]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44 int size, dma_addr_t dma, int frag_end,
45 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 struct iphdr *iphdr;
50 struct ipv6hdr *ipv6hdr;
51 struct sk_buff *skb;
52 __be16 protocol;
53 u8 bn_pid = 0;
54 u8 rrcfv = 0;
55 u8 ip_offset = 0;
56 u8 tvsvsn = 0;
57 u16 mss = 0;
58 u8 l4_len = 0;
59 u16 paylen = 0;
60
61 desc_cb->priv = priv;
62 desc_cb->length = size;
63 desc_cb->dma = dma;
64 desc_cb->type = type;
65
66 desc->addr = cpu_to_le64(dma);
67 desc->tx.send_size = cpu_to_le16((u16)size);
68
69 /* config bd buffer end */
70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73 /* fill port_id in the tx bd for sending management pkts */
74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76
77 if (type == DESC_TYPE_SKB) {
78 skb = (struct sk_buff *)priv;
79
80 if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 skb_reset_mac_len(skb);
82 protocol = skb->protocol;
83 ip_offset = ETH_HLEN;
84
85 if (protocol == htons(ETH_P_8021Q)) {
86 ip_offset += VLAN_HLEN;
87 protocol = vlan_get_protocol(skb);
88 skb->protocol = protocol;
89 }
90
91 if (skb->protocol == htons(ETH_P_IP)) {
92 iphdr = ip_hdr(skb);
93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95
96 /* check for tcp/udp header */
97 if (iphdr->protocol == IPPROTO_TCP &&
98 skb_is_gso(skb)) {
99 hnae_set_bit(tvsvsn,
100 HNSV2_TXD_TSE_B, 1);
101 l4_len = tcp_hdrlen(skb);
102 mss = skb_shinfo(skb)->gso_size;
103 paylen = skb->len - SKB_TMP_LEN(skb);
104 }
105 } else if (skb->protocol == htons(ETH_P_IPV6)) {
106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 ipv6hdr = ipv6_hdr(skb);
108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109
110 /* check for tcp/udp header */
111 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 hnae_set_bit(tvsvsn,
114 HNSV2_TXD_TSE_B, 1);
115 l4_len = tcp_hdrlen(skb);
116 mss = skb_shinfo(skb)->gso_size;
117 paylen = skb->len - SKB_TMP_LEN(skb);
118 }
119 }
120 desc->tx.ip_offset = ip_offset;
121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 desc->tx.mss = cpu_to_le16(mss);
123 desc->tx.l4_len = l4_len;
124 desc->tx.paylen = cpu_to_le16(paylen);
125 }
126 }
127
128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129
130 desc->tx.bn_pid = bn_pid;
131 desc->tx.ra_ri_cs_fe_vld = rrcfv;
132
133 ring_ptr_move_fw(ring, next_to_use);
134 }
135
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 { "HISI00C1", 0 },
138 { "HISI00C2", 0 },
139 { },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 int size, dma_addr_t dma, int frag_end,
145 int buf_num, enum hns_desc_type type, int mtu)
146 {
147 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 struct sk_buff *skb;
150 __be16 protocol;
151 u32 ip_offset;
152 u32 asid_bufnum_pid = 0;
153 u32 flag_ipoffset = 0;
154
155 desc_cb->priv = priv;
156 desc_cb->length = size;
157 desc_cb->dma = dma;
158 desc_cb->type = type;
159
160 desc->addr = cpu_to_le64(dma);
161 desc->tx.send_size = cpu_to_le16((u16)size);
162
163 /*config bd buffer end */
164 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165
166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167
168 if (type == DESC_TYPE_SKB) {
169 skb = (struct sk_buff *)priv;
170
171 if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 protocol = skb->protocol;
173 ip_offset = ETH_HLEN;
174
175 /*if it is a SW VLAN check the next protocol*/
176 if (protocol == htons(ETH_P_8021Q)) {
177 ip_offset += VLAN_HLEN;
178 protocol = vlan_get_protocol(skb);
179 skb->protocol = protocol;
180 }
181
182 if (skb->protocol == htons(ETH_P_IP)) {
183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 /* check for tcp/udp header */
185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186
187 } else if (skb->protocol == htons(ETH_P_IPV6)) {
188 /* ipv6 has not l3 cs, check for L4 header */
189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 }
191
192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 }
194 }
195
196 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197
198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200
201 ring_ptr_move_fw(ring, next_to_use);
202 }
203
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 ring_ptr_move_bw(ring, next_to_use);
207 }
208
209 static int hns_nic_maybe_stop_tx(
210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 struct sk_buff *skb = *out_skb;
213 struct sk_buff *new_skb = NULL;
214 int buf_num;
215
216 /* no. of segments (plus a header) */
217 buf_num = skb_shinfo(skb)->nr_frags + 1;
218
219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 if (ring_space(ring) < 1)
221 return -EBUSY;
222
223 new_skb = skb_copy(skb, GFP_ATOMIC);
224 if (!new_skb)
225 return -ENOMEM;
226
227 dev_kfree_skb_any(skb);
228 *out_skb = new_skb;
229 buf_num = 1;
230 } else if (buf_num > ring_space(ring)) {
231 return -EBUSY;
232 }
233
234 *bnum = buf_num;
235 return 0;
236 }
237
238 static int hns_nic_maybe_stop_tso(
239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 int i;
242 int size;
243 int buf_num;
244 int frag_num;
245 struct sk_buff *skb = *out_skb;
246 struct sk_buff *new_skb = NULL;
247 struct skb_frag_struct *frag;
248
249 size = skb_headlen(skb);
250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251
252 frag_num = skb_shinfo(skb)->nr_frags;
253 for (i = 0; i < frag_num; i++) {
254 frag = &skb_shinfo(skb)->frags[i];
255 size = skb_frag_size(frag);
256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 }
258
259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 if (ring_space(ring) < buf_num)
262 return -EBUSY;
263 /* manual split the send packet */
264 new_skb = skb_copy(skb, GFP_ATOMIC);
265 if (!new_skb)
266 return -ENOMEM;
267 dev_kfree_skb_any(skb);
268 *out_skb = new_skb;
269
270 } else if (ring_space(ring) < buf_num) {
271 return -EBUSY;
272 }
273
274 *bnum = buf_num;
275 return 0;
276 }
277
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 int size, dma_addr_t dma, int frag_end,
280 int buf_num, enum hns_desc_type type, int mtu)
281 {
282 int frag_buf_num;
283 int sizeoflast;
284 int k;
285
286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 sizeoflast = size % BD_MAX_SEND_SIZE;
288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289
290 /* when the frag size is bigger than hardware, split this frag */
291 for (k = 0; k < frag_buf_num; k++)
292 fill_v2_desc(ring, priv,
293 (k == frag_buf_num - 1) ?
294 sizeoflast : BD_MAX_SEND_SIZE,
295 dma + BD_MAX_SEND_SIZE * k,
296 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 buf_num,
298 (type == DESC_TYPE_SKB && !k) ?
299 DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 mtu);
301 }
302
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304 struct sk_buff *skb,
305 struct hns_nic_ring_data *ring_data)
306 {
307 struct hns_nic_priv *priv = netdev_priv(ndev);
308 struct hnae_ring *ring = ring_data->ring;
309 struct device *dev = ring_to_dev(ring);
310 struct netdev_queue *dev_queue;
311 struct skb_frag_struct *frag;
312 int buf_num;
313 int seg_num;
314 dma_addr_t dma;
315 int size, next_to_use;
316 int i;
317
318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 case -EBUSY:
320 ring->stats.tx_busy++;
321 goto out_net_tx_busy;
322 case -ENOMEM:
323 ring->stats.sw_err_cnt++;
324 netdev_err(ndev, "no memory to xmit!\n");
325 goto out_err_tx_ok;
326 default:
327 break;
328 }
329
330 /* no. of segments (plus a header) */
331 seg_num = skb_shinfo(skb)->nr_frags + 1;
332 next_to_use = ring->next_to_use;
333
334 /* fill the first part */
335 size = skb_headlen(skb);
336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 if (dma_mapping_error(dev, dma)) {
338 netdev_err(ndev, "TX head DMA map failed\n");
339 ring->stats.sw_err_cnt++;
340 goto out_err_tx_ok;
341 }
342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 buf_num, DESC_TYPE_SKB, ndev->mtu);
344
345 /* fill the fragments */
346 for (i = 1; i < seg_num; i++) {
347 frag = &skb_shinfo(skb)->frags[i - 1];
348 size = skb_frag_size(frag);
349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 if (dma_mapping_error(dev, dma)) {
351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 ring->stats.sw_err_cnt++;
353 goto out_map_frag_fail;
354 }
355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 seg_num - 1 == i ? 1 : 0, buf_num,
357 DESC_TYPE_PAGE, ndev->mtu);
358 }
359
360 /*complete translate all packets*/
361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 netdev_tx_sent_queue(dev_queue, skb->len);
363
364 netif_trans_update(ndev);
365 ndev->stats.tx_bytes += skb->len;
366 ndev->stats.tx_packets++;
367
368 wmb(); /* commit all data before submit */
369 assert(skb->queue_mapping < priv->ae_handle->q_num);
370 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371 ring->stats.tx_pkts++;
372 ring->stats.tx_bytes += skb->len;
373
374 return NETDEV_TX_OK;
375
376 out_map_frag_fail:
377
378 while (ring->next_to_use != next_to_use) {
379 unfill_desc(ring);
380 if (ring->next_to_use != next_to_use)
381 dma_unmap_page(dev,
382 ring->desc_cb[ring->next_to_use].dma,
383 ring->desc_cb[ring->next_to_use].length,
384 DMA_TO_DEVICE);
385 else
386 dma_unmap_single(dev,
387 ring->desc_cb[next_to_use].dma,
388 ring->desc_cb[next_to_use].length,
389 DMA_TO_DEVICE);
390 }
391
392 out_err_tx_ok:
393
394 dev_kfree_skb_any(skb);
395 return NETDEV_TX_OK;
396
397 out_net_tx_busy:
398
399 netif_stop_subqueue(ndev, skb->queue_mapping);
400
401 /* Herbert's original patch had:
402 * smp_mb__after_netif_stop_queue();
403 * but since that doesn't exist yet, just open code it.
