]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
cac51954f2cff507a97db175c39f800c98eb6608
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 /*
2 * Copyright (c) 2016~2017 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/interrupt.h>
13 #include <linux/if_vlan.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/skbuff.h>
19 #include <linux/sctp.h>
20 #include <linux/vermagic.h>
21 #include <net/gre.h>
22 #include <net/pkt_cls.h>
23 #include <net/vxlan.h>
24
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 "Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34
35 /* hns3_pci_tbl - PCI Device ID Table
36 *
37 * Last entry must be all 0s
38 *
39 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40 * Class, Class Mask, private data (not used) }
41 */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
57 /* required last entry */
58 {0, }
59 };
60 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
61
62 static irqreturn_t hns3_irq_handle(int irq, void *dev)
63 {
64 struct hns3_enet_tqp_vector *tqp_vector = dev;
65
66 napi_schedule(&tqp_vector->napi);
67
68 return IRQ_HANDLED;
69 }
70
71 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
72 {
73 struct hns3_enet_tqp_vector *tqp_vectors;
74 unsigned int i;
75
76 for (i = 0; i < priv->vector_num; i++) {
77 tqp_vectors = &priv->tqp_vector[i];
78
79 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
80 continue;
81
82 /* release the irq resource */
83 free_irq(tqp_vectors->vector_irq, tqp_vectors);
84 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
85 }
86 }
87
88 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
89 {
90 struct hns3_enet_tqp_vector *tqp_vectors;
91 int txrx_int_idx = 0;
92 int rx_int_idx = 0;
93 int tx_int_idx = 0;
94 unsigned int i;
95 int ret;
96
97 for (i = 0; i < priv->vector_num; i++) {
98 tqp_vectors = &priv->tqp_vector[i];
99
100 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
101 continue;
102
103 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
104 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
105 "%s-%s-%d", priv->netdev->name, "TxRx",
106 txrx_int_idx++);
107 txrx_int_idx++;
108 } else if (tqp_vectors->rx_group.ring) {
109 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
110 "%s-%s-%d", priv->netdev->name, "Rx",
111 rx_int_idx++);
112 } else if (tqp_vectors->tx_group.ring) {
113 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
114 "%s-%s-%d", priv->netdev->name, "Tx",
115 tx_int_idx++);
116 } else {
117 /* Skip this unused q_vector */
118 continue;
119 }
120
121 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
122
123 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
124 tqp_vectors->name,
125 tqp_vectors);
126 if (ret) {
127 netdev_err(priv->netdev, "request irq(%d) fail\n",
128 tqp_vectors->vector_irq);
129 return ret;
130 }
131
132 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
133 }
134
135 return 0;
136 }
137
138 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
139 u32 mask_en)
140 {
141 writel(mask_en, tqp_vector->mask_addr);
142 }
143
144 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
145 {
146 napi_enable(&tqp_vector->napi);
147
148 /* enable vector */
149 hns3_mask_vector_irq(tqp_vector, 1);
150 }
151
152 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
153 {
154 /* disable vector */
155 hns3_mask_vector_irq(tqp_vector, 0);
156
157 disable_irq(tqp_vector->vector_irq);
158 napi_disable(&tqp_vector->napi);
159 }
160
161 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
162 u32 rl_value)
163 {
164 u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
165
166 /* this defines the configuration for RL (Interrupt Rate Limiter).
167 * Rl defines rate of interrupts i.e. number of interrupts-per-second
168 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
169 */
170
171 if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
172 !tqp_vector->rx_group.coal.gl_adapt_enable)
173 /* According to the hardware, the range of rl_reg is
174 * 0-59 and the unit is 4.
175 */
176 rl_reg |= HNS3_INT_RL_ENABLE_MASK;
177
178 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
179 }
180
181 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
182 u32 gl_value)
183 {
184 u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
185
186 writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
187 }
188
189 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
190 u32 gl_value)
191 {
192 u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
193
194 writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
195 }
196
197 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
198 struct hns3_nic_priv *priv)
199 {
200 struct hnae3_handle *h = priv->ae_handle;
201
202 /* initialize the configuration for interrupt coalescing.
203 * 1. GL (Interrupt Gap Limiter)
204 * 2. RL (Interrupt Rate Limiter)
205 */
206
207 /* Default: enable interrupt coalescing self-adaptive and GL */
208 tqp_vector->tx_group.coal.gl_adapt_enable = 1;
209 tqp_vector->rx_group.coal.gl_adapt_enable = 1;
210
211 tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
212 tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
213
214 /* Default: disable RL */
215 h->kinfo.int_rl_setting = 0;
216
217 tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
218 tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
219 tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
220 }
221
222 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
223 struct hns3_nic_priv *priv)
224 {
225 struct hnae3_handle *h = priv->ae_handle;
226
227 hns3_set_vector_coalesce_tx_gl(tqp_vector,
228 tqp_vector->tx_group.coal.int_gl);
229 hns3_set_vector_coalesce_rx_gl(tqp_vector,
230 tqp_vector->rx_group.coal.int_gl);
231 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
232 }
233
234 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
235 {
236 struct hnae3_handle *h = hns3_get_handle(netdev);
237 struct hnae3_knic_private_info *kinfo = &h->kinfo;
238 unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
239 int ret;
240
241 ret = netif_set_real_num_tx_queues(netdev, queue_size);
242 if (ret) {
243 netdev_err(netdev,
244 "netif_set_real_num_tx_queues fail, ret=%d!\n",
245 ret);
246 return ret;
247 }
248
249 ret = netif_set_real_num_rx_queues(netdev, queue_size);
250 if (ret) {
251 netdev_err(netdev,
252 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
253 return ret;
254 }
255
256 return 0;
257 }
258
259 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
260 {
261 u16 free_tqps, max_rss_size, max_tqps;
262
263 h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
264 max_tqps = h->kinfo.num_tc * max_rss_size;
265
266 return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
267 }
268
269 static int hns3_nic_net_up(struct net_device *netdev)
270 {
271 struct hns3_nic_priv *priv = netdev_priv(netdev);
272 struct hnae3_handle *h = priv->ae_handle;
273 int i, j;
274 int ret;
275
276 /* get irq resource for all vectors */
277 ret = hns3_nic_init_irq(priv);
278 if (ret) {
279 netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
280 return ret;
281 }
282
283 /* enable the vectors */
284 for (i = 0; i < priv->vector_num; i++)
285 hns3_vector_enable(&priv->tqp_vector[i]);
286
287 /* start the ae_dev */
288 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
289 if (ret)
290 goto out_start_err;
291
292 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
293
294 return 0;
295
296 out_start_err:
297 for (j = i - 1; j >= 0; j--)
298 hns3_vector_disable(&priv->tqp_vector[j]);
299
300 hns3_nic_uninit_irq(priv);
301
302 return ret;
303 }
304
305 static int hns3_nic_net_open(struct net_device *netdev)
306 {
307 struct hns3_nic_priv *priv = netdev_priv(netdev);
308 int ret;
309
310 netif_carrier_off(netdev);
311
312 ret = hns3_nic_set_real_num_queue(netdev);
313 if (ret)
314 return ret;
315
316 ret = hns3_nic_net_up(netdev);
317 if (ret) {
318 netdev_err(netdev,
319 "hns net up fail, ret=%d!\n", ret);
320 return ret;
321 }
322
323 priv->ae_handle->last_reset_time = jiffies;
324 return 0;
325 }
326
327 static void hns3_nic_net_down(struct net_device *netdev)
328 {
329 struct hns3_nic_priv *priv = netdev_priv(netdev);
330 const struct hnae3_ae_ops *ops;
331 int i;
332
333 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
334 return;
335
336 /* stop ae_dev */
337 ops = priv->ae_handle->ae_algo->ops;
338 if (ops->stop)
339 ops->stop(priv->ae_handle);
340
341 /* disable vectors */
342 for (i = 0; i < priv->vector_num; i++)
343 hns3_vector_disable(&priv->tqp_vector[i]);
344
345 /* free irq resources */
346 hns3_nic_uninit_irq(priv);
347 }
348
349 static int hns3_nic_net_stop(struct net_device *netdev)
350 {
351 netif_tx_stop_all_queues(netdev);
352 netif_carrier_off(netdev);
353
354 hns3_nic_net_down(netdev);
355
356 return 0;
357 }
358
359 static int hns3_nic_uc_sync(struct net_device *netdev,
360 const unsigned char *addr)
361 {
362 struct hnae3_handle *h = hns3_get_handle(netdev);
363
364 if (h->ae_algo->ops->add_uc_addr)
365 return h->ae_algo->ops->add_uc_addr(h, addr);
366
367 return 0;
368 }
369
370 static int hns3_nic_uc_unsync(struct net_device *netdev,
371 const unsigned char *addr)
372 {
373 struct hnae3_handle *h = hns3_get_handle(netdev);
374
375 if (h->ae_algo->ops->rm_uc_addr)
376 return h->ae_algo->ops->rm_uc_addr(h, addr);
377
378 return 0;
379 }
380
381 static int hns3_nic_mc_sync(struct net_device *netdev,
382 const unsigned char *addr)
383 {
384 struct hnae3_handle *h = hns3_get_handle(netdev);
385
386 if (h->ae_algo->ops->add_mc_addr)
387 return h->ae_algo->ops->add_mc_addr(h, addr);
388
389 return 0;
390 }
391
392 static int hns3_nic_mc_unsync(struct net_device *netdev,
393 const unsigned char *addr)
394 {
395 struct hnae3_handle *h = hns3_get_handle(netdev);
396
397 if (h->ae_algo->ops->rm_mc_addr)
398 return h->ae_algo->ops->rm_mc_addr(h, addr);
399
400 return 0;
401 }
402
403 static void hns3_nic_set_rx_mode(struct net_device *netdev)
404 {
405 struct hnae3_handle *h = hns3_get_handle(netdev);
406
407 if (h->ae_algo->ops->set_promisc_mode) {
408 if (netdev->flags & IFF_PROMISC)
409 h->ae_algo->ops->set_promisc_mode(h, 1);
410 else
411 h->ae_algo->ops->set_promisc_mode(h, 0);
412 }
413 if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
414 netdev_err(netdev, "sync uc address fail\n");
415 if (netdev->flags & IFF_MULTICAST)
416 if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
417 netdev_err(netdev, "sync mc address fail\n");
418 }
419
420 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
421 u16 *mss, u32 *type_cs_vlan_tso)
422 {
423 u32 l4_offset, hdr_len;
424 union l3_hdr_info l3;
425 union l4_hdr_info l4;
426 u32 l4_paylen;
427 int ret;
428
429 if (!skb_is_gso(skb))
430 return 0;
431
432 ret = skb_cow_head(skb, 0);
433 if (ret)
434 return ret;
435
436 l3.hdr = skb_network_header(skb);
437 l4.hdr = skb_transport_header(skb);
438
439 /* Software should clear the IPv4's checksum field when tso is
440 * needed.
441 */
442 if (l3.v4->version == 4)
443 l3.v4->check = 0;
444
445 /* tunnel packet.*/
446 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
447 SKB_GSO_GRE_CSUM |
448 SKB_GSO_UDP_TUNNEL |
449 SKB_GSO_UDP_TUNNEL_CSUM)) {
450 if ((!(skb_shinfo(skb)->gso_type &
451 SKB_GSO_PARTIAL)) &&
452 (skb_shinfo(skb)->gso_type &
453 SKB_GSO_UDP_TUNNEL_CSUM)) {
454 /* Software should clear the udp's checksum
455 * field when tso is needed.
456 */
457 l4.udp->check = 0;
458 }
459 /* reset l3&l4 pointers from outer to inner headers */
460 l3.hdr = skb_inner_network_header(skb);
461 l4.hdr = skb_inner_transport_header(skb);
462
463 /* Software should clear the IPv4's checksum field when
464 * tso is needed.
