]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/freescale/gianfar.c
Merge remote-tracking branches 'regulator/topic/of', 'regulator/topic/pv88080', ...
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = &regs->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = &regs->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = &regs->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = &regs->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(&regs->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = &regs->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = &regs->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(&regs->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(&regs->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(&regs->imask, IMASK_DEFAULT);
532 }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 u32 stash_len = 0;
742 u32 stash_idx = 0;
743 unsigned int num_tx_qs, num_rx_qs;
744 unsigned short mode, poll_mode;
745
746 if (!np)
747 return -ENODEV;
748
749 if (of_device_is_compatible(np, "fsl,etsec2")) {
750 mode = MQ_MG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 } else {
753 mode = SQ_SG_MODE;
754 poll_mode = GFAR_SQ_POLLING;
755 }
756
757 if (mode == SQ_SG_MODE) {
758 num_tx_qs = 1;
759 num_rx_qs = 1;
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps = gfar_of_group_count(np);
763
764 if (num_grps == 0 || num_grps > MAXGROUPS) {
765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 num_grps);
767 pr_err("Cannot do alloc_etherdev, aborting\n");
768 return -EINVAL;
769 }
770
771 if (poll_mode == GFAR_SQ_POLLING) {
772 num_tx_qs = num_grps; /* one txq per int group */
773 num_rx_qs = num_grps; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues, rx_queues;
776 int ret;
777
778 /* parse the num of HW tx and rx queues */
779 ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 &tx_queues);
781 num_tx_qs = ret ? 1 : tx_queues;
782
783 ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 &rx_queues);
785 num_rx_qs = ret ? 1 : rx_queues;
786 }
787 }
788
789 if (num_tx_qs > MAX_TX_QS) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs, MAX_TX_QS);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
794 }
795
796 if (num_rx_qs > MAX_RX_QS) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs, MAX_RX_QS);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
800 return -EINVAL;
801 }
802
803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 dev = *pdev;
805 if (NULL == dev)
806 return -ENOMEM;
807
808 priv = netdev_priv(dev);
809 priv->ndev = dev;
810
811 priv->mode = mode;
812 priv->poll_mode = poll_mode;
813
814 priv->num_tx_queues = num_tx_qs;
815 netif_set_real_num_rx_queues(dev, num_rx_qs);
816 priv->num_rx_queues = num_rx_qs;
817
818 err = gfar_alloc_tx_queues(priv);
819 if (err)
820 goto tx_alloc_failed;
821
822 err = gfar_alloc_rx_queues(priv);
823 if (err)
824 goto rx_alloc_failed;
825
826 err = of_property_read_string(np, "model", &model);
827 if (err) {
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed;
830 }
831
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv->rx_list.list);
834 priv->rx_list.count = 0;
835 mutex_init(&priv->rx_queue_access);
836
837 for (i = 0; i < MAXGROUPS; i++)
838 priv->gfargrp[i].regs = NULL;
839
840 /* Parse and initialize group specific information */
841 if (priv->mode == MQ_MG_MODE) {
842 for_each_available_child_of_node(np, child) {
843 if (of_node_cmp(child->name, "queue-group"))
844 continue;
845
846 err = gfar_parse_group(child, priv, model);
847 if (err)
848 goto err_grp_init;
849 }
850 } else { /* SQ_SG_MODE */
851 err = gfar_parse_group(np, priv, model);
852 if (err)
853 goto err_grp_init;
854 }
855
856 if (of_property_read_bool(np, "bd-stash")) {
857 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 priv->bd_stash_en = 1;
859 }
860
861 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862
863 if (err == 0)
864 priv->rx_stash_size = stash_len;
865
866 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867
868 if (err == 0)
869 priv->rx_stash_index = stash_idx;
870
871 if (stash_len || stash_idx)
872 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873
874 mac_addr = of_get_mac_address(np);
875
876 if (mac_addr)
877 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878
879 if (model && !strcasecmp(model, "TSEC"))
880 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 FSL_GIANFAR_DEV_HAS_COALESCE |
882 FSL_GIANFAR_DEV_HAS_RMON |
883 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884
885 if (model && !strcasecmp(model, "eTSEC"))
886 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 FSL_GIANFAR_DEV_HAS_COALESCE |
888 FSL_GIANFAR_DEV_HAS_RMON |
889 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 FSL_GIANFAR_DEV_HAS_CSUM |
891 FSL_GIANFAR_DEV_HAS_VLAN |
892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 FSL_GIANFAR_DEV_HAS_TIMER |
895 FSL_GIANFAR_DEV_HAS_RX_FILER;
896
897 err = of_property_read_string(np, "phy-connection-type", &ctype);
898
899 /* We only care about rgmii-id. The rest are autodetected */
900 if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 else
903 priv->interface = PHY_INTERFACE_MODE_MII;
904
905 if (of_find_property(np, "fsl,magic-packet", NULL))
906 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907
908 if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910
911 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912
913 /* In the case of a fixed PHY, the DT node associated
914 * to the PHY is the Ethernet MAC DT node.
915 */
916 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 err = of_phy_register_fixed_link(np);
918 if (err)
919 goto err_grp_init;
920
921 priv->phy_node = of_node_get(np);
922 }
923
924 /* Find the TBI PHY. If it's not there, we don't support SGMII */
925 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926
927 return 0;
928
929 err_grp_init:
930 unmap_group_regs(priv);
931 rx_alloc_failed:
932 gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934 gfar_free_tx_queues(priv);
935 free_gfar_dev(priv);
936 return err;
937 }
938
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941 struct hwtstamp_config config;
942 struct gfar_private *priv = netdev_priv(netdev);
943
944 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 return -EFAULT;
946
947 /* reserved for future extensions */
948 if (config.flags)
949 return -EINVAL;
950
951 switch (config.tx_type) {
952 case HWTSTAMP_TX_OFF:
953 priv->hwts_tx_en = 0;
954 break;
955 case HWTSTAMP_TX_ON:
956 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 return -ERANGE;
958 priv->hwts_tx_en = 1;
959 break;
960 default:
961 return -ERANGE;
962 }
963
964 switch (config.rx_filter) {
965 case HWTSTAMP_FILTER_NONE:
966 if (priv->hwts_rx_en) {
967 priv->hwts_rx_en = 0;
968 reset_gfar(netdev);
969 }
970 break;
971 default:
972 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 return -ERANGE;
974 if (!priv->hwts_rx_en) {
975 priv->hwts_rx_en = 1;
976 reset_gfar(netdev);
977 }
978 config.rx_filter = HWTSTAMP_FILTER_ALL;
979 break;
980 }
981
982 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 -EFAULT : 0;
984 }
985
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988 struct hwtstamp_config config;
989 struct gfar_private *priv = netdev_priv(netdev);
990
991 config.flags = 0;
992 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 config.rx_filter = (priv->hwts_rx_en ?
994 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995
996 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 -EFAULT : 0;
998 }
999
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002 struct phy_device *phydev = dev->phydev;
1003
1004 if (!netif_running(dev))
1005 return -EINVAL;
1006
1007 if (cmd == SIOCSHWTSTAMP)
1008 return gfar_hwtstamp_set(dev, rq);
1009 if (cmd == SIOCGHWTSTAMP)
1010 return gfar_hwtstamp_get(dev, rq);
1011
1012 if (!phydev)
1013 return -ENODEV;
1014
1015 return phy_mii_ioctl(phydev, rq, cmd);
1016 }
1017
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 u32 class)
1020 {
1021 u32 rqfpr = FPR_FILER_MASK;
1022 u32 rqfcr = 0x0;
1023
1024 rqfar--;
1025 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 priv->ftp_rqfpr[rqfar] = rqfpr;
1027 priv->ftp_rqfcr[rqfar] = rqfcr;
1028 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030 rqfar--;
1031 rqfcr = RQFCR_CMP_NOMATCH;
1032 priv->ftp_rqfpr[rqfar] = rqfpr;
1033 priv->ftp_rqfcr[rqfar] = rqfcr;
1034 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036 rqfar--;
1037 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 rqfpr = class;
1039 priv->ftp_rqfcr[rqfar] = rqfcr;
1040 priv->ftp_rqfpr[rqfar] = rqfpr;
1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043 rqfar--;
1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 rqfpr = class;
1046 priv->ftp_rqfcr[rqfar] = rqfcr;
1047 priv->ftp_rqfpr[rqfar] = rqfpr;
1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050 return rqfar;
1051 }
1052
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055 int i = 0x0;
1056 u32 rqfar = MAX_FILER_IDX;
1057 u32 rqfcr = 0x0;
1058 u32 rqfpr = FPR_FILER_MASK;
1059
1060 /* Default rule */
1061 rqfcr = RQFCR_CMP_MATCH;
1062 priv->ftp_rqfcr[rqfar] = rqfcr;
1063 priv->ftp_rqfpr[rqfar] = rqfpr;
1064 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073 /* cur_filer_idx indicated the first non-masked rule */
1074 priv->cur_filer_idx = rqfar;
1075
1076 /* Rest are masked rules */
1077 rqfcr = RQFCR_CMP_NOMATCH;
1078 for (i = 0; i < rqfar; i++) {
1079 priv->ftp_rqfcr[i] = rqfcr;
1080 priv->ftp_rqfpr[i] = rqfpr;
1081 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 }
1083 }
1084
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088 unsigned int pvr = mfspr(SPRN_PVR);
1089 unsigned int svr = mfspr(SPRN_SVR);
1090 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 unsigned int rev = svr & 0xffff;
1092
1093 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 priv->errata |= GFAR_ERRATA_74;
1097
1098 /* MPC8313 and MPC837x all rev */
1099 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 priv->errata |= GFAR_ERRATA_76;
1102
1103 /* MPC8313 Rev < 2.0 */
1104 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 priv->errata |= GFAR_ERRATA_12;
1106 }
1107
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110 unsigned int svr = mfspr(SPRN_SVR);
1111
1112 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 priv->errata |= GFAR_ERRATA_12;
1114 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124 struct device *dev = &priv->ofdev->dev;
1125
1126 /* no plans to fix */
1127 priv->errata |= GFAR_ERRATA_A002;
1128
1129 #ifdef CONFIG_PPC
1130 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 __gfar_detect_errata_85xx(priv);
1132 else /* non-mpc85xx parts, i.e. e300 core based */
1133 __gfar_detect_errata_83xx(priv);
1134 #endif
1135
1136 if (priv->errata)
1137 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 priv->errata);
1139 }
1140
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 u32 tempval;
1145
1146 /* Reset MAC layer */
1147 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149 /* We need to delay at least 3 TX clocks */
1150 udelay(3);
1151
1152 /* the soft reset bit is not self-resetting, so we need to
1153 * clear it before resuming normal operation
1154 */
1155 gfar_write(&regs->maccfg1, 0);
1156
1157 udelay(3);
1158
1159 gfar_rx_offload_en(priv);
1160
1161 /* Initialize the max receive frame/buffer lengths */
1162 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165 /* Initialize the Minimum Frame Length Register */
1166 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168 /* Initialize MACCFG2. */
1169 tempval = MACCFG2_INIT_SETTINGS;
1170
1171 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1173 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 */
1175 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178 gfar_write(&regs->maccfg2, tempval);
1179
1180 /* Clear mac addr hash registers */
1181 gfar_write(&regs->igaddr0, 0);
1182 gfar_write(&regs->igaddr1, 0);
1183 gfar_write(&regs->igaddr2, 0);
1184 gfar_write(&regs->igaddr3, 0);
1185 gfar_write(&regs->igaddr4, 0);
1186 gfar_write(&regs->igaddr5, 0);
1187 gfar_write(&regs->igaddr6, 0);
1188 gfar_write(&regs->igaddr7, 0);
1189
1190 gfar_write(&regs->gaddr0, 0);
1191 gfar_write(&regs->gaddr1, 0);
1192 gfar_write(&regs->gaddr2, 0);
1193 gfar_write(&regs->gaddr3, 0);
1194 gfar_write(&regs->gaddr4, 0);
1195 gfar_write(&regs->gaddr5, 0);
1196 gfar_write(&regs->gaddr6, 0);
1197 gfar_write(&regs->gaddr7, 0);
1198
1199 if (priv->extended_hash)
1200 gfar_clear_exact_match(priv->ndev);
1201
1202 gfar_mac_rx_config(priv);
1203
1204 gfar_mac_tx_config(priv);
1205
1206 gfar_set_mac_address(priv->ndev);
1207
1208 gfar_set_multi(priv->ndev);
1209
1210 /* clear ievent and imask before configuring coalescing */
1211 gfar_ints_disable(priv);
1212
1213 /* Configure the coalescing support */
1214 gfar_configure_coalescing_all(priv);
1215 }
1216
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 u32 attrs;
1221
1222 /* Stop the DMA engine now, in case it was running before
1223 * (The firmware could have used it, and left it running).
