]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/freescale/gianfar.c
Merge ath-next from ath.git
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (1*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = &regs->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = &regs->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = &regs->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = &regs->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en)
345 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(&regs->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = &regs->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = &regs->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(&regs->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(&regs->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(&regs->imask, IMASK_DEFAULT);
532 }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651 gfar_irq(grp, RX)->irq == NO_IRQ ||
652 gfar_irq(grp, ER)->irq == NO_IRQ)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 struct property *stash;
742 u32 stash_len = 0;
743 u32 stash_idx = 0;
744 unsigned int num_tx_qs, num_rx_qs;
745 unsigned short mode, poll_mode;
746
747 if (!np)
748 return -ENODEV;
749
750 if (of_device_is_compatible(np, "fsl,etsec2")) {
751 mode = MQ_MG_MODE;
752 poll_mode = GFAR_SQ_POLLING;
753 } else {
754 mode = SQ_SG_MODE;
755 poll_mode = GFAR_SQ_POLLING;
756 }
757
758 if (mode == SQ_SG_MODE) {
759 num_tx_qs = 1;
760 num_rx_qs = 1;
761 } else { /* MQ_MG_MODE */
762 /* get the actual number of supported groups */
763 unsigned int num_grps = gfar_of_group_count(np);
764
765 if (num_grps == 0 || num_grps > MAXGROUPS) {
766 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 num_grps);
768 pr_err("Cannot do alloc_etherdev, aborting\n");
769 return -EINVAL;
770 }
771
772 if (poll_mode == GFAR_SQ_POLLING) {
773 num_tx_qs = num_grps; /* one txq per int group */
774 num_rx_qs = num_grps; /* one rxq per int group */
775 } else { /* GFAR_MQ_POLLING */
776 u32 tx_queues, rx_queues;
777 int ret;
778
779 /* parse the num of HW tx and rx queues */
780 ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 &tx_queues);
782 num_tx_qs = ret ? 1 : tx_queues;
783
784 ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 &rx_queues);
786 num_rx_qs = ret ? 1 : rx_queues;
787 }
788 }
789
790 if (num_tx_qs > MAX_TX_QS) {
791 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 num_tx_qs, MAX_TX_QS);
793 pr_err("Cannot do alloc_etherdev, aborting\n");
794 return -EINVAL;
795 }
796
797 if (num_rx_qs > MAX_RX_QS) {
798 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 num_rx_qs, MAX_RX_QS);
800 pr_err("Cannot do alloc_etherdev, aborting\n");
801 return -EINVAL;
802 }
803
804 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 dev = *pdev;
806 if (NULL == dev)
807 return -ENOMEM;
808
809 priv = netdev_priv(dev);
810 priv->ndev = dev;
811
812 priv->mode = mode;
813 priv->poll_mode = poll_mode;
814
815 priv->num_tx_queues = num_tx_qs;
816 netif_set_real_num_rx_queues(dev, num_rx_qs);
817 priv->num_rx_queues = num_rx_qs;
818
819 err = gfar_alloc_tx_queues(priv);
820 if (err)
821 goto tx_alloc_failed;
822
823 err = gfar_alloc_rx_queues(priv);
824 if (err)
825 goto rx_alloc_failed;
826
827 err = of_property_read_string(np, "model", &model);
828 if (err) {
829 pr_err("Device model property missing, aborting\n");
830 goto rx_alloc_failed;
831 }
832
833 /* Init Rx queue filer rule set linked list */
834 INIT_LIST_HEAD(&priv->rx_list.list);
835 priv->rx_list.count = 0;
836 mutex_init(&priv->rx_queue_access);
837
838 for (i = 0; i < MAXGROUPS; i++)
839 priv->gfargrp[i].regs = NULL;
840
841 /* Parse and initialize group specific information */
842 if (priv->mode == MQ_MG_MODE) {
843 for_each_available_child_of_node(np, child) {
844 if (of_node_cmp(child->name, "queue-group"))
845 continue;
846
847 err = gfar_parse_group(child, priv, model);
848 if (err)
849 goto err_grp_init;
850 }
851 } else { /* SQ_SG_MODE */
852 err = gfar_parse_group(np, priv, model);
853 if (err)
854 goto err_grp_init;
855 }
856
857 stash = of_find_property(np, "bd-stash", NULL);
858
859 if (stash) {
860 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 priv->bd_stash_en = 1;
862 }
863
864 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865
866 if (err == 0)
867 priv->rx_stash_size = stash_len;
868
869 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870
871 if (err == 0)
872 priv->rx_stash_index = stash_idx;
873
874 if (stash_len || stash_idx)
875 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876
877 mac_addr = of_get_mac_address(np);
878
879 if (mac_addr)
880 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881
882 if (model && !strcasecmp(model, "TSEC"))
883 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 FSL_GIANFAR_DEV_HAS_COALESCE |
885 FSL_GIANFAR_DEV_HAS_RMON |
886 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887
888 if (model && !strcasecmp(model, "eTSEC"))
889 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 FSL_GIANFAR_DEV_HAS_COALESCE |
891 FSL_GIANFAR_DEV_HAS_RMON |
892 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 FSL_GIANFAR_DEV_HAS_CSUM |
894 FSL_GIANFAR_DEV_HAS_VLAN |
895 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 FSL_GIANFAR_DEV_HAS_TIMER;
898
899 err = of_property_read_string(np, "phy-connection-type", &ctype);
900
901 /* We only care about rgmii-id. The rest are autodetected */
902 if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 else
905 priv->interface = PHY_INTERFACE_MODE_MII;
906
907 if (of_find_property(np, "fsl,magic-packet", NULL))
908 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909
910 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911
912 /* In the case of a fixed PHY, the DT node associated
913 * to the PHY is the Ethernet MAC DT node.
914 */
915 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916 err = of_phy_register_fixed_link(np);
917 if (err)
918 goto err_grp_init;
919
920 priv->phy_node = of_node_get(np);
921 }
922
923 /* Find the TBI PHY. If it's not there, we don't support SGMII */
924 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925
926 return 0;
927
928 err_grp_init:
929 unmap_group_regs(priv);
930 rx_alloc_failed:
931 gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933 gfar_free_tx_queues(priv);
934 free_gfar_dev(priv);
935 return err;
936 }
937
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940 struct hwtstamp_config config;
941 struct gfar_private *priv = netdev_priv(netdev);
942
943 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944 return -EFAULT;
945
946 /* reserved for future extensions */
947 if (config.flags)
948 return -EINVAL;
949
950 switch (config.tx_type) {
951 case HWTSTAMP_TX_OFF:
952 priv->hwts_tx_en = 0;
953 break;
954 case HWTSTAMP_TX_ON:
955 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956 return -ERANGE;
957 priv->hwts_tx_en = 1;
958 break;
959 default:
960 return -ERANGE;
961 }
962
963 switch (config.rx_filter) {
964 case HWTSTAMP_FILTER_NONE:
965 if (priv->hwts_rx_en) {
966 priv->hwts_rx_en = 0;
967 reset_gfar(netdev);
968 }
969 break;
970 default:
971 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972 return -ERANGE;
973 if (!priv->hwts_rx_en) {
974 priv->hwts_rx_en = 1;
975 reset_gfar(netdev);
976 }
977 config.rx_filter = HWTSTAMP_FILTER_ALL;
978 break;
979 }
980
981 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982 -EFAULT : 0;
983 }
984
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987 struct hwtstamp_config config;
988 struct gfar_private *priv = netdev_priv(netdev);
989
990 config.flags = 0;
991 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992 config.rx_filter = (priv->hwts_rx_en ?
993 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994
995 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996 -EFAULT : 0;
997 }
998
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001 struct gfar_private *priv = netdev_priv(dev);
1002
1003 if (!netif_running(dev))
1004 return -EINVAL;
1005
1006 if (cmd == SIOCSHWTSTAMP)
1007 return gfar_hwtstamp_set(dev, rq);
1008 if (cmd == SIOCGHWTSTAMP)
1009 return gfar_hwtstamp_get(dev, rq);
1010
1011 if (!priv->phydev)
1012 return -ENODEV;
1013
1014 return phy_mii_ioctl(priv->phydev, rq, cmd);
1015 }
1016
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018 u32 class)
1019 {
1020 u32 rqfpr = FPR_FILER_MASK;
1021 u32 rqfcr = 0x0;
1022
1023 rqfar--;
1024 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025 priv->ftp_rqfpr[rqfar] = rqfpr;
1026 priv->ftp_rqfcr[rqfar] = rqfcr;
1027 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028
1029 rqfar--;
1030 rqfcr = RQFCR_CMP_NOMATCH;
1031 priv->ftp_rqfpr[rqfar] = rqfpr;
1032 priv->ftp_rqfcr[rqfar] = rqfcr;
1033 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034
1035 rqfar--;
1036 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037 rqfpr = class;
1038 priv->ftp_rqfcr[rqfar] = rqfcr;
1039 priv->ftp_rqfpr[rqfar] = rqfpr;
1040 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041
1042 rqfar--;
1043 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044 rqfpr = class;
1045 priv->ftp_rqfcr[rqfar] = rqfcr;
1046 priv->ftp_rqfpr[rqfar] = rqfpr;
1047 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048
1049 return rqfar;
1050 }
1051
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054 int i = 0x0;
1055 u32 rqfar = MAX_FILER_IDX;
1056 u32 rqfcr = 0x0;
1057 u32 rqfpr = FPR_FILER_MASK;
1058
1059 /* Default rule */
1060 rqfcr = RQFCR_CMP_MATCH;
1061 priv->ftp_rqfcr[rqfar] = rqfcr;
1062 priv->ftp_rqfpr[rqfar] = rqfpr;
1063 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064
1065 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071
1072 /* cur_filer_idx indicated the first non-masked rule */
1073 priv->cur_filer_idx = rqfar;
1074
1075 /* Rest are masked rules */
1076 rqfcr = RQFCR_CMP_NOMATCH;
1077 for (i = 0; i < rqfar; i++) {
1078 priv->ftp_rqfcr[i] = rqfcr;
1079 priv->ftp_rqfpr[i] = rqfpr;
1080 gfar_write_filer(priv, i, rqfcr, rqfpr);
1081 }
1082 }
1083
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087 unsigned int pvr = mfspr(SPRN_PVR);
1088 unsigned int svr = mfspr(SPRN_SVR);
1089 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090 unsigned int rev = svr & 0xffff;
1091
1092 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1093 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095 priv->errata |= GFAR_ERRATA_74;
1096
1097 /* MPC8313 and MPC837x all rev */
1098 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100 priv->errata |= GFAR_ERRATA_76;
1101
1102 /* MPC8313 Rev < 2.0 */
1103 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104 priv->errata |= GFAR_ERRATA_12;
1105 }
1106
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109 unsigned int svr = mfspr(SPRN_SVR);
1110
1111 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112 priv->errata |= GFAR_ERRATA_12;
1113 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1114 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1115 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1116 }
1117 #endif
1118
1119 static void gfar_detect_errata(struct gfar_private *priv)
1120 {
1121 struct device *dev = &priv->ofdev->dev;
1122
1123 /* no plans to fix */
1124 priv->errata |= GFAR_ERRATA_A002;
1125
1126 #ifdef CONFIG_PPC
1127 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1128 __gfar_detect_errata_85xx(priv);
1129 else /* non-mpc85xx parts, i.e. e300 core based */
1130 __gfar_detect_errata_83xx(priv);
1131 #endif
1132
1133 if (priv->errata)
1134 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1135 priv->errata);
1136 }
1137
1138 void gfar_mac_reset(struct gfar_private *priv)
1139 {
1140 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1141 u32 tempval;
1142
1143 /* Reset MAC layer */
1144 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1145
1146 /* We need to delay at least 3 TX clocks */
1147 udelay(3);
1148
1149 /* the soft reset bit is not self-resetting, so we need to
1150 * clear it before resuming normal operation
1151 */
1152 gfar_write(&regs->maccfg1, 0);
1153
1154 udelay(3);
1155
1156 gfar_rx_offload_en(priv);
1157
1158 /* Initialize the max receive frame/buffer lengths */
1159 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1160 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1161
1162 /* Initialize the Minimum Frame Length Register */
1163 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1164
1165 /* Initialize MACCFG2. */
1166 tempval = MACCFG2_INIT_SETTINGS;
1167
1168 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1169 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1170 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1171 */
1172 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1173 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1174
1175 gfar_write(&regs->maccfg2, tempval);
1176
1177 /* Clear mac addr hash registers */
1178 gfar_write(&regs->igaddr0, 0);
1179 gfar_write(&regs->igaddr1, 0);
1180 gfar_write(&regs->igaddr2, 0);
1181 gfar_write(&regs->igaddr3, 0);
1182 gfar_write(&regs->igaddr4, 0);
1183 gfar_write(&regs->igaddr5, 0);
1184 gfar_write(&regs->igaddr6, 0);
1185 gfar_write(&regs->igaddr7, 0);
1186
1187 gfar_write(&regs->gaddr0, 0);
1188 gfar_write(&regs->gaddr1, 0);
1189 gfar_write(&regs->gaddr2, 0);
1190 gfar_write(&regs->gaddr3, 0);
1191 gfar_write(&regs->gaddr4, 0);
1192 gfar_write(&regs->gaddr5, 0);
1193 gfar_write(&regs->gaddr6, 0);
1194 gfar_write(&regs->gaddr7, 0);
1195
1196 if (priv->extended_hash)
1197 gfar_clear_exact_match(priv->ndev);
1198
1199 gfar_mac_rx_config(priv);
1200
1201 gfar_mac_tx_config(priv);
1202
1203 gfar_set_mac_address(priv->ndev);
1204
1205 gfar_set_multi(priv->ndev);
1206
1207 /* clear ievent and imask before configuring coalescing */
1208 gfar_ints_disable(priv);
1209
1210 /* Configure the coalescing support */
1211 gfar_configure_coalescing_all(priv);
1212 }
1213
1214 static void gfar_hw_init(struct gfar_private *priv)
1215 {
1216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1217 u32 attrs;
1218
1219 /* Stop the DMA engine now, in case it was running before
1220 * (The firmware could have used it, and left it running).
