]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/freescale/gianfar.c
Merge branch 'for-4.10/libnvdimm' into libnvdimm-for-next
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = &regs->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = &regs->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = &regs->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = &regs->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(&regs->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = &regs->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = &regs->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(&regs->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(&regs->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(&regs->imask, IMASK_DEFAULT);
532 }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 u32 stash_len = 0;
742 u32 stash_idx = 0;
743 unsigned int num_tx_qs, num_rx_qs;
744 unsigned short mode, poll_mode;
745
746 if (!np)
747 return -ENODEV;
748
749 if (of_device_is_compatible(np, "fsl,etsec2")) {
750 mode = MQ_MG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 } else {
753 mode = SQ_SG_MODE;
754 poll_mode = GFAR_SQ_POLLING;
755 }
756
757 if (mode == SQ_SG_MODE) {
758 num_tx_qs = 1;
759 num_rx_qs = 1;
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps = gfar_of_group_count(np);
763
764 if (num_grps == 0 || num_grps > MAXGROUPS) {
765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 num_grps);
767 pr_err("Cannot do alloc_etherdev, aborting\n");
768 return -EINVAL;
769 }
770
771 if (poll_mode == GFAR_SQ_POLLING) {
772 num_tx_qs = num_grps; /* one txq per int group */
773 num_rx_qs = num_grps; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues, rx_queues;
776 int ret;
777
778 /* parse the num of HW tx and rx queues */
779 ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 &tx_queues);
781 num_tx_qs = ret ? 1 : tx_queues;
782
783 ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 &rx_queues);
785 num_rx_qs = ret ? 1 : rx_queues;
786 }
787 }
788
789 if (num_tx_qs > MAX_TX_QS) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs, MAX_TX_QS);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
794 }
795
796 if (num_rx_qs > MAX_RX_QS) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs, MAX_RX_QS);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
800 return -EINVAL;
801 }
802
803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 dev = *pdev;
805 if (NULL == dev)
806 return -ENOMEM;
807
808 priv = netdev_priv(dev);
809 priv->ndev = dev;
810
811 priv->mode = mode;
812 priv->poll_mode = poll_mode;
813
814 priv->num_tx_queues = num_tx_qs;
815 netif_set_real_num_rx_queues(dev, num_rx_qs);
816 priv->num_rx_queues = num_rx_qs;
817
818 err = gfar_alloc_tx_queues(priv);
819 if (err)
820 goto tx_alloc_failed;
821
822 err = gfar_alloc_rx_queues(priv);
823 if (err)
824 goto rx_alloc_failed;
825
826 err = of_property_read_string(np, "model", &model);
827 if (err) {
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed;
830 }
831
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv->rx_list.list);
834 priv->rx_list.count = 0;
835 mutex_init(&priv->rx_queue_access);
836
837 for (i = 0; i < MAXGROUPS; i++)
838 priv->gfargrp[i].regs = NULL;
839
840 /* Parse and initialize group specific information */
841 if (priv->mode == MQ_MG_MODE) {
842 for_each_available_child_of_node(np, child) {
843 if (of_node_cmp(child->name, "queue-group"))
844 continue;
845
846 err = gfar_parse_group(child, priv, model);
847 if (err)
848 goto err_grp_init;
849 }
850 } else { /* SQ_SG_MODE */
851 err = gfar_parse_group(np, priv, model);
852 if (err)
853 goto err_grp_init;
854 }
855
856 if (of_property_read_bool(np, "bd-stash")) {
857 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 priv->bd_stash_en = 1;
859 }
860
861 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862
863 if (err == 0)
864 priv->rx_stash_size = stash_len;
865
866 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867
868 if (err == 0)
869 priv->rx_stash_index = stash_idx;
870
871 if (stash_len || stash_idx)
872 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873
874 mac_addr = of_get_mac_address(np);
875
876 if (mac_addr)
877 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878
879 if (model && !strcasecmp(model, "TSEC"))
880 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 FSL_GIANFAR_DEV_HAS_COALESCE |
882 FSL_GIANFAR_DEV_HAS_RMON |
883 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884
885 if (model && !strcasecmp(model, "eTSEC"))
886 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 FSL_GIANFAR_DEV_HAS_COALESCE |
888 FSL_GIANFAR_DEV_HAS_RMON |
889 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 FSL_GIANFAR_DEV_HAS_CSUM |
891 FSL_GIANFAR_DEV_HAS_VLAN |
892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 FSL_GIANFAR_DEV_HAS_TIMER |
895 FSL_GIANFAR_DEV_HAS_RX_FILER;
896
897 err = of_property_read_string(np, "phy-connection-type", &ctype);
898
899 /* We only care about rgmii-id. The rest are autodetected */
900 if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 else
903 priv->interface = PHY_INTERFACE_MODE_MII;
904
905 if (of_find_property(np, "fsl,magic-packet", NULL))
906 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907
908 if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910
911 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912
913 /* In the case of a fixed PHY, the DT node associated
914 * to the PHY is the Ethernet MAC DT node.
915 */
916 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 err = of_phy_register_fixed_link(np);
918 if (err)
919 goto err_grp_init;
920
921 priv->phy_node = of_node_get(np);
922 }
923
924 /* Find the TBI PHY. If it's not there, we don't support SGMII */
925 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926
927 return 0;
928
929 err_grp_init:
930 unmap_group_regs(priv);
931 rx_alloc_failed:
932 gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934 gfar_free_tx_queues(priv);
935 free_gfar_dev(priv);
936 return err;
937 }
938
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941 struct hwtstamp_config config;
942 struct gfar_private *priv = netdev_priv(netdev);
943
944 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 return -EFAULT;
946
947 /* reserved for future extensions */
948 if (config.flags)
949 return -EINVAL;
950
951 switch (config.tx_type) {
952 case HWTSTAMP_TX_OFF:
953 priv->hwts_tx_en = 0;
954 break;
955 case HWTSTAMP_TX_ON:
956 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 return -ERANGE;
958 priv->hwts_tx_en = 1;
959 break;
960 default:
961 return -ERANGE;
962 }
963
964 switch (config.rx_filter) {
965 case HWTSTAMP_FILTER_NONE:
966 if (priv->hwts_rx_en) {
967 priv->hwts_rx_en = 0;
968 reset_gfar(netdev);
969 }
970 break;
971 default:
972 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 return -ERANGE;
974 if (!priv->hwts_rx_en) {
975 priv->hwts_rx_en = 1;
976 reset_gfar(netdev);
977 }
978 config.rx_filter = HWTSTAMP_FILTER_ALL;
979 break;
980 }
981
982 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 -EFAULT : 0;
984 }
985
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988 struct hwtstamp_config config;
989 struct gfar_private *priv = netdev_priv(netdev);
990
991 config.flags = 0;
992 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 config.rx_filter = (priv->hwts_rx_en ?
994 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995
996 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 -EFAULT : 0;
998 }
999
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002 struct phy_device *phydev = dev->phydev;
1003
1004 if (!netif_running(dev))
1005 return -EINVAL;
1006
1007 if (cmd == SIOCSHWTSTAMP)
1008 return gfar_hwtstamp_set(dev, rq);
1009 if (cmd == SIOCGHWTSTAMP)
1010 return gfar_hwtstamp_get(dev, rq);
1011
1012 if (!phydev)
1013 return -ENODEV;
1014
1015 return phy_mii_ioctl(phydev, rq, cmd);
1016 }
1017
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 u32 class)
1020 {
1021 u32 rqfpr = FPR_FILER_MASK;
1022 u32 rqfcr = 0x0;
1023
1024 rqfar--;
1025 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 priv->ftp_rqfpr[rqfar] = rqfpr;
1027 priv->ftp_rqfcr[rqfar] = rqfcr;
1028 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030 rqfar--;
1031 rqfcr = RQFCR_CMP_NOMATCH;
1032 priv->ftp_rqfpr[rqfar] = rqfpr;
1033 priv->ftp_rqfcr[rqfar] = rqfcr;
1034 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036 rqfar--;
1037 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 rqfpr = class;
1039 priv->ftp_rqfcr[rqfar] = rqfcr;
1040 priv->ftp_rqfpr[rqfar] = rqfpr;
1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043 rqfar--;
1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 rqfpr = class;
1046 priv->ftp_rqfcr[rqfar] = rqfcr;
1047 priv->ftp_rqfpr[rqfar] = rqfpr;
1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050 return rqfar;
1051 }
1052
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055 int i = 0x0;
1056 u32 rqfar = MAX_FILER_IDX;
1057 u32 rqfcr = 0x0;
1058 u32 rqfpr = FPR_FILER_MASK;
1059
1060 /* Default rule */
1061 rqfcr = RQFCR_CMP_MATCH;
1062 priv->ftp_rqfcr[rqfar] = rqfcr;
1063 priv->ftp_rqfpr[rqfar] = rqfpr;
1064 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073 /* cur_filer_idx indicated the first non-masked rule */
1074 priv->cur_filer_idx = rqfar;
1075
1076 /* Rest are masked rules */
1077 rqfcr = RQFCR_CMP_NOMATCH;
1078 for (i = 0; i < rqfar; i++) {
1079 priv->ftp_rqfcr[i] = rqfcr;
1080 priv->ftp_rqfpr[i] = rqfpr;
1081 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 }
1083 }
1084
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088 unsigned int pvr = mfspr(SPRN_PVR);
1089 unsigned int svr = mfspr(SPRN_SVR);
1090 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 unsigned int rev = svr & 0xffff;
1092
1093 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 priv->errata |= GFAR_ERRATA_74;
1097
1098 /* MPC8313 and MPC837x all rev */
1099 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 priv->errata |= GFAR_ERRATA_76;
1102
1103 /* MPC8313 Rev < 2.0 */
1104 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 priv->errata |= GFAR_ERRATA_12;
1106 }
1107
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110 unsigned int svr = mfspr(SPRN_SVR);
1111
1112 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 priv->errata |= GFAR_ERRATA_12;
1114 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124 struct device *dev = &priv->ofdev->dev;
1125
1126 /* no plans to fix */
1127 priv->errata |= GFAR_ERRATA_A002;
1128
1129 #ifdef CONFIG_PPC
1130 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 __gfar_detect_errata_85xx(priv);
1132 else /* non-mpc85xx parts, i.e. e300 core based */
1133 __gfar_detect_errata_83xx(priv);
1134 #endif
1135
1136 if (priv->errata)
1137 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 priv->errata);
1139 }
1140
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 u32 tempval;
1145
1146 /* Reset MAC layer */
1147 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149 /* We need to delay at least 3 TX clocks */
1150 udelay(3);
1151
1152 /* the soft reset bit is not self-resetting, so we need to
1153 * clear it before resuming normal operation
1154 */
1155 gfar_write(&regs->maccfg1, 0);
1156
1157 udelay(3);
1158
1159 gfar_rx_offload_en(priv);
1160
1161 /* Initialize the max receive frame/buffer lengths */
1162 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165 /* Initialize the Minimum Frame Length Register */
1166 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168 /* Initialize MACCFG2. */
1169 tempval = MACCFG2_INIT_SETTINGS;
1170
1171 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1173 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 */
1175 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178 gfar_write(&regs->maccfg2, tempval);
1179
1180 /* Clear mac addr hash registers */
1181 gfar_write(&regs->igaddr0, 0);
1182 gfar_write(&regs->igaddr1, 0);
1183 gfar_write(&regs->igaddr2, 0);
1184 gfar_write(&regs->igaddr3, 0);
1185 gfar_write(&regs->igaddr4, 0);
1186 gfar_write(&regs->igaddr5, 0);
1187 gfar_write(&regs->igaddr6, 0);
1188 gfar_write(&regs->igaddr7, 0);
1189
1190 gfar_write(&regs->gaddr0, 0);
1191 gfar_write(&regs->gaddr1, 0);
1192 gfar_write(&regs->gaddr2, 0);
1193 gfar_write(&regs->gaddr3, 0);
1194 gfar_write(&regs->gaddr4, 0);
1195 gfar_write(&regs->gaddr5, 0);
1196 gfar_write(&regs->gaddr6, 0);
1197 gfar_write(&regs->gaddr7, 0);
1198
1199 if (priv->extended_hash)
1200 gfar_clear_exact_match(priv->ndev);
1201
1202 gfar_mac_rx_config(priv);
1203
1204 gfar_mac_tx_config(priv);
1205
1206 gfar_set_mac_address(priv->ndev);
1207
1208 gfar_set_multi(priv->ndev);
1209
1210 /* clear ievent and imask before configuring coalescing */
1211 gfar_ints_disable(priv);
1212
1213 /* Configure the coalescing support */
1214 gfar_configure_coalescing_all(priv);
1215 }
1216
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 u32 attrs;
1221
1222 /* Stop the DMA engine now, in case it was running before
1223 * (The firmware could have used it, and left it running).