404 */
405 smp_mb();
406 return NETDEV_TX_BUSY;
407 }
408
409 /**
410 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
411 * @data: pointer to the start of the headers
412 * @max: total length of section to find headers in
413 *
414 * This function is meant to determine the length of headers that will
415 * be recognized by hardware for LRO, GRO, and RSC offloads. The main
416 * motivation of doing this is to only perform one pull for IPv4 TCP
417 * packets so that we can do basic things like calculating the gso_size
418 * based on the average data per packet.
419 **/
420 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
421 unsigned int max_size)
422 {
423 unsigned char *network;
424 u8 hlen;
425
426 /* this should never happen, but better safe than sorry */
427 if (max_size < ETH_HLEN)
428 return max_size;
429
430 /* initialize network frame pointer */
431 network = data;
432
433 /* set first protocol and move network header forward */
434 network += ETH_HLEN;
435
436 /* handle any vlan tag if present */
437 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
438 == HNS_RX_FLAG_VLAN_PRESENT) {
439 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
440 return max_size;
441
442 network += VLAN_HLEN;
443 }
444
445 /* handle L3 protocols */
446 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
447 == HNS_RX_FLAG_L3ID_IPV4) {
448 if ((typeof(max_size))(network - data) >
449 (max_size - sizeof(struct iphdr)))
450 return max_size;
451
452 /* access ihl as a u8 to avoid unaligned access on ia64 */
453 hlen = (network[0] & 0x0F) << 2;
454
455 /* verify hlen meets minimum size requirements */
456 if (hlen < sizeof(struct iphdr))
457 return network - data;
458
459 /* record next protocol if header is present */
460 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
461 == HNS_RX_FLAG_L3ID_IPV6) {
462 if ((typeof(max_size))(network - data) >
463 (max_size - sizeof(struct ipv6hdr)))
464 return max_size;
465
466 /* record next protocol */
467 hlen = sizeof(struct ipv6hdr);
468 } else {
469 return network - data;
470 }
471
472 /* relocate pointer to start of L4 header */
473 network += hlen;
474
475 /* finally sort out TCP/UDP */
476 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
477 == HNS_RX_FLAG_L4ID_TCP) {
478 if ((typeof(max_size))(network - data) >
479 (max_size - sizeof(struct tcphdr)))
480 return max_size;
481
482 /* access doff as a u8 to avoid unaligned access on ia64 */
483 hlen = (network[12] & 0xF0) >> 2;
484
485 /* verify hlen meets minimum size requirements */
486 if (hlen < sizeof(struct tcphdr))
487 return network - data;
488
489 network += hlen;
490 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
491 == HNS_RX_FLAG_L4ID_UDP) {
492 if ((typeof(max_size))(network - data) >
493 (max_size - sizeof(struct udphdr)))
494 return max_size;
495
496 network += sizeof(struct udphdr);
497 }
498
499 /* If everything has gone correctly network should be the
500 * data section of the packet and will be the end of the header.
501 * If not then it probably represents the end of the last recognized
502 * header.
503 */
504 if ((typeof(max_size))(network - data) < max_size)
505 return network - data;
506 else
507 return max_size;
508 }
509
510 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
511 struct hnae_ring *ring, int pull_len,
512 struct hnae_desc_cb *desc_cb)
513 {
514 struct hnae_desc *desc;
515 int truesize, size;
516 int last_offset;
517 bool twobufs;
518
519 twobufs = ((PAGE_SIZE < 8192) &&
520 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
521
522 desc = &ring->desc[ring->next_to_clean];
523 size = le16_to_cpu(desc->rx.size);
524
525 if (twobufs) {
526 truesize = hnae_buf_size(ring);
527 } else {
528 truesize = ALIGN(size, L1_CACHE_BYTES);
529 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
530 }
531
532 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
533 size - pull_len, truesize - pull_len);
534
535 /* avoid re-using remote pages,flag default unreuse */
536 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
537 return;
538
539 if (twobufs) {
540 /* if we are only owner of page we can reuse it */
541 if (likely(page_count(desc_cb->priv) == 1)) {
542 /* flip page offset to other buffer */
543 desc_cb->page_offset ^= truesize;
544
545 desc_cb->reuse_flag = 1;
546 /* bump ref count on page before it is given*/
547 get_page(desc_cb->priv);
548 }
549 return;
550 }
551
552 /* move offset up to the next cache line */
553 desc_cb->page_offset += truesize;
554
555 if (desc_cb->page_offset <= last_offset) {
556 desc_cb->reuse_flag = 1;
557 /* bump ref count on page before it is given*/
558 get_page(desc_cb->priv);
559 }
560 }
561
562 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564 *out_bnum = hnae_get_field(bnum_flag,
565 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
566 }
567
568 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
569 {
570 *out_bnum = hnae_get_field(bnum_flag,
571 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
572 }
573
574 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
575 struct sk_buff *skb, u32 flag)
576 {
577 struct net_device *netdev = ring_data->napi.dev;
578 u32 l3id;
579 u32 l4id;
580
581 /* check if RX checksum offload is enabled */
582 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
583 return;
584
585 /* In hardware, we only support checksum for the following protocols:
586 * 1) IPv4,
587 * 2) TCP(over IPv4 or IPv6),
588 * 3) UDP(over IPv4 or IPv6),
589 * 4) SCTP(over IPv4 or IPv6)
590 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
591 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
592 *
593 * Hardware limitation:
594 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
595 * Error" bit (which usually can be used to indicate whether checksum
596 * was calculated by the hardware and if there was any error encountered
597 * during checksum calculation).
598 *
599 * Software workaround:
600 * We do get info within the RX descriptor about the kind of L3/L4
601 * protocol coming in the packet and the error status. These errors
602 * might not just be checksum errors but could be related to version,
603 * length of IPv4, UDP, TCP etc.
604 * Because there is no-way of knowing if it is a L3/L4 error due to bad
605 * checksum or any other L3/L4 error, we will not (cannot) convey
606 * checksum status for such cases to upper stack and will not maintain
607 * the RX L3/L4 checksum counters as well.