1221 */
1222 gfar_halt(priv);
1223
1224 gfar_mac_reset(priv);
1225
1226 /* Zero out the rmon mib registers if it has them */
1227 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1228 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1229
1230 /* Mask off the CAM interrupts */
1231 gfar_write(&regs->rmon.cam1, 0xffffffff);
1232 gfar_write(&regs->rmon.cam2, 0xffffffff);
1233 }
1234
1235 /* Initialize ECNTRL */
1236 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1237
1238 /* Set the extraction length and index */
1239 attrs = ATTRELI_EL(priv->rx_stash_size) |
1240 ATTRELI_EI(priv->rx_stash_index);
1241
1242 gfar_write(&regs->attreli, attrs);
1243
1244 /* Start with defaults, and add stashing
1245 * depending on driver parameters
1246 */
1247 attrs = ATTR_INIT_SETTINGS;
1248
1249 if (priv->bd_stash_en)
1250 attrs |= ATTR_BDSTASH;
1251
1252 if (priv->rx_stash_size != 0)
1253 attrs |= ATTR_BUFSTASH;
1254
1255 gfar_write(&regs->attr, attrs);
1256
1257 /* FIFO configs */
1258 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1259 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1260 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1261
1262 /* Program the interrupt steering regs, only for MG devices */
1263 if (priv->num_grps > 1)
1264 gfar_write_isrg(priv);
1265 }
1266
1267 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1268 {
1269 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1270
1271 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1272 priv->extended_hash = 1;
1273 priv->hash_width = 9;
1274
1275 priv->hash_regs[0] = &regs->igaddr0;
1276 priv->hash_regs[1] = &regs->igaddr1;
1277 priv->hash_regs[2] = &regs->igaddr2;
1278 priv->hash_regs[3] = &regs->igaddr3;
1279 priv->hash_regs[4] = &regs->igaddr4;
1280 priv->hash_regs[5] = &regs->igaddr5;
1281 priv->hash_regs[6] = &regs->igaddr6;
1282 priv->hash_regs[7] = &regs->igaddr7;
1283 priv->hash_regs[8] = &regs->gaddr0;
1284 priv->hash_regs[9] = &regs->gaddr1;
1285 priv->hash_regs[10] = &regs->gaddr2;
1286 priv->hash_regs[11] = &regs->gaddr3;
1287 priv->hash_regs[12] = &regs->gaddr4;
1288 priv->hash_regs[13] = &regs->gaddr5;
1289 priv->hash_regs[14] = &regs->gaddr6;
1290 priv->hash_regs[15] = &regs->gaddr7;
1291
1292 } else {
1293 priv->extended_hash = 0;
1294 priv->hash_width = 8;
1295
1296 priv->hash_regs[0] = &regs->gaddr0;
1297 priv->hash_regs[1] = &regs->gaddr1;
1298 priv->hash_regs[2] = &regs->gaddr2;
1299 priv->hash_regs[3] = &regs->gaddr3;
1300 priv->hash_regs[4] = &regs->gaddr4;
1301 priv->hash_regs[5] = &regs->gaddr5;
1302 priv->hash_regs[6] = &regs->gaddr6;
1303 priv->hash_regs[7] = &regs->gaddr7;
1304 }
1305 }
1306
1307 /* Set up the ethernet device structure, private data,
1308 * and anything else we need before we start
1309 */
1310 static int gfar_probe(struct platform_device *ofdev)
1311 {
1312 struct net_device *dev = NULL;
1313 struct gfar_private *priv = NULL;
1314 int err = 0, i;
1315
1316 err = gfar_of_init(ofdev, &dev);
1317
1318 if (err)
1319 return err;
1320
1321 priv = netdev_priv(dev);
1322 priv->ndev = dev;
1323 priv->ofdev = ofdev;
1324 priv->dev = &ofdev->dev;
1325 SET_NETDEV_DEV(dev, &ofdev->dev);
1326
1327 INIT_WORK(&priv->reset_task, gfar_reset_task);
1328
1329 platform_set_drvdata(ofdev, priv);
1330
1331 gfar_detect_errata(priv);
1332
1333 /* Set the dev->base_addr to the gfar reg region */
1334 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1335
1336 /* Fill in the dev structure */
1337 dev->watchdog_timeo = TX_TIMEOUT;
1338 dev->mtu = 1500;
1339 dev->netdev_ops = &gfar_netdev_ops;
1340 dev->ethtool_ops = &gfar_ethtool_ops;
1341
1342 /* Register for napi ...We are registering NAPI for each grp */
1343 for (i = 0; i < priv->num_grps; i++) {
1344 if (priv->poll_mode == GFAR_SQ_POLLING) {
1345 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1346 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1347 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1348 gfar_poll_tx_sq, 2);
1349 } else {
1350 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1351 gfar_poll_rx, GFAR_DEV_WEIGHT);
1352 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1353 gfar_poll_tx, 2);
1354 }
1355 }
1356
1357 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1358 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1359 NETIF_F_RXCSUM;
1360 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1361 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1362 }
1363
1364 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1365 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1366 NETIF_F_HW_VLAN_CTAG_RX;
1367 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1368 }
1369
1370 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1371
1372 gfar_init_addr_hash_table(priv);
1373
1374 /* Insert receive time stamps into padding alignment bytes */
1375 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1376 priv->padding = 8;
1377
1378 if (dev->features & NETIF_F_IP_CSUM ||
1379 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 dev->needed_headroom = GMAC_FCB_LEN;
1381
1382 /* Initializing some of the rx/tx queue level parameters */
1383 for (i = 0; i < priv->num_tx_queues; i++) {
1384 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1385 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1386 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1387 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1388 }
1389
1390 for (i = 0; i < priv->num_rx_queues; i++) {
1391 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1392 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1393 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1394 }
1395
1396 /* always enable rx filer */
1397 priv->rx_filer_enable = 1;
1398 /* Enable most messages by default */
1399 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1400 /* use pritority h/w tx queue scheduling for single queue devices */
1401 if (priv->num_tx_queues == 1)
1402 priv->prio_sched_en = 1;
1403
1404 set_bit(GFAR_DOWN, &priv->state);
1405
1406 gfar_hw_init(priv);
1407
1408 /* Carrier starts down, phylib will bring it up */
1409 netif_carrier_off(dev);
1410
1411 err = register_netdev(dev);
1412
1413 if (err) {
1414 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1415 goto register_fail;
1416 }
1417
1418 device_set_wakeup_capable(&dev->dev, priv->device_flags &
1419 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1420
1421 /* fill out IRQ number and name fields */
1422 for (i = 0; i < priv->num_grps; i++) {
1423 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1424 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1425 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1426 dev->name, "_g", '0' + i, "_tx");
1427 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1428 dev->name, "_g", '0' + i, "_rx");
1429 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1430 dev->name, "_g", '0' + i, "_er");
1431 } else
1432 strcpy(gfar_irq(grp, TX)->name, dev->name);
1433 }
1434
1435 /* Initialize the filer table */
1436 gfar_init_filer_table(priv);
1437
1438 /* Print out the device info */
1439 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1440
1441 /* Even more device info helps when determining which kernel
1442 * provided which set of benchmarks.