1224 */
1225 gfar_halt(priv);
1226
1227 gfar_mac_reset(priv);
1228
1229 /* Zero out the rmon mib registers if it has them */
1230 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233 /* Mask off the CAM interrupts */
1234 gfar_write(&regs->rmon.cam1, 0xffffffff);
1235 gfar_write(&regs->rmon.cam2, 0xffffffff);
1236 }
1237
1238 /* Initialize ECNTRL */
1239 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241 /* Set the extraction length and index */
1242 attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 ATTRELI_EI(priv->rx_stash_index);
1244
1245 gfar_write(&regs->attreli, attrs);
1246
1247 /* Start with defaults, and add stashing
1248 * depending on driver parameters
1249 */
1250 attrs = ATTR_INIT_SETTINGS;
1251
1252 if (priv->bd_stash_en)
1253 attrs |= ATTR_BDSTASH;
1254
1255 if (priv->rx_stash_size != 0)
1256 attrs |= ATTR_BUFSTASH;
1257
1258 gfar_write(&regs->attr, attrs);
1259
1260 /* FIFO configs */
1261 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265 /* Program the interrupt steering regs, only for MG devices */
1266 if (priv->num_grps > 1)
1267 gfar_write_isrg(priv);
1268 }
1269
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 priv->extended_hash = 1;
1276 priv->hash_width = 9;
1277
1278 priv->hash_regs[0] = &regs->igaddr0;
1279 priv->hash_regs[1] = &regs->igaddr1;
1280 priv->hash_regs[2] = &regs->igaddr2;
1281 priv->hash_regs[3] = &regs->igaddr3;
1282 priv->hash_regs[4] = &regs->igaddr4;
1283 priv->hash_regs[5] = &regs->igaddr5;
1284 priv->hash_regs[6] = &regs->igaddr6;
1285 priv->hash_regs[7] = &regs->igaddr7;
1286 priv->hash_regs[8] = &regs->gaddr0;
1287 priv->hash_regs[9] = &regs->gaddr1;
1288 priv->hash_regs[10] = &regs->gaddr2;
1289 priv->hash_regs[11] = &regs->gaddr3;
1290 priv->hash_regs[12] = &regs->gaddr4;
1291 priv->hash_regs[13] = &regs->gaddr5;
1292 priv->hash_regs[14] = &regs->gaddr6;
1293 priv->hash_regs[15] = &regs->gaddr7;
1294
1295 } else {
1296 priv->extended_hash = 0;
1297 priv->hash_width = 8;
1298
1299 priv->hash_regs[0] = &regs->gaddr0;
1300 priv->hash_regs[1] = &regs->gaddr1;
1301 priv->hash_regs[2] = &regs->gaddr2;
1302 priv->hash_regs[3] = &regs->gaddr3;
1303 priv->hash_regs[4] = &regs->gaddr4;
1304 priv->hash_regs[5] = &regs->gaddr5;
1305 priv->hash_regs[6] = &regs->gaddr6;
1306 priv->hash_regs[7] = &regs->gaddr7;
1307 }
1308 }
1309
1310 /* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315 struct device_node *np = ofdev->dev.of_node;
1316 struct net_device *dev = NULL;
1317 struct gfar_private *priv = NULL;
1318 int err = 0, i;
1319
1320 err = gfar_of_init(ofdev, &dev);
1321
1322 if (err)
1323 return err;
1324
1325 priv = netdev_priv(dev);
1326 priv->ndev = dev;
1327 priv->ofdev = ofdev;
1328 priv->dev = &ofdev->dev;
1329 SET_NETDEV_DEV(dev, &ofdev->dev);
1330
1331 INIT_WORK(&priv->reset_task, gfar_reset_task);
1332
1333 platform_set_drvdata(ofdev, priv);
1334
1335 gfar_detect_errata(priv);
1336
1337 /* Set the dev->base_addr to the gfar reg region */
1338 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339
1340 /* Fill in the dev structure */
1341 dev->watchdog_timeo = TX_TIMEOUT;
1342 dev->mtu = 1500;
1343 dev->netdev_ops = &gfar_netdev_ops;
1344 dev->ethtool_ops = &gfar_ethtool_ops;
1345
1346 /* Register for napi ...We are registering NAPI for each grp */
1347 for (i = 0; i < priv->num_grps; i++) {
1348 if (priv->poll_mode == GFAR_SQ_POLLING) {
1349 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1350 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1351 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1352 gfar_poll_tx_sq, 2);
1353 } else {
1354 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1355 gfar_poll_rx, GFAR_DEV_WEIGHT);
1356 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1357 gfar_poll_tx, 2);
1358 }
1359 }
1360
1361 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1362 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1363 NETIF_F_RXCSUM;
1364 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1365 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1366 }
1367
1368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1369 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1370 NETIF_F_HW_VLAN_CTAG_RX;
1371 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1372 }
1373
1374 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1375
1376 gfar_init_addr_hash_table(priv);
1377
1378 /* Insert receive time stamps into padding alignment bytes */
1379 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 priv->padding = 8;
1381
1382 if (dev->features & NETIF_F_IP_CSUM ||
1383 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384 dev->needed_headroom = GMAC_FCB_LEN;
1385
1386 /* Initializing some of the rx/tx queue level parameters */
1387 for (i = 0; i < priv->num_tx_queues; i++) {
1388 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1389 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1390 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1391 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1392 }
1393
1394 for (i = 0; i < priv->num_rx_queues; i++) {
1395 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1396 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1397 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1398 }
1399
1400 /* Always enable rx filer if available */
1401 priv->rx_filer_enable =
1402 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1403 /* Enable most messages by default */
1404 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1405 /* use pritority h/w tx queue scheduling for single queue devices */
1406 if (priv->num_tx_queues == 1)
1407 priv->prio_sched_en = 1;
1408
1409 set_bit(GFAR_DOWN, &priv->state);
1410
1411 gfar_hw_init(priv);
1412
1413 /* Carrier starts down, phylib will bring it up */
1414 netif_carrier_off(dev);
1415
1416 err = register_netdev(dev);
1417
1418 if (err) {
1419 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1420 goto register_fail;
1421 }
1422
1423 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1424 priv->wol_supported |= GFAR_WOL_MAGIC;
1425
1426 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1427 priv->rx_filer_enable)
1428 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1429
1430 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1431
1432 /* fill out IRQ number and name fields */
1433 for (i = 0; i < priv->num_grps; i++) {
1434 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1435 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1436 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1437 dev->name, "_g", '0' + i, "_tx");
1438 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1439 dev->name, "_g", '0' + i, "_rx");
1440 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1441 dev->name, "_g", '0' + i, "_er");
1442 } else
1443 strcpy(gfar_irq(grp, TX)->name, dev->name);
1444 }
1445
1446 /* Initialize the filer table */
1447 gfar_init_filer_table(priv);
1448
1449 /* Print out the device info */
1450 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1451
1452 /* Even more device info helps when determining which kernel
1453 * provided which set of benchmarks.
1454 */
1455 netdev_info(dev, "Running with NAPI enabled\n");
1456 for (i = 0; i < priv->num_rx_queues; i++)
1457 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1458 i, priv->rx_queue[i]->rx_ring_size);
1459 for (i = 0; i < priv->num_tx_queues; i++)
1460 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1461 i, priv->tx_queue[i]->tx_ring_size);
1462
1463 return 0;
1464
1465 register_fail:
1466 if (of_phy_is_fixed_link(np))
1467 of_phy_deregister_fixed_link(np);
1468 unmap_group_regs(priv);
1469 gfar_free_rx_queues(priv);
1470 gfar_free_tx_queues(priv);
1471 of_node_put(priv->phy_node);
1472 of_node_put(priv->tbi_node);
1473 free_gfar_dev(priv);
1474 return err;
1475 }
1476
1477 static int gfar_remove(struct platform_device *ofdev)
1478 {
1479 struct gfar_private *priv = platform_get_drvdata(ofdev);
1480 struct device_node *np = ofdev->dev.of_node;
1481
1482 of_node_put(priv->phy_node);
1483 of_node_put(priv->tbi_node);
1484
1485 unregister_netdev(priv->ndev);
1486
1487 if (of_phy_is_fixed_link(np))
1488 of_phy_deregister_fixed_link(np);
1489
1490 unmap_group_regs(priv);
1491 gfar_free_rx_queues(priv);
1492 gfar_free_tx_queues(priv);
1493 free_gfar_dev(priv);
1494
1495 return 0;
1496 }
1497
1498 #ifdef CONFIG_PM
1499
1500 static void __gfar_filer_disable(struct gfar_private *priv)
1501 {
1502 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1503 u32 temp;
1504
1505 temp = gfar_read(&regs->rctrl);
1506 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1507 gfar_write(&regs->rctrl, temp);
1508 }
1509
1510 static void __gfar_filer_enable(struct gfar_private *priv)
1511 {
1512 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1513 u32 temp;
1514
1515 temp = gfar_read(&regs->rctrl);
1516 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1517 gfar_write(&regs->rctrl, temp);
1518 }
1519
1520 /* Filer rules implementing wol capabilities */
1521 static void gfar_filer_config_wol(struct gfar_private *priv)
1522 {
1523 unsigned int i;
1524 u32 rqfcr;
1525
1526 __gfar_filer_disable(priv);
1527
1528 /* clear the filer table, reject any packet by default */
1529 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1530 for (i = 0; i <= MAX_FILER_IDX; i++)
1531 gfar_write_filer(priv, i, rqfcr, 0);
1532
1533 i = 0;
1534 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1535 /* unicast packet, accept it */
1536 struct net_device *ndev = priv->ndev;
1537 /* get the default rx queue index */