608 */
609
610 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
611 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
612
613 /* check L3 protocol for which checksum is supported */
614 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
615 return;
616
617 /* check for any(not just checksum)flagged L3 protocol errors */
618 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
619 return;
620
621 /* we do not support checksum of fragmented packets */
622 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
623 return;
624
625 /* check L4 protocol for which checksum is supported */
626 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
627 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
628 (l4id != HNS_RX_FLAG_L4ID_SCTP))
629 return;
630
631 /* check for any(not just checksum)flagged L4 protocol errors */
632 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
633 return;
634
635 /* now, this has to be a packet with valid RX checksum */
636 skb->ip_summed = CHECKSUM_UNNECESSARY;
637 }
638
639 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
640 struct sk_buff **out_skb, int *out_bnum)
641 {
642 struct hnae_ring *ring = ring_data->ring;
643 struct net_device *ndev = ring_data->napi.dev;
644 struct hns_nic_priv *priv = netdev_priv(ndev);
645 struct sk_buff *skb;
646 struct hnae_desc *desc;
647 struct hnae_desc_cb *desc_cb;
648 unsigned char *va;
649 int bnum, length, i;
650 int pull_len;
651 u32 bnum_flag;
652
653 desc = &ring->desc[ring->next_to_clean];
654 desc_cb = &ring->desc_cb[ring->next_to_clean];
655
656 prefetch(desc);
657
658 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
659
660 /* prefetch first cache line of first page */
661 prefetch(va);
662 #if L1_CACHE_BYTES < 128
663 prefetch(va + L1_CACHE_BYTES);
664 #endif
665
666 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
667 HNS_RX_HEAD_SIZE);
668 if (unlikely(!skb)) {
669 netdev_err(ndev, "alloc rx skb fail\n");
670 ring->stats.sw_err_cnt++;
671 return -ENOMEM;
672 }
673
674 prefetchw(skb->data);
675 length = le16_to_cpu(desc->rx.pkt_len);
676 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
677 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
678 *out_bnum = bnum;
679
680 if (length <= HNS_RX_HEAD_SIZE) {
681 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
682
683 /* we can reuse buffer as-is, just make sure it is local */
684 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
685 desc_cb->reuse_flag = 1;
686 else /* this page cannot be reused so discard it */
687 put_page(desc_cb->priv);
688
689 ring_ptr_move_fw(ring, next_to_clean);
690
691 if (unlikely(bnum != 1)) { /* check err*/
692 *out_bnum = 1;
693 goto out_bnum_err;
694 }
695 } else {
696 ring->stats.seg_pkt_cnt++;
697
698 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
699 memcpy(__skb_put(skb, pull_len), va,
700 ALIGN(pull_len, sizeof(long)));
701
702 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
703 ring_ptr_move_fw(ring, next_to_clean);
704
705 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
706 *out_bnum = 1;
707 goto out_bnum_err;
708 }
709 for (i = 1; i < bnum; i++) {
710 desc = &ring->desc[ring->next_to_clean];
711 desc_cb = &ring->desc_cb[ring->next_to_clean];
712
713 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
714 ring_ptr_move_fw(ring, next_to_clean);
715 }
716 }
717
718 /* check except process, free skb and jump the desc */
719 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
720 out_bnum_err:
721 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
722 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
723 bnum, ring->max_desc_num_per_pkt,
724 length, (int)MAX_SKB_FRAGS,
725 ((u64 *)desc)[0], ((u64 *)desc)[1]);
726 ring->stats.err_bd_num++;
727 dev_kfree_skb_any(skb);
728 return -EDOM;
729 }
730
731 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
732
733 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
734 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
735 ((u64 *)desc)[0], ((u64 *)desc)[1]);
736 ring->stats.non_vld_descs++;
737 dev_kfree_skb_any(skb);
738 return -EINVAL;
739 }
740
741 if (unlikely((!desc->rx.pkt_len) ||
742 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
743 ring->stats.err_pkt_len++;
744 dev_kfree_skb_any(skb);
745 return -EFAULT;
746 }
747
748 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
749 ring->stats.l2_err++;
750 dev_kfree_skb_any(skb);
751 return -EFAULT;
752 }
753
754 ring->stats.rx_pkts++;
755 ring->stats.rx_bytes += skb->len;
756
757 /* indicate to upper stack if our hardware has already calculated
758 * the RX checksum
759 */
760 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
761
762 return 0;
763 }
764
765 static void
766 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
767 {
768 int i, ret;
769 struct hnae_desc_cb res_cbs;
770 struct hnae_desc_cb *desc_cb;
771 struct hnae_ring *ring = ring_data->ring;
772 struct net_device *ndev = ring_data->napi.dev;
773
774 for (i = 0; i < cleand_count; i++) {
775 desc_cb = &ring->desc_cb[ring->next_to_use];
776 if (desc_cb->reuse_flag) {
777 ring->stats.reuse_pg_cnt++;
778 hnae_reuse_buffer(ring, ring->next_to_use);
779 } else {
780 ret = hnae_reserve_buffer_map(ring, &res_cbs);
781 if (ret) {
782 ring->stats.sw_err_cnt++;
783 netdev_err(ndev, "hnae reserve buffer map failed.\n");
784 break;
785 }
786 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
787 }
788
789 ring_ptr_move_fw(ring, next_to_use);
790 }
791
792 wmb(); /* make all data has been write before submit */
793 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
794 }
795
796 /* return error number for error or number of desc left to take
797 */
798 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
799 struct sk_buff *skb)
800 {
801 struct net_device *ndev = ring_data->napi.dev;
802
803 skb->protocol = eth_type_trans(skb, ndev);
804 (void)napi_gro_receive(&ring_data->napi, skb);
805 }
806
807 static int hns_desc_unused(struct hnae_ring *ring)
808 {
809 int ntc = ring->next_to_clean;
810 int ntu = ring->next_to_use;
811
812 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
813 }
814
815 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
816 int budget, void *v)
817 {
818 struct hnae_ring *ring = ring_data->ring;
819 struct sk_buff *skb;
820 int num, bnum;
821 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
822 int recv_pkts, recv_bds, clean_count, err;
823 int unused_count = hns_desc_unused(ring);
824
825 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
826 rmb(); /* make sure num taken effect before the other data is touched */
827
828 recv_pkts = 0, recv_bds = 0, clean_count = 0;
829 num -= unused_count;
830
831 while (recv_pkts < budget && recv_bds < num) {
832 /* reuse or realloc buffers */
833 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
834 hns_nic_alloc_rx_buffers(ring_data,
835 clean_count + unused_count);
836 clean_count = 0;
837 unused_count = hns_desc_unused(ring);
838 }
839
840 /* poll one pkt */
841 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
842 if (unlikely(!skb)) /* this fault cannot be repaired */
843 goto out;
844
845 recv_bds += bnum;
846 clean_count += bnum;
847 if (unlikely(err)) { /* do jump the err */
848 recv_pkts++;
849 continue;
850 }
851
852 /* do update ip stack process*/
853 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
854 ring_data, skb);
855 recv_pkts++;
856 }
857
858 out:
859 /* make all data has been write before submit */
860 if (clean_count + unused_count > 0)
861 hns_nic_alloc_rx_buffers(ring_data,
862 clean_count + unused_count);
863
864 return recv_pkts;
865 }
866
867 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
868 {
869 struct hnae_ring *ring = ring_data->ring;
870 int num = 0;
871
872 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
873
874 /* for hardware bug fixed */
875 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
876
877 if (num > 0) {
878 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
879 ring_data->ring, 1);
880
881 return false;
882 } else {
883 return true;
884 }
885 }
886
887 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
888 {
889 struct hnae_ring *ring = ring_data->ring;
890 int num;
891
892 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
893
894 if (!num)
895 return true;
896 else
897 return false;
898 }
899
900 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
901 int *bytes, int *pkts)
902 {
903 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
904
905 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
906 (*bytes) += desc_cb->length;
907 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
908 hnae_free_buffer_detach(ring, ring->next_to_clean);
909
910 ring_ptr_move_fw(ring, next_to_clean);
911 }
912
913 static int is_valid_clean_head(struct hnae_ring *ring, int h)
914 {
915 int u = ring->next_to_use;
916 int c = ring->next_to_clean;
917
918 if (unlikely(h > ring->desc_num))
919 return 0;
920
921 assert(u > 0 && u < ring->desc_num);
922 assert(c > 0 && c < ring->desc_num);
923 assert(u != c && h != c); /* must be checked before call this func */
924
925 return u > c ? (h > c && h <= u) : (h > c || h <= u);
926 }
927
928 /* netif_tx_lock will turn down the performance, set only when necessary */
929 #ifdef CONFIG_NET_POLL_CONTROLLER
930 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
931 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
932 #else
933 #define NETIF_TX_LOCK(ring)
934 #define NETIF_TX_UNLOCK(ring)
935 #endif
936
937 /* reclaim all desc in one budget
938 * return error or number of desc left
939 */
940 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
941 int budget, void *v)
942 {
943 struct hnae_ring *ring = ring_data->ring;
944 struct net_device *ndev = ring_data->napi.dev;
945 struct netdev_queue *dev_queue;
946 struct hns_nic_priv *priv = netdev_priv(ndev);
947 int head;
948 int bytes, pkts;
949
950 NETIF_TX_LOCK(ring);
951
952 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
953 rmb(); /* make sure head is ready before touch any data */
954
955 if (is_ring_empty(ring) || head == ring->next_to_clean) {
956 NETIF_TX_UNLOCK(ring);
957 return 0; /* no data to poll */
958 }
959
960 if (!is_valid_clean_head(ring, head)) {
961 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
962 ring->next_to_use, ring->next_to_clean);
963 ring->stats.io_err_cnt++;
964 NETIF_TX_UNLOCK(ring);
965 return -EIO;
966 }
967
968 bytes = 0;
969 pkts = 0;
970 while (head != ring->next_to_clean) {
971 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
972 /* issue prefetch for next Tx descriptor */
973 prefetch(&ring->desc_cb[ring->next_to_clean]);
974 }
975
976 NETIF_TX_UNLOCK(ring);
977
978 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
979 netdev_tx_completed_queue(dev_queue, pkts, bytes);
980
981 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
982 netif_carrier_on(ndev);
983
984 if (unlikely(pkts && netif_carrier_ok(ndev) &&
985 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
986 /* Make sure that anybody stopping the queue after this
987 * sees the new next_to_clean.