465 */
466 if (l3.v4->version == 4)
467 l3.v4->check = 0;
468 }
469
470 /* normal or tunnel packet*/
471 l4_offset = l4.hdr - skb->data;
472 hdr_len = (l4.tcp->doff * 4) + l4_offset;
473
474 /* remove payload length from inner pseudo checksum when tso*/
475 l4_paylen = skb->len - l4_offset;
476 csum_replace_by_diff(&l4.tcp->check,
477 (__force __wsum)htonl(l4_paylen));
478
479 /* find the txbd field values */
480 *paylen = skb->len - hdr_len;
481 hnae_set_bit(*type_cs_vlan_tso,
482 HNS3_TXD_TSO_B, 1);
483
484 /* get MSS for TSO */
485 *mss = skb_shinfo(skb)->gso_size;
486
487 return 0;
488 }
489
490 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
491 u8 *il4_proto)
492 {
493 union {
494 struct iphdr *v4;
495 struct ipv6hdr *v6;
496 unsigned char *hdr;
497 } l3;
498 unsigned char *l4_hdr;
499 unsigned char *exthdr;
500 u8 l4_proto_tmp;
501 __be16 frag_off;
502
503 /* find outer header point */
504 l3.hdr = skb_network_header(skb);
505 l4_hdr = skb_transport_header(skb);
506
507 if (skb->protocol == htons(ETH_P_IPV6)) {
508 exthdr = l3.hdr + sizeof(*l3.v6);
509 l4_proto_tmp = l3.v6->nexthdr;
510 if (l4_hdr != exthdr)
511 ipv6_skip_exthdr(skb, exthdr - skb->data,
512 &l4_proto_tmp, &frag_off);
513 } else if (skb->protocol == htons(ETH_P_IP)) {
514 l4_proto_tmp = l3.v4->protocol;
515 } else {
516 return -EINVAL;
517 }
518
519 *ol4_proto = l4_proto_tmp;
520
521 /* tunnel packet */
522 if (!skb->encapsulation) {
523 *il4_proto = 0;
524 return 0;
525 }
526
527 /* find inner header point */
528 l3.hdr = skb_inner_network_header(skb);
529 l4_hdr = skb_inner_transport_header(skb);
530
531 if (l3.v6->version == 6) {
532 exthdr = l3.hdr + sizeof(*l3.v6);
533 l4_proto_tmp = l3.v6->nexthdr;
534 if (l4_hdr != exthdr)
535 ipv6_skip_exthdr(skb, exthdr - skb->data,
536 &l4_proto_tmp, &frag_off);
537 } else if (l3.v4->version == 4) {
538 l4_proto_tmp = l3.v4->protocol;
539 }
540
541 *il4_proto = l4_proto_tmp;
542
543 return 0;
544 }
545
546 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
547 u8 il4_proto, u32 *type_cs_vlan_tso,
548 u32 *ol_type_vlan_len_msec)
549 {
550 union {
551 struct iphdr *v4;
552 struct ipv6hdr *v6;
553 unsigned char *hdr;
554 } l3;
555 union {
556 struct tcphdr *tcp;
557 struct udphdr *udp;
558 struct gre_base_hdr *gre;
559 unsigned char *hdr;
560 } l4;
561 unsigned char *l2_hdr;
562 u8 l4_proto = ol4_proto;
563 u32 ol2_len;
564 u32 ol3_len;
565 u32 ol4_len;
566 u32 l2_len;
567 u32 l3_len;
568
569 l3.hdr = skb_network_header(skb);
570 l4.hdr = skb_transport_header(skb);
571
572 /* compute L2 header size for normal packet, defined in 2 Bytes */
573 l2_len = l3.hdr - skb->data;
574 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
575 HNS3_TXD_L2LEN_S, l2_len >> 1);
576
577 /* tunnel packet*/
578 if (skb->encapsulation) {
579 /* compute OL2 header size, defined in 2 Bytes */
580 ol2_len = l2_len;
581 hnae_set_field(*ol_type_vlan_len_msec,
582 HNS3_TXD_L2LEN_M,
583 HNS3_TXD_L2LEN_S, ol2_len >> 1);
584
585 /* compute OL3 header size, defined in 4 Bytes */
586 ol3_len = l4.hdr - l3.hdr;
587 hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
588 HNS3_TXD_L3LEN_S, ol3_len >> 2);
589
590 /* MAC in UDP, MAC in GRE (0x6558)*/
591 if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
592 /* switch MAC header ptr from outer to inner header.*/
593 l2_hdr = skb_inner_mac_header(skb);
594
595 /* compute OL4 header size, defined in 4 Bytes. */
596 ol4_len = l2_hdr - l4.hdr;
597 hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_M,
598 HNS3_TXD_L4LEN_S, ol4_len >> 2);
599
600 /* switch IP header ptr from outer to inner header */
601 l3.hdr = skb_inner_network_header(skb);
602
603 /* compute inner l2 header size, defined in 2 Bytes. */
604 l2_len = l3.hdr - l2_hdr;
605 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
606 HNS3_TXD_L2LEN_S, l2_len >> 1);
607 } else {
608 /* skb packet types not supported by hardware,
609 * txbd len fild doesn't be filled.
610 */
611 return;
612 }
613
614 /* switch L4 header pointer from outer to inner */
615 l4.hdr = skb_inner_transport_header(skb);
616
617 l4_proto = il4_proto;
618 }
619
620 /* compute inner(/normal) L3 header size, defined in 4 Bytes */
621 l3_len = l4.hdr - l3.hdr;
622 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
623 HNS3_TXD_L3LEN_S, l3_len >> 2);
624
625 /* compute inner(/normal) L4 header size, defined in 4 Bytes */
626 switch (l4_proto) {
627 case IPPROTO_TCP:
628 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
629 HNS3_TXD_L4LEN_S, l4.tcp->doff);
630 break;
631 case IPPROTO_SCTP:
632 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
633 HNS3_TXD_L4LEN_S, (sizeof(struct sctphdr) >> 2));
634 break;
635 case IPPROTO_UDP:
636 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
637 HNS3_TXD_L4LEN_S, (sizeof(struct udphdr) >> 2));
638 break;
639 default:
640 /* skb packet types not supported by hardware,
641 * txbd len fild doesn't be filled.
642 */
643 return;
644 }
645 }
646
647 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
648 u8 il4_proto, u32 *type_cs_vlan_tso,
649 u32 *ol_type_vlan_len_msec)
650 {
651 union {
652 struct iphdr *v4;
653 struct ipv6hdr *v6;
654 unsigned char *hdr;
655 } l3;
656 u32 l4_proto = ol4_proto;
657
658 l3.hdr = skb_network_header(skb);
659
660 /* define OL3 type and tunnel type(OL4).*/
661 if (skb->encapsulation) {
662 /* define outer network header type.*/
663 if (skb->protocol == htons(ETH_P_IP)) {
664 if (skb_is_gso(skb))
665 hnae_set_field(*ol_type_vlan_len_msec,
666 HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
667 HNS3_OL3T_IPV4_CSUM);
668 else
669 hnae_set_field(*ol_type_vlan_len_msec,
670 HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
671 HNS3_OL3T_IPV4_NO_CSUM);
672
673 } else if (skb->protocol == htons(ETH_P_IPV6)) {
674 hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
675 HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
676 }
677
678 /* define tunnel type(OL4).*/
679 switch (l4_proto) {
680 case IPPROTO_UDP:
681 hnae_set_field(*ol_type_vlan_len_msec,
682 HNS3_TXD_TUNTYPE_M,
683 HNS3_TXD_TUNTYPE_S,
684 HNS3_TUN_MAC_IN_UDP);
685 break;
686 case IPPROTO_GRE:
687 hnae_set_field(*ol_type_vlan_len_msec,
688 HNS3_TXD_TUNTYPE_M,
689 HNS3_TXD_TUNTYPE_S,
690 HNS3_TUN_NVGRE);
691 break;
692 default:
693 /* drop the skb tunnel packet if hardware don't support,
694 * because hardware can't calculate csum when TSO.
695 */
696 if (skb_is_gso(skb))
697 return -EDOM;
698
699 /* the stack computes the IP header already,
700 * driver calculate l4 checksum when not TSO.
701 */
702 skb_checksum_help(skb);
703 return 0;
704 }
705
706 l3.hdr = skb_inner_network_header(skb);
707 l4_proto = il4_proto;
708 }
709
710 if (l3.v4->version == 4) {
711 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
712 HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
713
714 /* the stack computes the IP header already, the only time we
715 * need the hardware to recompute it is in the case of TSO.
716 */
717 if (skb_is_gso(skb))
718 hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
719
720 hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
721 } else if (l3.v6->version == 6) {
722 hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
723 HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
724 hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
725 }
726
727 switch (l4_proto) {
728 case IPPROTO_TCP:
729 hnae_set_field(*type_cs_vlan_tso,
730 HNS3_TXD_L4T_M,
731 HNS3_TXD_L4T_S,
732 HNS3_L4T_TCP);
733 break;
734 case IPPROTO_UDP:
735 hnae_set_field(*type_cs_vlan_tso,
736 HNS3_TXD_L4T_M,
737 HNS3_TXD_L4T_S,
738 HNS3_L4T_UDP);
739 break;
740 case IPPROTO_SCTP:
741 hnae_set_field(*type_cs_vlan_tso,
742 HNS3_TXD_L4T_M,
743 HNS3_TXD_L4T_S,
744 HNS3_L4T_SCTP);
745 break;
746 default:
747 /* drop the skb tunnel packet if hardware don't support,
748 * because hardware can't calculate csum when TSO.
749 */
750 if (skb_is_gso(skb))
751 return -EDOM;
752
753 /* the stack computes the IP header already,
754 * driver calculate l4 checksum when not TSO.
755 */
756 skb_checksum_help(skb);
757 return 0;
758 }
759
760 return 0;
761 }
762
763 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
764 {
765 /* Config bd buffer end */
766 hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
767 HNS3_TXD_BDTYPE_S, 0);
768 hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
769 hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
770 hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
771 }
772
773 static int hns3_fill_desc_vtags(struct sk_buff *skb,
774 struct hns3_enet_ring *tx_ring,
775 u32 *inner_vlan_flag,
776 u32 *out_vlan_flag,
777 u16 *inner_vtag,
778 u16 *out_vtag)
779 {
780 #define HNS3_TX_VLAN_PRIO_SHIFT 13
781
782 if (skb->protocol == htons(ETH_P_8021Q) &&
783 !(tx_ring->tqp->handle->kinfo.netdev->features &
784 NETIF_F_HW_VLAN_CTAG_TX)) {
785 /* When HW VLAN acceleration is turned off, and the stack
786 * sets the protocol to 802.1q, the driver just need to
787 * set the protocol to the encapsulated ethertype.
788 */
789 skb->protocol = vlan_get_protocol(skb);
790 return 0;
791 }
792
793 if (skb_vlan_tag_present(skb)) {
794 u16 vlan_tag;
795
796 vlan_tag = skb_vlan_tag_get(skb);
797 vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
798
799 /* Based on hw strategy, use out_vtag in two layer tag case,
800 * and use inner_vtag in one tag case.
801 */
802 if (skb->protocol == htons(ETH_P_8021Q)) {
803 hnae_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
804 *out_vtag = vlan_tag;
805 } else {
806 hnae_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
807 *inner_vtag = vlan_tag;
808 }
809 } else if (skb->protocol == htons(ETH_P_8021Q)) {
810 struct vlan_ethhdr *vhdr;
811 int rc;
812
813 rc = skb_cow_head(skb, 0);
814 if (rc < 0)
815 return rc;
816 vhdr = (struct vlan_ethhdr *)skb->data;
817 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
818 << HNS3_TX_VLAN_PRIO_SHIFT);
819 }
820
821 skb->protocol = vlan_get_protocol(skb);
822 return 0;
823 }
824
825 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
826 int size, dma_addr_t dma, int frag_end,
827 enum hns_desc_type type)
828 {
829 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
830 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
831 u32 ol_type_vlan_len_msec = 0;
832 u16 bdtp_fe_sc_vld_ra_ri = 0;
833 u32 type_cs_vlan_tso = 0;
834 struct sk_buff *skb;
835 u16 inner_vtag = 0;
836 u16 out_vtag = 0;
837 u32 paylen = 0;
838 u16 mss = 0;
839 __be16 protocol;
840 u8 ol4_proto;
841 u8 il4_proto;
842 int ret;
843
844 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
845 desc_cb->priv = priv;
846 desc_cb->length = size;
847 desc_cb->dma = dma;
848 desc_cb->type = type;
849
850 /* now, fill the descriptor */
851 desc->addr = cpu_to_le64(dma);
852 desc->tx.send_size = cpu_to_le16((u16)size);
853 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
854 desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
855
856 if (type == DESC_TYPE_SKB) {
857 skb = (struct sk_buff *)priv;
858 paylen = skb->len;
859
860 ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
861 &ol_type_vlan_len_msec,
862 &inner_vtag, &out_vtag);
863 if (unlikely(ret))
864 return ret;
865
866 if (skb->ip_summed == CHECKSUM_PARTIAL) {
867 skb_reset_mac_len(skb);
868 protocol = skb->protocol;
869
870 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
871 if (ret)
872 return ret;
873 hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
874 &type_cs_vlan_tso,
875 &ol_type_vlan_len_msec);
876 ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
877 &type_cs_vlan_tso,
878 &ol_type_vlan_len_msec);
879 if (ret)
880 return ret;
881
882 ret = hns3_set_tso(skb, &paylen, &mss,
883 &type_cs_vlan_tso);
884 if (ret)
885 return ret;
886 }
887
888 /* Set txbd */
889 desc->tx.ol_type_vlan_len_msec =
890 cpu_to_le32(ol_type_vlan_len_msec);
891 desc->tx.type_cs_vlan_tso_len =
892 cpu_to_le32(type_cs_vlan_tso);
893 desc->tx.paylen = cpu_to_le32(paylen);
894 desc->tx.mss = cpu_to_le16(mss);
895 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
896 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
897 }
898
899 /* move ring pointer to next.*/
900 ring_ptr_move_fw(ring, next_to_use);
901
902 return 0;
903 }
904
905 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
906 int size, dma_addr_t dma, int frag_end,
907 enum hns_desc_type type)
908 {
909 unsigned int frag_buf_num;
910 unsigned int k;
911 int sizeoflast;
912 int ret;
913
914 frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
915 sizeoflast = size % HNS3_MAX_BD_SIZE;
916 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
917
918 /* When the frag size is bigger than hardware, split this frag */
919 for (k = 0; k < frag_buf_num; k++) {
920 ret = hns3_fill_desc(ring, priv,
921 (k == frag_buf_num - 1) ?
