]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
fe029090935eddf7caf66b9546dad5e723f1a013
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23
24 static void hns3_clear_all_ring(struct hnae3_handle *h);
25 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
26 static void hns3_remove_hw_addr(struct net_device *netdev);
27
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 "Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34
35 /* hns3_pci_tbl - PCI Device ID Table
36 *
37 * Last entry must be all 0s
38 *
39 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40 * Class, Class Mask, private data (not used) }
41 */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
57 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 /* required last entry */
59 {0, }
60 };
61 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
62
63 static irqreturn_t hns3_irq_handle(int irq, void *vector)
64 {
65 struct hns3_enet_tqp_vector *tqp_vector = vector;
66
67 napi_schedule(&tqp_vector->napi);
68
69 return IRQ_HANDLED;
70 }
71
72 /* This callback function is used to set affinity changes to the irq affinity
73 * masks when the irq_set_affinity_notifier function is used.
74 */
75 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
76 const cpumask_t *mask)
77 {
78 struct hns3_enet_tqp_vector *tqp_vectors =
79 container_of(notify, struct hns3_enet_tqp_vector,
80 affinity_notify);
81
82 tqp_vectors->affinity_mask = *mask;
83 }
84
85 static void hns3_nic_irq_affinity_release(struct kref *ref)
86 {
87 }
88
89 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
90 {
91 struct hns3_enet_tqp_vector *tqp_vectors;
92 unsigned int i;
93
94 for (i = 0; i < priv->vector_num; i++) {
95 tqp_vectors = &priv->tqp_vector[i];
96
97 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
98 continue;
99
100 /* clear the affinity notifier and affinity mask */
101 irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
102 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
103
104 /* release the irq resource */
105 free_irq(tqp_vectors->vector_irq, tqp_vectors);
106 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
107 }
108 }
109
110 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
111 {
112 struct hns3_enet_tqp_vector *tqp_vectors;
113 int txrx_int_idx = 0;
114 int rx_int_idx = 0;
115 int tx_int_idx = 0;
116 unsigned int i;
117 int ret;
118
119 for (i = 0; i < priv->vector_num; i++) {
120 tqp_vectors = &priv->tqp_vector[i];
121
122 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
123 continue;
124
125 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
126 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
127 "%s-%s-%d", priv->netdev->name, "TxRx",
128 txrx_int_idx++);
129 txrx_int_idx++;
130 } else if (tqp_vectors->rx_group.ring) {
131 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
132 "%s-%s-%d", priv->netdev->name, "Rx",
133 rx_int_idx++);
134 } else if (tqp_vectors->tx_group.ring) {
135 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
136 "%s-%s-%d", priv->netdev->name, "Tx",
137 tx_int_idx++);
138 } else {
139 /* Skip this unused q_vector */
140 continue;
141 }
142
143 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
144
145 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
146 tqp_vectors->name,
147 tqp_vectors);
148 if (ret) {
149 netdev_err(priv->netdev, "request irq(%d) fail\n",
150 tqp_vectors->vector_irq);
151 return ret;
152 }
153
154 tqp_vectors->affinity_notify.notify =
155 hns3_nic_irq_affinity_notify;
156 tqp_vectors->affinity_notify.release =
157 hns3_nic_irq_affinity_release;
158 irq_set_affinity_notifier(tqp_vectors->vector_irq,
159 &tqp_vectors->affinity_notify);
160 irq_set_affinity_hint(tqp_vectors->vector_irq,
161 &tqp_vectors->affinity_mask);
162
163 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
164 }
165
166 return 0;
167 }
168
169 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
170 u32 mask_en)
171 {
172 writel(mask_en, tqp_vector->mask_addr);
173 }
174
175 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
176 {
177 napi_enable(&tqp_vector->napi);
178
179 /* enable vector */
180 hns3_mask_vector_irq(tqp_vector, 1);
181 }
182
183 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 /* disable vector */
186 hns3_mask_vector_irq(tqp_vector, 0);
187
188 disable_irq(tqp_vector->vector_irq);
189 napi_disable(&tqp_vector->napi);
190 }
191
192 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
193 u32 rl_value)
194 {
195 u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
196
197 /* this defines the configuration for RL (Interrupt Rate Limiter).
198 * Rl defines rate of interrupts i.e. number of interrupts-per-second
199 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
200 */
201
202 if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
203 !tqp_vector->rx_group.coal.gl_adapt_enable)
204 /* According to the hardware, the range of rl_reg is
205 * 0-59 and the unit is 4.