1224 */
1225 gfar_halt(priv);
1226
1227 gfar_mac_reset(priv);
1228
1229 /* Zero out the rmon mib registers if it has them */
1230 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233 /* Mask off the CAM interrupts */
1234 gfar_write(&regs->rmon.cam1, 0xffffffff);
1235 gfar_write(&regs->rmon.cam2, 0xffffffff);
1236 }
1237
1238 /* Initialize ECNTRL */
1239 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241 /* Set the extraction length and index */
1242 attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 ATTRELI_EI(priv->rx_stash_index);
1244
1245 gfar_write(&regs->attreli, attrs);
1246
1247 /* Start with defaults, and add stashing
1248 * depending on driver parameters
1249 */
1250 attrs = ATTR_INIT_SETTINGS;
1251
1252 if (priv->bd_stash_en)
1253 attrs |= ATTR_BDSTASH;
1254
1255 if (priv->rx_stash_size != 0)
1256 attrs |= ATTR_BUFSTASH;
1257
1258 gfar_write(&regs->attr, attrs);
1259
1260 /* FIFO configs */
1261 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265 /* Program the interrupt steering regs, only for MG devices */
1266 if (priv->num_grps > 1)
1267 gfar_write_isrg(priv);
1268 }
1269
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 priv->extended_hash = 1;
1276 priv->hash_width = 9;
1277
1278 priv->hash_regs[0] = &regs->igaddr0;
1279 priv->hash_regs[1] = &regs->igaddr1;
1280 priv->hash_regs[2] = &regs->igaddr2;
1281 priv->hash_regs[3] = &regs->igaddr3;
1282 priv->hash_regs[4] = &regs->igaddr4;
1283 priv->hash_regs[5] = &regs->igaddr5;
1284 priv->hash_regs[6] = &regs->igaddr6;
1285 priv->hash_regs[7] = &regs->igaddr7;
1286 priv->hash_regs[8] = &regs->gaddr0;
1287 priv->hash_regs[9] = &regs->gaddr1;
1288 priv->hash_regs[10] = &regs->gaddr2;
1289 priv->hash_regs[11] = &regs->gaddr3;
1290 priv->hash_regs[12] = &regs->gaddr4;
1291 priv->hash_regs[13] = &regs->gaddr5;
1292 priv->hash_regs[14] = &regs->gaddr6;
1293 priv->hash_regs[15] = &regs->gaddr7;
1294
1295 } else {
1296 priv->extended_hash = 0;
1297 priv->hash_width = 8;
1298
1299 priv->hash_regs[0] = &regs->gaddr0;
1300 priv->hash_regs[1] = &regs->gaddr1;
1301 priv->hash_regs[2] = &regs->gaddr2;
1302 priv->hash_regs[3] = &regs->gaddr3;
1303 priv->hash_regs[4] = &regs->gaddr4;
1304 priv->hash_regs[5] = &regs->gaddr5;
1305 priv->hash_regs[6] = &regs->gaddr6;
1306 priv->hash_regs[7] = &regs->gaddr7;
1307 }
1308 }
1309
1310 /* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315 struct net_device *dev = NULL;
1316 struct gfar_private *priv = NULL;
1317 int err = 0, i;
1318
1319 err = gfar_of_init(ofdev, &dev);
1320
1321 if (err)
1322 return err;
1323
1324 priv = netdev_priv(dev);
1325 priv->ndev = dev;
1326 priv->ofdev = ofdev;
1327 priv->dev = &ofdev->dev;
1328 SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330 INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332 platform_set_drvdata(ofdev, priv);
1333
1334 gfar_detect_errata(priv);
1335
1336 /* Set the dev->base_addr to the gfar reg region */
1337 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339 /* Fill in the dev structure */
1340 dev->watchdog_timeo = TX_TIMEOUT;
1341 dev->mtu = 1500;
1342 dev->netdev_ops = &gfar_netdev_ops;
1343 dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345 /* Register for napi ...We are registering NAPI for each grp */
1346 for (i = 0; i < priv->num_grps; i++) {
1347 if (priv->poll_mode == GFAR_SQ_POLLING) {
1348 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351 gfar_poll_tx_sq, 2);
1352 } else {
1353 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354 gfar_poll_rx, GFAR_DEV_WEIGHT);
1355 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356 gfar_poll_tx, 2);
1357 }
1358 }
1359
1360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362 NETIF_F_RXCSUM;
1363 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365 }
1366
1367 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369 NETIF_F_HW_VLAN_CTAG_RX;
1370 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371 }
1372
1373 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375 gfar_init_addr_hash_table(priv);
1376
1377 /* Insert receive time stamps into padding alignment bytes */
1378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379 priv->padding = 8;
1380
1381 if (dev->features & NETIF_F_IP_CSUM ||
1382 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383 dev->needed_headroom = GMAC_FCB_LEN;
1384
1385 /* Initializing some of the rx/tx queue level parameters */
1386 for (i = 0; i < priv->num_tx_queues; i++) {
1387 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391 }
1392
1393 for (i = 0; i < priv->num_rx_queues; i++) {
1394 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397 }
1398
1399 /* Always enable rx filer if available */
1400 priv->rx_filer_enable =
1401 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1402 /* Enable most messages by default */
1403 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1404 /* use pritority h/w tx queue scheduling for single queue devices */
1405 if (priv->num_tx_queues == 1)
1406 priv->prio_sched_en = 1;
1407
1408 set_bit(GFAR_DOWN, &priv->state);
1409
1410 gfar_hw_init(priv);
1411
1412 /* Carrier starts down, phylib will bring it up */
1413 netif_carrier_off(dev);
1414
1415 err = register_netdev(dev);
1416
1417 if (err) {
1418 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1419 goto register_fail;
1420 }
1421
1422 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1423 priv->wol_supported |= GFAR_WOL_MAGIC;
1424
1425 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1426 priv->rx_filer_enable)
1427 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1428
1429 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1430
1431 /* fill out IRQ number and name fields */
1432 for (i = 0; i < priv->num_grps; i++) {
1433 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1434 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1435 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1436 dev->name, "_g", '0' + i, "_tx");
1437 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1438 dev->name, "_g", '0' + i, "_rx");
1439 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1440 dev->name, "_g", '0' + i, "_er");
1441 } else
1442 strcpy(gfar_irq(grp, TX)->name, dev->name);
1443 }
1444
1445 /* Initialize the filer table */
1446 gfar_init_filer_table(priv);
1447
1448 /* Print out the device info */
1449 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1450
1451 /* Even more device info helps when determining which kernel
1452 * provided which set of benchmarks.
1453 */
1454 netdev_info(dev, "Running with NAPI enabled\n");
1455 for (i = 0; i < priv->num_rx_queues; i++)
1456 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1457 i, priv->rx_queue[i]->rx_ring_size);
1458 for (i = 0; i < priv->num_tx_queues; i++)
1459 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1460 i, priv->tx_queue[i]->tx_ring_size);
1461
1462 return 0;
1463
1464 register_fail:
1465 unmap_group_regs(priv);
1466 gfar_free_rx_queues(priv);
1467 gfar_free_tx_queues(priv);
1468 of_node_put(priv->phy_node);
1469 of_node_put(priv->tbi_node);
1470 free_gfar_dev(priv);
1471 return err;
1472 }
1473
1474 static int gfar_remove(struct platform_device *ofdev)
1475 {
1476 struct gfar_private *priv = platform_get_drvdata(ofdev);
1477
1478 of_node_put(priv->phy_node);
1479 of_node_put(priv->tbi_node);
1480
1481 unregister_netdev(priv->ndev);
1482 unmap_group_regs(priv);
1483 gfar_free_rx_queues(priv);
1484 gfar_free_tx_queues(priv);
1485 free_gfar_dev(priv);
1486
1487 return 0;
1488 }
1489
1490 #ifdef CONFIG_PM
1491
1492 static void __gfar_filer_disable(struct gfar_private *priv)
1493 {
1494 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1495 u32 temp;
1496
1497 temp = gfar_read(&regs->rctrl);
1498 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1499 gfar_write(&regs->rctrl, temp);
1500 }
1501
1502 static void __gfar_filer_enable(struct gfar_private *priv)
1503 {
1504 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1505 u32 temp;
1506
1507 temp = gfar_read(&regs->rctrl);
1508 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1509 gfar_write(&regs->rctrl, temp);
1510 }
1511
1512 /* Filer rules implementing wol capabilities */
1513 static void gfar_filer_config_wol(struct gfar_private *priv)
1514 {
1515 unsigned int i;
1516 u32 rqfcr;
1517
1518 __gfar_filer_disable(priv);
1519
1520 /* clear the filer table, reject any packet by default */
1521 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1522 for (i = 0; i <= MAX_FILER_IDX; i++)
1523 gfar_write_filer(priv, i, rqfcr, 0);
1524
1525 i = 0;
1526 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1527 /* unicast packet, accept it */
1528 struct net_device *ndev = priv->ndev;
1529 /* get the default rx queue index */
1530 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1531 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1532 (ndev->dev_addr[1] << 8) |
1533 ndev->dev_addr[2];
1534
1535 rqfcr = (qindex << 10) | RQFCR_AND |
1536 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1537
1538 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1539
1540 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1541 (ndev->dev_addr[4] << 8) |
1542 ndev->dev_addr[5];
1543 rqfcr = (qindex << 10) | RQFCR_GPI |
1544 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1545 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1546 }
1547
1548 __gfar_filer_enable(priv);
1549 }
1550
1551 static void gfar_filer_restore_table(struct gfar_private *priv)
1552 {
1553 u32 rqfcr, rqfpr;
1554 unsigned int i;
1555
1556 __gfar_filer_disable(priv);
1557
1558 for (i = 0; i <= MAX_FILER_IDX; i++) {
1559 rqfcr = priv->ftp_rqfcr[i];
1560 rqfpr = priv->ftp_rqfpr[i];
1561 gfar_write_filer(priv, i, rqfcr, rqfpr);
1562 }
1563
1564 __gfar_filer_enable(priv);
1565 }
1566
1567 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1568 static void gfar_start_wol_filer(struct gfar_private *priv)
1569 {
1570 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1571 u32 tempval;
1572 int i = 0;
1573
1574 /* Enable Rx hw queues */
1575 gfar_write(&regs->rqueue, priv->rqueue);
1576
1577 /* Initialize DMACTRL to have WWR and WOP */
1578 tempval = gfar_read(&regs->dmactrl);
1579 tempval |= DMACTRL_INIT_SETTINGS;
1580 gfar_write(&regs->dmactrl, tempval);
1581
1582 /* Make sure we aren't stopped */
1583 tempval = gfar_read(&regs->dmactrl);
1584 tempval &= ~DMACTRL_GRS;
1585 gfar_write(&regs->dmactrl, tempval);
1586
1587 for (i = 0; i < priv->num_grps; i++) {
1588 regs = priv->gfargrp[i].regs;
1589 /* Clear RHLT, so that the DMA starts polling now */
1590 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1591 /* enable the Filer General Purpose Interrupt */
1592 gfar_write(&regs->imask, IMASK_FGPI);
1593 }
1594
1595 /* Enable Rx DMA */
1596 tempval = gfar_read(&regs->maccfg1);
1597 tempval |= MACCFG1_RX_EN;
1598 gfar_write(&regs->maccfg1, tempval);
1599 }
1600
1601 static int gfar_suspend(struct device *dev)
1602 {