1443 */
1444 netdev_info(dev, "Running with NAPI enabled\n");
1445 for (i = 0; i < priv->num_rx_queues; i++)
1446 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1447 i, priv->rx_queue[i]->rx_ring_size);
1448 for (i = 0; i < priv->num_tx_queues; i++)
1449 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1450 i, priv->tx_queue[i]->tx_ring_size);
1451
1452 return 0;
1453
1454 register_fail:
1455 unmap_group_regs(priv);
1456 gfar_free_rx_queues(priv);
1457 gfar_free_tx_queues(priv);
1458 of_node_put(priv->phy_node);
1459 of_node_put(priv->tbi_node);
1460 free_gfar_dev(priv);
1461 return err;
1462 }
1463
1464 static int gfar_remove(struct platform_device *ofdev)
1465 {
1466 struct gfar_private *priv = platform_get_drvdata(ofdev);
1467
1468 of_node_put(priv->phy_node);
1469 of_node_put(priv->tbi_node);
1470
1471 unregister_netdev(priv->ndev);
1472 unmap_group_regs(priv);
1473 gfar_free_rx_queues(priv);
1474 gfar_free_tx_queues(priv);
1475 free_gfar_dev(priv);
1476
1477 return 0;
1478 }
1479
1480 #ifdef CONFIG_PM
1481
1482 static int gfar_suspend(struct device *dev)
1483 {
1484 struct gfar_private *priv = dev_get_drvdata(dev);
1485 struct net_device *ndev = priv->ndev;
1486 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487 u32 tempval;
1488 int magic_packet = priv->wol_en &&
1489 (priv->device_flags &
1490 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1491
1492 if (!netif_running(ndev))
1493 return 0;
1494
1495 disable_napi(priv);
1496 netif_tx_lock(ndev);
1497 netif_device_detach(ndev);
1498 netif_tx_unlock(ndev);
1499
1500 gfar_halt(priv);
1501
1502 if (magic_packet) {
1503 /* Enable interrupt on Magic Packet */
1504 gfar_write(&regs->imask, IMASK_MAG);
1505
1506 /* Enable Magic Packet mode */
1507 tempval = gfar_read(&regs->maccfg2);
1508 tempval |= MACCFG2_MPEN;
1509 gfar_write(&regs->maccfg2, tempval);
1510
1511 /* re-enable the Rx block */
1512 tempval = gfar_read(&regs->maccfg1);
1513 tempval |= MACCFG1_RX_EN;
1514 gfar_write(&regs->maccfg1, tempval);
1515
1516 } else {
1517 phy_stop(priv->phydev);
1518 }
1519
1520 return 0;
1521 }
1522
1523 static int gfar_resume(struct device *dev)
1524 {
1525 struct gfar_private *priv = dev_get_drvdata(dev);
1526 struct net_device *ndev = priv->ndev;
1527 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1528 u32 tempval;
1529 int magic_packet = priv->wol_en &&
1530 (priv->device_flags &
1531 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1532
1533 if (!netif_running(ndev))
1534 return 0;
1535
1536 if (magic_packet) {
1537 /* Disable Magic Packet mode */
1538 tempval = gfar_read(&regs->maccfg2);
1539 tempval &= ~MACCFG2_MPEN;
1540 gfar_write(&regs->maccfg2, tempval);
1541 } else {
1542 phy_start(priv->phydev);
1543 }
1544
1545 gfar_start(priv);
1546
1547 netif_device_attach(ndev);
1548 enable_napi(priv);
1549
1550 return 0;
1551 }
1552
1553 static int gfar_restore(struct device *dev)
1554 {
1555 struct gfar_private *priv = dev_get_drvdata(dev);
1556 struct net_device *ndev = priv->ndev;
1557
1558 if (!netif_running(ndev)) {
1559 netif_device_attach(ndev);
1560
1561 return 0;
1562 }
1563
1564 gfar_init_bds(ndev);
1565
1566 gfar_mac_reset(priv);
1567
1568 gfar_init_tx_rx_base(priv);
1569
1570 gfar_start(priv);
1571
1572 priv->oldlink = 0;
1573 priv->oldspeed = 0;
1574 priv->oldduplex = -1;
1575
1576 if (priv->phydev)
1577 phy_start(priv->phydev);
1578
1579 netif_device_attach(ndev);
1580 enable_napi(priv);
1581
1582 return 0;
1583 }
1584
1585 static struct dev_pm_ops gfar_pm_ops = {
1586 .suspend = gfar_suspend,
1587 .resume = gfar_resume,
1588 .freeze = gfar_suspend,
1589 .thaw = gfar_resume,
1590 .restore = gfar_restore,
1591 };
1592
1593 #define GFAR_PM_OPS (&gfar_pm_ops)
1594
1595 #else
1596
1597 #define GFAR_PM_OPS NULL
1598
1599 #endif
1600
1601 /* Reads the controller's registers to determine what interface
1602 * connects it to the PHY.
1603 */
1604 static phy_interface_t gfar_get_interface(struct net_device *dev)
1605 {
1606 struct gfar_private *priv = netdev_priv(dev);
1607 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1608 u32 ecntrl;
1609
1610 ecntrl = gfar_read(&regs->ecntrl);
1611
1612 if (ecntrl & ECNTRL_SGMII_MODE)
1613 return PHY_INTERFACE_MODE_SGMII;
1614
1615 if (ecntrl & ECNTRL_TBI_MODE) {
1616 if (ecntrl & ECNTRL_REDUCED_MODE)
1617 return PHY_INTERFACE_MODE_RTBI;
1618 else
1619 return PHY_INTERFACE_MODE_TBI;
1620 }
1621
1622 if (ecntrl & ECNTRL_REDUCED_MODE) {
1623 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1624 return PHY_INTERFACE_MODE_RMII;
1625 }
1626 else {
1627 phy_interface_t interface = priv->interface;
1628
1629 /* This isn't autodetected right now, so it must
1630 * be set by the device tree or platform code.
1631 */
1632 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1633 return PHY_INTERFACE_MODE_RGMII_ID;
1634
1635 return PHY_INTERFACE_MODE_RGMII;
1636 }
1637 }
1638
1639 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1640 return PHY_INTERFACE_MODE_GMII;
1641
1642 return PHY_INTERFACE_MODE_MII;
1643 }
1644
1645
1646 /* Initializes driver's PHY state, and attaches to the PHY.
1647 * Returns 0 on success.
1648 */
1649 static int init_phy(struct net_device *dev)
1650 {
1651 struct gfar_private *priv = netdev_priv(dev);
1652 uint gigabit_support =
1653 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1654 GFAR_SUPPORTED_GBIT : 0;
1655 phy_interface_t interface;
1656
1657 priv->oldlink = 0;
1658 priv->oldspeed = 0;
1659 priv->oldduplex = -1;
1660
1661 interface = gfar_get_interface(dev);
1662
1663 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1664 interface);
1665 if (!priv->phydev) {
1666 dev_err(&dev->dev, "could not attach to PHY\n");
1667 return -ENODEV;
1668 }
1669
1670 if (interface == PHY_INTERFACE_MODE_SGMII)
1671 gfar_configure_serdes(dev);
1672
1673 /* Remove any features not supported by the controller */
1674 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1675 priv->phydev->advertising = priv->phydev->supported;
1676
1677 /* Add support for flow control, but don't advertise it by default */
1678 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1679
1680 return 0;
1681 }
1682
1683 /* Initialize TBI PHY interface for communicating with the
1684 * SERDES lynx PHY on the chip. We communicate with this PHY
1685 * through the MDIO bus on each controller, treating it as a
1686 * "normal" PHY at the address found in the TBIPA register. We assume
1687 * that the TBIPA register is valid. Either the MDIO bus code will set
1688 * it to a value that doesn't conflict with other PHYs on the bus, or the
1689 * value doesn't matter, as there are no other PHYs on the bus.
1690 */
1691 static void gfar_configure_serdes(struct net_device *dev)
1692 {
1693 struct gfar_private *priv = netdev_priv(dev);
1694 struct phy_device *tbiphy;
1695
1696 if (!priv->tbi_node) {
1697 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1698 "device tree specify a tbi-handle\n");
1699 return;
1700 }
1701
1702 tbiphy = of_phy_find_device(priv->tbi_node);
1703 if (!tbiphy) {
1704 dev_err(&dev->dev, "error: Could not get TBI device\n");
1705 return;
1706 }
1707
1708 /* If the link is already up, we must already be ok, and don't need to
1709 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1710 * everything for us? Resetting it takes the link down and requires
1711 * several seconds for it to come back.
1712 */
1713 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1714 return;
1715
1716 /* Single clk mode, mii mode off(for serdes communication) */
1717 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1718
1719 phy_write(tbiphy, MII_ADVERTISE,
1720 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1721 ADVERTISE_1000XPSE_ASYM);
1722
1723 phy_write(tbiphy, MII_BMCR,
1724 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1725 BMCR_SPEED1000);
1726 }
1727
1728 static int __gfar_is_rx_idle(struct gfar_private *priv)
1729 {
1730 u32 res;
1731
1732 /* Normaly TSEC should not hang on GRS commands, so we should
1733 * actually wait for IEVENT_GRSC flag.
1734 */
1735 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1736 return 0;
1737
1738 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1739 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1740 * and the Rx can be safely reset.
1741 */
1742 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1743 res &= 0x7f807f80;
1744 if ((res & 0xffff) == (res >> 16))
1745 return 1;
1746
1747 return 0;
1748 }
1749
1750 /* Halt the receive and transmit queues */
1751 static void gfar_halt_nodisable(struct gfar_private *priv)
1752 {
1753 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1754 u32 tempval;
1755 unsigned int timeout;
1756 int stopped;
1757
1758 gfar_ints_disable(priv);
1759
1760 if (gfar_is_dma_stopped(priv))
1761 return;
1762
1763 /* Stop the DMA, and wait for it to stop */
1764 tempval = gfar_read(&regs->dmactrl);
1765 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1766 gfar_write(&regs->dmactrl, tempval);
1767
1768 retry:
1769 timeout = 1000;
1770 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1771 cpu_relax();
1772 timeout--;
1773 }
1774
1775 if (!timeout)
1776 stopped = gfar_is_dma_stopped(priv);
1777
1778 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1779 !__gfar_is_rx_idle(priv))
1780 goto retry;
1781 }
1782
1783 /* Halt the receive and transmit queues */
1784 void gfar_halt(struct gfar_private *priv)
1785 {
1786 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1787 u32 tempval;
1788
1789 /* Dissable the Rx/Tx hw queues */
1790 gfar_write(&regs->rqueue, 0);
1791 gfar_write(&regs->tqueue, 0);
1792
1793 mdelay(10);
1794
1795 gfar_halt_nodisable(priv);
1796
1797 /* Disable Rx/Tx DMA */
1798 tempval = gfar_read(&regs->maccfg1);
1799 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1800 gfar_write(&regs->maccfg1, tempval);
1801 }
1802
1803 void stop_gfar(struct net_device *dev)
1804 {
1805 struct gfar_private *priv = netdev_priv(dev);
1806
1807 netif_tx_stop_all_queues(dev);
1808
1809 smp_mb__before_atomic();
1810 set_bit(GFAR_DOWN, &priv->state);
1811 smp_mb__after_atomic();
1812
1813 disable_napi(priv);
1814
1815 /* disable ints and gracefully shut down Rx/Tx DMA */
1816 gfar_halt(priv);
1817
1818 phy_stop(priv->phydev);
1819
1820 free_skb_resources(priv);
1821 }
1822
1823 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1824 {
1825 struct txbd8 *txbdp;
1826 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1827 int i, j;
1828
1829 txbdp = tx_queue->tx_bd_base;
1830
1831 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1832 if (!tx_queue->tx_skbuff[i])
1833 continue;
1834
1835 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1836 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1837 txbdp->lstatus = 0;
1838 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1839 j++) {
1840 txbdp++;
1841 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1842 be16_to_cpu(txbdp->length),
1843 DMA_TO_DEVICE);
1844 }
1845 txbdp++;
1846 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1847 tx_queue->tx_skbuff[i] = NULL;
1848 }
1849 kfree(tx_queue->tx_skbuff);
1850 tx_queue->tx_skbuff = NULL;
1851 }
1852
1853 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1854 {
1855 int i;
1856
1857 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1858
1859 if (rx_queue->skb)
1860 dev_kfree_skb(rx_queue->skb);
1861
1862 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1863 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1864
1865 rxbdp->lstatus = 0;
1866 rxbdp->bufPtr = 0;
1867 rxbdp++;
1868
1869 if (!rxb->page)
1870 continue;
1871
1872 dma_unmap_single(rx_queue->dev, rxb->dma,
1873 PAGE_SIZE, DMA_FROM_DEVICE);
1874 __free_page(rxb->page);
1875
1876 rxb->page = NULL;
1877 }
1878
1879 kfree(rx_queue->rx_buff);
1880 rx_queue->rx_buff = NULL;
1881 }
1882
1883 /* If there are any tx skbs or rx skbs still around, free them.