206 */
207 rl_reg |= HNS3_INT_RL_ENABLE_MASK;
208
209 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
210 }
211
212 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
213 u32 gl_value)
214 {
215 u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
216
217 writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
218 }
219
220 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
221 u32 gl_value)
222 {
223 u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
224
225 writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
226 }
227
228 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
229 struct hns3_nic_priv *priv)
230 {
231 /* initialize the configuration for interrupt coalescing.
232 * 1. GL (Interrupt Gap Limiter)
233 * 2. RL (Interrupt Rate Limiter)
234 */
235
236 /* Default: enable interrupt coalescing self-adaptive and GL */
237 tqp_vector->tx_group.coal.gl_adapt_enable = 1;
238 tqp_vector->rx_group.coal.gl_adapt_enable = 1;
239
240 tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
241 tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
242
243 tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
244 tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
245 tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
246 }
247
248 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
249 struct hns3_nic_priv *priv)
250 {
251 struct hnae3_handle *h = priv->ae_handle;
252
253 hns3_set_vector_coalesce_tx_gl(tqp_vector,
254 tqp_vector->tx_group.coal.int_gl);
255 hns3_set_vector_coalesce_rx_gl(tqp_vector,
256 tqp_vector->rx_group.coal.int_gl);
257 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
258 }
259
260 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
261 {
262 struct hnae3_handle *h = hns3_get_handle(netdev);
263 struct hnae3_knic_private_info *kinfo = &h->kinfo;
264 unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
265 int i, ret;
266
267 if (kinfo->num_tc <= 1) {
268 netdev_reset_tc(netdev);
269 } else {
270 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
271 if (ret) {
272 netdev_err(netdev,
273 "netdev_set_num_tc fail, ret=%d!\n", ret);
274 return ret;
275 }
276
277 for (i = 0; i < HNAE3_MAX_TC; i++) {
278 if (!kinfo->tc_info[i].enable)
279 continue;
280
281 netdev_set_tc_queue(netdev,
282 kinfo->tc_info[i].tc,
283 kinfo->tc_info[i].tqp_count,
284 kinfo->tc_info[i].tqp_offset);
285 }
286 }
287
288 ret = netif_set_real_num_tx_queues(netdev, queue_size);
289 if (ret) {
290 netdev_err(netdev,
291 "netif_set_real_num_tx_queues fail, ret=%d!\n",
292 ret);
293 return ret;
294 }
295
296 ret = netif_set_real_num_rx_queues(netdev, queue_size);
297 if (ret) {
298 netdev_err(netdev,
299 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
300 return ret;
301 }
302
303 return 0;
304 }
305
306 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
307 {
308 u16 alloc_tqps, max_rss_size, rss_size;
309
310 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
311 rss_size = alloc_tqps / h->kinfo.num_tc;
312
313 return min_t(u16, rss_size, max_rss_size);
314 }
315
316 static void hns3_tqp_enable(struct hnae3_queue *tqp)
317 {
318 u32 rcb_reg;
319
320 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
321 rcb_reg |= BIT(HNS3_RING_EN_B);
322 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
323 }
324
325 static void hns3_tqp_disable(struct hnae3_queue *tqp)
326 {
327 u32 rcb_reg;
328
329 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
330 rcb_reg &= ~BIT(HNS3_RING_EN_B);
331 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
332 }
333
334 static int hns3_nic_net_up(struct net_device *netdev)
335 {
336 struct hns3_nic_priv *priv = netdev_priv(netdev);
337 struct hnae3_handle *h = priv->ae_handle;
338 int i, j;
339 int ret;
340
341 ret = hns3_nic_reset_all_ring(h);
342 if (ret)
343 return ret;
344
345 /* get irq resource for all vectors */
346 ret = hns3_nic_init_irq(priv);
347 if (ret) {