1538 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1539 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1540 (ndev->dev_addr[1] << 8) |
1541 ndev->dev_addr[2];
1542
1543 rqfcr = (qindex << 10) | RQFCR_AND |
1544 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1545
1546 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1547
1548 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1549 (ndev->dev_addr[4] << 8) |
1550 ndev->dev_addr[5];
1551 rqfcr = (qindex << 10) | RQFCR_GPI |
1552 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1553 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1554 }
1555
1556 __gfar_filer_enable(priv);
1557 }
1558
1559 static void gfar_filer_restore_table(struct gfar_private *priv)
1560 {
1561 u32 rqfcr, rqfpr;
1562 unsigned int i;
1563
1564 __gfar_filer_disable(priv);
1565
1566 for (i = 0; i <= MAX_FILER_IDX; i++) {
1567 rqfcr = priv->ftp_rqfcr[i];
1568 rqfpr = priv->ftp_rqfpr[i];
1569 gfar_write_filer(priv, i, rqfcr, rqfpr);
1570 }
1571
1572 __gfar_filer_enable(priv);
1573 }
1574
1575 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1576 static void gfar_start_wol_filer(struct gfar_private *priv)
1577 {
1578 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1579 u32 tempval;
1580 int i = 0;
1581
1582 /* Enable Rx hw queues */
1583 gfar_write(&regs->rqueue, priv->rqueue);
1584
1585 /* Initialize DMACTRL to have WWR and WOP */
1586 tempval = gfar_read(&regs->dmactrl);
1587 tempval |= DMACTRL_INIT_SETTINGS;
1588 gfar_write(&regs->dmactrl, tempval);
1589
1590 /* Make sure we aren't stopped */
1591 tempval = gfar_read(&regs->dmactrl);
1592 tempval &= ~DMACTRL_GRS;
1593 gfar_write(&regs->dmactrl, tempval);
1594
1595 for (i = 0; i < priv->num_grps; i++) {
1596 regs = priv->gfargrp[i].regs;
1597 /* Clear RHLT, so that the DMA starts polling now */
1598 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1599 /* enable the Filer General Purpose Interrupt */
1600 gfar_write(&regs->imask, IMASK_FGPI);
1601 }
1602
1603 /* Enable Rx DMA */
1604 tempval = gfar_read(&regs->maccfg1);
1605 tempval |= MACCFG1_RX_EN;
1606 gfar_write(&regs->maccfg1, tempval);
1607 }
1608
1609 static int gfar_suspend(struct device *dev)
1610 {
1611 struct gfar_private *priv = dev_get_drvdata(dev);
1612 struct net_device *ndev = priv->ndev;
1613 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1614 u32 tempval;
1615 u16 wol = priv->wol_opts;
1616
1617 if (!netif_running(ndev))
1618 return 0;
1619
1620 disable_napi(priv);
1621 netif_tx_lock(ndev);
1622 netif_device_detach(ndev);
1623 netif_tx_unlock(ndev);
1624
1625 gfar_halt(priv);
1626
1627 if (wol & GFAR_WOL_MAGIC) {
1628 /* Enable interrupt on Magic Packet */
1629 gfar_write(&regs->imask, IMASK_MAG);
1630
1631 /* Enable Magic Packet mode */
1632 tempval = gfar_read(&regs->maccfg2);
1633 tempval |= MACCFG2_MPEN;
1634 gfar_write(&regs->maccfg2, tempval);
1635
1636 /* re-enable the Rx block */
1637 tempval = gfar_read(&regs->maccfg1);
1638 tempval |= MACCFG1_RX_EN;
1639 gfar_write(&regs->maccfg1, tempval);
1640
1641 } else if (wol & GFAR_WOL_FILER_UCAST) {
1642 gfar_filer_config_wol(priv);
1643 gfar_start_wol_filer(priv);
1644
1645 } else {
1646 phy_stop(ndev->phydev);
1647 }
1648
1649 return 0;
1650 }
1651
1652 static int gfar_resume(struct device *dev)
1653 {
1654 struct gfar_private *priv = dev_get_drvdata(dev);
1655 struct net_device *ndev = priv->ndev;
1656 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1657 u32 tempval;
1658 u16 wol = priv->wol_opts;
1659
1660 if (!netif_running(ndev))
1661 return 0;
1662
1663 if (wol & GFAR_WOL_MAGIC) {
1664 /* Disable Magic Packet mode */
1665 tempval = gfar_read(&regs->maccfg2);
1666 tempval &= ~MACCFG2_MPEN;
1667 gfar_write(&regs->maccfg2, tempval);
1668
1669 } else if (wol & GFAR_WOL_FILER_UCAST) {
1670 /* need to stop rx only, tx is already down */
1671 gfar_halt(priv);
1672 gfar_filer_restore_table(priv);
1673
1674 } else {
1675 phy_start(ndev->phydev);
1676 }
1677
1678 gfar_start(priv);
1679
1680 netif_device_attach(ndev);
1681 enable_napi(priv);
1682
1683 return 0;
1684 }
1685
1686 static int gfar_restore(struct device *dev)
1687 {
1688 struct gfar_private *priv = dev_get_drvdata(dev);
1689 struct net_device *ndev = priv->ndev;
1690
1691 if (!netif_running(ndev)) {
1692 netif_device_attach(ndev);
1693
1694 return 0;
1695 }
1696
1697 gfar_init_bds(ndev);
1698
1699 gfar_mac_reset(priv);
1700
1701 gfar_init_tx_rx_base(priv);
1702
1703 gfar_start(priv);
1704
1705 priv->oldlink = 0;
1706 priv->oldspeed = 0;
1707 priv->oldduplex = -1;
1708
1709 if (ndev->phydev)
1710 phy_start(ndev->phydev);
1711
1712 netif_device_attach(ndev);
1713 enable_napi(priv);
1714
1715 return 0;
1716 }
1717
1718 static struct dev_pm_ops gfar_pm_ops = {
1719 .suspend = gfar_suspend,
1720 .resume = gfar_resume,
1721 .freeze = gfar_suspend,
1722 .thaw = gfar_resume,
1723 .restore = gfar_restore,
1724 };
1725
1726 #define GFAR_PM_OPS (&gfar_pm_ops)
1727
1728 #else
1729
1730 #define GFAR_PM_OPS NULL
1731
1732 #endif
1733
1734 /* Reads the controller's registers to determine what interface
1735 * connects it to the PHY.
1736 */
1737 static phy_interface_t gfar_get_interface(struct net_device *dev)
1738 {
1739 struct gfar_private *priv = netdev_priv(dev);
1740 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1741 u32 ecntrl;
1742
1743 ecntrl = gfar_read(&regs->ecntrl);
1744
1745 if (ecntrl & ECNTRL_SGMII_MODE)
1746 return PHY_INTERFACE_MODE_SGMII;
1747
1748 if (ecntrl & ECNTRL_TBI_MODE) {
1749 if (ecntrl & ECNTRL_REDUCED_MODE)
1750 return PHY_INTERFACE_MODE_RTBI;
1751 else
1752 return PHY_INTERFACE_MODE_TBI;
1753 }
1754
1755 if (ecntrl & ECNTRL_REDUCED_MODE) {
1756 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1757 return PHY_INTERFACE_MODE_RMII;
1758 }
1759 else {
1760 phy_interface_t interface = priv->interface;
1761
1762 /* This isn't autodetected right now, so it must
1763 * be set by the device tree or platform code.
1764 */
1765 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1766 return PHY_INTERFACE_MODE_RGMII_ID;
1767
1768 return PHY_INTERFACE_MODE_RGMII;
1769 }
1770 }
1771
1772 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1773 return PHY_INTERFACE_MODE_GMII;
1774
1775 return PHY_INTERFACE_MODE_MII;
1776 }
1777
1778
1779 /* Initializes driver's PHY state, and attaches to the PHY.
1780 * Returns 0 on success.
1781 */
1782 static int init_phy(struct net_device *dev)
1783 {
1784 struct gfar_private *priv = netdev_priv(dev);
1785 uint gigabit_support =
1786 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1787 GFAR_SUPPORTED_GBIT : 0;
1788 phy_interface_t interface;
1789 struct phy_device *phydev;
1790
1791 priv->oldlink = 0;
1792 priv->oldspeed = 0;
1793 priv->oldduplex = -1;
1794
1795 interface = gfar_get_interface(dev);
1796
1797 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1798 interface);
1799 if (!phydev) {
1800 dev_err(&dev->dev, "could not attach to PHY\n");
1801 return -ENODEV;
1802 }
1803
1804 if (interface == PHY_INTERFACE_MODE_SGMII)
1805 gfar_configure_serdes(dev);
1806
1807 /* Remove any features not supported by the controller */
1808 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1809 phydev->advertising = phydev->supported;
1810
1811 /* Add support for flow control, but don't advertise it by default */
1812 phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1813
1814 return 0;
1815 }
1816
1817 /* Initialize TBI PHY interface for communicating with the
1818 * SERDES lynx PHY on the chip. We communicate with this PHY
1819 * through the MDIO bus on each controller, treating it as a
1820 * "normal" PHY at the address found in the TBIPA register. We assume
1821 * that the TBIPA register is valid. Either the MDIO bus code will set
1822 * it to a value that doesn't conflict with other PHYs on the bus, or the
1823 * value doesn't matter, as there are no other PHYs on the bus.
1824 */
1825 static void gfar_configure_serdes(struct net_device *dev)
1826 {
1827 struct gfar_private *priv = netdev_priv(dev);
1828 struct phy_device *tbiphy;
1829
1830 if (!priv->tbi_node) {
1831 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1832 "device tree specify a tbi-handle\n");
1833 return;
1834 }
1835
1836 tbiphy = of_phy_find_device(priv->tbi_node);
1837 if (!tbiphy) {
1838 dev_err(&dev->dev, "error: Could not get TBI device\n");
1839 return;
1840 }
1841
1842 /* If the link is already up, we must already be ok, and don't need to
1843 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1844 * everything for us? Resetting it takes the link down and requires
1845 * several seconds for it to come back.
1846 */
1847 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1848 put_device(&tbiphy->mdio.dev);
1849 return;
1850 }
1851
1852 /* Single clk mode, mii mode off(for serdes communication) */
1853 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1854
1855 phy_write(tbiphy, MII_ADVERTISE,
1856 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1857 ADVERTISE_1000XPSE_ASYM);
1858
1859 phy_write(tbiphy, MII_BMCR,
1860 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1861 BMCR_SPEED1000);
1862
1863 put_device(&tbiphy->mdio.dev);
1864 }
1865
1866 static int __gfar_is_rx_idle(struct gfar_private *priv)
1867 {
1868 u32 res;
1869
1870 /* Normaly TSEC should not hang on GRS commands, so we should
1871 * actually wait for IEVENT_GRSC flag.
1872 */
1873 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1874 return 0;
1875
1876 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1877 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1878 * and the Rx can be safely reset.