1884 * Then free tx_skbuff and rx_skbuff
1885 */
1886 static void free_skb_resources(struct gfar_private *priv)
1887 {
1888 struct gfar_priv_tx_q *tx_queue = NULL;
1889 struct gfar_priv_rx_q *rx_queue = NULL;
1890 int i;
1891
1892 /* Go through all the buffer descriptors and free their data buffers */
1893 for (i = 0; i < priv->num_tx_queues; i++) {
1894 struct netdev_queue *txq;
1895
1896 tx_queue = priv->tx_queue[i];
1897 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1898 if (tx_queue->tx_skbuff)
1899 free_skb_tx_queue(tx_queue);
1900 netdev_tx_reset_queue(txq);
1901 }
1902
1903 for (i = 0; i < priv->num_rx_queues; i++) {
1904 rx_queue = priv->rx_queue[i];
1905 if (rx_queue->rx_buff)
1906 free_skb_rx_queue(rx_queue);
1907 }
1908
1909 dma_free_coherent(priv->dev,
1910 sizeof(struct txbd8) * priv->total_tx_ring_size +
1911 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1912 priv->tx_queue[0]->tx_bd_base,
1913 priv->tx_queue[0]->tx_bd_dma_base);
1914 }
1915
1916 void gfar_start(struct gfar_private *priv)
1917 {
1918 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1919 u32 tempval;
1920 int i = 0;
1921
1922 /* Enable Rx/Tx hw queues */
1923 gfar_write(&regs->rqueue, priv->rqueue);
1924 gfar_write(&regs->tqueue, priv->tqueue);
1925
1926 /* Initialize DMACTRL to have WWR and WOP */
1927 tempval = gfar_read(&regs->dmactrl);
1928 tempval |= DMACTRL_INIT_SETTINGS;
1929 gfar_write(&regs->dmactrl, tempval);
1930
1931 /* Make sure we aren't stopped */
1932 tempval = gfar_read(&regs->dmactrl);
1933 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1934 gfar_write(&regs->dmactrl, tempval);
1935
1936 for (i = 0; i < priv->num_grps; i++) {
1937 regs = priv->gfargrp[i].regs;
1938 /* Clear THLT/RHLT, so that the DMA starts polling now */
1939 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1940 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1941 }
1942
1943 /* Enable Rx/Tx DMA */
1944 tempval = gfar_read(&regs->maccfg1);
1945 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1946 gfar_write(&regs->maccfg1, tempval);
1947
1948 gfar_ints_enable(priv);
1949
1950 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1951 }
1952
1953 static void free_grp_irqs(struct gfar_priv_grp *grp)
1954 {
1955 free_irq(gfar_irq(grp, TX)->irq, grp);
1956 free_irq(gfar_irq(grp, RX)->irq, grp);
1957 free_irq(gfar_irq(grp, ER)->irq, grp);
1958 }
1959
1960 static int register_grp_irqs(struct gfar_priv_grp *grp)
1961 {
1962 struct gfar_private *priv = grp->priv;
1963 struct net_device *dev = priv->ndev;
1964 int err;
1965
1966 /* If the device has multiple interrupts, register for
1967 * them. Otherwise, only register for the one
1968 */
1969 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1970 /* Install our interrupt handlers for Error,
1971 * Transmit, and Receive
1972 */
1973 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error,
1974 IRQF_NO_SUSPEND,
1975 gfar_irq(grp, ER)->name, grp);
1976 if (err < 0) {
1977 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1978 gfar_irq(grp, ER)->irq);
1979
1980 goto err_irq_fail;
1981 }
1982 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1983 gfar_irq(grp, TX)->name, grp);
1984 if (err < 0) {
1985 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1986 gfar_irq(grp, TX)->irq);
1987 goto tx_irq_fail;
1988 }
1989 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1990 gfar_irq(grp, RX)->name, grp);
1991 if (err < 0) {
1992 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1993 gfar_irq(grp, RX)->irq);
1994 goto rx_irq_fail;
1995 }
1996 } else {
1997 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt,
1998 IRQF_NO_SUSPEND,
1999 gfar_irq(grp, TX)->name, grp);
2000 if (err < 0) {
2001 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2002 gfar_irq(grp, TX)->irq);
2003 goto err_irq_fail;
2004 }
2005 }
2006
2007 return 0;
2008
2009 rx_irq_fail:
2010 free_irq(gfar_irq(grp, TX)->irq, grp);
2011 tx_irq_fail:
2012 free_irq(gfar_irq(grp, ER)->irq, grp);
2013 err_irq_fail:
2014 return err;
2015
2016 }
2017
2018 static void gfar_free_irq(struct gfar_private *priv)
2019 {
2020 int i;
2021
2022 /* Free the IRQs */
2023 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2024 for (i = 0; i < priv->num_grps; i++)
2025 free_grp_irqs(&priv->gfargrp[i]);
2026 } else {
2027 for (i = 0; i < priv->num_grps; i++)
2028 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2029 &priv->gfargrp[i]);
2030 }
2031 }
2032
2033 static int gfar_request_irq(struct gfar_private *priv)
2034 {
2035 int err, i, j;
2036
2037 for (i = 0; i < priv->num_grps; i++) {
2038 err = register_grp_irqs(&priv->gfargrp[i]);
2039 if (err) {
2040 for (j = 0; j < i; j++)
2041 free_grp_irqs(&priv->gfargrp[j]);
2042 return err;
2043 }
2044 }
2045
2046 return 0;
2047 }
2048
2049 /* Bring the controller up and running */
2050 int startup_gfar(struct net_device *ndev)
2051 {
2052 struct gfar_private *priv = netdev_priv(ndev);
2053 int err;
2054
2055 gfar_mac_reset(priv);
2056
2057 err = gfar_alloc_skb_resources(ndev);
2058 if (err)
2059 return err;
2060
2061 gfar_init_tx_rx_base(priv);
2062
2063 smp_mb__before_atomic();
2064 clear_bit(GFAR_DOWN, &priv->state);
2065 smp_mb__after_atomic();
2066
2067 /* Start Rx/Tx DMA and enable the interrupts */
2068 gfar_start(priv);
2069
2070 /* force link state update after mac reset */
2071 priv->oldlink = 0;
2072 priv->oldspeed = 0;
2073 priv->oldduplex = -1;
2074
2075 phy_start(priv->phydev);
2076
2077 enable_napi(priv);
2078
2079 netif_tx_wake_all_queues(ndev);
2080
2081 return 0;
2082 }
2083
2084 /* Called when something needs to use the ethernet device
2085 * Returns 0 for success.
2086 */
2087 static int gfar_enet_open(struct net_device *dev)
2088 {
2089 struct gfar_private *priv = netdev_priv(dev);
2090 int err;
2091
2092 err = init_phy(dev);
2093 if (err)
2094 return err;
2095
2096 err = gfar_request_irq(priv);
2097 if (err)
2098 return err;
2099
2100 err = startup_gfar(dev);
2101 if (err)
2102 return err;
2103
2104 return err;
2105 }
2106
2107 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2108 {
2109 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2110
2111 memset(fcb, 0, GMAC_FCB_LEN);
2112
2113 return fcb;
2114 }
2115
2116 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2117 int fcb_length)
2118 {
2119 /* If we're here, it's a IP packet with a TCP or UDP
2120 * payload. We set it to checksum, using a pseudo-header
2121 * we provide
2122 */
2123 u8 flags = TXFCB_DEFAULT;
2124
2125 /* Tell the controller what the protocol is
2126 * And provide the already calculated phcs
2127 */
2128 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2129 flags |= TXFCB_UDP;
2130 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2131 } else
2132 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2133
2134 /* l3os is the distance between the start of the
2135 * frame (skb->data) and the start of the IP hdr.
2136 * l4os is the distance between the start of the
2137 * l3 hdr and the l4 hdr
2138 */
2139 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2140 fcb->l4os = skb_network_header_len(skb);
2141
2142 fcb->flags = flags;
2143 }
2144
2145 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2146 {
2147 fcb->flags |= TXFCB_VLN;
2148 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2149 }
2150
2151 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2152 struct txbd8 *base, int ring_size)
2153 {
2154 struct txbd8 *new_bd = bdp + stride;
2155
2156 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2157 }
2158
2159 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2160 int ring_size)
2161 {
2162 return skip_txbd(bdp, 1, base, ring_size);
2163 }
2164
2165 /* eTSEC12: csum generation not supported for some fcb offsets */
2166 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2167 unsigned long fcb_addr)
2168 {
2169 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2170 (fcb_addr % 0x20) > 0x18);
2171 }
2172
2173 /* eTSEC76: csum generation for frames larger than 2500 may
2174 * cause excess delays before start of transmission
2175 */
2176 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2177 unsigned int len)
2178 {
2179 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2180 (len > 2500));
2181 }
2182
2183 /* This is called by the kernel when a frame is ready for transmission.
