]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/freescale/gianfar.c
net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143 const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151 dma_addr_t buf)
152 {
153 u32 lstatus;
154
155 bdp->bufPtr = buf;
156
157 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161 eieio();
162
163 bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168 struct gfar_private *priv = netdev_priv(ndev);
169 struct gfar_priv_tx_q *tx_queue = NULL;
170 struct gfar_priv_rx_q *rx_queue = NULL;
171 struct txbd8 *txbdp;
172 struct rxbd8 *rxbdp;
173 int i, j;
174
175 for (i = 0; i < priv->num_tx_queues; i++) {
176 tx_queue = priv->tx_queue[i];
177 /* Initialize some variables in our dev structure */
178 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180 tx_queue->cur_tx = tx_queue->tx_bd_base;
181 tx_queue->skb_curtx = 0;
182 tx_queue->skb_dirtytx = 0;
183
184 /* Initialize Transmit Descriptor Ring */
185 txbdp = tx_queue->tx_bd_base;
186 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187 txbdp->lstatus = 0;
188 txbdp->bufPtr = 0;
189 txbdp++;
190 }
191
192 /* Set the last descriptor in the ring to indicate wrap */
193 txbdp--;
194 txbdp->status |= TXBD_WRAP;
195 }
196
197 for (i = 0; i < priv->num_rx_queues; i++) {
198 rx_queue = priv->rx_queue[i];
199 rx_queue->cur_rx = rx_queue->rx_bd_base;
200 rx_queue->skb_currx = 0;
201 rxbdp = rx_queue->rx_bd_base;
202
203 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204 struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206 if (skb) {
207 gfar_init_rxbdp(rx_queue, rxbdp,
208 rxbdp->bufPtr);
209 } else {
210 skb = gfar_new_skb(ndev);
211 if (!skb) {
212 netdev_err(ndev, "Can't allocate RX buffers\n");
213 return -ENOMEM;
214 }
215 rx_queue->rx_skbuff[j] = skb;
216
217 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218 }
219
220 rxbdp++;
221 }
222
223 }
224
225 return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230 void *vaddr;
231 dma_addr_t addr;
232 int i, j, k;
233 struct gfar_private *priv = netdev_priv(ndev);
234 struct device *dev = priv->dev;
235 struct gfar_priv_tx_q *tx_queue = NULL;
236 struct gfar_priv_rx_q *rx_queue = NULL;
237
238 priv->total_tx_ring_size = 0;
239 for (i = 0; i < priv->num_tx_queues; i++)
240 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242 priv->total_rx_ring_size = 0;
243 for (i = 0; i < priv->num_rx_queues; i++)
244 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246 /* Allocate memory for the buffer descriptors */
247 vaddr = dma_alloc_coherent(dev,
248 (priv->total_tx_ring_size *
249 sizeof(struct txbd8)) +
250 (priv->total_rx_ring_size *
251 sizeof(struct rxbd8)),
252 &addr, GFP_KERNEL);
253 if (!vaddr)
254 return -ENOMEM;
255
256 for (i = 0; i < priv->num_tx_queues; i++) {
257 tx_queue = priv->tx_queue[i];
258 tx_queue->tx_bd_base = vaddr;
259 tx_queue->tx_bd_dma_base = addr;
260 tx_queue->dev = ndev;
261 /* enet DMA only understands physical addresses */
262 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
263 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264 }
265
266 /* Start the rx descriptor ring where the tx ring leaves off */
267 for (i = 0; i < priv->num_rx_queues; i++) {
268 rx_queue = priv->rx_queue[i];
269 rx_queue->rx_bd_base = vaddr;
270 rx_queue->rx_bd_dma_base = addr;
271 rx_queue->dev = ndev;
272 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
273 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274 }
275
276 /* Setup the skbuff rings */
277 for (i = 0; i < priv->num_tx_queues; i++) {
278 tx_queue = priv->tx_queue[i];
279 tx_queue->tx_skbuff =
280 kmalloc_array(tx_queue->tx_ring_size,
281 sizeof(*tx_queue->tx_skbuff),
282 GFP_KERNEL);
283 if (!tx_queue->tx_skbuff)
284 goto cleanup;
285
286 for (k = 0; k < tx_queue->tx_ring_size; k++)
287 tx_queue->tx_skbuff[k] = NULL;
288 }
289
290 for (i = 0; i < priv->num_rx_queues; i++) {
291 rx_queue = priv->rx_queue[i];
292 rx_queue->rx_skbuff =
293 kmalloc_array(rx_queue->rx_ring_size,
294 sizeof(*rx_queue->rx_skbuff),
295 GFP_KERNEL);
296 if (!rx_queue->rx_skbuff)
297 goto cleanup;
298
299 for (j = 0; j < rx_queue->rx_ring_size; j++)
300 rx_queue->rx_skbuff[j] = NULL;
301 }
302
303 if (gfar_init_bds(ndev))
304 goto cleanup;
305
306 return 0;
307
308 cleanup:
309 free_skb_resources(priv);
310 return -ENOMEM;
311 }
312
313 static void gfar_init_tx_rx_base(struct gfar_private *priv)
314 {
315 struct gfar __iomem *regs = priv->gfargrp[0].regs;
316 u32 __iomem *baddr;
317 int i;
318
319 baddr = &regs->tbase0;
320 for (i = 0; i < priv->num_tx_queues; i++) {
321 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
322 baddr += 2;
323 }
324
325 baddr = &regs->rbase0;
326 for (i = 0; i < priv->num_rx_queues; i++) {
327 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
328 baddr += 2;
329 }
330 }
331
332 static void gfar_init_mac(struct net_device *ndev)
333 {
334 struct gfar_private *priv = netdev_priv(ndev);
335 struct gfar __iomem *regs = priv->gfargrp[0].regs;
336 u32 rctrl = 0;
337 u32 tctrl = 0;
338 u32 attrs = 0;
339
340 /* write the tx/rx base registers */
341 gfar_init_tx_rx_base(priv);
342
343 /* Configure the coalescing support */
344 gfar_configure_coalescing_all(priv);
345
346 /* set this when rx hw offload (TOE) functions are being used */
347 priv->uses_rxfcb = 0;
348
349 if (priv->rx_filer_enable) {
350 rctrl |= RCTRL_FILREN;
351 /* Program the RIR0 reg with the required distribution */
352 gfar_write(&regs->rir0, DEFAULT_RIR0);
353 }
354
355 /* Restore PROMISC mode */
356 if (ndev->flags & IFF_PROMISC)
357 rctrl |= RCTRL_PROM;
358
359 if (ndev->features & NETIF_F_RXCSUM) {
360 rctrl |= RCTRL_CHECKSUMMING;
361 priv->uses_rxfcb = 1;
362 }
363
364 if (priv->extended_hash) {
365 rctrl |= RCTRL_EXTHASH;
366
367 gfar_clear_exact_match(ndev);
368 rctrl |= RCTRL_EMEN;
369 }
370
371 if (priv->padding) {
372 rctrl &= ~RCTRL_PAL_MASK;
373 rctrl |= RCTRL_PADDING(priv->padding);
374 }
375
376 /* Insert receive time stamps into padding alignment bytes */
377 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
378 rctrl &= ~RCTRL_PAL_MASK;
379 rctrl |= RCTRL_PADDING(8);
380 priv->padding = 8;
381 }
382
383 /* Enable HW time stamping if requested from user space */
384 if (priv->hwts_rx_en) {
385 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
386 priv->uses_rxfcb = 1;
387 }
388
389 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
390 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391 priv->uses_rxfcb = 1;
392 }
393
394 /* Init rctrl based on our settings */
395 gfar_write(&regs->rctrl, rctrl);
396
397 if (ndev->features & NETIF_F_IP_CSUM)
398 tctrl |= TCTRL_INIT_CSUM;
399
400 if (priv->prio_sched_en)
401 tctrl |= TCTRL_TXSCHED_PRIO;
402 else {
403 tctrl |= TCTRL_TXSCHED_WRRS;
404 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
405 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
406 }
407
408 gfar_write(&regs->tctrl, tctrl);
409
410 /* Set the extraction length and index */
411 attrs = ATTRELI_EL(priv->rx_stash_size) |
412 ATTRELI_EI(priv->rx_stash_index);
413
414 gfar_write(&regs->attreli, attrs);
415
416 /* Start with defaults, and add stashing or locking
417 * depending on the approprate variables
418 */
419 attrs = ATTR_INIT_SETTINGS;
420
421 if (priv->bd_stash_en)
422 attrs |= ATTR_BDSTASH;
423
424 if (priv->rx_stash_size != 0)
425 attrs |= ATTR_BUFSTASH;
426
427 gfar_write(&regs->attr, attrs);
428
429 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
432 }
433
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 {
436 struct gfar_private *priv = netdev_priv(dev);
437 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
438 unsigned long tx_packets = 0, tx_bytes = 0;
439 int i;
440
441 for (i = 0; i < priv->num_rx_queues; i++) {
442 rx_packets += priv->rx_queue[i]->stats.rx_packets;
443 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
444 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
445 }
446
447 dev->stats.rx_packets = rx_packets;
448 dev->stats.rx_bytes = rx_bytes;
449 dev->stats.rx_dropped = rx_dropped;
450
451 for (i = 0; i < priv->num_tx_queues; i++) {
452 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
453 tx_packets += priv->tx_queue[i]->stats.tx_packets;
454 }
455
456 dev->stats.tx_bytes = tx_bytes;
457 dev->stats.tx_packets = tx_packets;
458
459 return &dev->stats;
460 }
461
462 static const struct net_device_ops gfar_netdev_ops = {
463 .ndo_open = gfar_enet_open,
464 .ndo_start_xmit = gfar_start_xmit,
465 .ndo_stop = gfar_close,
466 .ndo_change_mtu = gfar_change_mtu,
467 .ndo_set_features = gfar_set_features,
468 .ndo_set_rx_mode = gfar_set_multi,
469 .ndo_tx_timeout = gfar_timeout,
470 .ndo_do_ioctl = gfar_ioctl,
471 .ndo_get_stats = gfar_get_stats,
472 .ndo_set_mac_address = eth_mac_addr,
473 .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 void lock_rx_qs(struct gfar_private *priv)
480 {
481 int i;
482
483 for (i = 0; i < priv->num_rx_queues; i++)
484 spin_lock(&priv->rx_queue[i]->rxlock);
485 }
486
487 void lock_tx_qs(struct gfar_private *priv)
488 {
489 int i;
490
491 for (i = 0; i < priv->num_tx_queues; i++)
492 spin_lock(&priv->tx_queue[i]->txlock);
493 }
494
495 void unlock_rx_qs(struct gfar_private *priv)
496 {
497 int i;
498
499 for (i = 0; i < priv->num_rx_queues; i++)
500 spin_unlock(&priv->rx_queue[i]->rxlock);
501 }
502
503 void unlock_tx_qs(struct gfar_private *priv)
504 {
505 int i;
506
507 for (i = 0; i < priv->num_tx_queues; i++)
508 spin_unlock(&priv->tx_queue[i]->txlock);
509 }
510
511 static void free_tx_pointers(struct gfar_private *priv)
512 {
513 int i;
514
515 for (i = 0; i < priv->num_tx_queues; i++)
516 kfree(priv->tx_queue[i]);
517 }
518
519 static void free_rx_pointers(struct gfar_private *priv)
520 {
521 int i;
522
523 for (i = 0; i < priv->num_rx_queues; i++)
524 kfree(priv->rx_queue[i]);
525 }
526
527 static void unmap_group_regs(struct gfar_private *priv)
528 {
529 int i;
530
531 for (i = 0; i < MAXGROUPS; i++)
532 if (priv->gfargrp[i].regs)
533 iounmap(priv->gfargrp[i].regs);
534 }
535
536 static void free_gfar_dev(struct gfar_private *priv)
537 {
538 int i, j;
539
540 for (i = 0; i < priv->num_grps; i++)
541 for (j = 0; j < GFAR_NUM_IRQS; j++) {
542 kfree(priv->gfargrp[i].irqinfo[j]);
543 priv->gfargrp[i].irqinfo[j] = NULL;
544 }
545
546 free_netdev(priv->ndev);
547 }
548
549 static void disable_napi(struct gfar_private *priv)
550 {
551 int i;
552
553 for (i = 0; i < priv->num_grps; i++)
554 napi_disable(&priv->gfargrp[i].napi);
555 }
556
557 static void enable_napi(struct gfar_private *priv)
558 {
559 int i;
560
561 for (i = 0; i < priv->num_grps; i++)
562 napi_enable(&priv->gfargrp[i].napi);
563 }
564
565 static int gfar_parse_group(struct device_node *np,
566 struct gfar_private *priv, const char *model)
567 {
568 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
569 u32 *queue_mask;
570 int i;
571
572 for (i = 0; i < GFAR_NUM_IRQS; i++) {
573 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
574 GFP_KERNEL);
575 if (!grp->irqinfo[i])
576 return -ENOMEM;
577 }
578
579 grp->regs = of_iomap(np, 0);
580 if (!grp->regs)
581 return -ENOMEM;
582
583 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
584
585 /* If we aren't the FEC we have multiple interrupts */
586 if (model && strcasecmp(model, "FEC")) {
587 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
588 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
589 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
590 gfar_irq(grp, RX)->irq == NO_IRQ ||
591 gfar_irq(grp, ER)->irq == NO_IRQ)
592 return -EINVAL;
593 }
594
595 grp->grp_id = priv->num_grps;
596 grp->priv = priv;
597 spin_lock_init(&grp->grplock);
598 if (priv->mode == MQ_MG_MODE) {
599 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600 grp->rx_bit_map = queue_mask ?