988 */
989 smp_mb();
990 if (netif_tx_queue_stopped(dev_queue) &&
991 !test_bit(NIC_STATE_DOWN, &priv->state)) {
992 netif_tx_wake_queue(dev_queue);
993 ring->stats.restart_queue++;
994 }
995 }
996 return 0;
997 }
998
999 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1000 {
1001 struct hnae_ring *ring = ring_data->ring;
1002 int head;
1003
1004 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1005
1006 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1007
1008 if (head != ring->next_to_clean) {
1009 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1010 ring_data->ring, 1);
1011
1012 return false;
1013 } else {
1014 return true;
1015 }
1016 }
1017
1018 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1019 {
1020 struct hnae_ring *ring = ring_data->ring;
1021 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1022
1023 if (head == ring->next_to_clean)
1024 return true;
1025 else
1026 return false;
1027 }
1028
1029 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1030 {
1031 struct hnae_ring *ring = ring_data->ring;
1032 struct net_device *ndev = ring_data->napi.dev;
1033 struct netdev_queue *dev_queue;
1034 int head;
1035 int bytes, pkts;
1036
1037 NETIF_TX_LOCK(ring);
1038
1039 head = ring->next_to_use; /* ntu :soft setted ring position*/
1040 bytes = 0;
1041 pkts = 0;
1042 while (head != ring->next_to_clean)
1043 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1044
1045 NETIF_TX_UNLOCK(ring);
1046
1047 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1048 netdev_tx_reset_queue(dev_queue);
1049 }
1050
1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1052 {
1053 int clean_complete = 0;
1054 struct hns_nic_ring_data *ring_data =
1055 container_of(napi, struct hns_nic_ring_data, napi);
1056 struct hnae_ring *ring = ring_data->ring;
1057
1058 try_again:
1059 clean_complete += ring_data->poll_one(
1060 ring_data, budget - clean_complete,
1061 ring_data->ex_process);
1062
1063 if (clean_complete < budget) {
1064 if (ring_data->fini_process(ring_data)) {
1065 napi_complete(napi);
1066 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1067 } else {
1068 goto try_again;
1069 }
1070 }
1071
1072 return clean_complete;
1073 }
1074
1075 static irqreturn_t hns_irq_handle(int irq, void *dev)
1076 {
1077 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1078
1079 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1080 ring_data->ring, 1);
1081 napi_schedule(&ring_data->napi);
1082
1083 return IRQ_HANDLED;
1084 }
1085
1086 /**
1087 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1088 *@ndev: net device
1089 */
1090 static void hns_nic_adjust_link(struct net_device *ndev)
1091 {
1092 struct hns_nic_priv *priv = netdev_priv(ndev);
1093 struct hnae_handle *h = priv->ae_handle;
1094 int state = 1;
1095
1096 if (ndev->phydev) {
1097 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1098 ndev->phydev->duplex);
1099 state = ndev->phydev->link;
1100 }
1101 state = state && h->dev->ops->get_status(h);
1102
1103 if (state != priv->link) {
1104 if (state) {
1105 netif_carrier_on(ndev);
1106 netif_tx_wake_all_queues(ndev);
1107 netdev_info(ndev, "link up\n");
1108 } else {
1109 netif_carrier_off(ndev);
1110 netdev_info(ndev, "link down\n");
1111 }
1112 priv->link = state;
1113 }
1114 }
1115
1116 /**
1117 *hns_nic_init_phy - init phy
1118 *@ndev: net device
1119 *@h: ae handle
1120 * Return 0 on success, negative on failure
1121 */
1122 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1123 {
1124 struct phy_device *phy_dev = h->phy_dev;
1125 int ret;
1126
1127 if (!h->phy_dev)
1128 return 0;
1129
1130 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1131 phy_dev->dev_flags = 0;
1132
1133 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1134 h->phy_if);
1135 } else {
1136 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1137 }
1138 if (unlikely(ret))
1139 return -ENODEV;
1140
1141 phy_dev->supported &= h->if_support;
1142 phy_dev->advertising = phy_dev->supported;
1143
1144 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1145 phy_dev->autoneg = false;
1146
1147 return 0;
1148 }
1149
1150 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1151 {
1152 struct hns_nic_priv *priv = netdev_priv(netdev);
1153 struct hnae_handle *h = priv->ae_handle;
1154
1155 napi_enable(&priv->ring_data[idx].napi);
1156
1157 enable_irq(priv->ring_data[idx].ring->irq);
1158 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1159
1160 return 0;
1161 }
1162
1163 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1164 {
1165 struct hns_nic_priv *priv = netdev_priv(ndev);
1166 struct hnae_handle *h = priv->ae_handle;
1167 struct sockaddr *mac_addr = p;
1168 int ret;
1169
1170 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1171 return -EADDRNOTAVAIL;
1172
1173 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1174 if (ret) {
1175 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1176 return ret;
1177 }
1178
1179 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1180
1181 return 0;
1182 }
1183
1184 void hns_nic_update_stats(struct net_device *netdev)
1185 {
1186 struct hns_nic_priv *priv = netdev_priv(netdev);
1187 struct hnae_handle *h = priv->ae_handle;
1188
1189 h->dev->ops->update_stats(h, &netdev->stats);
1190 }
1191
1192 /* set mac addr if it is configed. or leave it to the AE driver */
1193 static void hns_init_mac_addr(struct net_device *ndev)
1194 {
1195 struct hns_nic_priv *priv = netdev_priv(ndev);
1196
1197 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1198 eth_hw_addr_random(ndev);
1199 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1200 ndev->dev_addr);
1201 }
1202 }
1203
1204 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1205 {
1206 struct hns_nic_priv *priv = netdev_priv(netdev);
1207 struct hnae_handle *h = priv->ae_handle;
1208
1209 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1210 disable_irq(priv->ring_data[idx].ring->irq);
1211
1212 napi_disable(&priv->ring_data[idx].napi);
1213 }
1214
1215 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1216 struct hnae_ring *ring, cpumask_t *mask)
1217 {
1218 int cpu;
1219
1220 /* Diffrent irq banlance between 16core and 32core.
1221 * The cpu mask set by ring index according to the ring flag
1222 * which indicate the ring is tx or rx.