1603 struct gfar_private *priv = dev_get_drvdata(dev);
1604 struct net_device *ndev = priv->ndev;
1605 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606 u32 tempval;
1607 u16 wol = priv->wol_opts;
1608
1609 if (!netif_running(ndev))
1610 return 0;
1611
1612 disable_napi(priv);
1613 netif_tx_lock(ndev);
1614 netif_device_detach(ndev);
1615 netif_tx_unlock(ndev);
1616
1617 gfar_halt(priv);
1618
1619 if (wol & GFAR_WOL_MAGIC) {
1620 /* Enable interrupt on Magic Packet */
1621 gfar_write(&regs->imask, IMASK_MAG);
1622
1623 /* Enable Magic Packet mode */
1624 tempval = gfar_read(&regs->maccfg2);
1625 tempval |= MACCFG2_MPEN;
1626 gfar_write(&regs->maccfg2, tempval);
1627
1628 /* re-enable the Rx block */
1629 tempval = gfar_read(&regs->maccfg1);
1630 tempval |= MACCFG1_RX_EN;
1631 gfar_write(&regs->maccfg1, tempval);
1632
1633 } else if (wol & GFAR_WOL_FILER_UCAST) {
1634 gfar_filer_config_wol(priv);
1635 gfar_start_wol_filer(priv);
1636
1637 } else {
1638 phy_stop(ndev->phydev);
1639 }
1640
1641 return 0;
1642 }
1643
1644 static int gfar_resume(struct device *dev)
1645 {
1646 struct gfar_private *priv = dev_get_drvdata(dev);
1647 struct net_device *ndev = priv->ndev;
1648 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649 u32 tempval;
1650 u16 wol = priv->wol_opts;
1651
1652 if (!netif_running(ndev))
1653 return 0;
1654
1655 if (wol & GFAR_WOL_MAGIC) {
1656 /* Disable Magic Packet mode */
1657 tempval = gfar_read(&regs->maccfg2);
1658 tempval &= ~MACCFG2_MPEN;
1659 gfar_write(&regs->maccfg2, tempval);
1660
1661 } else if (wol & GFAR_WOL_FILER_UCAST) {
1662 /* need to stop rx only, tx is already down */
1663 gfar_halt(priv);
1664 gfar_filer_restore_table(priv);
1665
1666 } else {
1667 phy_start(ndev->phydev);
1668 }
1669
1670 gfar_start(priv);
1671
1672 netif_device_attach(ndev);
1673 enable_napi(priv);
1674
1675 return 0;
1676 }
1677
1678 static int gfar_restore(struct device *dev)
1679 {
1680 struct gfar_private *priv = dev_get_drvdata(dev);
1681 struct net_device *ndev = priv->ndev;
1682
1683 if (!netif_running(ndev)) {
1684 netif_device_attach(ndev);
1685
1686 return 0;
1687 }
1688
1689 gfar_init_bds(ndev);
1690
1691 gfar_mac_reset(priv);
1692
1693 gfar_init_tx_rx_base(priv);
1694
1695 gfar_start(priv);
1696
1697 priv->oldlink = 0;
1698 priv->oldspeed = 0;
1699 priv->oldduplex = -1;
1700
1701 if (ndev->phydev)
1702 phy_start(ndev->phydev);
1703
1704 netif_device_attach(ndev);
1705 enable_napi(priv);
1706
1707 return 0;
1708 }
1709
1710 static struct dev_pm_ops gfar_pm_ops = {
1711 .suspend = gfar_suspend,
1712 .resume = gfar_resume,
1713 .freeze = gfar_suspend,
1714 .thaw = gfar_resume,
1715 .restore = gfar_restore,
1716 };
1717
1718 #define GFAR_PM_OPS (&gfar_pm_ops)
1719
1720 #else
1721
1722 #define GFAR_PM_OPS NULL
1723
1724 #endif
1725
1726 /* Reads the controller's registers to determine what interface
1727 * connects it to the PHY.
1728 */
1729 static phy_interface_t gfar_get_interface(struct net_device *dev)
1730 {
1731 struct gfar_private *priv = netdev_priv(dev);
1732 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1733 u32 ecntrl;
1734
1735 ecntrl = gfar_read(&regs->ecntrl);
1736
1737 if (ecntrl & ECNTRL_SGMII_MODE)
1738 return PHY_INTERFACE_MODE_SGMII;
1739
1740 if (ecntrl & ECNTRL_TBI_MODE) {
1741 if (ecntrl & ECNTRL_REDUCED_MODE)
1742 return PHY_INTERFACE_MODE_RTBI;
1743 else
1744 return PHY_INTERFACE_MODE_TBI;
1745 }
1746
1747 if (ecntrl & ECNTRL_REDUCED_MODE) {
1748 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1749 return PHY_INTERFACE_MODE_RMII;
1750 }
1751 else {
1752 phy_interface_t interface = priv->interface;
1753
1754 /* This isn't autodetected right now, so it must
1755 * be set by the device tree or platform code.
1756 */
1757 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1758 return PHY_INTERFACE_MODE_RGMII_ID;
1759
1760 return PHY_INTERFACE_MODE_RGMII;
1761 }
1762 }
1763
1764 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1765 return PHY_INTERFACE_MODE_GMII;
1766
1767 return PHY_INTERFACE_MODE_MII;
1768 }
1769
1770
1771 /* Initializes driver's PHY state, and attaches to the PHY.
1772 * Returns 0 on success.
1773 */
1774 static int init_phy(struct net_device *dev)
1775 {
1776 struct gfar_private *priv = netdev_priv(dev);
1777 uint gigabit_support =
1778 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1779 GFAR_SUPPORTED_GBIT : 0;
1780 phy_interface_t interface;
1781 struct phy_device *phydev;
1782
1783 priv->oldlink = 0;
1784 priv->oldspeed = 0;
1785 priv->oldduplex = -1;
1786
1787 interface = gfar_get_interface(dev);
1788
1789 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1790 interface);
1791 if (!phydev) {
1792 dev_err(&dev->dev, "could not attach to PHY\n");
1793 return -ENODEV;
1794 }
1795
1796 if (interface == PHY_INTERFACE_MODE_SGMII)
1797 gfar_configure_serdes(dev);
1798
1799 /* Remove any features not supported by the controller */
1800 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1801 phydev->advertising = phydev->supported;
1802
1803 /* Add support for flow control, but don't advertise it by default */
1804 phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1805
1806 return 0;
1807 }
1808
1809 /* Initialize TBI PHY interface for communicating with the
1810 * SERDES lynx PHY on the chip. We communicate with this PHY
1811 * through the MDIO bus on each controller, treating it as a
1812 * "normal" PHY at the address found in the TBIPA register. We assume
1813 * that the TBIPA register is valid. Either the MDIO bus code will set
1814 * it to a value that doesn't conflict with other PHYs on the bus, or the
1815 * value doesn't matter, as there are no other PHYs on the bus.
1816 */
1817 static void gfar_configure_serdes(struct net_device *dev)
1818 {
1819 struct gfar_private *priv = netdev_priv(dev);
1820 struct phy_device *tbiphy;
1821
1822 if (!priv->tbi_node) {
1823 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1824 "device tree specify a tbi-handle\n");
1825 return;
1826 }
1827
1828 tbiphy = of_phy_find_device(priv->tbi_node);
1829 if (!tbiphy) {
1830 dev_err(&dev->dev, "error: Could not get TBI device\n");
1831 return;
1832 }
1833
1834 /* If the link is already up, we must already be ok, and don't need to
1835 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1836 * everything for us? Resetting it takes the link down and requires
1837 * several seconds for it to come back.
1838 */
1839 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1840 put_device(&tbiphy->mdio.dev);
1841 return;
1842 }
1843
1844 /* Single clk mode, mii mode off(for serdes communication) */
1845 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1846
1847 phy_write(tbiphy, MII_ADVERTISE,
1848 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1849 ADVERTISE_1000XPSE_ASYM);
1850
1851 phy_write(tbiphy, MII_BMCR,
1852 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1853 BMCR_SPEED1000);
1854
1855 put_device(&tbiphy->mdio.dev);
1856 }
1857
1858 static int __gfar_is_rx_idle(struct gfar_private *priv)
1859 {
1860 u32 res;
1861
1862 /* Normaly TSEC should not hang on GRS commands, so we should
1863 * actually wait for IEVENT_GRSC flag.
1864 */
1865 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1866 return 0;
1867
1868 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1869 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1870 * and the Rx can be safely reset.
1871 */
1872 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1873 res &= 0x7f807f80;
1874 if ((res & 0xffff) == (res >> 16))
1875 return 1;
1876
1877 return 0;
1878 }
1879
1880 /* Halt the receive and transmit queues */
1881 static void gfar_halt_nodisable(struct gfar_private *priv)
1882 {
1883 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1884 u32 tempval;
1885 unsigned int timeout;
1886 int stopped;
1887
1888 gfar_ints_disable(priv);
1889
1890 if (gfar_is_dma_stopped(priv))
1891 return;
1892
1893 /* Stop the DMA, and wait for it to stop */
1894 tempval = gfar_read(&regs->dmactrl);
1895 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1896 gfar_write(&regs->dmactrl, tempval);
1897
1898 retry:
1899 timeout = 1000;
1900 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1901 cpu_relax();
1902 timeout--;
1903 }
1904
1905 if (!timeout)
1906 stopped = gfar_is_dma_stopped(priv);
1907
1908 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1909 !__gfar_is_rx_idle(priv))
1910 goto retry;
1911 }
1912
1913 /* Halt the receive and transmit queues */
1914 void gfar_halt(struct gfar_private *priv)
1915 {
1916 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1917 u32 tempval;
1918
1919 /* Dissable the Rx/Tx hw queues */
1920 gfar_write(&regs->rqueue, 0);
1921 gfar_write(&regs->tqueue, 0);
1922
1923 mdelay(10);
1924
1925 gfar_halt_nodisable(priv);
1926
1927 /* Disable Rx/Tx DMA */
1928 tempval = gfar_read(&regs->maccfg1);
1929 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1930 gfar_write(&regs->maccfg1, tempval);
1931 }
1932
1933 void stop_gfar(struct net_device *dev)
1934 {
1935 struct gfar_private *priv = netdev_priv(dev);
1936
1937 netif_tx_stop_all_queues(dev);
1938
1939 smp_mb__before_atomic();
1940 set_bit(GFAR_DOWN, &priv->state);
1941 smp_mb__after_atomic();
1942
1943 disable_napi(priv);
1944
1945 /* disable ints and gracefully shut down Rx/Tx DMA */
1946 gfar_halt(priv);
1947
1948 phy_stop(dev->phydev);
1949
1950 free_skb_resources(priv);
1951 }
1952
1953 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1954 {
1955 struct txbd8 *txbdp;
1956 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1957 int i, j;
1958
1959 txbdp = tx_queue->tx_bd_base;
1960
1961 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1962 if (!tx_queue->tx_skbuff[i])
1963 continue;
1964
1965 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1966 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1967 txbdp->lstatus = 0;
1968 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1969 j++) {
1970 txbdp++;
1971 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1972 be16_to_cpu(txbdp->length),
1973 DMA_TO_DEVICE);
1974 }
1975 txbdp++;
1976 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1977 tx_queue->tx_skbuff[i] = NULL;
1978 }
1979 kfree(tx_queue->tx_skbuff);
1980 tx_queue->tx_skbuff = NULL;
1981 }
1982
1983 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1984 {
1985 int i;
1986
1987 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1988
1989 if (rx_queue->skb)
1990 dev_kfree_skb(rx_queue->skb);
1991
1992 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1993 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1994
1995 rxbdp->lstatus = 0;
1996 rxbdp->bufPtr = 0;
1997 rxbdp++;
1998
1999 if (!rxb->page)
2000 continue;
2001
2002 dma_unmap_single(rx_queue->dev, rxb->dma,
2003 PAGE_SIZE, DMA_FROM_DEVICE);
2004 __free_page(rxb->page);
2005
2006 rxb->page = NULL;
2007 }
2008
2009 kfree(rx_queue->rx_buff);
2010 rx_queue->rx_buff = NULL;
2011 }
2012
2013 /* If there are any tx skbs or rx skbs still around, free them.