1879 */
1880 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1881 res &= 0x7f807f80;
1882 if ((res & 0xffff) == (res >> 16))
1883 return 1;
1884
1885 return 0;
1886 }
1887
1888 /* Halt the receive and transmit queues */
1889 static void gfar_halt_nodisable(struct gfar_private *priv)
1890 {
1891 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1892 u32 tempval;
1893 unsigned int timeout;
1894 int stopped;
1895
1896 gfar_ints_disable(priv);
1897
1898 if (gfar_is_dma_stopped(priv))
1899 return;
1900
1901 /* Stop the DMA, and wait for it to stop */
1902 tempval = gfar_read(&regs->dmactrl);
1903 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1904 gfar_write(&regs->dmactrl, tempval);
1905
1906 retry:
1907 timeout = 1000;
1908 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1909 cpu_relax();
1910 timeout--;
1911 }
1912
1913 if (!timeout)
1914 stopped = gfar_is_dma_stopped(priv);
1915
1916 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1917 !__gfar_is_rx_idle(priv))
1918 goto retry;
1919 }
1920
1921 /* Halt the receive and transmit queues */
1922 void gfar_halt(struct gfar_private *priv)
1923 {
1924 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1925 u32 tempval;
1926
1927 /* Dissable the Rx/Tx hw queues */
1928 gfar_write(&regs->rqueue, 0);
1929 gfar_write(&regs->tqueue, 0);
1930
1931 mdelay(10);
1932
1933 gfar_halt_nodisable(priv);
1934
1935 /* Disable Rx/Tx DMA */
1936 tempval = gfar_read(&regs->maccfg1);
1937 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1938 gfar_write(&regs->maccfg1, tempval);
1939 }
1940
1941 void stop_gfar(struct net_device *dev)
1942 {
1943 struct gfar_private *priv = netdev_priv(dev);
1944
1945 netif_tx_stop_all_queues(dev);
1946
1947 smp_mb__before_atomic();
1948 set_bit(GFAR_DOWN, &priv->state);
1949 smp_mb__after_atomic();
1950
1951 disable_napi(priv);
1952
1953 /* disable ints and gracefully shut down Rx/Tx DMA */
1954 gfar_halt(priv);
1955
1956 phy_stop(dev->phydev);
1957
1958 free_skb_resources(priv);
1959 }
1960
1961 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1962 {
1963 struct txbd8 *txbdp;
1964 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1965 int i, j;
1966
1967 txbdp = tx_queue->tx_bd_base;
1968
1969 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1970 if (!tx_queue->tx_skbuff[i])
1971 continue;
1972
1973 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1974 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1975 txbdp->lstatus = 0;
1976 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1977 j++) {
1978 txbdp++;
1979 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1980 be16_to_cpu(txbdp->length),
1981 DMA_TO_DEVICE);
1982 }
1983 txbdp++;
1984 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1985 tx_queue->tx_skbuff[i] = NULL;
1986 }
1987 kfree(tx_queue->tx_skbuff);
1988 tx_queue->tx_skbuff = NULL;
1989 }
1990
1991 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1992 {
1993 int i;
1994
1995 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1996
1997 if (rx_queue->skb)
1998 dev_kfree_skb(rx_queue->skb);
1999
2000 for (i = 0; i < rx_queue->rx_ring_size; i++) {
2001 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2002
2003 rxbdp->lstatus = 0;
2004 rxbdp->bufPtr = 0;
2005 rxbdp++;
2006
2007 if (!rxb->page)
2008 continue;
2009
2010 dma_unmap_single(rx_queue->dev, rxb->dma,
2011 PAGE_SIZE, DMA_FROM_DEVICE);
2012 __free_page(rxb->page);
2013
2014 rxb->page = NULL;
2015 }
2016
2017 kfree(rx_queue->rx_buff);
2018 rx_queue->rx_buff = NULL;
2019 }
2020
2021 /* If there are any tx skbs or rx skbs still around, free them.
2022 * Then free tx_skbuff and rx_skbuff
2023 */
2024 static void free_skb_resources(struct gfar_private *priv)
2025 {
2026 struct gfar_priv_tx_q *tx_queue = NULL;
2027 struct gfar_priv_rx_q *rx_queue = NULL;
2028 int i;
2029
2030 /* Go through all the buffer descriptors and free their data buffers */
2031 for (i = 0; i < priv->num_tx_queues; i++) {
2032 struct netdev_queue *txq;
2033
2034 tx_queue = priv->tx_queue[i];
2035 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2036 if (tx_queue->tx_skbuff)
2037 free_skb_tx_queue(tx_queue);
2038 netdev_tx_reset_queue(txq);
2039 }
2040
2041 for (i = 0; i < priv->num_rx_queues; i++) {
2042 rx_queue = priv->rx_queue[i];
2043 if (rx_queue->rx_buff)
2044 free_skb_rx_queue(rx_queue);
2045 }
2046
2047 dma_free_coherent(priv->dev,
2048 sizeof(struct txbd8) * priv->total_tx_ring_size +
2049 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2050 priv->tx_queue[0]->tx_bd_base,
2051 priv->tx_queue[0]->tx_bd_dma_base);
2052 }
2053
2054 void gfar_start(struct gfar_private *priv)
2055 {
2056 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2057 u32 tempval;
2058 int i = 0;
2059
2060 /* Enable Rx/Tx hw queues */
2061 gfar_write(&regs->rqueue, priv->rqueue);
2062 gfar_write(&regs->tqueue, priv->tqueue);
2063
2064 /* Initialize DMACTRL to have WWR and WOP */
2065 tempval = gfar_read(&regs->dmactrl);
2066 tempval |= DMACTRL_INIT_SETTINGS;
2067 gfar_write(&regs->dmactrl, tempval);
2068
2069 /* Make sure we aren't stopped */
2070 tempval = gfar_read(&regs->dmactrl);
2071 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2072 gfar_write(&regs->dmactrl, tempval);
2073
2074 for (i = 0; i < priv->num_grps; i++) {
2075 regs = priv->gfargrp[i].regs;
2076 /* Clear THLT/RHLT, so that the DMA starts polling now */
2077 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2078 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2079 }
2080
2081 /* Enable Rx/Tx DMA */
2082 tempval = gfar_read(&regs->maccfg1);
2083 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2084 gfar_write(&regs->maccfg1, tempval);
2085
2086 gfar_ints_enable(priv);
2087
2088 netif_trans_update(priv->ndev); /* prevent tx timeout */
2089 }
2090
2091 static void free_grp_irqs(struct gfar_priv_grp *grp)
2092 {
2093 free_irq(gfar_irq(grp, TX)->irq, grp);
2094 free_irq(gfar_irq(grp, RX)->irq, grp);
2095 free_irq(gfar_irq(grp, ER)->irq, grp);
2096 }
2097
2098 static int register_grp_irqs(struct gfar_priv_grp *grp)
2099 {
2100 struct gfar_private *priv = grp->priv;
2101 struct net_device *dev = priv->ndev;
2102 int err;
2103
2104 /* If the device has multiple interrupts, register for
2105 * them. Otherwise, only register for the one
2106 */
2107 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2108 /* Install our interrupt handlers for Error,
2109 * Transmit, and Receive
2110 */
2111 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2112 gfar_irq(grp, ER)->name, grp);
2113 if (err < 0) {
2114 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2115 gfar_irq(grp, ER)->irq);
2116
2117 goto err_irq_fail;
2118 }
2119 enable_irq_wake(gfar_irq(grp, ER)->irq);
2120
2121 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2122 gfar_irq(grp, TX)->name, grp);
2123 if (err < 0) {
2124 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2125 gfar_irq(grp, TX)->irq);
2126 goto tx_irq_fail;
2127 }
2128 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2129 gfar_irq(grp, RX)->name, grp);
2130 if (err < 0) {
2131 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2132 gfar_irq(grp, RX)->irq);
2133 goto rx_irq_fail;
2134 }
2135 enable_irq_wake(gfar_irq(grp, RX)->irq);
2136
2137 } else {
2138 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2139 gfar_irq(grp, TX)->name, grp);
2140 if (err < 0) {
2141 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2142 gfar_irq(grp, TX)->irq);
2143 goto err_irq_fail;
2144 }
2145 enable_irq_wake(gfar_irq(grp, TX)->irq);
2146 }
2147
2148 return 0;
2149
2150 rx_irq_fail:
2151 free_irq(gfar_irq(grp, TX)->irq, grp);
2152 tx_irq_fail:
2153 free_irq(gfar_irq(grp, ER)->irq, grp);
2154 err_irq_fail:
2155 return err;
2156
2157 }
2158
2159 static void gfar_free_irq(struct gfar_private *priv)
2160 {
2161 int i;
2162
2163 /* Free the IRQs */
2164 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2165 for (i = 0; i < priv->num_grps; i++)
2166 free_grp_irqs(&priv->gfargrp[i]);
2167 } else {
2168 for (i = 0; i < priv->num_grps; i++)
2169 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2170 &priv->gfargrp[i]);
2171 }
2172 }
2173
2174 static int gfar_request_irq(struct gfar_private *priv)
2175 {
2176 int err, i, j;
2177
2178 for (i = 0; i < priv->num_grps; i++) {
2179 err = register_grp_irqs(&priv->gfargrp[i]);
2180 if (err) {
2181 for (j = 0; j < i; j++)
2182 free_grp_irqs(&priv->gfargrp[j]);
2183 return err;
2184 }
2185 }
2186
2187 return 0;
2188 }
2189
2190 /* Bring the controller up and running */
2191 int startup_gfar(struct net_device *ndev)
2192 {
2193 struct gfar_private *priv = netdev_priv(ndev);
2194 int err;
2195
2196 gfar_mac_reset(priv);
2197
2198 err = gfar_alloc_skb_resources(ndev);
2199 if (err)
2200 return err;
2201
2202 gfar_init_tx_rx_base(priv);
2203
2204 smp_mb__before_atomic();
2205 clear_bit(GFAR_DOWN, &priv->state);
2206 smp_mb__after_atomic();
2207
2208 /* Start Rx/Tx DMA and enable the interrupts */
2209 gfar_start(priv);
2210
2211 /* force link state update after mac reset */
2212 priv->oldlink = 0;
2213 priv->oldspeed = 0;
2214 priv->oldduplex = -1;
2215
2216 phy_start(ndev->phydev);
2217
2218 enable_napi(priv);
2219
2220 netif_tx_wake_all_queues(ndev);
2221
2222 return 0;
2223 }
2224
2225 /* Called when something needs to use the ethernet device
2226 * Returns 0 for success.
2227 */
2228 static int gfar_enet_open(struct net_device *dev)
2229 {
2230 struct gfar_private *priv = netdev_priv(dev);
2231 int err;
2232
2233 err = init_phy(dev);
2234 if (err)
2235 return err;
2236
2237 err = gfar_request_irq(priv);
2238 if (err)
2239 return err;
2240
2241 err = startup_gfar(dev);
2242 if (err)
2243 return err;
2244
2245 return err;
2246 }
2247
2248 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2249 {
2250 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2251
2252 memset(fcb, 0, GMAC_FCB_LEN);
2253
2254 return fcb;
2255 }
2256
2257 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2258 int fcb_length)
2259 {
2260 /* If we're here, it's a IP packet with a TCP or UDP
2261 * payload. We set it to checksum, using a pseudo-header
2262 * we provide
2263 */
2264 u8 flags = TXFCB_DEFAULT;
2265
2266 /* Tell the controller what the protocol is
2267 * And provide the already calculated phcs
2268 */
2269 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2270 flags |= TXFCB_UDP;
2271 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2272 } else
2273 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2274
2275 /* l3os is the distance between the start of the
2276 * frame (skb->data) and the start of the IP hdr.
2277 * l4os is the distance between the start of the
2278 * l3 hdr and the l4 hdr
2279 */
2280 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2281 fcb->l4os = skb_network_header_len(skb);
2282
2283 fcb->flags = flags;
2284 }
2285
2286 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2287 {
2288 fcb->flags |= TXFCB_VLN;
2289 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2290 }
2291
2292 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2293 struct txbd8 *base, int ring_size)
2294 {
2295 struct txbd8 *new_bd = bdp + stride;
2296
2297 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2298 }
2299
2300 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2301 int ring_size)
2302 {
2303 return skip_txbd(bdp, 1, base, ring_size);
2304 }
2305
2306 /* eTSEC12: csum generation not supported for some fcb offsets */
2307 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2308 unsigned long fcb_addr)
2309 {
2310 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2311 (fcb_addr % 0x20) > 0x18);
2312 }
2313
2314 /* eTSEC76: csum generation for frames larger than 2500 may
2315 * cause excess delays before start of transmission
2316 */
2317 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2318 unsigned int len)
2319 {
2320 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2321 (len > 2500));
2322 }
2323
2324 /* This is called by the kernel when a frame is ready for transmission.