2184 * It is pointed to by the dev->hard_start_xmit function pointer
2185 */
2186 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2187 {
2188 struct gfar_private *priv = netdev_priv(dev);
2189 struct gfar_priv_tx_q *tx_queue = NULL;
2190 struct netdev_queue *txq;
2191 struct gfar __iomem *regs = NULL;
2192 struct txfcb *fcb = NULL;
2193 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2194 u32 lstatus;
2195 int i, rq = 0;
2196 int do_tstamp, do_csum, do_vlan;
2197 u32 bufaddr;
2198 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2199
2200 rq = skb->queue_mapping;
2201 tx_queue = priv->tx_queue[rq];
2202 txq = netdev_get_tx_queue(dev, rq);
2203 base = tx_queue->tx_bd_base;
2204 regs = tx_queue->grp->regs;
2205
2206 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2207 do_vlan = skb_vlan_tag_present(skb);
2208 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2209 priv->hwts_tx_en;
2210
2211 if (do_csum || do_vlan)
2212 fcb_len = GMAC_FCB_LEN;
2213
2214 /* check if time stamp should be generated */
2215 if (unlikely(do_tstamp))
2216 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2217
2218 /* make space for additional header when fcb is needed */
2219 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2220 struct sk_buff *skb_new;
2221
2222 skb_new = skb_realloc_headroom(skb, fcb_len);
2223 if (!skb_new) {
2224 dev->stats.tx_errors++;
2225 dev_kfree_skb_any(skb);
2226 return NETDEV_TX_OK;
2227 }
2228
2229 if (skb->sk)
2230 skb_set_owner_w(skb_new, skb->sk);
2231 dev_consume_skb_any(skb);
2232 skb = skb_new;
2233 }
2234
2235 /* total number of fragments in the SKB */
2236 nr_frags = skb_shinfo(skb)->nr_frags;
2237
2238 /* calculate the required number of TxBDs for this skb */
2239 if (unlikely(do_tstamp))
2240 nr_txbds = nr_frags + 2;
2241 else
2242 nr_txbds = nr_frags + 1;
2243
2244 /* check if there is space to queue this packet */
2245 if (nr_txbds > tx_queue->num_txbdfree) {
2246 /* no space, stop the queue */
2247 netif_tx_stop_queue(txq);
2248 dev->stats.tx_fifo_errors++;
2249 return NETDEV_TX_BUSY;
2250 }
2251
2252 /* Update transmit stats */
2253 bytes_sent = skb->len;
2254 tx_queue->stats.tx_bytes += bytes_sent;
2255 /* keep Tx bytes on wire for BQL accounting */
2256 GFAR_CB(skb)->bytes_sent = bytes_sent;
2257 tx_queue->stats.tx_packets++;
2258
2259 txbdp = txbdp_start = tx_queue->cur_tx;
2260 lstatus = be32_to_cpu(txbdp->lstatus);
2261
2262 /* Time stamp insertion requires one additional TxBD */
2263 if (unlikely(do_tstamp))
2264 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2265 tx_queue->tx_ring_size);
2266
2267 if (nr_frags == 0) {
2268 if (unlikely(do_tstamp)) {
2269 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2270
2271 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2272 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2273 } else {
2274 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2275 }
2276 } else {
2277 /* Place the fragment addresses and lengths into the TxBDs */
2278 for (i = 0; i < nr_frags; i++) {
2279 unsigned int frag_len;
2280 /* Point at the next BD, wrapping as needed */
2281 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2282
2283 frag_len = skb_shinfo(skb)->frags[i].size;
2284
2285 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2286 BD_LFLAG(TXBD_READY);
2287
2288 /* Handle the last BD specially */
2289 if (i == nr_frags - 1)
2290 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2291
2292 bufaddr = skb_frag_dma_map(priv->dev,
2293 &skb_shinfo(skb)->frags[i],
2294 0,
2295 frag_len,
2296 DMA_TO_DEVICE);
2297 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2298 goto dma_map_err;
2299
2300 /* set the TxBD length and buffer pointer */
2301 txbdp->bufPtr = cpu_to_be32(bufaddr);
2302 txbdp->lstatus = cpu_to_be32(lstatus);
2303 }
2304
2305 lstatus = be32_to_cpu(txbdp_start->lstatus);
2306 }
2307
2308 /* Add TxPAL between FCB and frame if required */
2309 if (unlikely(do_tstamp)) {
2310 skb_push(skb, GMAC_TXPAL_LEN);
2311 memset(skb->data, 0, GMAC_TXPAL_LEN);
2312 }
2313
2314 /* Add TxFCB if required */
2315 if (fcb_len) {
2316 fcb = gfar_add_fcb(skb);
2317 lstatus |= BD_LFLAG(TXBD_TOE);
2318 }
2319
2320 /* Set up checksumming */
2321 if (do_csum) {
2322 gfar_tx_checksum(skb, fcb, fcb_len);
2323
2324 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2325 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2326 __skb_pull(skb, GMAC_FCB_LEN);
2327 skb_checksum_help(skb);
2328 if (do_vlan || do_tstamp) {
2329 /* put back a new fcb for vlan/tstamp TOE */
2330 fcb = gfar_add_fcb(skb);
2331 } else {
2332 /* Tx TOE not used */
2333 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2334 fcb = NULL;
2335 }
2336 }
2337 }
2338
2339 if (do_vlan)
2340 gfar_tx_vlan(skb, fcb);
2341
2342 /* Setup tx hardware time stamping if requested */
2343 if (unlikely(do_tstamp)) {
2344 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2345 fcb->ptp = 1;
2346 }
2347
2348 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2349 DMA_TO_DEVICE);
2350 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2351 goto dma_map_err;
2352
2353 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2354
2355 /* If time stamping is requested one additional TxBD must be set up. The
2356 * first TxBD points to the FCB and must have a data length of
2357 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2358 * the full frame length.
2359 */
2360 if (unlikely(do_tstamp)) {
2361 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2362
2363 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2364 bufaddr += fcb_len;
2365 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2366 (skb_headlen(skb) - fcb_len);
2367
2368 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2369 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2370 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2371 } else {
2372 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2373 }
2374
2375 netdev_tx_sent_queue(txq, bytes_sent);
2376
2377 gfar_wmb();
2378
2379 txbdp_start->lstatus = cpu_to_be32(lstatus);
2380
2381 gfar_wmb(); /* force lstatus write before tx_skbuff */
2382
2383 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2384
2385 /* Update the current skb pointer to the next entry we will use
2386 * (wrapping if necessary)
2387 */
2388 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2389 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2390
2391 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2392
2393 /* We can work in parallel with gfar_clean_tx_ring(), except
2394 * when modifying num_txbdfree. Note that we didn't grab the lock
2395 * when we were reading the num_txbdfree and checking for available
2396 * space, that's because outside of this function it can only grow.
2397 */
2398 spin_lock_bh(&tx_queue->txlock);
2399 /* reduce TxBD free count */
2400 tx_queue->num_txbdfree -= (nr_txbds);
2401 spin_unlock_bh(&tx_queue->txlock);
2402
2403 /* If the next BD still needs to be cleaned up, then the bds
2404 * are full. We need to tell the kernel to stop sending us stuff.
2405 */
2406 if (!tx_queue->num_txbdfree) {
2407 netif_tx_stop_queue(txq);
2408
2409 dev->stats.tx_fifo_errors++;
2410 }
2411
2412 /* Tell the DMA to go go go */
2413 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2414
2415 return NETDEV_TX_OK;
2416
2417 dma_map_err:
2418 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2419 if (do_tstamp)
2420 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2421 for (i = 0; i < nr_frags; i++) {
2422 lstatus = be32_to_cpu(txbdp->lstatus);
2423 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2424 break;
2425
2426 lstatus &= ~BD_LFLAG(TXBD_READY);
2427 txbdp->lstatus = cpu_to_be32(lstatus);
2428 bufaddr = be32_to_cpu(txbdp->bufPtr);
2429 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2430 DMA_TO_DEVICE);
2431 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2432 }
2433 gfar_wmb();
2434 dev_kfree_skb_any(skb);
2435 return NETDEV_TX_OK;
2436 }
2437
2438 /* Stops the kernel queue, and halts the controller */
2439 static int gfar_close(struct net_device *dev)
2440 {
2441 struct gfar_private *priv = netdev_priv(dev);
2442
2443 cancel_work_sync(&priv->reset_task);
2444 stop_gfar(dev);
2445
2446 /* Disconnect from the PHY */
2447 phy_disconnect(priv->phydev);
2448 priv->phydev = NULL;
2449
2450 gfar_free_irq(priv);
2451
2452 return 0;
2453 }
2454
2455 /* Changes the mac address if the controller is not running. */
2456 static int gfar_set_mac_address(struct net_device *dev)
2457 {
2458 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2459
2460 return 0;
2461 }
2462
2463 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2464 {
2465 struct gfar_private *priv = netdev_priv(dev);
2466 int frame_size = new_mtu + ETH_HLEN;
2467
2468 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2469 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2470 return -EINVAL;
2471 }
2472
2473 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2474 cpu_relax();
2475
2476 if (dev->flags & IFF_UP)
2477 stop_gfar(dev);
2478
2479 dev->mtu = new_mtu;
2480
2481 if (dev->flags & IFF_UP)
2482 startup_gfar(dev);
2483
2484 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2485
2486 return 0;
2487 }
2488
2489 void reset_gfar(struct net_device *ndev)
2490 {
2491 struct gfar_private *priv = netdev_priv(ndev);
2492
2493 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2494 cpu_relax();
2495
2496 stop_gfar(ndev);
2497 startup_gfar(ndev);
2498
2499 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2500 }
2501
2502 /* gfar_reset_task gets scheduled when a packet has not been
2503 * transmitted after a set amount of time.
2504 * For now, assume that clearing out all the structures, and
2505 * starting over will fix the problem.
2506 */
2507 static void gfar_reset_task(struct work_struct *work)
2508 {
2509 struct gfar_private *priv = container_of(work, struct gfar_private,
2510 reset_task);
2511 reset_gfar(priv->ndev);
2512 }
2513
2514 static void gfar_timeout(struct net_device *dev)
2515 {
2516 struct gfar_private *priv = netdev_priv(dev);
2517
2518 dev->stats.tx_errors++;
2519 schedule_work(&priv->reset_task);
2520 }
2521
2522 /* Interrupt Handler for Transmit complete */
2523 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2524 {
2525 struct net_device *dev = tx_queue->dev;
2526 struct netdev_queue *txq;
2527 struct gfar_private *priv = netdev_priv(dev);
2528 struct txbd8 *bdp, *next = NULL;
2529 struct txbd8 *lbdp = NULL;
2530 struct txbd8 *base = tx_queue->tx_bd_base;
2531 struct sk_buff *skb;
2532 int skb_dirtytx;
2533 int tx_ring_size = tx_queue->tx_ring_size;
2534 int frags = 0, nr_txbds = 0;
2535 int i;
2536 int howmany = 0;
2537 int tqi = tx_queue->qindex;
2538 unsigned int bytes_sent = 0;
2539 u32 lstatus;
2540 size_t buflen;
2541
2542 txq = netdev_get_tx_queue(dev, tqi);
2543 bdp = tx_queue->dirty_tx;
2544 skb_dirtytx = tx_queue->skb_dirtytx;
2545
2546 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2547
2548 frags = skb_shinfo(skb)->nr_frags;
2549
2550 /* When time stamping, one additional TxBD must be freed.
2551 * Also, we need to dma_unmap_single() the TxPAL.
