]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
781173e219fdbbcfd2da66107f4b54daa28eb77a
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39
40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41 int send_sz, dma_addr_t dma, int frag_end,
42 int buf_num, enum hns_desc_type type, int mtu)
43 {
44 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46 struct iphdr *iphdr;
47 struct ipv6hdr *ipv6hdr;
48 struct sk_buff *skb;
49 __be16 protocol;
50 u8 bn_pid = 0;
51 u8 rrcfv = 0;
52 u8 ip_offset = 0;
53 u8 tvsvsn = 0;
54 u16 mss = 0;
55 u8 l4_len = 0;
56 u16 paylen = 0;
57
58 desc_cb->priv = priv;
59 desc_cb->length = size;
60 desc_cb->dma = dma;
61 desc_cb->type = type;
62
63 desc->addr = cpu_to_le64(dma);
64 desc->tx.send_size = cpu_to_le16((u16)send_sz);
65
66 /* config bd buffer end */
67 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69
70 /* fill port_id in the tx bd for sending management pkts */
71 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73
74 if (type == DESC_TYPE_SKB) {
75 skb = (struct sk_buff *)priv;
76
77 if (skb->ip_summed == CHECKSUM_PARTIAL) {
78 skb_reset_mac_len(skb);
79 protocol = skb->protocol;
80 ip_offset = ETH_HLEN;
81
82 if (protocol == htons(ETH_P_8021Q)) {
83 ip_offset += VLAN_HLEN;
84 protocol = vlan_get_protocol(skb);
85 skb->protocol = protocol;
86 }
87
88 if (skb->protocol == htons(ETH_P_IP)) {
89 iphdr = ip_hdr(skb);
90 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92
93 /* check for tcp/udp header */
94 if (iphdr->protocol == IPPROTO_TCP &&
95 skb_is_gso(skb)) {
96 hnae_set_bit(tvsvsn,
97 HNSV2_TXD_TSE_B, 1);
98 l4_len = tcp_hdrlen(skb);
99 mss = skb_shinfo(skb)->gso_size;
100 paylen = skb->len - SKB_TMP_LEN(skb);
101 }
102 } else if (skb->protocol == htons(ETH_P_IPV6)) {
103 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104 ipv6hdr = ipv6_hdr(skb);
105 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106
107 /* check for tcp/udp header */
108 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110 hnae_set_bit(tvsvsn,
111 HNSV2_TXD_TSE_B, 1);
112 l4_len = tcp_hdrlen(skb);
113 mss = skb_shinfo(skb)->gso_size;
114 paylen = skb->len - SKB_TMP_LEN(skb);
115 }
116 }
117 desc->tx.ip_offset = ip_offset;
118 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119 desc->tx.mss = cpu_to_le16(mss);
120 desc->tx.l4_len = l4_len;
121 desc->tx.paylen = cpu_to_le16(paylen);
122 }
123 }
124
125 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126
127 desc->tx.bn_pid = bn_pid;
128 desc->tx.ra_ri_cs_fe_vld = rrcfv;
129
130 ring_ptr_move_fw(ring, next_to_use);
131 }
132
133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134 int size, dma_addr_t dma, int frag_end,
135 int buf_num, enum hns_desc_type type, int mtu)
136 {
137 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138 buf_num, type, mtu);
139 }
140
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142 { "HISI00C1", 0 },
143 { "HISI00C2", 0 },
144 { },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147
148 static void fill_desc(struct hnae_ring *ring, void *priv,
149 int size, dma_addr_t dma, int frag_end,
150 int buf_num, enum hns_desc_type type, int mtu)
151 {
152 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154 struct sk_buff *skb;
155 __be16 protocol;
156 u32 ip_offset;
157 u32 asid_bufnum_pid = 0;
158 u32 flag_ipoffset = 0;
159
160 desc_cb->priv = priv;
161 desc_cb->length = size;
162 desc_cb->dma = dma;
163 desc_cb->type = type;
164
165 desc->addr = cpu_to_le64(dma);
166 desc->tx.send_size = cpu_to_le16((u16)size);
167
168 /*config bd buffer end */
169 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170
171 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172
173 if (type == DESC_TYPE_SKB) {
174 skb = (struct sk_buff *)priv;
175
176 if (skb->ip_summed == CHECKSUM_PARTIAL) {
177 protocol = skb->protocol;
178 ip_offset = ETH_HLEN;
179
180 /*if it is a SW VLAN check the next protocol*/
181 if (protocol == htons(ETH_P_8021Q)) {
182 ip_offset += VLAN_HLEN;
183 protocol = vlan_get_protocol(skb);
184 skb->protocol = protocol;
185 }
186
187 if (skb->protocol == htons(ETH_P_IP)) {
188 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189 /* check for tcp/udp header */
190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191
192 } else if (skb->protocol == htons(ETH_P_IPV6)) {
193 /* ipv6 has not l3 cs, check for L4 header */
194 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195 }
196
197 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198 }
199 }
200
201 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202
203 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205
206 ring_ptr_move_fw(ring, next_to_use);
207 }
208
209 static void unfill_desc(struct hnae_ring *ring)
210 {
211 ring_ptr_move_bw(ring, next_to_use);
212 }
213
214 static int hns_nic_maybe_stop_tx(
215 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217 struct sk_buff *skb = *out_skb;
218 struct sk_buff *new_skb = NULL;
219 int buf_num;
220
221 /* no. of segments (plus a header) */
222 buf_num = skb_shinfo(skb)->nr_frags + 1;
223
224 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225 if (ring_space(ring) < 1)
226 return -EBUSY;
227
228 new_skb = skb_copy(skb, GFP_ATOMIC);
229 if (!new_skb)
230 return -ENOMEM;
231
232 dev_kfree_skb_any(skb);
233 *out_skb = new_skb;
234 buf_num = 1;
235 } else if (buf_num > ring_space(ring)) {
236 return -EBUSY;
237 }
238
239 *bnum = buf_num;
240 return 0;
241 }
242
243 static int hns_nic_maybe_stop_tso(
244 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246 int i;
247 int size;
248 int buf_num;
249 int frag_num;
250 struct sk_buff *skb = *out_skb;
251 struct sk_buff *new_skb = NULL;
252 struct skb_frag_struct *frag;
253
254 size = skb_headlen(skb);
255 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256
257 frag_num = skb_shinfo(skb)->nr_frags;
258 for (i = 0; i < frag_num; i++) {
259 frag = &skb_shinfo(skb)->frags[i];
260 size = skb_frag_size(frag);
261 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 }
263
264 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266 if (ring_space(ring) < buf_num)
267 return -EBUSY;
268 /* manual split the send packet */
269 new_skb = skb_copy(skb, GFP_ATOMIC);
270 if (!new_skb)
271 return -ENOMEM;
272 dev_kfree_skb_any(skb);
273 *out_skb = new_skb;
274
275 } else if (ring_space(ring) < buf_num) {
276 return -EBUSY;
277 }
278
279 *bnum = buf_num;
280 return 0;
281 }
282
283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284 int size, dma_addr_t dma, int frag_end,
285 int buf_num, enum hns_desc_type type, int mtu)
286 {
287 int frag_buf_num;
288 int sizeoflast;
289 int k;
290
291 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292 sizeoflast = size % BD_MAX_SEND_SIZE;
293 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294
295 /* when the frag size is bigger than hardware, split this frag */
296 for (k = 0; k < frag_buf_num; k++)
297 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298 (k == frag_buf_num - 1) ?
299 sizeoflast : BD_MAX_SEND_SIZE,
300 dma + BD_MAX_SEND_SIZE * k,
301 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302 buf_num,
303 (type == DESC_TYPE_SKB && !k) ?