2014 * Then free tx_skbuff and rx_skbuff
2015 */
2016 static void free_skb_resources(struct gfar_private *priv)
2017 {
2018 struct gfar_priv_tx_q *tx_queue = NULL;
2019 struct gfar_priv_rx_q *rx_queue = NULL;
2020 int i;
2021
2022 /* Go through all the buffer descriptors and free their data buffers */
2023 for (i = 0; i < priv->num_tx_queues; i++) {
2024 struct netdev_queue *txq;
2025
2026 tx_queue = priv->tx_queue[i];
2027 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2028 if (tx_queue->tx_skbuff)
2029 free_skb_tx_queue(tx_queue);
2030 netdev_tx_reset_queue(txq);
2031 }
2032
2033 for (i = 0; i < priv->num_rx_queues; i++) {
2034 rx_queue = priv->rx_queue[i];
2035 if (rx_queue->rx_buff)
2036 free_skb_rx_queue(rx_queue);
2037 }
2038
2039 dma_free_coherent(priv->dev,
2040 sizeof(struct txbd8) * priv->total_tx_ring_size +
2041 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2042 priv->tx_queue[0]->tx_bd_base,
2043 priv->tx_queue[0]->tx_bd_dma_base);
2044 }
2045
2046 void gfar_start(struct gfar_private *priv)
2047 {
2048 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2049 u32 tempval;
2050 int i = 0;
2051
2052 /* Enable Rx/Tx hw queues */
2053 gfar_write(&regs->rqueue, priv->rqueue);
2054 gfar_write(&regs->tqueue, priv->tqueue);
2055
2056 /* Initialize DMACTRL to have WWR and WOP */
2057 tempval = gfar_read(&regs->dmactrl);
2058 tempval |= DMACTRL_INIT_SETTINGS;
2059 gfar_write(&regs->dmactrl, tempval);
2060
2061 /* Make sure we aren't stopped */
2062 tempval = gfar_read(&regs->dmactrl);
2063 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2064 gfar_write(&regs->dmactrl, tempval);
2065
2066 for (i = 0; i < priv->num_grps; i++) {
2067 regs = priv->gfargrp[i].regs;
2068 /* Clear THLT/RHLT, so that the DMA starts polling now */
2069 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2070 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2071 }
2072
2073 /* Enable Rx/Tx DMA */
2074 tempval = gfar_read(&regs->maccfg1);
2075 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2076 gfar_write(&regs->maccfg1, tempval);
2077
2078 gfar_ints_enable(priv);
2079
2080 netif_trans_update(priv->ndev); /* prevent tx timeout */
2081 }
2082
2083 static void free_grp_irqs(struct gfar_priv_grp *grp)
2084 {
2085 free_irq(gfar_irq(grp, TX)->irq, grp);
2086 free_irq(gfar_irq(grp, RX)->irq, grp);
2087 free_irq(gfar_irq(grp, ER)->irq, grp);
2088 }
2089
2090 static int register_grp_irqs(struct gfar_priv_grp *grp)
2091 {
2092 struct gfar_private *priv = grp->priv;
2093 struct net_device *dev = priv->ndev;
2094 int err;
2095
2096 /* If the device has multiple interrupts, register for
2097 * them. Otherwise, only register for the one
2098 */
2099 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2100 /* Install our interrupt handlers for Error,
2101 * Transmit, and Receive
2102 */
2103 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2104 gfar_irq(grp, ER)->name, grp);
2105 if (err < 0) {
2106 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2107 gfar_irq(grp, ER)->irq);
2108
2109 goto err_irq_fail;
2110 }
2111 enable_irq_wake(gfar_irq(grp, ER)->irq);
2112
2113 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2114 gfar_irq(grp, TX)->name, grp);
2115 if (err < 0) {
2116 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2117 gfar_irq(grp, TX)->irq);
2118 goto tx_irq_fail;
2119 }
2120 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2121 gfar_irq(grp, RX)->name, grp);
2122 if (err < 0) {
2123 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2124 gfar_irq(grp, RX)->irq);
2125 goto rx_irq_fail;
2126 }
2127 enable_irq_wake(gfar_irq(grp, RX)->irq);
2128
2129 } else {
2130 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2131 gfar_irq(grp, TX)->name, grp);
2132 if (err < 0) {
2133 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2134 gfar_irq(grp, TX)->irq);
2135 goto err_irq_fail;
2136 }
2137 enable_irq_wake(gfar_irq(grp, TX)->irq);
2138 }
2139
2140 return 0;
2141
2142 rx_irq_fail:
2143 free_irq(gfar_irq(grp, TX)->irq, grp);
2144 tx_irq_fail:
2145 free_irq(gfar_irq(grp, ER)->irq, grp);
2146 err_irq_fail:
2147 return err;
2148
2149 }
2150
2151 static void gfar_free_irq(struct gfar_private *priv)
2152 {
2153 int i;
2154
2155 /* Free the IRQs */
2156 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2157 for (i = 0; i < priv->num_grps; i++)
2158 free_grp_irqs(&priv->gfargrp[i]);
2159 } else {
2160 for (i = 0; i < priv->num_grps; i++)
2161 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2162 &priv->gfargrp[i]);
2163 }
2164 }
2165
2166 static int gfar_request_irq(struct gfar_private *priv)
2167 {
2168 int err, i, j;
2169
2170 for (i = 0; i < priv->num_grps; i++) {
2171 err = register_grp_irqs(&priv->gfargrp[i]);
2172 if (err) {
2173 for (j = 0; j < i; j++)
2174 free_grp_irqs(&priv->gfargrp[j]);
2175 return err;
2176 }
2177 }
2178
2179 return 0;
2180 }
2181
2182 /* Bring the controller up and running */
2183 int startup_gfar(struct net_device *ndev)
2184 {
2185 struct gfar_private *priv = netdev_priv(ndev);
2186 int err;
2187
2188 gfar_mac_reset(priv);
2189
2190 err = gfar_alloc_skb_resources(ndev);
2191 if (err)
2192 return err;
2193
2194 gfar_init_tx_rx_base(priv);
2195
2196 smp_mb__before_atomic();
2197 clear_bit(GFAR_DOWN, &priv->state);
2198 smp_mb__after_atomic();
2199
2200 /* Start Rx/Tx DMA and enable the interrupts */
2201 gfar_start(priv);
2202
2203 /* force link state update after mac reset */
2204 priv->oldlink = 0;
2205 priv->oldspeed = 0;
2206 priv->oldduplex = -1;
2207
2208 phy_start(ndev->phydev);
2209
2210 enable_napi(priv);
2211
2212 netif_tx_wake_all_queues(ndev);
2213
2214 return 0;
2215 }
2216
2217 /* Called when something needs to use the ethernet device
2218 * Returns 0 for success.
2219 */
2220 static int gfar_enet_open(struct net_device *dev)
2221 {
2222 struct gfar_private *priv = netdev_priv(dev);
2223 int err;
2224
2225 err = init_phy(dev);
2226 if (err)
2227 return err;
2228
2229 err = gfar_request_irq(priv);
2230 if (err)
2231 return err;
2232
2233 err = startup_gfar(dev);
2234 if (err)
2235 return err;
2236
2237 return err;
2238 }
2239
2240 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2241 {
2242 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2243
2244 memset(fcb, 0, GMAC_FCB_LEN);
2245
2246 return fcb;
2247 }
2248
2249 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2250 int fcb_length)
2251 {
2252 /* If we're here, it's a IP packet with a TCP or UDP
2253 * payload. We set it to checksum, using a pseudo-header
2254 * we provide
2255 */
2256 u8 flags = TXFCB_DEFAULT;
2257
2258 /* Tell the controller what the protocol is
2259 * And provide the already calculated phcs
2260 */
2261 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2262 flags |= TXFCB_UDP;
2263 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2264 } else
2265 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2266
2267 /* l3os is the distance between the start of the
2268 * frame (skb->data) and the start of the IP hdr.
2269 * l4os is the distance between the start of the
2270 * l3 hdr and the l4 hdr
2271 */
2272 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2273 fcb->l4os = skb_network_header_len(skb);
2274
2275 fcb->flags = flags;
2276 }
2277
2278 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2279 {
2280 fcb->flags |= TXFCB_VLN;
2281 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2282 }
2283
2284 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2285 struct txbd8 *base, int ring_size)
2286 {
2287 struct txbd8 *new_bd = bdp + stride;
2288
2289 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2290 }
2291
2292 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2293 int ring_size)
2294 {
2295 return skip_txbd(bdp, 1, base, ring_size);
2296 }
2297
2298 /* eTSEC12: csum generation not supported for some fcb offsets */
2299 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2300 unsigned long fcb_addr)
2301 {
2302 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2303 (fcb_addr % 0x20) > 0x18);
2304 }
2305
2306 /* eTSEC76: csum generation for frames larger than 2500 may
2307 * cause excess delays before start of transmission
2308 */
2309 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2310 unsigned int len)
2311 {
2312 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2313 (len > 2500));
2314 }
2315
2316 /* This is called by the kernel when a frame is ready for transmission.
