]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/freescale/gianfar.c
7ea19e17333944846a5c1c6eeac3c84f67a611a9
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * Gianfar: AKA Lambda Draconis, "Dragon"
17 * RA 11 31 24.2
18 * Dec +69 19 52
19 * V 3.84
20 * B-V +1.62
21 *
22 * Theory of operation
23 *
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
26 *
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
32 *
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
48 * skb.
49 *
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT (5*HZ)
105
106 const char gfar_driver_version[] = "2.0";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
114 int alloc_cnt);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static noinline void gfar_update_link_state(struct gfar_private *priv);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct platform_device *ofdev);
124 static int gfar_remove(struct platform_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll_rx(struct napi_struct *napi, int budget);
130 static int gfar_poll_tx(struct napi_struct *napi, int budget);
131 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
132 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
139 static void gfar_halt_nodisable(struct gfar_private *priv);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
142 const u8 *addr);
143 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
144
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148
149 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
150 dma_addr_t buf)
151 {
152 u32 lstatus;
153
154 bdp->bufPtr = cpu_to_be32(buf);
155
156 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
157 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
158 lstatus |= BD_LFLAG(RXBD_WRAP);
159
160 gfar_wmb();
161
162 bdp->lstatus = cpu_to_be32(lstatus);
163 }
164
165 static void gfar_init_bds(struct net_device *ndev)
166 {
167 struct gfar_private *priv = netdev_priv(ndev);
168 struct gfar __iomem *regs = priv->gfargrp[0].regs;
169 struct gfar_priv_tx_q *tx_queue = NULL;
170 struct gfar_priv_rx_q *rx_queue = NULL;
171 struct txbd8 *txbdp;
172 u32 __iomem *rfbptr;
173 int i, j;
174
175 for (i = 0; i < priv->num_tx_queues; i++) {
176 tx_queue = priv->tx_queue[i];
177 /* Initialize some variables in our dev structure */
178 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180 tx_queue->cur_tx = tx_queue->tx_bd_base;
181 tx_queue->skb_curtx = 0;
182 tx_queue->skb_dirtytx = 0;
183
184 /* Initialize Transmit Descriptor Ring */
185 txbdp = tx_queue->tx_bd_base;
186 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187 txbdp->lstatus = 0;
188 txbdp->bufPtr = 0;
189 txbdp++;
190 }
191
192 /* Set the last descriptor in the ring to indicate wrap */
193 txbdp--;
194 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
195 TXBD_WRAP);
196 }
197
198 rfbptr = &regs->rfbptr0;
199 for (i = 0; i < priv->num_rx_queues; i++) {
200 rx_queue = priv->rx_queue[i];
201
202 rx_queue->next_to_clean = 0;
203 rx_queue->next_to_use = 0;
204 rx_queue->next_to_alloc = 0;
205
206 /* make sure next_to_clean != next_to_use after this
207 * by leaving at least 1 unused descriptor
208 */
209 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
210
211 rx_queue->rfbptr = rfbptr;
212 rfbptr += 2;
213 }
214 }
215
216 static int gfar_alloc_skb_resources(struct net_device *ndev)
217 {
218 void *vaddr;
219 dma_addr_t addr;
220 int i, j;
221 struct gfar_private *priv = netdev_priv(ndev);
222 struct device *dev = priv->dev;
223 struct gfar_priv_tx_q *tx_queue = NULL;
224 struct gfar_priv_rx_q *rx_queue = NULL;
225
226 priv->total_tx_ring_size = 0;
227 for (i = 0; i < priv->num_tx_queues; i++)
228 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
229
230 priv->total_rx_ring_size = 0;
231 for (i = 0; i < priv->num_rx_queues; i++)
232 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
233
234 /* Allocate memory for the buffer descriptors */
235 vaddr = dma_alloc_coherent(dev,
236 (priv->total_tx_ring_size *
237 sizeof(struct txbd8)) +
238 (priv->total_rx_ring_size *
239 sizeof(struct rxbd8)),
240 &addr, GFP_KERNEL);
241 if (!vaddr)
242 return -ENOMEM;
243
244 for (i = 0; i < priv->num_tx_queues; i++) {
245 tx_queue = priv->tx_queue[i];
246 tx_queue->tx_bd_base = vaddr;
247 tx_queue->tx_bd_dma_base = addr;
248 tx_queue->dev = ndev;
249 /* enet DMA only understands physical addresses */
250 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
251 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
252 }
253
254 /* Start the rx descriptor ring where the tx ring leaves off */
255 for (i = 0; i < priv->num_rx_queues; i++) {
256 rx_queue = priv->rx_queue[i];
257 rx_queue->rx_bd_base = vaddr;
258 rx_queue->rx_bd_dma_base = addr;
259 rx_queue->ndev = ndev;
260 rx_queue->dev = dev;
261 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
262 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
263 }
264
265 /* Setup the skbuff rings */
266 for (i = 0; i < priv->num_tx_queues; i++) {
267 tx_queue = priv->tx_queue[i];
268 tx_queue->tx_skbuff =
269 kmalloc_array(tx_queue->tx_ring_size,
270 sizeof(*tx_queue->tx_skbuff),
271 GFP_KERNEL);
272 if (!tx_queue->tx_skbuff)
273 goto cleanup;
274
275 for (j = 0; j < tx_queue->tx_ring_size; j++)
276 tx_queue->tx_skbuff[j] = NULL;
277 }
278
279 for (i = 0; i < priv->num_rx_queues; i++) {
280 rx_queue = priv->rx_queue[i];
281 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
282 sizeof(*rx_queue->rx_buff),
283 GFP_KERNEL);
284 if (!rx_queue->rx_buff)
285 goto cleanup;
286 }
287
288 gfar_init_bds(ndev);
289
290 return 0;
291
292 cleanup:
293 free_skb_resources(priv);
294 return -ENOMEM;
295 }
296
297 static void gfar_init_tx_rx_base(struct gfar_private *priv)
298 {
299 struct gfar __iomem *regs = priv->gfargrp[0].regs;
300 u32 __iomem *baddr;
301 int i;
302
303 baddr = &regs->tbase0;
304 for (i = 0; i < priv->num_tx_queues; i++) {
305 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
306 baddr += 2;
307 }
308
309 baddr = &regs->rbase0;
310 for (i = 0; i < priv->num_rx_queues; i++) {
311 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
312 baddr += 2;
313 }
314 }
315
316 static void gfar_init_rqprm(struct gfar_private *priv)
317 {
318 struct gfar __iomem *regs = priv->gfargrp[0].regs;
319 u32 __iomem *baddr;
320 int i;
321
322 baddr = &regs->rqprm0;
323 for (i = 0; i < priv->num_rx_queues; i++) {
324 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
325 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
326 baddr++;
327 }
328 }
329
330 static void gfar_rx_offload_en(struct gfar_private *priv)
331 {
332 /* set this when rx hw offload (TOE) functions are being used */
333 priv->uses_rxfcb = 0;
334
335 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
336 priv->uses_rxfcb = 1;
337
338 if (priv->hwts_rx_en || priv->rx_filer_enable)
339 priv->uses_rxfcb = 1;
340 }
341
342 static void gfar_mac_rx_config(struct gfar_private *priv)
343 {
344 struct gfar __iomem *regs = priv->gfargrp[0].regs;
345 u32 rctrl = 0;
346
347 if (priv->rx_filer_enable) {
348 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
349 /* Program the RIR0 reg with the required distribution */
350 if (priv->poll_mode == GFAR_SQ_POLLING)
351 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
352 else /* GFAR_MQ_POLLING */
353 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
354 }
355
356 /* Restore PROMISC mode */
357 if (priv->ndev->flags & IFF_PROMISC)
358 rctrl |= RCTRL_PROM;
359
360 if (priv->ndev->features & NETIF_F_RXCSUM)
361 rctrl |= RCTRL_CHECKSUMMING;
362
363 if (priv->extended_hash)
364 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
365
366 if (priv->padding) {
367 rctrl &= ~RCTRL_PAL_MASK;
368 rctrl |= RCTRL_PADDING(priv->padding);
369 }
370
371 /* Enable HW time stamping if requested from user space */
372 if (priv->hwts_rx_en)
373 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
374
375 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
376 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
377
378 /* Clear the LFC bit */
379 gfar_write(&regs->rctrl, rctrl);
380 /* Init flow control threshold values */
381 gfar_init_rqprm(priv);
382 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
383 rctrl |= RCTRL_LFC;
384
385 /* Init rctrl based on our settings */
386 gfar_write(&regs->rctrl, rctrl);
387 }
388
389 static void gfar_mac_tx_config(struct gfar_private *priv)
390 {
391 struct gfar __iomem *regs = priv->gfargrp[0].regs;
392 u32 tctrl = 0;
393
394 if (priv->ndev->features & NETIF_F_IP_CSUM)
395 tctrl |= TCTRL_INIT_CSUM;
396
397 if (priv->prio_sched_en)
398 tctrl |= TCTRL_TXSCHED_PRIO;
399 else {
400 tctrl |= TCTRL_TXSCHED_WRRS;
401 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
402 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
403 }
404
405 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
406 tctrl |= TCTRL_VLINS;
407
408 gfar_write(&regs->tctrl, tctrl);
409 }
410
411 static void gfar_configure_coalescing(struct gfar_private *priv,
412 unsigned long tx_mask, unsigned long rx_mask)
413 {
414 struct gfar __iomem *regs = priv->gfargrp[0].regs;
415 u32 __iomem *baddr;
416
417 if (priv->mode == MQ_MG_MODE) {
418 int i = 0;
419
420 baddr = &regs->txic0;
421 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
422 gfar_write(baddr + i, 0);
423 if (likely(priv->tx_queue[i]->txcoalescing))
424 gfar_write(baddr + i, priv->tx_queue[i]->txic);
425 }
426
427 baddr = &regs->rxic0;
428 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
429 gfar_write(baddr + i, 0);
430 if (likely(priv->rx_queue[i]->rxcoalescing))
431 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
432 }
433 } else {
434 /* Backward compatible case -- even if we enable
435 * multiple queues, there's only single reg to program
436 */
437 gfar_write(&regs->txic, 0);
438 if (likely(priv->tx_queue[0]->txcoalescing))
439 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
440
441 gfar_write(&regs->rxic, 0);
442 if (unlikely(priv->rx_queue[0]->rxcoalescing))
443 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
444 }
445 }
446
447 void gfar_configure_coalescing_all(struct gfar_private *priv)
448 {
449 gfar_configure_coalescing(priv, 0xFF, 0xFF);
450 }
451
452 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
453 {
454 struct gfar_private *priv = netdev_priv(dev);
455 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
456 unsigned long tx_packets = 0, tx_bytes = 0;
457 int i;
458
459 for (i = 0; i < priv->num_rx_queues; i++) {
460 rx_packets += priv->rx_queue[i]->stats.rx_packets;
461 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
462 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
463 }
464
465 dev->stats.rx_packets = rx_packets;
466 dev->stats.rx_bytes = rx_bytes;
467 dev->stats.rx_dropped = rx_dropped;
468
469 for (i = 0; i < priv->num_tx_queues; i++) {
470 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
471 tx_packets += priv->tx_queue[i]->stats.tx_packets;
472 }
473
474 dev->stats.tx_bytes = tx_bytes;
475 dev->stats.tx_packets = tx_packets;
476
477 return &dev->stats;
478 }
479
480 static int gfar_set_mac_addr(struct net_device *dev, void *p)
481 {
482 eth_mac_addr(dev, p);
483
484 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
485
486 return 0;
487 }
488
489 static const struct net_device_ops gfar_netdev_ops = {
490 .ndo_open = gfar_enet_open,
491 .ndo_start_xmit = gfar_start_xmit,
492 .ndo_stop = gfar_close,
493 .ndo_change_mtu = gfar_change_mtu,
494 .ndo_set_features = gfar_set_features,
495 .ndo_set_rx_mode = gfar_set_multi,
496 .ndo_tx_timeout = gfar_timeout,
497 .ndo_do_ioctl = gfar_ioctl,
498 .ndo_get_stats = gfar_get_stats,
499 .ndo_change_carrier = fixed_phy_change_carrier,
500 .ndo_set_mac_address = gfar_set_mac_addr,
501 .ndo_validate_addr = eth_validate_addr,
502 #ifdef CONFIG_NET_POLL_CONTROLLER
503 .ndo_poll_controller = gfar_netpoll,
504 #endif
505 };
506
507 static void gfar_ints_disable(struct gfar_private *priv)
508 {
509 int i;
510 for (i = 0; i < priv->num_grps; i++) {
511 struct gfar __iomem *regs = priv->gfargrp[i].regs;
512 /* Clear IEVENT */
513 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
514
515 /* Initialize IMASK */
516 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
517 }
518 }
519
520 static void gfar_ints_enable(struct gfar_private *priv)
521 {
522 int i;
523 for (i = 0; i < priv->num_grps; i++) {
524 struct gfar __iomem *regs = priv->gfargrp[i].regs;
525 /* Unmask the interrupts we look for */
526 gfar_write(&regs->imask, IMASK_DEFAULT);
527 }
528 }
529
530 static int gfar_alloc_tx_queues(struct gfar_private *priv)
531 {
532 int i;
533
534 for (i = 0; i < priv->num_tx_queues; i++) {
535 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
536 GFP_KERNEL);
537 if (!priv->tx_queue[i])
538 return -ENOMEM;
539
540 priv->tx_queue[i]->tx_skbuff = NULL;
541 priv->tx_queue[i]->qindex = i;
542 priv->tx_queue[i]->dev = priv->ndev;
543 spin_lock_init(&(priv->tx_queue[i]->txlock));
544 }
545 return 0;
546 }
547
548 static int gfar_alloc_rx_queues(struct gfar_private *priv)
549 {
550 int i;
551
552 for (i = 0; i < priv->num_rx_queues; i++) {
553 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
554 GFP_KERNEL);
555 if (!priv->rx_queue[i])
556 return -ENOMEM;
557
558 priv->rx_queue[i]->qindex = i;
559 priv->rx_queue[i]->ndev = priv->ndev;
560 }
561 return 0;
562 }
563
564 static void gfar_free_tx_queues(struct gfar_private *priv)
565 {
566 int i;
567
568 for (i = 0; i < priv->num_tx_queues; i++)
569 kfree(priv->tx_queue[i]);
570 }
571
572 static void gfar_free_rx_queues(struct gfar_private *priv)
573 {
574 int i;
575
576 for (i = 0; i < priv->num_rx_queues; i++)
577 kfree(priv->rx_queue[i]);
578 }
579
580 static void unmap_group_regs(struct gfar_private *priv)
581 {
582 int i;
583
584 for (i = 0; i < MAXGROUPS; i++)
585 if (priv->gfargrp[i].regs)
586 iounmap(priv->gfargrp[i].regs);
587 }
588
589 static void free_gfar_dev(struct gfar_private *priv)
590 {
591 int i, j;
592
593 for (i = 0; i < priv->num_grps; i++)
594 for (j = 0; j < GFAR_NUM_IRQS; j++) {
595 kfree(priv->gfargrp[i].irqinfo[j]);
596 priv->gfargrp[i].irqinfo[j] = NULL;
597 }
598
599 free_netdev(priv->ndev);
600 }
601
602 static void disable_napi(struct gfar_private *priv)
603 {
604 int i;
605
606 for (i = 0; i < priv->num_grps; i++) {
607 napi_disable(&priv->gfargrp[i].napi_rx);
608 napi_disable(&priv->gfargrp[i].napi_tx);
609 }
610 }
611
612 static void enable_napi(struct gfar_private *priv)
613 {
614 int i;
615
616 for (i = 0; i < priv->num_grps; i++) {
617 napi_enable(&priv->gfargrp[i].napi_rx);
618 napi_enable(&priv->gfargrp[i].napi_tx);
619 }
620 }
621
622 static int gfar_parse_group(struct device_node *np,
623 struct gfar_private *priv, const char *model)
624 {
625 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
626 int i;
627
628 for (i = 0; i < GFAR_NUM_IRQS; i++) {
629 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
630 GFP_KERNEL);
631 if (!grp->irqinfo[i])
632 return -ENOMEM;
633 }
634
635 grp->regs = of_iomap(np, 0);
636 if (!grp->regs)
637 return -ENOMEM;
638
639 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
640
641 /* If we aren't the FEC we have multiple interrupts */
642 if (model && strcasecmp(model, "FEC")) {
643 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
644 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
645 if (!gfar_irq(grp, TX)->irq ||
646 !gfar_irq(grp, RX)->irq ||
647 !gfar_irq(grp, ER)->irq)
648 return -EINVAL;
649 }
650
651 grp->priv = priv;
652 spin_lock_init(&grp->grplock);
653 if (priv->mode == MQ_MG_MODE) {
654 u32 rxq_mask, txq_mask;
655 int ret;
656
657 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
658 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
659
660 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
661 if (!ret) {
662 grp->rx_bit_map = rxq_mask ?