2325 * It is pointed to by the dev->hard_start_xmit function pointer
2326 */
2327 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2328 {
2329 struct gfar_private *priv = netdev_priv(dev);
2330 struct gfar_priv_tx_q *tx_queue = NULL;
2331 struct netdev_queue *txq;
2332 struct gfar __iomem *regs = NULL;
2333 struct txfcb *fcb = NULL;
2334 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2335 u32 lstatus;
2336 skb_frag_t *frag;
2337 int i, rq = 0;
2338 int do_tstamp, do_csum, do_vlan;
2339 u32 bufaddr;
2340 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2341
2342 rq = skb->queue_mapping;
2343 tx_queue = priv->tx_queue[rq];
2344 txq = netdev_get_tx_queue(dev, rq);
2345 base = tx_queue->tx_bd_base;
2346 regs = tx_queue->grp->regs;
2347
2348 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2349 do_vlan = skb_vlan_tag_present(skb);
2350 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2351 priv->hwts_tx_en;
2352
2353 if (do_csum || do_vlan)
2354 fcb_len = GMAC_FCB_LEN;
2355
2356 /* check if time stamp should be generated */
2357 if (unlikely(do_tstamp))
2358 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2359
2360 /* make space for additional header when fcb is needed */
2361 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2362 struct sk_buff *skb_new;
2363
2364 skb_new = skb_realloc_headroom(skb, fcb_len);
2365 if (!skb_new) {
2366 dev->stats.tx_errors++;
2367 dev_kfree_skb_any(skb);
2368 return NETDEV_TX_OK;
2369 }
2370
2371 if (skb->sk)
2372 skb_set_owner_w(skb_new, skb->sk);
2373 dev_consume_skb_any(skb);
2374 skb = skb_new;
2375 }
2376
2377 /* total number of fragments in the SKB */
2378 nr_frags = skb_shinfo(skb)->nr_frags;
2379
2380 /* calculate the required number of TxBDs for this skb */
2381 if (unlikely(do_tstamp))
2382 nr_txbds = nr_frags + 2;
2383 else
2384 nr_txbds = nr_frags + 1;
2385
2386 /* check if there is space to queue this packet */
2387 if (nr_txbds > tx_queue->num_txbdfree) {
2388 /* no space, stop the queue */
2389 netif_tx_stop_queue(txq);
2390 dev->stats.tx_fifo_errors++;
2391 return NETDEV_TX_BUSY;
2392 }
2393
2394 /* Update transmit stats */
2395 bytes_sent = skb->len;
2396 tx_queue->stats.tx_bytes += bytes_sent;
2397 /* keep Tx bytes on wire for BQL accounting */
2398 GFAR_CB(skb)->bytes_sent = bytes_sent;
2399 tx_queue->stats.tx_packets++;
2400
2401 txbdp = txbdp_start = tx_queue->cur_tx;
2402 lstatus = be32_to_cpu(txbdp->lstatus);
2403
2404 /* Add TxPAL between FCB and frame if required */
2405 if (unlikely(do_tstamp)) {
2406 skb_push(skb, GMAC_TXPAL_LEN);
2407 memset(skb->data, 0, GMAC_TXPAL_LEN);
2408 }
2409
2410 /* Add TxFCB if required */
2411 if (fcb_len) {
2412 fcb = gfar_add_fcb(skb);
2413 lstatus |= BD_LFLAG(TXBD_TOE);
2414 }
2415
2416 /* Set up checksumming */
2417 if (do_csum) {
2418 gfar_tx_checksum(skb, fcb, fcb_len);
2419
2420 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2421 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2422 __skb_pull(skb, GMAC_FCB_LEN);
2423 skb_checksum_help(skb);
2424 if (do_vlan || do_tstamp) {
2425 /* put back a new fcb for vlan/tstamp TOE */
2426 fcb = gfar_add_fcb(skb);
2427 } else {
2428 /* Tx TOE not used */
2429 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2430 fcb = NULL;
2431 }
2432 }
2433 }
2434
2435 if (do_vlan)
2436 gfar_tx_vlan(skb, fcb);
2437
2438 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2439 DMA_TO_DEVICE);
2440 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2441 goto dma_map_err;
2442
2443 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2444
2445 /* Time stamp insertion requires one additional TxBD */
2446 if (unlikely(do_tstamp))
2447 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2448 tx_queue->tx_ring_size);
2449
2450 if (likely(!nr_frags)) {
2451 if (likely(!do_tstamp))
2452 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2453 } else {
2454 u32 lstatus_start = lstatus;
2455
2456 /* Place the fragment addresses and lengths into the TxBDs */
2457 frag = &skb_shinfo(skb)->frags[0];
2458 for (i = 0; i < nr_frags; i++, frag++) {
2459 unsigned int size;
2460
2461 /* Point at the next BD, wrapping as needed */
2462 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2463
2464 size = skb_frag_size(frag);
2465
2466 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2467 BD_LFLAG(TXBD_READY);
2468
2469 /* Handle the last BD specially */
2470 if (i == nr_frags - 1)
2471 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2472
2473 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2474 size, DMA_TO_DEVICE);
2475 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2476 goto dma_map_err;
2477
2478 /* set the TxBD length and buffer pointer */
2479 txbdp->bufPtr = cpu_to_be32(bufaddr);
2480 txbdp->lstatus = cpu_to_be32(lstatus);
2481 }
2482
2483 lstatus = lstatus_start;
2484 }
2485
2486 /* If time stamping is requested one additional TxBD must be set up. The
2487 * first TxBD points to the FCB and must have a data length of
2488 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2489 * the full frame length.
2490 */
2491 if (unlikely(do_tstamp)) {
2492 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2493
2494 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2495 bufaddr += fcb_len;
2496
2497 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2498 (skb_headlen(skb) - fcb_len);
2499 if (!nr_frags)
2500 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2501
2502 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2503 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2504 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2505
2506 /* Setup tx hardware time stamping */
2507 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2508 fcb->ptp = 1;
2509 } else {
2510 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2511 }
2512
2513 netdev_tx_sent_queue(txq, bytes_sent);
2514
2515 gfar_wmb();
2516
2517 txbdp_start->lstatus = cpu_to_be32(lstatus);
2518
2519 gfar_wmb(); /* force lstatus write before tx_skbuff */
2520
2521 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2522
2523 /* Update the current skb pointer to the next entry we will use
2524 * (wrapping if necessary)
2525 */
2526 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2527 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2528
2529 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2530
2531 /* We can work in parallel with gfar_clean_tx_ring(), except
2532 * when modifying num_txbdfree. Note that we didn't grab the lock
2533 * when we were reading the num_txbdfree and checking for available
2534 * space, that's because outside of this function it can only grow.
2535 */
2536 spin_lock_bh(&tx_queue->txlock);
2537 /* reduce TxBD free count */
2538 tx_queue->num_txbdfree -= (nr_txbds);
2539 spin_unlock_bh(&tx_queue->txlock);
2540
2541 /* If the next BD still needs to be cleaned up, then the bds
2542 * are full. We need to tell the kernel to stop sending us stuff.
2543 */
2544 if (!tx_queue->num_txbdfree) {
2545 netif_tx_stop_queue(txq);
2546
2547 dev->stats.tx_fifo_errors++;
2548 }
2549
2550 /* Tell the DMA to go go go */
2551 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2552
2553 return NETDEV_TX_OK;
2554
2555 dma_map_err:
2556 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2557 if (do_tstamp)
2558 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2559 for (i = 0; i < nr_frags; i++) {
2560 lstatus = be32_to_cpu(txbdp->lstatus);
2561 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2562 break;
2563
2564 lstatus &= ~BD_LFLAG(TXBD_READY);
2565 txbdp->lstatus = cpu_to_be32(lstatus);
2566 bufaddr = be32_to_cpu(txbdp->bufPtr);
2567 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2568 DMA_TO_DEVICE);
2569 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2570 }
2571 gfar_wmb();
2572 dev_kfree_skb_any(skb);
2573 return NETDEV_TX_OK;
2574 }
2575
2576 /* Stops the kernel queue, and halts the controller */
2577 static int gfar_close(struct net_device *dev)
2578 {
2579 struct gfar_private *priv = netdev_priv(dev);
2580
2581 cancel_work_sync(&priv->reset_task);
2582 stop_gfar(dev);
2583
2584 /* Disconnect from the PHY */
2585 phy_disconnect(dev->phydev);
2586
2587 gfar_free_irq(priv);
2588
2589 return 0;
2590 }
2591
2592 /* Changes the mac address if the controller is not running. */
2593 static int gfar_set_mac_address(struct net_device *dev)
2594 {
2595 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2596
2597 return 0;
2598 }
2599
2600 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2601 {
2602 struct gfar_private *priv = netdev_priv(dev);
2603 int frame_size = new_mtu + ETH_HLEN;
2604
2605 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2606 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2607 return -EINVAL;
2608 }
2609
2610 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2611 cpu_relax();
2612
2613 if (dev->flags & IFF_UP)
2614 stop_gfar(dev);
2615
2616 dev->mtu = new_mtu;
2617
2618 if (dev->flags & IFF_UP)
2619 startup_gfar(dev);
2620
2621 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2622
2623 return 0;
2624 }
2625
2626 void reset_gfar(struct net_device *ndev)
2627 {
2628 struct gfar_private *priv = netdev_priv(ndev);
2629
2630 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2631 cpu_relax();
2632
2633 stop_gfar(ndev);
2634 startup_gfar(ndev);
2635
2636 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2637 }
2638
2639 /* gfar_reset_task gets scheduled when a packet has not been
2640 * transmitted after a set amount of time.
2641 * For now, assume that clearing out all the structures, and
2642 * starting over will fix the problem.
2643 */
2644 static void gfar_reset_task(struct work_struct *work)
2645 {
2646 struct gfar_private *priv = container_of(work, struct gfar_private,
2647 reset_task);
2648 reset_gfar(priv->ndev);
2649 }
2650
2651 static void gfar_timeout(struct net_device *dev)
2652 {
2653 struct gfar_private *priv = netdev_priv(dev);
2654
2655 dev->stats.tx_errors++;
2656 schedule_work(&priv->reset_task);
2657 }
2658
2659 /* Interrupt Handler for Transmit complete */
2660 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2661 {
2662 struct net_device *dev = tx_queue->dev;
2663 struct netdev_queue *txq;
2664 struct gfar_private *priv = netdev_priv(dev);
2665 struct txbd8 *bdp, *next = NULL;
2666 struct txbd8 *lbdp = NULL;
2667 struct txbd8 *base = tx_queue->tx_bd_base;
2668 struct sk_buff *skb;
2669 int skb_dirtytx;
2670 int tx_ring_size = tx_queue->tx_ring_size;
2671 int frags = 0, nr_txbds = 0;
2672 int i;
2673 int howmany = 0;
2674 int tqi = tx_queue->qindex;
2675 unsigned int bytes_sent = 0;
2676 u32 lstatus;
2677 size_t buflen;
2678
2679 txq = netdev_get_tx_queue(dev, tqi);
2680 bdp = tx_queue->dirty_tx;
2681 skb_dirtytx = tx_queue->skb_dirtytx;
2682
2683 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2684
2685 frags = skb_shinfo(skb)->nr_frags;
2686
2687 /* When time stamping, one additional TxBD must be freed.
2688 * Also, we need to dma_unmap_single() the TxPAL.