2317 * It is pointed to by the dev->hard_start_xmit function pointer
2318 */
2319 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2320 {
2321 struct gfar_private *priv = netdev_priv(dev);
2322 struct gfar_priv_tx_q *tx_queue = NULL;
2323 struct netdev_queue *txq;
2324 struct gfar __iomem *regs = NULL;
2325 struct txfcb *fcb = NULL;
2326 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2327 u32 lstatus;
2328 skb_frag_t *frag;
2329 int i, rq = 0;
2330 int do_tstamp, do_csum, do_vlan;
2331 u32 bufaddr;
2332 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2333
2334 rq = skb->queue_mapping;
2335 tx_queue = priv->tx_queue[rq];
2336 txq = netdev_get_tx_queue(dev, rq);
2337 base = tx_queue->tx_bd_base;
2338 regs = tx_queue->grp->regs;
2339
2340 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2341 do_vlan = skb_vlan_tag_present(skb);
2342 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2343 priv->hwts_tx_en;
2344
2345 if (do_csum || do_vlan)
2346 fcb_len = GMAC_FCB_LEN;
2347
2348 /* check if time stamp should be generated */
2349 if (unlikely(do_tstamp))
2350 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2351
2352 /* make space for additional header when fcb is needed */
2353 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2354 struct sk_buff *skb_new;
2355
2356 skb_new = skb_realloc_headroom(skb, fcb_len);
2357 if (!skb_new) {
2358 dev->stats.tx_errors++;
2359 dev_kfree_skb_any(skb);
2360 return NETDEV_TX_OK;
2361 }
2362
2363 if (skb->sk)
2364 skb_set_owner_w(skb_new, skb->sk);
2365 dev_consume_skb_any(skb);
2366 skb = skb_new;
2367 }
2368
2369 /* total number of fragments in the SKB */
2370 nr_frags = skb_shinfo(skb)->nr_frags;
2371
2372 /* calculate the required number of TxBDs for this skb */
2373 if (unlikely(do_tstamp))
2374 nr_txbds = nr_frags + 2;
2375 else
2376 nr_txbds = nr_frags + 1;
2377
2378 /* check if there is space to queue this packet */
2379 if (nr_txbds > tx_queue->num_txbdfree) {
2380 /* no space, stop the queue */
2381 netif_tx_stop_queue(txq);
2382 dev->stats.tx_fifo_errors++;
2383 return NETDEV_TX_BUSY;
2384 }
2385
2386 /* Update transmit stats */
2387 bytes_sent = skb->len;
2388 tx_queue->stats.tx_bytes += bytes_sent;
2389 /* keep Tx bytes on wire for BQL accounting */
2390 GFAR_CB(skb)->bytes_sent = bytes_sent;
2391 tx_queue->stats.tx_packets++;
2392
2393 txbdp = txbdp_start = tx_queue->cur_tx;
2394 lstatus = be32_to_cpu(txbdp->lstatus);
2395
2396 /* Add TxPAL between FCB and frame if required */
2397 if (unlikely(do_tstamp)) {
2398 skb_push(skb, GMAC_TXPAL_LEN);
2399 memset(skb->data, 0, GMAC_TXPAL_LEN);
2400 }
2401
2402 /* Add TxFCB if required */
2403 if (fcb_len) {
2404 fcb = gfar_add_fcb(skb);
2405 lstatus |= BD_LFLAG(TXBD_TOE);
2406 }
2407
2408 /* Set up checksumming */
2409 if (do_csum) {
2410 gfar_tx_checksum(skb, fcb, fcb_len);
2411
2412 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2413 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2414 __skb_pull(skb, GMAC_FCB_LEN);
2415 skb_checksum_help(skb);
2416 if (do_vlan || do_tstamp) {
2417 /* put back a new fcb for vlan/tstamp TOE */
2418 fcb = gfar_add_fcb(skb);
2419 } else {
2420 /* Tx TOE not used */
2421 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2422 fcb = NULL;
2423 }
2424 }
2425 }
2426
2427 if (do_vlan)
2428 gfar_tx_vlan(skb, fcb);
2429
2430 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2431 DMA_TO_DEVICE);
2432 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2433 goto dma_map_err;
2434
2435 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2436
2437 /* Time stamp insertion requires one additional TxBD */
2438 if (unlikely(do_tstamp))
2439 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2440 tx_queue->tx_ring_size);
2441
2442 if (likely(!nr_frags)) {
2443 if (likely(!do_tstamp))
2444 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2445 } else {
2446 u32 lstatus_start = lstatus;
2447
2448 /* Place the fragment addresses and lengths into the TxBDs */
2449 frag = &skb_shinfo(skb)->frags[0];
2450 for (i = 0; i < nr_frags; i++, frag++) {
2451 unsigned int size;
2452
2453 /* Point at the next BD, wrapping as needed */
2454 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2455
2456 size = skb_frag_size(frag);
2457
2458 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2459 BD_LFLAG(TXBD_READY);
2460
2461 /* Handle the last BD specially */
2462 if (i == nr_frags - 1)
2463 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2464
2465 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2466 size, DMA_TO_DEVICE);
2467 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2468 goto dma_map_err;
2469
2470 /* set the TxBD length and buffer pointer */
2471 txbdp->bufPtr = cpu_to_be32(bufaddr);
2472 txbdp->lstatus = cpu_to_be32(lstatus);
2473 }
2474
2475 lstatus = lstatus_start;
2476 }
2477
2478 /* If time stamping is requested one additional TxBD must be set up. The
2479 * first TxBD points to the FCB and must have a data length of
2480 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2481 * the full frame length.
2482 */
2483 if (unlikely(do_tstamp)) {
2484 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2485
2486 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2487 bufaddr += fcb_len;
2488
2489 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2490 (skb_headlen(skb) - fcb_len);
2491 if (!nr_frags)
2492 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2493
2494 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2495 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2496 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2497
2498 /* Setup tx hardware time stamping */
2499 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2500 fcb->ptp = 1;
2501 } else {
2502 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2503 }
2504
2505 netdev_tx_sent_queue(txq, bytes_sent);
2506
2507 gfar_wmb();
2508
2509 txbdp_start->lstatus = cpu_to_be32(lstatus);
2510
2511 gfar_wmb(); /* force lstatus write before tx_skbuff */
2512
2513 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2514
2515 /* Update the current skb pointer to the next entry we will use
2516 * (wrapping if necessary)
2517 */
2518 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2519 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2520
2521 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2522
2523 /* We can work in parallel with gfar_clean_tx_ring(), except
2524 * when modifying num_txbdfree. Note that we didn't grab the lock
2525 * when we were reading the num_txbdfree and checking for available
2526 * space, that's because outside of this function it can only grow.
2527 */
2528 spin_lock_bh(&tx_queue->txlock);
2529 /* reduce TxBD free count */
2530 tx_queue->num_txbdfree -= (nr_txbds);
2531 spin_unlock_bh(&tx_queue->txlock);
2532
2533 /* If the next BD still needs to be cleaned up, then the bds
2534 * are full. We need to tell the kernel to stop sending us stuff.
2535 */
2536 if (!tx_queue->num_txbdfree) {
2537 netif_tx_stop_queue(txq);
2538
2539 dev->stats.tx_fifo_errors++;
2540 }
2541
2542 /* Tell the DMA to go go go */
2543 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2544
2545 return NETDEV_TX_OK;
2546
2547 dma_map_err:
2548 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2549 if (do_tstamp)
2550 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2551 for (i = 0; i < nr_frags; i++) {
2552 lstatus = be32_to_cpu(txbdp->lstatus);
2553 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2554 break;
2555
2556 lstatus &= ~BD_LFLAG(TXBD_READY);
2557 txbdp->lstatus = cpu_to_be32(lstatus);
2558 bufaddr = be32_to_cpu(txbdp->bufPtr);
2559 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2560 DMA_TO_DEVICE);
2561 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562 }
2563 gfar_wmb();
2564 dev_kfree_skb_any(skb);
2565 return NETDEV_TX_OK;
2566 }
2567
2568 /* Stops the kernel queue, and halts the controller */
2569 static int gfar_close(struct net_device *dev)
2570 {
2571 struct gfar_private *priv = netdev_priv(dev);
2572
2573 cancel_work_sync(&priv->reset_task);
2574 stop_gfar(dev);
2575
2576 /* Disconnect from the PHY */
2577 phy_disconnect(dev->phydev);
2578
2579 gfar_free_irq(priv);
2580
2581 return 0;
2582 }
2583
2584 /* Changes the mac address if the controller is not running. */
2585 static int gfar_set_mac_address(struct net_device *dev)
2586 {
2587 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2588
2589 return 0;
2590 }
2591
2592 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2593 {
2594 struct gfar_private *priv = netdev_priv(dev);
2595 int frame_size = new_mtu + ETH_HLEN;
2596
2597 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2598 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2599 return -EINVAL;
2600 }
2601
2602 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2603 cpu_relax();
2604
2605 if (dev->flags & IFF_UP)
2606 stop_gfar(dev);
2607
2608 dev->mtu = new_mtu;
2609
2610 if (dev->flags & IFF_UP)
2611 startup_gfar(dev);
2612
2613 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2614
2615 return 0;
2616 }
2617
2618 void reset_gfar(struct net_device *ndev)
2619 {
2620 struct gfar_private *priv = netdev_priv(ndev);
2621
2622 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2623 cpu_relax();
2624
2625 stop_gfar(ndev);
2626 startup_gfar(ndev);
2627
2628 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2629 }
2630
2631 /* gfar_reset_task gets scheduled when a packet has not been
2632 * transmitted after a set amount of time.
2633 * For now, assume that clearing out all the structures, and
2634 * starting over will fix the problem.
2635 */
2636 static void gfar_reset_task(struct work_struct *work)
2637 {
2638 struct gfar_private *priv = container_of(work, struct gfar_private,
2639 reset_task);
2640 reset_gfar(priv->ndev);
2641 }
2642
2643 static void gfar_timeout(struct net_device *dev)
2644 {
2645 struct gfar_private *priv = netdev_priv(dev);
2646
2647 dev->stats.tx_errors++;
2648 schedule_work(&priv->reset_task);
2649 }
2650
2651 /* Interrupt Handler for Transmit complete */
2652 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2653 {
2654 struct net_device *dev = tx_queue->dev;
2655 struct netdev_queue *txq;
2656 struct gfar_private *priv = netdev_priv(dev);
2657 struct txbd8 *bdp, *next = NULL;
2658 struct txbd8 *lbdp = NULL;
2659 struct txbd8 *base = tx_queue->tx_bd_base;
2660 struct sk_buff *skb;
2661 int skb_dirtytx;
2662 int tx_ring_size = tx_queue->tx_ring_size;
2663 int frags = 0, nr_txbds = 0;
2664 int i;
2665 int howmany = 0;
2666 int tqi = tx_queue->qindex;
2667 unsigned int bytes_sent = 0;
2668 u32 lstatus;
2669 size_t buflen;
2670
2671 txq = netdev_get_tx_queue(dev, tqi);
2672 bdp = tx_queue->dirty_tx;
2673 skb_dirtytx = tx_queue->skb_dirtytx;
2674
2675 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2676
2677 frags = skb_shinfo(skb)->nr_frags;
2678
2679 /* When time stamping, one additional TxBD must be freed.
2680 * Also, we need to dma_unmap_single() the TxPAL.