601 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603 grp->tx_bit_map = queue_mask ?
604 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605 } else {
606 grp->rx_bit_map = 0xFF;
607 grp->tx_bit_map = 0xFF;
608 }
609 priv->num_grps++;
610
611 return 0;
612 }
613
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616 const char *model;
617 const char *ctype;
618 const void *mac_addr;
619 int err = 0, i;
620 struct net_device *dev = NULL;
621 struct gfar_private *priv = NULL;
622 struct device_node *np = ofdev->dev.of_node;
623 struct device_node *child = NULL;
624 const u32 *stash;
625 const u32 *stash_len;
626 const u32 *stash_idx;
627 unsigned int num_tx_qs, num_rx_qs;
628 u32 *tx_queues, *rx_queues;
629
630 if (!np || !of_device_is_available(np))
631 return -ENODEV;
632
633 /* parse the num of tx and rx queues */
634 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635 num_tx_qs = tx_queues ? *tx_queues : 1;
636
637 if (num_tx_qs > MAX_TX_QS) {
638 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639 num_tx_qs, MAX_TX_QS);
640 pr_err("Cannot do alloc_etherdev, aborting\n");
641 return -EINVAL;
642 }
643
644 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645 num_rx_qs = rx_queues ? *rx_queues : 1;
646
647 if (num_rx_qs > MAX_RX_QS) {
648 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649 num_rx_qs, MAX_RX_QS);
650 pr_err("Cannot do alloc_etherdev, aborting\n");
651 return -EINVAL;
652 }
653
654 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655 dev = *pdev;
656 if (NULL == dev)
657 return -ENOMEM;
658
659 priv = netdev_priv(dev);
660 priv->ndev = dev;
661
662 priv->num_tx_queues = num_tx_qs;
663 netif_set_real_num_rx_queues(dev, num_rx_qs);
664 priv->num_rx_queues = num_rx_qs;
665 priv->num_grps = 0x0;
666
667 /* Init Rx queue filer rule set linked list */
668 INIT_LIST_HEAD(&priv->rx_list.list);
669 priv->rx_list.count = 0;
670 mutex_init(&priv->rx_queue_access);
671
672 model = of_get_property(np, "model", NULL);
673
674 for (i = 0; i < MAXGROUPS; i++)
675 priv->gfargrp[i].regs = NULL;
676
677 /* Parse and initialize group specific information */
678 if (of_device_is_compatible(np, "fsl,etsec2")) {
679 priv->mode = MQ_MG_MODE;
680 for_each_child_of_node(np, child) {
681 err = gfar_parse_group(child, priv, model);
682 if (err)
683 goto err_grp_init;
684 }
685 } else {
686 priv->mode = SQ_SG_MODE;
687 err = gfar_parse_group(np, priv, model);
688 if (err)
689 goto err_grp_init;
690 }
691
692 for (i = 0; i < priv->num_tx_queues; i++)
693 priv->tx_queue[i] = NULL;
694 for (i = 0; i < priv->num_rx_queues; i++)
695 priv->rx_queue[i] = NULL;
696
697 for (i = 0; i < priv->num_tx_queues; i++) {
698 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699 GFP_KERNEL);
700 if (!priv->tx_queue[i]) {
701 err = -ENOMEM;
702 goto tx_alloc_failed;
703 }
704 priv->tx_queue[i]->tx_skbuff = NULL;
705 priv->tx_queue[i]->qindex = i;
706 priv->tx_queue[i]->dev = dev;
707 spin_lock_init(&(priv->tx_queue[i]->txlock));
708 }
709
710 for (i = 0; i < priv->num_rx_queues; i++) {
711 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712 GFP_KERNEL);
713 if (!priv->rx_queue[i]) {
714 err = -ENOMEM;
715 goto rx_alloc_failed;
716 }
717 priv->rx_queue[i]->rx_skbuff = NULL;
718 priv->rx_queue[i]->qindex = i;
719 priv->rx_queue[i]->dev = dev;
720 spin_lock_init(&(priv->rx_queue[i]->rxlock));
721 }
722
723
724 stash = of_get_property(np, "bd-stash", NULL);
725
726 if (stash) {
727 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728 priv->bd_stash_en = 1;
729 }
730
731 stash_len = of_get_property(np, "rx-stash-len", NULL);
732
733 if (stash_len)
734 priv->rx_stash_size = *stash_len;
735
736 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737
738 if (stash_idx)
739 priv->rx_stash_index = *stash_idx;
740
741 if (stash_len || stash_idx)
742 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743
744 mac_addr = of_get_mac_address(np);
745
746 if (mac_addr)
747 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748
749 if (model && !strcasecmp(model, "TSEC"))
750 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751 FSL_GIANFAR_DEV_HAS_COALESCE |
752 FSL_GIANFAR_DEV_HAS_RMON |
753 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754
755 if (model && !strcasecmp(model, "eTSEC"))
756 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757 FSL_GIANFAR_DEV_HAS_COALESCE |
758 FSL_GIANFAR_DEV_HAS_RMON |
759 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760 FSL_GIANFAR_DEV_HAS_PADDING |
761 FSL_GIANFAR_DEV_HAS_CSUM |
762 FSL_GIANFAR_DEV_HAS_VLAN |
763 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765 FSL_GIANFAR_DEV_HAS_TIMER;
766
767 ctype = of_get_property(np, "phy-connection-type", NULL);
768
769 /* We only care about rgmii-id. The rest are autodetected */
770 if (ctype && !strcmp(ctype, "rgmii-id"))
771 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772 else
773 priv->interface = PHY_INTERFACE_MODE_MII;
774
775 if (of_get_property(np, "fsl,magic-packet", NULL))
776 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777
778 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779
780 /* Find the TBI PHY. If it's not there, we don't support SGMII */
781 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782
783 return 0;
784
785 rx_alloc_failed:
786 free_rx_pointers(priv);
787 tx_alloc_failed:
788 free_tx_pointers(priv);
789 err_grp_init:
790 unmap_group_regs(priv);
791 free_gfar_dev(priv);
792 return err;
793 }
794
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796 struct ifreq *ifr, int cmd)
797 {
798 struct hwtstamp_config config;
799 struct gfar_private *priv = netdev_priv(netdev);
800
801 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802 return -EFAULT;
803
804 /* reserved for future extensions */
805 if (config.flags)
806 return -EINVAL;
807
808 switch (config.tx_type) {
809 case HWTSTAMP_TX_OFF:
810 priv->hwts_tx_en = 0;
811 break;
812 case HWTSTAMP_TX_ON:
813 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814 return -ERANGE;
815 priv->hwts_tx_en = 1;
816 break;
817 default:
818 return -ERANGE;
819 }
820
821 switch (config.rx_filter) {
822 case HWTSTAMP_FILTER_NONE:
823 if (priv->hwts_rx_en) {
824 stop_gfar(netdev);
825 priv->hwts_rx_en = 0;
826 startup_gfar(netdev);
827 }
828 break;
829 default:
830 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831 return -ERANGE;
832 if (!priv->hwts_rx_en) {
833 stop_gfar(netdev);
834 priv->hwts_rx_en = 1;
835 startup_gfar(netdev);
836 }
837 config.rx_filter = HWTSTAMP_FILTER_ALL;
838 break;
839 }
840
841 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842 -EFAULT : 0;
843 }
844
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848 struct gfar_private *priv = netdev_priv(dev);
849
850 if (!netif_running(dev))
851 return -EINVAL;
852
853 if (cmd == SIOCSHWTSTAMP)
854 return gfar_hwtstamp_ioctl(dev, rq, cmd);
855
856 if (!priv->phydev)
857 return -ENODEV;
858
859 return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864 unsigned int new_bit_map = 0x0;
865 int mask = 0x1 << (max_qs - 1), i;
866
867 for (i = 0; i < max_qs; i++) {
868 if (bit_map & mask)
869 new_bit_map = new_bit_map + (1 << i);
870 mask = mask >> 0x1;
871 }
872 return new_bit_map;
873 }
874
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876 u32 class)
877 {
878 u32 rqfpr = FPR_FILER_MASK;
879 u32 rqfcr = 0x0;
880
881 rqfar--;
882 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883 priv->ftp_rqfpr[rqfar] = rqfpr;
884 priv->ftp_rqfcr[rqfar] = rqfcr;
885 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887 rqfar--;
888 rqfcr = RQFCR_CMP_NOMATCH;
889 priv->ftp_rqfpr[rqfar] = rqfpr;
890 priv->ftp_rqfcr[rqfar] = rqfcr;
891 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893 rqfar--;
894 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895 rqfpr = class;
896 priv->ftp_rqfcr[rqfar] = rqfcr;
897 priv->ftp_rqfpr[rqfar] = rqfpr;
898 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900 rqfar--;
901 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902 rqfpr = class;
903 priv->ftp_rqfcr[rqfar] = rqfcr;
904 priv->ftp_rqfpr[rqfar] = rqfpr;
905 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907 return rqfar;
908 }
909
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912 int i = 0x0;
913 u32 rqfar = MAX_FILER_IDX;
914 u32 rqfcr = 0x0;
915 u32 rqfpr = FPR_FILER_MASK;
916
917 /* Default rule */
918 rqfcr = RQFCR_CMP_MATCH;
919 priv->ftp_rqfcr[rqfar] = rqfcr;
920 priv->ftp_rqfpr[rqfar] = rqfpr;
921 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922
923 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929
930 /* cur_filer_idx indicated the first non-masked rule */
931 priv->cur_filer_idx = rqfar;
932
933 /* Rest are masked rules */
934 rqfcr = RQFCR_CMP_NOMATCH;
935 for (i = 0; i < rqfar; i++) {
936 priv->ftp_rqfcr[i] = rqfcr;
937 priv->ftp_rqfpr[i] = rqfpr;
938 gfar_write_filer(priv, i, rqfcr, rqfpr);
939 }
940 }
941
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944 struct device *dev = &priv->ofdev->dev;
945 unsigned int pvr = mfspr(SPRN_PVR);
946 unsigned int svr = mfspr(SPRN_SVR);
947 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948 unsigned int rev = svr & 0xffff;
949
950 /* MPC8313 Rev 2.0 and higher; All MPC837x */
951 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 priv->errata |= GFAR_ERRATA_74;
954
955 /* MPC8313 and MPC837x all rev */
956 if ((pvr == 0x80850010 && mod == 0x80b0) ||
957 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958 priv->errata |= GFAR_ERRATA_76;
959
960 /* MPC8313 and MPC837x all rev */
961 if ((pvr == 0x80850010 && mod == 0x80b0) ||
962 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963 priv->errata |= GFAR_ERRATA_A002;
964
965 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968 priv->errata |= GFAR_ERRATA_12;
969
970 if (priv->errata)
971 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972 priv->errata);
973 }
974
975 /* Set up the ethernet device structure, private data,
976 * and anything else we need before we start
977 */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980 u32 tempval;
981 struct net_device *dev = NULL;
982 struct gfar_private *priv = NULL;
983 struct gfar __iomem *regs = NULL;
984 int err = 0, i, grp_idx = 0;
985 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986 u32 isrg = 0;
987 u32 __iomem *baddr;
988
989 err = gfar_of_init(ofdev, &dev);
990
991 if (err)
992 return err;
993
994 priv = netdev_priv(dev);
995 priv->ndev = dev;
996 priv->ofdev = ofdev;
997 priv->dev = &ofdev->dev;
998 SET_NETDEV_DEV(dev, &ofdev->dev);
999
1000 spin_lock_init(&priv->bflock);
1001 INIT_WORK(&priv->reset_task, gfar_reset_task);
1002
1003 dev_set_drvdata(&ofdev->dev, priv);
1004 regs = priv->gfargrp[0].regs;
1005
1006 gfar_detect_errata(priv);
1007
1008 /* Stop the DMA engine now, in case it was running before
1009 * (The firmware could have used it, and left it running).