663 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
664 }
665
666 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
667 if (!ret) {
668 grp->tx_bit_map = txq_mask ?
669 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
670 }
671
672 if (priv->poll_mode == GFAR_SQ_POLLING) {
673 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
674 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
675 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
676 }
677 } else {
678 grp->rx_bit_map = 0xFF;
679 grp->tx_bit_map = 0xFF;
680 }
681
682 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
683 * right to left, so we need to revert the 8 bits to get the q index
684 */
685 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
686 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
687
688 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
689 * also assign queues to groups
690 */
691 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
692 if (!grp->rx_queue)
693 grp->rx_queue = priv->rx_queue[i];
694 grp->num_rx_queues++;
695 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
696 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
697 priv->rx_queue[i]->grp = grp;
698 }
699
700 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
701 if (!grp->tx_queue)
702 grp->tx_queue = priv->tx_queue[i];
703 grp->num_tx_queues++;
704 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
705 priv->tqueue |= (TQUEUE_EN0 >> i);
706 priv->tx_queue[i]->grp = grp;
707 }
708
709 priv->num_grps++;
710
711 return 0;
712 }
713
714 static int gfar_of_group_count(struct device_node *np)
715 {
716 struct device_node *child;
717 int num = 0;
718
719 for_each_available_child_of_node(np, child)
720 if (of_node_name_eq(child, "queue-group"))
721 num++;
722
723 return num;
724 }
725
726 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
727 {
728 const char *model;
729 const char *ctype;
730 const void *mac_addr;
731 int err = 0, i;
732 struct net_device *dev = NULL;
733 struct gfar_private *priv = NULL;
734 struct device_node *np = ofdev->dev.of_node;
735 struct device_node *child = NULL;
736 u32 stash_len = 0;
737 u32 stash_idx = 0;
738 unsigned int num_tx_qs, num_rx_qs;
739 unsigned short mode, poll_mode;
740
741 if (!np)
742 return -ENODEV;
743
744 if (of_device_is_compatible(np, "fsl,etsec2")) {
745 mode = MQ_MG_MODE;
746 poll_mode = GFAR_SQ_POLLING;
747 } else {
748 mode = SQ_SG_MODE;
749 poll_mode = GFAR_SQ_POLLING;
750 }
751
752 if (mode == SQ_SG_MODE) {
753 num_tx_qs = 1;
754 num_rx_qs = 1;
755 } else { /* MQ_MG_MODE */
756 /* get the actual number of supported groups */
757 unsigned int num_grps = gfar_of_group_count(np);
758
759 if (num_grps == 0 || num_grps > MAXGROUPS) {
760 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
761 num_grps);
762 pr_err("Cannot do alloc_etherdev, aborting\n");
763 return -EINVAL;
764 }
765
766 if (poll_mode == GFAR_SQ_POLLING) {
767 num_tx_qs = num_grps; /* one txq per int group */
768 num_rx_qs = num_grps; /* one rxq per int group */
769 } else { /* GFAR_MQ_POLLING */
770 u32 tx_queues, rx_queues;
771 int ret;
772
773 /* parse the num of HW tx and rx queues */
774 ret = of_property_read_u32(np, "fsl,num_tx_queues",
775 &tx_queues);
776 num_tx_qs = ret ? 1 : tx_queues;
777
778 ret = of_property_read_u32(np, "fsl,num_rx_queues",
779 &rx_queues);
780 num_rx_qs = ret ? 1 : rx_queues;
781 }
782 }
783
784 if (num_tx_qs > MAX_TX_QS) {
785 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
786 num_tx_qs, MAX_TX_QS);
787 pr_err("Cannot do alloc_etherdev, aborting\n");
788 return -EINVAL;
789 }
790
791 if (num_rx_qs > MAX_RX_QS) {
792 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
793 num_rx_qs, MAX_RX_QS);
794 pr_err("Cannot do alloc_etherdev, aborting\n");
795 return -EINVAL;
796 }
797
798 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
799 dev = *pdev;
800 if (NULL == dev)
801 return -ENOMEM;
802
803 priv = netdev_priv(dev);
804 priv->ndev = dev;
805
806 priv->mode = mode;
807 priv->poll_mode = poll_mode;
808
809 priv->num_tx_queues = num_tx_qs;
810 netif_set_real_num_rx_queues(dev, num_rx_qs);
811 priv->num_rx_queues = num_rx_qs;
812
813 err = gfar_alloc_tx_queues(priv);
814 if (err)
815 goto tx_alloc_failed;
816
817 err = gfar_alloc_rx_queues(priv);
818 if (err)
819 goto rx_alloc_failed;
820
821 err = of_property_read_string(np, "model", &model);
822 if (err) {
823 pr_err("Device model property missing, aborting\n");
824 goto rx_alloc_failed;
825 }
826
827 /* Init Rx queue filer rule set linked list */
828 INIT_LIST_HEAD(&priv->rx_list.list);
829 priv->rx_list.count = 0;
830 mutex_init(&priv->rx_queue_access);
831
832 for (i = 0; i < MAXGROUPS; i++)
833 priv->gfargrp[i].regs = NULL;
834
835 /* Parse and initialize group specific information */
836 if (priv->mode == MQ_MG_MODE) {
837 for_each_available_child_of_node(np, child) {
838 if (!of_node_name_eq(child, "queue-group"))
839 continue;
840
841 err = gfar_parse_group(child, priv, model);
842 if (err)
843 goto err_grp_init;
844 }
845 } else { /* SQ_SG_MODE */
846 err = gfar_parse_group(np, priv, model);
847 if (err)
848 goto err_grp_init;
849 }
850
851 if (of_property_read_bool(np, "bd-stash")) {
852 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
853 priv->bd_stash_en = 1;
854 }
855
856 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
857
858 if (err == 0)
859 priv->rx_stash_size = stash_len;
860
861 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
862
863 if (err == 0)
864 priv->rx_stash_index = stash_idx;
865
866 if (stash_len || stash_idx)
867 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
868
869 mac_addr = of_get_mac_address(np);
870
871 if (!IS_ERR(mac_addr))
872 ether_addr_copy(dev->dev_addr, mac_addr);
873
874 if (model && !strcasecmp(model, "TSEC"))
875 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
876 FSL_GIANFAR_DEV_HAS_COALESCE |
877 FSL_GIANFAR_DEV_HAS_RMON |
878 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
879
880 if (model && !strcasecmp(model, "eTSEC"))
881 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
882 FSL_GIANFAR_DEV_HAS_COALESCE |
883 FSL_GIANFAR_DEV_HAS_RMON |
884 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
885 FSL_GIANFAR_DEV_HAS_CSUM |
886 FSL_GIANFAR_DEV_HAS_VLAN |
887 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
888 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
889 FSL_GIANFAR_DEV_HAS_TIMER |
890 FSL_GIANFAR_DEV_HAS_RX_FILER;
891
892 err = of_property_read_string(np, "phy-connection-type", &ctype);
893
894 /* We only care about rgmii-id. The rest are autodetected */
895 if (err == 0 && !strcmp(ctype, "rgmii-id"))
896 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
897 else
898 priv->interface = PHY_INTERFACE_MODE_MII;
899
900 if (of_find_property(np, "fsl,magic-packet", NULL))
901 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
902
903 if (of_get_property(np, "fsl,wake-on-filer", NULL))
904 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
905
906 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
907
908 /* In the case of a fixed PHY, the DT node associated
909 * to the PHY is the Ethernet MAC DT node.
910 */
911 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
912 err = of_phy_register_fixed_link(np);
913 if (err)
914 goto err_grp_init;
915
916 priv->phy_node = of_node_get(np);
917 }
918
919 /* Find the TBI PHY. If it's not there, we don't support SGMII */
920 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
921
922 return 0;
923
924 err_grp_init:
925 unmap_group_regs(priv);
926 rx_alloc_failed:
927 gfar_free_rx_queues(priv);
928 tx_alloc_failed:
929 gfar_free_tx_queues(priv);
930 free_gfar_dev(priv);
931 return err;
932 }
933
934 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
935 {
936 struct hwtstamp_config config;
937 struct gfar_private *priv = netdev_priv(netdev);
938
939 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
940 return -EFAULT;
941
942 /* reserved for future extensions */
943 if (config.flags)
944 return -EINVAL;
945
946 switch (config.tx_type) {
947 case HWTSTAMP_TX_OFF:
948 priv->hwts_tx_en = 0;
949 break;
950 case HWTSTAMP_TX_ON:
951 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
952 return -ERANGE;
953 priv->hwts_tx_en = 1;
954 break;
955 default:
956 return -ERANGE;
957 }
958
959 switch (config.rx_filter) {
960 case HWTSTAMP_FILTER_NONE:
961 if (priv->hwts_rx_en) {
962 priv->hwts_rx_en = 0;
963 reset_gfar(netdev);
964 }
965 break;
966 default:
967 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
968 return -ERANGE;
969 if (!priv->hwts_rx_en) {
970 priv->hwts_rx_en = 1;
971 reset_gfar(netdev);
972 }
973 config.rx_filter = HWTSTAMP_FILTER_ALL;
974 break;
975 }
976
977 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
978 -EFAULT : 0;
979 }
980
981 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
982 {
983 struct hwtstamp_config config;
984 struct gfar_private *priv = netdev_priv(netdev);
985
986 config.flags = 0;
987 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
988 config.rx_filter = (priv->hwts_rx_en ?