2552 */
2553 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2554 nr_txbds = frags + 2;
2555 else
2556 nr_txbds = frags + 1;
2557
2558 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2559
2560 lstatus = be32_to_cpu(lbdp->lstatus);
2561
2562 /* Only clean completed frames */
2563 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2564 (lstatus & BD_LENGTH_MASK))
2565 break;
2566
2567 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2568 next = next_txbd(bdp, base, tx_ring_size);
2569 buflen = be16_to_cpu(next->length) +
2570 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2571 } else
2572 buflen = be16_to_cpu(bdp->length);
2573
2574 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2575 buflen, DMA_TO_DEVICE);
2576
2577 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2578 struct skb_shared_hwtstamps shhwtstamps;
2579 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2580 ~0x7UL);
2581
2582 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2583 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2584 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2585 skb_tstamp_tx(skb, &shhwtstamps);
2586 gfar_clear_txbd_status(bdp);
2587 bdp = next;
2588 }
2589
2590 gfar_clear_txbd_status(bdp);
2591 bdp = next_txbd(bdp, base, tx_ring_size);
2592
2593 for (i = 0; i < frags; i++) {
2594 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2595 be16_to_cpu(bdp->length),
2596 DMA_TO_DEVICE);
2597 gfar_clear_txbd_status(bdp);
2598 bdp = next_txbd(bdp, base, tx_ring_size);
2599 }
2600
2601 bytes_sent += GFAR_CB(skb)->bytes_sent;
2602
2603 dev_kfree_skb_any(skb);
2604
2605 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2606
2607 skb_dirtytx = (skb_dirtytx + 1) &
2608 TX_RING_MOD_MASK(tx_ring_size);
2609
2610 howmany++;
2611 spin_lock(&tx_queue->txlock);
2612 tx_queue->num_txbdfree += nr_txbds;
2613 spin_unlock(&tx_queue->txlock);
2614 }
2615
2616 /* If we freed a buffer, we can restart transmission, if necessary */
2617 if (tx_queue->num_txbdfree &&
2618 netif_tx_queue_stopped(txq) &&
2619 !(test_bit(GFAR_DOWN, &priv->state)))
2620 netif_wake_subqueue(priv->ndev, tqi);
2621
2622 /* Update dirty indicators */
2623 tx_queue->skb_dirtytx = skb_dirtytx;
2624 tx_queue->dirty_tx = bdp;
2625
2626 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2627 }
2628
2629 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2630 {
2631 struct page *page;
2632 dma_addr_t addr;
2633
2634 page = dev_alloc_page();
2635 if (unlikely(!page))
2636 return false;
2637
2638 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2639 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2640 __free_page(page);
2641
2642 return false;
2643 }
2644
2645 rxb->dma = addr;
2646 rxb->page = page;
2647 rxb->page_offset = 0;
2648
2649 return true;
2650 }
2651
2652 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2653 {
2654 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2655 struct gfar_extra_stats *estats = &priv->extra_stats;
2656
2657 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2658 atomic64_inc(&estats->rx_alloc_err);
2659 }
2660
2661 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2662 int alloc_cnt)
2663 {
2664 struct rxbd8 *bdp;
2665 struct gfar_rx_buff *rxb;
2666 int i;
2667
2668 i = rx_queue->next_to_use;
2669 bdp = &rx_queue->rx_bd_base[i];
2670 rxb = &rx_queue->rx_buff[i];
2671
2672 while (alloc_cnt--) {
2673 /* try reuse page */
2674 if (unlikely(!rxb->page)) {
2675 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2676 gfar_rx_alloc_err(rx_queue);
2677 break;
2678 }
2679 }
2680
2681 /* Setup the new RxBD */
2682 gfar_init_rxbdp(rx_queue, bdp,
2683 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2684
2685 /* Update to the next pointer */
2686 bdp++;
2687 rxb++;
2688
2689 if (unlikely(++i == rx_queue->rx_ring_size)) {
2690 i = 0;
2691 bdp = rx_queue->rx_bd_base;
2692 rxb = rx_queue->rx_buff;
2693 }
2694 }
2695
2696 rx_queue->next_to_use = i;
2697 rx_queue->next_to_alloc = i;
2698 }
2699
2700 static void count_errors(u32 lstatus, struct net_device *ndev)
2701 {
2702 struct gfar_private *priv = netdev_priv(ndev);
2703 struct net_device_stats *stats = &ndev->stats;
2704 struct gfar_extra_stats *estats = &priv->extra_stats;
2705
2706 /* If the packet was truncated, none of the other errors matter */
2707 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2708 stats->rx_length_errors++;
2709
2710 atomic64_inc(&estats->rx_trunc);
2711
2712 return;
2713 }
2714 /* Count the errors, if there were any */
2715 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2716 stats->rx_length_errors++;
2717
2718 if (lstatus & BD_LFLAG(RXBD_LARGE))
2719 atomic64_inc(&estats->rx_large);
2720 else
2721 atomic64_inc(&estats->rx_short);
2722 }
2723 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2724 stats->rx_frame_errors++;
2725 atomic64_inc(&estats->rx_nonoctet);
2726 }
2727 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2728 atomic64_inc(&estats->rx_crcerr);
2729 stats->rx_crc_errors++;
2730 }
2731 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2732 atomic64_inc(&estats->rx_overrun);
2733 stats->rx_over_errors++;
2734 }
2735 }
2736
2737 irqreturn_t gfar_receive(int irq, void *grp_id)
2738 {
2739 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2740 unsigned long flags;
2741 u32 imask;
2742
2743 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2744 spin_lock_irqsave(&grp->grplock, flags);
2745 imask = gfar_read(&grp->regs->imask);
2746 imask &= IMASK_RX_DISABLED;
2747 gfar_write(&grp->regs->imask, imask);
2748 spin_unlock_irqrestore(&grp->grplock, flags);
2749 __napi_schedule(&grp->napi_rx);
2750 } else {
2751 /* Clear IEVENT, so interrupts aren't called again
2752 * because of the packets that have already arrived.
2753 */
2754 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2755 }
2756
2757 return IRQ_HANDLED;
2758 }
2759
2760 /* Interrupt Handler for Transmit complete */
2761 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2762 {
2763 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2764 unsigned long flags;
2765 u32 imask;
2766
2767 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2768 spin_lock_irqsave(&grp->grplock, flags);
2769 imask = gfar_read(&grp->regs->imask);
2770 imask &= IMASK_TX_DISABLED;
2771 gfar_write(&grp->regs->imask, imask);
2772 spin_unlock_irqrestore(&grp->grplock, flags);
2773 __napi_schedule(&grp->napi_tx);
2774 } else {
2775 /* Clear IEVENT, so interrupts aren't called again
2776 * because of the packets that have already arrived.
2777 */
2778 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2779 }
2780
2781 return IRQ_HANDLED;
2782 }
2783
2784 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2785 struct sk_buff *skb, bool first)
2786 {
2787 unsigned int size = lstatus & BD_LENGTH_MASK;
2788 struct page *page = rxb->page;
2789
2790 /* Remove the FCS from the packet length */
2791 if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2792 size -= ETH_FCS_LEN;
2793
2794 if (likely(first))
2795 skb_put(skb, size);
2796 else
2797 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2798 rxb->page_offset + RXBUF_ALIGNMENT,
2799 size, GFAR_RXB_TRUESIZE);
2800
2801 /* try reuse page */
2802 if (unlikely(page_count(page) != 1))
2803 return false;
2804
2805 /* change offset to the other half */
2806 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2807
2808 atomic_inc(&page->_count);
2809
2810 return true;
2811 }
2812
2813 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2814 struct gfar_rx_buff *old_rxb)
2815 {
2816 struct gfar_rx_buff *new_rxb;
2817 u16 nta = rxq->next_to_alloc;
2818
2819 new_rxb = &rxq->rx_buff[nta];
2820
2821 /* find next buf that can reuse a page */
2822 nta++;
2823 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2824
2825 /* copy page reference */
2826 *new_rxb = *old_rxb;
2827
2828 /* sync for use by the device */
2829 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2830 old_rxb->page_offset,
2831 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2832 }
2833
2834 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2835 u32 lstatus, struct sk_buff *skb)
2836 {
2837 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2838 struct page *page = rxb->page;
2839 bool first = false;
2840
2841 if (likely(!skb)) {
2842 void *buff_addr = page_address(page) + rxb->page_offset;
2843
2844 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2845 if (unlikely(!skb)) {
2846 gfar_rx_alloc_err(rx_queue);
2847 return NULL;
2848 }
2849 skb_reserve(skb, RXBUF_ALIGNMENT);
2850 first = true;
2851 }
2852
2853 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2854 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2855
2856 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2857 /* reuse the free half of the page */
2858 gfar_reuse_rx_page(rx_queue, rxb);
2859 } else {
2860 /* page cannot be reused, unmap it */
2861 dma_unmap_page(rx_queue->dev, rxb->dma,
2862 PAGE_SIZE, DMA_FROM_DEVICE);
2863 }
2864
2865 /* clear rxb content */
2866 rxb->page = NULL;
2867
2868 return skb;
2869 }
2870
2871 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2872 {
2873 /* If valid headers were found, and valid sums
2874 * were verified, then we tell the kernel that no
2875 * checksumming is necessary. Otherwise, it is [FIXME]
2876 */
2877 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2878 (RXFCB_CIP | RXFCB_CTU))
2879 skb->ip_summed = CHECKSUM_UNNECESSARY;
2880 else
2881 skb_checksum_none_assert(skb);
2882 }
2883
2884 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2885 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2886 {
2887 struct gfar_private *priv = netdev_priv(ndev);
2888 struct rxfcb *fcb = NULL;
2889
2890 /* fcb is at the beginning if exists */
2891 fcb = (struct rxfcb *)skb->data;
2892
2893 /* Remove the FCB from the skb
2894 * Remove the padded bytes, if there are any
2895 */
2896 if (priv->uses_rxfcb)
2897 skb_pull(skb, GMAC_FCB_LEN);
2898
2899 /* Get receive timestamp from the skb */
2900 if (priv->hwts_rx_en) {
2901 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2902 u64 *ns = (u64 *) skb->data;
2903
2904 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2905 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2906 }
2907
2908 if (priv->padding)
2909 skb_pull(skb, priv->padding);
2910
2911 if (ndev->features & NETIF_F_RXCSUM)
2912 gfar_rx_checksum(skb, fcb);
2913
2914 /* Tell the skb what kind of packet this is */
2915 skb->protocol = eth_type_trans(skb, ndev);
2916
2917 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2918 * Even if vlan rx accel is disabled, on some chips
2919 * RXFCB_VLN is pseudo randomly set.