1010 */
1011 gfar_halt(dev);
1012
1013 /* Reset MAC layer */
1014 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015
1016 /* We need to delay at least 3 TX clocks */
1017 udelay(2);
1018
1019 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1020 gfar_write(&regs->maccfg1, tempval);
1021
1022 /* Initialize MACCFG2. */
1023 tempval = MACCFG2_INIT_SETTINGS;
1024 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1025 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1026 gfar_write(&regs->maccfg2, tempval);
1027
1028 /* Initialize ECNTRL */
1029 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1030
1031 /* Set the dev->base_addr to the gfar reg region */
1032 dev->base_addr = (unsigned long) regs;
1033
1034 /* Fill in the dev structure */
1035 dev->watchdog_timeo = TX_TIMEOUT;
1036 dev->mtu = 1500;
1037 dev->netdev_ops = &gfar_netdev_ops;
1038 dev->ethtool_ops = &gfar_ethtool_ops;
1039
1040 /* Register for napi ...We are registering NAPI for each grp */
1041 for (i = 0; i < priv->num_grps; i++)
1042 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1043 GFAR_DEV_WEIGHT);
1044
1045 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1046 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1047 NETIF_F_RXCSUM;
1048 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1049 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1050 }
1051
1052 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1053 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1054 NETIF_F_HW_VLAN_CTAG_RX;
1055 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1056 }
1057
1058 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1059 priv->extended_hash = 1;
1060 priv->hash_width = 9;
1061
1062 priv->hash_regs[0] = &regs->igaddr0;
1063 priv->hash_regs[1] = &regs->igaddr1;
1064 priv->hash_regs[2] = &regs->igaddr2;
1065 priv->hash_regs[3] = &regs->igaddr3;
1066 priv->hash_regs[4] = &regs->igaddr4;
1067 priv->hash_regs[5] = &regs->igaddr5;
1068 priv->hash_regs[6] = &regs->igaddr6;
1069 priv->hash_regs[7] = &regs->igaddr7;
1070 priv->hash_regs[8] = &regs->gaddr0;
1071 priv->hash_regs[9] = &regs->gaddr1;
1072 priv->hash_regs[10] = &regs->gaddr2;
1073 priv->hash_regs[11] = &regs->gaddr3;
1074 priv->hash_regs[12] = &regs->gaddr4;
1075 priv->hash_regs[13] = &regs->gaddr5;
1076 priv->hash_regs[14] = &regs->gaddr6;
1077 priv->hash_regs[15] = &regs->gaddr7;
1078
1079 } else {
1080 priv->extended_hash = 0;
1081 priv->hash_width = 8;
1082
1083 priv->hash_regs[0] = &regs->gaddr0;
1084 priv->hash_regs[1] = &regs->gaddr1;
1085 priv->hash_regs[2] = &regs->gaddr2;
1086 priv->hash_regs[3] = &regs->gaddr3;
1087 priv->hash_regs[4] = &regs->gaddr4;
1088 priv->hash_regs[5] = &regs->gaddr5;
1089 priv->hash_regs[6] = &regs->gaddr6;
1090 priv->hash_regs[7] = &regs->gaddr7;
1091 }
1092
1093 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1094 priv->padding = DEFAULT_PADDING;
1095 else
1096 priv->padding = 0;
1097
1098 if (dev->features & NETIF_F_IP_CSUM ||
1099 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1100 dev->needed_headroom = GMAC_FCB_LEN;
1101
1102 /* Program the isrg regs only if number of grps > 1 */
1103 if (priv->num_grps > 1) {
1104 baddr = &regs->isrg0;
1105 for (i = 0; i < priv->num_grps; i++) {
1106 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1107 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1108 gfar_write(baddr, isrg);
1109 baddr++;
1110 isrg = 0x0;
1111 }
1112 }
1113
1114 /* Need to reverse the bit maps as bit_map's MSB is q0
1115 * but, for_each_set_bit parses from right to left, which
1116 * basically reverses the queue numbers
1117 */
1118 for (i = 0; i< priv->num_grps; i++) {
1119 priv->gfargrp[i].tx_bit_map =
1120 reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1121 priv->gfargrp[i].rx_bit_map =
1122 reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1123 }
1124
1125 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1126 * also assign queues to groups
1127 */
1128 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1129 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1130
1131 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1132 priv->num_rx_queues) {
1133 priv->gfargrp[grp_idx].num_rx_queues++;
1134 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1135 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1136 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1137 }
1138 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1139
1140 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1141 priv->num_tx_queues) {
1142 priv->gfargrp[grp_idx].num_tx_queues++;
1143 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1144 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1145 tqueue = tqueue | (TQUEUE_EN0 >> i);
1146 }
1147 priv->gfargrp[grp_idx].rstat = rstat;
1148 priv->gfargrp[grp_idx].tstat = tstat;
1149 rstat = tstat =0;
1150 }
1151
1152 gfar_write(&regs->rqueue, rqueue);
1153 gfar_write(&regs->tqueue, tqueue);
1154
1155 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1156
1157 /* Initializing some of the rx/tx queue level parameters */
1158 for (i = 0; i < priv->num_tx_queues; i++) {
1159 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1160 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1161 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1162 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1163 }
1164
1165 for (i = 0; i < priv->num_rx_queues; i++) {
1166 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1167 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1168 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1169 }
1170
1171 /* always enable rx filer */
1172 priv->rx_filer_enable = 1;
1173 /* Enable most messages by default */
1174 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1175 /* use pritority h/w tx queue scheduling for single queue devices */
1176 if (priv->num_tx_queues == 1)
1177 priv->prio_sched_en = 1;
1178
1179 /* Carrier starts down, phylib will bring it up */
1180 netif_carrier_off(dev);
1181
1182 err = register_netdev(dev);
1183
1184 if (err) {
1185 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1186 goto register_fail;
1187 }
1188
1189 device_init_wakeup(&dev->dev,
1190 priv->device_flags &
1191 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1192
1193 /* fill out IRQ number and name fields */
1194 for (i = 0; i < priv->num_grps; i++) {
1195 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1196 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1197 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1198 dev->name, "_g", '0' + i, "_tx");
1199 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1200 dev->name, "_g", '0' + i, "_rx");
1201 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1202 dev->name, "_g", '0' + i, "_er");
1203 } else
1204 strcpy(gfar_irq(grp, TX)->name, dev->name);
1205 }
1206
1207 /* Initialize the filer table */
1208 gfar_init_filer_table(priv);
1209
1210 /* Create all the sysfs files */
1211 gfar_init_sysfs(dev);
1212
1213 /* Print out the device info */
1214 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1215
1216 /* Even more device info helps when determining which kernel
1217 * provided which set of benchmarks.
1218 */
1219 netdev_info(dev, "Running with NAPI enabled\n");
1220 for (i = 0; i < priv->num_rx_queues; i++)
1221 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1222 i, priv->rx_queue[i]->rx_ring_size);
1223 for (i = 0; i < priv->num_tx_queues; i++)
1224 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1225 i, priv->tx_queue[i]->tx_ring_size);
1226
1227 return 0;
1228
1229 register_fail:
1230 unmap_group_regs(priv);
1231 free_tx_pointers(priv);
1232 free_rx_pointers(priv);
1233 if (priv->phy_node)
1234 of_node_put(priv->phy_node);
1235 if (priv->tbi_node)
1236 of_node_put(priv->tbi_node);
1237 free_gfar_dev(priv);
1238 return err;
1239 }
1240
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244
1245 if (priv->phy_node)
1246 of_node_put(priv->phy_node);
1247 if (priv->tbi_node)
1248 of_node_put(priv->tbi_node);
1249
1250 dev_set_drvdata(&ofdev->dev, NULL);
1251
1252 unregister_netdev(priv->ndev);
1253 unmap_group_regs(priv);
1254 free_gfar_dev(priv);
1255
1256 return 0;
1257 }
1258
1259 #ifdef CONFIG_PM
1260
1261 static int gfar_suspend(struct device *dev)
1262 {
1263 struct gfar_private *priv = dev_get_drvdata(dev);
1264 struct net_device *ndev = priv->ndev;
1265 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266 unsigned long flags;
1267 u32 tempval;
1268
1269 int magic_packet = priv->wol_en &&
1270 (priv->device_flags &
1271 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1272
1273 netif_device_detach(ndev);
1274
1275 if (netif_running(ndev)) {
1276
1277 local_irq_save(flags);
1278 lock_tx_qs(priv);
1279 lock_rx_qs(priv);
1280
1281 gfar_halt_nodisable(ndev);
1282
1283 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1284 tempval = gfar_read(&regs->maccfg1);
1285
1286 tempval &= ~MACCFG1_TX_EN;
1287
1288 if (!magic_packet)
1289 tempval &= ~MACCFG1_RX_EN;
1290
1291 gfar_write(&regs->maccfg1, tempval);
1292
1293 unlock_rx_qs(priv);
1294 unlock_tx_qs(priv);
1295 local_irq_restore(flags);
1296
1297 disable_napi(priv);
1298
1299 if (magic_packet) {
1300 /* Enable interrupt on Magic Packet */
1301 gfar_write(&regs->imask, IMASK_MAG);
1302
1303 /* Enable Magic Packet mode */
1304 tempval = gfar_read(&regs->maccfg2);
1305 tempval |= MACCFG2_MPEN;
1306 gfar_write(&regs->maccfg2, tempval);
1307 } else {
1308 phy_stop(priv->phydev);
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 static int gfar_resume(struct device *dev)
1316 {
1317 struct gfar_private *priv = dev_get_drvdata(dev);
1318 struct net_device *ndev = priv->ndev;
1319 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1320 unsigned long flags;
1321 u32 tempval;
1322 int magic_packet = priv->wol_en &&
1323 (priv->device_flags &
1324 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1325
1326 if (!netif_running(ndev)) {
1327 netif_device_attach(ndev);
1328 return 0;
1329 }
1330
1331 if (!magic_packet && priv->phydev)
1332 phy_start(priv->phydev);
1333
1334 /* Disable Magic Packet mode, in case something
1335 * else woke us up.
1336 */
1337 local_irq_save(flags);
1338 lock_tx_qs(priv);
1339 lock_rx_qs(priv);
1340
1341 tempval = gfar_read(&regs->maccfg2);
1342 tempval &= ~MACCFG2_MPEN;
1343 gfar_write(&regs->maccfg2, tempval);
1344
1345 gfar_start(ndev);
1346
1347 unlock_rx_qs(priv);
1348 unlock_tx_qs(priv);
1349 local_irq_restore(flags);
1350
1351 netif_device_attach(ndev);
1352
1353 enable_napi(priv);
1354
1355 return 0;
1356 }
1357
1358 static int gfar_restore(struct device *dev)
1359 {
1360 struct gfar_private *priv = dev_get_drvdata(dev);
1361 struct net_device *ndev = priv->ndev;
1362
1363 if (!netif_running(ndev)) {
1364 netif_device_attach(ndev);
1365
1366 return 0;
1367 }
1368
1369 if (gfar_init_bds(ndev)) {
1370 free_skb_resources(priv);
1371 return -ENOMEM;
1372 }
1373
1374 init_registers(ndev);
1375 gfar_set_mac_address(ndev);
1376 gfar_init_mac(ndev);
1377 gfar_start(ndev);
1378
1379 priv->oldlink = 0;
1380 priv->oldspeed = 0;
1381 priv->oldduplex = -1;
1382
1383 if (priv->phydev)
1384 phy_start(priv->phydev);
1385
1386 netif_device_attach(ndev);
1387 enable_napi(priv);
1388
1389 return 0;
1390 }
1391
1392 static struct dev_pm_ops gfar_pm_ops = {
1393 .suspend = gfar_suspend,
1394 .resume = gfar_resume,
1395 .freeze = gfar_suspend,
1396 .thaw = gfar_resume,
1397 .restore = gfar_restore,
1398 };
1399
1400 #define GFAR_PM_OPS (&gfar_pm_ops)
1401
1402 #else
1403
1404 #define GFAR_PM_OPS NULL
1405
1406 #endif
1407
1408 /* Reads the controller's registers to determine what interface
1409 * connects it to the PHY.