2681 */
2682 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2683 nr_txbds = frags + 2;
2684 else
2685 nr_txbds = frags + 1;
2686
2687 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2688
2689 lstatus = be32_to_cpu(lbdp->lstatus);
2690
2691 /* Only clean completed frames */
2692 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2693 (lstatus & BD_LENGTH_MASK))
2694 break;
2695
2696 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2697 next = next_txbd(bdp, base, tx_ring_size);
2698 buflen = be16_to_cpu(next->length) +
2699 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2700 } else
2701 buflen = be16_to_cpu(bdp->length);
2702
2703 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2704 buflen, DMA_TO_DEVICE);
2705
2706 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2707 struct skb_shared_hwtstamps shhwtstamps;
2708 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2709 ~0x7UL);
2710
2711 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2712 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2713 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2714 skb_tstamp_tx(skb, &shhwtstamps);
2715 gfar_clear_txbd_status(bdp);
2716 bdp = next;
2717 }
2718
2719 gfar_clear_txbd_status(bdp);
2720 bdp = next_txbd(bdp, base, tx_ring_size);
2721
2722 for (i = 0; i < frags; i++) {
2723 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2724 be16_to_cpu(bdp->length),
2725 DMA_TO_DEVICE);
2726 gfar_clear_txbd_status(bdp);
2727 bdp = next_txbd(bdp, base, tx_ring_size);
2728 }
2729
2730 bytes_sent += GFAR_CB(skb)->bytes_sent;
2731
2732 dev_kfree_skb_any(skb);
2733
2734 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2735
2736 skb_dirtytx = (skb_dirtytx + 1) &
2737 TX_RING_MOD_MASK(tx_ring_size);
2738
2739 howmany++;
2740 spin_lock(&tx_queue->txlock);
2741 tx_queue->num_txbdfree += nr_txbds;
2742 spin_unlock(&tx_queue->txlock);
2743 }
2744
2745 /* If we freed a buffer, we can restart transmission, if necessary */
2746 if (tx_queue->num_txbdfree &&
2747 netif_tx_queue_stopped(txq) &&
2748 !(test_bit(GFAR_DOWN, &priv->state)))
2749 netif_wake_subqueue(priv->ndev, tqi);
2750
2751 /* Update dirty indicators */
2752 tx_queue->skb_dirtytx = skb_dirtytx;
2753 tx_queue->dirty_tx = bdp;
2754
2755 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2756 }
2757
2758 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2759 {
2760 struct page *page;
2761 dma_addr_t addr;
2762
2763 page = dev_alloc_page();
2764 if (unlikely(!page))
2765 return false;
2766
2767 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2768 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2769 __free_page(page);
2770
2771 return false;
2772 }
2773
2774 rxb->dma = addr;
2775 rxb->page = page;
2776 rxb->page_offset = 0;
2777
2778 return true;
2779 }
2780
2781 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2782 {
2783 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2784 struct gfar_extra_stats *estats = &priv->extra_stats;
2785
2786 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2787 atomic64_inc(&estats->rx_alloc_err);
2788 }
2789
2790 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2791 int alloc_cnt)
2792 {
2793 struct rxbd8 *bdp;
2794 struct gfar_rx_buff *rxb;
2795 int i;
2796
2797 i = rx_queue->next_to_use;
2798 bdp = &rx_queue->rx_bd_base[i];
2799 rxb = &rx_queue->rx_buff[i];
2800
2801 while (alloc_cnt--) {
2802 /* try reuse page */
2803 if (unlikely(!rxb->page)) {
2804 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2805 gfar_rx_alloc_err(rx_queue);
2806 break;
2807 }
2808 }
2809
2810 /* Setup the new RxBD */
2811 gfar_init_rxbdp(rx_queue, bdp,
2812 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2813
2814 /* Update to the next pointer */
2815 bdp++;
2816 rxb++;
2817
2818 if (unlikely(++i == rx_queue->rx_ring_size)) {
2819 i = 0;
2820 bdp = rx_queue->rx_bd_base;
2821 rxb = rx_queue->rx_buff;
2822 }
2823 }
2824
2825 rx_queue->next_to_use = i;
2826 rx_queue->next_to_alloc = i;
2827 }
2828
2829 static void count_errors(u32 lstatus, struct net_device *ndev)
2830 {
2831 struct gfar_private *priv = netdev_priv(ndev);
2832 struct net_device_stats *stats = &ndev->stats;
2833 struct gfar_extra_stats *estats = &priv->extra_stats;
2834
2835 /* If the packet was truncated, none of the other errors matter */
2836 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2837 stats->rx_length_errors++;
2838
2839 atomic64_inc(&estats->rx_trunc);
2840
2841 return;
2842 }
2843 /* Count the errors, if there were any */
2844 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2845 stats->rx_length_errors++;
2846
2847 if (lstatus & BD_LFLAG(RXBD_LARGE))
2848 atomic64_inc(&estats->rx_large);
2849 else
2850 atomic64_inc(&estats->rx_short);
2851 }
2852 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2853 stats->rx_frame_errors++;
2854 atomic64_inc(&estats->rx_nonoctet);
2855 }
2856 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2857 atomic64_inc(&estats->rx_crcerr);
2858 stats->rx_crc_errors++;
2859 }
2860 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2861 atomic64_inc(&estats->rx_overrun);
2862 stats->rx_over_errors++;
2863 }
2864 }
2865
2866 irqreturn_t gfar_receive(int irq, void *grp_id)
2867 {
2868 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2869 unsigned long flags;
2870 u32 imask, ievent;
2871
2872 ievent = gfar_read(&grp->regs->ievent);
2873
2874 if (unlikely(ievent & IEVENT_FGPI)) {
2875 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2876 return IRQ_HANDLED;
2877 }
2878
2879 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2880 spin_lock_irqsave(&grp->grplock, flags);
2881 imask = gfar_read(&grp->regs->imask);
2882 imask &= IMASK_RX_DISABLED;
2883 gfar_write(&grp->regs->imask, imask);
2884 spin_unlock_irqrestore(&grp->grplock, flags);
2885 __napi_schedule(&grp->napi_rx);
2886 } else {
2887 /* Clear IEVENT, so interrupts aren't called again
2888 * because of the packets that have already arrived.
2889 */
2890 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2891 }
2892
2893 return IRQ_HANDLED;
2894 }
2895
2896 /* Interrupt Handler for Transmit complete */
2897 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2898 {
2899 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2900 unsigned long flags;
2901 u32 imask;
2902
2903 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2904 spin_lock_irqsave(&grp->grplock, flags);
2905 imask = gfar_read(&grp->regs->imask);
2906 imask &= IMASK_TX_DISABLED;
2907 gfar_write(&grp->regs->imask, imask);
2908 spin_unlock_irqrestore(&grp->grplock, flags);
2909 __napi_schedule(&grp->napi_tx);
2910 } else {
2911 /* Clear IEVENT, so interrupts aren't called again
2912 * because of the packets that have already arrived.
2913 */
2914 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2915 }
2916
2917 return IRQ_HANDLED;
2918 }
2919
2920 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2921 struct sk_buff *skb, bool first)
2922 {
2923 unsigned int size = lstatus & BD_LENGTH_MASK;
2924 struct page *page = rxb->page;
2925 bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2926
2927 /* Remove the FCS from the packet length */
2928 if (last)
2929 size -= ETH_FCS_LEN;
2930
2931 if (likely(first)) {
2932 skb_put(skb, size);
2933 } else {
2934 /* the last fragments' length contains the full frame length */
2935 if (last)
2936 size -= skb->len;
2937
2938 /* in case the last fragment consisted only of the FCS */
2939 if (size > 0)
2940 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2941 rxb->page_offset + RXBUF_ALIGNMENT,
2942 size, GFAR_RXB_TRUESIZE);
2943 }
2944
2945 /* try reuse page */
2946 if (unlikely(page_count(page) != 1))
2947 return false;
2948
2949 /* change offset to the other half */
2950 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2951
2952 page_ref_inc(page);
2953
2954 return true;
2955 }
2956
2957 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2958 struct gfar_rx_buff *old_rxb)
2959 {
2960 struct gfar_rx_buff *new_rxb;
2961 u16 nta = rxq->next_to_alloc;
2962
2963 new_rxb = &rxq->rx_buff[nta];
2964
2965 /* find next buf that can reuse a page */
2966 nta++;
2967 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2968
2969 /* copy page reference */
2970 *new_rxb = *old_rxb;
2971
2972 /* sync for use by the device */
2973 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2974 old_rxb->page_offset,
2975 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2976 }
2977
2978 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2979 u32 lstatus, struct sk_buff *skb)
2980 {
2981 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2982 struct page *page = rxb->page;
2983 bool first = false;
2984
2985 if (likely(!skb)) {
2986 void *buff_addr = page_address(page) + rxb->page_offset;
2987
2988 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2989 if (unlikely(!skb)) {
2990 gfar_rx_alloc_err(rx_queue);
2991 return NULL;
2992 }
2993 skb_reserve(skb, RXBUF_ALIGNMENT);
2994 first = true;
2995 }
2996
2997 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2998 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2999
3000 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3001 /* reuse the free half of the page */
3002 gfar_reuse_rx_page(rx_queue, rxb);
3003 } else {
3004 /* page cannot be reused, unmap it */
3005 dma_unmap_page(rx_queue->dev, rxb->dma,
3006 PAGE_SIZE, DMA_FROM_DEVICE);
3007 }
3008
3009 /* clear rxb content */
3010 rxb->page = NULL;
3011
3012 return skb;
3013 }
3014
3015 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3016 {
3017 /* If valid headers were found, and valid sums
3018 * were verified, then we tell the kernel that no
3019 * checksumming is necessary. Otherwise, it is [FIXME]
3020 */
3021 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3022 (RXFCB_CIP | RXFCB_CTU))
3023 skb->ip_summed = CHECKSUM_UNNECESSARY;
3024 else
3025 skb_checksum_none_assert(skb);
3026 }
3027
3028 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3029 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3030 {
3031 struct gfar_private *priv = netdev_priv(ndev);
3032 struct rxfcb *fcb = NULL;
3033
3034 /* fcb is at the beginning if exists */
3035 fcb = (struct rxfcb *)skb->data;
3036
3037 /* Remove the FCB from the skb
3038 * Remove the padded bytes, if there are any
3039 */
3040 if (priv->uses_rxfcb)
3041 skb_pull(skb, GMAC_FCB_LEN);
3042
3043 /* Get receive timestamp from the skb */
3044 if (priv->hwts_rx_en) {
3045 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3046 u64 *ns = (u64 *) skb->data;
3047
3048 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3049 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3050 }
3051
3052 if (priv->padding)
3053 skb_pull(skb, priv->padding);
3054
3055 if (ndev->features & NETIF_F_RXCSUM)
3056 gfar_rx_checksum(skb, fcb);
3057
3058 /* Tell the skb what kind of packet this is */
3059 skb->protocol = eth_type_trans(skb, ndev);
3060
3061 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3062 * Even if vlan rx accel is disabled, on some chips
3063 * RXFCB_VLN is pseudo randomly set.
