;
3303 u8 whichbit = (result >> (32 - width)) & 0x1f;
3304 u8 whichreg = result >> (32 - width + 5);
3305 u32 value = (1 << (31-whichbit));
3306
3307 tempval = gfar_read(priv->hash_regs[whichreg]);
3308 tempval |= value;
3309 gfar_write(priv->hash_regs[whichreg], tempval);
3310 }
3311
3312
3313 /* There are multiple MAC Address register pairs on some controllers
3314 * This function sets the numth pair to a given address
3315 */
3316 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3317 const u8 *addr)
3318 {
3319 struct gfar_private *priv = netdev_priv(dev);
3320 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3321 u32 tempval;
3322 u32 __iomem *macptr = &regs->macstnaddr1;
3323
3324 macptr += num*2;
3325
3326 /* For a station address of 0x12345678ABCD in transmission
3327 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3328 * MACnADDR2 is set to 0x34120000.
3329 */
3330 tempval = (addr[5] << 24) | (addr[4] << 16) |
3331 (addr[3] << 8) | addr[2];
3332
3333 gfar_write(macptr, tempval);
3334
3335 tempval = (addr[1] << 24) | (addr[0] << 16);
3336
3337 gfar_write(macptr+1, tempval);
3338 }
3339
3340 /* GFAR error interrupt handler */
3341 static irqreturn_t gfar_error(int irq, void *grp_id)
3342 {
3343 struct gfar_priv_grp *gfargrp = grp_id;
3344 struct gfar __iomem *regs = gfargrp->regs;
3345 struct gfar_private *priv= gfargrp->priv;
3346 struct net_device *dev = priv->ndev;
3347
3348 /* Save ievent for future reference */
3349 u32 events = gfar_read(&regs->ievent);
3350
3351 /* Clear IEVENT */
3352 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3353
3354 /* Magic Packet is not an error. */
3355 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3356 (events & IEVENT_MAG))
3357 events &= ~IEVENT_MAG;
3358
3359 /* Hmm... */
3360 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3361 netdev_dbg(dev,
3362 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3363 events, gfar_read(&regs->imask));
3364
3365 /* Update the error counters */
3366 if (events & IEVENT_TXE) {
3367 dev->stats.tx_errors++;
3368
3369 if (events & IEVENT_LC)
3370 dev->stats.tx_window_errors++;
3371 if (events & IEVENT_CRL)
3372 dev->stats.tx_aborted_errors++;
3373 if (events & IEVENT_XFUN) {
3374 netif_dbg(priv, tx_err, dev,
3375 "TX FIFO underrun, packet dropped\n");
3376 dev->stats.tx_dropped++;
3377 atomic64_inc(&priv->extra_stats.tx_underrun);
3378
3379 schedule_work(&priv->reset_task);
3380 }
3381 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3382 }
3383 if (events & IEVENT_BSY) {
3384 dev->stats.rx_errors++;
3385 atomic64_inc(&priv->extra_stats.rx_bsy);
3386
3387 gfar_receive(irq, grp_id);
3388
3389 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3390 gfar_read(&regs->rstat));
3391 }
3392 if (events & IEVENT_BABR) {
3393 dev->stats.rx_errors++;
3394 atomic64_inc(&priv->extra_stats.rx_babr);
3395
3396 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3397 }
3398 if (events & IEVENT_EBERR) {
3399 atomic64_inc(&priv->extra_stats.eberr);
3400 netif_dbg(priv, rx_err, dev, "bus error\n");
3401 }
3402 if (events & IEVENT_RXC)
3403 netif_dbg(priv, rx_status, dev, "control frame\n");
3404
3405 if (events & IEVENT_BABT) {
3406 atomic64_inc(&priv->extra_stats.tx_babt);
3407 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3408 }
3409 return IRQ_HANDLED;
3410 }
3411
3412 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3413 {
3414 struct phy_device *phydev = priv->phydev;
3415 u32 val = 0;
3416
3417 if (!phydev->duplex)
3418 return val;
3419
3420 if (!priv->pause_aneg_en) {
3421 if (priv->tx_pause_en)
3422 val |= MACCFG1_TX_FLOW;
3423 if (priv->rx_pause_en)
3424 val |= MACCFG1_RX_FLOW;
3425 } else {
3426 u16 lcl_adv, rmt_adv;
3427 u8 flowctrl;