989 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
990
991 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
992 -EFAULT : 0;
993 }
994
995 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
996 {
997 struct phy_device *phydev = dev->phydev;
998
999 if (!netif_running(dev))
1000 return -EINVAL;
1001
1002 if (cmd == SIOCSHWTSTAMP)
1003 return gfar_hwtstamp_set(dev, rq);
1004 if (cmd == SIOCGHWTSTAMP)
1005 return gfar_hwtstamp_get(dev, rq);
1006
1007 if (!phydev)
1008 return -ENODEV;
1009
1010 return phy_mii_ioctl(phydev, rq, cmd);
1011 }
1012
1013 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1014 u32 class)
1015 {
1016 u32 rqfpr = FPR_FILER_MASK;
1017 u32 rqfcr = 0x0;
1018
1019 rqfar--;
1020 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1021 priv->ftp_rqfpr[rqfar] = rqfpr;
1022 priv->ftp_rqfcr[rqfar] = rqfcr;
1023 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1024
1025 rqfar--;
1026 rqfcr = RQFCR_CMP_NOMATCH;
1027 priv->ftp_rqfpr[rqfar] = rqfpr;
1028 priv->ftp_rqfcr[rqfar] = rqfcr;
1029 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1030
1031 rqfar--;
1032 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1033 rqfpr = class;
1034 priv->ftp_rqfcr[rqfar] = rqfcr;
1035 priv->ftp_rqfpr[rqfar] = rqfpr;
1036 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037
1038 rqfar--;
1039 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1040 rqfpr = class;
1041 priv->ftp_rqfcr[rqfar] = rqfcr;
1042 priv->ftp_rqfpr[rqfar] = rqfpr;
1043 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044
1045 return rqfar;
1046 }
1047
1048 static void gfar_init_filer_table(struct gfar_private *priv)
1049 {
1050 int i = 0x0;
1051 u32 rqfar = MAX_FILER_IDX;
1052 u32 rqfcr = 0x0;
1053 u32 rqfpr = FPR_FILER_MASK;
1054
1055 /* Default rule */
1056 rqfcr = RQFCR_CMP_MATCH;
1057 priv->ftp_rqfcr[rqfar] = rqfcr;
1058 priv->ftp_rqfpr[rqfar] = rqfpr;
1059 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1060
1061 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1062 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1063 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1064 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1065 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1067
1068 /* cur_filer_idx indicated the first non-masked rule */
1069 priv->cur_filer_idx = rqfar;
1070
1071 /* Rest are masked rules */
1072 rqfcr = RQFCR_CMP_NOMATCH;
1073 for (i = 0; i < rqfar; i++) {
1074 priv->ftp_rqfcr[i] = rqfcr;
1075 priv->ftp_rqfpr[i] = rqfpr;
1076 gfar_write_filer(priv, i, rqfcr, rqfpr);
1077 }
1078 }
1079
1080 #ifdef CONFIG_PPC
1081 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1082 {
1083 unsigned int pvr = mfspr(SPRN_PVR);
1084 unsigned int svr = mfspr(SPRN_SVR);
1085 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1086 unsigned int rev = svr & 0xffff;
1087
1088 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1089 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1090 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1091 priv->errata |= GFAR_ERRATA_74;
1092
1093 /* MPC8313 and MPC837x all rev */
1094 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1095 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 priv->errata |= GFAR_ERRATA_76;
1097
1098 /* MPC8313 Rev < 2.0 */
1099 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1100 priv->errata |= GFAR_ERRATA_12;
1101 }
1102
1103 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1104 {
1105 unsigned int svr = mfspr(SPRN_SVR);
1106
1107 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1108 priv->errata |= GFAR_ERRATA_12;
1109 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1110 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1111 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1112 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1113 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1114 }
1115 #endif
1116
1117 static void gfar_detect_errata(struct gfar_private *priv)
1118 {
1119 struct device *dev = &priv->ofdev->dev;
1120
1121 /* no plans to fix */
1122 priv->errata |= GFAR_ERRATA_A002;
1123
1124 #ifdef CONFIG_PPC
1125 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1126 __gfar_detect_errata_85xx(priv);
1127 else /* non-mpc85xx parts, i.e. e300 core based */
1128 __gfar_detect_errata_83xx(priv);
1129 #endif
1130
1131 if (priv->errata)
1132 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1133 priv->errata);
1134 }
1135
1136 void gfar_mac_reset(struct gfar_private *priv)
1137 {
1138 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1139 u32 tempval;
1140
1141 /* Reset MAC layer */
1142 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1143
1144 /* We need to delay at least 3 TX clocks */
1145 udelay(3);
1146
1147 /* the soft reset bit is not self-resetting, so we need to
1148 * clear it before resuming normal operation
1149 */
1150 gfar_write(&regs->maccfg1, 0);
1151
1152 udelay(3);
1153
1154 gfar_rx_offload_en(priv);
1155
1156 /* Initialize the max receive frame/buffer lengths */
1157 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1158 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1159
1160 /* Initialize the Minimum Frame Length Register */
1161 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1162
1163 /* Initialize MACCFG2. */
1164 tempval = MACCFG2_INIT_SETTINGS;
1165
1166 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1167 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1168 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1169 */
1170 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1171 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1172
1173 gfar_write(&regs->maccfg2, tempval);
1174
1175 /* Clear mac addr hash registers */
1176 gfar_write(&regs->igaddr0, 0);
1177 gfar_write(&regs->igaddr1, 0);
1178 gfar_write(&regs->igaddr2, 0);
1179 gfar_write(&regs->igaddr3, 0);
1180 gfar_write(&regs->igaddr4, 0);
1181 gfar_write(&regs->igaddr5, 0);
1182 gfar_write(&regs->igaddr6, 0);
1183 gfar_write(&regs->igaddr7, 0);
1184
1185 gfar_write(&regs->gaddr0, 0);
1186 gfar_write(&regs->gaddr1, 0);
1187 gfar_write(&regs->gaddr2, 0);
1188 gfar_write(&regs->gaddr3, 0);
1189 gfar_write(&regs->gaddr4, 0);
1190 gfar_write(&regs->gaddr5, 0);
1191 gfar_write(&regs->gaddr6, 0);
1192 gfar_write(&regs->gaddr7, 0);
1193
1194 if (priv->extended_hash)
1195 gfar_clear_exact_match(priv->ndev);
1196
1197 gfar_mac_rx_config(priv);
1198
1199 gfar_mac_tx_config(priv);
1200
1201 gfar_set_mac_address(priv->ndev);
1202
1203 gfar_set_multi(priv->ndev);
1204
1205 /* clear ievent and imask before configuring coalescing */
1206 gfar_ints_disable(priv);
1207
1208 /* Configure the coalescing support */
1209 gfar_configure_coalescing_all(priv);
1210 }
1211
1212 static void gfar_hw_init(struct gfar_private *priv)
1213 {
1214 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1215 u32 attrs;
1216
1217 /* Stop the DMA engine now, in case it was running before
1218 * (The firmware could have used it, and left it running).
1219 */
1220 gfar_halt(priv);
1221
1222 gfar_mac_reset(priv);
1223
1224 /* Zero out the rmon mib registers if it has them */
1225 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1226 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1227
1228 /* Mask off the CAM interrupts */
1229 gfar_write(&regs->rmon.cam1, 0xffffffff);
1230 gfar_write(&regs->rmon.cam2, 0xffffffff);
1231 }
1232
1233 /* Initialize ECNTRL */
1234 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1235
1236 /* Set the extraction length and index */
1237 attrs = ATTRELI_EL(priv->rx_stash_size) |
1238 ATTRELI_EI(priv->rx_stash_index);
1239
1240 gfar_write(&regs->attreli, attrs);
1241
1242 /* Start with defaults, and add stashing
1243 * depending on driver parameters
1244 */
1245 attrs = ATTR_INIT_SETTINGS;
1246
1247 if (priv->bd_stash_en)
1248 attrs |= ATTR_BDSTASH;
1249
1250 if (priv->rx_stash_size != 0)
1251 attrs |= ATTR_BUFSTASH;
1252
1253 gfar_write(&regs->attr, attrs);
1254
1255 /* FIFO configs */
1256 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1257 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1258 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1259
1260 /* Program the interrupt steering regs, only for MG devices */
1261 if (priv->num_grps > 1)
1262 gfar_write_isrg(priv);
1263 }
1264
1265 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1266 {
1267 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1268
1269 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1270 priv->extended_hash = 1;
1271 priv->hash_width = 9;
1272
1273 priv->hash_regs[0] = &regs->igaddr0;
1274 priv->hash_regs[1] = &regs->igaddr1;
1275 priv->hash_regs[2] = &regs->igaddr2;
1276 priv->hash_regs[3] = &regs->igaddr3;
1277 priv->hash_regs[4] = &regs->igaddr4;
1278 priv->hash_regs[5] = &regs->igaddr5;
1279 priv->hash_regs[6] = &regs->igaddr6;
1280 priv->hash_regs[7] = &regs->igaddr7;
1281 priv->hash_regs[8] = &regs->gaddr0;
1282 priv->hash_regs[9] = &regs->gaddr1;
1283 priv->hash_regs[10] = &regs->gaddr2;
1284 priv->hash_regs[11] = &regs->gaddr3;
1285 priv->hash_regs[12] = &regs->gaddr4;
1286 priv->hash_regs[13] = &regs->gaddr5;
1287 priv->hash_regs[14] = &regs->gaddr6;
1288 priv->hash_regs[15] = &regs->gaddr7;
1289
1290 } else {
1291 priv->extended_hash = 0;
1292 priv->hash_width = 8;
1293
1294 priv->hash_regs[0] = &regs->gaddr0;
1295 priv->hash_regs[1] = &regs->gaddr1;
1296 priv->hash_regs[2] = &regs->gaddr2;
1297 priv->hash_regs[3] = &regs->gaddr3;
1298 priv->hash_regs[4] = &regs->gaddr4;
1299 priv->hash_regs[5] = &regs->gaddr5;
1300 priv->hash_regs[6] = &regs->gaddr6;
1301 priv->hash_regs[7] = &regs->gaddr7;
1302 }
1303 }
1304
1305 /* Set up the ethernet device structure, private data,
1306 * and anything else we need before we start
1307 */
1308 static int gfar_probe(struct platform_device *ofdev)
1309 {
1310 struct device_node *np = ofdev->dev.of_node;
1311 struct net_device *dev = NULL;
1312 struct gfar_private *priv = NULL;
1313 int err = 0, i;
1314
1315 err = gfar_of_init(ofdev, &dev);
1316
1317 if (err)
1318 return err;
1319
1320 priv = netdev_priv(dev);
1321 priv->ndev = dev;
1322 priv->ofdev = ofdev;
1323 priv->dev = &ofdev->dev;
1324 SET_NETDEV_DEV(dev, &ofdev->dev);
1325
1326 INIT_WORK(&priv->reset_task, gfar_reset_task);
1327
1328 platform_set_drvdata(ofdev, priv);
1329
1330 gfar_detect_errata(priv);
1331
1332 /* Set the dev->base_addr to the gfar reg region */
1333 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1334
1335 /* Fill in the dev structure */
1336 dev->watchdog_timeo = TX_TIMEOUT;
1337 /* MTU range: 50 - 9586 */
1338 dev->mtu = 1500;
1339 dev->min_mtu = 50;
1340 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1341 dev->netdev_ops = &gfar_netdev_ops;
1342 dev->ethtool_ops = &gfar_ethtool_ops;
1343
1344 /* Register for napi ...We are registering NAPI for each grp */
1345 for (i = 0; i < priv->num_grps; i++) {
1346 if (priv->poll_mode == GFAR_SQ_POLLING) {
1347 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1348 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1349 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1350 gfar_poll_tx_sq, 2);
1351 } else {
1352 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353 gfar_poll_rx, GFAR_DEV_WEIGHT);
1354 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355 gfar_poll_tx, 2);
1356 }
1357 }
1358
1359 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1360 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1361 NETIF_F_RXCSUM;
1362 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1363 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1364 }
1365
1366 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1367 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1368 NETIF_F_HW_VLAN_CTAG_RX;
1369 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1370 }
1371
1372 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1373
1374 gfar_init_addr_hash_table(priv);
1375
1376 /* Insert receive time stamps into padding alignment bytes, and
1377 * plus 2 bytes padding to ensure the cpu alignment.
1378 */
1379 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 priv->padding = 8 + DEFAULT_PADDING;
1381
1382 if (dev->features & NETIF_F_IP_CSUM ||
1383 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384 dev->needed_headroom = GMAC_FCB_LEN;
1385
1386 /* Initializing some of the rx/tx queue level parameters */
1387 for (i = 0; i < priv->num_tx_queues; i++) {
1388 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1389 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1390 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1391 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1392 }
1393
1394 for (i = 0; i < priv->num_rx_queues; i++) {
1395 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1396 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1397 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1398 }
1399
1400 /* Always enable rx filer if available */
1401 priv->rx_filer_enable =
1402 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1403 /* Enable most messages by default */
1404 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1405 /* use pritority h/w tx queue scheduling for single queue devices */
1406 if (priv->num_tx_queues == 1)
1407 priv->prio_sched_en = 1;
1408
1409 set_bit(GFAR_DOWN, &priv->state);
1410
1411 gfar_hw_init(priv);
1412
1413 /* Carrier starts down, phylib will bring it up */
1414 netif_carrier_off(dev);
1415
1416 err = register_netdev(dev);
1417
1418 if (err) {
1419 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1420 goto register_fail;
1421 }
1422
1423 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1424 priv->wol_supported |= GFAR_WOL_MAGIC;
1425
1426 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1427 priv->rx_filer_enable)
1428 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1429
1430 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1431
1432 /* fill out IRQ number and name fields */
1433 for (i = 0; i < priv->num_grps; i++) {
1434 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1435 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1436 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1437 dev->name, "_g", '0' + i, "_tx");
1438 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1439 dev->name, "_g", '0' + i, "_rx");
1440 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1441 dev->name, "_g", '0' + i, "_er");
1442 } else
1443 strcpy(gfar_irq(grp, TX)->name, dev->name);
1444 }
1445
1446 /* Initialize the filer table */
1447 gfar_init_filer_table(priv);
1448
1449 /* Print out the device info */
1450 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1451
1452 /* Even more device info helps when determining which kernel
1453 * provided which set of benchmarks.