3064 */
3065 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3066 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3067 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3068 be16_to_cpu(fcb->vlctl));
3069 }
3070
3071 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3072 * until the budget/quota has been reached. Returns the number
3073 * of frames handled
3074 */
3075 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3076 {
3077 struct net_device *ndev = rx_queue->ndev;
3078 struct gfar_private *priv = netdev_priv(ndev);
3079 struct rxbd8 *bdp;
3080 int i, howmany = 0;
3081 struct sk_buff *skb = rx_queue->skb;
3082 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3083 unsigned int total_bytes = 0, total_pkts = 0;
3084
3085 /* Get the first full descriptor */
3086 i = rx_queue->next_to_clean;
3087
3088 while (rx_work_limit--) {
3089 u32 lstatus;
3090
3091 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3092 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3093 cleaned_cnt = 0;
3094 }
3095
3096 bdp = &rx_queue->rx_bd_base[i];
3097 lstatus = be32_to_cpu(bdp->lstatus);
3098 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3099 break;
3100
3101 /* order rx buffer descriptor reads */
3102 rmb();
3103
3104 /* fetch next to clean buffer from the ring */
3105 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3106 if (unlikely(!skb))
3107 break;
3108
3109 cleaned_cnt++;
3110 howmany++;
3111
3112 if (unlikely(++i == rx_queue->rx_ring_size))
3113 i = 0;
3114
3115 rx_queue->next_to_clean = i;
3116
3117 /* fetch next buffer if not the last in frame */
3118 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3119 continue;
3120
3121 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3122 count_errors(lstatus, ndev);
3123
3124 /* discard faulty buffer */
3125 dev_kfree_skb(skb);
3126 skb = NULL;
3127 rx_queue->stats.rx_dropped++;
3128 continue;
3129 }
3130
3131 /* Increment the number of packets */
3132 total_pkts++;
3133 total_bytes += skb->len;
3134
3135 skb_record_rx_queue(skb, rx_queue->qindex);
3136
3137 gfar_process_frame(ndev, skb);
3138
3139 /* Send the packet up the stack */
3140 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3141
3142 skb = NULL;
3143 }
3144
3145 /* Store incomplete frames for completion */
3146 rx_queue->skb = skb;
3147
3148 rx_queue->stats.rx_packets += total_pkts;
3149 rx_queue->stats.rx_bytes += total_bytes;
3150
3151 if (cleaned_cnt)
3152 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3153
3154 /* Update Last Free RxBD pointer for LFC */
3155 if (unlikely(priv->tx_actual_en)) {
3156 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3157
3158 gfar_write(rx_queue->rfbptr, bdp_dma);
3159 }
3160
3161 return howmany;
3162 }
3163
3164 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3165 {
3166 struct gfar_priv_grp *gfargrp =
3167 container_of(napi, struct gfar_priv_grp, napi_rx);
3168 struct gfar __iomem *regs = gfargrp->regs;
3169 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3170 int work_done = 0;
3171
3172 /* Clear IEVENT, so interrupts aren't called again
3173 * because of the packets that have already arrived
3174 */
3175 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3176
3177 work_done = gfar_clean_rx_ring(rx_queue, budget);
3178
3179 if (work_done < budget) {
3180 u32 imask;
3181 napi_complete(napi);
3182 /* Clear the halt bit in RSTAT */
3183 gfar_write(&regs->rstat, gfargrp->rstat);
3184
3185 spin_lock_irq(&gfargrp->grplock);
3186 imask = gfar_read(&regs->imask);
3187 imask |= IMASK_RX_DEFAULT;
3188 gfar_write(&regs->imask, imask);
3189 spin_unlock_irq(&gfargrp->grplock);
3190 }
3191
3192 return work_done;
3193 }
3194
3195 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3196 {
3197 struct gfar_priv_grp *gfargrp =
3198 container_of(napi, struct gfar_priv_grp, napi_tx);
3199 struct gfar __iomem *regs = gfargrp->regs;
3200 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3201 u32 imask;
3202
3203 /* Clear IEVENT, so interrupts aren't called again
3204 * because of the packets that have already arrived
3205 */
3206 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3207
3208 /* run Tx cleanup to completion */
3209 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3210 gfar_clean_tx_ring(tx_queue);
3211
3212 napi_complete(napi);
3213
3214 spin_lock_irq(&gfargrp->grplock);
3215 imask = gfar_read(&regs->imask);
3216 imask |= IMASK_TX_DEFAULT;
3217 gfar_write(&regs->imask, imask);
3218 spin_unlock_irq(&gfargrp->grplock);
3219
3220 return 0;
3221 }
3222
3223 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3224 {
3225 struct gfar_priv_grp *gfargrp =
3226 container_of(napi, struct gfar_priv_grp, napi_rx);
3227 struct gfar_private *priv = gfargrp->priv;
3228 struct gfar __iomem *regs = gfargrp->regs;
3229 struct gfar_priv_rx_q *rx_queue = NULL;
3230 int work_done = 0, work_done_per_q = 0;
3231 int i, budget_per_q = 0;
3232 unsigned long rstat_rxf;
3233 int num_act_queues;
3234
3235 /* Clear IEVENT, so interrupts aren't called again
3236 * because of the packets that have already arrived
3237 */
3238 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3239
3240 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3241
3242 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3243 if (num_act_queues)
3244 budget_per_q = budget/num_act_queues;
3245
3246 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3247 /* skip queue if not active */
3248 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3249 continue;
3250
3251 rx_queue = priv->rx_queue[i];
3252 work_done_per_q =
3253 gfar_clean_rx_ring(rx_queue, budget_per_q);
3254 work_done += work_done_per_q;
3255
3256 /* finished processing this queue */
3257 if (work_done_per_q < budget_per_q) {
3258 /* clear active queue hw indication */
3259 gfar_write(&regs->rstat,
3260 RSTAT_CLEAR_RXF0 >> i);
3261 num_act_queues--;
3262
3263 if (!num_act_queues)
3264 break;
3265 }
3266 }
3267
3268 if (!num_act_queues) {
3269 u32 imask;
3270 napi_complete(napi);
3271
3272 /* Clear the halt bit in RSTAT */
3273 gfar_write(&regs->rstat, gfargrp->rstat);
3274
3275 spin_lock_irq(&gfargrp->grplock);
3276 imask = gfar_read(&regs->imask);
3277 imask |= IMASK_RX_DEFAULT;
3278 gfar_write(&regs->imask, imask);
3279 spin_unlock_irq(&gfargrp->grplock);
3280 }
3281
3282 return work_done;
3283 }
3284
3285 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3286 {
3287 struct gfar_priv_grp *gfargrp =
3288 container_of(napi, struct gfar_priv_grp, napi_tx);
3289 struct gfar_private *priv = gfargrp->priv;
3290 struct gfar __iomem *regs = gfargrp->regs;
3291 struct gfar_priv_tx_q *tx_queue = NULL;
3292 int has_tx_work = 0;
3293 int i;
3294
3295 /* Clear IEVENT, so interrupts aren't called again
3296 * because of the packets that have already arrived
3297 */
3298 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3299
3300 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3301 tx_queue = priv->tx_queue[i];
3302 /* run Tx cleanup to completion */
3303 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3304 gfar_clean_tx_ring(tx_queue);
3305 has_tx_work = 1;
3306 }
3307 }
3308
3309 if (!has_tx_work) {
3310 u32 imask;
3311 napi_complete(napi);
3312
3313 spin_lock_irq(&gfargrp->grplock);
3314 imask = gfar_read(&regs->imask);
3315 imask |= IMASK_TX_DEFAULT;
3316 gfar_write(&regs->imask, imask);
3317 spin_unlock_irq(&gfargrp->grplock);
3318 }
3319
3320 return 0;
3321 }
3322
3323
3324 #ifdef CONFIG_NET_POLL_CONTROLLER
3325 /* Polling 'interrupt' - used by things like netconsole to send skbs
3326 * without having to re-enable interrupts. It's not called while
3327 * the interrupt routine is executing.
3328 */
3329 static void gfar_netpoll(struct net_device *dev)
3330 {
3331 struct gfar_private *priv = netdev_priv(dev);
3332 int i;
3333
3334 /* If the device has multiple interrupts, run tx/rx */
3335 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3336 for (i = 0; i < priv->num_grps; i++) {
3337 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3338
3339 disable_irq(gfar_irq(grp, TX)->irq);
3340 disable_irq(gfar_irq(grp, RX)->irq);
3341 disable_irq(gfar_irq(grp, ER)->irq);
3342 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3343 enable_irq(gfar_irq(grp, ER)->irq);
3344 enable_irq(gfar_irq(grp, RX)->irq);
3345 enable_irq(gfar_irq(grp, TX)->irq);
3346 }
3347 } else {
3348 for (i = 0; i < priv->num_grps; i++) {
3349 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3350
3351 disable_irq(gfar_irq(grp, TX)->irq);
3352 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3353 enable_irq(gfar_irq(grp, TX)->irq);
3354 }
3355 }
3356 }
3357 #endif
3358
3359 /* The interrupt handler for devices with one interrupt */
3360 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3361 {
3362 struct gfar_priv_grp *gfargrp = grp_id;
3363
3364 /* Save ievent for future reference */
3365 u32 events = gfar_read(&gfargrp->regs->ievent);
3366
3367 /* Check for reception */
3368 if (events & IEVENT_RX_MASK)
3369 gfar_receive(irq, grp_id);
3370
3371 /* Check for transmit completion */
3372 if (events & IEVENT_TX_MASK)
3373 gfar_transmit(irq, grp_id);
3374
3375 /* Check for errors */
3376 if (events & IEVENT_ERR_MASK)
3377 gfar_error(irq, grp_id);
3378
3379 return IRQ_HANDLED;
3380 }
3381
3382 /* Called every time the controller might need to be made
3383 * aware of new link state. The PHY code conveys this
3384 * information through variables in the phydev structure, and this
3385 * function converts those variables into the appropriate
3386 * register values, and can bring down the device if needed.
3387 */
3388 static void adjust_link(struct net_device *dev)
3389 {
3390 struct gfar_private *priv = netdev_priv(dev);
3391 struct phy_device *phydev = dev->phydev;
3392
3393 if (unlikely(phydev->link != priv->oldlink ||
3394 (phydev->link && (phydev->duplex != priv->oldduplex ||
3395 phydev->speed != priv->oldspeed))))
3396 gfar_update_link_state(priv);
3397 }
3398
3399 /* Update the hash table based on the current list of multicast
3400 * addresses we subscribe to. Also, change the promiscuity of
3401 * the device based on the flags (this function is called
3402 * whenever dev->flags is changed
3403 */
3404 static void gfar_set_multi(struct net_device *dev)
3405 {
3406 struct netdev_hw_addr *ha;
3407 struct gfar_private *priv = netdev_priv(dev);
3408 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3409 u32 tempval;
3410
3411 if (dev->flags & IFF_PROMISC) {
3412 /* Set RCTRL to PROM */
3413 tempval = gfar_read(&regs->rctrl);
3414 tempval |= RCTRL_PROM;
3415 gfar_write(&regs->rctrl, tempval);
3416 } else {
3417 /* Set RCTRL to not PROM */
3418 tempval = gfar_read(&regs->rctrl);
3419 tempval &= ~(RCTRL_PROM);
3420 gfar_write(&regs->rctrl, tempval);
3421 }
3422
3423 if (dev->flags & IFF_ALLMULTI) {
3424 /* Set the hash to rx all multicast frames */
3425 gfar_write(&regs->igaddr0, 0xffffffff);
3426 gfar_write(&regs->igaddr1, 0xffffffff);
3427 gfar_write(&regs->igaddr2, 0xffffffff);
3428 gfar_write(&regs->igaddr3, 0xffffffff);
3429 gfar_write(&regs->igaddr4, 0xffffffff);
3430 gfar_write(&regs->igaddr5, 0xffffffff);
3431 gfar_write(&regs->igaddr6, 0xffffffff);
3432 gfar_write(&regs->igaddr7, 0xffffffff);
3433 gfar_write(&regs->gaddr0, 0xffffffff);
3434 gfar_write(&regs->gaddr1, 0xffffffff);
3435 gfar_write(&regs->gaddr2, 0xffffffff);
3436 gfar_write(&regs->gaddr3, 0xffffffff);
3437 gfar_write(&regs->gaddr4, 0xffffffff);
3438 gfar_write(&regs->gaddr5, 0xffffffff);
3439 gfar_write(&regs->gaddr6, 0xffffffff);
3440 gfar_write(&regs->gaddr7, 0xffffffff);
3441 } else {
3442 int em_num;
3443 int idx;
3444
3445 /* zero out the hash */
3446 gfar_write(&regs->igaddr0, 0x0);
3447 gfar_write(&regs->igaddr1, 0x0);
3448 gfar_write(&regs->igaddr2, 0x0);
3449 gfar_write(&regs->igaddr3, 0x0);
3450 gfar_write(&regs->igaddr4, 0x0);
3451 gfar_write(&regs->igaddr5, 0x0);
3452 gfar_write(&regs->igaddr6, 0x0);
3453 gfar_write(&regs->igaddr7, 0x0);
3454 gfar_write(&regs->gaddr0, 0x0);
3455 gfar_write(&regs->gaddr1, 0x0);
3456 gfar_write(&regs->gaddr2, 0x0);
3457 gfar_write(&regs->gaddr3, 0x0);
3458 gfar_write(&regs->gaddr4, 0x0);
3459 gfar_write(&regs->gaddr5, 0x0);
3460 gfar_write(&regs->gaddr6, 0x0);
3461 gfar_write(&regs->gaddr7, 0x0);
3462
3463 /* If we have extended hash tables, we need to
3464 * clear the exact match registers to prepare for
3465 * setting them
3466 */
3467 if (priv->extended_hash) {
3468 em_num = GFAR_EM_NUM + 1;
3469 gfar_clear_exact_match(dev);
3470 idx = 1;
3471 } else {
3472 idx = 0;
3473 em_num = 0;
3474 }
3475
3476 if (netdev_mc_empty(dev))
3477 return;
3478
3479 /* Parse the list, and set the appropriate bits */
3480 netdev_for_each_mc_addr(ha, dev) {
3481 if (idx < em_num) {
3482 gfar_set_mac_for_addr(dev, idx, ha->addr);
3483 idx++;
3484 } else
3485 gfar_set_hash_for_addr(dev, ha->addr);
3486 }
3487 }
3488 }
3489
3490
3491 /* Clears each of the exact match registers to zero, so they
3492 * don't interfere with normal reception
3493 */
3494 static void gfar_clear_exact_match(struct net_device *dev)
3495 {
3496 int idx;
3497 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3498
3499 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3500 gfar_set_mac_for_addr(dev, idx, zero_arr);
3501 }
3502
3503 /* Set the appropriate hash bit for the given addr */
3504 /* The algorithm works like so:
3505 * 1) Take the Destination Address (ie the multicast address), and
3506 * do a CRC on it (little endian), and reverse the bits of the
3507 * result.