2920 */
2921 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2922 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2923 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2924 be16_to_cpu(fcb->vlctl));
2925 }
2926
2927 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2928 * until the budget/quota has been reached. Returns the number
2929 * of frames handled
2930 */
2931 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2932 {
2933 struct net_device *ndev = rx_queue->ndev;
2934 struct gfar_private *priv = netdev_priv(ndev);
2935 struct rxbd8 *bdp;
2936 int i, howmany = 0;
2937 struct sk_buff *skb = rx_queue->skb;
2938 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2939 unsigned int total_bytes = 0, total_pkts = 0;
2940
2941 /* Get the first full descriptor */
2942 i = rx_queue->next_to_clean;
2943
2944 while (rx_work_limit--) {
2945 u32 lstatus;
2946
2947 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2948 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2949 cleaned_cnt = 0;
2950 }
2951
2952 bdp = &rx_queue->rx_bd_base[i];
2953 lstatus = be32_to_cpu(bdp->lstatus);
2954 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2955 break;
2956
2957 /* order rx buffer descriptor reads */
2958 rmb();
2959
2960 /* fetch next to clean buffer from the ring */
2961 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2962 if (unlikely(!skb))
2963 break;
2964
2965 cleaned_cnt++;
2966 howmany++;
2967
2968 if (unlikely(++i == rx_queue->rx_ring_size))
2969 i = 0;
2970
2971 rx_queue->next_to_clean = i;
2972
2973 /* fetch next buffer if not the last in frame */
2974 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2975 continue;
2976
2977 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2978 count_errors(lstatus, ndev);
2979
2980 /* discard faulty buffer */
2981 dev_kfree_skb(skb);
2982 skb = NULL;
2983 rx_queue->stats.rx_dropped++;
2984 continue;
2985 }
2986
2987 /* Increment the number of packets */
2988 total_pkts++;
2989 total_bytes += skb->len;
2990
2991 skb_record_rx_queue(skb, rx_queue->qindex);
2992
2993 gfar_process_frame(ndev, skb);
2994
2995 /* Send the packet up the stack */
2996 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2997
2998 skb = NULL;
2999 }
3000
3001 /* Store incomplete frames for completion */
3002 rx_queue->skb = skb;
3003
3004 rx_queue->stats.rx_packets += total_pkts;
3005 rx_queue->stats.rx_bytes += total_bytes;
3006
3007 if (cleaned_cnt)
3008 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3009
3010 /* Update Last Free RxBD pointer for LFC */
3011 if (unlikely(priv->tx_actual_en)) {
3012 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3013
3014 gfar_write(rx_queue->rfbptr, bdp_dma);
3015 }
3016
3017 return howmany;
3018 }
3019
3020 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3021 {
3022 struct gfar_priv_grp *gfargrp =
3023 container_of(napi, struct gfar_priv_grp, napi_rx);
3024 struct gfar __iomem *regs = gfargrp->regs;
3025 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3026 int work_done = 0;
3027
3028 /* Clear IEVENT, so interrupts aren't called again
3029 * because of the packets that have already arrived
3030 */
3031 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3032
3033 work_done = gfar_clean_rx_ring(rx_queue, budget);
3034
3035 if (work_done < budget) {
3036 u32 imask;
3037 napi_complete(napi);
3038 /* Clear the halt bit in RSTAT */
3039 gfar_write(&regs->rstat, gfargrp->rstat);
3040
3041 spin_lock_irq(&gfargrp->grplock);
3042 imask = gfar_read(&regs->imask);
3043 imask |= IMASK_RX_DEFAULT;
3044 gfar_write(&regs->imask, imask);
3045 spin_unlock_irq(&gfargrp->grplock);
3046 }
3047
3048 return work_done;
3049 }
3050
3051 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3052 {
3053 struct gfar_priv_grp *gfargrp =
3054 container_of(napi, struct gfar_priv_grp, napi_tx);
3055 struct gfar __iomem *regs = gfargrp->regs;
3056 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3057 u32 imask;
3058
3059 /* Clear IEVENT, so interrupts aren't called again
3060 * because of the packets that have already arrived
3061 */
3062 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3063
3064 /* run Tx cleanup to completion */
3065 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3066 gfar_clean_tx_ring(tx_queue);
3067
3068 napi_complete(napi);
3069
3070 spin_lock_irq(&gfargrp->grplock);
3071 imask = gfar_read(&regs->imask);
3072 imask |= IMASK_TX_DEFAULT;
3073 gfar_write(&regs->imask, imask);
3074 spin_unlock_irq(&gfargrp->grplock);
3075
3076 return 0;
3077 }
3078
3079 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3080 {
3081 struct gfar_priv_grp *gfargrp =
3082 container_of(napi, struct gfar_priv_grp, napi_rx);
3083 struct gfar_private *priv = gfargrp->priv;
3084 struct gfar __iomem *regs = gfargrp->regs;
3085 struct gfar_priv_rx_q *rx_queue = NULL;
3086 int work_done = 0, work_done_per_q = 0;
3087 int i, budget_per_q = 0;
3088 unsigned long rstat_rxf;
3089 int num_act_queues;
3090
3091 /* Clear IEVENT, so interrupts aren't called again
3092 * because of the packets that have already arrived
3093 */
3094 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3095
3096 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3097
3098 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3099 if (num_act_queues)
3100 budget_per_q = budget/num_act_queues;
3101
3102 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3103 /* skip queue if not active */
3104 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3105 continue;
3106
3107 rx_queue = priv->rx_queue[i];
3108 work_done_per_q =
3109 gfar_clean_rx_ring(rx_queue, budget_per_q);
3110 work_done += work_done_per_q;
3111
3112 /* finished processing this queue */
3113 if (work_done_per_q < budget_per_q) {
3114 /* clear active queue hw indication */
3115 gfar_write(&regs->rstat,
3116 RSTAT_CLEAR_RXF0 >> i);
3117 num_act_queues--;
3118
3119 if (!num_act_queues)
3120 break;
3121 }
3122 }
3123
3124 if (!num_act_queues) {
3125 u32 imask;
3126 napi_complete(napi);
3127
3128 /* Clear the halt bit in RSTAT */
3129 gfar_write(&regs->rstat, gfargrp->rstat);
3130
3131 spin_lock_irq(&gfargrp->grplock);
3132 imask = gfar_read(&regs->imask);
3133 imask |= IMASK_RX_DEFAULT;
3134 gfar_write(&regs->imask, imask);
3135 spin_unlock_irq(&gfargrp->grplock);
3136 }
3137
3138 return work_done;
3139 }
3140
3141 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3142 {
3143 struct gfar_priv_grp *gfargrp =
3144 container_of(napi, struct gfar_priv_grp, napi_tx);
3145 struct gfar_private *priv = gfargrp->priv;
3146 struct gfar __iomem *regs = gfargrp->regs;
3147 struct gfar_priv_tx_q *tx_queue = NULL;
3148 int has_tx_work = 0;
3149 int i;
3150
3151 /* Clear IEVENT, so interrupts aren't called again
3152 * because of the packets that have already arrived
3153 */
3154 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3155
3156 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3157 tx_queue = priv->tx_queue[i];
3158 /* run Tx cleanup to completion */
3159 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3160 gfar_clean_tx_ring(tx_queue);
3161 has_tx_work = 1;
3162 }
3163 }
3164
3165 if (!has_tx_work) {
3166 u32 imask;
3167 napi_complete(napi);
3168
3169 spin_lock_irq(&gfargrp->grplock);
3170 imask = gfar_read(&regs->imask);
3171 imask |= IMASK_TX_DEFAULT;
3172 gfar_write(&regs->imask, imask);
3173 spin_unlock_irq(&gfargrp->grplock);
3174 }
3175
3176 return 0;
3177 }
3178
3179
3180 #ifdef CONFIG_NET_POLL_CONTROLLER
3181 /* Polling 'interrupt' - used by things like netconsole to send skbs
3182 * without having to re-enable interrupts. It's not called while
3183 * the interrupt routine is executing.
3184 */
3185 static void gfar_netpoll(struct net_device *dev)
3186 {
3187 struct gfar_private *priv = netdev_priv(dev);
3188 int i;
3189
3190 /* If the device has multiple interrupts, run tx/rx */
3191 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3192 for (i = 0; i < priv->num_grps; i++) {
3193 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3194
3195 disable_irq(gfar_irq(grp, TX)->irq);
3196 disable_irq(gfar_irq(grp, RX)->irq);
3197 disable_irq(gfar_irq(grp, ER)->irq);
3198 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3199 enable_irq(gfar_irq(grp, ER)->irq);
3200 enable_irq(gfar_irq(grp, RX)->irq);
3201 enable_irq(gfar_irq(grp, TX)->irq);
3202 }
3203 } else {
3204 for (i = 0; i < priv->num_grps; i++) {
3205 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3206
3207 disable_irq(gfar_irq(grp, TX)->irq);
3208 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3209 enable_irq(gfar_irq(grp, TX)->irq);
3210 }
3211 }
3212 }
3213 #endif
3214
3215 /* The interrupt handler for devices with one interrupt */
3216 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3217 {
3218 struct gfar_priv_grp *gfargrp = grp_id;
3219
3220 /* Save ievent for future reference */
3221 u32 events = gfar_read(&gfargrp->regs->ievent);
3222
3223 /* Check for reception */
3224 if (events & IEVENT_RX_MASK)
3225 gfar_receive(irq, grp_id);
3226
3227 /* Check for transmit completion */
3228 if (events & IEVENT_TX_MASK)
3229 gfar_transmit(irq, grp_id);
3230
3231 /* Check for errors */
3232 if (events & IEVENT_ERR_MASK)
3233 gfar_error(irq, grp_id);
3234
3235 return IRQ_HANDLED;
3236 }
3237
3238 /* Called every time the controller might need to be made
3239 * aware of new link state. The PHY code conveys this
3240 * information through variables in the phydev structure, and this
3241 * function converts those variables into the appropriate
3242 * register values, and can bring down the device if needed.
3243 */
3244 static void adjust_link(struct net_device *dev)
3245 {
3246 struct gfar_private *priv = netdev_priv(dev);
3247 struct phy_device *phydev = priv->phydev;
3248
3249 if (unlikely(phydev->link != priv->oldlink ||
3250 (phydev->link && (phydev->duplex != priv->oldduplex ||
3251 phydev->speed != priv->oldspeed))))
3252 gfar_update_link_state(priv);
3253 }
3254
3255 /* Update the hash table based on the current list of multicast
3256 * addresses we subscribe to. Also, change the promiscuity of
3257 * the device based on the flags (this function is called
3258 * whenever dev->flags is changed
3259 */
3260 static void gfar_set_multi(struct net_device *dev)
3261 {
3262 struct netdev_hw_addr *ha;
3263 struct gfar_private *priv = netdev_priv(dev);
3264 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3265 u32 tempval;
3266
3267 if (dev->flags & IFF_PROMISC) {
3268 /* Set RCTRL to PROM */
3269 tempval = gfar_read(&regs->rctrl);
3270 tempval |= RCTRL_PROM;
3271 gfar_write(&regs->rctrl, tempval);
3272 } else {
3273 /* Set RCTRL to not PROM */
3274 tempval = gfar_read(&regs->rctrl);
3275 tempval &= ~(RCTRL_PROM);
3276 gfar_write(&regs->rctrl, tempval);
3277 }
3278
3279 if (dev->flags & IFF_ALLMULTI) {
3280 /* Set the hash to rx all multicast frames */
3281 gfar_write(&regs->igaddr0, 0xffffffff);
3282 gfar_write(&regs->igaddr1, 0xffffffff);
3283 gfar_write(&regs->igaddr2, 0xffffffff);
3284 gfar_write(&regs->igaddr3, 0xffffffff);
3285 gfar_write(&regs->igaddr4, 0xffffffff);
3286 gfar_write(&regs->igaddr5, 0xffffffff);
3287 gfar_write(&regs->igaddr6, 0xffffffff);
3288 gfar_write(&regs->igaddr7, 0xffffffff);
3289 gfar_write(&regs->gaddr0, 0xffffffff);
3290 gfar_write(&regs->gaddr1, 0xffffffff);
3291 gfar_write(&regs->gaddr2, 0xffffffff);
3292 gfar_write(&regs->gaddr3, 0xffffffff);
3293 gfar_write(&regs->gaddr4, 0xffffffff);
3294 gfar_write(&regs->gaddr5, 0xffffffff);
3295 gfar_write(&regs->gaddr6, 0xffffffff);
3296 gfar_write(&regs->gaddr7, 0xffffffff);
3297 } else {
3298 int em_num;
3299 int idx;
3300
3301 /* zero out the hash */
3302 gfar_write(&regs->igaddr0, 0x0);
3303 gfar_write(&regs->igaddr1, 0x0);
3304 gfar_write(&regs->igaddr2, 0x0);
3305 gfar_write(&regs->igaddr3, 0x0);
3306 gfar_write(&regs->igaddr4, 0x0);
3307 gfar_write(&regs->igaddr5, 0x0);
3308 gfar_write(&regs->igaddr6, 0x0);
3309 gfar_write(&regs->igaddr7, 0x0);
3310 gfar_write(&regs->gaddr0, 0x0);
3311 gfar_write(&regs->gaddr1, 0x0);
3312 gfar_write(&regs->gaddr2, 0x0);
3313 gfar_write(&regs->gaddr3, 0x0);
3314 gfar_write(&regs->gaddr4, 0x0);
3315 gfar_write(&regs->gaddr5, 0x0);
3316 gfar_write(&regs->gaddr6, 0x0);
3317 gfar_write(&regs->gaddr7, 0x0);
3318
3319 /* If we have extended hash tables, we need to
3320 * clear the exact match registers to prepare for
3321 * setting them
3322 */
3323 if (priv->extended_hash) {
3324 em_num = GFAR_EM_NUM + 1;
3325 gfar_clear_exact_match(dev);
3326 idx = 1;
3327 } else {
3328 idx = 0;
3329 em_num = 0;
3330 }
3331
3332 if (netdev_mc_empty(dev))
3333 return;
3334
3335 /* Parse the list, and set the appropriate bits */
3336 netdev_for_each_mc_addr(ha, dev) {
3337 if (idx < em_num) {
3338 gfar_set_mac_for_addr(dev, idx, ha->addr);
3339 idx++;
3340 } else
3341 gfar_set_hash_for_addr(dev, ha->addr);
3342 }
3343 }
3344 }
3345
3346
3347 /* Clears each of the exact match registers to zero, so they
3348 * don't interfere with normal reception
3349 */
3350 static void gfar_clear_exact_match(struct net_device *dev)
3351 {
3352 int idx;
3353 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3354
3355 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3356 gfar_set_mac_for_addr(dev, idx, zero_arr);
3357 }
3358
3359 /* Set the appropriate hash bit for the given addr */
3360 /* The algorithm works like so:
3361 * 1) Take the Destination Address (ie the multicast address), and
3362 * do a CRC on it (little endian), and reverse the bits of the
3363 * result.