2689 */
2690 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2691 nr_txbds = frags + 2;
2692 else
2693 nr_txbds = frags + 1;
2694
2695 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2696
2697 lstatus = be32_to_cpu(lbdp->lstatus);
2698
2699 /* Only clean completed frames */
2700 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2701 (lstatus & BD_LENGTH_MASK))
2702 break;
2703
2704 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2705 next = next_txbd(bdp, base, tx_ring_size);
2706 buflen = be16_to_cpu(next->length) +
2707 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2708 } else
2709 buflen = be16_to_cpu(bdp->length);
2710
2711 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2712 buflen, DMA_TO_DEVICE);
2713
2714 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2715 struct skb_shared_hwtstamps shhwtstamps;
2716 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2717 ~0x7UL);
2718
2719 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2720 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2721 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2722 skb_tstamp_tx(skb, &shhwtstamps);
2723 gfar_clear_txbd_status(bdp);
2724 bdp = next;
2725 }
2726
2727 gfar_clear_txbd_status(bdp);
2728 bdp = next_txbd(bdp, base, tx_ring_size);
2729
2730 for (i = 0; i < frags; i++) {
2731 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2732 be16_to_cpu(bdp->length),
2733 DMA_TO_DEVICE);
2734 gfar_clear_txbd_status(bdp);
2735 bdp = next_txbd(bdp, base, tx_ring_size);
2736 }
2737
2738 bytes_sent += GFAR_CB(skb)->bytes_sent;
2739
2740 dev_kfree_skb_any(skb);
2741
2742 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2743
2744 skb_dirtytx = (skb_dirtytx + 1) &
2745 TX_RING_MOD_MASK(tx_ring_size);
2746
2747 howmany++;
2748 spin_lock(&tx_queue->txlock);
2749 tx_queue->num_txbdfree += nr_txbds;
2750 spin_unlock(&tx_queue->txlock);
2751 }
2752
2753 /* If we freed a buffer, we can restart transmission, if necessary */
2754 if (tx_queue->num_txbdfree &&
2755 netif_tx_queue_stopped(txq) &&
2756 !(test_bit(GFAR_DOWN, &priv->state)))
2757 netif_wake_subqueue(priv->ndev, tqi);
2758
2759 /* Update dirty indicators */
2760 tx_queue->skb_dirtytx = skb_dirtytx;
2761 tx_queue->dirty_tx = bdp;
2762
2763 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2764 }
2765
2766 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2767 {
2768 struct page *page;
2769 dma_addr_t addr;
2770
2771 page = dev_alloc_page();
2772 if (unlikely(!page))
2773 return false;
2774
2775 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2776 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2777 __free_page(page);
2778
2779 return false;
2780 }
2781
2782 rxb->dma = addr;
2783 rxb->page = page;
2784 rxb->page_offset = 0;
2785
2786 return true;
2787 }
2788
2789 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2790 {
2791 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2792 struct gfar_extra_stats *estats = &priv->extra_stats;
2793
2794 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2795 atomic64_inc(&estats->rx_alloc_err);
2796 }
2797
2798 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2799 int alloc_cnt)
2800 {
2801 struct rxbd8 *bdp;
2802 struct gfar_rx_buff *rxb;
2803 int i;
2804
2805 i = rx_queue->next_to_use;
2806 bdp = &rx_queue->rx_bd_base[i];
2807 rxb = &rx_queue->rx_buff[i];
2808
2809 while (alloc_cnt--) {
2810 /* try reuse page */
2811 if (unlikely(!rxb->page)) {
2812 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2813 gfar_rx_alloc_err(rx_queue);
2814 break;
2815 }
2816 }
2817
2818 /* Setup the new RxBD */
2819 gfar_init_rxbdp(rx_queue, bdp,
2820 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2821
2822 /* Update to the next pointer */
2823 bdp++;
2824 rxb++;
2825
2826 if (unlikely(++i == rx_queue->rx_ring_size)) {
2827 i = 0;
2828 bdp = rx_queue->rx_bd_base;
2829 rxb = rx_queue->rx_buff;
2830 }
2831 }
2832
2833 rx_queue->next_to_use = i;
2834 rx_queue->next_to_alloc = i;
2835 }
2836
2837 static void count_errors(u32 lstatus, struct net_device *ndev)
2838 {
2839 struct gfar_private *priv = netdev_priv(ndev);
2840 struct net_device_stats *stats = &ndev->stats;
2841 struct gfar_extra_stats *estats = &priv->extra_stats;
2842
2843 /* If the packet was truncated, none of the other errors matter */
2844 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2845 stats->rx_length_errors++;
2846
2847 atomic64_inc(&estats->rx_trunc);
2848
2849 return;
2850 }
2851 /* Count the errors, if there were any */
2852 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2853 stats->rx_length_errors++;
2854
2855 if (lstatus & BD_LFLAG(RXBD_LARGE))
2856 atomic64_inc(&estats->rx_large);
2857 else
2858 atomic64_inc(&estats->rx_short);
2859 }
2860 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2861 stats->rx_frame_errors++;
2862 atomic64_inc(&estats->rx_nonoctet);
2863 }
2864 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2865 atomic64_inc(&estats->rx_crcerr);
2866 stats->rx_crc_errors++;
2867 }
2868 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2869 atomic64_inc(&estats->rx_overrun);
2870 stats->rx_over_errors++;
2871 }
2872 }
2873
2874 irqreturn_t gfar_receive(int irq, void *grp_id)
2875 {
2876 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2877 unsigned long flags;
2878 u32 imask, ievent;
2879
2880 ievent = gfar_read(&grp->regs->ievent);
2881
2882 if (unlikely(ievent & IEVENT_FGPI)) {
2883 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2884 return IRQ_HANDLED;
2885 }
2886
2887 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2888 spin_lock_irqsave(&grp->grplock, flags);
2889 imask = gfar_read(&grp->regs->imask);
2890 imask &= IMASK_RX_DISABLED;
2891 gfar_write(&grp->regs->imask, imask);
2892 spin_unlock_irqrestore(&grp->grplock, flags);
2893 __napi_schedule(&grp->napi_rx);
2894 } else {
2895 /* Clear IEVENT, so interrupts aren't called again
2896 * because of the packets that have already arrived.
2897 */
2898 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2899 }
2900
2901 return IRQ_HANDLED;
2902 }
2903
2904 /* Interrupt Handler for Transmit complete */
2905 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2906 {
2907 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2908 unsigned long flags;
2909 u32 imask;
2910
2911 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2912 spin_lock_irqsave(&grp->grplock, flags);
2913 imask = gfar_read(&grp->regs->imask);
2914 imask &= IMASK_TX_DISABLED;
2915 gfar_write(&grp->regs->imask, imask);
2916 spin_unlock_irqrestore(&grp->grplock, flags);
2917 __napi_schedule(&grp->napi_tx);
2918 } else {
2919 /* Clear IEVENT, so interrupts aren't called again
2920 * because of the packets that have already arrived.
2921 */
2922 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2923 }
2924
2925 return IRQ_HANDLED;
2926 }
2927
2928 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2929 struct sk_buff *skb, bool first)
2930 {
2931 unsigned int size = lstatus & BD_LENGTH_MASK;
2932 struct page *page = rxb->page;
2933 bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2934
2935 /* Remove the FCS from the packet length */
2936 if (last)
2937 size -= ETH_FCS_LEN;
2938
2939 if (likely(first)) {
2940 skb_put(skb, size);
2941 } else {
2942 /* the last fragments' length contains the full frame length */
2943 if (last)
2944 size -= skb->len;
2945
2946 /* in case the last fragment consisted only of the FCS */
2947 if (size > 0)
2948 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2949 rxb->page_offset + RXBUF_ALIGNMENT,
2950 size, GFAR_RXB_TRUESIZE);
2951 }
2952
2953 /* try reuse page */
2954 if (unlikely(page_count(page) != 1))
2955 return false;
2956
2957 /* change offset to the other half */
2958 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2959
2960 page_ref_inc(page);
2961
2962 return true;
2963 }
2964
2965 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2966 struct gfar_rx_buff *old_rxb)
2967 {
2968 struct gfar_rx_buff *new_rxb;
2969 u16 nta = rxq->next_to_alloc;
2970
2971 new_rxb = &rxq->rx_buff[nta];
2972
2973 /* find next buf that can reuse a page */
2974 nta++;
2975 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2976
2977 /* copy page reference */
2978 *new_rxb = *old_rxb;
2979
2980 /* sync for use by the device */
2981 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2982 old_rxb->page_offset,
2983 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2984 }
2985
2986 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2987 u32 lstatus, struct sk_buff *skb)
2988 {
2989 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2990 struct page *page = rxb->page;
2991 bool first = false;
2992
2993 if (likely(!skb)) {
2994 void *buff_addr = page_address(page) + rxb->page_offset;
2995
2996 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2997 if (unlikely(!skb)) {
2998 gfar_rx_alloc_err(rx_queue);
2999 return NULL;
3000 }
3001 skb_reserve(skb, RXBUF_ALIGNMENT);
3002 first = true;
3003 }
3004
3005 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3006 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3007
3008 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3009 /* reuse the free half of the page */
3010 gfar_reuse_rx_page(rx_queue, rxb);
3011 } else {
3012 /* page cannot be reused, unmap it */
3013 dma_unmap_page(rx_queue->dev, rxb->dma,
3014 PAGE_SIZE, DMA_FROM_DEVICE);
3015 }
3016
3017 /* clear rxb content */
3018 rxb->page = NULL;
3019
3020 return skb;
3021 }
3022
3023 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3024 {
3025 /* If valid headers were found, and valid sums
3026 * were verified, then we tell the kernel that no
3027 * checksumming is necessary. Otherwise, it is [FIXME]
3028 */
3029 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3030 (RXFCB_CIP | RXFCB_CTU))
3031 skb->ip_summed = CHECKSUM_UNNECESSARY;
3032 else
3033 skb_checksum_none_assert(skb);
3034 }
3035
3036 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3037 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3038 {
3039 struct gfar_private *priv = netdev_priv(ndev);
3040 struct rxfcb *fcb = NULL;
3041
3042 /* fcb is at the beginning if exists */
3043 fcb = (struct rxfcb *)skb->data;
3044
3045 /* Remove the FCB from the skb
3046 * Remove the padded bytes, if there are any
3047 */
3048 if (priv->uses_rxfcb)
3049 skb_pull(skb, GMAC_FCB_LEN);
3050
3051 /* Get receive timestamp from the skb */
3052 if (priv->hwts_rx_en) {
3053 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3054 u64 *ns = (u64 *) skb->data;
3055
3056 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3057 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3058 }
3059
3060 if (priv->padding)
3061 skb_pull(skb, priv->padding);
3062
3063 if (ndev->features & NETIF_F_RXCSUM)
3064 gfar_rx_checksum(skb, fcb);
3065
3066 /* Tell the skb what kind of packet this is */
3067 skb->protocol = eth_type_trans(skb, ndev);
3068
3069 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3070 * Even if vlan rx accel is disabled, on some chips
3071 * RXFCB_VLN is pseudo randomly set.