1454 */
1455 netdev_info(dev, "Running with NAPI enabled\n");
1456 for (i = 0; i < priv->num_rx_queues; i++)
1457 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1458 i, priv->rx_queue[i]->rx_ring_size);
1459 for (i = 0; i < priv->num_tx_queues; i++)
1460 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1461 i, priv->tx_queue[i]->tx_ring_size);
1462
1463 return 0;
1464
1465 register_fail:
1466 if (of_phy_is_fixed_link(np))
1467 of_phy_deregister_fixed_link(np);
1468 unmap_group_regs(priv);
1469 gfar_free_rx_queues(priv);
1470 gfar_free_tx_queues(priv);
1471 of_node_put(priv->phy_node);
1472 of_node_put(priv->tbi_node);
1473 free_gfar_dev(priv);
1474 return err;
1475 }
1476
1477 static int gfar_remove(struct platform_device *ofdev)
1478 {
1479 struct gfar_private *priv = platform_get_drvdata(ofdev);
1480 struct device_node *np = ofdev->dev.of_node;
1481
1482 of_node_put(priv->phy_node);
1483 of_node_put(priv->tbi_node);
1484
1485 unregister_netdev(priv->ndev);
1486
1487 if (of_phy_is_fixed_link(np))
1488 of_phy_deregister_fixed_link(np);
1489
1490 unmap_group_regs(priv);
1491 gfar_free_rx_queues(priv);
1492 gfar_free_tx_queues(priv);
1493 free_gfar_dev(priv);
1494
1495 return 0;
1496 }
1497
1498 #ifdef CONFIG_PM
1499
1500 static void __gfar_filer_disable(struct gfar_private *priv)
1501 {
1502 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1503 u32 temp;
1504
1505 temp = gfar_read(&regs->rctrl);
1506 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1507 gfar_write(&regs->rctrl, temp);
1508 }
1509
1510 static void __gfar_filer_enable(struct gfar_private *priv)
1511 {
1512 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1513 u32 temp;
1514
1515 temp = gfar_read(&regs->rctrl);
1516 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1517 gfar_write(&regs->rctrl, temp);
1518 }
1519
1520 /* Filer rules implementing wol capabilities */
1521 static void gfar_filer_config_wol(struct gfar_private *priv)
1522 {
1523 unsigned int i;
1524 u32 rqfcr;
1525
1526 __gfar_filer_disable(priv);
1527
1528 /* clear the filer table, reject any packet by default */
1529 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1530 for (i = 0; i <= MAX_FILER_IDX; i++)
1531 gfar_write_filer(priv, i, rqfcr, 0);
1532
1533 i = 0;
1534 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1535 /* unicast packet, accept it */
1536 struct net_device *ndev = priv->ndev;
1537 /* get the default rx queue index */
1538 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1539 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1540 (ndev->dev_addr[1] << 8) |
1541 ndev->dev_addr[2];
1542
1543 rqfcr = (qindex << 10) | RQFCR_AND |
1544 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1545
1546 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1547
1548 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1549 (ndev->dev_addr[4] << 8) |
1550 ndev->dev_addr[5];
1551 rqfcr = (qindex << 10) | RQFCR_GPI |
1552 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1553 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1554 }
1555
1556 __gfar_filer_enable(priv);
1557 }
1558
1559 static void gfar_filer_restore_table(struct gfar_private *priv)
1560 {
1561 u32 rqfcr, rqfpr;
1562 unsigned int i;
1563
1564 __gfar_filer_disable(priv);
1565
1566 for (i = 0; i <= MAX_FILER_IDX; i++) {
1567 rqfcr = priv->ftp_rqfcr[i];
1568 rqfpr = priv->ftp_rqfpr[i];
1569 gfar_write_filer(priv, i, rqfcr, rqfpr);
1570 }
1571
1572 __gfar_filer_enable(priv);
1573 }
1574
1575 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1576 static void gfar_start_wol_filer(struct gfar_private *priv)
1577 {
1578 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1579 u32 tempval;
1580 int i = 0;
1581
1582 /* Enable Rx hw queues */
1583 gfar_write(&regs->rqueue, priv->rqueue);
1584
1585 /* Initialize DMACTRL to have WWR and WOP */
1586 tempval = gfar_read(&regs->dmactrl);
1587 tempval |= DMACTRL_INIT_SETTINGS;
1588 gfar_write(&regs->dmactrl, tempval);
1589
1590 /* Make sure we aren't stopped */
1591 tempval = gfar_read(&regs->dmactrl);
1592 tempval &= ~DMACTRL_GRS;
1593 gfar_write(&regs->dmactrl, tempval);
1594
1595 for (i = 0; i < priv->num_grps; i++) {
1596 regs = priv->gfargrp[i].regs;
1597 /* Clear RHLT, so that the DMA starts polling now */
1598 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1599 /* enable the Filer General Purpose Interrupt */
1600 gfar_write(&regs->imask, IMASK_FGPI);
1601 }
1602
1603 /* Enable Rx DMA */
1604 tempval = gfar_read(&regs->maccfg1);
1605 tempval |= MACCFG1_RX_EN;
1606 gfar_write(&regs->maccfg1, tempval);
1607 }
1608
1609 static int gfar_suspend(struct device *dev)
1610 {
1611 struct gfar_private *priv = dev_get_drvdata(dev);
1612 struct net_device *ndev = priv->ndev;
1613 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1614 u32 tempval;
1615 u16 wol = priv->wol_opts;
1616
1617 if (!netif_running(ndev))
1618 return 0;
1619
1620 disable_napi(priv);
1621 netif_tx_lock(ndev);
1622 netif_device_detach(ndev);
1623 netif_tx_unlock(ndev);
1624
1625 gfar_halt(priv);
1626
1627 if (wol & GFAR_WOL_MAGIC) {
1628 /* Enable interrupt on Magic Packet */
1629 gfar_write(&regs->imask, IMASK_MAG);
1630
1631 /* Enable Magic Packet mode */
1632 tempval = gfar_read(&regs->maccfg2);
1633 tempval |= MACCFG2_MPEN;
1634 gfar_write(&regs->maccfg2, tempval);
1635
1636 /* re-enable the Rx block */
1637 tempval = gfar_read(&regs->maccfg1);
1638 tempval |= MACCFG1_RX_EN;
1639 gfar_write(&regs->maccfg1, tempval);
1640
1641 } else if (wol & GFAR_WOL_FILER_UCAST) {
1642 gfar_filer_config_wol(priv);
1643 gfar_start_wol_filer(priv);
1644
1645 } else {
1646 phy_stop(ndev->phydev);
1647 }
1648
1649 return 0;
1650 }
1651
1652 static int gfar_resume(struct device *dev)
1653 {
1654 struct gfar_private *priv = dev_get_drvdata(dev);
1655 struct net_device *ndev = priv->ndev;
1656 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1657 u32 tempval;
1658 u16 wol = priv->wol_opts;
1659
1660 if (!netif_running(ndev))
1661 return 0;
1662
1663 if (wol & GFAR_WOL_MAGIC) {
1664 /* Disable Magic Packet mode */
1665 tempval = gfar_read(&regs->maccfg2);
1666 tempval &= ~MACCFG2_MPEN;
1667 gfar_write(&regs->maccfg2, tempval);
1668
1669 } else if (wol & GFAR_WOL_FILER_UCAST) {
1670 /* need to stop rx only, tx is already down */
1671 gfar_halt(priv);
1672 gfar_filer_restore_table(priv);
1673
1674 } else {
1675 phy_start(ndev->phydev);
1676 }
1677
1678 gfar_start(priv);
1679
1680 netif_device_attach(ndev);
1681 enable_napi(priv);
1682
1683 return 0;
1684 }
1685
1686 static int gfar_restore(struct device *dev)
1687 {
1688 struct gfar_private *priv = dev_get_drvdata(dev);
1689 struct net_device *ndev = priv->ndev;
1690
1691 if (!netif_running(ndev)) {
1692 netif_device_attach(ndev);
1693
1694 return 0;
1695 }
1696
1697 gfar_init_bds(ndev);
1698
1699 gfar_mac_reset(priv);
1700
1701 gfar_init_tx_rx_base(priv);
1702
1703 gfar_start(priv);
1704
1705 priv->oldlink = 0;
1706 priv->oldspeed = 0;
1707 priv->oldduplex = -1;
1708
1709 if (ndev->phydev)
1710 phy_start(ndev->phydev);
1711
1712 netif_device_attach(ndev);
1713 enable_napi(priv);
1714
1715 return 0;
1716 }
1717
1718 static const struct dev_pm_ops gfar_pm_ops = {
1719 .suspend = gfar_suspend,
1720 .resume = gfar_resume,
1721 .freeze = gfar_suspend,
1722 .thaw = gfar_resume,
1723 .restore = gfar_restore,
1724 };
1725
1726 #define GFAR_PM_OPS (&gfar_pm_ops)
1727
1728 #else
1729
1730 #define GFAR_PM_OPS NULL
1731
1732 #endif
1733
1734 /* Reads the controller's registers to determine what interface
1735 * connects it to the PHY.
1736 */
1737 static phy_interface_t gfar_get_interface(struct net_device *dev)
1738 {
1739 struct gfar_private *priv = netdev_priv(dev);
1740 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1741 u32 ecntrl;
1742
1743 ecntrl = gfar_read(&regs->ecntrl);
1744
1745 if (ecntrl & ECNTRL_SGMII_MODE)
1746 return PHY_INTERFACE_MODE_SGMII;
1747
1748 if (ecntrl & ECNTRL_TBI_MODE) {
1749 if (ecntrl & ECNTRL_REDUCED_MODE)
1750 return PHY_INTERFACE_MODE_RTBI;
1751 else
1752 return PHY_INTERFACE_MODE_TBI;
1753 }
1754
1755 if (ecntrl & ECNTRL_REDUCED_MODE) {
1756 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1757 return PHY_INTERFACE_MODE_RMII;
1758 }
1759 else {
1760 phy_interface_t interface = priv->interface;
1761
1762 /* This isn't autodetected right now, so it must
1763 * be set by the device tree or platform code.
1764 */
1765 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1766 return PHY_INTERFACE_MODE_RGMII_ID;
1767
1768 return PHY_INTERFACE_MODE_RGMII;
1769 }
1770 }
1771
1772 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1773 return PHY_INTERFACE_MODE_GMII;
1774
1775 return PHY_INTERFACE_MODE_MII;
1776 }
1777
1778
1779 /* Initializes driver's PHY state, and attaches to the PHY.
1780 * Returns 0 on success.
1781 */
1782 static int init_phy(struct net_device *dev)
1783 {
1784 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1785 struct gfar_private *priv = netdev_priv(dev);
1786 phy_interface_t interface;
1787 struct phy_device *phydev;
1788 struct ethtool_eee edata;
1789
1790 linkmode_set_bit_array(phy_10_100_features_array,
1791 ARRAY_SIZE(phy_10_100_features_array),
1792 mask);
1793 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1794 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1795 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1796 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1797
1798 priv->oldlink = 0;
1799 priv->oldspeed = 0;
1800 priv->oldduplex = -1;
1801
1802 interface = gfar_get_interface(dev);
1803
1804 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1805 interface);
1806 if (!phydev) {
1807 dev_err(&dev->dev, "could not attach to PHY\n");
1808 return -ENODEV;
1809 }
1810
1811 if (interface == PHY_INTERFACE_MODE_SGMII)
1812 gfar_configure_serdes(dev);
1813
1814 /* Remove any features not supported by the controller */
1815 linkmode_and(phydev->supported, phydev->supported, mask);
1816 linkmode_copy(phydev->advertising, phydev->supported);
1817
1818 /* Add support for flow control */
1819 phy_support_asym_pause(phydev);
1820
1821 /* disable EEE autoneg, EEE not supported by eTSEC */
1822 memset(&edata, 0, sizeof(struct ethtool_eee));
1823 phy_ethtool_set_eee(phydev, &edata);
1824
1825 return 0;
1826 }
1827
1828 /* Initialize TBI PHY interface for communicating with the
1829 * SERDES lynx PHY on the chip. We communicate with this PHY
1830 * through the MDIO bus on each controller, treating it as a
1831 * "normal" PHY at the address found in the TBIPA register. We assume
1832 * that the TBIPA register is valid. Either the MDIO bus code will set
1833 * it to a value that doesn't conflict with other PHYs on the bus, or the
1834 * value doesn't matter, as there are no other PHYs on the bus.
1835 */
1836 static void gfar_configure_serdes(struct net_device *dev)
1837 {
1838 struct gfar_private *priv = netdev_priv(dev);
1839 struct phy_device *tbiphy;
1840
1841 if (!priv->tbi_node) {
1842 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1843 "device tree specify a tbi-handle\n");
1844 return;
1845 }
1846
1847 tbiphy = of_phy_find_device(priv->tbi_node);
1848 if (!tbiphy) {
1849 dev_err(&dev->dev, "error: Could not get TBI device\n");
1850 return;
1851 }
1852
1853 /* If the link is already up, we must already be ok, and don't need to
1854 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1855 * everything for us? Resetting it takes the link down and requires
1856 * several seconds for it to come back.
1857 */
1858 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1859 put_device(&tbiphy->mdio.dev);
1860 return;
1861 }
1862
1863 /* Single clk mode, mii mode off(for serdes communication) */
1864 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1865
1866 phy_write(tbiphy, MII_ADVERTISE,
1867 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1868 ADVERTISE_1000XPSE_ASYM);
1869
1870 phy_write(tbiphy, MII_BMCR,
1871 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1872 BMCR_SPEED1000);
1873
1874 put_device(&tbiphy->mdio.dev);
1875 }
1876
1877 static int __gfar_is_rx_idle(struct gfar_private *priv)
1878 {
1879 u32 res;
1880
1881 /* Normaly TSEC should not hang on GRS commands, so we should
1882 * actually wait for IEVENT_GRSC flag.
1883 */
1884 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1885 return 0;
1886
1887 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1888 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1889 * and the Rx can be safely reset.
1890 */
1891 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1892 res &= 0x7f807f80;
1893 if ((res & 0xffff) == (res >> 16))
1894 return 1;
1895
1896 return 0;
1897 }
1898
1899 /* Halt the receive and transmit queues */
1900 static void gfar_halt_nodisable(struct gfar_private *priv)
1901 {
1902 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1903 u32 tempval;
1904 unsigned int timeout;
1905 int stopped;
1906
1907 gfar_ints_disable(priv);
1908
1909 if (gfar_is_dma_stopped(priv))
1910 return;
1911
1912 /* Stop the DMA, and wait for it to stop */
1913 tempval = gfar_read(&regs->dmactrl);
1914 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1915 gfar_write(&regs->dmactrl, tempval);
1916
1917 retry:
1918 timeout = 1000;
1919 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1920 cpu_relax();
1921 timeout--;
1922 }
1923
1924 if (!timeout)
1925 stopped = gfar_is_dma_stopped(priv);
1926
1927 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1928 !__gfar_is_rx_idle(priv))
1929 goto retry;
1930 }
1931
1932 /* Halt the receive and transmit queues */
1933 void gfar_halt(struct gfar_private *priv)
1934 {
1935 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1936 u32 tempval;
1937
1938 /* Dissable the Rx/Tx hw queues */
1939 gfar_write(&regs->rqueue, 0);
1940 gfar_write(&regs->tqueue, 0);
1941
1942 mdelay(10);
1943
1944 gfar_halt_nodisable(priv);
1945
1946 /* Disable Rx/Tx DMA */
1947 tempval = gfar_read(&regs->maccfg1);
1948 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1949 gfar_write(&regs->maccfg1, tempval);
1950 }
1951
1952 void stop_gfar(struct net_device *dev)
1953 {
1954 struct gfar_private *priv = netdev_priv(dev);
1955
1956 netif_tx_stop_all_queues(dev);
1957
1958 smp_mb__before_atomic();
1959 set_bit(GFAR_DOWN, &priv->state);
1960 smp_mb__after_atomic();
1961
1962 disable_napi(priv);
1963
1964 /* disable ints and gracefully shut down Rx/Tx DMA */
1965 gfar_halt(priv);
1966
1967 phy_stop(dev->phydev);
1968
1969 free_skb_resources(priv);
1970 }
1971
1972 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1973 {
1974 struct txbd8 *txbdp;
1975 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1976 int i, j;
1977
1978 txbdp = tx_queue->tx_bd_base;
1979
1980 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1981 if (!tx_queue->tx_skbuff[i])
1982 continue;
1983
1984 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1985 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1986 txbdp->lstatus = 0;
1987 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1988 j++) {
1989 txbdp++;
1990 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1991 be16_to_cpu(txbdp->length),
1992 DMA_TO_DEVICE);
1993 }
1994 txbdp++;
1995 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1996 tx_queue->tx_skbuff[i] = NULL;
1997 }
1998 kfree(tx_queue->tx_skbuff);
1999 tx_queue->tx_skbuff = NULL;
2000 }
2001
2002 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2003 {
2004 int i;
2005
2006 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2007
2008 if (rx_queue->skb)
2009 dev_kfree_skb(rx_queue->skb);
2010
2011 for (i = 0; i < rx_queue->rx_ring_size; i++) {
2012 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2013
2014 rxbdp->lstatus = 0;
2015 rxbdp->bufPtr = 0;
2016 rxbdp++;
2017
2018 if (!rxb->page)
2019 continue;
2020
2021 dma_unmap_page(rx_queue->dev, rxb->dma,
2022 PAGE_SIZE, DMA_FROM_DEVICE);
2023 __free_page(rxb->page);
2024
2025 rxb->page = NULL;
2026 }
2027
2028 kfree(rx_queue->rx_buff);
2029 rx_queue->rx_buff = NULL;
2030 }
2031
2032 /* If there are any tx skbs or rx skbs still around, free them.