922 sizeoflast : HNS3_MAX_BD_SIZE,
923 dma + HNS3_MAX_BD_SIZE * k,
924 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
925 (type == DESC_TYPE_SKB && !k) ?
926 DESC_TYPE_SKB : DESC_TYPE_PAGE);
927 if (ret)
928 return ret;
929 }
930
931 return 0;
932 }
933
934 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
935 struct hns3_enet_ring *ring)
936 {
937 struct sk_buff *skb = *out_skb;
938 struct skb_frag_struct *frag;
939 int bdnum_for_frag;
940 int frag_num;
941 int buf_num;
942 int size;
943 int i;
944
945 size = skb_headlen(skb);
946 buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
947
948 frag_num = skb_shinfo(skb)->nr_frags;
949 for (i = 0; i < frag_num; i++) {
950 frag = &skb_shinfo(skb)->frags[i];
951 size = skb_frag_size(frag);
952 bdnum_for_frag =
953 (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
954 if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
955 return -ENOMEM;
956
957 buf_num += bdnum_for_frag;
958 }
959
960 if (buf_num > ring_space(ring))
961 return -EBUSY;
962
963 *bnum = buf_num;
964 return 0;
965 }
966
967 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
968 struct hns3_enet_ring *ring)
969 {
970 struct sk_buff *skb = *out_skb;
971 int buf_num;
972
973 /* No. of segments (plus a header) */
974 buf_num = skb_shinfo(skb)->nr_frags + 1;
975
976 if (buf_num > ring_space(ring))
977 return -EBUSY;
978
979 *bnum = buf_num;
980
981 return 0;
982 }
983
984 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
985 {
986 struct device *dev = ring_to_dev(ring);
987 unsigned int i;
988
989 for (i = 0; i < ring->desc_num; i++) {
990 /* check if this is where we started */
991 if (ring->next_to_use == next_to_use_orig)
992 break;
993
994 /* unmap the descriptor dma address */
995 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
996 dma_unmap_single(dev,
997 ring->desc_cb[ring->next_to_use].dma,
998 ring->desc_cb[ring->next_to_use].length,
999 DMA_TO_DEVICE);
1000 else
1001 dma_unmap_page(dev,
1002 ring->desc_cb[ring->next_to_use].dma,
1003 ring->desc_cb[ring->next_to_use].length,
1004 DMA_TO_DEVICE);
1005
1006 /* rollback one */
1007 ring_ptr_move_bw(ring, next_to_use);
1008 }
1009 }
1010
1011 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1012 {
1013 struct hns3_nic_priv *priv = netdev_priv(netdev);
1014 struct hns3_nic_ring_data *ring_data =
1015 &tx_ring_data(priv, skb->queue_mapping);
1016 struct hns3_enet_ring *ring = ring_data->ring;
1017 struct device *dev = priv->dev;
1018 struct netdev_queue *dev_queue;
1019 struct skb_frag_struct *frag;
1020 int next_to_use_head;
1021 int next_to_use_frag;
1022 dma_addr_t dma;
1023 int buf_num;
1024 int seg_num;
1025 int size;
1026 int ret;
1027 int i;
1028
1029 /* Prefetch the data used later */
1030 prefetch(skb->data);
1031
1032 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1033 case -EBUSY:
1034 u64_stats_update_begin(&ring->syncp);
1035 ring->stats.tx_busy++;
1036 u64_stats_update_end(&ring->syncp);
1037
1038 goto out_net_tx_busy;
1039 case -ENOMEM:
1040 u64_stats_update_begin(&ring->syncp);
1041 ring->stats.sw_err_cnt++;
1042 u64_stats_update_end(&ring->syncp);
1043 netdev_err(netdev, "no memory to xmit!\n");
1044
1045 goto out_err_tx_ok;
1046 default:
1047 break;
1048 }
1049
1050 /* No. of segments (plus a header) */
1051 seg_num = skb_shinfo(skb)->nr_frags + 1;
1052 /* Fill the first part */
1053 size = skb_headlen(skb);
1054
1055 next_to_use_head = ring->next_to_use;
1056
1057 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1058 if (dma_mapping_error(dev, dma)) {
1059 netdev_err(netdev, "TX head DMA map failed\n");
1060 ring->stats.sw_err_cnt++;
1061 goto out_err_tx_ok;
1062 }
1063
1064 ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1065 DESC_TYPE_SKB);
1066 if (ret)
1067 goto head_dma_map_err;
1068
1069 next_to_use_frag = ring->next_to_use;
1070 /* Fill the fragments */
1071 for (i = 1; i < seg_num; i++) {
1072 frag = &skb_shinfo(skb)->frags[i - 1];
1073 size = skb_frag_size(frag);
1074 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1075 if (dma_mapping_error(dev, dma)) {
1076 netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1077 ring->stats.sw_err_cnt++;
1078 goto frag_dma_map_err;
1079 }
1080 ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1081 seg_num - 1 == i ? 1 : 0,
1082 DESC_TYPE_PAGE);
1083
1084 if (ret)
1085 goto frag_dma_map_err;
1086 }
1087
1088 /* Complete translate all packets */
1089 dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1090 netdev_tx_sent_queue(dev_queue, skb->len);
1091
1092 wmb(); /* Commit all data before submit */
1093
1094 hnae_queue_xmit(ring->tqp, buf_num);
1095
1096 return NETDEV_TX_OK;
1097
1098 frag_dma_map_err:
1099 hns_nic_dma_unmap(ring, next_to_use_frag);
1100
1101 head_dma_map_err:
1102 hns_nic_dma_unmap(ring, next_to_use_head);
1103
1104 out_err_tx_ok:
1105 dev_kfree_skb_any(skb);
1106 return NETDEV_TX_OK;
1107
1108 out_net_tx_busy:
1109 netif_stop_subqueue(netdev, ring_data->queue_index);
1110 smp_mb(); /* Commit all data before submit */
1111
1112 return NETDEV_TX_BUSY;
1113 }
1114
1115 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1116 {
1117 struct hnae3_handle *h = hns3_get_handle(netdev);
1118 struct sockaddr *mac_addr = p;
1119 int ret;
1120
1121 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1122 return -EADDRNOTAVAIL;
1123
1124 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1125 if (ret) {
1126 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1127 return ret;
1128 }
1129
1130 ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1131
1132 return 0;
1133 }
1134
1135 static int hns3_nic_set_features(struct net_device *netdev,
1136 netdev_features_t features)
1137 {
1138 netdev_features_t changed = netdev->features ^ features;
1139 struct hns3_nic_priv *priv = netdev_priv(netdev);
1140 struct hnae3_handle *h = priv->ae_handle;
1141 int ret;
1142
1143 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1144 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1145 priv->ops.fill_desc = hns3_fill_desc_tso;
1146 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1147 } else {
1148 priv->ops.fill_desc = hns3_fill_desc;
1149 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1150 }
1151 }
1152
1153 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1154 h->ae_algo->ops->enable_vlan_filter) {
1155 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1156 h->ae_algo->ops->enable_vlan_filter(h, true);
1157 else
1158 h->ae_algo->ops->enable_vlan_filter(h, false);
1159 }
1160
1161 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1162 h->ae_algo->ops->enable_hw_strip_rxvtag) {
1163 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1164 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1165 else
1166 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1167
1168 if (ret)
1169 return ret;
1170 }
1171
1172 netdev->features = features;
1173 return 0;
1174 }
1175
1176 static void hns3_nic_get_stats64(struct net_device *netdev,
1177 struct rtnl_link_stats64 *stats)
1178 {
1179 struct hns3_nic_priv *priv = netdev_priv(netdev);
1180 int queue_num = priv->ae_handle->kinfo.num_tqps;
1181 struct hnae3_handle *handle = priv->ae_handle;
1182 struct hns3_enet_ring *ring;
1183 unsigned int start;
1184 unsigned int idx;
1185 u64 tx_bytes = 0;
1186 u64 rx_bytes = 0;
1187 u64 tx_pkts = 0;
1188 u64 rx_pkts = 0;
1189 u64 tx_drop = 0;
1190 u64 rx_drop = 0;
1191
1192 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1193 return;
1194
1195 handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1196
1197 for (idx = 0; idx < queue_num; idx++) {
1198 /* fetch the tx stats */
1199 ring = priv->ring_data[idx].ring;
1200 do {
1201 start = u64_stats_fetch_begin_irq(&ring->syncp);
1202 tx_bytes += ring->stats.tx_bytes;
1203 tx_pkts += ring->stats.tx_pkts;
1204 tx_drop += ring->stats.tx_busy;
1205 tx_drop += ring->stats.sw_err_cnt;
1206 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1207
1208 /* fetch the rx stats */
1209 ring = priv->ring_data[idx + queue_num].ring;
1210 do {
1211 start = u64_stats_fetch_begin_irq(&ring->syncp);
1212 rx_bytes += ring->stats.rx_bytes;
1213 rx_pkts += ring->stats.rx_pkts;
1214 rx_drop += ring->stats.non_vld_descs;
1215 rx_drop += ring->stats.err_pkt_len;
1216 rx_drop += ring->stats.l2_err;
1217 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1218 }
1219
1220 stats->tx_bytes = tx_bytes;
1221 stats->tx_packets = tx_pkts;
1222 stats->rx_bytes = rx_bytes;
1223 stats->rx_packets = rx_pkts;
1224
1225 stats->rx_errors = netdev->stats.rx_errors;
1226 stats->multicast = netdev->stats.multicast;
1227 stats->rx_length_errors = netdev->stats.rx_length_errors;
1228 stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1229 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1230
1231 stats->tx_errors = netdev->stats.tx_errors;
1232 stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1233 stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1234 stats->collisions = netdev->stats.collisions;
1235 stats->rx_over_errors = netdev->stats.rx_over_errors;
1236 stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1237 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1238 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1239 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1240 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1241 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1242 stats->tx_window_errors = netdev->stats.tx_window_errors;
1243 stats->rx_compressed = netdev->stats.rx_compressed;
1244 stats->tx_compressed = netdev->stats.tx_compressed;
1245 }
1246
1247 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1248 {
1249 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1250 struct hnae3_handle *h = hns3_get_handle(netdev);
1251 struct hnae3_knic_private_info *kinfo = &h->kinfo;
1252 u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1253 u8 tc = mqprio_qopt->qopt.num_tc;
1254 u16 mode = mqprio_qopt->mode;
1255 u8 hw = mqprio_qopt->qopt.hw;
1256 bool if_running;
1257 unsigned int i;
1258 int ret;
1259
1260 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1261 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1262 return -EOPNOTSUPP;
1263
1264 if (tc > HNAE3_MAX_TC)
1265 return -EINVAL;
1266
1267 if (!netdev)
1268 return -EINVAL;
1269
1270 if_running = netif_running(netdev);
1271 if (if_running) {
1272 hns3_nic_net_stop(netdev);
1273 msleep(100);
1274 }
1275
1276 ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1277 kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1278 if (ret)
1279 goto out;
1280
1281 if (tc <= 1) {
1282 netdev_reset_tc(netdev);
1283 } else {
1284 ret = netdev_set_num_tc(netdev, tc);
1285 if (ret)
1286 goto out;
1287
1288 for (i = 0; i < HNAE3_MAX_TC; i++) {
1289 if (!kinfo->tc_info[i].enable)
1290 continue;
1291
1292 netdev_set_tc_queue(netdev,
1293 kinfo->tc_info[i].tc,
1294 kinfo->tc_info[i].tqp_count,
1295 kinfo->tc_info[i].tqp_offset);
1296 }
1297 }
1298
1299 ret = hns3_nic_set_real_num_queue(netdev);
1300
1301 out:
1302 if (if_running)
1303 hns3_nic_net_open(netdev);
1304
1305 return ret;
1306 }
1307
1308 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1309 void *type_data)
1310 {
1311 if (type != TC_SETUP_QDISC_MQPRIO)
1312 return -EOPNOTSUPP;
1313
1314 return hns3_setup_tc(dev, type_data);
1315 }
1316
1317 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1318 __be16 proto, u16 vid)
1319 {
1320 struct hnae3_handle *h = hns3_get_handle(netdev);
1321 struct hns3_nic_priv *priv = netdev_priv(netdev);
1322 int ret = -EIO;
1323
1324 if (h->ae_algo->ops->set_vlan_filter)
1325 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1326
1327 if (!ret)
1328 set_bit(vid, priv->active_vlans);
1329
1330 return ret;
1331 }
1332
1333 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1334 __be16 proto, u16 vid)
1335 {
1336 struct hnae3_handle *h = hns3_get_handle(netdev);
1337 struct hns3_nic_priv *priv = netdev_priv(netdev);
1338 int ret = -EIO;
1339
1340 if (h->ae_algo->ops->set_vlan_filter)
1341 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1342
1343 if (!ret)
1344 clear_bit(vid, priv->active_vlans);
1345
1346 return ret;
1347 }
1348
1349 static void hns3_restore_vlan(struct net_device *netdev)
1350 {
1351 struct hns3_nic_priv *priv = netdev_priv(netdev);
1352 u16 vid;
1353 int ret;
1354
1355 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1356 ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1357 if (ret)
1358 netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1359 vid, ret);
1360 }
1361 }
1362
1363 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1364 u8 qos, __be16 vlan_proto)
1365 {
1366 struct hnae3_handle *h = hns3_get_handle(netdev);
1367 int ret = -EIO;
1368
1369 if (h->ae_algo->ops->set_vf_vlan_filter)
1370 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1371 qos, vlan_proto);
1372
1373 return ret;
1374 }
1375
1376 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1377 {
1378 struct hnae3_handle *h = hns3_get_handle(netdev);
1379 bool if_running = netif_running(netdev);
1380 int ret;
1381
1382 if (!h->ae_algo->ops->set_mtu)
1383 return -EOPNOTSUPP;
1384
1385 /* if this was called with netdev up then bring netdevice down */
1386 if (if_running) {
1387 (void)hns3_nic_net_stop(netdev);
1388 msleep(100);
1389 }
1390
1391 ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1392 if (ret) {
1393 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1394 ret);
1395 return ret;
1396 }
1397
1398 netdev->mtu = new_mtu;
1399
1400 /* if the netdev was running earlier, bring it up again */
1401 if (if_running && hns3_nic_net_open(netdev))
1402 ret = -EINVAL;
1403
1404 return ret;
1405 }
1406
1407 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1408 {
1409 struct hns3_nic_priv *priv = netdev_priv(ndev);
1410 struct hns3_enet_ring *tx_ring = NULL;
1411 int timeout_queue = 0;
1412 int hw_head, hw_tail;
1413 int i;
1414
1415 /* Find the stopped queue the same way the stack does */