1223 */
1224 if (q_num == num_possible_cpus()) {
1225 if (is_tx_ring(ring))
1226 cpu = ring_idx;
1227 else
1228 cpu = ring_idx - q_num;
1229 } else {
1230 if (is_tx_ring(ring))
1231 cpu = ring_idx * 2;
1232 else
1233 cpu = (ring_idx - q_num) * 2 + 1;
1234 }
1235
1236 cpumask_clear(mask);
1237 cpumask_set_cpu(cpu, mask);
1238
1239 return cpu;
1240 }
1241
1242 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1243 {
1244 struct hnae_handle *h = priv->ae_handle;
1245 struct hns_nic_ring_data *rd;
1246 int i;
1247 int ret;
1248 int cpu;
1249
1250 for (i = 0; i < h->q_num * 2; i++) {
1251 rd = &priv->ring_data[i];
1252
1253 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1254 break;
1255
1256 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1257 "%s-%s%d", priv->netdev->name,
1258 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1259
1260 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1261
1262 ret = request_irq(rd->ring->irq,
1263 hns_irq_handle, 0, rd->ring->ring_name, rd);
1264 if (ret) {
1265 netdev_err(priv->netdev, "request irq(%d) fail\n",
1266 rd->ring->irq);
1267 return ret;
1268 }
1269 disable_irq(rd->ring->irq);
1270
1271 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1272 rd->ring, &rd->mask);
1273
1274 if (cpu_online(cpu))
1275 irq_set_affinity_hint(rd->ring->irq,
1276 &rd->mask);
1277
1278 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1279 }
1280
1281 return 0;
1282 }
1283
1284 static int hns_nic_net_up(struct net_device *ndev)
1285 {
1286 struct hns_nic_priv *priv = netdev_priv(ndev);
1287 struct hnae_handle *h = priv->ae_handle;
1288 int i, j;
1289 int ret;
1290
1291 ret = hns_nic_init_irq(priv);
1292 if (ret != 0) {
1293 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1294 return ret;
1295 }
1296
1297 for (i = 0; i < h->q_num * 2; i++) {
1298 ret = hns_nic_ring_open(ndev, i);
1299 if (ret)
1300 goto out_has_some_queues;
1301 }
1302
1303 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1304 if (ret)
1305 goto out_set_mac_addr_err;
1306
1307 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1308 if (ret)
1309 goto out_start_err;
1310
1311 if (ndev->phydev)
1312 phy_start(ndev->phydev);
1313
1314 clear_bit(NIC_STATE_DOWN, &priv->state);
1315 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1316
1317 return 0;
1318
1319 out_start_err:
1320 netif_stop_queue(ndev);
1321 out_set_mac_addr_err:
1322 out_has_some_queues:
1323 for (j = i - 1; j >= 0; j--)
1324 hns_nic_ring_close(ndev, j);
1325
1326 set_bit(NIC_STATE_DOWN, &priv->state);
1327
1328 return ret;
1329 }
1330
1331 static void hns_nic_net_down(struct net_device *ndev)
1332 {
1333 int i;
1334 struct hnae_ae_ops *ops;
1335 struct hns_nic_priv *priv = netdev_priv(ndev);
1336
1337 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1338 return;
1339
1340 (void)del_timer_sync(&priv->service_timer);
1341 netif_tx_stop_all_queues(ndev);
1342 netif_carrier_off(ndev);
1343 netif_tx_disable(ndev);
1344 priv->link = 0;
1345
1346 if (ndev->phydev)
1347 phy_stop(ndev->phydev);
1348
1349 ops = priv->ae_handle->dev->ops;
1350
1351 if (ops->stop)
1352 ops->stop(priv->ae_handle);
1353
1354 netif_tx_stop_all_queues(ndev);
1355
1356 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1357 hns_nic_ring_close(ndev, i);
1358 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1359
1360 /* clean tx buffers*/
1361 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1362 }
1363 }
1364
1365 void hns_nic_net_reset(struct net_device *ndev)
1366 {
1367 struct hns_nic_priv *priv = netdev_priv(ndev);
1368 struct hnae_handle *handle = priv->ae_handle;
1369
1370 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1371 usleep_range(1000, 2000);
1372
1373 (void)hnae_reinit_handle(handle);
1374
1375 clear_bit(NIC_STATE_RESETTING, &priv->state);
1376 }
1377
1378 void hns_nic_net_reinit(struct net_device *netdev)
1379 {
1380 struct hns_nic_priv *priv = netdev_priv(netdev);
1381 enum hnae_port_type type = priv->ae_handle->port_type;
1382
1383 netif_trans_update(priv->netdev);
1384 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1385 usleep_range(1000, 2000);
1386
1387 hns_nic_net_down(netdev);
1388
1389 /* Only do hns_nic_net_reset in debug mode
1390 * because of hardware limitation.
1391 */
1392 if (type == HNAE_PORT_DEBUG)
1393 hns_nic_net_reset(netdev);
1394
1395 (void)hns_nic_net_up(netdev);
1396 clear_bit(NIC_STATE_REINITING, &priv->state);
1397 }
1398
1399 static int hns_nic_net_open(struct net_device *ndev)
1400 {
1401 struct hns_nic_priv *priv = netdev_priv(ndev);
1402 struct hnae_handle *h = priv->ae_handle;
1403 int ret;
1404
1405 if (test_bit(NIC_STATE_TESTING, &priv->state))
1406 return -EBUSY;
1407
1408 priv->link = 0;
1409 netif_carrier_off(ndev);
1410
1411 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1412 if (ret < 0) {
1413 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1414 ret);
1415 return ret;
1416 }
1417
1418 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1419 if (ret < 0) {
1420 netdev_err(ndev,
1421 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1422 return ret;
1423 }
1424
1425 ret = hns_nic_net_up(ndev);
1426 if (ret) {
1427 netdev_err(ndev,
1428 "hns net up fail, ret=%d!\n", ret);
1429 return ret;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int hns_nic_net_stop(struct net_device *ndev)
1436 {
1437 hns_nic_net_down(ndev);
1438
1439 return 0;
1440 }
1441
1442 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1443 static void hns_nic_net_timeout(struct net_device *ndev)
1444 {
1445 struct hns_nic_priv *priv = netdev_priv(ndev);
1446
1447 hns_tx_timeout_reset(priv);
1448 }
1449
1450 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1451 int cmd)
1452 {
1453 struct phy_device *phy_dev = netdev->phydev;
1454
1455 if (!netif_running(netdev))
1456 return -EINVAL;
1457
1458 if (!phy_dev)
1459 return -ENOTSUPP;
1460
1461 return phy_mii_ioctl(phy_dev, ifr, cmd);
1462 }
1463
1464 /* use only for netconsole to poll with the device without interrupt */
1465 #ifdef CONFIG_NET_POLL_CONTROLLER
1466 void hns_nic_poll_controller(struct net_device *ndev)
1467 {
1468 struct hns_nic_priv *priv = netdev_priv(ndev);
1469 unsigned long flags;
1470 int i;
1471
1472 local_irq_save(flags);
1473 for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1474 napi_schedule(&priv->ring_data[i].napi);
1475 local_irq_restore(flags);
1476 }
1477 #endif
1478
1479 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1480 struct net_device *ndev)
1481 {
1482 struct hns_nic_priv *priv = netdev_priv(ndev);
1483
1484 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1485
1486 return hns_nic_net_xmit_hw(ndev, skb,
1487 &tx_ring_data(priv, skb->queue_mapping));
1488 }
1489
1490 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1491 struct sk_buff *skb)
1492 {
1493 dev_kfree_skb_any(skb);
1494 }
1495
1496 #define HNS_LB_TX_RING 0
1497 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1498 {
1499 struct sk_buff *skb;
1500 struct ethhdr *ethhdr;
1501 int frame_len;
1502
1503 /* allocate test skb */
1504 skb = alloc_skb(64, GFP_KERNEL);
1505 if (!skb)
1506 return NULL;
1507
1508 skb_put(skb, 64);
1509 skb->dev = ndev;
1510 memset(skb->data, 0xFF, skb->len);
1511
1512 /* must be tcp/ip package */
1513 ethhdr = (struct ethhdr *)skb->data;
1514 ethhdr->h_proto = htons(ETH_P_IP);
1515
1516 frame_len = skb->len & (~1ul);
1517 memset(&skb->data[frame_len / 2], 0xAA,
1518 frame_len / 2 - 1);
1519
1520 skb->queue_mapping = HNS_LB_TX_RING;
1521
1522 return skb;
1523 }
1524
1525 static int hns_enable_serdes_lb(struct net_device *ndev)
1526 {
1527 struct hns_nic_priv *priv = netdev_priv(ndev);
1528 struct hnae_handle *h = priv->ae_handle;
1529 struct hnae_ae_ops *ops = h->dev->ops;
1530 int speed, duplex;
1531 int ret;
1532
1533 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1534 if (ret)
1535 return ret;
1536
1537 ret = ops->start ? ops->start(h) : 0;
1538 if (ret)
1539 return ret;
1540
1541 /* link adjust duplex*/
1542 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1543 speed = 1000;
1544 else
1545 speed = 10000;
1546 duplex = 1;
1547
1548 ops->adjust_link(h, speed, duplex);
1549
1550 /* wait h/w ready */
1551 mdelay(300);
1552
1553 return 0;
1554 }
1555
1556 static void hns_disable_serdes_lb(struct net_device *ndev)
1557 {
1558 struct hns_nic_priv *priv = netdev_priv(ndev);
1559 struct hnae_handle *h = priv->ae_handle;
1560 struct hnae_ae_ops *ops = h->dev->ops;
1561
1562 ops->stop(h);
1563 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1564 }
1565
1566 /**
1567 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1568 *function as follows:
1569 * 1. if one rx ring has found the page_offset is not equal 0 between head
1570 * and tail, it means that the chip fetched the wrong descs for the ring
1571 * which buffer size is 4096.
1572 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1573 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1574 * recieving all packages and it will fetch new descriptions.
1575 * 4. recover to the original state.