2033 * Then free tx_skbuff and rx_skbuff
2034 */
2035 static void free_skb_resources(struct gfar_private *priv)
2036 {
2037 struct gfar_priv_tx_q *tx_queue = NULL;
2038 struct gfar_priv_rx_q *rx_queue = NULL;
2039 int i;
2040
2041 /* Go through all the buffer descriptors and free their data buffers */
2042 for (i = 0; i < priv->num_tx_queues; i++) {
2043 struct netdev_queue *txq;
2044
2045 tx_queue = priv->tx_queue[i];
2046 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2047 if (tx_queue->tx_skbuff)
2048 free_skb_tx_queue(tx_queue);
2049 netdev_tx_reset_queue(txq);
2050 }
2051
2052 for (i = 0; i < priv->num_rx_queues; i++) {
2053 rx_queue = priv->rx_queue[i];
2054 if (rx_queue->rx_buff)
2055 free_skb_rx_queue(rx_queue);
2056 }
2057
2058 dma_free_coherent(priv->dev,
2059 sizeof(struct txbd8) * priv->total_tx_ring_size +
2060 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2061 priv->tx_queue[0]->tx_bd_base,
2062 priv->tx_queue[0]->tx_bd_dma_base);
2063 }
2064
2065 void gfar_start(struct gfar_private *priv)
2066 {
2067 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2068 u32 tempval;
2069 int i = 0;
2070
2071 /* Enable Rx/Tx hw queues */
2072 gfar_write(&regs->rqueue, priv->rqueue);
2073 gfar_write(&regs->tqueue, priv->tqueue);
2074
2075 /* Initialize DMACTRL to have WWR and WOP */
2076 tempval = gfar_read(&regs->dmactrl);
2077 tempval |= DMACTRL_INIT_SETTINGS;
2078 gfar_write(&regs->dmactrl, tempval);
2079
2080 /* Make sure we aren't stopped */
2081 tempval = gfar_read(&regs->dmactrl);
2082 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2083 gfar_write(&regs->dmactrl, tempval);
2084
2085 for (i = 0; i < priv->num_grps; i++) {
2086 regs = priv->gfargrp[i].regs;
2087 /* Clear THLT/RHLT, so that the DMA starts polling now */
2088 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2089 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2090 }
2091
2092 /* Enable Rx/Tx DMA */
2093 tempval = gfar_read(&regs->maccfg1);
2094 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2095 gfar_write(&regs->maccfg1, tempval);
2096
2097 gfar_ints_enable(priv);
2098
2099 netif_trans_update(priv->ndev); /* prevent tx timeout */
2100 }
2101
2102 static void free_grp_irqs(struct gfar_priv_grp *grp)
2103 {
2104 free_irq(gfar_irq(grp, TX)->irq, grp);
2105 free_irq(gfar_irq(grp, RX)->irq, grp);
2106 free_irq(gfar_irq(grp, ER)->irq, grp);
2107 }
2108
2109 static int register_grp_irqs(struct gfar_priv_grp *grp)
2110 {
2111 struct gfar_private *priv = grp->priv;
2112 struct net_device *dev = priv->ndev;
2113 int err;
2114
2115 /* If the device has multiple interrupts, register for
2116 * them. Otherwise, only register for the one
2117 */
2118 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2119 /* Install our interrupt handlers for Error,
2120 * Transmit, and Receive
2121 */
2122 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2123 gfar_irq(grp, ER)->name, grp);
2124 if (err < 0) {
2125 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2126 gfar_irq(grp, ER)->irq);
2127
2128 goto err_irq_fail;
2129 }
2130 enable_irq_wake(gfar_irq(grp, ER)->irq);
2131
2132 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2133 gfar_irq(grp, TX)->name, grp);
2134 if (err < 0) {
2135 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2136 gfar_irq(grp, TX)->irq);
2137 goto tx_irq_fail;
2138 }
2139 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2140 gfar_irq(grp, RX)->name, grp);
2141 if (err < 0) {
2142 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2143 gfar_irq(grp, RX)->irq);
2144 goto rx_irq_fail;
2145 }
2146 enable_irq_wake(gfar_irq(grp, RX)->irq);
2147
2148 } else {
2149 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2150 gfar_irq(grp, TX)->name, grp);
2151 if (err < 0) {
2152 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2153 gfar_irq(grp, TX)->irq);
2154 goto err_irq_fail;
2155 }
2156 enable_irq_wake(gfar_irq(grp, TX)->irq);
2157 }
2158
2159 return 0;
2160
2161 rx_irq_fail:
2162 free_irq(gfar_irq(grp, TX)->irq, grp);
2163 tx_irq_fail:
2164 free_irq(gfar_irq(grp, ER)->irq, grp);
2165 err_irq_fail:
2166 return err;
2167
2168 }
2169
2170 static void gfar_free_irq(struct gfar_private *priv)
2171 {
2172 int i;
2173
2174 /* Free the IRQs */
2175 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2176 for (i = 0; i < priv->num_grps; i++)
2177 free_grp_irqs(&priv->gfargrp[i]);
2178 } else {
2179 for (i = 0; i < priv->num_grps; i++)
2180 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2181 &priv->gfargrp[i]);
2182 }
2183 }
2184
2185 static int gfar_request_irq(struct gfar_private *priv)
2186 {
2187 int err, i, j;
2188
2189 for (i = 0; i < priv->num_grps; i++) {
2190 err = register_grp_irqs(&priv->gfargrp[i]);
2191 if (err) {
2192 for (j = 0; j < i; j++)
2193 free_grp_irqs(&priv->gfargrp[j]);
2194 return err;
2195 }
2196 }
2197
2198 return 0;
2199 }
2200
2201 /* Bring the controller up and running */
2202 int startup_gfar(struct net_device *ndev)
2203 {
2204 struct gfar_private *priv = netdev_priv(ndev);
2205 int err;
2206
2207 gfar_mac_reset(priv);
2208
2209 err = gfar_alloc_skb_resources(ndev);
2210 if (err)
2211 return err;
2212
2213 gfar_init_tx_rx_base(priv);
2214
2215 smp_mb__before_atomic();
2216 clear_bit(GFAR_DOWN, &priv->state);
2217 smp_mb__after_atomic();
2218
2219 /* Start Rx/Tx DMA and enable the interrupts */
2220 gfar_start(priv);
2221
2222 /* force link state update after mac reset */
2223 priv->oldlink = 0;
2224 priv->oldspeed = 0;
2225 priv->oldduplex = -1;
2226
2227 phy_start(ndev->phydev);
2228
2229 enable_napi(priv);
2230
2231 netif_tx_wake_all_queues(ndev);
2232
2233 return 0;
2234 }
2235
2236 /* Called when something needs to use the ethernet device
2237 * Returns 0 for success.
2238 */
2239 static int gfar_enet_open(struct net_device *dev)
2240 {
2241 struct gfar_private *priv = netdev_priv(dev);
2242 int err;
2243
2244 err = init_phy(dev);
2245 if (err)
2246 return err;
2247
2248 err = gfar_request_irq(priv);
2249 if (err)
2250 return err;
2251
2252 err = startup_gfar(dev);
2253 if (err)
2254 return err;
2255
2256 return err;
2257 }
2258
2259 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2260 {
2261 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2262
2263 memset(fcb, 0, GMAC_FCB_LEN);
2264
2265 return fcb;
2266 }
2267
2268 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2269 int fcb_length)
2270 {
2271 /* If we're here, it's a IP packet with a TCP or UDP
2272 * payload. We set it to checksum, using a pseudo-header
2273 * we provide
2274 */
2275 u8 flags = TXFCB_DEFAULT;
2276
2277 /* Tell the controller what the protocol is
2278 * And provide the already calculated phcs
2279 */
2280 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2281 flags |= TXFCB_UDP;
2282 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2283 } else
2284 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2285
2286 /* l3os is the distance between the start of the
2287 * frame (skb->data) and the start of the IP hdr.
2288 * l4os is the distance between the start of the
2289 * l3 hdr and the l4 hdr
2290 */
2291 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2292 fcb->l4os = skb_network_header_len(skb);
2293
2294 fcb->flags = flags;
2295 }
2296
2297 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2298 {
2299 fcb->flags |= TXFCB_VLN;
2300 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2301 }
2302
2303 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2304 struct txbd8 *base, int ring_size)
2305 {
2306 struct txbd8 *new_bd = bdp + stride;
2307
2308 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2309 }
2310
2311 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2312 int ring_size)
2313 {
2314 return skip_txbd(bdp, 1, base, ring_size);
2315 }
2316
2317 /* eTSEC12: csum generation not supported for some fcb offsets */
2318 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2319 unsigned long fcb_addr)
2320 {
2321 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2322 (fcb_addr % 0x20) > 0x18);
2323 }
2324
2325 /* eTSEC76: csum generation for frames larger than 2500 may
2326 * cause excess delays before start of transmission
2327 */
2328 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2329 unsigned int len)
2330 {
2331 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2332 (len > 2500));
2333 }
2334
2335 /* This is called by the kernel when a frame is ready for transmission.
2336 * It is pointed to by the dev->hard_start_xmit function pointer
2337 */
2338 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2339 {
2340 struct gfar_private *priv = netdev_priv(dev);
2341 struct gfar_priv_tx_q *tx_queue = NULL;
2342 struct netdev_queue *txq;
2343 struct gfar __iomem *regs = NULL;
2344 struct txfcb *fcb = NULL;
2345 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2346 u32 lstatus;
2347 skb_frag_t *frag;
2348 int i, rq = 0;
2349 int do_tstamp, do_csum, do_vlan;
2350 u32 bufaddr;
2351 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2352
2353 rq = skb->queue_mapping;
2354 tx_queue = priv->tx_queue[rq];
2355 txq = netdev_get_tx_queue(dev, rq);
2356 base = tx_queue->tx_bd_base;
2357 regs = tx_queue->grp->regs;
2358
2359 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2360 do_vlan = skb_vlan_tag_present(skb);
2361 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2362 priv->hwts_tx_en;
2363
2364 if (do_csum || do_vlan)
2365 fcb_len = GMAC_FCB_LEN;
2366
2367 /* check if time stamp should be generated */
2368 if (unlikely(do_tstamp))
2369 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2370
2371 /* make space for additional header when fcb is needed */
2372 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2373 struct sk_buff *skb_new;
2374
2375 skb_new = skb_realloc_headroom(skb, fcb_len);
2376 if (!skb_new) {
2377 dev->stats.tx_errors++;
2378 dev_kfree_skb_any(skb);
2379 return NETDEV_TX_OK;
2380 }
2381
2382 if (skb->sk)
2383 skb_set_owner_w(skb_new, skb->sk);
2384 dev_consume_skb_any(skb);
2385 skb = skb_new;
2386 }
2387
2388 /* total number of fragments in the SKB */
2389 nr_frags = skb_shinfo(skb)->nr_frags;
2390
2391 /* calculate the required number of TxBDs for this skb */
2392 if (unlikely(do_tstamp))
2393 nr_txbds = nr_frags + 2;
2394 else
2395 nr_txbds = nr_frags + 1;
2396
2397 /* check if there is space to queue this packet */
2398 if (nr_txbds > tx_queue->num_txbdfree) {
2399 /* no space, stop the queue */
2400 netif_tx_stop_queue(txq);
2401 dev->stats.tx_fifo_errors++;
2402 return NETDEV_TX_BUSY;
2403 }
2404
2405 /* Update transmit stats */
2406 bytes_sent = skb->len;
2407 tx_queue->stats.tx_bytes += bytes_sent;
2408 /* keep Tx bytes on wire for BQL accounting */
2409 GFAR_CB(skb)->bytes_sent = bytes_sent;
2410 tx_queue->stats.tx_packets++;
2411
2412 txbdp = txbdp_start = tx_queue->cur_tx;
2413 lstatus = be32_to_cpu(txbdp->lstatus);
2414
2415 /* Add TxPAL between FCB and frame if required */
2416 if (unlikely(do_tstamp)) {
2417 skb_push(skb, GMAC_TXPAL_LEN);
2418 memset(skb->data, 0, GMAC_TXPAL_LEN);
2419 }
2420
2421 /* Add TxFCB if required */
2422 if (fcb_len) {
2423 fcb = gfar_add_fcb(skb);
2424 lstatus |= BD_LFLAG(TXBD_TOE);
2425 }
2426
2427 /* Set up checksumming */
2428 if (do_csum) {
2429 gfar_tx_checksum(skb, fcb, fcb_len);
2430
2431 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2432 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2433 __skb_pull(skb, GMAC_FCB_LEN);
2434 skb_checksum_help(skb);
2435 if (do_vlan || do_tstamp) {
2436 /* put back a new fcb for vlan/tstamp TOE */
2437 fcb = gfar_add_fcb(skb);
2438 } else {
2439 /* Tx TOE not used */
2440 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2441 fcb = NULL;
2442 }
2443 }
2444 }
2445
2446 if (do_vlan)
2447 gfar_tx_vlan(skb, fcb);
2448
2449 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2450 DMA_TO_DEVICE);
2451 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2452 goto dma_map_err;
2453
2454 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2455
2456 /* Time stamp insertion requires one additional TxBD */
2457 if (unlikely(do_tstamp))
2458 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2459 tx_queue->tx_ring_size);
2460
2461 if (likely(!nr_frags)) {
2462 if (likely(!do_tstamp))
2463 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2464 } else {
2465 u32 lstatus_start = lstatus;
2466
2467 /* Place the fragment addresses and lengths into the TxBDs */
2468 frag = &skb_shinfo(skb)->frags[0];
2469 for (i = 0; i < nr_frags; i++, frag++) {
2470 unsigned int size;
2471
2472 /* Point at the next BD, wrapping as needed */
2473 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2474
2475 size = skb_frag_size(frag);
2476
2477 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2478 BD_LFLAG(TXBD_READY);
2479
2480 /* Handle the last BD specially */
2481 if (i == nr_frags - 1)
2482 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2483
2484 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2485 size, DMA_TO_DEVICE);
2486 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2487 goto dma_map_err;
2488
2489 /* set the TxBD length and buffer pointer */
2490 txbdp->bufPtr = cpu_to_be32(bufaddr);
2491 txbdp->lstatus = cpu_to_be32(lstatus);
2492 }
2493
2494 lstatus = lstatus_start;
2495 }
2496
2497 /* If time stamping is requested one additional TxBD must be set up. The
2498 * first TxBD points to the FCB and must have a data length of
2499 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2500 * the full frame length.