1416 for (i = 0; i < ndev->real_num_tx_queues; i++) {
1417 struct netdev_queue *q;
1418 unsigned long trans_start;
1419
1420 q = netdev_get_tx_queue(ndev, i);
1421 trans_start = q->trans_start;
1422 if (netif_xmit_stopped(q) &&
1423 time_after(jiffies,
1424 (trans_start + ndev->watchdog_timeo))) {
1425 timeout_queue = i;
1426 break;
1427 }
1428 }
1429
1430 if (i == ndev->num_tx_queues) {
1431 netdev_info(ndev,
1432 "no netdev TX timeout queue found, timeout count: %llu\n",
1433 priv->tx_timeout_count);
1434 return false;
1435 }
1436
1437 tx_ring = priv->ring_data[timeout_queue].ring;
1438
1439 hw_head = readl_relaxed(tx_ring->tqp->io_base +
1440 HNS3_RING_TX_RING_HEAD_REG);
1441 hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1442 HNS3_RING_TX_RING_TAIL_REG);
1443 netdev_info(ndev,
1444 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1445 priv->tx_timeout_count,
1446 timeout_queue,
1447 tx_ring->next_to_use,
1448 tx_ring->next_to_clean,
1449 hw_head,
1450 hw_tail,
1451 readl(tx_ring->tqp_vector->mask_addr));
1452
1453 return true;
1454 }
1455
1456 static void hns3_nic_net_timeout(struct net_device *ndev)
1457 {
1458 struct hns3_nic_priv *priv = netdev_priv(ndev);
1459 struct hnae3_handle *h = priv->ae_handle;
1460
1461 if (!hns3_get_tx_timeo_queue_info(ndev))
1462 return;
1463
1464 priv->tx_timeout_count++;
1465
1466 if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1467 return;
1468
1469 /* request the reset */
1470 if (h->ae_algo->ops->reset_event)
1471 h->ae_algo->ops->reset_event(h);
1472 }
1473
1474 static const struct net_device_ops hns3_nic_netdev_ops = {
1475 .ndo_open = hns3_nic_net_open,
1476 .ndo_stop = hns3_nic_net_stop,
1477 .ndo_start_xmit = hns3_nic_net_xmit,
1478 .ndo_tx_timeout = hns3_nic_net_timeout,
1479 .ndo_set_mac_address = hns3_nic_net_set_mac_address,
1480 .ndo_change_mtu = hns3_nic_change_mtu,
1481 .ndo_set_features = hns3_nic_set_features,
1482 .ndo_get_stats64 = hns3_nic_get_stats64,
1483 .ndo_setup_tc = hns3_nic_setup_tc,
1484 .ndo_set_rx_mode = hns3_nic_set_rx_mode,
1485 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
1486 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
1487 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
1488 };
1489
1490 static bool hns3_is_phys_func(struct pci_dev *pdev)
1491 {
1492 u32 dev_id = pdev->device;
1493
1494 switch (dev_id) {
1495 case HNAE3_DEV_ID_GE:
1496 case HNAE3_DEV_ID_25GE:
1497 case HNAE3_DEV_ID_25GE_RDMA:
1498 case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1499 case HNAE3_DEV_ID_50GE_RDMA:
1500 case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1501 case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1502 return true;
1503 case HNAE3_DEV_ID_100G_VF:
1504 case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1505 return false;
1506 default:
1507 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1508 dev_id);
1509 }
1510
1511 return false;
1512 }
1513
1514 static void hns3_disable_sriov(struct pci_dev *pdev)
1515 {
1516 /* If our VFs are assigned we cannot shut down SR-IOV
1517 * without causing issues, so just leave the hardware
1518 * available but disabled
1519 */
1520 if (pci_vfs_assigned(pdev)) {
1521 dev_warn(&pdev->dev,
1522 "disabling driver while VFs are assigned\n");
1523 return;
1524 }
1525
1526 pci_disable_sriov(pdev);
1527 }
1528
1529 /* hns3_probe - Device initialization routine
1530 * @pdev: PCI device information struct
1531 * @ent: entry in hns3_pci_tbl
1532 *
1533 * hns3_probe initializes a PF identified by a pci_dev structure.
1534 * The OS initialization, configuring of the PF private structure,
1535 * and a hardware reset occur.
1536 *
1537 * Returns 0 on success, negative on failure
1538 */
1539 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1540 {
1541 struct hnae3_ae_dev *ae_dev;
1542 int ret;
1543
1544 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1545 GFP_KERNEL);
1546 if (!ae_dev) {
1547 ret = -ENOMEM;
1548 return ret;
1549 }
1550
1551 ae_dev->pdev = pdev;
1552 ae_dev->flag = ent->driver_data;
1553 ae_dev->dev_type = HNAE3_DEV_KNIC;
1554 pci_set_drvdata(pdev, ae_dev);
1555
1556 hnae3_register_ae_dev(ae_dev);
1557
1558 return 0;
1559 }
1560
1561 /* hns3_remove - Device removal routine
1562 * @pdev: PCI device information struct
1563 */
1564 static void hns3_remove(struct pci_dev *pdev)
1565 {
1566 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1567
1568 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1569 hns3_disable_sriov(pdev);
1570
1571 hnae3_unregister_ae_dev(ae_dev);
1572 }
1573
1574 /**
1575 * hns3_pci_sriov_configure
1576 * @pdev: pointer to a pci_dev structure
1577 * @num_vfs: number of VFs to allocate
1578 *
1579 * Enable or change the number of VFs. Called when the user updates the number
1580 * of VFs in sysfs.
1581 **/
1582 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1583 {
1584 int ret;
1585
1586 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1587 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1588 return -EINVAL;
1589 }
1590
1591 if (num_vfs) {
1592 ret = pci_enable_sriov(pdev, num_vfs);
1593 if (ret)
1594 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1595 else
1596 return num_vfs;
1597 } else if (!pci_vfs_assigned(pdev)) {
1598 pci_disable_sriov(pdev);
1599 } else {
1600 dev_warn(&pdev->dev,
1601 "Unable to free VFs because some are assigned to VMs.\n");
1602 }
1603
1604 return 0;
1605 }
1606
1607 static struct pci_driver hns3_driver = {
1608 .name = hns3_driver_name,
1609 .id_table = hns3_pci_tbl,
1610 .probe = hns3_probe,
1611 .remove = hns3_remove,
1612 .sriov_configure = hns3_pci_sriov_configure,
1613 };
1614
1615 /* set default feature to hns3 */
1616 static void hns3_set_default_feature(struct net_device *netdev)
1617 {
1618 netdev->priv_flags |= IFF_UNICAST_FLT;
1619
1620 netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1621 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1622 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1623 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1624 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1625
1626 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1627
1628 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1629
1630 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1631 NETIF_F_HW_VLAN_CTAG_FILTER |
1632 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1633 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1634 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1635 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1636 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1637
1638 netdev->vlan_features |=
1639 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1640 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1641 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1642 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1643 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1644
1645 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1646 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1647 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1648 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1649 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1650 NETIF_F_GSO_UDP_TUNNEL_CSUM;
1651 }
1652
1653 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1654 struct hns3_desc_cb *cb)
1655 {
1656 unsigned int order = hnae_page_order(ring);
1657 struct page *p;
1658
1659 p = dev_alloc_pages(order);
1660 if (!p)
1661 return -ENOMEM;
1662
1663 cb->priv = p;
1664 cb->page_offset = 0;
1665 cb->reuse_flag = 0;
1666 cb->buf = page_address(p);
1667 cb->length = hnae_page_size(ring);
1668 cb->type = DESC_TYPE_PAGE;
1669
1670 return 0;
1671 }
1672
1673 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1674 struct hns3_desc_cb *cb)
1675 {
1676 if (cb->type == DESC_TYPE_SKB)
1677 dev_kfree_skb_any((struct sk_buff *)cb->priv);
1678 else if (!HNAE3_IS_TX_RING(ring))
1679 put_page((struct page *)cb->priv);
1680 memset(cb, 0, sizeof(*cb));
1681 }
1682
1683 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1684 {
1685 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1686 cb->length, ring_to_dma_dir(ring));
1687
1688 if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1689 return -EIO;
1690
1691 return 0;
1692 }
1693
1694 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1695 struct hns3_desc_cb *cb)
1696 {
1697 if (cb->type == DESC_TYPE_SKB)
1698 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1699 ring_to_dma_dir(ring));
1700 else
1701 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1702 ring_to_dma_dir(ring));
1703 }
1704
1705 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1706 {
1707 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1708 ring->desc[i].addr = 0;
1709 }
1710
1711 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1712 {
1713 struct hns3_desc_cb *cb = &ring->desc_cb[i];
1714
1715 if (!ring->desc_cb[i].dma)
1716 return;
1717
1718 hns3_buffer_detach(ring, i);
1719 hns3_free_buffer(ring, cb);
1720 }
1721
1722 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1723 {
1724 int i;
1725
1726 for (i = 0; i < ring->desc_num; i++)
1727 hns3_free_buffer_detach(ring, i);
1728 }
1729
1730 /* free desc along with its attached buffer */
1731 static void hns3_free_desc(struct hns3_enet_ring *ring)
1732 {
1733 hns3_free_buffers(ring);
1734
1735 dma_unmap_single(ring_to_dev(ring), ring->desc_dma_addr,
1736 ring->desc_num * sizeof(ring->desc[0]),
1737 DMA_BIDIRECTIONAL);
1738 ring->desc_dma_addr = 0;
1739 kfree(ring->desc);
1740 ring->desc = NULL;
1741 }
1742
1743 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1744 {
1745 int size = ring->desc_num * sizeof(ring->desc[0]);
1746
1747 ring->desc = kzalloc(size, GFP_KERNEL);
1748 if (!ring->desc)
1749 return -ENOMEM;
1750
1751 ring->desc_dma_addr = dma_map_single(ring_to_dev(ring), ring->desc,
1752 size, DMA_BIDIRECTIONAL);
1753 if (dma_mapping_error(ring_to_dev(ring), ring->desc_dma_addr)) {
1754 ring->desc_dma_addr = 0;
1755 kfree(ring->desc);
1756 ring->desc = NULL;
1757 return -ENOMEM;
1758 }
1759
1760 return 0;
1761 }
1762
1763 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1764 struct hns3_desc_cb *cb)
1765 {
1766 int ret;
1767
1768 ret = hns3_alloc_buffer(ring, cb);
1769 if (ret)
1770 goto out;
1771
1772 ret = hns3_map_buffer(ring, cb);
1773 if (ret)
1774 goto out_with_buf;
1775
1776 return 0;
1777
1778 out_with_buf:
1779 hns3_free_buffer(ring, cb);
1780 out:
1781 return ret;
1782 }
1783
1784 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1785 {
1786 int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1787
1788 if (ret)
1789 return ret;
1790
1791 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1792
1793 return 0;
1794 }
1795
1796 /* Allocate memory for raw pkg, and map with dma */
1797 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1798 {
1799 int i, j, ret;
1800
1801 for (i = 0; i < ring->desc_num; i++) {
1802 ret = hns3_alloc_buffer_attach(ring, i);
1803 if (ret)
1804 goto out_buffer_fail;
1805 }
1806
1807 return 0;
1808
1809 out_buffer_fail:
1810 for (j = i - 1; j >= 0; j--)
1811 hns3_free_buffer_detach(ring, j);
1812 return ret;
1813 }
1814
1815 /* detach a in-used buffer and replace with a reserved one */
1816 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1817 struct hns3_desc_cb *res_cb)
1818 {
1819 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1820 ring->desc_cb[i] = *res_cb;
1821 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1822 }
1823
1824 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1825 {
1826 ring->desc_cb[i].reuse_flag = 0;
1827 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1828 + ring->desc_cb[i].page_offset);
1829 }
1830
1831 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1832 int *pkts)
1833 {
1834 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1835
1836 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1837 (*bytes) += desc_cb->length;
1838 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1839 hns3_free_buffer_detach(ring, ring->next_to_clean);
1840
1841 ring_ptr_move_fw(ring, next_to_clean);
1842 }
1843
1844 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1845 {
1846 int u = ring->next_to_use;
1847 int c = ring->next_to_clean;
1848
1849 if (unlikely(h > ring->desc_num))
1850 return 0;
1851
1852 return u > c ? (h > c && h <= u) : (h > c || h <= u);
1853 }
1854
1855 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1856 {
1857 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1858 struct netdev_queue *dev_queue;
1859 int bytes, pkts;
1860 int head;
1861
1862 head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1863 rmb(); /* Make sure head is ready before touch any data */
1864
1865 if (is_ring_empty(ring) || head == ring->next_to_clean)
1866 return true; /* no data to poll */
1867
1868 if (!is_valid_clean_head(ring, head)) {
1869 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1870 ring->next_to_use, ring->next_to_clean);
1871
1872 u64_stats_update_begin(&ring->syncp);
1873 ring->stats.io_err_cnt++;
1874 u64_stats_update_end(&ring->syncp);
1875 return true;
1876 }
1877
1878 bytes = 0;
1879 pkts = 0;
1880 while (head != ring->next_to_clean && budget) {
1881 hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1882 /* Issue prefetch for next Tx descriptor */
1883 prefetch(&ring->desc_cb[ring->next_to_clean]);
1884 budget--;
1885 }
1886
1887 ring->tqp_vector->tx_group.total_bytes += bytes;
1888 ring->tqp_vector->tx_group.total_packets += pkts;
1889
1890 u64_stats_update_begin(&ring->syncp);
1891 ring->stats.tx_bytes += bytes;
1892 ring->stats.tx_pkts += pkts;
1893 u64_stats_update_end(&ring->syncp);
1894
1895 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1896 netdev_tx_completed_queue(dev_queue, pkts, bytes);
1897
1898 if (unlikely(pkts && netif_carrier_ok(netdev) &&
1899 (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1900 /* Make sure that anybody stopping the queue after this
1901 * sees the new next_to_clean.