1410 */
1411 static phy_interface_t gfar_get_interface(struct net_device *dev)
1412 {
1413 struct gfar_private *priv = netdev_priv(dev);
1414 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1415 u32 ecntrl;
1416
1417 ecntrl = gfar_read(&regs->ecntrl);
1418
1419 if (ecntrl & ECNTRL_SGMII_MODE)
1420 return PHY_INTERFACE_MODE_SGMII;
1421
1422 if (ecntrl & ECNTRL_TBI_MODE) {
1423 if (ecntrl & ECNTRL_REDUCED_MODE)
1424 return PHY_INTERFACE_MODE_RTBI;
1425 else
1426 return PHY_INTERFACE_MODE_TBI;
1427 }
1428
1429 if (ecntrl & ECNTRL_REDUCED_MODE) {
1430 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1431 return PHY_INTERFACE_MODE_RMII;
1432 }
1433 else {
1434 phy_interface_t interface = priv->interface;
1435
1436 /* This isn't autodetected right now, so it must
1437 * be set by the device tree or platform code.
1438 */
1439 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1440 return PHY_INTERFACE_MODE_RGMII_ID;
1441
1442 return PHY_INTERFACE_MODE_RGMII;
1443 }
1444 }
1445
1446 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1447 return PHY_INTERFACE_MODE_GMII;
1448
1449 return PHY_INTERFACE_MODE_MII;
1450 }
1451
1452
1453 /* Initializes driver's PHY state, and attaches to the PHY.
1454 * Returns 0 on success.
1455 */
1456 static int init_phy(struct net_device *dev)
1457 {
1458 struct gfar_private *priv = netdev_priv(dev);
1459 uint gigabit_support =
1460 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1461 SUPPORTED_1000baseT_Full : 0;
1462 phy_interface_t interface;
1463
1464 priv->oldlink = 0;
1465 priv->oldspeed = 0;
1466 priv->oldduplex = -1;
1467
1468 interface = gfar_get_interface(dev);
1469
1470 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1471 interface);
1472 if (!priv->phydev)
1473 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1474 interface);
1475 if (!priv->phydev) {
1476 dev_err(&dev->dev, "could not attach to PHY\n");
1477 return -ENODEV;
1478 }
1479
1480 if (interface == PHY_INTERFACE_MODE_SGMII)
1481 gfar_configure_serdes(dev);
1482
1483 /* Remove any features not supported by the controller */
1484 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1485 priv->phydev->advertising = priv->phydev->supported;
1486
1487 return 0;
1488 }
1489
1490 /* Initialize TBI PHY interface for communicating with the
1491 * SERDES lynx PHY on the chip. We communicate with this PHY
1492 * through the MDIO bus on each controller, treating it as a
1493 * "normal" PHY at the address found in the TBIPA register. We assume
1494 * that the TBIPA register is valid. Either the MDIO bus code will set
1495 * it to a value that doesn't conflict with other PHYs on the bus, or the
1496 * value doesn't matter, as there are no other PHYs on the bus.
1497 */
1498 static void gfar_configure_serdes(struct net_device *dev)
1499 {
1500 struct gfar_private *priv = netdev_priv(dev);
1501 struct phy_device *tbiphy;
1502
1503 if (!priv->tbi_node) {
1504 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1505 "device tree specify a tbi-handle\n");
1506 return;
1507 }
1508
1509 tbiphy = of_phy_find_device(priv->tbi_node);
1510 if (!tbiphy) {
1511 dev_err(&dev->dev, "error: Could not get TBI device\n");
1512 return;
1513 }
1514
1515 /* If the link is already up, we must already be ok, and don't need to
1516 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1517 * everything for us? Resetting it takes the link down and requires
1518 * several seconds for it to come back.
1519 */
1520 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1521 return;
1522
1523 /* Single clk mode, mii mode off(for serdes communication) */
1524 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1525
1526 phy_write(tbiphy, MII_ADVERTISE,
1527 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1528 ADVERTISE_1000XPSE_ASYM);
1529
1530 phy_write(tbiphy, MII_BMCR,
1531 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1532 BMCR_SPEED1000);
1533 }
1534
1535 static void init_registers(struct net_device *dev)
1536 {
1537 struct gfar_private *priv = netdev_priv(dev);
1538 struct gfar __iomem *regs = NULL;
1539 int i;
1540
1541 for (i = 0; i < priv->num_grps; i++) {
1542 regs = priv->gfargrp[i].regs;
1543 /* Clear IEVENT */
1544 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1545
1546 /* Initialize IMASK */
1547 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1548 }
1549
1550 regs = priv->gfargrp[0].regs;
1551 /* Init hash registers to zero */
1552 gfar_write(&regs->igaddr0, 0);
1553 gfar_write(&regs->igaddr1, 0);
1554 gfar_write(&regs->igaddr2, 0);
1555 gfar_write(&regs->igaddr3, 0);
1556 gfar_write(&regs->igaddr4, 0);
1557 gfar_write(&regs->igaddr5, 0);
1558 gfar_write(&regs->igaddr6, 0);
1559 gfar_write(&regs->igaddr7, 0);
1560
1561 gfar_write(&regs->gaddr0, 0);
1562 gfar_write(&regs->gaddr1, 0);
1563 gfar_write(&regs->gaddr2, 0);
1564 gfar_write(&regs->gaddr3, 0);
1565 gfar_write(&regs->gaddr4, 0);
1566 gfar_write(&regs->gaddr5, 0);
1567 gfar_write(&regs->gaddr6, 0);
1568 gfar_write(&regs->gaddr7, 0);
1569
1570 /* Zero out the rmon mib registers if it has them */
1571 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1572 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1573
1574 /* Mask off the CAM interrupts */
1575 gfar_write(&regs->rmon.cam1, 0xffffffff);
1576 gfar_write(&regs->rmon.cam2, 0xffffffff);
1577 }
1578
1579 /* Initialize the max receive buffer length */
1580 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1581
1582 /* Initialize the Minimum Frame Length Register */
1583 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1584 }
1585
1586 static int __gfar_is_rx_idle(struct gfar_private *priv)
1587 {
1588 u32 res;
1589
1590 /* Normaly TSEC should not hang on GRS commands, so we should
1591 * actually wait for IEVENT_GRSC flag.
1592 */
1593 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1594 return 0;
1595
1596 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1597 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1598 * and the Rx can be safely reset.
1599 */
1600 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1601 res &= 0x7f807f80;
1602 if ((res & 0xffff) == (res >> 16))
1603 return 1;
1604
1605 return 0;
1606 }
1607
1608 /* Halt the receive and transmit queues */
1609 static void gfar_halt_nodisable(struct net_device *dev)
1610 {
1611 struct gfar_private *priv = netdev_priv(dev);
1612 struct gfar __iomem *regs = NULL;
1613 u32 tempval;
1614 int i;
1615
1616 for (i = 0; i < priv->num_grps; i++) {
1617 regs = priv->gfargrp[i].regs;
1618 /* Mask all interrupts */
1619 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1620
1621 /* Clear all interrupts */
1622 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1623 }
1624
1625 regs = priv->gfargrp[0].regs;
1626 /* Stop the DMA, and wait for it to stop */
1627 tempval = gfar_read(&regs->dmactrl);
1628 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1629 (DMACTRL_GRS | DMACTRL_GTS)) {
1630 int ret;
1631
1632 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1633 gfar_write(&regs->dmactrl, tempval);
1634
1635 do {
1636 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1637 (IEVENT_GRSC | IEVENT_GTSC)) ==
1638 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1639 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1640 ret = __gfar_is_rx_idle(priv);
1641 } while (!ret);
1642 }
1643 }
1644
1645 /* Halt the receive and transmit queues */
1646 void gfar_halt(struct net_device *dev)
1647 {
1648 struct gfar_private *priv = netdev_priv(dev);
1649 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1650 u32 tempval;
1651
1652 gfar_halt_nodisable(dev);
1653
1654 /* Disable Rx and Tx */
1655 tempval = gfar_read(&regs->maccfg1);
1656 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1657 gfar_write(&regs->maccfg1, tempval);
1658 }
1659
1660 static void free_grp_irqs(struct gfar_priv_grp *grp)
1661 {
1662 free_irq(gfar_irq(grp, TX)->irq, grp);
1663 free_irq(gfar_irq(grp, RX)->irq, grp);
1664 free_irq(gfar_irq(grp, ER)->irq, grp);
1665 }
1666
1667 void stop_gfar(struct net_device *dev)
1668 {
1669 struct gfar_private *priv = netdev_priv(dev);
1670 unsigned long flags;
1671 int i;
1672
1673 phy_stop(priv->phydev);
1674
1675
1676 /* Lock it down */
1677 local_irq_save(flags);
1678 lock_tx_qs(priv);
1679 lock_rx_qs(priv);
1680
1681 gfar_halt(dev);
1682
1683 unlock_rx_qs(priv);
1684 unlock_tx_qs(priv);
1685 local_irq_restore(flags);
1686
1687 /* Free the IRQs */
1688 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1689 for (i = 0; i < priv->num_grps; i++)
1690 free_grp_irqs(&priv->gfargrp[i]);
1691 } else {
1692 for (i = 0; i < priv->num_grps; i++)
1693 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1694 &priv->gfargrp[i]);
1695 }
1696
1697 free_skb_resources(priv);
1698 }
1699
1700 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1701 {
1702 struct txbd8 *txbdp;
1703 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1704 int i, j;
1705
1706 txbdp = tx_queue->tx_bd_base;
1707
1708 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1709 if (!tx_queue->tx_skbuff[i])
1710 continue;
1711
1712 dma_unmap_single(priv->dev, txbdp->bufPtr,
1713 txbdp->length, DMA_TO_DEVICE);
1714 txbdp->lstatus = 0;
1715 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1716 j++) {
1717 txbdp++;
1718 dma_unmap_page(priv->dev, txbdp->bufPtr,
1719 txbdp->length, DMA_TO_DEVICE);
1720 }
1721 txbdp++;
1722 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1723 tx_queue->tx_skbuff[i] = NULL;
1724 }
1725 kfree(tx_queue->tx_skbuff);
1726 tx_queue->tx_skbuff = NULL;
1727 }
1728
1729 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1730 {
1731 struct rxbd8 *rxbdp;
1732 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1733 int i;
1734
1735 rxbdp = rx_queue->rx_bd_base;
1736
1737 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1738 if (rx_queue->rx_skbuff[i]) {
1739 dma_unmap_single(priv->dev, rxbdp->bufPtr,
1740 priv->rx_buffer_size,
1741 DMA_FROM_DEVICE);
1742 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1743 rx_queue->rx_skbuff[i] = NULL;
1744 }
1745 rxbdp->lstatus = 0;
1746 rxbdp->bufPtr = 0;
1747 rxbdp++;
1748 }
1749 kfree(rx_queue->rx_skbuff);
1750 rx_queue->rx_skbuff = NULL;
1751 }
1752
1753 /* If there are any tx skbs or rx skbs still around, free them.