304 DESC_TYPE_SKB : DESC_TYPE_PAGE,
305 mtu);
306 }
307
308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309 struct sk_buff *skb,
310 struct hns_nic_ring_data *ring_data)
311 {
312 struct hns_nic_priv *priv = netdev_priv(ndev);
313 struct hnae_ring *ring = ring_data->ring;
314 struct device *dev = ring_to_dev(ring);
315 struct netdev_queue *dev_queue;
316 struct skb_frag_struct *frag;
317 int buf_num;
318 int seg_num;
319 dma_addr_t dma;
320 int size, next_to_use;
321 int i;
322
323 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324 case -EBUSY:
325 ring->stats.tx_busy++;
326 goto out_net_tx_busy;
327 case -ENOMEM:
328 ring->stats.sw_err_cnt++;
329 netdev_err(ndev, "no memory to xmit!\n");
330 goto out_err_tx_ok;
331 default:
332 break;
333 }
334
335 /* no. of segments (plus a header) */
336 seg_num = skb_shinfo(skb)->nr_frags + 1;
337 next_to_use = ring->next_to_use;
338
339 /* fill the first part */
340 size = skb_headlen(skb);
341 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342 if (dma_mapping_error(dev, dma)) {
343 netdev_err(ndev, "TX head DMA map failed\n");
344 ring->stats.sw_err_cnt++;
345 goto out_err_tx_ok;
346 }
347 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348 buf_num, DESC_TYPE_SKB, ndev->mtu);
349
350 /* fill the fragments */
351 for (i = 1; i < seg_num; i++) {
352 frag = &skb_shinfo(skb)->frags[i - 1];
353 size = skb_frag_size(frag);
354 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355 if (dma_mapping_error(dev, dma)) {
356 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357 ring->stats.sw_err_cnt++;
358 goto out_map_frag_fail;
359 }
360 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361 seg_num - 1 == i ? 1 : 0, buf_num,
362 DESC_TYPE_PAGE, ndev->mtu);
363 }
364
365 /*complete translate all packets*/
366 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367 netdev_tx_sent_queue(dev_queue, skb->len);
368
369 netif_trans_update(ndev);
370 ndev->stats.tx_bytes += skb->len;
371 ndev->stats.tx_packets++;
372
373 wmb(); /* commit all data before submit */
374 assert(skb->queue_mapping < priv->ae_handle->q_num);
375 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376
377 return NETDEV_TX_OK;
378
379 out_map_frag_fail:
380
381 while (ring->next_to_use != next_to_use) {
382 unfill_desc(ring);
383 if (ring->next_to_use != next_to_use)
384 dma_unmap_page(dev,
385 ring->desc_cb[ring->next_to_use].dma,
386 ring->desc_cb[ring->next_to_use].length,
387 DMA_TO_DEVICE);
388 else
389 dma_unmap_single(dev,
390 ring->desc_cb[next_to_use].dma,
391 ring->desc_cb[next_to_use].length,
392 DMA_TO_DEVICE);
393 }
394
395 out_err_tx_ok:
396
397 dev_kfree_skb_any(skb);
398 return NETDEV_TX_OK;
399
400 out_net_tx_busy:
401
402 netif_stop_subqueue(ndev, skb->queue_mapping);
403
404 /* Herbert's original patch had:
405 * smp_mb__after_netif_stop_queue();
406 * but since that doesn't exist yet, just open code it.
407 */
408 smp_mb();
409 return NETDEV_TX_BUSY;
410 }
411
412 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
413 struct hnae_ring *ring, int pull_len,
414 struct hnae_desc_cb *desc_cb)
415 {
416 struct hnae_desc *desc;
417 u32 truesize;
418 int size;
419 int last_offset;
420 bool twobufs;
421
422 twobufs = ((PAGE_SIZE < 8192) &&
423 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
424
425 desc = &ring->desc[ring->next_to_clean];
426 size = le16_to_cpu(desc->rx.size);
427
428 if (twobufs) {
429 truesize = hnae_buf_size(ring);
430 } else {
431 truesize = ALIGN(size, L1_CACHE_BYTES);
432 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
433 }
434
435 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
436 size - pull_len, truesize);
437
438 /* avoid re-using remote pages,flag default unreuse */
439 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
440 return;
441
442 if (twobufs) {
443 /* if we are only owner of page we can reuse it */
444 if (likely(page_count(desc_cb->priv) == 1)) {
445 /* flip page offset to other buffer */
446 desc_cb->page_offset ^= truesize;
447
448 desc_cb->reuse_flag = 1;
449 /* bump ref count on page before it is given*/
450 get_page(desc_cb->priv);
451 }
452 return;
453 }
454
455 /* move offset up to the next cache line */
456 desc_cb->page_offset += truesize;
457
458 if (desc_cb->page_offset <= last_offset) {
459 desc_cb->reuse_flag = 1;
460 /* bump ref count on page before it is given*/
461 get_page(desc_cb->priv);
462 }
463 }
464
465 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
466 {
467 *out_bnum = hnae_get_field(bnum_flag,
468 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
469 }
470
471 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
472 {
473 *out_bnum = hnae_get_field(bnum_flag,
474 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
475 }
476
477 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
478 struct sk_buff *skb, u32 flag)
479 {
480 struct net_device *netdev = ring_data->napi.dev;
481 u32 l3id;
482 u32 l4id;
483
484 /* check if RX checksum offload is enabled */
485 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
486 return;
487
488 /* In hardware, we only support checksum for the following protocols:
489 * 1) IPv4,
490 * 2) TCP(over IPv4 or IPv6),
491 * 3) UDP(over IPv4 or IPv6),
492 * 4) SCTP(over IPv4 or IPv6)
493 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
494 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
495 *
496 * Hardware limitation:
497 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
498 * Error" bit (which usually can be used to indicate whether checksum
499 * was calculated by the hardware and if there was any error encountered
500 * during checksum calculation).
501 *
502 * Software workaround:
503 * We do get info within the RX descriptor about the kind of L3/L4
504 * protocol coming in the packet and the error status. These errors
505 * might not just be checksum errors but could be related to version,
506 * length of IPv4, UDP, TCP etc.
507 * Because there is no-way of knowing if it is a L3/L4 error due to bad
508 * checksum or any other L3/L4 error, we will not (cannot) convey
509 * checksum status for such cases to upper stack and will not maintain
510 * the RX L3/L4 checksum counters as well.
511 */
512
513 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
514 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
515
516 /* check L3 protocol for which checksum is supported */
517 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
518 return;
519
520 /* check for any(not just checksum)flagged L3 protocol errors */
521 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
522 return;
523
524 /* we do not support checksum of fragmented packets */
525 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
526 return;
527
528 /* check L4 protocol for which checksum is supported */
529 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
530 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
531 (l4id != HNS_RX_FLAG_L4ID_SCTP))
532 return;
533
534 /* check for any(not just checksum)flagged L4 protocol errors */
535 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
536 return;
537
538 /* now, this has to be a packet with valid RX checksum */
539 skb->ip_summed = CHECKSUM_UNNECESSARY;
540 }
541
542 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
543 struct sk_buff **out_skb, int *out_bnum)
544 {
545 struct hnae_ring *ring = ring_data->ring;
546 struct net_device *ndev = ring_data->napi.dev;
547 struct hns_nic_priv *priv = netdev_priv(ndev);
548 struct sk_buff *skb;
549 struct hnae_desc *desc;
550 struct hnae_desc_cb *desc_cb;
551 unsigned char *va;
552 int bnum, length, i;
553 int pull_len;
554 u32 bnum_flag;
555
556 desc = &ring->desc[ring->next_to_clean];
557 desc_cb = &ring->desc_cb[ring->next_to_clean];
558
559 prefetch(desc);
560
561 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
562
563 /* prefetch first cache line of first page */
564 prefetch(va);
565 #if L1_CACHE_BYTES < 128
566 prefetch(va + L1_CACHE_BYTES);
567 #endif
568
569 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
570 HNS_RX_HEAD_SIZE);
571 if (unlikely(!skb)) {
572 ring->stats.sw_err_cnt++;
573 return -ENOMEM;
574 }
575
576 prefetchw(skb->data);
577 length = le16_to_cpu(desc->rx.pkt_len);
578 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
579 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
580 *out_bnum = bnum;
581
582 if (length <= HNS_RX_HEAD_SIZE) {
583 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
584
585 /* we can reuse buffer as-is, just make sure it is local */
586 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
587 desc_cb->reuse_flag = 1;
588 else /* this page cannot be reused so discard it */
589 put_page(desc_cb->priv);
590
591 ring_ptr_move_fw(ring, next_to_clean);
592
593 if (unlikely(bnum != 1)) { /* check err*/
594 *out_bnum = 1;
595 goto out_bnum_err;
596 }
597 } else {
598 ring->stats.seg_pkt_cnt++;
599
600 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
601 memcpy(__skb_put(skb, pull_len), va,
602 ALIGN(pull_len, sizeof(long)));
603
604 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
605 ring_ptr_move_fw(ring, next_to_clean);
606
607 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
608 *out_bnum = 1;
609 goto out_bnum_err;
610 }
611 for (i = 1; i < bnum; i++) {
612 desc = &ring->desc[ring->next_to_clean];
613 desc_cb = &ring->desc_cb[ring->next_to_clean];
614
615 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
616 ring_ptr_move_fw(ring, next_to_clean);
617 }
618 }
619
620 /* check except process, free skb and jump the desc */
621 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
622 out_bnum_err:
623 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
624 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
625 bnum, ring->max_desc_num_per_pkt,
626 length, (int)MAX_SKB_FRAGS,
627 ((u64 *)desc)[0], ((u64 *)desc)[1]);
628 ring->stats.err_bd_num++;
629 dev_kfree_skb_any(skb);
630 return -EDOM;
631 }
632
633 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
634
635 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
636 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
637 ((u64 *)desc)[0], ((u64 *)desc)[1]);
638 ring->stats.non_vld_descs++;
639 dev_kfree_skb_any(skb);
640 return -EINVAL;
641 }
642
643 if (unlikely((!desc->rx.pkt_len) ||