3428 /* get link partner capabilities */
3429 rmt_adv = 0;
3430 if (phydev->pause)
3431 rmt_adv = LPA_PAUSE_CAP;
3432 if (phydev->asym_pause)
3433 rmt_adv |= LPA_PAUSE_ASYM;
3434
3435 lcl_adv = 0;
3436 if (phydev->advertising & ADVERTISED_Pause)
3437 lcl_adv |= ADVERTISE_PAUSE_CAP;
3438 if (phydev->advertising & ADVERTISED_Asym_Pause)
3439 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3440
3441 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3442 if (flowctrl & FLOW_CTRL_TX)
3443 val |= MACCFG1_TX_FLOW;
3444 if (flowctrl & FLOW_CTRL_RX)
3445 val |= MACCFG1_RX_FLOW;
3446 }
3447
3448 return val;
3449 }
3450
3451 static noinline void gfar_update_link_state(struct gfar_private *priv)
3452 {
3453 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3454 struct phy_device *phydev = priv->phydev;
3455 struct gfar_priv_rx_q *rx_queue = NULL;
3456 int i;
3457 struct rxbd8 *bdp;
3458
3459 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3460 return;
3461
3462 if (phydev->link) {
3463 u32 tempval1 = gfar_read(&regs->maccfg1);
3464 u32 tempval = gfar_read(&regs->maccfg2);
3465 u32 ecntrl = gfar_read(&regs->ecntrl);
3466 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3467
3468 if (phydev->duplex != priv->oldduplex) {
3469 if (!(phydev->duplex))
3470 tempval &= ~(MACCFG2_FULL_DUPLEX);
3471 else
3472 tempval |= MACCFG2_FULL_DUPLEX;
3473
3474 priv->oldduplex = phydev->duplex;
3475 }
3476
3477 if (phydev->speed != priv->oldspeed) {
3478 switch (phydev->speed) {
3479 case 1000:
3480 tempval =
3481 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3482
3483 ecntrl &= ~(ECNTRL_R100);
3484 break;
3485 case 100:
3486 case 10:
3487 tempval =
3488 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3489
3490 /* Reduced mode distinguishes
3491 * between 10 and 100
3492 */
3493 if (phydev->speed == SPEED_100)
3494 ecntrl |= ECNTRL_R100;
3495 else
3496 ecntrl &= ~(ECNTRL_R100);
3497 break;
3498 default:
3499 netif_warn(priv, link, priv->ndev,
3500 "Ack! Speed (%d) is not 10/100/1000!\n",
3501 phydev->speed);
3502 break;
3503 }
3504
3505 priv->oldspeed = phydev->speed;
3506 }
3507
3508 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3509 tempval1 |= gfar_get_flowctrl_cfg(priv);
3510
3511 /* Turn last free buffer recording on */
3512 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3513 for (i = 0; i < priv->num_rx_queues; i++) {
3514 rx_queue = priv->rx_queue[i];
3515 bdp = rx_queue->cur_rx;
3516 /* skip to previous bd */
3517 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3518 rx_queue->rx_bd_base,
3519 rx_queue->rx_ring_size);
3520
3521 if (rx_queue->rfbptr)
3522 gfar_write(rx_queue->rfbptr, (u32)bdp);
3523 }
3524
3525 priv->tx_actual_en = 1;
3526 }
3527
3528 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3529 priv->tx_actual_en = 0;
3530
3531 gfar_write(&regs->maccfg1, tempval1);
3532 gfar_write(&regs->maccfg2, tempval);
3533 gfar_write(&regs->ecntrl, ecntrl);
3534
3535 if (!priv->oldlink)
3536 priv->oldlink = 1;
3537
3538 } else if (priv->oldlink) {
3539 priv->oldlink = 0;
3540 priv->oldspeed = 0;
3541 priv->oldduplex = -1;
3542 }
3543
3544 if (netif_msg_link(priv))
3545 phy_print_status(phydev);
3546 }
3547
3548 static const struct of_device_id gfar_match[] =
3549 {
3550 {
3551 .type = "network",
3552 .compatible = "gianfar",
3553 },
3554 {
3555 .compatible = "fsl,etsec2",
3556 },
3557 {},
3558 };
3559 MODULE_DEVICE_TABLE(of, gfar_match);
3560
3561 /* Structure for a device driver */
3562 static struct platform_driver gfar_driver = {
3563 .driver = {
3564 .name = "fsl-gianfar",
3565 .pm = GFAR_PM_OPS,
3566 .of_match_table = gfar_match,
3567 },
3568 .probe = gfar_probe,
3569 .remove = gfar_remove,
3570 };
3571
3572 module_platform_driver(gfar_driver);