1754 * Then free tx_skbuff and rx_skbuff
1755 */
1756 static void free_skb_resources(struct gfar_private *priv)
1757 {
1758 struct gfar_priv_tx_q *tx_queue = NULL;
1759 struct gfar_priv_rx_q *rx_queue = NULL;
1760 int i;
1761
1762 /* Go through all the buffer descriptors and free their data buffers */
1763 for (i = 0; i < priv->num_tx_queues; i++) {
1764 struct netdev_queue *txq;
1765
1766 tx_queue = priv->tx_queue[i];
1767 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1768 if (tx_queue->tx_skbuff)
1769 free_skb_tx_queue(tx_queue);
1770 netdev_tx_reset_queue(txq);
1771 }
1772
1773 for (i = 0; i < priv->num_rx_queues; i++) {
1774 rx_queue = priv->rx_queue[i];
1775 if (rx_queue->rx_skbuff)
1776 free_skb_rx_queue(rx_queue);
1777 }
1778
1779 dma_free_coherent(priv->dev,
1780 sizeof(struct txbd8) * priv->total_tx_ring_size +
1781 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1782 priv->tx_queue[0]->tx_bd_base,
1783 priv->tx_queue[0]->tx_bd_dma_base);
1784 }
1785
1786 void gfar_start(struct net_device *dev)
1787 {
1788 struct gfar_private *priv = netdev_priv(dev);
1789 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790 u32 tempval;
1791 int i = 0;
1792
1793 /* Enable Rx and Tx in MACCFG1 */
1794 tempval = gfar_read(&regs->maccfg1);
1795 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1796 gfar_write(&regs->maccfg1, tempval);
1797
1798 /* Initialize DMACTRL to have WWR and WOP */
1799 tempval = gfar_read(&regs->dmactrl);
1800 tempval |= DMACTRL_INIT_SETTINGS;
1801 gfar_write(&regs->dmactrl, tempval);
1802
1803 /* Make sure we aren't stopped */
1804 tempval = gfar_read(&regs->dmactrl);
1805 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1806 gfar_write(&regs->dmactrl, tempval);
1807
1808 for (i = 0; i < priv->num_grps; i++) {
1809 regs = priv->gfargrp[i].regs;
1810 /* Clear THLT/RHLT, so that the DMA starts polling now */
1811 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1812 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1813 /* Unmask the interrupts we look for */
1814 gfar_write(&regs->imask, IMASK_DEFAULT);
1815 }
1816
1817 dev->trans_start = jiffies; /* prevent tx timeout */
1818 }
1819
1820 static void gfar_configure_coalescing(struct gfar_private *priv,
1821 unsigned long tx_mask, unsigned long rx_mask)
1822 {
1823 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824 u32 __iomem *baddr;
1825
1826 if (priv->mode == MQ_MG_MODE) {
1827 int i = 0;
1828
1829 baddr = &regs->txic0;
1830 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1831 gfar_write(baddr + i, 0);
1832 if (likely(priv->tx_queue[i]->txcoalescing))
1833 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1834 }
1835
1836 baddr = &regs->rxic0;
1837 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1838 gfar_write(baddr + i, 0);
1839 if (likely(priv->rx_queue[i]->rxcoalescing))
1840 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1841 }
1842 } else {
1843 /* Backward compatible case -- even if we enable
1844 * multiple queues, there's only single reg to program
1845 */
1846 gfar_write(&regs->txic, 0);
1847 if (likely(priv->tx_queue[0]->txcoalescing))
1848 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1849
1850 gfar_write(&regs->rxic, 0);
1851 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1852 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1853 }
1854 }
1855
1856 void gfar_configure_coalescing_all(struct gfar_private *priv)
1857 {
1858 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1859 }
1860
1861 static int register_grp_irqs(struct gfar_priv_grp *grp)
1862 {
1863 struct gfar_private *priv = grp->priv;
1864 struct net_device *dev = priv->ndev;
1865 int err;
1866
1867 /* If the device has multiple interrupts, register for
1868 * them. Otherwise, only register for the one
1869 */
1870 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1871 /* Install our interrupt handlers for Error,
1872 * Transmit, and Receive
1873 */
1874 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1875 gfar_irq(grp, ER)->name, grp);
1876 if (err < 0) {
1877 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1878 gfar_irq(grp, ER)->irq);
1879
1880 goto err_irq_fail;
1881 }
1882 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1883 gfar_irq(grp, TX)->name, grp);
1884 if (err < 0) {
1885 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1886 gfar_irq(grp, TX)->irq);
1887 goto tx_irq_fail;
1888 }
1889 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1890 gfar_irq(grp, RX)->name, grp);
1891 if (err < 0) {
1892 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1893 gfar_irq(grp, RX)->irq);
1894 goto rx_irq_fail;
1895 }
1896 } else {
1897 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1898 gfar_irq(grp, TX)->name, grp);
1899 if (err < 0) {
1900 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1901 gfar_irq(grp, TX)->irq);
1902 goto err_irq_fail;
1903 }
1904 }
1905
1906 return 0;
1907
1908 rx_irq_fail:
1909 free_irq(gfar_irq(grp, TX)->irq, grp);
1910 tx_irq_fail:
1911 free_irq(gfar_irq(grp, ER)->irq, grp);
1912 err_irq_fail:
1913 return err;
1914
1915 }
1916
1917 /* Bring the controller up and running */
1918 int startup_gfar(struct net_device *ndev)
1919 {
1920 struct gfar_private *priv = netdev_priv(ndev);
1921 struct gfar __iomem *regs = NULL;
1922 int err, i, j;
1923
1924 for (i = 0; i < priv->num_grps; i++) {
1925 regs= priv->gfargrp[i].regs;
1926 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1927 }
1928
1929 regs= priv->gfargrp[0].regs;
1930 err = gfar_alloc_skb_resources(ndev);
1931 if (err)
1932 return err;
1933
1934 gfar_init_mac(ndev);
1935
1936 for (i = 0; i < priv->num_grps; i++) {
1937 err = register_grp_irqs(&priv->gfargrp[i]);
1938 if (err) {
1939 for (j = 0; j < i; j++)
1940 free_grp_irqs(&priv->gfargrp[j]);
1941 goto irq_fail;
1942 }
1943 }
1944
1945 /* Start the controller */
1946 gfar_start(ndev);
1947
1948 phy_start(priv->phydev);
1949
1950 gfar_configure_coalescing_all(priv);
1951
1952 return 0;
1953
1954 irq_fail:
1955 free_skb_resources(priv);
1956 return err;
1957 }
1958
1959 /* Called when something needs to use the ethernet device
1960 * Returns 0 for success.
1961 */
1962 static int gfar_enet_open(struct net_device *dev)
1963 {
1964 struct gfar_private *priv = netdev_priv(dev);
1965 int err;
1966
1967 enable_napi(priv);
1968
1969 /* Initialize a bunch of registers */
1970 init_registers(dev);
1971
1972 gfar_set_mac_address(dev);
1973
1974 err = init_phy(dev);
1975
1976 if (err) {
1977 disable_napi(priv);
1978 return err;
1979 }
1980
1981 err = startup_gfar(dev);
1982 if (err) {
1983 disable_napi(priv);
1984 return err;
1985 }
1986
1987 netif_tx_start_all_queues(dev);
1988
1989 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1990
1991 return err;
1992 }
1993
1994 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1995 {
1996 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1997
1998 memset(fcb, 0, GMAC_FCB_LEN);
1999
2000 return fcb;
2001 }
2002
2003 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2004 int fcb_length)
2005 {
2006 /* If we're here, it's a IP packet with a TCP or UDP
2007 * payload. We set it to checksum, using a pseudo-header
2008 * we provide
2009 */
2010 u8 flags = TXFCB_DEFAULT;
2011
2012 /* Tell the controller what the protocol is
2013 * And provide the already calculated phcs
2014 */
2015 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2016 flags |= TXFCB_UDP;
2017 fcb->phcs = udp_hdr(skb)->check;
2018 } else
2019 fcb->phcs = tcp_hdr(skb)->check;
2020
2021 /* l3os is the distance between the start of the
2022 * frame (skb->data) and the start of the IP hdr.
2023 * l4os is the distance between the start of the
2024 * l3 hdr and the l4 hdr
2025 */
2026 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2027 fcb->l4os = skb_network_header_len(skb);
2028
2029 fcb->flags = flags;
2030 }
2031
2032 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2033 {
2034 fcb->flags |= TXFCB_VLN;
2035 fcb->vlctl = vlan_tx_tag_get(skb);
2036 }
2037
2038 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2039 struct txbd8 *base, int ring_size)
2040 {
2041 struct txbd8 *new_bd = bdp + stride;
2042
2043 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2044 }
2045
2046 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2047 int ring_size)
2048 {
2049 return skip_txbd(bdp, 1, base, ring_size);
2050 }
2051
2052 /* This is called by the kernel when a frame is ready for transmission.
2053 * It is pointed to by the dev->hard_start_xmit function pointer
2054 */
2055 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2056 {
2057 struct gfar_private *priv = netdev_priv(dev);
2058 struct gfar_priv_tx_q *tx_queue = NULL;
2059 struct netdev_queue *txq;
2060 struct gfar __iomem *regs = NULL;
2061 struct txfcb *fcb = NULL;
2062 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2063 u32 lstatus;
2064 int i, rq = 0, do_tstamp = 0;
2065 u32 bufaddr;
2066 unsigned long flags;
2067 unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2068
2069 /* TOE=1 frames larger than 2500 bytes may see excess delays
2070 * before start of transmission.
2071 */
2072 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2073 skb->ip_summed == CHECKSUM_PARTIAL &&
2074 skb->len > 2500)) {
2075 int ret;
2076
2077 ret = skb_checksum_help(skb);
2078 if (ret)
2079 return ret;
2080 }
2081
2082 rq = skb->queue_mapping;
2083 tx_queue = priv->tx_queue[rq];
2084 txq = netdev_get_tx_queue(dev, rq);
2085 base = tx_queue->tx_bd_base;
2086 regs = tx_queue->grp->regs;
2087
2088 /* check if time stamp should be generated */
2089 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2090 priv->hwts_tx_en)) {
2091 do_tstamp = 1;
2092 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2093 }
2094
2095 /* make space for additional header when fcb is needed */
2096 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2097 vlan_tx_tag_present(skb) ||
2098 unlikely(do_tstamp)) &&
2099 (skb_headroom(skb) < fcb_length)) {
2100 struct sk_buff *skb_new;
2101
2102 skb_new = skb_realloc_headroom(skb, fcb_length);
2103 if (!skb_new) {
2104 dev->stats.tx_errors++;
2105 kfree_skb(skb);
2106 return NETDEV_TX_OK;
2107 }
2108
2109 if (skb->sk)
2110 skb_set_owner_w(skb_new, skb->sk);
2111 consume_skb(skb);
2112 skb = skb_new;
2113 }
2114
2115 /* total number of fragments in the SKB */
2116 nr_frags = skb_shinfo(skb)->nr_frags;
2117
2118 /* calculate the required number of TxBDs for this skb */
2119 if (unlikely(do_tstamp))
2120 nr_txbds = nr_frags + 2;
2121 else
2122 nr_txbds = nr_frags + 1;
2123
2124 /* check if there is space to queue this packet */
2125 if (nr_txbds > tx_queue->num_txbdfree) {
2126 /* no space, stop the queue */
2127 netif_tx_stop_queue(txq);
2128 dev->stats.tx_fifo_errors++;
2129 return NETDEV_TX_BUSY;
2130 }
2131
2132 /* Update transmit stats */
2133 tx_queue->stats.tx_bytes += skb->len;
2134 tx_queue->stats.tx_packets++;
2135
2136 txbdp = txbdp_start = tx_queue->cur_tx;
2137 lstatus = txbdp->lstatus;
2138
2139 /* Time stamp insertion requires one additional TxBD */
2140 if (unlikely(do_tstamp))
2141 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2142 tx_queue->tx_ring_size);
2143
2144 if (nr_frags == 0) {
2145 if (unlikely(do_tstamp))
2146 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2147 TXBD_INTERRUPT);
2148 else
2149 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2150 } else {
2151 /* Place the fragment addresses and lengths into the TxBDs */
2152 for (i = 0; i < nr_frags; i++) {
2153 /* Point at the next BD, wrapping as needed */
2154 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2155
2156 length = skb_shinfo(skb)->frags[i].size;
2157
2158 lstatus = txbdp->lstatus | length |
2159 BD_LFLAG(TXBD_READY);
2160
2161 /* Handle the last BD specially */
2162 if (i == nr_frags - 1)
2163 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2164
2165 bufaddr = skb_frag_dma_map(priv->dev,
2166 &skb_shinfo(skb)->frags[i],
2167 0,
2168 length,
2169 DMA_TO_DEVICE);
2170
2171 /* set the TxBD length and buffer pointer */
2172 txbdp->bufPtr = bufaddr;
2173 txbdp->lstatus = lstatus;
2174 }
2175
2176 lstatus = txbdp_start->lstatus;
2177 }
2178
2179 /* Add TxPAL between FCB and frame if required */
2180 if (unlikely(do_tstamp)) {
2181 skb_push(skb, GMAC_TXPAL_LEN);
2182 memset(skb->data, 0, GMAC_TXPAL_LEN);
2183 }
2184
2185 /* Set up checksumming */
2186 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2187 fcb = gfar_add_fcb(skb);
2188 /* as specified by errata */
2189 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2190 ((unsigned long)fcb % 0x20) > 0x18)) {
2191 __skb_pull(skb, GMAC_FCB_LEN);
2192 skb_checksum_help(skb);
2193 } else {
2194 lstatus |= BD_LFLAG(TXBD_TOE);
2195 gfar_tx_checksum(skb, fcb, fcb_length);
2196 }
2197 }
2198
2199 if (vlan_tx_tag_present(skb)) {
2200 if (unlikely(NULL == fcb)) {
2201 fcb = gfar_add_fcb(skb);
2202 lstatus |= BD_LFLAG(TXBD_TOE);
2203 }
2204
2205 gfar_tx_vlan(skb, fcb);
2206 }
2207
2208 /* Setup tx hardware time stamping if requested */
2209 if (unlikely(do_tstamp)) {
2210 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2211 if (fcb == NULL)
2212 fcb = gfar_add_fcb(skb);
2213 fcb->ptp = 1;
2214 lstatus |= BD_LFLAG(TXBD_TOE);
2215 }
2216
2217 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2218 skb_headlen(skb), DMA_TO_DEVICE);
2219
2220 /* If time stamping is requested one additional TxBD must be set up. The
2221 * first TxBD points to the FCB and must have a data length of
2222 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2223 * the full frame length.