644 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
645 ring->stats.err_pkt_len++;
646 dev_kfree_skb_any(skb);
647 return -EFAULT;
648 }
649
650 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
651 ring->stats.l2_err++;
652 dev_kfree_skb_any(skb);
653 return -EFAULT;
654 }
655
656 ring->stats.rx_pkts++;
657 ring->stats.rx_bytes += skb->len;
658
659 /* indicate to upper stack if our hardware has already calculated
660 * the RX checksum
661 */
662 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
663
664 return 0;
665 }
666
667 static void
668 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
669 {
670 int i, ret;
671 struct hnae_desc_cb res_cbs;
672 struct hnae_desc_cb *desc_cb;
673 struct hnae_ring *ring = ring_data->ring;
674 struct net_device *ndev = ring_data->napi.dev;
675
676 for (i = 0; i < cleand_count; i++) {
677 desc_cb = &ring->desc_cb[ring->next_to_use];
678 if (desc_cb->reuse_flag) {
679 ring->stats.reuse_pg_cnt++;
680 hnae_reuse_buffer(ring, ring->next_to_use);
681 } else {
682 ret = hnae_reserve_buffer_map(ring, &res_cbs);
683 if (ret) {
684 ring->stats.sw_err_cnt++;
685 netdev_err(ndev, "hnae reserve buffer map failed.\n");
686 break;
687 }
688 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
689 }
690
691 ring_ptr_move_fw(ring, next_to_use);
692 }
693
694 wmb(); /* make all data has been write before submit */
695 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
696 }
697
698 /* return error number for error or number of desc left to take
699 */
700 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
701 struct sk_buff *skb)
702 {
703 struct net_device *ndev = ring_data->napi.dev;
704
705 skb->protocol = eth_type_trans(skb, ndev);
706 (void)napi_gro_receive(&ring_data->napi, skb);
707 }
708
709 static int hns_desc_unused(struct hnae_ring *ring)
710 {
711 int ntc = ring->next_to_clean;
712 int ntu = ring->next_to_use;
713
714 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
715 }
716
717 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
718 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
719
720 #define HNS_COAL_BDNUM 3
721
722 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
723 {
724 bool coal_enable = ring->q->handle->coal_adapt_en;
725
726 if (coal_enable &&
727 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
728 return HNS_COAL_BDNUM;
729 else
730 return 0;
731 }
732
733 static void hns_update_rx_rate(struct hnae_ring *ring)
734 {
735 bool coal_enable = ring->q->handle->coal_adapt_en;
736 u32 time_passed_ms;
737 u64 total_bytes;
738
739 if (!coal_enable ||
740 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
741 return;
742
743 /* ring->stats.rx_bytes overflowed */
744 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
745 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
746 ring->coal_last_jiffies = jiffies;
747 return;
748 }
749
750 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
751 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
752 do_div(total_bytes, time_passed_ms);
753 ring->coal_rx_rate = total_bytes >> 10;
754
755 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
756 ring->coal_last_jiffies = jiffies;
757 }
758
759 /**
760 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
761 **/
762 static u32 smooth_alg(u32 new_param, u32 old_param)
763 {
764 u32 gap = (new_param > old_param) ? new_param - old_param
765 : old_param - new_param;
766
767 if (gap > 8)
768 gap >>= 3;
769
770 if (new_param > old_param)
771 return old_param + gap;
772 else
773 return old_param - gap;
774 }
775
776 /**
777 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
778 * @ring_data: pointer to hns_nic_ring_data
779 **/
780 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
781 {
782 struct hnae_ring *ring = ring_data->ring;
783 struct hnae_handle *handle = ring->q->handle;
784 u32 new_coal_param, old_coal_param = ring->coal_param;
785
786 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
787 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
788 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
789 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
790 else
791 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
792
793 if (new_coal_param == old_coal_param &&
794 new_coal_param == handle->coal_param)
795 return;
796
797 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
798 ring->coal_param = new_coal_param;
799
800 /**
801 * Because all ring in one port has one coalesce param, when one ring
802 * calculate its own coalesce param, it cannot write to hardware at
803 * once. There are three conditions as follows:
804 * 1. current ring's coalesce param is larger than the hardware.
805 * 2. or ring which adapt last time can change again.
806 * 3. timeout.
807 */
808 if (new_coal_param == handle->coal_param) {
809 handle->coal_last_jiffies = jiffies;
810 handle->coal_ring_idx = ring_data->queue_index;
811 } else if (new_coal_param > handle->coal_param ||
812 handle->coal_ring_idx == ring_data->queue_index ||
813 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
814 handle->dev->ops->set_coalesce_usecs(handle,
815 new_coal_param);
816 handle->dev->ops->set_coalesce_frames(handle,
817 1, new_coal_param);
818 handle->coal_param = new_coal_param;
819 handle->coal_ring_idx = ring_data->queue_index;
820 handle->coal_last_jiffies = jiffies;
821 }
822 }
823
824 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
825 int budget, void *v)
826 {
827 struct hnae_ring *ring = ring_data->ring;
828 struct sk_buff *skb;
829 int num, bnum;
830 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
831 int recv_pkts, recv_bds, clean_count, err;
832 int unused_count = hns_desc_unused(ring);
833
834 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
835 rmb(); /* make sure num taken effect before the other data is touched */
836
837 recv_pkts = 0, recv_bds = 0, clean_count = 0;
838 num -= unused_count;
839
840 while (recv_pkts < budget && recv_bds < num) {
841 /* reuse or realloc buffers */
842 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
843 hns_nic_alloc_rx_buffers(ring_data,
844 clean_count + unused_count);
845 clean_count = 0;
846 unused_count = hns_desc_unused(ring);
847 }
848
849 /* poll one pkt */
850 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
851 if (unlikely(!skb)) /* this fault cannot be repaired */
852 goto out;
853
854 recv_bds += bnum;
855 clean_count += bnum;
856 if (unlikely(err)) { /* do jump the err */
857 recv_pkts++;
858 continue;
859 }
860
861 /* do update ip stack process*/
862 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
863 ring_data, skb);
864 recv_pkts++;
865 }
866
867 out:
868 /* make all data has been write before submit */
869 if (clean_count + unused_count > 0)
870 hns_nic_alloc_rx_buffers(ring_data,
871 clean_count + unused_count);
872
873 return recv_pkts;
874 }
875
876 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
877 {
878 struct hnae_ring *ring = ring_data->ring;
879 int num = 0;
880 bool rx_stopped;
881
882 hns_update_rx_rate(ring);
883
884 /* for hardware bug fixed */
885 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
886 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
887
888 if (num <= hns_coal_rx_bdnum(ring)) {
889 if (ring->q->handle->coal_adapt_en)
890 hns_nic_adpt_coalesce(ring_data);
891
892 rx_stopped = true;
893 } else {
894 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
895 ring_data->ring, 1);
896
897 rx_stopped = false;
898 }
899
900 return rx_stopped;
901 }
902
903 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
904 {
905 struct hnae_ring *ring = ring_data->ring;
906 int num;
907
908 hns_update_rx_rate(ring);
909 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
910
911 if (num <= hns_coal_rx_bdnum(ring)) {
912 if (ring->q->handle->coal_adapt_en)
913 hns_nic_adpt_coalesce(ring_data);
914
915 return true;
916 }
917
918 return false;
919 }
920
921 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
922 int *bytes, int *pkts)
923 {
924 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
925
926 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
927 (*bytes) += desc_cb->length;
928 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
929 hnae_free_buffer_detach(ring, ring->next_to_clean);
930
931 ring_ptr_move_fw(ring, next_to_clean);
932 }
933
934 static int is_valid_clean_head(struct hnae_ring *ring, int h)
935 {
936 int u = ring->next_to_use;
937 int c = ring->next_to_clean;
938
939 if (unlikely(h > ring->desc_num))
940 return 0;
941
942 assert(u > 0 && u < ring->desc_num);
943 assert(c > 0 && c < ring->desc_num);
944 assert(u != c && h != c); /* must be checked before call this func */
945
946 return u > c ? (h > c && h <= u) : (h > c || h <= u);
947 }
948
949 /* reclaim all desc in one budget
950 * return error or number of desc left
951 */
952 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
953 int budget, void *v)
954 {
955 struct hnae_ring *ring = ring_data->ring;
956 struct net_device *ndev = ring_data->napi.dev;
957 struct netdev_queue *dev_queue;
958 struct hns_nic_priv *priv = netdev_priv(ndev);
959 int head;
960 int bytes, pkts;
961
962 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
963 rmb(); /* make sure head is ready before touch any data */
964
965 if (is_ring_empty(ring) || head == ring->next_to_clean)
966 return 0; /* no data to poll */
967
968 if (!is_valid_clean_head(ring, head)) {
969 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
970 ring->next_to_use, ring->next_to_clean);
971 ring->stats.io_err_cnt++;
972 return -EIO;
973 }
974
975 bytes = 0;
976 pkts = 0;
977 while (head != ring->next_to_clean) {
978 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
979 /* issue prefetch for next Tx descriptor */
980 prefetch(&ring->desc_cb[ring->next_to_clean]);
981 }
982 /* update tx ring statistics. */
983 ring->stats.tx_pkts += pkts;
984 ring->stats.tx_bytes += bytes;
985
986 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
987 netdev_tx_completed_queue(dev_queue, pkts, bytes);
988
989 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
990 netif_carrier_on(ndev);
991
992 if (unlikely(pkts && netif_carrier_ok(ndev) &&
993 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
994 /* Make sure that anybody stopping the queue after this
995 * sees the new next_to_clean.