1576 *
1577 *@ndev: net device
1578 */
1579 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1580 {
1581 struct hns_nic_priv *priv = netdev_priv(ndev);
1582 struct hnae_handle *h = priv->ae_handle;
1583 struct hnae_ae_ops *ops = h->dev->ops;
1584 struct hns_nic_ring_data *rd;
1585 struct hnae_ring *ring;
1586 struct sk_buff *skb;
1587 u32 *org_indir;
1588 u32 *cur_indir;
1589 int indir_size;
1590 int head, tail;
1591 int fetch_num;
1592 int i, j;
1593 bool found;
1594 int retry_times;
1595 int ret = 0;
1596
1597 /* alloc indir memory */
1598 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1599 org_indir = kzalloc(indir_size, GFP_KERNEL);
1600 if (!org_indir)
1601 return -ENOMEM;
1602
1603 /* store the orginal indirection */
1604 ops->get_rss(h, org_indir, NULL, NULL);
1605
1606 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1607 if (!cur_indir) {
1608 ret = -ENOMEM;
1609 goto cur_indir_alloc_err;
1610 }
1611
1612 /* set loopback */
1613 if (hns_enable_serdes_lb(ndev)) {
1614 ret = -EINVAL;
1615 goto enable_serdes_lb_err;
1616 }
1617
1618 /* foreach every rx ring to clear fetch desc */
1619 for (i = 0; i < h->q_num; i++) {
1620 ring = &h->qs[i]->rx_ring;
1621 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1622 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1623 found = false;
1624 fetch_num = ring_dist(ring, head, tail);
1625
1626 while (head != tail) {
1627 if (ring->desc_cb[head].page_offset != 0) {
1628 found = true;
1629 break;
1630 }
1631
1632 head++;
1633 if (head == ring->desc_num)
1634 head = 0;
1635 }
1636
1637 if (found) {
1638 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1639 cur_indir[j] = i;
1640 ops->set_rss(h, cur_indir, NULL, 0);
1641
1642 for (j = 0; j < fetch_num; j++) {
1643 /* alloc one skb and init */
1644 skb = hns_assemble_skb(ndev);
1645 if (!skb)
1646 goto out;
1647 rd = &tx_ring_data(priv, skb->queue_mapping);
1648 hns_nic_net_xmit_hw(ndev, skb, rd);
1649
1650 retry_times = 0;
1651 while (retry_times++ < 10) {
1652 mdelay(10);
1653 /* clean rx */
1654 rd = &rx_ring_data(priv, i);
1655 if (rd->poll_one(rd, fetch_num,
1656 hns_nic_drop_rx_fetch))
1657 break;
1658 }
1659
1660 retry_times = 0;
1661 while (retry_times++ < 10) {
1662 mdelay(10);
1663 /* clean tx ring 0 send package */
1664 rd = &tx_ring_data(priv,
1665 HNS_LB_TX_RING);
1666 if (rd->poll_one(rd, fetch_num, NULL))
1667 break;
1668 }
1669 }
1670 }
1671 }
1672
1673 out:
1674 /* restore everything */
1675 ops->set_rss(h, org_indir, NULL, 0);
1676 hns_disable_serdes_lb(ndev);
1677 enable_serdes_lb_err:
1678 kfree(cur_indir);
1679 cur_indir_alloc_err:
1680 kfree(org_indir);
1681
1682 return ret;
1683 }
1684
1685 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1686 {
1687 struct hns_nic_priv *priv = netdev_priv(ndev);
1688 struct hnae_handle *h = priv->ae_handle;
1689 bool if_running = netif_running(ndev);
1690 int ret;
1691
1692 /* MTU < 68 is an error and causes problems on some kernels */
1693 if (new_mtu < 68)
1694 return -EINVAL;
1695
1696 /* MTU no change */
1697 if (new_mtu == ndev->mtu)
1698 return 0;
1699
1700 if (!h->dev->ops->set_mtu)
1701 return -ENOTSUPP;
1702
1703 if (if_running) {
1704 (void)hns_nic_net_stop(ndev);
1705 msleep(100);
1706 }
1707
1708 if (priv->enet_ver != AE_VERSION_1 &&
1709 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1710 new_mtu > BD_SIZE_2048_MAX_MTU) {
1711 /* update desc */
1712 hnae_reinit_all_ring_desc(h);
1713
1714 /* clear the package which the chip has fetched */
1715 ret = hns_nic_clear_all_rx_fetch(ndev);
1716
1717 /* the page offset must be consist with desc */
1718 hnae_reinit_all_ring_page_off(h);
1719
1720 if (ret) {
1721 netdev_err(ndev, "clear the fetched desc fail\n");
1722 goto out;
1723 }
1724 }
1725
1726 ret = h->dev->ops->set_mtu(h, new_mtu);
1727 if (ret) {
1728 netdev_err(ndev, "set mtu fail, return value %d\n",
1729 ret);
1730 goto out;
1731 }
1732
1733 /* finally, set new mtu to netdevice */
1734 ndev->mtu = new_mtu;
1735
1736 out:
1737 if (if_running) {
1738 if (hns_nic_net_open(ndev)) {
1739 netdev_err(ndev, "hns net open fail\n");
1740 ret = -EINVAL;
1741 }
1742 }
1743
1744 return ret;
1745 }
1746
1747 static int hns_nic_set_features(struct net_device *netdev,
1748 netdev_features_t features)
1749 {
1750 struct hns_nic_priv *priv = netdev_priv(netdev);
1751
1752 switch (priv->enet_ver) {
1753 case AE_VERSION_1:
1754 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1755 netdev_info(netdev, "enet v1 do not support tso!\n");
1756 break;
1757 default:
1758 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1759 priv->ops.fill_desc = fill_tso_desc;
1760 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1761 /* The chip only support 7*4096 */
1762 netif_set_gso_max_size(netdev, 7 * 4096);
1763 } else {
1764 priv->ops.fill_desc = fill_v2_desc;
1765 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1766 }
1767 break;
1768 }
1769 netdev->features = features;
1770 return 0;
1771 }
1772
1773 static netdev_features_t hns_nic_fix_features(
1774 struct net_device *netdev, netdev_features_t features)
1775 {
1776 struct hns_nic_priv *priv = netdev_priv(netdev);
1777
1778 switch (priv->enet_ver) {
1779 case AE_VERSION_1:
1780 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1781 NETIF_F_HW_VLAN_CTAG_FILTER);
1782 break;
1783 default:
1784 break;
1785 }
1786 return features;
1787 }
1788
1789 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1790 {
1791 struct hns_nic_priv *priv = netdev_priv(netdev);
1792 struct hnae_handle *h = priv->ae_handle;
1793
1794 if (h->dev->ops->add_uc_addr)
1795 return h->dev->ops->add_uc_addr(h, addr);
1796
1797 return 0;
1798 }
1799
1800 static int hns_nic_uc_unsync(struct net_device *netdev,
1801 const unsigned char *addr)
1802 {
1803 struct hns_nic_priv *priv = netdev_priv(netdev);
1804 struct hnae_handle *h = priv->ae_handle;
1805
1806 if (h->dev->ops->rm_uc_addr)
1807 return h->dev->ops->rm_uc_addr(h, addr);
1808
1809 return 0;
1810 }
1811
1812 /**
1813 * nic_set_multicast_list - set mutl mac address
1814 * @netdev: net device
1815 * @p: mac address
1816 *
1817 * return void
1818 */
1819 void hns_set_multicast_list(struct net_device *ndev)
1820 {
1821 struct hns_nic_priv *priv = netdev_priv(ndev);
1822 struct hnae_handle *h = priv->ae_handle;
1823 struct netdev_hw_addr *ha = NULL;
1824
1825 if (!h) {
1826 netdev_err(ndev, "hnae handle is null\n");
1827 return;
1828 }
1829
1830 if (h->dev->ops->clr_mc_addr)
1831 if (h->dev->ops->clr_mc_addr(h))
1832 netdev_err(ndev, "clear multicast address fail\n");
1833
1834 if (h->dev->ops->set_mc_addr) {
1835 netdev_for_each_mc_addr(ha, ndev)
1836 if (h->dev->ops->set_mc_addr(h, ha->addr))
1837 netdev_err(ndev, "set multicast fail\n");
1838 }
1839 }
1840
1841 void hns_nic_set_rx_mode(struct net_device *ndev)
1842 {
1843 struct hns_nic_priv *priv = netdev_priv(ndev);
1844 struct hnae_handle *h = priv->ae_handle;
1845
1846 if (h->dev->ops->set_promisc_mode) {
1847 if (ndev->flags & IFF_PROMISC)
1848 h->dev->ops->set_promisc_mode(h, 1);
1849 else
1850 h->dev->ops->set_promisc_mode(h, 0);
1851 }
1852
1853 hns_set_multicast_list(ndev);
1854
1855 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1856 netdev_err(ndev, "sync uc address fail\n");
1857 }
1858
1859 static void hns_nic_get_stats64(struct net_device *ndev,
1860 struct rtnl_link_stats64 *stats)
1861 {
1862 int idx = 0;
1863 u64 tx_bytes = 0;
1864 u64 rx_bytes = 0;
1865 u64 tx_pkts = 0;
1866 u64 rx_pkts = 0;
1867 struct hns_nic_priv *priv = netdev_priv(ndev);
1868 struct hnae_handle *h = priv->ae_handle;
1869
1870 for (idx = 0; idx < h->q_num; idx++) {
1871 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1872 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1873 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1874 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1875 }
1876
1877 stats->tx_bytes = tx_bytes;
1878 stats->tx_packets = tx_pkts;
1879 stats->rx_bytes = rx_bytes;
1880 stats->rx_packets = rx_pkts;
1881
1882 stats->rx_errors = ndev->stats.rx_errors;
1883 stats->multicast = ndev->stats.multicast;
1884 stats->rx_length_errors = ndev->stats.rx_length_errors;
1885 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1886 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1887