2224 */
2225 if (unlikely(do_tstamp)) {
2226 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2227 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2228 (skb_headlen(skb) - fcb_length);
2229 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2230 } else {
2231 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2232 }
2233
2234 netdev_tx_sent_queue(txq, skb->len);
2235
2236 /* We can work in parallel with gfar_clean_tx_ring(), except
2237 * when modifying num_txbdfree. Note that we didn't grab the lock
2238 * when we were reading the num_txbdfree and checking for available
2239 * space, that's because outside of this function it can only grow,
2240 * and once we've got needed space, it cannot suddenly disappear.
2241 *
2242 * The lock also protects us from gfar_error(), which can modify
2243 * regs->tstat and thus retrigger the transfers, which is why we
2244 * also must grab the lock before setting ready bit for the first
2245 * to be transmitted BD.
2246 */
2247 spin_lock_irqsave(&tx_queue->txlock, flags);
2248
2249 /* The powerpc-specific eieio() is used, as wmb() has too strong
2250 * semantics (it requires synchronization between cacheable and
2251 * uncacheable mappings, which eieio doesn't provide and which we
2252 * don't need), thus requiring a more expensive sync instruction. At
2253 * some point, the set of architecture-independent barrier functions
2254 * should be expanded to include weaker barriers.
2255 */
2256 eieio();
2257
2258 txbdp_start->lstatus = lstatus;
2259
2260 eieio(); /* force lstatus write before tx_skbuff */
2261
2262 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2263
2264 /* Update the current skb pointer to the next entry we will use
2265 * (wrapping if necessary)
2266 */
2267 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2268 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2269
2270 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2271
2272 /* reduce TxBD free count */
2273 tx_queue->num_txbdfree -= (nr_txbds);
2274
2275 /* If the next BD still needs to be cleaned up, then the bds
2276 * are full. We need to tell the kernel to stop sending us stuff.
2277 */
2278 if (!tx_queue->num_txbdfree) {
2279 netif_tx_stop_queue(txq);
2280
2281 dev->stats.tx_fifo_errors++;
2282 }
2283
2284 /* Tell the DMA to go go go */
2285 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2286
2287 /* Unlock priv */
2288 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2289
2290 return NETDEV_TX_OK;
2291 }
2292
2293 /* Stops the kernel queue, and halts the controller */
2294 static int gfar_close(struct net_device *dev)
2295 {
2296 struct gfar_private *priv = netdev_priv(dev);
2297
2298 disable_napi(priv);
2299
2300 cancel_work_sync(&priv->reset_task);
2301 stop_gfar(dev);
2302
2303 /* Disconnect from the PHY */
2304 phy_disconnect(priv->phydev);
2305 priv->phydev = NULL;
2306
2307 netif_tx_stop_all_queues(dev);
2308
2309 return 0;
2310 }
2311
2312 /* Changes the mac address if the controller is not running. */
2313 static int gfar_set_mac_address(struct net_device *dev)
2314 {
2315 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2316
2317 return 0;
2318 }
2319
2320 /* Check if rx parser should be activated */
2321 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2322 {
2323 struct gfar __iomem *regs;
2324 u32 tempval;
2325
2326 regs = priv->gfargrp[0].regs;
2327
2328 tempval = gfar_read(&regs->rctrl);
2329 /* If parse is no longer required, then disable parser */
2330 if (tempval & RCTRL_REQ_PARSER) {
2331 tempval |= RCTRL_PRSDEP_INIT;
2332 priv->uses_rxfcb = 1;
2333 } else {
2334 tempval &= ~RCTRL_PRSDEP_INIT;
2335 priv->uses_rxfcb = 0;
2336 }
2337 gfar_write(&regs->rctrl, tempval);
2338 }
2339
2340 /* Enables and disables VLAN insertion/extraction */
2341 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2342 {
2343 struct gfar_private *priv = netdev_priv(dev);
2344 struct gfar __iomem *regs = NULL;
2345 unsigned long flags;
2346 u32 tempval;
2347
2348 regs = priv->gfargrp[0].regs;
2349 local_irq_save(flags);
2350 lock_rx_qs(priv);
2351
2352 if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2353 /* Enable VLAN tag insertion */
2354 tempval = gfar_read(&regs->tctrl);
2355 tempval |= TCTRL_VLINS;
2356 gfar_write(&regs->tctrl, tempval);
2357 } else {
2358 /* Disable VLAN tag insertion */
2359 tempval = gfar_read(&regs->tctrl);
2360 tempval &= ~TCTRL_VLINS;
2361 gfar_write(&regs->tctrl, tempval);
2362 }
2363
2364 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2365 /* Enable VLAN tag extraction */
2366 tempval = gfar_read(&regs->rctrl);
2367 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2368 gfar_write(&regs->rctrl, tempval);
2369 priv->uses_rxfcb = 1;
2370 } else {
2371 /* Disable VLAN tag extraction */
2372 tempval = gfar_read(&regs->rctrl);
2373 tempval &= ~RCTRL_VLEX;
2374 gfar_write(&regs->rctrl, tempval);
2375
2376 gfar_check_rx_parser_mode(priv);
2377 }
2378
2379 gfar_change_mtu(dev, dev->mtu);
2380
2381 unlock_rx_qs(priv);
2382 local_irq_restore(flags);
2383 }
2384
2385 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2386 {
2387 int tempsize, tempval;
2388 struct gfar_private *priv = netdev_priv(dev);
2389 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2390 int oldsize = priv->rx_buffer_size;
2391 int frame_size = new_mtu + ETH_HLEN;
2392
2393 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2394 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2395 return -EINVAL;
2396 }
2397
2398 if (priv->uses_rxfcb)
2399 frame_size += GMAC_FCB_LEN;
2400
2401 frame_size += priv->padding;
2402
2403 tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2404 INCREMENTAL_BUFFER_SIZE;
2405
2406 /* Only stop and start the controller if it isn't already
2407 * stopped, and we changed something
2408 */
2409 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2410 stop_gfar(dev);
2411
2412 priv->rx_buffer_size = tempsize;
2413
2414 dev->mtu = new_mtu;
2415
2416 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2417 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2418
2419 /* If the mtu is larger than the max size for standard
2420 * ethernet frames (ie, a jumbo frame), then set maccfg2
2421 * to allow huge frames, and to check the length
2422 */
2423 tempval = gfar_read(&regs->maccfg2);
2424
2425 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2426 gfar_has_errata(priv, GFAR_ERRATA_74))
2427 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2428 else
2429 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2430
2431 gfar_write(&regs->maccfg2, tempval);
2432
2433 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2434 startup_gfar(dev);
2435
2436 return 0;
2437 }
2438
2439 /* gfar_reset_task gets scheduled when a packet has not been
2440 * transmitted after a set amount of time.
2441 * For now, assume that clearing out all the structures, and
2442 * starting over will fix the problem.
2443 */
2444 static void gfar_reset_task(struct work_struct *work)
2445 {
2446 struct gfar_private *priv = container_of(work, struct gfar_private,
2447 reset_task);
2448 struct net_device *dev = priv->ndev;
2449
2450 if (dev->flags & IFF_UP) {
2451 netif_tx_stop_all_queues(dev);
2452 stop_gfar(dev);
2453 startup_gfar(dev);
2454 netif_tx_start_all_queues(dev);
2455 }
2456
2457 netif_tx_schedule_all(dev);
2458 }
2459
2460 static void gfar_timeout(struct net_device *dev)
2461 {
2462 struct gfar_private *priv = netdev_priv(dev);
2463
2464 dev->stats.tx_errors++;
2465 schedule_work(&priv->reset_task);
2466 }
2467
2468 static void gfar_align_skb(struct sk_buff *skb)
2469 {
2470 /* We need the data buffer to be aligned properly. We will reserve
2471 * as many bytes as needed to align the data properly
2472 */
2473 skb_reserve(skb, RXBUF_ALIGNMENT -
2474 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2475 }
2476
2477 /* Interrupt Handler for Transmit complete */
2478 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2479 {
2480 struct net_device *dev = tx_queue->dev;
2481 struct netdev_queue *txq;
2482 struct gfar_private *priv = netdev_priv(dev);
2483 struct txbd8 *bdp, *next = NULL;
2484 struct txbd8 *lbdp = NULL;
2485 struct txbd8 *base = tx_queue->tx_bd_base;
2486 struct sk_buff *skb;
2487 int skb_dirtytx;
2488 int tx_ring_size = tx_queue->tx_ring_size;
2489 int frags = 0, nr_txbds = 0;
2490 int i;
2491 int howmany = 0;
2492 int tqi = tx_queue->qindex;
2493 unsigned int bytes_sent = 0;
2494 u32 lstatus;
2495 size_t buflen;
2496
2497 txq = netdev_get_tx_queue(dev, tqi);
2498 bdp = tx_queue->dirty_tx;
2499 skb_dirtytx = tx_queue->skb_dirtytx;
2500
2501 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2502 unsigned long flags;
2503
2504 frags = skb_shinfo(skb)->nr_frags;
2505
2506 /* When time stamping, one additional TxBD must be freed.
2507 * Also, we need to dma_unmap_single() the TxPAL.
2508 */
2509 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2510 nr_txbds = frags + 2;
2511 else
2512 nr_txbds = frags + 1;
2513
2514 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2515
2516 lstatus = lbdp->lstatus;
2517
2518 /* Only clean completed frames */
2519 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2520 (lstatus & BD_LENGTH_MASK))
2521 break;
2522
2523 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2524 next = next_txbd(bdp, base, tx_ring_size);
2525 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2526 } else
2527 buflen = bdp->length;
2528
2529 dma_unmap_single(priv->dev, bdp->bufPtr,
2530 buflen, DMA_TO_DEVICE);
2531
2532 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2533 struct skb_shared_hwtstamps shhwtstamps;
2534 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2535
2536 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2537 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2538 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2539 skb_tstamp_tx(skb, &shhwtstamps);
2540 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2541 bdp = next;
2542 }
2543
2544 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2545 bdp = next_txbd(bdp, base, tx_ring_size);
2546
2547 for (i = 0; i < frags; i++) {
2548 dma_unmap_page(priv->dev, bdp->bufPtr,
2549 bdp->length, DMA_TO_DEVICE);
2550 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2551 bdp = next_txbd(bdp, base, tx_ring_size);
2552 }
2553
2554 bytes_sent += skb->len;
2555
2556 dev_kfree_skb_any(skb);
2557
2558 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2559
2560 skb_dirtytx = (skb_dirtytx + 1) &
2561 TX_RING_MOD_MASK(tx_ring_size);
2562
2563 howmany++;
2564 spin_lock_irqsave(&tx_queue->txlock, flags);
2565 tx_queue->num_txbdfree += nr_txbds;
2566 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2567 }
2568
2569 /* If we freed a buffer, we can restart transmission, if necessary */
2570 if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2571 netif_wake_subqueue(dev, tqi);
2572
2573 /* Update dirty indicators */
2574 tx_queue->skb_dirtytx = skb_dirtytx;
2575 tx_queue->dirty_tx = bdp;
2576
2577 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2578 }
2579
2580 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2581 {
2582 unsigned long flags;
2583
2584 spin_lock_irqsave(&gfargrp->grplock, flags);
2585 if (napi_schedule_prep(&gfargrp->napi)) {
2586 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2587 __napi_schedule(&gfargrp->napi);
2588 } else {
2589 /* Clear IEVENT, so interrupts aren't called again
2590 * because of the packets that have already arrived.