996 */
997 smp_mb();
998 if (netif_tx_queue_stopped(dev_queue) &&
999 !test_bit(NIC_STATE_DOWN, &priv->state)) {
1000 netif_tx_wake_queue(dev_queue);
1001 ring->stats.restart_queue++;
1002 }
1003 }
1004 return 0;
1005 }
1006
1007 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1008 {
1009 struct hnae_ring *ring = ring_data->ring;
1010 int head;
1011
1012 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1013
1014 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1015
1016 if (head != ring->next_to_clean) {
1017 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1018 ring_data->ring, 1);
1019
1020 return false;
1021 } else {
1022 return true;
1023 }
1024 }
1025
1026 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1027 {
1028 struct hnae_ring *ring = ring_data->ring;
1029 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1030
1031 if (head == ring->next_to_clean)
1032 return true;
1033 else
1034 return false;
1035 }
1036
1037 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1038 {
1039 struct hnae_ring *ring = ring_data->ring;
1040 struct net_device *ndev = ring_data->napi.dev;
1041 struct netdev_queue *dev_queue;
1042 int head;
1043 int bytes, pkts;
1044
1045 head = ring->next_to_use; /* ntu :soft setted ring position*/
1046 bytes = 0;
1047 pkts = 0;
1048 while (head != ring->next_to_clean)
1049 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1050
1051 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1052 netdev_tx_reset_queue(dev_queue);
1053 }
1054
1055 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1056 {
1057 int clean_complete = 0;
1058 struct hns_nic_ring_data *ring_data =
1059 container_of(napi, struct hns_nic_ring_data, napi);
1060 struct hnae_ring *ring = ring_data->ring;
1061
1062 clean_complete += ring_data->poll_one(
1063 ring_data, budget - clean_complete,
1064 ring_data->ex_process);
1065
1066 if (clean_complete < budget) {
1067 if (ring_data->fini_process(ring_data)) {
1068 napi_complete(napi);
1069 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1070 } else {
1071 return budget;
1072 }
1073 }
1074
1075 return clean_complete;
1076 }
1077
1078 static irqreturn_t hns_irq_handle(int irq, void *dev)
1079 {
1080 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1081
1082 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1083 ring_data->ring, 1);
1084 napi_schedule(&ring_data->napi);
1085
1086 return IRQ_HANDLED;
1087 }
1088
1089 /**
1090 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1091 *@ndev: net device
1092 */
1093 static void hns_nic_adjust_link(struct net_device *ndev)
1094 {
1095 struct hns_nic_priv *priv = netdev_priv(ndev);
1096 struct hnae_handle *h = priv->ae_handle;
1097 int state = 1;
1098
1099 /* If there is no phy, do not need adjust link */
1100 if (ndev->phydev) {
1101 /* When phy link down, do nothing */
1102 if (ndev->phydev->link == 0)
1103 return;
1104
1105 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1106 ndev->phydev->duplex)) {
1107 /* because Hi161X chip don't support to change gmac
1108 * speed and duplex with traffic. Delay 200ms to
1109 * make sure there is no more data in chip FIFO.
1110 */
1111 netif_carrier_off(ndev);
1112 msleep(200);
1113 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1114 ndev->phydev->duplex);
1115 netif_carrier_on(ndev);
1116 }
1117 }
1118
1119 state = state && h->dev->ops->get_status(h);
1120
1121 if (state != priv->link) {
1122 if (state) {
1123 netif_carrier_on(ndev);
1124 netif_tx_wake_all_queues(ndev);
1125 netdev_info(ndev, "link up\n");
1126 } else {
1127 netif_carrier_off(ndev);
1128 netdev_info(ndev, "link down\n");
1129 }
1130 priv->link = state;
1131 }
1132 }
1133
1134 /**
1135 *hns_nic_init_phy - init phy
1136 *@ndev: net device
1137 *@h: ae handle
1138 * Return 0 on success, negative on failure
1139 */
1140 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1141 {
1142 struct phy_device *phy_dev = h->phy_dev;
1143 int ret;
1144
1145 if (!h->phy_dev)
1146 return 0;
1147
1148 phy_dev->supported &= h->if_support;
1149 phy_dev->advertising = phy_dev->supported;
1150
1151 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1152 phy_dev->autoneg = false;
1153
1154 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1155 phy_dev->dev_flags = 0;
1156
1157 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1158 h->phy_if);
1159 } else {
1160 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1161 }
1162 if (unlikely(ret))
1163 return -ENODEV;
1164
1165 return 0;
1166 }
1167
1168 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1169 {
1170 struct hns_nic_priv *priv = netdev_priv(netdev);
1171 struct hnae_handle *h = priv->ae_handle;
1172
1173 napi_enable(&priv->ring_data[idx].napi);
1174
1175 enable_irq(priv->ring_data[idx].ring->irq);
1176 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1177
1178 return 0;
1179 }
1180
1181 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1182 {
1183 struct hns_nic_priv *priv = netdev_priv(ndev);
1184 struct hnae_handle *h = priv->ae_handle;
1185 struct sockaddr *mac_addr = p;
1186 int ret;
1187
1188 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1189 return -EADDRNOTAVAIL;
1190
1191 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1192 if (ret) {
1193 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1194 return ret;
1195 }
1196
1197 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1198
1199 return 0;
1200 }
1201
1202 static void hns_nic_update_stats(struct net_device *netdev)
1203 {
1204 struct hns_nic_priv *priv = netdev_priv(netdev);
1205 struct hnae_handle *h = priv->ae_handle;
1206
1207 h->dev->ops->update_stats(h, &netdev->stats);
1208 }
1209
1210 /* set mac addr if it is configed. or leave it to the AE driver */
1211 static void hns_init_mac_addr(struct net_device *ndev)
1212 {
1213 struct hns_nic_priv *priv = netdev_priv(ndev);
1214
1215 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1216 eth_hw_addr_random(ndev);
1217 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1218 ndev->dev_addr);
1219 }
1220 }
1221
1222 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1223 {
1224 struct hns_nic_priv *priv = netdev_priv(netdev);
1225 struct hnae_handle *h = priv->ae_handle;
1226
1227 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1228 disable_irq(priv->ring_data[idx].ring->irq);
1229
1230 napi_disable(&priv->ring_data[idx].napi);
1231 }
1232
1233 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1234 struct hnae_ring *ring, cpumask_t *mask)
1235 {
1236 int cpu;
1237
1238 /* Diffrent irq banlance between 16core and 32core.
1239 * The cpu mask set by ring index according to the ring flag
1240 * which indicate the ring is tx or rx.