2501 */
2502 if (unlikely(do_tstamp)) {
2503 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2504
2505 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2506 bufaddr += fcb_len;
2507
2508 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2509 (skb_headlen(skb) - fcb_len);
2510 if (!nr_frags)
2511 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2512
2513 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2514 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2515 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2516
2517 /* Setup tx hardware time stamping */
2518 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2519 fcb->ptp = 1;
2520 } else {
2521 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2522 }
2523
2524 netdev_tx_sent_queue(txq, bytes_sent);
2525
2526 gfar_wmb();
2527
2528 txbdp_start->lstatus = cpu_to_be32(lstatus);
2529
2530 gfar_wmb(); /* force lstatus write before tx_skbuff */
2531
2532 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2533
2534 /* Update the current skb pointer to the next entry we will use
2535 * (wrapping if necessary)
2536 */
2537 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2538 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2539
2540 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2541
2542 /* We can work in parallel with gfar_clean_tx_ring(), except
2543 * when modifying num_txbdfree. Note that we didn't grab the lock
2544 * when we were reading the num_txbdfree and checking for available
2545 * space, that's because outside of this function it can only grow.
2546 */
2547 spin_lock_bh(&tx_queue->txlock);
2548 /* reduce TxBD free count */
2549 tx_queue->num_txbdfree -= (nr_txbds);
2550 spin_unlock_bh(&tx_queue->txlock);
2551
2552 /* If the next BD still needs to be cleaned up, then the bds
2553 * are full. We need to tell the kernel to stop sending us stuff.
2554 */
2555 if (!tx_queue->num_txbdfree) {
2556 netif_tx_stop_queue(txq);
2557
2558 dev->stats.tx_fifo_errors++;
2559 }
2560
2561 /* Tell the DMA to go go go */
2562 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2563
2564 return NETDEV_TX_OK;
2565
2566 dma_map_err:
2567 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2568 if (do_tstamp)
2569 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2570 for (i = 0; i < nr_frags; i++) {
2571 lstatus = be32_to_cpu(txbdp->lstatus);
2572 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2573 break;
2574
2575 lstatus &= ~BD_LFLAG(TXBD_READY);
2576 txbdp->lstatus = cpu_to_be32(lstatus);
2577 bufaddr = be32_to_cpu(txbdp->bufPtr);
2578 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2579 DMA_TO_DEVICE);
2580 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2581 }
2582 gfar_wmb();
2583 dev_kfree_skb_any(skb);
2584 return NETDEV_TX_OK;
2585 }
2586
2587 /* Stops the kernel queue, and halts the controller */
2588 static int gfar_close(struct net_device *dev)
2589 {
2590 struct gfar_private *priv = netdev_priv(dev);
2591
2592 cancel_work_sync(&priv->reset_task);
2593 stop_gfar(dev);
2594
2595 /* Disconnect from the PHY */
2596 phy_disconnect(dev->phydev);
2597
2598 gfar_free_irq(priv);
2599
2600 return 0;
2601 }
2602
2603 /* Changes the mac address if the controller is not running. */
2604 static int gfar_set_mac_address(struct net_device *dev)
2605 {
2606 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2607
2608 return 0;
2609 }
2610
2611 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2612 {
2613 struct gfar_private *priv = netdev_priv(dev);
2614
2615 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2616 cpu_relax();
2617
2618 if (dev->flags & IFF_UP)
2619 stop_gfar(dev);
2620
2621 dev->mtu = new_mtu;
2622
2623 if (dev->flags & IFF_UP)
2624 startup_gfar(dev);
2625
2626 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2627
2628 return 0;
2629 }
2630
2631 void reset_gfar(struct net_device *ndev)
2632 {
2633 struct gfar_private *priv = netdev_priv(ndev);
2634
2635 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2636 cpu_relax();
2637
2638 stop_gfar(ndev);
2639 startup_gfar(ndev);
2640
2641 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2642 }
2643
2644 /* gfar_reset_task gets scheduled when a packet has not been
2645 * transmitted after a set amount of time.
2646 * For now, assume that clearing out all the structures, and
2647 * starting over will fix the problem.
2648 */
2649 static void gfar_reset_task(struct work_struct *work)
2650 {
2651 struct gfar_private *priv = container_of(work, struct gfar_private,
2652 reset_task);
2653 reset_gfar(priv->ndev);
2654 }
2655
2656 static void gfar_timeout(struct net_device *dev)
2657 {
2658 struct gfar_private *priv = netdev_priv(dev);
2659
2660 dev->stats.tx_errors++;
2661 schedule_work(&priv->reset_task);
2662 }
2663
2664 /* Interrupt Handler for Transmit complete */
2665 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2666 {
2667 struct net_device *dev = tx_queue->dev;
2668 struct netdev_queue *txq;
2669 struct gfar_private *priv = netdev_priv(dev);
2670 struct txbd8 *bdp, *next = NULL;
2671 struct txbd8 *lbdp = NULL;
2672 struct txbd8 *base = tx_queue->tx_bd_base;
2673 struct sk_buff *skb;
2674 int skb_dirtytx;
2675 int tx_ring_size = tx_queue->tx_ring_size;
2676 int frags = 0, nr_txbds = 0;
2677 int i;
2678 int howmany = 0;
2679 int tqi = tx_queue->qindex;
2680 unsigned int bytes_sent = 0;
2681 u32 lstatus;
2682 size_t buflen;
2683
2684 txq = netdev_get_tx_queue(dev, tqi);
2685 bdp = tx_queue->dirty_tx;
2686 skb_dirtytx = tx_queue->skb_dirtytx;
2687
2688 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2689
2690 frags = skb_shinfo(skb)->nr_frags;
2691
2692 /* When time stamping, one additional TxBD must be freed.
2693 * Also, we need to dma_unmap_single() the TxPAL.
2694 */
2695 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2696 nr_txbds = frags + 2;
2697 else
2698 nr_txbds = frags + 1;
2699
2700 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2701
2702 lstatus = be32_to_cpu(lbdp->lstatus);
2703
2704 /* Only clean completed frames */
2705 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2706 (lstatus & BD_LENGTH_MASK))
2707 break;
2708
2709 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2710 next = next_txbd(bdp, base, tx_ring_size);
2711 buflen = be16_to_cpu(next->length) +
2712 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2713 } else
2714 buflen = be16_to_cpu(bdp->length);
2715
2716 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2717 buflen, DMA_TO_DEVICE);
2718
2719 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2720 struct skb_shared_hwtstamps shhwtstamps;
2721 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2722 ~0x7UL);
2723
2724 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2725 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2726 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2727 skb_tstamp_tx(skb, &shhwtstamps);
2728 gfar_clear_txbd_status(bdp);
2729 bdp = next;
2730 }
2731
2732 gfar_clear_txbd_status(bdp);
2733 bdp = next_txbd(bdp, base, tx_ring_size);
2734
2735 for (i = 0; i < frags; i++) {
2736 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2737 be16_to_cpu(bdp->length),
2738 DMA_TO_DEVICE);
2739 gfar_clear_txbd_status(bdp);
2740 bdp = next_txbd(bdp, base, tx_ring_size);
2741 }
2742
2743 bytes_sent += GFAR_CB(skb)->bytes_sent;
2744
2745 dev_kfree_skb_any(skb);
2746
2747 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2748
2749 skb_dirtytx = (skb_dirtytx + 1) &
2750 TX_RING_MOD_MASK(tx_ring_size);
2751
2752 howmany++;
2753 spin_lock(&tx_queue->txlock);
2754 tx_queue->num_txbdfree += nr_txbds;
2755 spin_unlock(&tx_queue->txlock);
2756 }
2757
2758 /* If we freed a buffer, we can restart transmission, if necessary */
2759 if (tx_queue->num_txbdfree &&
2760 netif_tx_queue_stopped(txq) &&
2761 !(test_bit(GFAR_DOWN, &priv->state)))
2762 netif_wake_subqueue(priv->ndev, tqi);
2763
2764 /* Update dirty indicators */
2765 tx_queue->skb_dirtytx = skb_dirtytx;
2766 tx_queue->dirty_tx = bdp;
2767
2768 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2769 }
2770
2771 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2772 {
2773 struct page *page;
2774 dma_addr_t addr;
2775
2776 page = dev_alloc_page();
2777 if (unlikely(!page))
2778 return false;
2779
2780 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2781 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2782 __free_page(page);
2783
2784 return false;
2785 }
2786
2787 rxb->dma = addr;
2788 rxb->page = page;
2789 rxb->page_offset = 0;
2790
2791 return true;
2792 }
2793
2794 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2795 {
2796 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2797 struct gfar_extra_stats *estats = &priv->extra_stats;
2798
2799 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2800 atomic64_inc(&estats->rx_alloc_err);
2801 }
2802
2803 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2804 int alloc_cnt)
2805 {
2806 struct rxbd8 *bdp;
2807 struct gfar_rx_buff *rxb;
2808 int i;
2809
2810 i = rx_queue->next_to_use;
2811 bdp = &rx_queue->rx_bd_base[i];
2812 rxb = &rx_queue->rx_buff[i];
2813
2814 while (alloc_cnt--) {
2815 /* try reuse page */
2816 if (unlikely(!rxb->page)) {
2817 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2818 gfar_rx_alloc_err(rx_queue);
2819 break;
2820 }
2821 }
2822
2823 /* Setup the new RxBD */
2824 gfar_init_rxbdp(rx_queue, bdp,
2825 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2826
2827 /* Update to the next pointer */
2828 bdp++;
2829 rxb++;
2830
2831 if (unlikely(++i == rx_queue->rx_ring_size)) {
2832 i = 0;
2833 bdp = rx_queue->rx_bd_base;
2834 rxb = rx_queue->rx_buff;
2835 }
2836 }
2837
2838 rx_queue->next_to_use = i;
2839 rx_queue->next_to_alloc = i;
2840 }
2841
2842 static void count_errors(u32 lstatus, struct net_device *ndev)
2843 {
2844 struct gfar_private *priv = netdev_priv(ndev);
2845 struct net_device_stats *stats = &ndev->stats;
2846 struct gfar_extra_stats *estats = &priv->extra_stats;
2847
2848 /* If the packet was truncated, none of the other errors matter */
2849 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2850 stats->rx_length_errors++;
2851
2852 atomic64_inc(&estats->rx_trunc);
2853
2854 return;
2855 }
2856 /* Count the errors, if there were any */
2857 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2858 stats->rx_length_errors++;
2859
2860 if (lstatus & BD_LFLAG(RXBD_LARGE))
2861 atomic64_inc(&estats->rx_large);
2862 else
2863 atomic64_inc(&estats->rx_short);
2864 }
2865 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2866 stats->rx_frame_errors++;
2867 atomic64_inc(&estats->rx_nonoctet);
2868 }
2869 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2870 atomic64_inc(&estats->rx_crcerr);
2871 stats->rx_crc_errors++;
2872 }
2873 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2874 atomic64_inc(&estats->rx_overrun);
2875 stats->rx_over_errors++;
2876 }
2877 }
2878
2879 irqreturn_t gfar_receive(int irq, void *grp_id)
2880 {
2881 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2882 unsigned long flags;
2883 u32 imask, ievent;
2884
2885 ievent = gfar_read(&grp->regs->ievent);
2886
2887 if (unlikely(ievent & IEVENT_FGPI)) {
2888 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2889 return IRQ_HANDLED;
2890 }
2891
2892 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2893 spin_lock_irqsave(&grp->grplock, flags);
2894 imask = gfar_read(&grp->regs->imask);
2895 imask &= IMASK_RX_DISABLED;
2896 gfar_write(&grp->regs->imask, imask);
2897 spin_unlock_irqrestore(&grp->grplock, flags);
2898 __napi_schedule(&grp->napi_rx);
2899 } else {
2900 /* Clear IEVENT, so interrupts aren't called again
2901 * because of the packets that have already arrived.
2902 */
2903 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2904 }
2905
2906 return IRQ_HANDLED;
2907 }
2908
2909 /* Interrupt Handler for Transmit complete */
2910 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2911 {
2912 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2913 unsigned long flags;
2914 u32 imask;
2915
2916 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2917 spin_lock_irqsave(&grp->grplock, flags);
2918 imask = gfar_read(&grp->regs->imask);
2919 imask &= IMASK_TX_DISABLED;
2920 gfar_write(&grp->regs->imask, imask);
2921 spin_unlock_irqrestore(&grp->grplock, flags);
2922 __napi_schedule(&grp->napi_tx);
2923 } else {
2924 /* Clear IEVENT, so interrupts aren't called again
2925 * because of the packets that have already arrived.