2591 */
2592 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2593 }
2594 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2595
2596 }
2597
2598 /* Interrupt Handler for Transmit complete */
2599 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2600 {
2601 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2602 return IRQ_HANDLED;
2603 }
2604
2605 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2606 struct sk_buff *skb)
2607 {
2608 struct net_device *dev = rx_queue->dev;
2609 struct gfar_private *priv = netdev_priv(dev);
2610 dma_addr_t buf;
2611
2612 buf = dma_map_single(priv->dev, skb->data,
2613 priv->rx_buffer_size, DMA_FROM_DEVICE);
2614 gfar_init_rxbdp(rx_queue, bdp, buf);
2615 }
2616
2617 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2618 {
2619 struct gfar_private *priv = netdev_priv(dev);
2620 struct sk_buff *skb;
2621
2622 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2623 if (!skb)
2624 return NULL;
2625
2626 gfar_align_skb(skb);
2627
2628 return skb;
2629 }
2630
2631 struct sk_buff *gfar_new_skb(struct net_device *dev)
2632 {
2633 return gfar_alloc_skb(dev);
2634 }
2635
2636 static inline void count_errors(unsigned short status, struct net_device *dev)
2637 {
2638 struct gfar_private *priv = netdev_priv(dev);
2639 struct net_device_stats *stats = &dev->stats;
2640 struct gfar_extra_stats *estats = &priv->extra_stats;
2641
2642 /* If the packet was truncated, none of the other errors matter */
2643 if (status & RXBD_TRUNCATED) {
2644 stats->rx_length_errors++;
2645
2646 atomic64_inc(&estats->rx_trunc);
2647
2648 return;
2649 }
2650 /* Count the errors, if there were any */
2651 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2652 stats->rx_length_errors++;
2653
2654 if (status & RXBD_LARGE)
2655 atomic64_inc(&estats->rx_large);
2656 else
2657 atomic64_inc(&estats->rx_short);
2658 }
2659 if (status & RXBD_NONOCTET) {
2660 stats->rx_frame_errors++;
2661 atomic64_inc(&estats->rx_nonoctet);
2662 }
2663 if (status & RXBD_CRCERR) {
2664 atomic64_inc(&estats->rx_crcerr);
2665 stats->rx_crc_errors++;
2666 }
2667 if (status & RXBD_OVERRUN) {
2668 atomic64_inc(&estats->rx_overrun);
2669 stats->rx_crc_errors++;
2670 }
2671 }
2672
2673 irqreturn_t gfar_receive(int irq, void *grp_id)
2674 {
2675 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2676 return IRQ_HANDLED;
2677 }
2678
2679 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2680 {
2681 /* If valid headers were found, and valid sums
2682 * were verified, then we tell the kernel that no
2683 * checksumming is necessary. Otherwise, it is [FIXME]
2684 */
2685 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2686 skb->ip_summed = CHECKSUM_UNNECESSARY;
2687 else
2688 skb_checksum_none_assert(skb);
2689 }
2690
2691
2692 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2693 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2694 int amount_pull, struct napi_struct *napi)
2695 {
2696 struct gfar_private *priv = netdev_priv(dev);
2697 struct rxfcb *fcb = NULL;
2698
2699 /* fcb is at the beginning if exists */
2700 fcb = (struct rxfcb *)skb->data;
2701
2702 /* Remove the FCB from the skb
2703 * Remove the padded bytes, if there are any
2704 */
2705 if (amount_pull) {
2706 skb_record_rx_queue(skb, fcb->rq);
2707 skb_pull(skb, amount_pull);
2708 }
2709
2710 /* Get receive timestamp from the skb */
2711 if (priv->hwts_rx_en) {
2712 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2713 u64 *ns = (u64 *) skb->data;
2714
2715 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2716 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2717 }
2718
2719 if (priv->padding)
2720 skb_pull(skb, priv->padding);
2721
2722 if (dev->features & NETIF_F_RXCSUM)
2723 gfar_rx_checksum(skb, fcb);
2724
2725 /* Tell the skb what kind of packet this is */
2726 skb->protocol = eth_type_trans(skb, dev);
2727
2728 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2729 * Even if vlan rx accel is disabled, on some chips
2730 * RXFCB_VLN is pseudo randomly set.
2731 */
2732 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2733 fcb->flags & RXFCB_VLN)
2734 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2735
2736 /* Send the packet up the stack */
2737 napi_gro_receive(napi, skb);
2738
2739 }
2740
2741 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2742 * until the budget/quota has been reached. Returns the number
2743 * of frames handled
2744 */
2745 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2746 {
2747 struct net_device *dev = rx_queue->dev;
2748 struct rxbd8 *bdp, *base;
2749 struct sk_buff *skb;
2750 int pkt_len;
2751 int amount_pull;
2752 int howmany = 0;
2753 struct gfar_private *priv = netdev_priv(dev);
2754
2755 /* Get the first full descriptor */
2756 bdp = rx_queue->cur_rx;
2757 base = rx_queue->rx_bd_base;
2758
2759 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2760
2761 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2762 struct sk_buff *newskb;
2763
2764 rmb();
2765
2766 /* Add another skb for the future */
2767 newskb = gfar_new_skb(dev);
2768
2769 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2770
2771 dma_unmap_single(priv->dev, bdp->bufPtr,
2772 priv->rx_buffer_size, DMA_FROM_DEVICE);
2773
2774 if (unlikely(!(bdp->status & RXBD_ERR) &&
2775 bdp->length > priv->rx_buffer_size))
2776 bdp->status = RXBD_LARGE;
2777
2778 /* We drop the frame if we failed to allocate a new buffer */
2779 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2780 bdp->status & RXBD_ERR)) {
2781 count_errors(bdp->status, dev);
2782
2783 if (unlikely(!newskb))
2784 newskb = skb;
2785 else if (skb)
2786 dev_kfree_skb(skb);
2787 } else {
2788 /* Increment the number of packets */
2789 rx_queue->stats.rx_packets++;
2790 howmany++;
2791
2792 if (likely(skb)) {
2793 pkt_len = bdp->length - ETH_FCS_LEN;
2794 /* Remove the FCS from the packet length */
2795 skb_put(skb, pkt_len);
2796 rx_queue->stats.rx_bytes += pkt_len;
2797 skb_record_rx_queue(skb, rx_queue->qindex);
2798 gfar_process_frame(dev, skb, amount_pull,
2799 &rx_queue->grp->napi);
2800
2801 } else {
2802 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2803 rx_queue->stats.rx_dropped++;
2804 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2805 }
2806
2807 }
2808
2809 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2810
2811 /* Setup the new bdp */
2812 gfar_new_rxbdp(rx_queue, bdp, newskb);
2813
2814 /* Update to the next pointer */
2815 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2816
2817 /* update to point at the next skb */
2818 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2819 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2820 }
2821
2822 /* Update the current rxbd pointer to be the next one */
2823 rx_queue->cur_rx = bdp;
2824
2825 return howmany;
2826 }
2827
2828 static int gfar_poll(struct napi_struct *napi, int budget)
2829 {
2830 struct gfar_priv_grp *gfargrp =
2831 container_of(napi, struct gfar_priv_grp, napi);
2832 struct gfar_private *priv = gfargrp->priv;
2833 struct gfar __iomem *regs = gfargrp->regs;
2834 struct gfar_priv_tx_q *tx_queue = NULL;
2835 struct gfar_priv_rx_q *rx_queue = NULL;
2836 int work_done = 0, work_done_per_q = 0;
2837 int i, budget_per_q = 0;
2838 int has_tx_work;
2839 unsigned long rstat_rxf;
2840 int num_act_queues;
2841
2842 /* Clear IEVENT, so interrupts aren't called again
2843 * because of the packets that have already arrived
2844 */
2845 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2846
2847 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2848
2849 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2850 if (num_act_queues)
2851 budget_per_q = budget/num_act_queues;
2852
2853 while (1) {
2854 has_tx_work = 0;
2855 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2856 tx_queue = priv->tx_queue[i];
2857 /* run Tx cleanup to completion */
2858 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2859 gfar_clean_tx_ring(tx_queue);
2860 has_tx_work = 1;
2861 }
2862 }
2863
2864 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2865 /* skip queue if not active */
2866 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2867 continue;
2868
2869 rx_queue = priv->rx_queue[i];
2870 work_done_per_q =
2871 gfar_clean_rx_ring(rx_queue, budget_per_q);
2872 work_done += work_done_per_q;
2873
2874 /* finished processing this queue */
2875 if (work_done_per_q < budget_per_q) {
2876 /* clear active queue hw indication */
2877 gfar_write(&regs->rstat,
2878 RSTAT_CLEAR_RXF0 >> i);
2879 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2880 num_act_queues--;
2881
2882 if (!num_act_queues)
2883 break;
2884 /* recompute budget per Rx queue */
2885 budget_per_q =
2886 (budget - work_done) / num_act_queues;
2887 }
2888 }
2889
2890 if (work_done >= budget)
2891 break;
2892
2893 if (!num_act_queues && !has_tx_work) {
2894
2895 napi_complete(napi);
2896
2897 /* Clear the halt bit in RSTAT */
2898 gfar_write(&regs->rstat, gfargrp->rstat);
2899
2900 gfar_write(&regs->imask, IMASK_DEFAULT);
2901
2902 /* If we are coalescing interrupts, update the timer
2903 * Otherwise, clear it
2904 */
2905 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2906 gfargrp->tx_bit_map);
2907 break;
2908 }
2909 }
2910
2911 return work_done;
2912 }
2913
2914 #ifdef CONFIG_NET_POLL_CONTROLLER
2915 /* Polling 'interrupt' - used by things like netconsole to send skbs
2916 * without having to re-enable interrupts. It's not called while
2917 * the interrupt routine is executing.
2918 */
2919 static void gfar_netpoll(struct net_device *dev)
2920 {
2921 struct gfar_private *priv = netdev_priv(dev);
2922 int i;
2923
2924 /* If the device has multiple interrupts, run tx/rx */
2925 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2926 for (i = 0; i < priv->num_grps; i++) {
2927 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2928
2929 disable_irq(gfar_irq(grp, TX)->irq);
2930 disable_irq(gfar_irq(grp, RX)->irq);
2931 disable_irq(gfar_irq(grp, ER)->irq);
2932 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2933 enable_irq(gfar_irq(grp, ER)->irq);
2934 enable_irq(gfar_irq(grp, RX)->irq);
2935 enable_irq(gfar_irq(grp, TX)->irq);
2936 }
2937 } else {
2938 for (i = 0; i < priv->num_grps; i++) {
2939 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2940
2941 disable_irq(gfar_irq(grp, TX)->irq);
2942 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2943 enable_irq(gfar_irq(grp, TX)->irq);
2944 }
2945 }
2946 }
2947 #endif
2948
2949 /* The interrupt handler for devices with one interrupt */
2950 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2951 {
2952 struct gfar_priv_grp *gfargrp = grp_id;
2953
2954 /* Save ievent for future reference */
2955 u32 events = gfar_read(&gfargrp->regs->ievent);
2956
2957 /* Check for reception */
2958 if (events & IEVENT_RX_MASK)
2959 gfar_receive(irq, grp_id);
2960
2961 /* Check for transmit completion */
2962 if (events & IEVENT_TX_MASK)
2963 gfar_transmit(irq, grp_id);
2964
2965 /* Check for errors */
2966 if (events & IEVENT_ERR_MASK)
2967 gfar_error(irq, grp_id);
2968
2969 return IRQ_HANDLED;
2970 }
2971
2972 /* Called every time the controller might need to be made
2973 * aware of new link state. The PHY code conveys this
2974 * information through variables in the phydev structure, and this
2975 * function converts those variables into the appropriate
2976 * register values, and can bring down the device if needed.