1241 */
1242 if (q_num == num_possible_cpus()) {
1243 if (is_tx_ring(ring))
1244 cpu = ring_idx;
1245 else
1246 cpu = ring_idx - q_num;
1247 } else {
1248 if (is_tx_ring(ring))
1249 cpu = ring_idx * 2;
1250 else
1251 cpu = (ring_idx - q_num) * 2 + 1;
1252 }
1253
1254 cpumask_clear(mask);
1255 cpumask_set_cpu(cpu, mask);
1256
1257 return cpu;
1258 }
1259
1260 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1261 {
1262 int i;
1263
1264 for (i = 0; i < q_num * 2; i++) {
1265 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1266 irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1267 NULL);
1268 free_irq(priv->ring_data[i].ring->irq,
1269 &priv->ring_data[i]);
1270 priv->ring_data[i].ring->irq_init_flag =
1271 RCB_IRQ_NOT_INITED;
1272 }
1273 }
1274 }
1275
1276 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1277 {
1278 struct hnae_handle *h = priv->ae_handle;
1279 struct hns_nic_ring_data *rd;
1280 int i;
1281 int ret;
1282 int cpu;
1283
1284 for (i = 0; i < h->q_num * 2; i++) {
1285 rd = &priv->ring_data[i];
1286
1287 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1288 break;
1289
1290 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1291 "%s-%s%d", priv->netdev->name,
1292 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1293
1294 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1295
1296 ret = request_irq(rd->ring->irq,
1297 hns_irq_handle, 0, rd->ring->ring_name, rd);
1298 if (ret) {
1299 netdev_err(priv->netdev, "request irq(%d) fail\n",
1300 rd->ring->irq);
1301 goto out_free_irq;
1302 }
1303 disable_irq(rd->ring->irq);
1304
1305 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1306 rd->ring, &rd->mask);
1307
1308 if (cpu_online(cpu))
1309 irq_set_affinity_hint(rd->ring->irq,
1310 &rd->mask);
1311
1312 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1313 }
1314
1315 return 0;
1316
1317 out_free_irq:
1318 hns_nic_free_irq(h->q_num, priv);
1319 return ret;
1320 }
1321
1322 static int hns_nic_net_up(struct net_device *ndev)
1323 {
1324 struct hns_nic_priv *priv = netdev_priv(ndev);
1325 struct hnae_handle *h = priv->ae_handle;
1326 int i, j;
1327 int ret;
1328
1329 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1330 return 0;
1331
1332 ret = hns_nic_init_irq(priv);
1333 if (ret != 0) {
1334 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1335 return ret;
1336 }
1337
1338 for (i = 0; i < h->q_num * 2; i++) {
1339 ret = hns_nic_ring_open(ndev, i);
1340 if (ret)
1341 goto out_has_some_queues;
1342 }
1343
1344 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1345 if (ret)
1346 goto out_set_mac_addr_err;
1347
1348 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1349 if (ret)
1350 goto out_start_err;
1351
1352 if (ndev->phydev)
1353 phy_start(ndev->phydev);
1354
1355 clear_bit(NIC_STATE_DOWN, &priv->state);
1356 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1357
1358 return 0;
1359
1360 out_start_err:
1361 netif_stop_queue(ndev);
1362 out_set_mac_addr_err:
1363 out_has_some_queues:
1364 for (j = i - 1; j >= 0; j--)
1365 hns_nic_ring_close(ndev, j);
1366
1367 hns_nic_free_irq(h->q_num, priv);
1368 set_bit(NIC_STATE_DOWN, &priv->state);
1369
1370 return ret;
1371 }
1372
1373 static void hns_nic_net_down(struct net_device *ndev)
1374 {
1375 int i;
1376 struct hnae_ae_ops *ops;
1377 struct hns_nic_priv *priv = netdev_priv(ndev);
1378
1379 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1380 return;
1381
1382 (void)del_timer_sync(&priv->service_timer);
1383 netif_tx_stop_all_queues(ndev);
1384 netif_carrier_off(ndev);
1385 netif_tx_disable(ndev);
1386 priv->link = 0;
1387
1388 if (ndev->phydev)
1389 phy_stop(ndev->phydev);
1390
1391 ops = priv->ae_handle->dev->ops;
1392
1393 if (ops->stop)
1394 ops->stop(priv->ae_handle);
1395
1396 netif_tx_stop_all_queues(ndev);
1397
1398 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1399 hns_nic_ring_close(ndev, i);
1400 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1401
1402 /* clean tx buffers*/
1403 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1404 }
1405 }
1406
1407 void hns_nic_net_reset(struct net_device *ndev)
1408 {
1409 struct hns_nic_priv *priv = netdev_priv(ndev);
1410 struct hnae_handle *handle = priv->ae_handle;
1411
1412 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1413 usleep_range(1000, 2000);
1414
1415 (void)hnae_reinit_handle(handle);
1416
1417 clear_bit(NIC_STATE_RESETTING, &priv->state);
1418 }
1419
1420 void hns_nic_net_reinit(struct net_device *netdev)
1421 {
1422 struct hns_nic_priv *priv = netdev_priv(netdev);
1423 enum hnae_port_type type = priv->ae_handle->port_type;
1424
1425 netif_trans_update(priv->netdev);
1426 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1427 usleep_range(1000, 2000);
1428
1429 hns_nic_net_down(netdev);
1430
1431 /* Only do hns_nic_net_reset in debug mode
1432 * because of hardware limitation.
1433 */
1434 if (type == HNAE_PORT_DEBUG)
1435 hns_nic_net_reset(netdev);
1436
1437 (void)hns_nic_net_up(netdev);
1438 clear_bit(NIC_STATE_REINITING, &priv->state);
1439 }
1440
1441 static int hns_nic_net_open(struct net_device *ndev)
1442 {
1443 struct hns_nic_priv *priv = netdev_priv(ndev);
1444 struct hnae_handle *h = priv->ae_handle;
1445 int ret;
1446
1447 if (test_bit(NIC_STATE_TESTING, &priv->state))
1448 return -EBUSY;
1449
1450 priv->link = 0;
1451 netif_carrier_off(ndev);
1452
1453 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1454 if (ret < 0) {
1455 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1456 ret);
1457 return ret;
1458 }
1459
1460 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1461 if (ret < 0) {
1462 netdev_err(ndev,
1463 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1464 return ret;
1465 }
1466
1467 ret = hns_nic_net_up(ndev);
1468 if (ret) {
1469 netdev_err(ndev,
1470 "hns net up fail, ret=%d!\n", ret);
1471 return ret;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static int hns_nic_net_stop(struct net_device *ndev)
1478 {
1479 hns_nic_net_down(ndev);
1480
1481 return 0;
1482 }
1483
1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1485 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1486 static void hns_nic_net_timeout(struct net_device *ndev)
1487 {
1488 struct hns_nic_priv *priv = netdev_priv(ndev);
1489
1490 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1491 ndev->watchdog_timeo *= 2;
1492 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1493 ndev->watchdog_timeo);
1494 } else {
1495 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1496 hns_tx_timeout_reset(priv);
1497 }
1498 }
1499
1500 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1501 int cmd)
1502 {
1503 struct phy_device *phy_dev = netdev->phydev;
1504
1505 if (!netif_running(netdev))
1506 return -EINVAL;
1507
1508 if (!phy_dev)
1509 return -ENOTSUPP;
1510
1511 return phy_mii_ioctl(phy_dev, ifr, cmd);
1512 }
1513
1514 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1515 struct net_device *ndev)
1516 {
1517 struct hns_nic_priv *priv = netdev_priv(ndev);
1518
1519 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1520
1521 return hns_nic_net_xmit_hw(ndev, skb,
1522 &tx_ring_data(priv, skb->queue_mapping));
1523 }
1524
1525 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1526 struct sk_buff *skb)
1527 {
1528 dev_kfree_skb_any(skb);
1529 }
1530
1531 #define HNS_LB_TX_RING 0
1532 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1533 {
1534 struct sk_buff *skb;
1535 struct ethhdr *ethhdr;
1536 int frame_len;
1537
1538 /* allocate test skb */
1539 skb = alloc_skb(64, GFP_KERNEL);
1540 if (!skb)
1541 return NULL;
1542
1543 skb_put(skb, 64);
1544 skb->dev = ndev;
1545 memset(skb->data, 0xFF, skb->len);
1546
1547 /* must be tcp/ip package */
1548 ethhdr = (struct ethhdr *)skb->data;
1549 ethhdr->h_proto = htons(ETH_P_IP);
1550
1551 frame_len = skb->len & (~1ul);
1552 memset(&skb->data[frame_len / 2], 0xAA,
1553 frame_len / 2 - 1);
1554
1555 skb->queue_mapping = HNS_LB_TX_RING;
1556
1557 return skb;
1558 }
1559
1560 static int hns_enable_serdes_lb(struct net_device *ndev)
1561 {
1562 struct hns_nic_priv *priv = netdev_priv(ndev);
1563 struct hnae_handle *h = priv->ae_handle;
1564 struct hnae_ae_ops *ops = h->dev->ops;
1565 int speed, duplex;
1566 int ret;
1567
1568 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1569 if (ret)
1570 return ret;
1571
1572 ret = ops->start ? ops->start(h) : 0;
1573 if (ret)
1574 return ret;
1575
1576 /* link adjust duplex*/
1577 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1578 speed = 1000;
1579 else
1580 speed = 10000;
1581 duplex = 1;
1582
1583 ops->adjust_link(h, speed, duplex);
1584
1585 /* wait h/w ready */
1586 mdelay(300);
1587
1588 return 0;
1589 }
1590
1591 static void hns_disable_serdes_lb(struct net_device *ndev)
1592 {
1593 struct hns_nic_priv *priv = netdev_priv(ndev);
1594 struct hnae_handle *h = priv->ae_handle;
1595 struct hnae_ae_ops *ops = h->dev->ops;
1596
1597 ops->stop(h);
1598 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1599 }
1600
1601 /**
1602 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1603 *function as follows:
1604 * 1. if one rx ring has found the page_offset is not equal 0 between head
1605 * and tail, it means that the chip fetched the wrong descs for the ring
1606 * which buffer size is 4096.
1607 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1608 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1609 * recieving all packages and it will fetch new descriptions.
1610 * 4. recover to the original state.