1888 stats->tx_errors = ndev->stats.tx_errors;
1889 stats->rx_dropped = ndev->stats.rx_dropped;
1890 stats->tx_dropped = ndev->stats.tx_dropped;
1891 stats->collisions = ndev->stats.collisions;
1892 stats->rx_over_errors = ndev->stats.rx_over_errors;
1893 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1894 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1895 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1896 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1897 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1898 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1899 stats->tx_window_errors = ndev->stats.tx_window_errors;
1900 stats->rx_compressed = ndev->stats.rx_compressed;
1901 stats->tx_compressed = ndev->stats.tx_compressed;
1902 }
1903
1904 static u16
1905 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1906 void *accel_priv, select_queue_fallback_t fallback)
1907 {
1908 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1909 struct hns_nic_priv *priv = netdev_priv(ndev);
1910
1911 /* fix hardware broadcast/multicast packets queue loopback */
1912 if (!AE_IS_VER1(priv->enet_ver) &&
1913 is_multicast_ether_addr(eth_hdr->h_dest))
1914 return 0;
1915 else
1916 return fallback(ndev, skb);
1917 }
1918
1919 static const struct net_device_ops hns_nic_netdev_ops = {
1920 .ndo_open = hns_nic_net_open,
1921 .ndo_stop = hns_nic_net_stop,
1922 .ndo_start_xmit = hns_nic_net_xmit,
1923 .ndo_tx_timeout = hns_nic_net_timeout,
1924 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1925 .ndo_change_mtu = hns_nic_change_mtu,
1926 .ndo_do_ioctl = hns_nic_do_ioctl,
1927 .ndo_set_features = hns_nic_set_features,
1928 .ndo_fix_features = hns_nic_fix_features,
1929 .ndo_get_stats64 = hns_nic_get_stats64,
1930 #ifdef CONFIG_NET_POLL_CONTROLLER
1931 .ndo_poll_controller = hns_nic_poll_controller,
1932 #endif
1933 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1934 .ndo_select_queue = hns_nic_select_queue,
1935 };
1936
1937 static void hns_nic_update_link_status(struct net_device *netdev)
1938 {
1939 struct hns_nic_priv *priv = netdev_priv(netdev);
1940
1941 struct hnae_handle *h = priv->ae_handle;
1942
1943 if (h->phy_dev) {
1944 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1945 return;
1946
1947 (void)genphy_read_status(h->phy_dev);
1948 }
1949 hns_nic_adjust_link(netdev);
1950 }
1951
1952 /* for dumping key regs*/
1953 static void hns_nic_dump(struct hns_nic_priv *priv)
1954 {
1955 struct hnae_handle *h = priv->ae_handle;
1956 struct hnae_ae_ops *ops = h->dev->ops;
1957 u32 *data, reg_num, i;
1958
1959 if (ops->get_regs_len && ops->get_regs) {
1960 reg_num = ops->get_regs_len(priv->ae_handle);
1961 reg_num = (reg_num + 3ul) & ~3ul;
1962 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1963 if (data) {
1964 ops->get_regs(priv->ae_handle, data);
1965 for (i = 0; i < reg_num; i += 4)
1966 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1967 i, data[i], data[i + 1],
1968 data[i + 2], data[i + 3]);
1969 kfree(data);
1970 }
1971 }
1972
1973 for (i = 0; i < h->q_num; i++) {
1974 pr_info("tx_queue%d_next_to_clean:%d\n",
1975 i, h->qs[i]->tx_ring.next_to_clean);
1976 pr_info("tx_queue%d_next_to_use:%d\n",
1977 i, h->qs[i]->tx_ring.next_to_use);
1978 pr_info("rx_queue%d_next_to_clean:%d\n",
1979 i, h->qs[i]->rx_ring.next_to_clean);
1980 pr_info("rx_queue%d_next_to_use:%d\n",
1981 i, h->qs[i]->rx_ring.next_to_use);
1982 }
1983 }
1984
1985 /* for resetting subtask */
1986 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1987 {
1988 enum hnae_port_type type = priv->ae_handle->port_type;
1989
1990 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1991 return;
1992 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1993
1994 /* If we're already down, removing or resetting, just bail */
1995 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1996 test_bit(NIC_STATE_REMOVING, &priv->state) ||
1997 test_bit(NIC_STATE_RESETTING, &priv->state))
1998 return;
1999
2000 hns_nic_dump(priv);
2001 netdev_info(priv->netdev, "try to reset %s port!\n",
2002 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2003
2004 rtnl_lock();
2005 /* put off any impending NetWatchDogTimeout */
2006 netif_trans_update(priv->netdev);
2007 hns_nic_net_reinit(priv->netdev);
2008
2009 rtnl_unlock();
2010 }
2011
2012 /* for doing service complete*/
2013 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2014 {
2015 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2016 /* make sure to commit the things */
2017 smp_mb__before_atomic();
2018 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2019 }
2020
2021 static void hns_nic_service_task(struct work_struct *work)
2022 {
2023 struct hns_nic_priv *priv
2024 = container_of(work, struct hns_nic_priv, service_task);
2025 struct hnae_handle *h = priv->ae_handle;
2026
2027 hns_nic_update_link_status(priv->netdev);
2028 h->dev->ops->update_led_status(h);
2029 hns_nic_update_stats(priv->netdev);
2030
2031 hns_nic_reset_subtask(priv);
2032 hns_nic_service_event_complete(priv);
2033 }
2034
2035 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2036 {
2037 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2038 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2039 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2040 (void)schedule_work(&priv->service_task);
2041 }
2042
2043 static void hns_nic_service_timer(unsigned long data)
2044 {
2045 struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2046
2047 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2048
2049 hns_nic_task_schedule(priv);
2050 }
2051
2052 /**
2053 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2054 * @priv: driver private struct
2055 **/
2056 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2057 {
2058 /* Do the reset outside of interrupt context */
2059 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2060 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2061 netdev_warn(priv->netdev,
2062 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2063 priv->tx_timeout_count, priv->state);
2064 priv->tx_timeout_count++;
2065 hns_nic_task_schedule(priv);
2066 }
2067 }
2068
2069 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2070 {
2071 struct hnae_handle *h = priv->ae_handle;
2072 struct hns_nic_ring_data *rd;
2073 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2074 int i;
2075
2076 if (h->q_num > NIC_MAX_Q_PER_VF) {
2077 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2078 return -EINVAL;
2079 }
2080
2081 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2082 GFP_KERNEL);
2083 if (!priv->ring_data)
2084 return -ENOMEM;
2085
2086 for (i = 0; i < h->q_num; i++) {
2087 rd = &priv->ring_data[i];
2088 rd->queue_index = i;
2089 rd->ring = &h->qs[i]->tx_ring;
2090 rd->poll_one = hns_nic_tx_poll_one;
2091 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2092 hns_nic_tx_fini_pro_v2;
2093
2094 netif_napi_add(priv->netdev, &rd->napi,
2095 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2096 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2097 }
2098 for (i = h->q_num; i < h->q_num * 2; i++) {
2099 rd = &priv->ring_data[i];
2100 rd->queue_index = i - h->q_num;
2101 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2102 rd->poll_one = hns_nic_rx_poll_one;
2103 rd->ex_process = hns_nic_rx_up_pro;
2104 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2105 hns_nic_rx_fini_pro_v2;
2106
2107 netif_napi_add(priv->netdev, &rd->napi,
2108 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2109 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2110 }
2111
2112 return 0;
2113 }
2114
2115 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2116 {
2117 struct hnae_handle *h = priv->ae_handle;
2118 int i;
2119
2120 for (i = 0; i < h->q_num * 2; i++) {
2121 netif_napi_del(&priv->ring_data[i].napi);
2122 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2123 (void)irq_set_affinity_hint(
2124 priv->ring_data[i].ring->irq,
2125 NULL);
2126 free_irq(priv->ring_data[i].ring->irq,
2127 &priv->ring_data[i]);
2128 }
2129
2130 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2131 }
2132 kfree(priv->ring_data);
2133 }
2134
2135 static void hns_nic_set_priv_ops(struct net_device *netdev)
2136 {
2137 struct hns_nic_priv *priv = netdev_priv(netdev);