1902 */
1903 smp_mb();
1904 if (netif_tx_queue_stopped(dev_queue)) {
1905 netif_tx_wake_queue(dev_queue);
1906 ring->stats.restart_queue++;
1907 }
1908 }
1909
1910 return !!budget;
1911 }
1912
1913 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1914 {
1915 int ntc = ring->next_to_clean;
1916 int ntu = ring->next_to_use;
1917
1918 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1919 }
1920
1921 static void
1922 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1923 {
1924 struct hns3_desc_cb *desc_cb;
1925 struct hns3_desc_cb res_cbs;
1926 int i, ret;
1927
1928 for (i = 0; i < cleand_count; i++) {
1929 desc_cb = &ring->desc_cb[ring->next_to_use];
1930 if (desc_cb->reuse_flag) {
1931 u64_stats_update_begin(&ring->syncp);
1932 ring->stats.reuse_pg_cnt++;
1933 u64_stats_update_end(&ring->syncp);
1934
1935 hns3_reuse_buffer(ring, ring->next_to_use);
1936 } else {
1937 ret = hns3_reserve_buffer_map(ring, &res_cbs);
1938 if (ret) {
1939 u64_stats_update_begin(&ring->syncp);
1940 ring->stats.sw_err_cnt++;
1941 u64_stats_update_end(&ring->syncp);
1942
1943 netdev_err(ring->tqp->handle->kinfo.netdev,
1944 "hnae reserve buffer map failed.\n");
1945 break;
1946 }
1947 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
1948 }
1949
1950 ring_ptr_move_fw(ring, next_to_use);
1951 }
1952
1953 wmb(); /* Make all data has been write before submit */
1954 writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
1955 }
1956
1957 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
1958 struct hns3_enet_ring *ring, int pull_len,
1959 struct hns3_desc_cb *desc_cb)
1960 {
1961 struct hns3_desc *desc;
1962 int truesize, size;
1963 int last_offset;
1964 bool twobufs;
1965
1966 twobufs = ((PAGE_SIZE < 8192) &&
1967 hnae_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
1968
1969 desc = &ring->desc[ring->next_to_clean];
1970 size = le16_to_cpu(desc->rx.size);
1971
1972 truesize = hnae_buf_size(ring);
1973
1974 if (!twobufs)
1975 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
1976
1977 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
1978 size - pull_len, truesize);
1979
1980 /* Avoid re-using remote pages,flag default unreuse */
1981 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
1982 return;
1983
1984 if (twobufs) {
1985 /* If we are only owner of page we can reuse it */
1986 if (likely(page_count(desc_cb->priv) == 1)) {
1987 /* Flip page offset to other buffer */
1988 desc_cb->page_offset ^= truesize;
1989
1990 desc_cb->reuse_flag = 1;
1991 /* bump ref count on page before it is given*/
1992 get_page(desc_cb->priv);
1993 }
1994 return;
1995 }
1996
1997 /* Move offset up to the next cache line */
1998 desc_cb->page_offset += truesize;
1999
2000 if (desc_cb->page_offset <= last_offset) {
2001 desc_cb->reuse_flag = 1;
2002 /* Bump ref count on page before it is given*/
2003 get_page(desc_cb->priv);
2004 }
2005 }
2006
2007 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2008 struct hns3_desc *desc)
2009 {
2010 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2011 int l3_type, l4_type;
2012 u32 bd_base_info;
2013 int ol4_type;
2014 u32 l234info;
2015
2016 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2017 l234info = le32_to_cpu(desc->rx.l234_info);
2018
2019 skb->ip_summed = CHECKSUM_NONE;
2020
2021 skb_checksum_none_assert(skb);
2022
2023 if (!(netdev->features & NETIF_F_RXCSUM))
2024 return;
2025
2026 /* check if hardware has done checksum */
2027 if (!hnae_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2028 return;
2029
2030 if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L3E_B) ||
2031 hnae_get_bit(l234info, HNS3_RXD_L4E_B) ||
2032 hnae_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2033 hnae_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2034 netdev_err(netdev, "L3/L4 error pkt\n");
2035 u64_stats_update_begin(&ring->syncp);
2036 ring->stats.l3l4_csum_err++;
2037 u64_stats_update_end(&ring->syncp);
2038
2039 return;
2040 }
2041
2042 l3_type = hnae_get_field(l234info, HNS3_RXD_L3ID_M,
2043 HNS3_RXD_L3ID_S);
2044 l4_type = hnae_get_field(l234info, HNS3_RXD_L4ID_M,
2045 HNS3_RXD_L4ID_S);
2046
2047 ol4_type = hnae_get_field(l234info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S);
2048 switch (ol4_type) {
2049 case HNS3_OL4_TYPE_MAC_IN_UDP:
2050 case HNS3_OL4_TYPE_NVGRE:
2051 skb->csum_level = 1;
2052 case HNS3_OL4_TYPE_NO_TUN:
2053 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2054 if (l3_type == HNS3_L3_TYPE_IPV4 ||
2055 (l3_type == HNS3_L3_TYPE_IPV6 &&
2056 (l4_type == HNS3_L4_TYPE_UDP ||
2057 l4_type == HNS3_L4_TYPE_TCP ||
2058 l4_type == HNS3_L4_TYPE_SCTP)))
2059 skb->ip_summed = CHECKSUM_UNNECESSARY;
2060 break;
2061 }
2062 }
2063
2064 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2065 {
2066 napi_gro_receive(&ring->tqp_vector->napi, skb);
2067 }
2068
2069 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2070 struct sk_buff **out_skb, int *out_bnum)
2071 {
2072 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2073 struct hns3_desc_cb *desc_cb;
2074 struct hns3_desc *desc;
2075 struct sk_buff *skb;
2076 unsigned char *va;
2077 u32 bd_base_info;
2078 int pull_len;
2079 u32 l234info;
2080 int length;
2081 int bnum;
2082
2083 desc = &ring->desc[ring->next_to_clean];
2084 desc_cb = &ring->desc_cb[ring->next_to_clean];
2085
2086 prefetch(desc);
2087
2088 length = le16_to_cpu(desc->rx.pkt_len);
2089 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2090 l234info = le32_to_cpu(desc->rx.l234_info);
2091
2092 /* Check valid BD */
2093 if (!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2094 return -EFAULT;
2095
2096 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2097
2098 /* Prefetch first cache line of first page
2099 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2100 * line size is 64B so need to prefetch twice to make it 128B. But in
2101 * actual we can have greater size of caches with 128B Level 1 cache
2102 * lines. In such a case, single fetch would suffice to cache in the
2103 * relevant part of the header.
2104 */
2105 prefetch(va);
2106 #if L1_CACHE_BYTES < 128
2107 prefetch(va + L1_CACHE_BYTES);
2108 #endif
2109
2110 skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2111 HNS3_RX_HEAD_SIZE);
2112 if (unlikely(!skb)) {
2113 netdev_err(netdev, "alloc rx skb fail\n");
2114
2115 u64_stats_update_begin(&ring->syncp);
2116 ring->stats.sw_err_cnt++;
2117 u64_stats_update_end(&ring->syncp);
2118
2119 return -ENOMEM;
2120 }
2121
2122 prefetchw(skb->data);
2123
2124 /* Based on hw strategy, the tag offloaded will be stored at
2125 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2126 * in one layer tag case.
2127 */
2128 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2129 u16 vlan_tag;
2130
2131 vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2132 if (!(vlan_tag & VLAN_VID_MASK))
2133 vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2134 if (vlan_tag & VLAN_VID_MASK)
2135 __vlan_hwaccel_put_tag(skb,
2136 htons(ETH_P_8021Q),
2137 vlan_tag);
2138 }
2139
2140 bnum = 1;
2141 if (length <= HNS3_RX_HEAD_SIZE) {
2142 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2143
2144 /* We can reuse buffer as-is, just make sure it is local */
2145 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2146 desc_cb->reuse_flag = 1;
2147 else /* This page cannot be reused so discard it */
2148 put_page(desc_cb->priv);
2149
2150 ring_ptr_move_fw(ring, next_to_clean);
2151 } else {
2152 u64_stats_update_begin(&ring->syncp);
2153 ring->stats.seg_pkt_cnt++;
2154 u64_stats_update_end(&ring->syncp);
2155
2156 pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2157
2158 memcpy(__skb_put(skb, pull_len), va,
2159 ALIGN(pull_len, sizeof(long)));
2160
2161 hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2162 ring_ptr_move_fw(ring, next_to_clean);
2163
2164 while (!hnae_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2165 desc = &ring->desc[ring->next_to_clean];
2166 desc_cb = &ring->desc_cb[ring->next_to_clean];
2167 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2168 hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2169 ring_ptr_move_fw(ring, next_to_clean);
2170 bnum++;
2171 }
2172 }
2173
2174 *out_bnum = bnum;
2175
2176 if (unlikely(!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2177 netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2178 ((u64 *)desc)[0], ((u64 *)desc)[1]);
2179 u64_stats_update_begin(&ring->syncp);
2180 ring->stats.non_vld_descs++;
2181 u64_stats_update_end(&ring->syncp);
2182
2183 dev_kfree_skb_any(skb);
2184 return -EINVAL;
2185 }
2186
2187 if (unlikely((!desc->rx.pkt_len) ||
2188 hnae_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2189 netdev_err(netdev, "truncated pkt\n");
2190 u64_stats_update_begin(&ring->syncp);
2191 ring->stats.err_pkt_len++;
2192 u64_stats_update_end(&ring->syncp);
2193
2194 dev_kfree_skb_any(skb);
2195 return -EFAULT;
2196 }
2197
2198 if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L2E_B))) {
2199 netdev_err(netdev, "L2 error pkt\n");
2200 u64_stats_update_begin(&ring->syncp);
2201 ring->stats.l2_err++;
2202 u64_stats_update_end(&ring->syncp);
2203
2204 dev_kfree_skb_any(skb);
2205 return -EFAULT;
2206 }
2207
2208 u64_stats_update_begin(&ring->syncp);
2209 ring->stats.rx_pkts++;
2210 ring->stats.rx_bytes += skb->len;
2211 u64_stats_update_end(&ring->syncp);
2212
2213 ring->tqp_vector->rx_group.total_bytes += skb->len;
2214
2215 hns3_rx_checksum(ring, skb, desc);
2216 return 0;
2217 }
2218
2219 int hns3_clean_rx_ring(
2220 struct hns3_enet_ring *ring, int budget,
2221 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2222 {
2223 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2224 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2225 int recv_pkts, recv_bds, clean_count, err;
2226 int unused_count = hns3_desc_unused(ring);
2227 struct sk_buff *skb = NULL;
2228 int num, bnum = 0;
2229
2230 num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2231 rmb(); /* Make sure num taken effect before the other data is touched */
2232
2233 recv_pkts = 0, recv_bds = 0, clean_count = 0;
2234 num -= unused_count;
2235
2236 while (recv_pkts < budget && recv_bds < num) {
2237 /* Reuse or realloc buffers */
2238 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2239 hns3_nic_alloc_rx_buffers(ring,
2240 clean_count + unused_count);
2241 clean_count = 0;
2242 unused_count = hns3_desc_unused(ring);
2243 }
2244
2245 /* Poll one pkt */
2246 err = hns3_handle_rx_bd(ring, &skb, &bnum);
2247 if (unlikely(!skb)) /* This fault cannot be repaired */
2248 goto out;
2249
2250 recv_bds += bnum;
2251 clean_count += bnum;
2252 if (unlikely(err)) { /* Do jump the err */
2253 recv_pkts++;
2254 continue;
2255 }
2256
2257 /* Do update ip stack process */
2258 skb->protocol = eth_type_trans(skb, netdev);
2259 rx_fn(ring, skb);
2260
2261 recv_pkts++;
2262 }
2263
2264 out:
2265 /* Make all data has been write before submit */
2266 if (clean_count + unused_count > 0)
2267 hns3_nic_alloc_rx_buffers(ring,
2268 clean_count + unused_count);
2269
2270 return recv_pkts;
2271 }
2272
2273 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2274 {
2275 struct hns3_enet_tqp_vector *tqp_vector =
2276 ring_group->ring->tqp_vector;
2277 enum hns3_flow_level_range new_flow_level;
2278 int packets_per_msecs;
2279 int bytes_per_msecs;
2280 u32 time_passed_ms;
2281 u16 new_int_gl;
2282
2283 if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2284 return false;
2285
2286 if (ring_group->total_packets == 0) {
2287 ring_group->coal.int_gl = HNS3_INT_GL_50K;
2288 ring_group->coal.flow_level = HNS3_FLOW_LOW;
2289 return true;
2290 }
2291
2292 /* Simple throttlerate management
2293 * 0-10MB/s lower (50000 ints/s)
2294 * 10-20MB/s middle (20000 ints/s)
2295 * 20-1249MB/s high (18000 ints/s)
2296 * > 40000pps ultra (8000 ints/s)
2297 */
2298 new_flow_level = ring_group->coal.flow_level;
2299 new_int_gl = ring_group->coal.int_gl;
2300 time_passed_ms =
2301 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2302
2303 if (!time_passed_ms)
2304 return false;
2305
2306 do_div(ring_group->total_packets, time_passed_ms);
2307 packets_per_msecs = ring_group->total_packets;
2308