1611 *
1612 *@ndev: net device
1613 */
1614 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1615 {
1616 struct hns_nic_priv *priv = netdev_priv(ndev);
1617 struct hnae_handle *h = priv->ae_handle;
1618 struct hnae_ae_ops *ops = h->dev->ops;
1619 struct hns_nic_ring_data *rd;
1620 struct hnae_ring *ring;
1621 struct sk_buff *skb;
1622 u32 *org_indir;
1623 u32 *cur_indir;
1624 int indir_size;
1625 int head, tail;
1626 int fetch_num;
1627 int i, j;
1628 bool found;
1629 int retry_times;
1630 int ret = 0;
1631
1632 /* alloc indir memory */
1633 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1634 org_indir = kzalloc(indir_size, GFP_KERNEL);
1635 if (!org_indir)
1636 return -ENOMEM;
1637
1638 /* store the orginal indirection */
1639 ops->get_rss(h, org_indir, NULL, NULL);
1640
1641 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1642 if (!cur_indir) {
1643 ret = -ENOMEM;
1644 goto cur_indir_alloc_err;
1645 }
1646
1647 /* set loopback */
1648 if (hns_enable_serdes_lb(ndev)) {
1649 ret = -EINVAL;
1650 goto enable_serdes_lb_err;
1651 }
1652
1653 /* foreach every rx ring to clear fetch desc */
1654 for (i = 0; i < h->q_num; i++) {
1655 ring = &h->qs[i]->rx_ring;
1656 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1657 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1658 found = false;
1659 fetch_num = ring_dist(ring, head, tail);
1660
1661 while (head != tail) {
1662 if (ring->desc_cb[head].page_offset != 0) {
1663 found = true;
1664 break;
1665 }
1666
1667 head++;
1668 if (head == ring->desc_num)
1669 head = 0;
1670 }
1671
1672 if (found) {
1673 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1674 cur_indir[j] = i;
1675 ops->set_rss(h, cur_indir, NULL, 0);
1676
1677 for (j = 0; j < fetch_num; j++) {
1678 /* alloc one skb and init */
1679 skb = hns_assemble_skb(ndev);
1680 if (!skb)
1681 goto out;
1682 rd = &tx_ring_data(priv, skb->queue_mapping);
1683 hns_nic_net_xmit_hw(ndev, skb, rd);
1684
1685 retry_times = 0;
1686 while (retry_times++ < 10) {
1687 mdelay(10);
1688 /* clean rx */
1689 rd = &rx_ring_data(priv, i);
1690 if (rd->poll_one(rd, fetch_num,
1691 hns_nic_drop_rx_fetch))
1692 break;
1693 }
1694
1695 retry_times = 0;
1696 while (retry_times++ < 10) {
1697 mdelay(10);
1698 /* clean tx ring 0 send package */
1699 rd = &tx_ring_data(priv,
1700 HNS_LB_TX_RING);
1701 if (rd->poll_one(rd, fetch_num, NULL))
1702 break;
1703 }
1704 }
1705 }
1706 }
1707
1708 out:
1709 /* restore everything */
1710 ops->set_rss(h, org_indir, NULL, 0);
1711 hns_disable_serdes_lb(ndev);
1712 enable_serdes_lb_err:
1713 kfree(cur_indir);
1714 cur_indir_alloc_err:
1715 kfree(org_indir);
1716
1717 return ret;
1718 }
1719
1720 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1721 {
1722 struct hns_nic_priv *priv = netdev_priv(ndev);
1723 struct hnae_handle *h = priv->ae_handle;
1724 bool if_running = netif_running(ndev);
1725 int ret;
1726
1727 /* MTU < 68 is an error and causes problems on some kernels */
1728 if (new_mtu < 68)
1729 return -EINVAL;
1730
1731 /* MTU no change */
1732 if (new_mtu == ndev->mtu)
1733 return 0;
1734
1735 if (!h->dev->ops->set_mtu)
1736 return -ENOTSUPP;
1737
1738 if (if_running) {
1739 (void)hns_nic_net_stop(ndev);
1740 msleep(100);
1741 }
1742
1743 if (priv->enet_ver != AE_VERSION_1 &&
1744 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1745 new_mtu > BD_SIZE_2048_MAX_MTU) {
1746 /* update desc */
1747 hnae_reinit_all_ring_desc(h);
1748
1749 /* clear the package which the chip has fetched */
1750 ret = hns_nic_clear_all_rx_fetch(ndev);
1751
1752 /* the page offset must be consist with desc */
1753 hnae_reinit_all_ring_page_off(h);
1754
1755 if (ret) {
1756 netdev_err(ndev, "clear the fetched desc fail\n");
1757 goto out;
1758 }
1759 }
1760
1761 ret = h->dev->ops->set_mtu(h, new_mtu);
1762 if (ret) {
1763 netdev_err(ndev, "set mtu fail, return value %d\n",
1764 ret);
1765 goto out;
1766 }
1767
1768 /* finally, set new mtu to netdevice */
1769 ndev->mtu = new_mtu;
1770
1771 out:
1772 if (if_running) {
1773 if (hns_nic_net_open(ndev)) {
1774 netdev_err(ndev, "hns net open fail\n");
1775 ret = -EINVAL;
1776 }
1777 }
1778
1779 return ret;
1780 }
1781
1782 static int hns_nic_set_features(struct net_device *netdev,
1783 netdev_features_t features)
1784 {
1785 struct hns_nic_priv *priv = netdev_priv(netdev);
1786
1787 switch (priv->enet_ver) {
1788 case AE_VERSION_1:
1789 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1790 netdev_info(netdev, "enet v1 do not support tso!\n");
1791 break;
1792 default:
1793 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1794 priv->ops.fill_desc = fill_tso_desc;
1795 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1796 /* The chip only support 7*4096 */
1797 netif_set_gso_max_size(netdev, 7 * 4096);
1798 } else {
1799 priv->ops.fill_desc = fill_v2_desc;
1800 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1801 }
1802 break;
1803 }
1804 netdev->features = features;
1805 return 0;
1806 }
1807
1808 static netdev_features_t hns_nic_fix_features(
1809 struct net_device *netdev, netdev_features_t features)
1810 {
1811 struct hns_nic_priv *priv = netdev_priv(netdev);
1812
1813 switch (priv->enet_ver) {
1814 case AE_VERSION_1:
1815 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1816 NETIF_F_HW_VLAN_CTAG_FILTER);
1817 break;
1818 default:
1819 break;
1820 }
1821 return features;
1822 }
1823
1824 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1825 {
1826 struct hns_nic_priv *priv = netdev_priv(netdev);
1827 struct hnae_handle *h = priv->ae_handle;
1828
1829 if (h->dev->ops->add_uc_addr)
1830 return h->dev->ops->add_uc_addr(h, addr);
1831
1832 return 0;
1833 }
1834
1835 static int hns_nic_uc_unsync(struct net_device *netdev,
1836 const unsigned char *addr)
1837 {
1838 struct hns_nic_priv *priv = netdev_priv(netdev);
1839 struct hnae_handle *h = priv->ae_handle;
1840
1841 if (h->dev->ops->rm_uc_addr)
1842 return h->dev->ops->rm_uc_addr(h, addr);
1843
1844 return 0;
1845 }
1846
1847 /**
1848 * nic_set_multicast_list - set mutl mac address
1849 * @netdev: net device
1850 * @p: mac address
1851 *
1852 * return void
1853 */
1854 static void hns_set_multicast_list(struct net_device *ndev)
1855 {
1856 struct hns_nic_priv *priv = netdev_priv(ndev);
1857 struct hnae_handle *h = priv->ae_handle;
1858 struct netdev_hw_addr *ha = NULL;
1859
1860 if (!h) {
1861 netdev_err(ndev, "hnae handle is null\n");
1862 return;
1863 }
1864
1865 if (h->dev->ops->clr_mc_addr)
1866 if (h->dev->ops->clr_mc_addr(h))
1867 netdev_err(ndev, "clear multicast address fail\n");
1868
1869 if (h->dev->ops->set_mc_addr) {
1870 netdev_for_each_mc_addr(ha, ndev)
1871 if (h->dev->ops->set_mc_addr(h, ha->addr))
1872 netdev_err(ndev, "set multicast fail\n");
1873 }
1874 }
1875
1876 static void hns_nic_set_rx_mode(struct net_device *ndev)
1877 {
1878 struct hns_nic_priv *priv = netdev_priv(ndev);
1879 struct hnae_handle *h = priv->ae_handle;
1880
1881 if (h->dev->ops->set_promisc_mode) {
1882 if (ndev->flags & IFF_PROMISC)
1883 h->dev->ops->set_promisc_mode(h, 1);
1884 else
1885 h->dev->ops->set_promisc_mode(h, 0);
1886 }
1887
1888 hns_set_multicast_list(ndev);
1889
1890 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1891 netdev_err(ndev, "sync uc address fail\n");
1892 }
1893
1894 static void hns_nic_get_stats64(struct net_device *ndev,
1895 struct rtnl_link_stats64 *stats)
1896 {
1897 int idx = 0;
1898 u64 tx_bytes = 0;
1899 u64 rx_bytes = 0;
1900 u64 tx_pkts = 0;
1901 u64 rx_pkts = 0;
1902 struct hns_nic_priv *priv = netdev_priv(ndev);
1903 struct hnae_handle *h = priv->ae_handle;
1904
1905 for (idx = 0; idx < h->q_num; idx++) {
1906 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1907 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1908 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1909 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1910 }
1911
1912 stats->tx_bytes = tx_bytes;
1913 stats->tx_packets = tx_pkts;
1914 stats->rx_bytes = rx_bytes;
1915 stats->rx_packets = rx_pkts;
1916
1917 stats->rx_errors = ndev->stats.rx_errors;
1918 stats->multicast = ndev->stats.multicast;
1919 stats->rx_length_errors = ndev->stats.rx_length_errors;
1920 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1921 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1922