3364 * 2) Use the 8 most significant bits as a hash into a 256-entry
3365 * table. The table is controlled through 8 32-bit registers:
3366 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3367 * gaddr7. This means that the 3 most significant bits in the
3368 * hash index which gaddr register to use, and the 5 other bits
3369 * indicate which bit (assuming an IBM numbering scheme, which
3370 * for PowerPC (tm) is usually the case) in the register holds
3371 * the entry.
3372 */
3373 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3374 {
3375 u32 tempval;
3376 struct gfar_private *priv = netdev_priv(dev);
3377 u32 result = ether_crc(ETH_ALEN, addr);
3378 int width = priv->hash_width;
3379 u8 whichbit = (result >> (32 - width)) & 0x1f;
3380 u8 whichreg = result >> (32 - width + 5);
3381 u32 value = (1 << (31-whichbit));
3382
3383 tempval = gfar_read(priv->hash_regs[whichreg]);
3384 tempval |= value;
3385 gfar_write(priv->hash_regs[whichreg], tempval);
3386 }
3387
3388
3389 /* There are multiple MAC Address register pairs on some controllers
3390 * This function sets the numth pair to a given address
3391 */
3392 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3393 const u8 *addr)
3394 {
3395 struct gfar_private *priv = netdev_priv(dev);
3396 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3397 u32 tempval;
3398 u32 __iomem *macptr = &regs->macstnaddr1;
3399
3400 macptr += num*2;
3401
3402 /* For a station address of 0x12345678ABCD in transmission
3403 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3404 * MACnADDR2 is set to 0x34120000.
3405 */
3406 tempval = (addr[5] << 24) | (addr[4] << 16) |
3407 (addr[3] << 8) | addr[2];
3408
3409 gfar_write(macptr, tempval);
3410
3411 tempval = (addr[1] << 24) | (addr[0] << 16);
3412
3413 gfar_write(macptr+1, tempval);
3414 }
3415
3416 /* GFAR error interrupt handler */
3417 static irqreturn_t gfar_error(int irq, void *grp_id)
3418 {
3419 struct gfar_priv_grp *gfargrp = grp_id;
3420 struct gfar __iomem *regs = gfargrp->regs;
3421 struct gfar_private *priv= gfargrp->priv;
3422 struct net_device *dev = priv->ndev;
3423
3424 /* Save ievent for future reference */
3425 u32 events = gfar_read(&regs->ievent);
3426
3427 /* Clear IEVENT */
3428 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3429
3430 /* Magic Packet is not an error. */
3431 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3432 (events & IEVENT_MAG))
3433 events &= ~IEVENT_MAG;
3434
3435 /* Hmm... */
3436 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3437 netdev_dbg(dev,
3438 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3439 events, gfar_read(&regs->imask));
3440
3441 /* Update the error counters */
3442 if (events & IEVENT_TXE) {
3443 dev->stats.tx_errors++;
3444
3445 if (events & IEVENT_LC)
3446 dev->stats.tx_window_errors++;
3447 if (events & IEVENT_CRL)
3448 dev->stats.tx_aborted_errors++;
3449 if (events & IEVENT_XFUN) {
3450 netif_dbg(priv, tx_err, dev,
3451 "TX FIFO underrun, packet dropped\n");
3452 dev->stats.tx_dropped++;
3453 atomic64_inc(&priv->extra_stats.tx_underrun);
3454
3455 schedule_work(&priv->reset_task);
3456 }
3457 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3458 }
3459 if (events & IEVENT_BSY) {
3460 dev->stats.rx_errors++;
3461 atomic64_inc(&priv->extra_stats.rx_bsy);
3462
3463 gfar_receive(irq, grp_id);
3464
3465 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3466 gfar_read(&regs->rstat));
3467 }
3468 if (events & IEVENT_BABR) {
3469 dev->stats.rx_errors++;
3470 atomic64_inc(&priv->extra_stats.rx_babr);
3471
3472 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3473 }
3474 if (events & IEVENT_EBERR) {
3475 atomic64_inc(&priv->extra_stats.eberr);
3476 netif_dbg(priv, rx_err, dev, "bus error\n");
3477 }
3478 if (events & IEVENT_RXC)
3479 netif_dbg(priv, rx_status, dev, "control frame\n");
3480
3481 if (events & IEVENT_BABT) {
3482 atomic64_inc(&priv->extra_stats.tx_babt);
3483 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3484 }
3485 return IRQ_HANDLED;
3486 }
3487
3488 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3489 {
3490 struct phy_device *phydev = priv->phydev;
3491 u32 val = 0;
3492
3493 if (!phydev->duplex)
3494 return val;
3495
3496 if (!priv->pause_aneg_en) {
3497 if (priv->tx_pause_en)
3498 val |= MACCFG1_TX_FLOW;
3499 if (priv->rx_pause_en)
3500 val |= MACCFG1_RX_FLOW;
3501 } else {
3502 u16 lcl_adv, rmt_adv;
3503 u8 flowctrl;
3504 /* get link partner capabilities */
3505 rmt_adv = 0;
3506 if (phydev->pause)
3507 rmt_adv = LPA_PAUSE_CAP;
3508 if (phydev->asym_pause)
3509 rmt_adv |= LPA_PAUSE_ASYM;
3510
3511 lcl_adv = 0;
3512 if (phydev->advertising & ADVERTISED_Pause)
3513 lcl_adv |= ADVERTISE_PAUSE_CAP;
3514 if (phydev->advertising & ADVERTISED_Asym_Pause)
3515 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3516
3517 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3518 if (flowctrl & FLOW_CTRL_TX)
3519 val |= MACCFG1_TX_FLOW;
3520 if (flowctrl & FLOW_CTRL_RX)
3521 val |= MACCFG1_RX_FLOW;
3522 }
3523
3524 return val;
3525 }
3526
3527 static noinline void gfar_update_link_state(struct gfar_private *priv)
3528 {
3529 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3530 struct phy_device *phydev = priv->phydev;
3531 struct gfar_priv_rx_q *rx_queue = NULL;
3532 int i;
3533
3534 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3535 return;
3536
3537 if (phydev->link) {
3538 u32 tempval1 = gfar_read(&regs->maccfg1);
3539 u32 tempval = gfar_read(&regs->maccfg2);
3540 u32 ecntrl = gfar_read(&regs->ecntrl);
3541 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3542
3543 if (phydev->duplex != priv->oldduplex) {
3544 if (!(phydev->duplex))
3545 tempval &= ~(MACCFG2_FULL_DUPLEX);
3546 else
3547 tempval |= MACCFG2_FULL_DUPLEX;
3548
3549 priv->oldduplex = phydev->duplex;
3550 }
3551
3552 if (phydev->speed != priv->oldspeed) {
3553 switch (phydev->speed) {
3554 case 1000:
3555 tempval =
3556 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3557
3558 ecntrl &= ~(ECNTRL_R100);
3559 break;
3560 case 100:
3561 case 10:
3562 tempval =
3563 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3564
3565 /* Reduced mode distinguishes
3566 * between 10 and 100
3567 */
3568 if (phydev->speed == SPEED_100)
3569 ecntrl |= ECNTRL_R100;
3570 else
3571 ecntrl &= ~(ECNTRL_R100);
3572 break;
3573 default:
3574 netif_warn(priv, link, priv->ndev,
3575 "Ack! Speed (%d) is not 10/100/1000!\n",
3576 phydev->speed);
3577 break;
3578 }
3579
3580 priv->oldspeed = phydev->speed;
3581 }
3582
3583 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3584 tempval1 |= gfar_get_flowctrl_cfg(priv);
3585
3586 /* Turn last free buffer recording on */
3587 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3588 for (i = 0; i < priv->num_rx_queues; i++) {
3589 u32 bdp_dma;
3590
3591 rx_queue = priv->rx_queue[i];
3592 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3593 gfar_write(rx_queue->rfbptr, bdp_dma);
3594 }
3595
3596 priv->tx_actual_en = 1;
3597 }
3598
3599 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3600 priv->tx_actual_en = 0;
3601
3602 gfar_write(&regs->maccfg1, tempval1);
3603 gfar_write(&regs->maccfg2, tempval);
3604 gfar_write(&regs->ecntrl, ecntrl);
3605
3606 if (!priv->oldlink)
3607 priv->oldlink = 1;
3608
3609 } else if (priv->oldlink) {
3610 priv->oldlink = 0;
3611 priv->oldspeed = 0;
3612 priv->oldduplex = -1;
3613 }
3614
3615 if (netif_msg_link(priv))
3616 phy_print_status(phydev);
3617 }
3618
3619 static const struct of_device_id gfar_match[] =
3620 {
3621 {
3622 .type = "network",
3623 .compatible = "gianfar",
3624 },
3625 {
3626 .compatible = "fsl,etsec2",
3627 },
3628 {},
3629 };
3630 MODULE_DEVICE_TABLE(of, gfar_match);
3631
3632 /* Structure for a device driver */
3633 static struct platform_driver gfar_driver = {
3634 .driver = {
3635 .name = "fsl-gianfar",
3636 .pm = GFAR_PM_OPS,
3637 .of_match_table = gfar_match,
3638 },
3639 .probe = gfar_probe,
3640 .remove = gfar_remove,
3641 };
3642
3643 module_platform_driver(gfar_driver);