2309 do_div(ring_group->total_bytes, time_passed_ms);
2310 bytes_per_msecs = ring_group->total_bytes;
2311
2312 #define HNS3_RX_LOW_BYTE_RATE 10000
2313 #define HNS3_RX_MID_BYTE_RATE 20000
2314
2315 switch (new_flow_level) {
2316 case HNS3_FLOW_LOW:
2317 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2318 new_flow_level = HNS3_FLOW_MID;
2319 break;
2320 case HNS3_FLOW_MID:
2321 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2322 new_flow_level = HNS3_FLOW_HIGH;
2323 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2324 new_flow_level = HNS3_FLOW_LOW;
2325 break;
2326 case HNS3_FLOW_HIGH:
2327 case HNS3_FLOW_ULTRA:
2328 default:
2329 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2330 new_flow_level = HNS3_FLOW_MID;
2331 break;
2332 }
2333
2334 #define HNS3_RX_ULTRA_PACKET_RATE 40
2335
2336 if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2337 &tqp_vector->rx_group == ring_group)
2338 new_flow_level = HNS3_FLOW_ULTRA;
2339
2340 switch (new_flow_level) {
2341 case HNS3_FLOW_LOW:
2342 new_int_gl = HNS3_INT_GL_50K;
2343 break;
2344 case HNS3_FLOW_MID:
2345 new_int_gl = HNS3_INT_GL_20K;
2346 break;
2347 case HNS3_FLOW_HIGH:
2348 new_int_gl = HNS3_INT_GL_18K;
2349 break;
2350 case HNS3_FLOW_ULTRA:
2351 new_int_gl = HNS3_INT_GL_8K;
2352 break;
2353 default:
2354 break;
2355 }
2356
2357 ring_group->total_bytes = 0;
2358 ring_group->total_packets = 0;
2359 ring_group->coal.flow_level = new_flow_level;
2360 if (new_int_gl != ring_group->coal.int_gl) {
2361 ring_group->coal.int_gl = new_int_gl;
2362 return true;
2363 }
2364 return false;
2365 }
2366
2367 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2368 {
2369 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2370 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2371 bool rx_update, tx_update;
2372
2373 if (tqp_vector->int_adapt_down > 0) {
2374 tqp_vector->int_adapt_down--;
2375 return;
2376 }
2377
2378 if (rx_group->coal.gl_adapt_enable) {
2379 rx_update = hns3_get_new_int_gl(rx_group);
2380 if (rx_update)
2381 hns3_set_vector_coalesce_rx_gl(tqp_vector,
2382 rx_group->coal.int_gl);
2383 }
2384
2385 if (tx_group->coal.gl_adapt_enable) {
2386 tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2387 if (tx_update)
2388 hns3_set_vector_coalesce_tx_gl(tqp_vector,
2389 tx_group->coal.int_gl);
2390 }
2391
2392 tqp_vector->last_jiffies = jiffies;
2393 tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2394 }
2395
2396 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2397 {
2398 struct hns3_enet_ring *ring;
2399 int rx_pkt_total = 0;
2400
2401 struct hns3_enet_tqp_vector *tqp_vector =
2402 container_of(napi, struct hns3_enet_tqp_vector, napi);
2403 bool clean_complete = true;
2404 int rx_budget;
2405
2406 /* Since the actual Tx work is minimal, we can give the Tx a larger
2407 * budget and be more aggressive about cleaning up the Tx descriptors.
2408 */
2409 hns3_for_each_ring(ring, tqp_vector->tx_group) {
2410 if (!hns3_clean_tx_ring(ring, budget))
2411 clean_complete = false;
2412 }
2413
2414 /* make sure rx ring budget not smaller than 1 */
2415 rx_budget = max(budget / tqp_vector->num_tqps, 1);
2416
2417 hns3_for_each_ring(ring, tqp_vector->rx_group) {
2418 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2419 hns3_rx_skb);
2420
2421 if (rx_cleaned >= rx_budget)
2422 clean_complete = false;
2423
2424 rx_pkt_total += rx_cleaned;
2425 }
2426
2427 tqp_vector->rx_group.total_packets += rx_pkt_total;
2428
2429 if (!clean_complete)
2430 return budget;
2431
2432 napi_complete(napi);
2433 hns3_update_new_int_gl(tqp_vector);
2434 hns3_mask_vector_irq(tqp_vector, 1);
2435
2436 return rx_pkt_total;
2437 }
2438
2439 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2440 struct hnae3_ring_chain_node *head)
2441 {
2442 struct pci_dev *pdev = tqp_vector->handle->pdev;
2443 struct hnae3_ring_chain_node *cur_chain = head;
2444 struct hnae3_ring_chain_node *chain;
2445 struct hns3_enet_ring *tx_ring;
2446 struct hns3_enet_ring *rx_ring;
2447
2448 tx_ring = tqp_vector->tx_group.ring;
2449 if (tx_ring) {
2450 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2451 hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2452 HNAE3_RING_TYPE_TX);
2453 hnae_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2454 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2455
2456 cur_chain->next = NULL;
2457
2458 while (tx_ring->next) {
2459 tx_ring = tx_ring->next;
2460
2461 chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2462 GFP_KERNEL);
2463 if (!chain)
2464 return -ENOMEM;
2465
2466 cur_chain->next = chain;
2467 chain->tqp_index = tx_ring->tqp->tqp_index;
2468 hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2469 HNAE3_RING_TYPE_TX);
2470 hnae_set_field(chain->int_gl_idx,
2471 HNAE3_RING_GL_IDX_M,
2472 HNAE3_RING_GL_IDX_S,
2473 HNAE3_RING_GL_TX);
2474
2475 cur_chain = chain;
2476 }
2477 }
2478
2479 rx_ring = tqp_vector->rx_group.ring;
2480 if (!tx_ring && rx_ring) {
2481 cur_chain->next = NULL;
2482 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2483 hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2484 HNAE3_RING_TYPE_RX);
2485 hnae_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2486 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2487
2488 rx_ring = rx_ring->next;
2489 }
2490
2491 while (rx_ring) {
2492 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2493 if (!chain)
2494 return -ENOMEM;
2495
2496 cur_chain->next = chain;
2497 chain->tqp_index = rx_ring->tqp->tqp_index;
2498 hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2499 HNAE3_RING_TYPE_RX);
2500 hnae_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2501 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2502
2503 cur_chain = chain;
2504
2505 rx_ring = rx_ring->next;
2506 }
2507
2508 return 0;
2509 }
2510
2511 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2512 struct hnae3_ring_chain_node *head)
2513 {
2514 struct pci_dev *pdev = tqp_vector->handle->pdev;
2515 struct hnae3_ring_chain_node *chain_tmp, *chain;
2516
2517 chain = head->next;
2518
2519 while (chain) {
2520 chain_tmp = chain->next;
2521 devm_kfree(&pdev->dev, chain);
2522 chain = chain_tmp;
2523 }
2524 }
2525
2526 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2527 struct hns3_enet_ring *ring)
2528 {
2529 ring->next = group->ring;
2530 group->ring = ring;
2531
2532 group->count++;
2533 }
2534
2535 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2536 {
2537 struct hnae3_ring_chain_node vector_ring_chain;
2538 struct hnae3_handle *h = priv->ae_handle;
2539 struct hns3_enet_tqp_vector *tqp_vector;
2540 int ret = 0;
2541 u16 i;
2542
2543 for (i = 0; i < priv->vector_num; i++) {
2544 tqp_vector = &priv->tqp_vector[i];
2545 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2546 tqp_vector->num_tqps = 0;
2547 }
2548
2549 for (i = 0; i < h->kinfo.num_tqps; i++) {
2550 u16 vector_i = i % priv->vector_num;
2551 u16 tqp_num = h->kinfo.num_tqps;
2552
2553 tqp_vector = &priv->tqp_vector[vector_i];
2554
2555 hns3_add_ring_to_group(&tqp_vector->tx_group,
2556 priv->ring_data[i].ring);
2557
2558 hns3_add_ring_to_group(&tqp_vector->rx_group,
2559 priv->ring_data[i + tqp_num].ring);
2560
2561 priv->ring_data[i].ring->tqp_vector = tqp_vector;
2562 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2563 tqp_vector->num_tqps++;
2564 }
2565
2566 for (i = 0; i < priv->vector_num; i++) {
2567 tqp_vector = &priv->tqp_vector[i];
2568
2569 tqp_vector->rx_group.total_bytes = 0;
2570 tqp_vector->rx_group.total_packets = 0;
2571 tqp_vector->tx_group.total_bytes = 0;
2572 tqp_vector->tx_group.total_packets = 0;
2573 tqp_vector->handle = h;
2574
2575 ret = hns3_get_vector_ring_chain(tqp_vector,
2576 &vector_ring_chain);
2577 if (ret)
2578 return ret;
2579
2580 ret = h->ae_algo->ops->map_ring_to_vector(h,
2581 tqp_vector->vector_irq, &vector_ring_chain);
2582
2583 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2584
2585 if (ret)
2586 return ret;
2587
2588 netif_napi_add(priv->netdev, &tqp_vector->napi,
2589 hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2590 }
2591
2592 return 0;
2593 }
2594
2595 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2596 {
2597 struct hnae3_handle *h = priv->ae_handle;
2598 struct hns3_enet_tqp_vector *tqp_vector;
2599 struct hnae3_vector_info *vector;
2600 struct pci_dev *pdev = h->pdev;
2601 u16 tqp_num = h->kinfo.num_tqps;
2602 u16 vector_num;
2603 int ret = 0;
2604 u16 i;
2605
2606 /* RSS size, cpu online and vector_num should be the same */
2607 /* Should consider 2p/4p later */
2608 vector_num = min_t(u16, num_online_cpus(), tqp_num);
2609 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2610 GFP_KERNEL);
2611 if (!vector)
2612 return -ENOMEM;
2613
2614 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2615
2616 priv->vector_num = vector_num;
2617 priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2618 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2619 GFP_KERNEL);
2620 if (!priv->tqp_vector) {
2621 ret = -ENOMEM;
2622 goto out;
2623 }
2624
2625 for (i = 0; i < priv->vector_num; i++) {
2626 tqp_vector = &priv->tqp_vector[i];
2627 tqp_vector->idx = i;
2628 tqp_vector->mask_addr = vector[i].io_addr;
2629 tqp_vector->vector_irq = vector[i].vector;
2630 hns3_vector_gl_rl_init(tqp_vector, priv);
2631 }
2632
2633 out:
2634 devm_kfree(&pdev->dev, vector);
2635 return ret;
2636 }
2637
2638 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2639 {
2640 group->ring = NULL;
2641 group->count = 0;
2642 }
2643
2644 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2645 {
2646 struct hnae3_ring_chain_node vector_ring_chain;
2647 struct hnae3_handle *h = priv->ae_handle;
2648 struct hns3_enet_tqp_vector *tqp_vector;
2649 int i, ret;
2650
2651 for (i = 0; i < priv->vector_num; i++) {
2652 tqp_vector = &priv->tqp_vector[i];
2653
2654 ret = hns3_get_vector_ring_chain(tqp_vector,
2655 &vector_ring_chain);
2656 if (ret)
2657 return ret;
2658
2659 ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2660 tqp_vector->vector_irq, &vector_ring_chain);
2661 if (ret)
2662 return ret;
2663
2664 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2665 if (ret)
2666 return ret;
2667
2668 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2669
2670 if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2671 (void)irq_set_affinity_hint(
2672 priv->tqp_vector[i].vector_irq,
2673 NULL);
2674 free_irq(priv->tqp_vector[i].vector_irq,
2675 &priv->tqp_vector[i]);
2676 }
2677
2678 priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2679 hns3_clear_ring_group(&tqp_vector->rx_group);
2680 hns3_clear_ring_group(&tqp_vector->tx_group);
2681 netif_napi_del(&priv->tqp_vector[i].napi);
2682 }
2683
2684 return 0;
2685 }
2686
2687 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2688 {
2689 struct hnae3_handle *h = priv->ae_handle;
2690 struct pci_dev *pdev = h->pdev;
2691 int i, ret;
2692
2693 for (i = 0; i < priv->vector_num; i++) {
2694 struct hns3_enet_tqp_vector *tqp_vector;
2695
2696 tqp_vector = &priv->tqp_vector[i];
2697 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2698 if (ret)
2699 return ret;
2700 }
2701
2702 devm_kfree(&pdev->dev, priv->tqp_vector);
2703 return 0;
2704 }
2705
2706 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2707 int ring_type)
2708 {
2709 struct hns3_nic_ring_data *ring_data = priv->ring_data;
2710 int queue_num = priv->ae_handle->kinfo.num_tqps;
2711 struct pci_dev *pdev = priv->ae_handle->pdev;
2712 struct hns3_enet_ring *ring;
2713
2714 ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2715 if (!ring)
2716 return -ENOMEM;
2717
2718 if (ring_type == HNAE3_RING_TYPE_TX) {
2719 ring_data[q->tqp_index].ring = ring;
2720 ring_data[q->tqp_index].queue_index = q->tqp_index;
2721 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2722 } else {
2723 ring_data[q->tqp_index + queue_num].ring = ring;
2724 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2725 ring->io_base = q->io_base;
2726 }
2727
2728 hnae_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2729
2730 ring->tqp = q;
2731 ring->desc = NULL;
2732 ring->desc_cb = NULL;
2733 ring->dev = priv->dev;
2734 ring->desc_dma_addr = 0;
2735 ring->buf_size = q->buf_size;