1923 stats->tx_errors = ndev->stats.tx_errors;
1924 stats->rx_dropped = ndev->stats.rx_dropped;
1925 stats->tx_dropped = ndev->stats.tx_dropped;
1926 stats->collisions = ndev->stats.collisions;
1927 stats->rx_over_errors = ndev->stats.rx_over_errors;
1928 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1929 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1930 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1931 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1932 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1933 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1934 stats->tx_window_errors = ndev->stats.tx_window_errors;
1935 stats->rx_compressed = ndev->stats.rx_compressed;
1936 stats->tx_compressed = ndev->stats.tx_compressed;
1937 }
1938
1939 static u16
1940 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1941 void *accel_priv, select_queue_fallback_t fallback)
1942 {
1943 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1944 struct hns_nic_priv *priv = netdev_priv(ndev);
1945
1946 /* fix hardware broadcast/multicast packets queue loopback */
1947 if (!AE_IS_VER1(priv->enet_ver) &&
1948 is_multicast_ether_addr(eth_hdr->h_dest))
1949 return 0;
1950 else
1951 return fallback(ndev, skb);
1952 }
1953
1954 static const struct net_device_ops hns_nic_netdev_ops = {
1955 .ndo_open = hns_nic_net_open,
1956 .ndo_stop = hns_nic_net_stop,
1957 .ndo_start_xmit = hns_nic_net_xmit,
1958 .ndo_tx_timeout = hns_nic_net_timeout,
1959 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1960 .ndo_change_mtu = hns_nic_change_mtu,
1961 .ndo_do_ioctl = hns_nic_do_ioctl,
1962 .ndo_set_features = hns_nic_set_features,
1963 .ndo_fix_features = hns_nic_fix_features,
1964 .ndo_get_stats64 = hns_nic_get_stats64,
1965 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1966 .ndo_select_queue = hns_nic_select_queue,
1967 };
1968
1969 static void hns_nic_update_link_status(struct net_device *netdev)
1970 {
1971 struct hns_nic_priv *priv = netdev_priv(netdev);
1972
1973 struct hnae_handle *h = priv->ae_handle;
1974
1975 if (h->phy_dev) {
1976 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1977 return;
1978
1979 (void)genphy_read_status(h->phy_dev);
1980 }
1981 hns_nic_adjust_link(netdev);
1982 }
1983
1984 /* for dumping key regs*/
1985 static void hns_nic_dump(struct hns_nic_priv *priv)
1986 {
1987 struct hnae_handle *h = priv->ae_handle;
1988 struct hnae_ae_ops *ops = h->dev->ops;
1989 u32 *data, reg_num, i;
1990
1991 if (ops->get_regs_len && ops->get_regs) {
1992 reg_num = ops->get_regs_len(priv->ae_handle);
1993 reg_num = (reg_num + 3ul) & ~3ul;
1994 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1995 if (data) {
1996 ops->get_regs(priv->ae_handle, data);
1997 for (i = 0; i < reg_num; i += 4)
1998 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1999 i, data[i], data[i + 1],
2000 data[i + 2], data[i + 3]);
2001 kfree(data);
2002 }
2003 }
2004
2005 for (i = 0; i < h->q_num; i++) {
2006 pr_info("tx_queue%d_next_to_clean:%d\n",
2007 i, h->qs[i]->tx_ring.next_to_clean);
2008 pr_info("tx_queue%d_next_to_use:%d\n",
2009 i, h->qs[i]->tx_ring.next_to_use);
2010 pr_info("rx_queue%d_next_to_clean:%d\n",
2011 i, h->qs[i]->rx_ring.next_to_clean);
2012 pr_info("rx_queue%d_next_to_use:%d\n",
2013 i, h->qs[i]->rx_ring.next_to_use);
2014 }
2015 }
2016
2017 /* for resetting subtask */
2018 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2019 {
2020 enum hnae_port_type type = priv->ae_handle->port_type;
2021
2022 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2023 return;
2024 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2025
2026 /* If we're already down, removing or resetting, just bail */
2027 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2028 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2029 test_bit(NIC_STATE_RESETTING, &priv->state))
2030 return;
2031
2032 hns_nic_dump(priv);
2033 netdev_info(priv->netdev, "try to reset %s port!\n",
2034 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2035
2036 rtnl_lock();
2037 /* put off any impending NetWatchDogTimeout */
2038 netif_trans_update(priv->netdev);
2039 hns_nic_net_reinit(priv->netdev);
2040
2041 rtnl_unlock();
2042 }
2043
2044 /* for doing service complete*/
2045 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2046 {
2047 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2048 /* make sure to commit the things */
2049 smp_mb__before_atomic();
2050 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2051 }
2052
2053 static void hns_nic_service_task(struct work_struct *work)
2054 {
2055 struct hns_nic_priv *priv
2056 = container_of(work, struct hns_nic_priv, service_task);
2057 struct hnae_handle *h = priv->ae_handle;
2058
2059 hns_nic_reset_subtask(priv);
2060 hns_nic_update_link_status(priv->netdev);
2061 h->dev->ops->update_led_status(h);
2062 hns_nic_update_stats(priv->netdev);
2063
2064 hns_nic_service_event_complete(priv);
2065 }
2066
2067 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2068 {
2069 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2070 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2071 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2072 (void)schedule_work(&priv->service_task);
2073 }
2074
2075 static void hns_nic_service_timer(struct timer_list *t)
2076 {
2077 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2078
2079 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2080
2081 hns_nic_task_schedule(priv);
2082 }
2083
2084 /**
2085 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2086 * @priv: driver private struct
2087 **/
2088 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2089 {
2090 /* Do the reset outside of interrupt context */
2091 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2092 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2093 netdev_warn(priv->netdev,
2094 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2095 priv->tx_timeout_count, priv->state);
2096 priv->tx_timeout_count++;
2097 hns_nic_task_schedule(priv);
2098 }
2099 }
2100
2101 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2102 {
2103 struct hnae_handle *h = priv->ae_handle;
2104 struct hns_nic_ring_data *rd;
2105 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2106 int i;
2107
2108 if (h->q_num > NIC_MAX_Q_PER_VF) {
2109 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2110 return -EINVAL;
2111 }
2112
2113 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2114 GFP_KERNEL);
2115 if (!priv->ring_data)
2116 return -ENOMEM;
2117
2118 for (i = 0; i < h->q_num; i++) {
2119 rd = &priv->ring_data[i];
2120 rd->queue_index = i;
2121 rd->ring = &h->qs[i]->tx_ring;
2122 rd->poll_one = hns_nic_tx_poll_one;
2123 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2124 hns_nic_tx_fini_pro_v2;
2125
2126 netif_napi_add(priv->netdev, &rd->napi,
2127 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2128 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2129 }
2130 for (i = h->q_num; i < h->q_num * 2; i++) {
2131 rd = &priv->ring_data[i];
2132 rd->queue_index = i - h->q_num;
2133 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2134 rd->poll_one = hns_nic_rx_poll_one;
2135 rd->ex_process = hns_nic_rx_up_pro;
2136 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2137 hns_nic_rx_fini_pro_v2;
2138
2139 netif_napi_add(priv->netdev, &rd->napi,
2140 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2141 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2142 }
2143
2144 return 0;
2145 }
2146
2147 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2148 {
2149 struct hnae_handle *h = priv->ae_handle;
2150 int i;
2151
2152 for (i = 0; i < h->q_num * 2; i++) {
2153 netif_napi_del(&priv->ring_data[i].napi);
2154 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2155 (void)irq_set_affinity_hint(
2156 priv->ring_data[i].ring->irq,
2157 NULL);
2158 free_irq(priv->ring_data[i].ring->irq,
2159 &priv->ring_data[i]);
2160 }
2161
2162 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2163 }
2164 kfree(priv->ring_data);
2165 }
2166
2167 static void hns_nic_set_priv_ops(struct net_device *netdev)
2168 {
2169 struct hns_nic_priv *priv = netdev_priv(netdev);
2170 struct hnae_handle *h = priv->ae_handle;
2171
2172 if (AE_IS_VER1(priv->enet_ver)) {
2173 priv->ops.fill_desc = fill_desc;