2926 */
2927 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2928 }
2929
2930 return IRQ_HANDLED;
2931 }
2932
2933 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2934 struct sk_buff *skb, bool first)
2935 {
2936 int size = lstatus & BD_LENGTH_MASK;
2937 struct page *page = rxb->page;
2938
2939 if (likely(first)) {
2940 skb_put(skb, size);
2941 } else {
2942 /* the last fragments' length contains the full frame length */
2943 if (lstatus & BD_LFLAG(RXBD_LAST))
2944 size -= skb->len;
2945
2946 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2947 rxb->page_offset + RXBUF_ALIGNMENT,
2948 size, GFAR_RXB_TRUESIZE);
2949 }
2950
2951 /* try reuse page */
2952 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2953 return false;
2954
2955 /* change offset to the other half */
2956 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2957
2958 page_ref_inc(page);
2959
2960 return true;
2961 }
2962
2963 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2964 struct gfar_rx_buff *old_rxb)
2965 {
2966 struct gfar_rx_buff *new_rxb;
2967 u16 nta = rxq->next_to_alloc;
2968
2969 new_rxb = &rxq->rx_buff[nta];
2970
2971 /* find next buf that can reuse a page */
2972 nta++;
2973 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2974
2975 /* copy page reference */
2976 *new_rxb = *old_rxb;
2977
2978 /* sync for use by the device */
2979 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2980 old_rxb->page_offset,
2981 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2982 }
2983
2984 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2985 u32 lstatus, struct sk_buff *skb)
2986 {
2987 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2988 struct page *page = rxb->page;
2989 bool first = false;
2990
2991 if (likely(!skb)) {
2992 void *buff_addr = page_address(page) + rxb->page_offset;
2993
2994 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2995 if (unlikely(!skb)) {
2996 gfar_rx_alloc_err(rx_queue);
2997 return NULL;
2998 }
2999 skb_reserve(skb, RXBUF_ALIGNMENT);
3000 first = true;
3001 }
3002
3003 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3004 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3005
3006 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3007 /* reuse the free half of the page */
3008 gfar_reuse_rx_page(rx_queue, rxb);
3009 } else {
3010 /* page cannot be reused, unmap it */
3011 dma_unmap_page(rx_queue->dev, rxb->dma,
3012 PAGE_SIZE, DMA_FROM_DEVICE);
3013 }
3014
3015 /* clear rxb content */
3016 rxb->page = NULL;
3017
3018 return skb;
3019 }
3020
3021 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3022 {
3023 /* If valid headers were found, and valid sums
3024 * were verified, then we tell the kernel that no
3025 * checksumming is necessary. Otherwise, it is [FIXME]
3026 */
3027 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3028 (RXFCB_CIP | RXFCB_CTU))
3029 skb->ip_summed = CHECKSUM_UNNECESSARY;
3030 else
3031 skb_checksum_none_assert(skb);
3032 }
3033
3034 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3035 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3036 {
3037 struct gfar_private *priv = netdev_priv(ndev);
3038 struct rxfcb *fcb = NULL;
3039
3040 /* fcb is at the beginning if exists */
3041 fcb = (struct rxfcb *)skb->data;
3042
3043 /* Remove the FCB from the skb
3044 * Remove the padded bytes, if there are any
3045 */
3046 if (priv->uses_rxfcb)
3047 skb_pull(skb, GMAC_FCB_LEN);
3048
3049 /* Get receive timestamp from the skb */
3050 if (priv->hwts_rx_en) {
3051 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3052 u64 *ns = (u64 *) skb->data;
3053
3054 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3055 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3056 }
3057
3058 if (priv->padding)
3059 skb_pull(skb, priv->padding);
3060
3061 /* Trim off the FCS */
3062 pskb_trim(skb, skb->len - ETH_FCS_LEN);
3063
3064 if (ndev->features & NETIF_F_RXCSUM)
3065 gfar_rx_checksum(skb, fcb);
3066
3067 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3068 * Even if vlan rx accel is disabled, on some chips
3069 * RXFCB_VLN is pseudo randomly set.
3070 */
3071 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3072 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3073 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3074 be16_to_cpu(fcb->vlctl));
3075 }
3076
3077 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3078 * until the budget/quota has been reached. Returns the number
3079 * of frames handled
3080 */
3081 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3082 {
3083 struct net_device *ndev = rx_queue->ndev;
3084 struct gfar_private *priv = netdev_priv(ndev);
3085 struct rxbd8 *bdp;
3086 int i, howmany = 0;
3087 struct sk_buff *skb = rx_queue->skb;
3088 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3089 unsigned int total_bytes = 0, total_pkts = 0;
3090
3091 /* Get the first full descriptor */
3092 i = rx_queue->next_to_clean;
3093
3094 while (rx_work_limit--) {
3095 u32 lstatus;
3096
3097 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3098 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3099 cleaned_cnt = 0;
3100 }
3101
3102 bdp = &rx_queue->rx_bd_base[i];
3103 lstatus = be32_to_cpu(bdp->lstatus);
3104 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3105 break;
3106
3107 /* order rx buffer descriptor reads */
3108 rmb();
3109
3110 /* fetch next to clean buffer from the ring */
3111 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3112 if (unlikely(!skb))
3113 break;
3114
3115 cleaned_cnt++;
3116 howmany++;
3117
3118 if (unlikely(++i == rx_queue->rx_ring_size))
3119 i = 0;
3120
3121 rx_queue->next_to_clean = i;
3122
3123 /* fetch next buffer if not the last in frame */
3124 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3125 continue;
3126
3127 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3128 count_errors(lstatus, ndev);
3129
3130 /* discard faulty buffer */
3131 dev_kfree_skb(skb);
3132 skb = NULL;
3133 rx_queue->stats.rx_dropped++;
3134 continue;
3135 }
3136
3137 gfar_process_frame(ndev, skb);
3138
3139 /* Increment the number of packets */
3140 total_pkts++;
3141 total_bytes += skb->len;
3142
3143 skb_record_rx_queue(skb, rx_queue->qindex);
3144
3145 skb->protocol = eth_type_trans(skb, ndev);
3146
3147 /* Send the packet up the stack */
3148 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3149
3150 skb = NULL;
3151 }
3152
3153 /* Store incomplete frames for completion */
3154 rx_queue->skb = skb;
3155
3156 rx_queue->stats.rx_packets += total_pkts;
3157 rx_queue->stats.rx_bytes += total_bytes;
3158
3159 if (cleaned_cnt)
3160 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3161
3162 /* Update Last Free RxBD pointer for LFC */
3163 if (unlikely(priv->tx_actual_en)) {
3164 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3165
3166 gfar_write(rx_queue->rfbptr, bdp_dma);
3167 }
3168
3169 return howmany;
3170 }
3171
3172 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3173 {
3174 struct gfar_priv_grp *gfargrp =
3175 container_of(napi, struct gfar_priv_grp, napi_rx);
3176 struct gfar __iomem *regs = gfargrp->regs;
3177 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3178 int work_done = 0;
3179
3180 /* Clear IEVENT, so interrupts aren't called again
3181 * because of the packets that have already arrived
3182 */
3183 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3184
3185 work_done = gfar_clean_rx_ring(rx_queue, budget);
3186
3187 if (work_done < budget) {
3188 u32 imask;
3189 napi_complete_done(napi, work_done);
3190 /* Clear the halt bit in RSTAT */
3191 gfar_write(&regs->rstat, gfargrp->rstat);
3192
3193 spin_lock_irq(&gfargrp->grplock);
3194 imask = gfar_read(&regs->imask);
3195 imask |= IMASK_RX_DEFAULT;
3196 gfar_write(&regs->imask, imask);
3197 spin_unlock_irq(&gfargrp->grplock);
3198 }
3199
3200 return work_done;
3201 }
3202
3203 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3204 {
3205 struct gfar_priv_grp *gfargrp =
3206 container_of(napi, struct gfar_priv_grp, napi_tx);
3207 struct gfar __iomem *regs = gfargrp->regs;
3208 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3209 u32 imask;
3210
3211 /* Clear IEVENT, so interrupts aren't called again
3212 * because of the packets that have already arrived
3213 */
3214 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3215
3216 /* run Tx cleanup to completion */
3217 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3218 gfar_clean_tx_ring(tx_queue);
3219
3220 napi_complete(napi);
3221
3222 spin_lock_irq(&gfargrp->grplock);
3223 imask = gfar_read(&regs->imask);
3224 imask |= IMASK_TX_DEFAULT;
3225 gfar_write(&regs->imask, imask);
3226 spin_unlock_irq(&gfargrp->grplock);
3227
3228 return 0;
3229 }
3230
3231 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3232 {
3233 struct gfar_priv_grp *gfargrp =
3234 container_of(napi, struct gfar_priv_grp, napi_rx);
3235 struct gfar_private *priv = gfargrp->priv;
3236 struct gfar __iomem *regs = gfargrp->regs;
3237 struct gfar_priv_rx_q *rx_queue = NULL;
3238 int work_done = 0, work_done_per_q = 0;
3239 int i, budget_per_q = 0;
3240 unsigned long rstat_rxf;
3241 int num_act_queues;
3242
3243 /* Clear IEVENT, so interrupts aren't called again
3244 * because of the packets that have already arrived
3245 */
3246 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3247
3248 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3249
3250 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3251 if (num_act_queues)
3252 budget_per_q = budget/num_act_queues;
3253
3254 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3255 /* skip queue if not active */
3256 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3257 continue;
3258
3259 rx_queue = priv->rx_queue[i];
3260 work_done_per_q =
3261 gfar_clean_rx_ring(rx_queue, budget_per_q);
3262 work_done += work_done_per_q;
3263
3264 /* finished processing this queue */
3265 if (work_done_per_q < budget_per_q) {
3266 /* clear active queue hw indication */
3267 gfar_write(&regs->rstat,
3268 RSTAT_CLEAR_RXF0 >> i);
3269 num_act_queues--;
3270
3271 if (!num_act_queues)
3272 break;
3273 }
3274 }
3275
3276 if (!num_act_queues) {
3277 u32 imask;
3278 napi_complete_done(napi, work_done);
3279
3280 /* Clear the halt bit in RSTAT */
3281 gfar_write(&regs->rstat, gfargrp->rstat);
3282
3283 spin_lock_irq(&gfargrp->grplock);
3284 imask = gfar_read(&regs->imask);
3285 imask |= IMASK_RX_DEFAULT;
3286 gfar_write(&regs->imask, imask);
3287 spin_unlock_irq(&gfargrp->grplock);
3288 }
3289
3290 return work_done;
3291 }
3292
3293 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3294 {
3295 struct gfar_priv_grp *gfargrp =
3296 container_of(napi, struct gfar_priv_grp, napi_tx);
3297 struct gfar_private *priv = gfargrp->priv;
3298 struct gfar __iomem *regs = gfargrp->regs;
3299 struct gfar_priv_tx_q *tx_queue = NULL;
3300 int has_tx_work = 0;
3301 int i;
3302
3303 /* Clear IEVENT, so interrupts aren't called again
3304 * because of the packets that have already arrived
3305 */
3306 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3307
3308 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3309 tx_queue = priv->tx_queue[i];
3310 /* run Tx cleanup to completion */
3311 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3312 gfar_clean_tx_ring(tx_queue);
3313 has_tx_work = 1;
3314 }
3315 }
3316
3317 if (!has_tx_work) {
3318 u32 imask;
3319 napi_complete(napi);
3320
3321 spin_lock_irq(&gfargrp->grplock);
3322 imask = gfar_read(&regs->imask);
3323 imask |= IMASK_TX_DEFAULT;
3324 gfar_write(&regs->imask, imask);
3325 spin_unlock_irq(&gfargrp->grplock);
3326 }
3327
3328 return 0;
3329 }
3330
3331
3332 #ifdef CONFIG_NET_POLL_CONTROLLER
3333 /* Polling 'interrupt' - used by things like netconsole to send skbs
3334 * without having to re-enable interrupts. It's not called while
3335 * the interrupt routine is executing.
3336 */
3337 static void gfar_netpoll(struct net_device *dev)
3338 {
3339 struct gfar_private *priv = netdev_priv(dev);
3340 int i;
3341
3342 /* If the device has multiple interrupts, run tx/rx */
3343 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3344 for (i = 0; i < priv->num_grps; i++) {
3345 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3346
3347 disable_irq(gfar_irq(grp, TX)->irq);
3348 disable_irq(gfar_irq(grp, RX)->irq);
3349 disable_irq(gfar_irq(grp, ER)->irq);
3350 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3351 enable_irq(gfar_irq(grp, ER)->irq);
3352 enable_irq(gfar_irq(grp, RX)->irq);
3353 enable_irq(gfar_irq(grp, TX)->irq);
3354 }
3355 } else {
3356 for (i = 0; i < priv->num_grps; i++) {
3357 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3358
3359 disable_irq(gfar_irq(grp, TX)->irq);
3360 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3361 enable_irq(gfar_irq(grp, TX)->irq);
3362 }
3363 }
3364 }
3365 #endif
3366
3367 /* The interrupt handler for devices with one interrupt */
3368 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3369 {
3370 struct gfar_priv_grp *gfargrp = grp_id;
3371
3372 /* Save ievent for future reference */
3373 u32 events = gfar_read(&gfargrp->regs->ievent);
3374
3375 /* Check for reception */
3376 if (events & IEVENT_RX_MASK)
3377 gfar_receive(irq, grp_id);
3378
3379 /* Check for transmit completion */
3380 if (events & IEVENT_TX_MASK)
3381 gfar_transmit(irq, grp_id);
3382
3383 /* Check for errors */
3384 if (events & IEVENT_ERR_MASK)
3385 gfar_error(irq, grp_id);
3386
3387 return IRQ_HANDLED;
3388 }
3389
3390 /* Called every time the controller might need to be made
3391 * aware of new link state. The PHY code conveys this
3392 * information through variables in the phydev structure, and this
3393 * function converts those variables into the appropriate
3394 * register values, and can bring down the device if needed.