2736 ring->desc_num = q->desc_num;
2737 ring->next_to_use = 0;
2738 ring->next_to_clean = 0;
2739
2740 return 0;
2741 }
2742
2743 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2744 struct hns3_nic_priv *priv)
2745 {
2746 int ret;
2747
2748 ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2749 if (ret)
2750 return ret;
2751
2752 ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2753 if (ret)
2754 return ret;
2755
2756 return 0;
2757 }
2758
2759 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2760 {
2761 struct hnae3_handle *h = priv->ae_handle;
2762 struct pci_dev *pdev = h->pdev;
2763 int i, ret;
2764
2765 priv->ring_data = devm_kzalloc(&pdev->dev, h->kinfo.num_tqps *
2766 sizeof(*priv->ring_data) * 2,
2767 GFP_KERNEL);
2768 if (!priv->ring_data)
2769 return -ENOMEM;
2770
2771 for (i = 0; i < h->kinfo.num_tqps; i++) {
2772 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2773 if (ret)
2774 goto err;
2775 }
2776
2777 return 0;
2778 err:
2779 devm_kfree(&pdev->dev, priv->ring_data);
2780 return ret;
2781 }
2782
2783 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2784 {
2785 struct hnae3_handle *h = priv->ae_handle;
2786 int i;
2787
2788 for (i = 0; i < h->kinfo.num_tqps; i++) {
2789 devm_kfree(priv->dev, priv->ring_data[i].ring);
2790 devm_kfree(priv->dev,
2791 priv->ring_data[i + h->kinfo.num_tqps].ring);
2792 }
2793 devm_kfree(priv->dev, priv->ring_data);
2794 }
2795
2796 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2797 {
2798 int ret;
2799
2800 if (ring->desc_num <= 0 || ring->buf_size <= 0)
2801 return -EINVAL;
2802
2803 ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2804 GFP_KERNEL);
2805 if (!ring->desc_cb) {
2806 ret = -ENOMEM;
2807 goto out;
2808 }
2809
2810 ret = hns3_alloc_desc(ring);
2811 if (ret)
2812 goto out_with_desc_cb;
2813
2814 if (!HNAE3_IS_TX_RING(ring)) {
2815 ret = hns3_alloc_ring_buffers(ring);
2816 if (ret)
2817 goto out_with_desc;
2818 }
2819
2820 return 0;
2821
2822 out_with_desc:
2823 hns3_free_desc(ring);
2824 out_with_desc_cb:
2825 kfree(ring->desc_cb);
2826 ring->desc_cb = NULL;
2827 out:
2828 return ret;
2829 }
2830
2831 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2832 {
2833 hns3_free_desc(ring);
2834 kfree(ring->desc_cb);
2835 ring->desc_cb = NULL;
2836 ring->next_to_clean = 0;
2837 ring->next_to_use = 0;
2838 }
2839
2840 static int hns3_buf_size2type(u32 buf_size)
2841 {
2842 int bd_size_type;
2843
2844 switch (buf_size) {
2845 case 512:
2846 bd_size_type = HNS3_BD_SIZE_512_TYPE;
2847 break;
2848 case 1024:
2849 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2850 break;
2851 case 2048:
2852 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2853 break;
2854 case 4096:
2855 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2856 break;
2857 default:
2858 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2859 }
2860
2861 return bd_size_type;
2862 }
2863
2864 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2865 {
2866 dma_addr_t dma = ring->desc_dma_addr;
2867 struct hnae3_queue *q = ring->tqp;
2868
2869 if (!HNAE3_IS_TX_RING(ring)) {
2870 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2871 (u32)dma);
2872 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2873 (u32)((dma >> 31) >> 1));
2874
2875 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2876 hns3_buf_size2type(ring->buf_size));
2877 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2878 ring->desc_num / 8 - 1);
2879
2880 } else {
2881 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2882 (u32)dma);
2883 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
2884 (u32)((dma >> 31) >> 1));
2885
2886 hns3_write_dev(q, HNS3_RING_TX_RING_BD_LEN_REG,
2887 hns3_buf_size2type(ring->buf_size));
2888 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
2889 ring->desc_num / 8 - 1);
2890 }
2891 }
2892
2893 int hns3_init_all_ring(struct hns3_nic_priv *priv)
2894 {
2895 struct hnae3_handle *h = priv->ae_handle;
2896 int ring_num = h->kinfo.num_tqps * 2;
2897 int i, j;
2898 int ret;
2899
2900 for (i = 0; i < ring_num; i++) {
2901 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
2902 if (ret) {
2903 dev_err(priv->dev,
2904 "Alloc ring memory fail! ret=%d\n", ret);
2905 goto out_when_alloc_ring_memory;
2906 }
2907
2908 hns3_init_ring_hw(priv->ring_data[i].ring);
2909
2910 u64_stats_init(&priv->ring_data[i].ring->syncp);
2911 }
2912
2913 return 0;
2914
2915 out_when_alloc_ring_memory:
2916 for (j = i - 1; j >= 0; j--)
2917 hns3_fini_ring(priv->ring_data[j].ring);
2918
2919 return -ENOMEM;
2920 }
2921
2922 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
2923 {
2924 struct hnae3_handle *h = priv->ae_handle;
2925 int i;
2926
2927 for (i = 0; i < h->kinfo.num_tqps; i++) {
2928 if (h->ae_algo->ops->reset_queue)
2929 h->ae_algo->ops->reset_queue(h, i);
2930
2931 hns3_fini_ring(priv->ring_data[i].ring);
2932 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
2933 }
2934 return 0;
2935 }
2936
2937 /* Set mac addr if it is configured. or leave it to the AE driver */
2938 static void hns3_init_mac_addr(struct net_device *netdev, bool init)
2939 {
2940 struct hns3_nic_priv *priv = netdev_priv(netdev);
2941 struct hnae3_handle *h = priv->ae_handle;
2942 u8 mac_addr_temp[ETH_ALEN];
2943
2944 if (h->ae_algo->ops->get_mac_addr && init) {
2945 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
2946 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
2947 }
2948
2949 /* Check if the MAC address is valid, if not get a random one */
2950 if (!is_valid_ether_addr(netdev->dev_addr)) {
2951 eth_hw_addr_random(netdev);
2952 dev_warn(priv->dev, "using random MAC address %pM\n",
2953 netdev->dev_addr);
2954 }
2955
2956 if (h->ae_algo->ops->set_mac_addr)
2957 h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
2958
2959 }
2960
2961 static void hns3_nic_set_priv_ops(struct net_device *netdev)
2962 {
2963 struct hns3_nic_priv *priv = netdev_priv(netdev);
2964
2965 if ((netdev->features & NETIF_F_TSO) ||
2966 (netdev->features & NETIF_F_TSO6)) {
2967 priv->ops.fill_desc = hns3_fill_desc_tso;
2968 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
2969 } else {
2970 priv->ops.fill_desc = hns3_fill_desc;
2971 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
2972 }
2973 }
2974
2975 static int hns3_client_init(struct hnae3_handle *handle)
2976 {
2977 struct pci_dev *pdev = handle->pdev;
2978 struct hns3_nic_priv *priv;
2979 struct net_device *netdev;
2980 int ret;
2981
2982 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
2983 hns3_get_max_available_channels(handle));
2984 if (!netdev)
2985 return -ENOMEM;
2986
2987 priv = netdev_priv(netdev);
2988 priv->dev = &pdev->dev;
2989 priv->netdev = netdev;
2990 priv->ae_handle = handle;
2991 priv->ae_handle->reset_level = HNAE3_NONE_RESET;
2992 priv->ae_handle->last_reset_time = jiffies;
2993 priv->tx_timeout_count = 0;
2994
2995 handle->kinfo.netdev = netdev;
2996 handle->priv = (void *)priv;
2997
2998 hns3_init_mac_addr(netdev, true);
2999
3000 hns3_set_default_feature(netdev);
3001
3002 netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3003 netdev->priv_flags |= IFF_UNICAST_FLT;
3004 netdev->netdev_ops = &hns3_nic_netdev_ops;
3005 SET_NETDEV_DEV(netdev, &pdev->dev);
3006 hns3_ethtool_set_ops(netdev);
3007 hns3_nic_set_priv_ops(netdev);
3008
3009 /* Carrier off reporting is important to ethtool even BEFORE open */
3010 netif_carrier_off(netdev);
3011
3012 ret = hns3_get_ring_config(priv);
3013 if (ret) {
3014 ret = -ENOMEM;
3015 goto out_get_ring_cfg;
3016 }
3017
3018 ret = hns3_nic_alloc_vector_data(priv);
3019 if (ret) {
3020 ret = -ENOMEM;
3021 goto out_alloc_vector_data;
3022 }
3023
3024 ret = hns3_nic_init_vector_data(priv);
3025 if (ret) {
3026 ret = -ENOMEM;
3027 goto out_init_vector_data;
3028 }
3029
3030 ret = hns3_init_all_ring(priv);
3031 if (ret) {
3032 ret = -ENOMEM;
3033 goto out_init_ring_data;
3034 }
3035
3036 ret = register_netdev(netdev);
3037 if (ret) {
3038 dev_err(priv->dev, "probe register netdev fail!\n");
3039 goto out_reg_netdev_fail;
3040 }
3041
3042 hns3_dcbnl_setup(handle);
3043
3044 /* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3045 netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3046
3047 return ret;
3048
3049 out_reg_netdev_fail:
3050 out_init_ring_data:
3051 (void)hns3_nic_uninit_vector_data(priv);
3052 out_init_vector_data:
3053 hns3_nic_dealloc_vector_data(priv);
3054 out_alloc_vector_data:
3055 priv->ring_data = NULL;
3056 out_get_ring_cfg:
3057 priv->ae_handle = NULL;
3058 free_netdev(netdev);
3059 return ret;
3060 }
3061
3062 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3063 {
3064 struct net_device *netdev = handle->kinfo.netdev;
3065 struct hns3_nic_priv *priv = netdev_priv(netdev);
3066 int ret;
3067
3068 if (netdev->reg_state != NETREG_UNINITIALIZED)
3069 unregister_netdev(netdev);
3070
3071 ret = hns3_nic_uninit_vector_data(priv);
3072 if (ret)
3073 netdev_err(netdev, "uninit vector error\n");
3074
3075 ret = hns3_nic_dealloc_vector_data(priv);
3076 if (ret)
3077 netdev_err(netdev, "dealloc vector error\n");
3078
3079 ret = hns3_uninit_all_ring(priv);
3080 if (ret)
3081 netdev_err(netdev, "uninit ring error\n");
3082
3083 hns3_put_ring_config(priv);
3084
3085 priv->ring_data = NULL;
3086
3087 free_netdev(netdev);
3088 }
3089
3090 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3091 {
3092 struct net_device *netdev = handle->kinfo.netdev;
3093
3094 if (!netdev)
3095 return;
3096
3097 if (linkup) {
3098 netif_carrier_on(netdev);
3099 netif_tx_wake_all_queues(netdev);
3100 netdev_info(netdev, "link up\n");
3101 } else {
3102 netif_carrier_off(netdev);
3103 netif_tx_stop_all_queues(netdev);
3104 netdev_info(netdev, "link down\n");
3105 }
3106 }
3107
3108 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3109 {
3110 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3111 struct net_device *ndev = kinfo->netdev;
3112 bool if_running;
3113 int ret;
3114 u8 i;
3115
3116 if (tc > HNAE3_MAX_TC)
3117 return -EINVAL;
3118
3119 if (!ndev)
3120 return -ENODEV;
3121
3122 if_running = netif_running(ndev);
3123
3124 ret = netdev_set_num_tc(ndev, tc);
3125 if (ret)
3126 return ret;
3127
3128 if (if_running) {
3129 (void)hns3_nic_net_stop(ndev);
3130 msleep(100);
3131 }
3132
3133 ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3134 kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3135 if (ret)
3136 goto err_out;
3137
3138 if (tc <= 1) {
3139 netdev_reset_tc(ndev);
3140 goto out;
3141 }
3142
3143 for (i = 0; i < HNAE3_MAX_TC; i++) {
3144 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3145
3146 if (tc_info->enable)
3147 netdev_set_tc_queue(ndev,
3148 tc_info->tc,
3149 tc_info->tqp_count,
3150 tc_info->tqp_offset);
3151 }
3152
3153 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
3154 netdev_set_prio_tc_map(ndev, i,
3155 kinfo->prio_tc[i]);
3156 }
3157
3158 out:
3159 ret = hns3_nic_set_real_num_queue(ndev);
3160
3161 err_out:
3162 if (if_running)
3163 (void)hns3_nic_net_open(ndev);
3164
3165 return ret;
3166 }
3167
3168 static void hns3_recover_hw_addr(struct net_device *ndev)
3169 {
3170 struct netdev_hw_addr_list *list;
3171 struct netdev_hw_addr *ha, *tmp;
3172
3173 /* go through and sync uc_addr entries to the device */
3174 list = &ndev->uc;
3175 list_for_each_entry_safe(ha, tmp, &list->list, list)
3176 hns3_nic_uc_sync(ndev, ha->addr);
3177
3178 /* go through and sync mc_addr entries to the device */
3179 list = &ndev->mc;
3180 list_for_each_entry_safe(ha, tmp, &list->list, list)
3181 hns3_nic_mc_sync(ndev, ha->addr);
3182 }
3183
3184 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3185 {
3186 if (!HNAE3_IS_TX_RING(ring))
3187 return;
3188
3189 while (ring->next_to_clean != ring->next_to_use) {
3190 hns3_free_buffer_detach(ring, ring->next_to_clean);
3191 ring_ptr_move_fw(ring, next_to_clean);
3192 }
3193 }
3194
3195 static void hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3196 {
3197 if (HNAE3_IS_TX_RING(ring))
3198 return;
3199
3200 while (ring->next_to_use != ring->next_to_clean) {
3201 /* When a buffer is not reused, it's memory has been
3202 * freed in hns3_handle_rx_bd or will be freed by
3203 * stack, so only need to unmap the buffer here.