2174 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2175 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2176 } else {
2177 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2178 if ((netdev->features & NETIF_F_TSO) ||
2179 (netdev->features & NETIF_F_TSO6)) {
2180 priv->ops.fill_desc = fill_tso_desc;
2181 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2182 /* This chip only support 7*4096 */
2183 netif_set_gso_max_size(netdev, 7 * 4096);
2184 } else {
2185 priv->ops.fill_desc = fill_v2_desc;
2186 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2187 }
2188 /* enable tso when init
2189 * control tso on/off through TSE bit in bd
2190 */
2191 h->dev->ops->set_tso_stats(h, 1);
2192 }
2193 }
2194
2195 static int hns_nic_try_get_ae(struct net_device *ndev)
2196 {
2197 struct hns_nic_priv *priv = netdev_priv(ndev);
2198 struct hnae_handle *h;
2199 int ret;
2200
2201 h = hnae_get_handle(&priv->netdev->dev,
2202 priv->fwnode, priv->port_id, NULL);
2203 if (IS_ERR_OR_NULL(h)) {
2204 ret = -ENODEV;
2205 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2206 goto out;
2207 }
2208 priv->ae_handle = h;
2209
2210 ret = hns_nic_init_phy(ndev, h);
2211 if (ret) {
2212 dev_err(priv->dev, "probe phy device fail!\n");
2213 goto out_init_phy;
2214 }
2215
2216 ret = hns_nic_init_ring_data(priv);
2217 if (ret) {
2218 ret = -ENOMEM;
2219 goto out_init_ring_data;
2220 }
2221
2222 hns_nic_set_priv_ops(ndev);
2223
2224 ret = register_netdev(ndev);
2225 if (ret) {
2226 dev_err(priv->dev, "probe register netdev fail!\n");
2227 goto out_reg_ndev_fail;
2228 }
2229 return 0;
2230
2231 out_reg_ndev_fail:
2232 hns_nic_uninit_ring_data(priv);
2233 priv->ring_data = NULL;
2234 out_init_phy:
2235 out_init_ring_data:
2236 hnae_put_handle(priv->ae_handle);
2237 priv->ae_handle = NULL;
2238 out:
2239 return ret;
2240 }
2241
2242 static int hns_nic_notifier_action(struct notifier_block *nb,
2243 unsigned long action, void *data)
2244 {
2245 struct hns_nic_priv *priv =
2246 container_of(nb, struct hns_nic_priv, notifier_block);
2247
2248 assert(action == HNAE_AE_REGISTER);
2249
2250 if (!hns_nic_try_get_ae(priv->netdev)) {
2251 hnae_unregister_notifier(&priv->notifier_block);
2252 priv->notifier_block.notifier_call = NULL;
2253 }
2254 return 0;
2255 }
2256
2257 static int hns_nic_dev_probe(struct platform_device *pdev)
2258 {
2259 struct device *dev = &pdev->dev;
2260 struct net_device *ndev;
2261 struct hns_nic_priv *priv;
2262 u32 port_id;
2263 int ret;
2264
2265 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2266 if (!ndev)
2267 return -ENOMEM;
2268
2269 platform_set_drvdata(pdev, ndev);
2270
2271 priv = netdev_priv(ndev);
2272 priv->dev = dev;
2273 priv->netdev = ndev;
2274
2275 if (dev_of_node(dev)) {
2276 struct device_node *ae_node;
2277
2278 if (of_device_is_compatible(dev->of_node,
2279 "hisilicon,hns-nic-v1"))
2280 priv->enet_ver = AE_VERSION_1;
2281 else
2282 priv->enet_ver = AE_VERSION_2;
2283
2284 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2285 if (!ae_node) {
2286 ret = -ENODEV;
2287 dev_err(dev, "not find ae-handle\n");
2288 goto out_read_prop_fail;
2289 }
2290 priv->fwnode = &ae_node->fwnode;
2291 } else if (is_acpi_node(dev->fwnode)) {
2292 struct acpi_reference_args args;
2293
2294 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2295 priv->enet_ver = AE_VERSION_1;
2296 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2297 priv->enet_ver = AE_VERSION_2;
2298 else
2299 return -ENXIO;
2300
2301 /* try to find port-idx-in-ae first */
2302 ret = acpi_node_get_property_reference(dev->fwnode,
2303 "ae-handle", 0, &args);
2304 if (ret) {
2305 dev_err(dev, "not find ae-handle\n");
2306 goto out_read_prop_fail;
2307 }
2308 priv->fwnode = acpi_fwnode_handle(args.adev);
2309 } else {
2310 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2311 return -ENXIO;
2312 }
2313
2314 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2315 if (ret) {
2316 /* only for old code compatible */
2317 ret = device_property_read_u32(dev, "port-id", &port_id);
2318 if (ret)
2319 goto out_read_prop_fail;
2320 /* for old dts, we need to caculate the port offset */
2321 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2322 : port_id - HNS_SRV_OFFSET;
2323 }
2324 priv->port_id = port_id;
2325
2326 hns_init_mac_addr(ndev);
2327
2328 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2329 ndev->priv_flags |= IFF_UNICAST_FLT;
2330 ndev->netdev_ops = &hns_nic_netdev_ops;
2331 hns_ethtool_set_ops(ndev);
2332
2333 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2334 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2335 NETIF_F_GRO;
2336 ndev->vlan_features |=
2337 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2338 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2339
2340 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2341 ndev->min_mtu = MAC_MIN_MTU;
2342 switch (priv->enet_ver) {
2343 case AE_VERSION_2:
2344 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2345 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2346 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2347 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2348 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2349 ndev->max_mtu = MAC_MAX_MTU_V2 -
2350 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2351 break;
2352 default:
2353 ndev->max_mtu = MAC_MAX_MTU -
2354 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2355 break;
2356 }
2357
2358 SET_NETDEV_DEV(ndev, dev);
2359
2360 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2361 dev_dbg(dev, "set mask to 64bit\n");
2362 else
2363 dev_err(dev, "set mask to 64bit fail!\n");
2364
2365 /* carrier off reporting is important to ethtool even BEFORE open */
2366 netif_carrier_off(ndev);
2367
2368 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2369 INIT_WORK(&priv->service_task, hns_nic_service_task);
2370
2371 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2372 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2373 set_bit(NIC_STATE_DOWN, &priv->state);
2374
2375 if (hns_nic_try_get_ae(priv->netdev)) {
2376 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2377 ret = hnae_register_notifier(&priv->notifier_block);
2378 if (ret) {
2379 dev_err(dev, "register notifier fail!\n");
2380 goto out_notify_fail;
2381 }
2382 dev_dbg(dev, "has not handle, register notifier!\n");
2383 }
2384
2385 return 0;
2386
2387 out_notify_fail:
2388 (void)cancel_work_sync(&priv->service_task);
2389 out_read_prop_fail:
2390 /* safe for ACPI FW */
2391 of_node_put(to_of_node(priv->fwnode));
2392 free_netdev(ndev);
2393 return ret;
2394 }
2395
2396 static int hns_nic_dev_remove(struct platform_device *pdev)
2397 {
2398 struct net_device *ndev = platform_get_drvdata(pdev);
2399 struct hns_nic_priv *priv = netdev_priv(ndev);
2400
2401 if (ndev->reg_state != NETREG_UNINITIALIZED)
2402 unregister_netdev(ndev);
2403
2404 if (priv->ring_data)
2405 hns_nic_uninit_ring_data(priv);
2406 priv->ring_data = NULL;
2407
2408 if (ndev->phydev)
2409 phy_disconnect(ndev->phydev);
2410
2411 if (!IS_ERR_OR_NULL(priv->ae_handle))
2412 hnae_put_handle(priv->ae_handle);
2413 priv->ae_handle = NULL;
2414 if (priv->notifier_block.notifier_call)
2415 hnae_unregister_notifier(&priv->notifier_block);
2416 priv->notifier_block.notifier_call = NULL;
2417
2418 set_bit(NIC_STATE_REMOVING, &priv->state);
2419 (void)cancel_work_sync(&priv->service_task);
2420
2421 /* safe for ACPI FW */
2422 of_node_put(to_of_node(priv->fwnode));
2423
2424 free_netdev(ndev);
2425 return 0;
2426 }
2427
2428 static const struct of_device_id hns_enet_of_match[] = {
2429 {.compatible = "hisilicon,hns-nic-v1",},
2430 {.compatible = "hisilicon,hns-nic-v2",},
2431 {},
2432 };
2433
2434 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2435
2436 static struct platform_driver hns_nic_dev_driver = {
2437 .driver = {
2438 .name = "hns-nic",
2439 .of_match_table = hns_enet_of_match,
2440 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2441 },
2442 .probe = hns_nic_dev_probe,
2443 .remove = hns_nic_dev_remove,
2444 };
2445
2446 module_platform_driver(hns_nic_dev_driver);
2447
2448 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2449 MODULE_AUTHOR("Hisilicon, Inc.");
2450 MODULE_LICENSE("GPL");
2451 MODULE_ALIAS("platform:hns-nic");