3508 * 2) Use the 8 most significant bits as a hash into a 256-entry
3509 * table. The table is controlled through 8 32-bit registers:
3510 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3511 * gaddr7. This means that the 3 most significant bits in the
3512 * hash index which gaddr register to use, and the 5 other bits
3513 * indicate which bit (assuming an IBM numbering scheme, which
3514 * for PowerPC (tm) is usually the case) in the register holds
3515 * the entry.
3516 */
3517 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3518 {
3519 u32 tempval;
3520 struct gfar_private *priv = netdev_priv(dev);
3521 u32 result = ether_crc(ETH_ALEN, addr);
3522 int width = priv->hash_width;
3523 u8 whichbit = (result >> (32 - width)) & 0x1f;
3524 u8 whichreg = result >> (32 - width + 5);
3525 u32 value = (1 << (31-whichbit));
3526
3527 tempval = gfar_read(priv->hash_regs[whichreg]);
3528 tempval |= value;
3529 gfar_write(priv->hash_regs[whichreg], tempval);
3530 }
3531
3532
3533 /* There are multiple MAC Address register pairs on some controllers
3534 * This function sets the numth pair to a given address
3535 */
3536 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3537 const u8 *addr)
3538 {
3539 struct gfar_private *priv = netdev_priv(dev);
3540 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3541 u32 tempval;
3542 u32 __iomem *macptr = &regs->macstnaddr1;
3543
3544 macptr += num*2;
3545
3546 /* For a station address of 0x12345678ABCD in transmission
3547 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3548 * MACnADDR2 is set to 0x34120000.
3549 */
3550 tempval = (addr[5] << 24) | (addr[4] << 16) |
3551 (addr[3] << 8) | addr[2];
3552
3553 gfar_write(macptr, tempval);
3554
3555 tempval = (addr[1] << 24) | (addr[0] << 16);
3556
3557 gfar_write(macptr+1, tempval);
3558 }
3559
3560 /* GFAR error interrupt handler */
3561 static irqreturn_t gfar_error(int irq, void *grp_id)
3562 {
3563 struct gfar_priv_grp *gfargrp = grp_id;
3564 struct gfar __iomem *regs = gfargrp->regs;
3565 struct gfar_private *priv= gfargrp->priv;
3566 struct net_device *dev = priv->ndev;
3567
3568 /* Save ievent for future reference */
3569 u32 events = gfar_read(&regs->ievent);
3570
3571 /* Clear IEVENT */
3572 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3573
3574 /* Magic Packet is not an error. */
3575 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3576 (events & IEVENT_MAG))
3577 events &= ~IEVENT_MAG;
3578
3579 /* Hmm... */
3580 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3581 netdev_dbg(dev,
3582 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3583 events, gfar_read(&regs->imask));
3584
3585 /* Update the error counters */
3586 if (events & IEVENT_TXE) {
3587 dev->stats.tx_errors++;
3588
3589 if (events & IEVENT_LC)
3590 dev->stats.tx_window_errors++;
3591 if (events & IEVENT_CRL)
3592 dev->stats.tx_aborted_errors++;
3593 if (events & IEVENT_XFUN) {
3594 netif_dbg(priv, tx_err, dev,
3595 "TX FIFO underrun, packet dropped\n");
3596 dev->stats.tx_dropped++;
3597 atomic64_inc(&priv->extra_stats.tx_underrun);
3598
3599 schedule_work(&priv->reset_task);
3600 }
3601 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3602 }
3603 if (events & IEVENT_BSY) {
3604 dev->stats.rx_over_errors++;
3605 atomic64_inc(&priv->extra_stats.rx_bsy);
3606
3607 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3608 gfar_read(&regs->rstat));
3609 }
3610 if (events & IEVENT_BABR) {
3611 dev->stats.rx_errors++;
3612 atomic64_inc(&priv->extra_stats.rx_babr);
3613
3614 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3615 }
3616 if (events & IEVENT_EBERR) {
3617 atomic64_inc(&priv->extra_stats.eberr);
3618 netif_dbg(priv, rx_err, dev, "bus error\n");
3619 }
3620 if (events & IEVENT_RXC)
3621 netif_dbg(priv, rx_status, dev, "control frame\n");
3622
3623 if (events & IEVENT_BABT) {
3624 atomic64_inc(&priv->extra_stats.tx_babt);
3625 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3626 }
3627 return IRQ_HANDLED;
3628 }
3629
3630 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3631 {
3632 struct net_device *ndev = priv->ndev;
3633 struct phy_device *phydev = ndev->phydev;
3634 u32 val = 0;
3635
3636 if (!phydev->duplex)
3637 return val;
3638
3639 if (!priv->pause_aneg_en) {
3640 if (priv->tx_pause_en)
3641 val |= MACCFG1_TX_FLOW;
3642 if (priv->rx_pause_en)
3643 val |= MACCFG1_RX_FLOW;
3644 } else {
3645 u16 lcl_adv, rmt_adv;
3646 u8 flowctrl;
3647 /* get link partner capabilities */
3648 rmt_adv = 0;
3649 if (phydev->pause)
3650 rmt_adv = LPA_PAUSE_CAP;
3651 if (phydev->asym_pause)
3652 rmt_adv |= LPA_PAUSE_ASYM;
3653
3654 lcl_adv = 0;
3655 if (phydev->advertising & ADVERTISED_Pause)
3656 lcl_adv |= ADVERTISE_PAUSE_CAP;
3657 if (phydev->advertising & ADVERTISED_Asym_Pause)
3658 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3659
3660 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3661 if (flowctrl & FLOW_CTRL_TX)
3662 val |= MACCFG1_TX_FLOW;
3663 if (flowctrl & FLOW_CTRL_RX)
3664 val |= MACCFG1_RX_FLOW;
3665 }
3666
3667 return val;
3668 }
3669
3670 static noinline void gfar_update_link_state(struct gfar_private *priv)
3671 {
3672 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3673 struct net_device *ndev = priv->ndev;
3674 struct phy_device *phydev = ndev->phydev;
3675 struct gfar_priv_rx_q *rx_queue = NULL;
3676 int i;
3677
3678 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3679 return;
3680
3681 if (phydev->link) {
3682 u32 tempval1 = gfar_read(&regs->maccfg1);
3683 u32 tempval = gfar_read(&regs->maccfg2);
3684 u32 ecntrl = gfar_read(&regs->ecntrl);
3685 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3686
3687 if (phydev->duplex != priv->oldduplex) {
3688 if (!(phydev->duplex))
3689 tempval &= ~(MACCFG2_FULL_DUPLEX);
3690 else
3691 tempval |= MACCFG2_FULL_DUPLEX;
3692
3693 priv->oldduplex = phydev->duplex;
3694 }
3695
3696 if (phydev->speed != priv->oldspeed) {
3697 switch (phydev->speed) {
3698 case 1000:
3699 tempval =
3700 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3701
3702 ecntrl &= ~(ECNTRL_R100);
3703 break;
3704 case 100:
3705 case 10:
3706 tempval =
3707 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3708
3709 /* Reduced mode distinguishes
3710 * between 10 and 100
3711 */
3712 if (phydev->speed == SPEED_100)
3713 ecntrl |= ECNTRL_R100;
3714 else
3715 ecntrl &= ~(ECNTRL_R100);
3716 break;
3717 default:
3718 netif_warn(priv, link, priv->ndev,
3719 "Ack! Speed (%d) is not 10/100/1000!\n",
3720 phydev->speed);
3721 break;
3722 }
3723
3724 priv->oldspeed = phydev->speed;
3725 }
3726
3727 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3728 tempval1 |= gfar_get_flowctrl_cfg(priv);
3729
3730 /* Turn last free buffer recording on */
3731 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3732 for (i = 0; i < priv->num_rx_queues; i++) {
3733 u32 bdp_dma;
3734
3735 rx_queue = priv->rx_queue[i];
3736 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3737 gfar_write(rx_queue->rfbptr, bdp_dma);
3738 }
3739
3740 priv->tx_actual_en = 1;
3741 }
3742
3743 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3744 priv->tx_actual_en = 0;
3745
3746 gfar_write(&regs->maccfg1, tempval1);
3747 gfar_write(&regs->maccfg2, tempval);
3748 gfar_write(&regs->ecntrl, ecntrl);
3749
3750 if (!priv->oldlink)
3751 priv->oldlink = 1;
3752
3753 } else if (priv->oldlink) {
3754 priv->oldlink = 0;
3755 priv->oldspeed = 0;
3756 priv->oldduplex = -1;
3757 }
3758
3759 if (netif_msg_link(priv))
3760 phy_print_status(phydev);
3761 }
3762
3763 static const struct of_device_id gfar_match[] =
3764 {
3765 {
3766 .type = "network",
3767 .compatible = "gianfar",
3768 },
3769 {
3770 .compatible = "fsl,etsec2",
3771 },
3772 {},
3773 };
3774 MODULE_DEVICE_TABLE(of, gfar_match);
3775
3776 /* Structure for a device driver */
3777 static struct platform_driver gfar_driver = {
3778 .driver = {
3779 .name = "fsl-gianfar",
3780 .pm = GFAR_PM_OPS,
3781 .of_match_table = gfar_match,
3782 },
3783 .probe = gfar_probe,
3784 .remove = gfar_remove,
3785 };
3786
3787 module_platform_driver(gfar_driver);