3204 */
3205 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3206 hns3_unmap_buffer(ring,
3207 &ring->desc_cb[ring->next_to_use]);
3208 ring->desc_cb[ring->next_to_use].dma = 0;
3209 }
3210
3211 ring_ptr_move_fw(ring, next_to_use);
3212 }
3213 }
3214
3215 static void hns3_clear_all_ring(struct hnae3_handle *h)
3216 {
3217 struct net_device *ndev = h->kinfo.netdev;
3218 struct hns3_nic_priv *priv = netdev_priv(ndev);
3219 u32 i;
3220
3221 for (i = 0; i < h->kinfo.num_tqps; i++) {
3222 struct netdev_queue *dev_queue;
3223 struct hns3_enet_ring *ring;
3224
3225 ring = priv->ring_data[i].ring;
3226 hns3_clear_tx_ring(ring);
3227 dev_queue = netdev_get_tx_queue(ndev,
3228 priv->ring_data[i].queue_index);
3229 netdev_tx_reset_queue(dev_queue);
3230
3231 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3232 hns3_clear_rx_ring(ring);
3233 }
3234 }
3235
3236 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3237 {
3238 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3239 struct net_device *ndev = kinfo->netdev;
3240
3241 if (!netif_running(ndev))
3242 return -EIO;
3243
3244 return hns3_nic_net_stop(ndev);
3245 }
3246
3247 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3248 {
3249 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3250 int ret = 0;
3251
3252 if (netif_running(kinfo->netdev)) {
3253 ret = hns3_nic_net_up(kinfo->netdev);
3254 if (ret) {
3255 netdev_err(kinfo->netdev,
3256 "hns net up fail, ret=%d!\n", ret);
3257 return ret;
3258 }
3259 handle->last_reset_time = jiffies;
3260 }
3261
3262 return ret;
3263 }
3264
3265 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3266 {
3267 struct net_device *netdev = handle->kinfo.netdev;
3268 struct hns3_nic_priv *priv = netdev_priv(netdev);
3269 int ret;
3270
3271 hns3_init_mac_addr(netdev, false);
3272 hns3_nic_set_rx_mode(netdev);
3273 hns3_recover_hw_addr(netdev);
3274
3275 /* Hardware table is only clear when pf resets */
3276 if (!(handle->flags & HNAE3_SUPPORT_VF))
3277 hns3_restore_vlan(netdev);
3278
3279 /* Carrier off reporting is important to ethtool even BEFORE open */
3280 netif_carrier_off(netdev);
3281
3282 ret = hns3_get_ring_config(priv);
3283 if (ret)
3284 return ret;
3285
3286 ret = hns3_nic_init_vector_data(priv);
3287 if (ret)
3288 return ret;
3289
3290 ret = hns3_init_all_ring(priv);
3291 if (ret) {
3292 hns3_nic_uninit_vector_data(priv);
3293 priv->ring_data = NULL;
3294 }
3295
3296 return ret;
3297 }
3298
3299 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3300 {
3301 struct net_device *netdev = handle->kinfo.netdev;
3302 struct hns3_nic_priv *priv = netdev_priv(netdev);
3303 int ret;
3304
3305 hns3_clear_all_ring(handle);
3306
3307 ret = hns3_nic_uninit_vector_data(priv);
3308 if (ret) {
3309 netdev_err(netdev, "uninit vector error\n");
3310 return ret;
3311 }
3312
3313 ret = hns3_uninit_all_ring(priv);
3314 if (ret)
3315 netdev_err(netdev, "uninit ring error\n");
3316
3317 hns3_put_ring_config(priv);
3318
3319 priv->ring_data = NULL;
3320
3321 return ret;
3322 }
3323
3324 static int hns3_reset_notify(struct hnae3_handle *handle,
3325 enum hnae3_reset_notify_type type)
3326 {
3327 int ret = 0;
3328
3329 switch (type) {
3330 case HNAE3_UP_CLIENT:
3331 ret = hns3_reset_notify_up_enet(handle);
3332 break;
3333 case HNAE3_DOWN_CLIENT:
3334 ret = hns3_reset_notify_down_enet(handle);
3335 break;
3336 case HNAE3_INIT_CLIENT:
3337 ret = hns3_reset_notify_init_enet(handle);
3338 break;
3339 case HNAE3_UNINIT_CLIENT:
3340 ret = hns3_reset_notify_uninit_enet(handle);
3341 break;
3342 default:
3343 break;
3344 }
3345
3346 return ret;
3347 }
3348
3349 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3350 struct hns3_enet_coalesce *tx,
3351 struct hns3_enet_coalesce *rx)
3352 {
3353 u16 vector_num = priv->vector_num;
3354 int i;
3355
3356 for (i = 0; i < vector_num; i++) {
3357 memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3358 sizeof(struct hns3_enet_coalesce));
3359 memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3360 sizeof(struct hns3_enet_coalesce));
3361 }
3362 }
3363
3364 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3365 struct hns3_enet_coalesce *tx,
3366 struct hns3_enet_coalesce *rx)
3367 {
3368 struct hns3_nic_priv *priv = netdev_priv(netdev);
3369 struct hnae3_handle *h = hns3_get_handle(netdev);
3370 int ret;
3371
3372 ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3373 if (ret)
3374 return ret;
3375
3376 ret = hns3_get_ring_config(priv);
3377 if (ret)
3378 return ret;
3379
3380 ret = hns3_nic_alloc_vector_data(priv);
3381 if (ret)
3382 goto err_alloc_vector;
3383
3384 hns3_restore_coal(priv, tx, rx);
3385
3386 ret = hns3_nic_init_vector_data(priv);
3387 if (ret)
3388 goto err_uninit_vector;
3389
3390 ret = hns3_init_all_ring(priv);
3391 if (ret)
3392 goto err_put_ring;
3393
3394 return 0;
3395
3396 err_put_ring:
3397 hns3_put_ring_config(priv);
3398 err_uninit_vector:
3399 hns3_nic_uninit_vector_data(priv);
3400 err_alloc_vector:
3401 hns3_nic_dealloc_vector_data(priv);
3402 return ret;
3403 }
3404
3405 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3406 {
3407 return (new_tqp_num / num_tc) * num_tc;
3408 }
3409
3410 int hns3_set_channels(struct net_device *netdev,
3411 struct ethtool_channels *ch)
3412 {
3413 struct hns3_nic_priv *priv = netdev_priv(netdev);
3414 struct hnae3_handle *h = hns3_get_handle(netdev);
3415 struct hnae3_knic_private_info *kinfo = &h->kinfo;
3416 struct hns3_enet_coalesce tx_coal, rx_coal;
3417 bool if_running = netif_running(netdev);
3418 u32 new_tqp_num = ch->combined_count;
3419 u16 org_tqp_num;
3420 int ret;
3421
3422 if (ch->rx_count || ch->tx_count)
3423 return -EINVAL;
3424
3425 if (new_tqp_num > hns3_get_max_available_channels(h) ||
3426 new_tqp_num < kinfo->num_tc) {
3427 dev_err(&netdev->dev,
3428 "Change tqps fail, the tqp range is from %d to %d",
3429 kinfo->num_tc,
3430 hns3_get_max_available_channels(h));
3431 return -EINVAL;
3432 }
3433
3434 new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3435 if (kinfo->num_tqps == new_tqp_num)
3436 return 0;
3437
3438 if (if_running)
3439 hns3_nic_net_stop(netdev);
3440
3441 hns3_clear_all_ring(h);
3442
3443 ret = hns3_nic_uninit_vector_data(priv);
3444 if (ret) {
3445 dev_err(&netdev->dev,
3446 "Unbind vector with tqp fail, nothing is changed");
3447 goto open_netdev;
3448 }
3449
3450 /* Changing the tqp num may also change the vector num,
3451 * ethtool only support setting and querying one coal
3452 * configuation for now, so save the vector 0' coal
3453 * configuation here in order to restore it.
3454 */
3455 memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3456 sizeof(struct hns3_enet_coalesce));
3457 memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3458 sizeof(struct hns3_enet_coalesce));
3459
3460 hns3_nic_dealloc_vector_data(priv);
3461
3462 hns3_uninit_all_ring(priv);
3463 hns3_put_ring_config(priv);
3464
3465 org_tqp_num = h->kinfo.num_tqps;
3466 ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3467 if (ret) {
3468 ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3469 &tx_coal, &rx_coal);
3470 if (ret) {
3471 /* If revert to old tqp failed, fatal error occurred */
3472 dev_err(&netdev->dev,
3473 "Revert to old tqp num fail, ret=%d", ret);
3474 return ret;
3475 }
3476 dev_info(&netdev->dev,
3477 "Change tqp num fail, Revert to old tqp num");
3478 }
3479
3480 open_netdev:
3481 if (if_running)
3482 hns3_nic_net_open(netdev);
3483
3484 return ret;
3485 }
3486
3487 static const struct hnae3_client_ops client_ops = {
3488 .init_instance = hns3_client_init,
3489 .uninit_instance = hns3_client_uninit,
3490 .link_status_change = hns3_link_status_change,
3491 .setup_tc = hns3_client_setup_tc,
3492 .reset_notify = hns3_reset_notify,
3493 };
3494
3495 /* hns3_init_module - Driver registration routine
3496 * hns3_init_module is the first routine called when the driver is
3497 * loaded. All it does is register with the PCI subsystem.
3498 */
3499 static int __init hns3_init_module(void)
3500 {
3501 int ret;
3502
3503 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3504 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3505
3506 client.type = HNAE3_CLIENT_KNIC;
3507 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3508 hns3_driver_name);
3509
3510 client.ops = &client_ops;
3511
3512 INIT_LIST_HEAD(&client.node);
3513
3514 ret = hnae3_register_client(&client);
3515 if (ret)
3516 return ret;
3517
3518 ret = pci_register_driver(&hns3_driver);
3519 if (ret)
3520 hnae3_unregister_client(&client);
3521
3522 return ret;
3523 }
3524 module_init(hns3_init_module);
3525
3526 /* hns3_exit_module - Driver exit cleanup routine
3527 * hns3_exit_module is called just before the driver is removed
3528 * from memory.
3529 */
3530 static void __exit hns3_exit_module(void)
3531 {
3532 pci_unregister_driver(&hns3_driver);
3533 hnae3_unregister_client(&client);
3534 }
3535 module_exit(hns3_exit_module);
3536
3537 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3538 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3539 MODULE_LICENSE("GPL");
3540 MODULE_ALIAS("pci:hns-nic");
3541 MODULE_VERSION(HNS3_MOD_VERSION);