3072 */
3073 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3074 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3075 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3076 be16_to_cpu(fcb->vlctl));
3077 }
3078
3079 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3080 * until the budget/quota has been reached. Returns the number
3081 * of frames handled
3082 */
3083 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3084 {
3085 struct net_device *ndev = rx_queue->ndev;
3086 struct gfar_private *priv = netdev_priv(ndev);
3087 struct rxbd8 *bdp;
3088 int i, howmany = 0;
3089 struct sk_buff *skb = rx_queue->skb;
3090 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3091 unsigned int total_bytes = 0, total_pkts = 0;
3092
3093 /* Get the first full descriptor */
3094 i = rx_queue->next_to_clean;
3095
3096 while (rx_work_limit--) {
3097 u32 lstatus;
3098
3099 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3100 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3101 cleaned_cnt = 0;
3102 }
3103
3104 bdp = &rx_queue->rx_bd_base[i];
3105 lstatus = be32_to_cpu(bdp->lstatus);
3106 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3107 break;
3108
3109 /* order rx buffer descriptor reads */
3110 rmb();
3111
3112 /* fetch next to clean buffer from the ring */
3113 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3114 if (unlikely(!skb))
3115 break;
3116
3117 cleaned_cnt++;
3118 howmany++;
3119
3120 if (unlikely(++i == rx_queue->rx_ring_size))
3121 i = 0;
3122
3123 rx_queue->next_to_clean = i;
3124
3125 /* fetch next buffer if not the last in frame */
3126 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3127 continue;
3128
3129 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3130 count_errors(lstatus, ndev);
3131
3132 /* discard faulty buffer */
3133 dev_kfree_skb(skb);
3134 skb = NULL;
3135 rx_queue->stats.rx_dropped++;
3136 continue;
3137 }
3138
3139 /* Increment the number of packets */
3140 total_pkts++;
3141 total_bytes += skb->len;
3142
3143 skb_record_rx_queue(skb, rx_queue->qindex);
3144
3145 gfar_process_frame(ndev, skb);
3146
3147 /* Send the packet up the stack */
3148 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3149
3150 skb = NULL;
3151 }
3152
3153 /* Store incomplete frames for completion */
3154 rx_queue->skb = skb;
3155
3156 rx_queue->stats.rx_packets += total_pkts;
3157 rx_queue->stats.rx_bytes += total_bytes;
3158
3159 if (cleaned_cnt)
3160 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3161
3162 /* Update Last Free RxBD pointer for LFC */
3163 if (unlikely(priv->tx_actual_en)) {
3164 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3165
3166 gfar_write(rx_queue->rfbptr, bdp_dma);
3167 }
3168
3169 return howmany;
3170 }
3171
3172 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3173 {
3174 struct gfar_priv_grp *gfargrp =
3175 container_of(napi, struct gfar_priv_grp, napi_rx);
3176 struct gfar __iomem *regs = gfargrp->regs;
3177 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3178 int work_done = 0;
3179
3180 /* Clear IEVENT, so interrupts aren't called again
3181 * because of the packets that have already arrived
3182 */
3183 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3184
3185 work_done = gfar_clean_rx_ring(rx_queue, budget);
3186
3187 if (work_done < budget) {
3188 u32 imask;
3189 napi_complete(napi);
3190 /* Clear the halt bit in RSTAT */
3191 gfar_write(&regs->rstat, gfargrp->rstat);
3192
3193 spin_lock_irq(&gfargrp->grplock);
3194 imask = gfar_read(&regs->imask);
3195 imask |= IMASK_RX_DEFAULT;
3196 gfar_write(&regs->imask, imask);
3197 spin_unlock_irq(&gfargrp->grplock);
3198 }
3199
3200 return work_done;
3201 }
3202
3203 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3204 {
3205 struct gfar_priv_grp *gfargrp =
3206 container_of(napi, struct gfar_priv_grp, napi_tx);
3207 struct gfar __iomem *regs = gfargrp->regs;
3208 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3209 u32 imask;
3210
3211 /* Clear IEVENT, so interrupts aren't called again
3212 * because of the packets that have already arrived
3213 */
3214 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3215
3216 /* run Tx cleanup to completion */
3217 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3218 gfar_clean_tx_ring(tx_queue);
3219
3220 napi_complete(napi);
3221
3222 spin_lock_irq(&gfargrp->grplock);
3223 imask = gfar_read(&regs->imask);
3224 imask |= IMASK_TX_DEFAULT;
3225 gfar_write(&regs->imask, imask);
3226 spin_unlock_irq(&gfargrp->grplock);
3227
3228 return 0;
3229 }
3230
3231 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3232 {
3233 struct gfar_priv_grp *gfargrp =
3234 container_of(napi, struct gfar_priv_grp, napi_rx);
3235 struct gfar_private *priv = gfargrp->priv;
3236 struct gfar __iomem *regs = gfargrp->regs;
3237 struct gfar_priv_rx_q *rx_queue = NULL;
3238 int work_done = 0, work_done_per_q = 0;
3239 int i, budget_per_q = 0;
3240 unsigned long rstat_rxf;
3241 int num_act_queues;
3242
3243 /* Clear IEVENT, so interrupts aren't called again
3244 * because of the packets that have already arrived
3245 */
3246 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3247
3248 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3249
3250 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3251 if (num_act_queues)
3252 budget_per_q = budget/num_act_queues;
3253
3254 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3255 /* skip queue if not active */
3256 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3257 continue;
3258
3259 rx_queue = priv->rx_queue[i];
3260 work_done_per_q =
3261 gfar_clean_rx_ring(rx_queue, budget_per_q);
3262 work_done += work_done_per_q;
3263
3264 /* finished processing this queue */
3265 if (work_done_per_q < budget_per_q) {
3266 /* clear active queue hw indication */
3267 gfar_write(&regs->rstat,
3268 RSTAT_CLEAR_RXF0 >> i);
3269 num_act_queues--;
3270
3271 if (!num_act_queues)
3272 break;
3273 }
3274 }
3275
3276 if (!num_act_queues) {
3277 u32 imask;
3278 napi_complete(napi);
3279
3280 /* Clear the halt bit in RSTAT */
3281 gfar_write(&regs->rstat, gfargrp->rstat);
3282
3283 spin_lock_irq(&gfargrp->grplock);
3284 imask = gfar_read(&regs->imask);
3285 imask |= IMASK_RX_DEFAULT;
3286 gfar_write(&regs->imask, imask);
3287 spin_unlock_irq(&gfargrp->grplock);
3288 }
3289
3290 return work_done;
3291 }
3292
3293 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3294 {
3295 struct gfar_priv_grp *gfargrp =
3296 container_of(napi, struct gfar_priv_grp, napi_tx);
3297 struct gfar_private *priv = gfargrp->priv;
3298 struct gfar __iomem *regs = gfargrp->regs;
3299 struct gfar_priv_tx_q *tx_queue = NULL;
3300 int has_tx_work = 0;
3301 int i;
3302
3303 /* Clear IEVENT, so interrupts aren't called again
3304 * because of the packets that have already arrived
3305 */
3306 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3307
3308 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3309 tx_queue = priv->tx_queue[i];
3310 /* run Tx cleanup to completion */
3311 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3312 gfar_clean_tx_ring(tx_queue);
3313 has_tx_work = 1;
3314 }
3315 }
3316
3317 if (!has_tx_work) {
3318 u32 imask;
3319 napi_complete(napi);
3320
3321 spin_lock_irq(&gfargrp->grplock);
3322 imask = gfar_read(&regs->imask);
3323 imask |= IMASK_TX_DEFAULT;
3324 gfar_write(&regs->imask, imask);
3325 spin_unlock_irq(&gfargrp->grplock);
3326 }
3327
3328 return 0;
3329 }
3330
3331
3332 #ifdef CONFIG_NET_POLL_CONTROLLER
3333 /* Polling 'interrupt' - used by things like netconsole to send skbs
3334 * without having to re-enable interrupts. It's not called while
3335 * the interrupt routine is executing.
3336 */
3337 static void gfar_netpoll(struct net_device *dev)
3338 {
3339 struct gfar_private *priv = netdev_priv(dev);
3340 int i;
3341
3342 /* If the device has multiple interrupts, run tx/rx */
3343 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3344 for (i = 0; i < priv->num_grps; i++) {
3345 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3346
3347 disable_irq(gfar_irq(grp, TX)->irq);
3348 disable_irq(gfar_irq(grp, RX)->irq);
3349 disable_irq(gfar_irq(grp, ER)->irq);
3350 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3351 enable_irq(gfar_irq(grp, ER)->irq);
3352 enable_irq(gfar_irq(grp, RX)->irq);
3353 enable_irq(gfar_irq(grp, TX)->irq);
3354 }
3355 } else {
3356 for (i = 0; i < priv->num_grps; i++) {
3357 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3358
3359 disable_irq(gfar_irq(grp, TX)->irq);
3360 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3361 enable_irq(gfar_irq(grp, TX)->irq);
3362 }
3363 }
3364 }
3365 #endif
3366
3367 /* The interrupt handler for devices with one interrupt */
3368 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3369 {
3370 struct gfar_priv_grp *gfargrp = grp_id;
3371
3372 /* Save ievent for future reference */
3373 u32 events = gfar_read(&gfargrp->regs->ievent);
3374
3375 /* Check for reception */
3376 if (events & IEVENT_RX_MASK)
3377 gfar_receive(irq, grp_id);
3378
3379 /* Check for transmit completion */
3380 if (events & IEVENT_TX_MASK)
3381 gfar_transmit(irq, grp_id);
3382
3383 /* Check for errors */
3384 if (events & IEVENT_ERR_MASK)
3385 gfar_error(irq, grp_id);
3386
3387 return IRQ_HANDLED;
3388 }
3389
3390 /* Called every time the controller might need to be made
3391 * aware of new link state. The PHY code conveys this
3392 * information through variables in the phydev structure, and this
3393 * function converts those variables into the appropriate
3394 * register values, and can bring down the device if needed.
3395 */
3396 static void adjust_link(struct net_device *dev)
3397 {
3398 struct gfar_private *priv = netdev_priv(dev);
3399 struct phy_device *phydev = dev->phydev;
3400
3401 if (unlikely(phydev->link != priv->oldlink ||
3402 (phydev->link && (phydev->duplex != priv->oldduplex ||
3403 phydev->speed != priv->oldspeed))))
3404 gfar_update_link_state(priv);
3405 }
3406
3407 /* Update the hash table based on the current list of multicast
3408 * addresses we subscribe to. Also, change the promiscuity of
3409 * the device based on the flags (this function is called
3410 * whenever dev->flags is changed
3411 */
3412 static void gfar_set_multi(struct net_device *dev)
3413 {
3414 struct netdev_hw_addr *ha;
3415 struct gfar_private *priv = netdev_priv(dev);
3416 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3417 u32 tempval;
3418
3419 if (dev->flags & IFF_PROMISC) {
3420 /* Set RCTRL to PROM */
3421 tempval = gfar_read(&regs->rctrl);
3422 tempval |= RCTRL_PROM;
3423 gfar_write(&regs->rctrl, tempval);
3424 } else {
3425 /* Set RCTRL to not PROM */
3426 tempval = gfar_read(&regs->rctrl);
3427 tempval &= ~(RCTRL_PROM);
3428 gfar_write(&regs->rctrl, tempval);
3429 }
3430
3431 if (dev->flags & IFF_ALLMULTI) {
3432 /* Set the hash to rx all multicast frames */
3433 gfar_write(&regs->igaddr0, 0xffffffff);
3434 gfar_write(&regs->igaddr1, 0xffffffff);
3435 gfar_write(&regs->igaddr2, 0xffffffff);
3436 gfar_write(&regs->igaddr3, 0xffffffff);
3437 gfar_write(&regs->igaddr4, 0xffffffff);
3438 gfar_write(&regs->igaddr5, 0xffffffff);
3439 gfar_write(&regs->igaddr6, 0xffffffff);
3440 gfar_write(&regs->igaddr7, 0xffffffff);
3441 gfar_write(&regs->gaddr0, 0xffffffff);
3442 gfar_write(&regs->gaddr1, 0xffffffff);
3443 gfar_write(&regs->gaddr2, 0xffffffff);
3444 gfar_write(&regs->gaddr3, 0xffffffff);
3445 gfar_write(&regs->gaddr4, 0xffffffff);
3446 gfar_write(&regs->gaddr5, 0xffffffff);
3447 gfar_write(&regs->gaddr6, 0xffffffff);
3448 gfar_write(&regs->gaddr7, 0xffffffff);
3449 } else {
3450 int em_num;
3451 int idx;
3452
3453 /* zero out the hash */
3454 gfar_write(&regs->igaddr0, 0x0);
3455 gfar_write(&regs->igaddr1, 0x0);
3456 gfar_write(&regs->igaddr2, 0x0);
3457 gfar_write(&regs->igaddr3, 0x0);
3458 gfar_write(&regs->igaddr4, 0x0);
3459 gfar_write(&regs->igaddr5, 0x0);
3460 gfar_write(&regs->igaddr6, 0x0);
3461 gfar_write(&regs->igaddr7, 0x0);
3462 gfar_write(&regs->gaddr0, 0x0);
3463 gfar_write(&regs->gaddr1, 0x0);
3464 gfar_write(&regs->gaddr2, 0x0);
3465 gfar_write(&regs->gaddr3, 0x0);
3466 gfar_write(&regs->gaddr4, 0x0);
3467 gfar_write(&regs->gaddr5, 0x0);
3468 gfar_write(&regs->gaddr6, 0x0);
3469 gfar_write(&regs->gaddr7, 0x0);
3470
3471 /* If we have extended hash tables, we need to
3472 * clear the exact match registers to prepare for
3473 * setting them
3474 */
3475 if (priv->extended_hash) {
3476 em_num = GFAR_EM_NUM + 1;
3477 gfar_clear_exact_match(dev);
3478 idx = 1;
3479 } else {
3480 idx = 0;
3481 em_num = 0;
3482 }
3483
3484 if (netdev_mc_empty(dev))
3485 return;
3486
3487 /* Parse the list, and set the appropriate bits */
3488 netdev_for_each_mc_addr(ha, dev) {
3489 if (idx < em_num) {
3490 gfar_set_mac_for_addr(dev, idx, ha->addr);
3491 idx++;
3492 } else
3493 gfar_set_hash_for_addr(dev, ha->addr);
3494 }
3495 }
3496 }
3497
3498
3499 /* Clears each of the exact match registers to zero, so they
3500 * don't interfere with normal reception
3501 */
3502 static void gfar_clear_exact_match(struct net_device *dev)
3503 {
3504 int idx;
3505 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3506
3507 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3508 gfar_set_mac_for_addr(dev, idx, zero_arr);
3509 }
3510
3511 /* Set the appropriate hash bit for the given addr */
3512 /* The algorithm works like so:
3513 * 1) Take the Destination Address (ie the multicast address), and
3514 * do a CRC on it (little endian), and reverse the bits of the
3515 * result.