2977 */
2978 static void adjust_link(struct net_device *dev)
2979 {
2980 struct gfar_private *priv = netdev_priv(dev);
2981 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2982 unsigned long flags;
2983 struct phy_device *phydev = priv->phydev;
2984 int new_state = 0;
2985
2986 local_irq_save(flags);
2987 lock_tx_qs(priv);
2988
2989 if (phydev->link) {
2990 u32 tempval = gfar_read(&regs->maccfg2);
2991 u32 ecntrl = gfar_read(&regs->ecntrl);
2992
2993 /* Now we make sure that we can be in full duplex mode.
2994 * If not, we operate in half-duplex mode.
2995 */
2996 if (phydev->duplex != priv->oldduplex) {
2997 new_state = 1;
2998 if (!(phydev->duplex))
2999 tempval &= ~(MACCFG2_FULL_DUPLEX);
3000 else
3001 tempval |= MACCFG2_FULL_DUPLEX;
3002
3003 priv->oldduplex = phydev->duplex;
3004 }
3005
3006 if (phydev->speed != priv->oldspeed) {
3007 new_state = 1;
3008 switch (phydev->speed) {
3009 case 1000:
3010 tempval =
3011 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3012
3013 ecntrl &= ~(ECNTRL_R100);
3014 break;
3015 case 100:
3016 case 10:
3017 tempval =
3018 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3019
3020 /* Reduced mode distinguishes
3021 * between 10 and 100
3022 */
3023 if (phydev->speed == SPEED_100)
3024 ecntrl |= ECNTRL_R100;
3025 else
3026 ecntrl &= ~(ECNTRL_R100);
3027 break;
3028 default:
3029 netif_warn(priv, link, dev,
3030 "Ack! Speed (%d) is not 10/100/1000!\n",
3031 phydev->speed);
3032 break;
3033 }
3034
3035 priv->oldspeed = phydev->speed;
3036 }
3037
3038 gfar_write(&regs->maccfg2, tempval);
3039 gfar_write(&regs->ecntrl, ecntrl);
3040
3041 if (!priv->oldlink) {
3042 new_state = 1;
3043 priv->oldlink = 1;
3044 }
3045 } else if (priv->oldlink) {
3046 new_state = 1;
3047 priv->oldlink = 0;
3048 priv->oldspeed = 0;
3049 priv->oldduplex = -1;
3050 }
3051
3052 if (new_state && netif_msg_link(priv))
3053 phy_print_status(phydev);
3054 unlock_tx_qs(priv);
3055 local_irq_restore(flags);
3056 }
3057
3058 /* Update the hash table based on the current list of multicast
3059 * addresses we subscribe to. Also, change the promiscuity of
3060 * the device based on the flags (this function is called
3061 * whenever dev->flags is changed
3062 */
3063 static void gfar_set_multi(struct net_device *dev)
3064 {
3065 struct netdev_hw_addr *ha;
3066 struct gfar_private *priv = netdev_priv(dev);
3067 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3068 u32 tempval;
3069
3070 if (dev->flags & IFF_PROMISC) {
3071 /* Set RCTRL to PROM */
3072 tempval = gfar_read(&regs->rctrl);
3073 tempval |= RCTRL_PROM;
3074 gfar_write(&regs->rctrl, tempval);
3075 } else {
3076 /* Set RCTRL to not PROM */
3077 tempval = gfar_read(&regs->rctrl);
3078 tempval &= ~(RCTRL_PROM);
3079 gfar_write(&regs->rctrl, tempval);
3080 }
3081
3082 if (dev->flags & IFF_ALLMULTI) {
3083 /* Set the hash to rx all multicast frames */
3084 gfar_write(&regs->igaddr0, 0xffffffff);
3085 gfar_write(&regs->igaddr1, 0xffffffff);
3086 gfar_write(&regs->igaddr2, 0xffffffff);
3087 gfar_write(&regs->igaddr3, 0xffffffff);
3088 gfar_write(&regs->igaddr4, 0xffffffff);
3089 gfar_write(&regs->igaddr5, 0xffffffff);
3090 gfar_write(&regs->igaddr6, 0xffffffff);
3091 gfar_write(&regs->igaddr7, 0xffffffff);
3092 gfar_write(&regs->gaddr0, 0xffffffff);
3093 gfar_write(&regs->gaddr1, 0xffffffff);
3094 gfar_write(&regs->gaddr2, 0xffffffff);
3095 gfar_write(&regs->gaddr3, 0xffffffff);
3096 gfar_write(&regs->gaddr4, 0xffffffff);
3097 gfar_write(&regs->gaddr5, 0xffffffff);
3098 gfar_write(&regs->gaddr6, 0xffffffff);
3099 gfar_write(&regs->gaddr7, 0xffffffff);
3100 } else {
3101 int em_num;
3102 int idx;
3103
3104 /* zero out the hash */
3105 gfar_write(&regs->igaddr0, 0x0);
3106 gfar_write(&regs->igaddr1, 0x0);
3107 gfar_write(&regs->igaddr2, 0x0);
3108 gfar_write(&regs->igaddr3, 0x0);
3109 gfar_write(&regs->igaddr4, 0x0);
3110 gfar_write(&regs->igaddr5, 0x0);
3111 gfar_write(&regs->igaddr6, 0x0);
3112 gfar_write(&regs->igaddr7, 0x0);
3113 gfar_write(&regs->gaddr0, 0x0);
3114 gfar_write(&regs->gaddr1, 0x0);
3115 gfar_write(&regs->gaddr2, 0x0);
3116 gfar_write(&regs->gaddr3, 0x0);
3117 gfar_write(&regs->gaddr4, 0x0);
3118 gfar_write(&regs->gaddr5, 0x0);
3119 gfar_write(&regs->gaddr6, 0x0);
3120 gfar_write(&regs->gaddr7, 0x0);
3121
3122 /* If we have extended hash tables, we need to
3123 * clear the exact match registers to prepare for
3124 * setting them
3125 */
3126 if (priv->extended_hash) {
3127 em_num = GFAR_EM_NUM + 1;
3128 gfar_clear_exact_match(dev);
3129 idx = 1;
3130 } else {
3131 idx = 0;
3132 em_num = 0;
3133 }
3134
3135 if (netdev_mc_empty(dev))
3136 return;
3137
3138 /* Parse the list, and set the appropriate bits */
3139 netdev_for_each_mc_addr(ha, dev) {
3140 if (idx < em_num) {
3141 gfar_set_mac_for_addr(dev, idx, ha->addr);
3142 idx++;
3143 } else
3144 gfar_set_hash_for_addr(dev, ha->addr);
3145 }
3146 }
3147 }
3148
3149
3150 /* Clears each of the exact match registers to zero, so they
3151 * don't interfere with normal reception
3152 */
3153 static void gfar_clear_exact_match(struct net_device *dev)
3154 {
3155 int idx;
3156 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3157
3158 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3159 gfar_set_mac_for_addr(dev, idx, zero_arr);
3160 }
3161
3162 /* Set the appropriate hash bit for the given addr */
3163 /* The algorithm works like so:
3164 * 1) Take the Destination Address (ie the multicast address), and
3165 * do a CRC on it (little endian), and reverse the bits of the
3166 * result.
3167 * 2) Use the 8 most significant bits as a hash into a 256-entry
3168 * table. The table is controlled through 8 32-bit registers:
3169 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3170 * gaddr7. This means that the 3 most significant bits in the
3171 * hash index which gaddr register to use, and the 5 other bits
3172 * indicate which bit (assuming an IBM numbering scheme, which
3173 * for PowerPC (tm) is usually the case) in the register holds
3174 * the entry.
3175 */
3176 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3177 {
3178 u32 tempval;
3179 struct gfar_private *priv = netdev_priv(dev);
3180 u32 result = ether_crc(ETH_ALEN, addr);
3181 int width = priv->hash_width;
3182 u8 whichbit = (result >> (32 - width)) & 0x1f;
3183 u8 whichreg = result >> (32 - width + 5);
3184 u32 value = (1 << (31-whichbit));
3185
3186 tempval = gfar_read(priv->hash_regs[whichreg]);
3187 tempval |= value;
3188 gfar_write(priv->hash_regs[whichreg], tempval);
3189 }
3190
3191
3192 /* There are multiple MAC Address register pairs on some controllers
3193 * This function sets the numth pair to a given address
3194 */
3195 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3196 const u8 *addr)
3197 {
3198 struct gfar_private *priv = netdev_priv(dev);
3199 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3200 int idx;
3201 char tmpbuf[ETH_ALEN];
3202 u32 tempval;
3203 u32 __iomem *macptr = &regs->macstnaddr1;
3204
3205 macptr += num*2;
3206
3207 /* Now copy it into the mac registers backwards, cuz
3208 * little endian is silly
3209 */
3210 for (idx = 0; idx < ETH_ALEN; idx++)
3211 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3212
3213 gfar_write(macptr, *((u32 *) (tmpbuf)));
3214
3215 tempval = *((u32 *) (tmpbuf + 4));
3216
3217 gfar_write(macptr+1, tempval);
3218 }
3219
3220 /* GFAR error interrupt handler */
3221 static irqreturn_t gfar_error(int irq, void *grp_id)
3222 {
3223 struct gfar_priv_grp *gfargrp = grp_id;
3224 struct gfar __iomem *regs = gfargrp->regs;
3225 struct gfar_private *priv= gfargrp->priv;
3226 struct net_device *dev = priv->ndev;
3227
3228 /* Save ievent for future reference */
3229 u32 events = gfar_read(&regs->ievent);
3230
3231 /* Clear IEVENT */
3232 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3233
3234 /* Magic Packet is not an error. */
3235 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3236 (events & IEVENT_MAG))
3237 events &= ~IEVENT_MAG;
3238
3239 /* Hmm... */
3240 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3241 netdev_dbg(dev,
3242 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3243 events, gfar_read(&regs->imask));
3244
3245 /* Update the error counters */
3246 if (events & IEVENT_TXE) {
3247 dev->stats.tx_errors++;
3248
3249 if (events & IEVENT_LC)
3250 dev->stats.tx_window_errors++;
3251 if (events & IEVENT_CRL)
3252 dev->stats.tx_aborted_errors++;
3253 if (events & IEVENT_XFUN) {
3254 unsigned long flags;
3255
3256 netif_dbg(priv, tx_err, dev,
3257 "TX FIFO underrun, packet dropped\n");
3258 dev->stats.tx_dropped++;
3259 atomic64_inc(&priv->extra_stats.tx_underrun);
3260
3261 local_irq_save(flags);
3262 lock_tx_qs(priv);
3263
3264 /* Reactivate the Tx Queues */
3265 gfar_write(&regs->tstat, gfargrp->tstat);
3266
3267 unlock_tx_qs(priv);
3268 local_irq_restore(flags);
3269 }
3270 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3271 }
3272 if (events & IEVENT_BSY) {
3273 dev->stats.rx_errors++;
3274 atomic64_inc(&priv->extra_stats.rx_bsy);
3275
3276 gfar_receive(irq, grp_id);
3277
3278 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3279 gfar_read(&regs->rstat));
3280 }
3281 if (events & IEVENT_BABR) {
3282 dev->stats.rx_errors++;
3283 atomic64_inc(&priv->extra_stats.rx_babr);
3284
3285 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3286 }
3287 if (events & IEVENT_EBERR) {
3288 atomic64_inc(&priv->extra_stats.eberr);
3289 netif_dbg(priv, rx_err, dev, "bus error\n");
3290 }
3291 if (events & IEVENT_RXC)
3292 netif_dbg(priv, rx_status, dev, "control frame\n");
3293
3294 if (events & IEVENT_BABT) {
3295 atomic64_inc(&priv->extra_stats.tx_babt);
3296 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3297 }
3298 return IRQ_HANDLED;
3299 }
3300
3301 static struct of_device_id gfar_match[] =
3302 {
3303 {
3304 .type = "network",
3305 .compatible = "gianfar",
3306 },
3307 {
3308 .compatible = "fsl,etsec2",
3309 },
3310 {},
3311 };
3312 MODULE_DEVICE_TABLE(of, gfar_match);
3313
3314 /* Structure for a device driver */
3315 static struct platform_driver gfar_driver = {
3316 .driver = {
3317 .name = "fsl-gianfar",
3318 .owner = THIS_MODULE,
3319 .pm = GFAR_PM_OPS,
3320 .of_match_table = gfar_match,
3321 },
3322 .probe = gfar_probe,
3323 .remove = gfar_remove,
3324 };
3325
3326 module_platform_driver(gfar_driver);