3395 */
3396 static void adjust_link(struct net_device *dev)
3397 {
3398 struct gfar_private *priv = netdev_priv(dev);
3399 struct phy_device *phydev = dev->phydev;
3400
3401 if (unlikely(phydev->link != priv->oldlink ||
3402 (phydev->link && (phydev->duplex != priv->oldduplex ||
3403 phydev->speed != priv->oldspeed))))
3404 gfar_update_link_state(priv);
3405 }
3406
3407 /* Update the hash table based on the current list of multicast
3408 * addresses we subscribe to. Also, change the promiscuity of
3409 * the device based on the flags (this function is called
3410 * whenever dev->flags is changed
3411 */
3412 static void gfar_set_multi(struct net_device *dev)
3413 {
3414 struct netdev_hw_addr *ha;
3415 struct gfar_private *priv = netdev_priv(dev);
3416 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3417 u32 tempval;
3418
3419 if (dev->flags & IFF_PROMISC) {
3420 /* Set RCTRL to PROM */
3421 tempval = gfar_read(&regs->rctrl);
3422 tempval |= RCTRL_PROM;
3423 gfar_write(&regs->rctrl, tempval);
3424 } else {
3425 /* Set RCTRL to not PROM */
3426 tempval = gfar_read(&regs->rctrl);
3427 tempval &= ~(RCTRL_PROM);
3428 gfar_write(&regs->rctrl, tempval);
3429 }
3430
3431 if (dev->flags & IFF_ALLMULTI) {
3432 /* Set the hash to rx all multicast frames */
3433 gfar_write(&regs->igaddr0, 0xffffffff);
3434 gfar_write(&regs->igaddr1, 0xffffffff);
3435 gfar_write(&regs->igaddr2, 0xffffffff);
3436 gfar_write(&regs->igaddr3, 0xffffffff);
3437 gfar_write(&regs->igaddr4, 0xffffffff);
3438 gfar_write(&regs->igaddr5, 0xffffffff);
3439 gfar_write(&regs->igaddr6, 0xffffffff);
3440 gfar_write(&regs->igaddr7, 0xffffffff);
3441 gfar_write(&regs->gaddr0, 0xffffffff);
3442 gfar_write(&regs->gaddr1, 0xffffffff);
3443 gfar_write(&regs->gaddr2, 0xffffffff);
3444 gfar_write(&regs->gaddr3, 0xffffffff);
3445 gfar_write(&regs->gaddr4, 0xffffffff);
3446 gfar_write(&regs->gaddr5, 0xffffffff);
3447 gfar_write(&regs->gaddr6, 0xffffffff);
3448 gfar_write(&regs->gaddr7, 0xffffffff);
3449 } else {
3450 int em_num;
3451 int idx;
3452
3453 /* zero out the hash */
3454 gfar_write(&regs->igaddr0, 0x0);
3455 gfar_write(&regs->igaddr1, 0x0);
3456 gfar_write(&regs->igaddr2, 0x0);
3457 gfar_write(&regs->igaddr3, 0x0);
3458 gfar_write(&regs->igaddr4, 0x0);
3459 gfar_write(&regs->igaddr5, 0x0);
3460 gfar_write(&regs->igaddr6, 0x0);
3461 gfar_write(&regs->igaddr7, 0x0);
3462 gfar_write(&regs->gaddr0, 0x0);
3463 gfar_write(&regs->gaddr1, 0x0);
3464 gfar_write(&regs->gaddr2, 0x0);
3465 gfar_write(&regs->gaddr3, 0x0);
3466 gfar_write(&regs->gaddr4, 0x0);
3467 gfar_write(&regs->gaddr5, 0x0);
3468 gfar_write(&regs->gaddr6, 0x0);
3469 gfar_write(&regs->gaddr7, 0x0);
3470
3471 /* If we have extended hash tables, we need to
3472 * clear the exact match registers to prepare for
3473 * setting them
3474 */
3475 if (priv->extended_hash) {
3476 em_num = GFAR_EM_NUM + 1;
3477 gfar_clear_exact_match(dev);
3478 idx = 1;
3479 } else {
3480 idx = 0;
3481 em_num = 0;
3482 }
3483
3484 if (netdev_mc_empty(dev))
3485 return;
3486
3487 /* Parse the list, and set the appropriate bits */
3488 netdev_for_each_mc_addr(ha, dev) {
3489 if (idx < em_num) {
3490 gfar_set_mac_for_addr(dev, idx, ha->addr);
3491 idx++;
3492 } else
3493 gfar_set_hash_for_addr(dev, ha->addr);
3494 }
3495 }
3496 }
3497
3498
3499 /* Clears each of the exact match registers to zero, so they
3500 * don't interfere with normal reception
3501 */
3502 static void gfar_clear_exact_match(struct net_device *dev)
3503 {
3504 int idx;
3505 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3506
3507 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3508 gfar_set_mac_for_addr(dev, idx, zero_arr);
3509 }
3510
3511 /* Set the appropriate hash bit for the given addr */
3512 /* The algorithm works like so:
3513 * 1) Take the Destination Address (ie the multicast address), and
3514 * do a CRC on it (little endian), and reverse the bits of the
3515 * result.
3516 * 2) Use the 8 most significant bits as a hash into a 256-entry
3517 * table. The table is controlled through 8 32-bit registers:
3518 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3519 * gaddr7. This means that the 3 most significant bits in the
3520 * hash index which gaddr register to use, and the 5 other bits
3521 * indicate which bit (assuming an IBM numbering scheme, which
3522 * for PowerPC (tm) is usually the case) in the register holds
3523 * the entry.
3524 */
3525 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3526 {
3527 u32 tempval;
3528 struct gfar_private *priv = netdev_priv(dev);
3529 u32 result = ether_crc(ETH_ALEN, addr);
3530 int width = priv->hash_width;
3531 u8 whichbit = (result >> (32 - width)) & 0x1f;
3532 u8 whichreg = result >> (32 - width + 5);
3533 u32 value = (1 << (31-whichbit));
3534
3535 tempval = gfar_read(priv->hash_regs[whichreg]);
3536 tempval |= value;
3537 gfar_write(priv->hash_regs[whichreg], tempval);
3538 }
3539
3540
3541 /* There are multiple MAC Address register pairs on some controllers
3542 * This function sets the numth pair to a given address
3543 */
3544 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3545 const u8 *addr)
3546 {
3547 struct gfar_private *priv = netdev_priv(dev);
3548 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3549 u32 tempval;
3550 u32 __iomem *macptr = &regs->macstnaddr1;
3551
3552 macptr += num*2;
3553
3554 /* For a station address of 0x12345678ABCD in transmission
3555 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3556 * MACnADDR2 is set to 0x34120000.
3557 */
3558 tempval = (addr[5] << 24) | (addr[4] << 16) |
3559 (addr[3] << 8) | addr[2];
3560
3561 gfar_write(macptr, tempval);
3562
3563 tempval = (addr[1] << 24) | (addr[0] << 16);
3564
3565 gfar_write(macptr+1, tempval);
3566 }
3567
3568 /* GFAR error interrupt handler */
3569 static irqreturn_t gfar_error(int irq, void *grp_id)
3570 {
3571 struct gfar_priv_grp *gfargrp = grp_id;
3572 struct gfar __iomem *regs = gfargrp->regs;
3573 struct gfar_private *priv= gfargrp->priv;
3574 struct net_device *dev = priv->ndev;
3575
3576 /* Save ievent for future reference */
3577 u32 events = gfar_read(&regs->ievent);
3578
3579 /* Clear IEVENT */
3580 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3581
3582 /* Magic Packet is not an error. */
3583 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3584 (events & IEVENT_MAG))
3585 events &= ~IEVENT_MAG;
3586
3587 /* Hmm... */
3588 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3589 netdev_dbg(dev,
3590 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3591 events, gfar_read(&regs->imask));
3592
3593 /* Update the error counters */
3594 if (events & IEVENT_TXE) {
3595 dev->stats.tx_errors++;
3596
3597 if (events & IEVENT_LC)
3598 dev->stats.tx_window_errors++;
3599 if (events & IEVENT_CRL)
3600 dev->stats.tx_aborted_errors++;
3601 if (events & IEVENT_XFUN) {
3602 netif_dbg(priv, tx_err, dev,
3603 "TX FIFO underrun, packet dropped\n");
3604 dev->stats.tx_dropped++;
3605 atomic64_inc(&priv->extra_stats.tx_underrun);
3606
3607 schedule_work(&priv->reset_task);
3608 }
3609 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3610 }
3611 if (events & IEVENT_BSY) {
3612 dev->stats.rx_over_errors++;
3613 atomic64_inc(&priv->extra_stats.rx_bsy);
3614
3615 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3616 gfar_read(&regs->rstat));
3617 }
3618 if (events & IEVENT_BABR) {
3619 dev->stats.rx_errors++;
3620 atomic64_inc(&priv->extra_stats.rx_babr);
3621
3622 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3623 }
3624 if (events & IEVENT_EBERR) {
3625 atomic64_inc(&priv->extra_stats.eberr);
3626 netif_dbg(priv, rx_err, dev, "bus error\n");
3627 }
3628 if (events & IEVENT_RXC)
3629 netif_dbg(priv, rx_status, dev, "control frame\n");
3630
3631 if (events & IEVENT_BABT) {
3632 atomic64_inc(&priv->extra_stats.tx_babt);
3633 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3634 }
3635 return IRQ_HANDLED;
3636 }
3637
3638 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3639 {
3640 struct net_device *ndev = priv->ndev;
3641 struct phy_device *phydev = ndev->phydev;
3642 u32 val = 0;
3643
3644 if (!phydev->duplex)
3645 return val;
3646
3647 if (!priv->pause_aneg_en) {
3648 if (priv->tx_pause_en)
3649 val |= MACCFG1_TX_FLOW;
3650 if (priv->rx_pause_en)
3651 val |= MACCFG1_RX_FLOW;
3652 } else {
3653 u16 lcl_adv, rmt_adv;
3654 u8 flowctrl;
3655 /* get link partner capabilities */
3656 rmt_adv = 0;
3657 if (phydev->pause)
3658 rmt_adv = LPA_PAUSE_CAP;
3659 if (phydev->asym_pause)
3660 rmt_adv |= LPA_PAUSE_ASYM;
3661
3662 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
3663 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3664 if (flowctrl & FLOW_CTRL_TX)
3665 val |= MACCFG1_TX_FLOW;
3666 if (flowctrl & FLOW_CTRL_RX)
3667 val |= MACCFG1_RX_FLOW;
3668 }
3669
3670 return val;
3671 }
3672
3673 static noinline void gfar_update_link_state(struct gfar_private *priv)
3674 {
3675 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3676 struct net_device *ndev = priv->ndev;
3677 struct phy_device *phydev = ndev->phydev;
3678 struct gfar_priv_rx_q *rx_queue = NULL;
3679 int i;
3680
3681 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3682 return;
3683
3684 if (phydev->link) {
3685 u32 tempval1 = gfar_read(&regs->maccfg1);
3686 u32 tempval = gfar_read(&regs->maccfg2);
3687 u32 ecntrl = gfar_read(&regs->ecntrl);
3688 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3689
3690 if (phydev->duplex != priv->oldduplex) {
3691 if (!(phydev->duplex))
3692 tempval &= ~(MACCFG2_FULL_DUPLEX);
3693 else
3694 tempval |= MACCFG2_FULL_DUPLEX;
3695
3696 priv->oldduplex = phydev->duplex;
3697 }
3698
3699 if (phydev->speed != priv->oldspeed) {
3700 switch (phydev->speed) {
3701 case 1000:
3702 tempval =
3703 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3704
3705 ecntrl &= ~(ECNTRL_R100);
3706 break;
3707 case 100:
3708 case 10:
3709 tempval =
3710 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3711
3712 /* Reduced mode distinguishes
3713 * between 10 and 100
3714 */
3715 if (phydev->speed == SPEED_100)
3716 ecntrl |= ECNTRL_R100;
3717 else
3718 ecntrl &= ~(ECNTRL_R100);
3719 break;
3720 default:
3721 netif_warn(priv, link, priv->ndev,
3722 "Ack! Speed (%d) is not 10/100/1000!\n",
3723 phydev->speed);
3724 break;
3725 }
3726
3727 priv->oldspeed = phydev->speed;
3728 }
3729
3730 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3731 tempval1 |= gfar_get_flowctrl_cfg(priv);
3732
3733 /* Turn last free buffer recording on */
3734 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3735 for (i = 0; i < priv->num_rx_queues; i++) {
3736 u32 bdp_dma;
3737
3738 rx_queue = priv->rx_queue[i];
3739 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3740 gfar_write(rx_queue->rfbptr, bdp_dma);
3741 }
3742
3743 priv->tx_actual_en = 1;
3744 }
3745
3746 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3747 priv->tx_actual_en = 0;
3748
3749 gfar_write(&regs->maccfg1, tempval1);
3750 gfar_write(&regs->maccfg2, tempval);
3751 gfar_write(&regs->ecntrl, ecntrl);
3752
3753 if (!priv->oldlink)
3754 priv->oldlink = 1;
3755
3756 } else if (priv->oldlink) {
3757 priv->oldlink = 0;
3758 priv->oldspeed = 0;
3759 priv->oldduplex = -1;
3760 }
3761
3762 if (netif_msg_link(priv))
3763 phy_print_status(phydev);
3764 }
3765
3766 static const struct of_device_id gfar_match[] =
3767 {
3768 {
3769 .type = "network",
3770 .compatible = "gianfar",
3771 },
3772 {
3773 .compatible = "fsl,etsec2",
3774 },
3775 {},
3776 };
3777 MODULE_DEVICE_TABLE(of, gfar_match);
3778
3779 /* Structure for a device driver */
3780 static struct platform_driver gfar_driver = {
3781 .driver = {
3782 .name = "fsl-gianfar",
3783 .pm = GFAR_PM_OPS,
3784 .of_match_table = gfar_match,
3785 },
3786 .probe = gfar_probe,
3787 .remove = gfar_remove,
3788 };
3789
3790 module_platform_driver(gfar_driver);