3516 * 2) Use the 8 most significant bits as a hash into a 256-entry
3517 * table. The table is controlled through 8 32-bit registers:
3518 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3519 * gaddr7. This means that the 3 most significant bits in the
3520 * hash index which gaddr register to use, and the 5 other bits
3521 * indicate which bit (assuming an IBM numbering scheme, which
3522 * for PowerPC (tm) is usually the case) in the register holds
3523 * the entry.
3524 */
3525 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3526 {
3527 u32 tempval;
3528 struct gfar_private *priv = netdev_priv(dev);
3529 u32 result = ether_crc(ETH_ALEN, addr);
3530 int width = priv->hash_width;
3531 u8 whichbit = (result >> (32 - width)) & 0x1f;
3532 u8 whichreg = result >> (32 - width + 5);
3533 u32 value = (1 << (31-whichbit));
3534
3535 tempval = gfar_read(priv->hash_regs[whichreg]);
3536 tempval |= value;
3537 gfar_write(priv->hash_regs[whichreg], tempval);
3538 }
3539
3540
3541 /* There are multiple MAC Address register pairs on some controllers
3542 * This function sets the numth pair to a given address
3543 */
3544 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3545 const u8 *addr)
3546 {
3547 struct gfar_private *priv = netdev_priv(dev);
3548 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3549 u32 tempval;
3550 u32 __iomem *macptr = &regs->macstnaddr1;
3551
3552 macptr += num*2;
3553
3554 /* For a station address of 0x12345678ABCD in transmission
3555 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3556 * MACnADDR2 is set to 0x34120000.
3557 */
3558 tempval = (addr[5] << 24) | (addr[4] << 16) |
3559 (addr[3] << 8) | addr[2];
3560
3561 gfar_write(macptr, tempval);
3562
3563 tempval = (addr[1] << 24) | (addr[0] << 16);
3564
3565 gfar_write(macptr+1, tempval);
3566 }
3567
3568 /* GFAR error interrupt handler */
3569 static irqreturn_t gfar_error(int irq, void *grp_id)
3570 {
3571 struct gfar_priv_grp *gfargrp = grp_id;
3572 struct gfar __iomem *regs = gfargrp->regs;
3573 struct gfar_private *priv= gfargrp->priv;
3574 struct net_device *dev = priv->ndev;
3575
3576 /* Save ievent for future reference */
3577 u32 events = gfar_read(&regs->ievent);
3578
3579 /* Clear IEVENT */
3580 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3581
3582 /* Magic Packet is not an error. */
3583 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3584 (events & IEVENT_MAG))
3585 events &= ~IEVENT_MAG;
3586
3587 /* Hmm... */
3588 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3589 netdev_dbg(dev,
3590 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3591 events, gfar_read(&regs->imask));
3592
3593 /* Update the error counters */
3594 if (events & IEVENT_TXE) {
3595 dev->stats.tx_errors++;
3596
3597 if (events & IEVENT_LC)
3598 dev->stats.tx_window_errors++;
3599 if (events & IEVENT_CRL)
3600 dev->stats.tx_aborted_errors++;
3601 if (events & IEVENT_XFUN) {
3602 netif_dbg(priv, tx_err, dev,
3603 "TX FIFO underrun, packet dropped\n");
3604 dev->stats.tx_dropped++;
3605 atomic64_inc(&priv->extra_stats.tx_underrun);
3606
3607 schedule_work(&priv->reset_task);
3608 }
3609 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3610 }
3611 if (events & IEVENT_BSY) {
3612 dev->stats.rx_over_errors++;
3613 atomic64_inc(&priv->extra_stats.rx_bsy);
3614
3615 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3616 gfar_read(&regs->rstat));
3617 }
3618 if (events & IEVENT_BABR) {
3619 dev->stats.rx_errors++;
3620 atomic64_inc(&priv->extra_stats.rx_babr);
3621
3622 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3623 }
3624 if (events & IEVENT_EBERR) {
3625 atomic64_inc(&priv->extra_stats.eberr);
3626 netif_dbg(priv, rx_err, dev, "bus error\n");
3627 }
3628 if (events & IEVENT_RXC)
3629 netif_dbg(priv, rx_status, dev, "control frame\n");
3630
3631 if (events & IEVENT_BABT) {
3632 atomic64_inc(&priv->extra_stats.tx_babt);
3633 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3634 }
3635 return IRQ_HANDLED;
3636 }
3637
3638 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3639 {
3640 struct net_device *ndev = priv->ndev;
3641 struct phy_device *phydev = ndev->phydev;
3642 u32 val = 0;
3643
3644 if (!phydev->duplex)
3645 return val;
3646
3647 if (!priv->pause_aneg_en) {
3648 if (priv->tx_pause_en)
3649 val |= MACCFG1_TX_FLOW;
3650 if (priv->rx_pause_en)
3651 val |= MACCFG1_RX_FLOW;
3652 } else {
3653 u16 lcl_adv, rmt_adv;
3654 u8 flowctrl;
3655 /* get link partner capabilities */
3656 rmt_adv = 0;
3657 if (phydev->pause)
3658 rmt_adv = LPA_PAUSE_CAP;
3659 if (phydev->asym_pause)
3660 rmt_adv |= LPA_PAUSE_ASYM;
3661
3662 lcl_adv = 0;
3663 if (phydev->advertising & ADVERTISED_Pause)
3664 lcl_adv |= ADVERTISE_PAUSE_CAP;
3665 if (phydev->advertising & ADVERTISED_Asym_Pause)
3666 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3667
3668 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3669 if (flowctrl & FLOW_CTRL_TX)
3670 val |= MACCFG1_TX_FLOW;
3671 if (flowctrl & FLOW_CTRL_RX)
3672 val |= MACCFG1_RX_FLOW;
3673 }
3674
3675 return val;
3676 }
3677
3678 static noinline void gfar_update_link_state(struct gfar_private *priv)
3679 {
3680 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3681 struct net_device *ndev = priv->ndev;
3682 struct phy_device *phydev = ndev->phydev;
3683 struct gfar_priv_rx_q *rx_queue = NULL;
3684 int i;
3685
3686 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3687 return;
3688
3689 if (phydev->link) {
3690 u32 tempval1 = gfar_read(&regs->maccfg1);
3691 u32 tempval = gfar_read(&regs->maccfg2);
3692 u32 ecntrl = gfar_read(&regs->ecntrl);
3693 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3694
3695 if (phydev->duplex != priv->oldduplex) {
3696 if (!(phydev->duplex))
3697 tempval &= ~(MACCFG2_FULL_DUPLEX);
3698 else
3699 tempval |= MACCFG2_FULL_DUPLEX;
3700
3701 priv->oldduplex = phydev->duplex;
3702 }
3703
3704 if (phydev->speed != priv->oldspeed) {
3705 switch (phydev->speed) {
3706 case 1000:
3707 tempval =
3708 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3709
3710 ecntrl &= ~(ECNTRL_R100);
3711 break;
3712 case 100:
3713 case 10:
3714 tempval =
3715 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3716
3717 /* Reduced mode distinguishes
3718 * between 10 and 100
3719 */
3720 if (phydev->speed == SPEED_100)
3721 ecntrl |= ECNTRL_R100;
3722 else
3723 ecntrl &= ~(ECNTRL_R100);
3724 break;
3725 default:
3726 netif_warn(priv, link, priv->ndev,
3727 "Ack! Speed (%d) is not 10/100/1000!\n",
3728 phydev->speed);
3729 break;
3730 }
3731
3732 priv->oldspeed = phydev->speed;
3733 }
3734
3735 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3736 tempval1 |= gfar_get_flowctrl_cfg(priv);
3737
3738 /* Turn last free buffer recording on */
3739 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3740 for (i = 0; i < priv->num_rx_queues; i++) {
3741 u32 bdp_dma;
3742
3743 rx_queue = priv->rx_queue[i];
3744 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3745 gfar_write(rx_queue->rfbptr, bdp_dma);
3746 }
3747
3748 priv->tx_actual_en = 1;
3749 }
3750
3751 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3752 priv->tx_actual_en = 0;
3753
3754 gfar_write(&regs->maccfg1, tempval1);
3755 gfar_write(&regs->maccfg2, tempval);
3756 gfar_write(&regs->ecntrl, ecntrl);
3757
3758 if (!priv->oldlink)
3759 priv->oldlink = 1;
3760
3761 } else if (priv->oldlink) {
3762 priv->oldlink = 0;
3763 priv->oldspeed = 0;
3764 priv->oldduplex = -1;
3765 }
3766
3767 if (netif_msg_link(priv))
3768 phy_print_status(phydev);
3769 }
3770
3771 static const struct of_device_id gfar_match[] =
3772 {
3773 {
3774 .type = "network",
3775 .compatible = "gianfar",
3776 },
3777 {
3778 .compatible = "fsl,etsec2",
3779 },
3780 {},
3781 };
3782 MODULE_DEVICE_TABLE(of, gfar_match);
3783
3784 /* Structure for a device driver */
3785 static struct platform_driver gfar_driver = {
3786 .driver = {
3787 .name = "fsl-gianfar",
3788 .pm = GFAR_PM_OPS,
3789 .of_match_table = gfar_match,
3790 },
3791 .probe = gfar_probe,
3792 .remove = gfar_remove,
3793 };
3794
3795 module_platform_driver(gfar_driver);