2138 struct hnae_handle *h = priv->ae_handle;
2139
2140 if (AE_IS_VER1(priv->enet_ver)) {
2141 priv->ops.fill_desc = fill_desc;
2142 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2143 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2144 } else {
2145 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2146 if ((netdev->features & NETIF_F_TSO) ||
2147 (netdev->features & NETIF_F_TSO6)) {
2148 priv->ops.fill_desc = fill_tso_desc;
2149 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2150 /* This chip only support 7*4096 */
2151 netif_set_gso_max_size(netdev, 7 * 4096);
2152 } else {
2153 priv->ops.fill_desc = fill_v2_desc;
2154 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2155 }
2156 /* enable tso when init
2157 * control tso on/off through TSE bit in bd
2158 */
2159 h->dev->ops->set_tso_stats(h, 1);
2160 }
2161 }
2162
2163 static int hns_nic_try_get_ae(struct net_device *ndev)
2164 {
2165 struct hns_nic_priv *priv = netdev_priv(ndev);
2166 struct hnae_handle *h;
2167 int ret;
2168
2169 h = hnae_get_handle(&priv->netdev->dev,
2170 priv->fwnode, priv->port_id, NULL);
2171 if (IS_ERR_OR_NULL(h)) {
2172 ret = -ENODEV;
2173 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2174 goto out;
2175 }
2176 priv->ae_handle = h;
2177
2178 ret = hns_nic_init_phy(ndev, h);
2179 if (ret) {
2180 dev_err(priv->dev, "probe phy device fail!\n");
2181 goto out_init_phy;
2182 }
2183
2184 ret = hns_nic_init_ring_data(priv);
2185 if (ret) {
2186 ret = -ENOMEM;
2187 goto out_init_ring_data;
2188 }
2189
2190 hns_nic_set_priv_ops(ndev);
2191
2192 ret = register_netdev(ndev);
2193 if (ret) {
2194 dev_err(priv->dev, "probe register netdev fail!\n");
2195 goto out_reg_ndev_fail;
2196 }
2197 return 0;
2198
2199 out_reg_ndev_fail:
2200 hns_nic_uninit_ring_data(priv);
2201 priv->ring_data = NULL;
2202 out_init_phy:
2203 out_init_ring_data:
2204 hnae_put_handle(priv->ae_handle);
2205 priv->ae_handle = NULL;
2206 out:
2207 return ret;
2208 }
2209
2210 static int hns_nic_notifier_action(struct notifier_block *nb,
2211 unsigned long action, void *data)
2212 {
2213 struct hns_nic_priv *priv =
2214 container_of(nb, struct hns_nic_priv, notifier_block);
2215
2216 assert(action == HNAE_AE_REGISTER);
2217
2218 if (!hns_nic_try_get_ae(priv->netdev)) {
2219 hnae_unregister_notifier(&priv->notifier_block);
2220 priv->notifier_block.notifier_call = NULL;
2221 }
2222 return 0;
2223 }
2224
2225 static int hns_nic_dev_probe(struct platform_device *pdev)
2226 {
2227 struct device *dev = &pdev->dev;
2228 struct net_device *ndev;
2229 struct hns_nic_priv *priv;
2230 u32 port_id;
2231 int ret;
2232
2233 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2234 if (!ndev)
2235 return -ENOMEM;
2236
2237 platform_set_drvdata(pdev, ndev);
2238
2239 priv = netdev_priv(ndev);
2240 priv->dev = dev;
2241 priv->netdev = ndev;
2242
2243 if (dev_of_node(dev)) {
2244 struct device_node *ae_node;
2245
2246 if (of_device_is_compatible(dev->of_node,
2247 "hisilicon,hns-nic-v1"))
2248 priv->enet_ver = AE_VERSION_1;
2249 else
2250 priv->enet_ver = AE_VERSION_2;
2251
2252 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2253 if (IS_ERR_OR_NULL(ae_node)) {
2254 ret = PTR_ERR(ae_node);
2255 dev_err(dev, "not find ae-handle\n");
2256 goto out_read_prop_fail;
2257 }
2258 priv->fwnode = &ae_node->fwnode;
2259 } else if (is_acpi_node(dev->fwnode)) {
2260 struct acpi_reference_args args;
2261
2262 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2263 priv->enet_ver = AE_VERSION_1;
2264 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2265 priv->enet_ver = AE_VERSION_2;
2266 else
2267 return -ENXIO;
2268
2269 /* try to find port-idx-in-ae first */
2270 ret = acpi_node_get_property_reference(dev->fwnode,
2271 "ae-handle", 0, &args);
2272 if (ret) {
2273 dev_err(dev, "not find ae-handle\n");
2274 goto out_read_prop_fail;
2275 }
2276 priv->fwnode = acpi_fwnode_handle(args.adev);
2277 } else {
2278 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2279 return -ENXIO;
2280 }
2281
2282 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2283 if (ret) {
2284 /* only for old code compatible */
2285 ret = device_property_read_u32(dev, "port-id", &port_id);
2286 if (ret)
2287 goto out_read_prop_fail;
2288 /* for old dts, we need to caculate the port offset */
2289 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2290 : port_id - HNS_SRV_OFFSET;
2291 }
2292 priv->port_id = port_id;
2293
2294 hns_init_mac_addr(ndev);
2295
2296 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2297 ndev->priv_flags |= IFF_UNICAST_FLT;
2298 ndev->netdev_ops = &hns_nic_netdev_ops;
2299 hns_ethtool_set_ops(ndev);
2300
2301 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2302 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2303 NETIF_F_GRO;
2304 ndev->vlan_features |=
2305 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2306 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2307
2308 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2309 ndev->min_mtu = MAC_MIN_MTU;
2310 switch (priv->enet_ver) {
2311 case AE_VERSION_2:
2312 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2313 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2314 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2315 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2316 ndev->max_mtu = MAC_MAX_MTU_V2 -
2317 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2318 break;
2319 default:
2320 ndev->max_mtu = MAC_MAX_MTU -
2321 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2322 break;
2323 }
2324
2325 SET_NETDEV_DEV(ndev, dev);
2326
2327 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2328 dev_dbg(dev, "set mask to 64bit\n");
2329 else
2330 dev_err(dev, "set mask to 64bit fail!\n");
2331
2332 /* carrier off reporting is important to ethtool even BEFORE open */
2333 netif_carrier_off(ndev);
2334
2335 setup_timer(&priv->service_timer, hns_nic_service_timer,
2336 (unsigned long)priv);
2337 INIT_WORK(&priv->service_task, hns_nic_service_task);
2338
2339 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2340 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2341 set_bit(NIC_STATE_DOWN, &priv->state);
2342
2343 if (hns_nic_try_get_ae(priv->netdev)) {
2344 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2345 ret = hnae_register_notifier(&priv->notifier_block);
2346 if (ret) {
2347 dev_err(dev, "register notifier fail!\n");
2348 goto out_notify_fail;
2349 }
2350 dev_dbg(dev, "has not handle, register notifier!\n");
2351 }
2352
2353 return 0;
2354
2355 out_notify_fail:
2356 (void)cancel_work_sync(&priv->service_task);
2357 out_read_prop_fail:
2358 free_netdev(ndev);
2359 return ret;
2360 }
2361
2362 static int hns_nic_dev_remove(struct platform_device *pdev)
2363 {
2364 struct net_device *ndev = platform_get_drvdata(pdev);
2365 struct hns_nic_priv *priv = netdev_priv(ndev);
2366
2367 if (ndev->reg_state != NETREG_UNINITIALIZED)
2368 unregister_netdev(ndev);
2369
2370 if (priv->ring_data)
2371 hns_nic_uninit_ring_data(priv);
2372 priv->ring_data = NULL;
2373
2374 if (ndev->phydev)
2375 phy_disconnect(ndev->phydev);
2376
2377 if (!IS_ERR_OR_NULL(priv->ae_handle))
2378 hnae_put_handle(priv->ae_handle);
2379 priv->ae_handle = NULL;
2380 if (priv->notifier_block.notifier_call)
2381 hnae_unregister_notifier(&priv->notifier_block);
2382 priv->notifier_block.notifier_call = NULL;
2383
2384 set_bit(NIC_STATE_REMOVING, &priv->state);
2385 (void)cancel_work_sync(&priv->service_task);
2386
2387 free_netdev(ndev);
2388 return 0;
2389 }
2390
2391 static const struct of_device_id hns_enet_of_match[] = {
2392 {.compatible = "hisilicon,hns-nic-v1",},
2393 {.compatible = "hisilicon,hns-nic-v2",},
2394 {},
2395 };
2396
2397 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2398
2399 static struct platform_driver hns_nic_dev_driver = {
2400 .driver = {
2401 .name = "hns-nic",
2402 .of_match_table = hns_enet_of_match,
2403 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2404 },
2405 .probe = hns_nic_dev_probe,
2406 .remove = hns_nic_dev_remove,
2407 };
2408
2409 module_platform_driver(hns_nic_dev_driver);
2410
2411 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2412 MODULE_AUTHOR("Hisilicon, Inc.");
2413 MODULE_LICENSE("GPL");
2414 MODULE_ALIAS("platform:hns-nic");