348 netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
349 return ret;
350 }
351
352 /* enable the vectors */
353 for (i = 0; i < priv->vector_num; i++)
354 hns3_vector_enable(&priv->tqp_vector[i]);
355
356 /* enable rcb */
357 for (j = 0; j < h->kinfo.num_tqps; j++)
358 hns3_tqp_enable(h->kinfo.tqp[j]);
359
360 /* start the ae_dev */
361 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
362 if (ret)
363 goto out_start_err;
364
365 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
366
367 return 0;
368
369 out_start_err:
370 while (j--)
371 hns3_tqp_disable(h->kinfo.tqp[j]);
372
373 for (j = i - 1; j >= 0; j--)
374 hns3_vector_disable(&priv->tqp_vector[j]);
375
376 hns3_nic_uninit_irq(priv);
377
378 return ret;
379 }
380
381 static int hns3_nic_net_open(struct net_device *netdev)
382 {
383 struct hnae3_handle *h = hns3_get_handle(netdev);
384 struct hnae3_knic_private_info *kinfo;
385 int i, ret;
386
387 if (hns3_nic_resetting(netdev))
388 return -EBUSY;
389
390 netif_carrier_off(netdev);
391
392 ret = hns3_nic_set_real_num_queue(netdev);
393 if (ret)
394 return ret;
395
396 ret = hns3_nic_net_up(netdev);
397 if (ret) {
398 netdev_err(netdev,
399 "hns net up fail, ret=%d!\n", ret);
400 return ret;
401 }
402
403 kinfo = &h->kinfo;
404 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
405 netdev_set_prio_tc_map(netdev, i,
406 kinfo->prio_tc[i]);
407 }
408
409 return 0;
410 }
411
412 static void hns3_nic_net_down(struct net_device *netdev)
413 {
414 struct hns3_nic_priv *priv = netdev_priv(netdev);
415 struct hnae3_handle *h = hns3_get_handle(netdev);
416 const struct hnae3_ae_ops *ops;
417 int i;
418
419 /* disable vectors */
420 for (i = 0; i < priv->vector_num; i++)
421 hns3_vector_disable(&priv->tqp_vector[i]);
422
423 /* disable rcb */
424 for (i = 0; i < h->kinfo.num_tqps; i++)
425 hns3_tqp_disable(h->kinfo.tqp[i]);
426
427 /* stop ae_dev */
428 ops = priv->ae_handle->ae_algo->ops;
429 if (ops->stop)
430 ops->stop(priv->ae_handle);
431
432 /* free irq resources */
433 hns3_nic_uninit_irq(priv);
434
435 hns3_clear_all_ring(priv->ae_handle);
436 }
437
438 static int hns3_nic_net_stop(struct net_device *netdev)
439 {
440 struct hns3_nic_priv *priv = netdev_priv(netdev);
441
442 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
443 return 0;
444
445 netif_tx_stop_all_queues(netdev);
446 netif_carrier_off(netdev);
447
448 hns3_nic_net_down(netdev);
449
450 return 0;
451 }
452
453 static int hns3_nic_uc_sync(struct net_device *netdev,
454 const unsigned char *addr)
455 {
456 struct hnae3_handle *h = hns3_get_handle(netdev);
457
458 if (h->ae_algo->ops->add_uc_addr)
459 return h->ae_algo->ops->add_uc_addr(h, addr);
460
461 return 0;
462 }
463
464 static int hns3_nic_uc_unsync(struct net_device *netdev,
465 const unsigned char *addr)
466 {
467 struct hnae3_handle *h = hns3_get_handle(netdev);
468
469 if (h->ae_algo->ops->rm_uc_addr)
470 return h->ae_algo->ops->rm_uc_addr(h, addr);
471
472 return 0;
473 }
474
475 static int hns3_nic_mc_sync(struct net_device *netdev,
476 const unsigned char *addr)
477 {
478 struct hnae3_handle *h = hns3_get_handle(netdev);
479
480 if (h->ae_algo->ops->add_mc_addr)
481 return h->ae_algo->ops->add_mc_addr(h, addr);
482
483 return 0;
484 }
485
486 static int hns3_nic_mc_unsync(struct net_device *netdev,
487 const unsigned char *addr)
488 {
489 struct hnae3_handle *h = hns3_get_handle(netdev);
490
491 if (h->ae_algo->ops->rm_mc_addr)
492 return h->ae_algo->ops->rm_mc_addr(h, addr);
493
494 return 0;
495 }
496
497 static u8 hns3_get_netdev_flags(struct net_device *netdev)
498 {
499 u8 flags = 0;
500
501 if (netdev->flags & IFF_PROMISC) {
502 flags = HNAE3_USER_UPE | HNAE3_USER_MPE;
503 } else {
504 flags |= HNAE3_VLAN_FLTR;
505 if (netdev->flags & IFF_ALLMULTI)
506 flags |= HNAE3_USER_MPE;
507 }
508
509 return flags;
510 }
511
512 static void hns3_nic_set_rx_mode(struct net_device *netdev)
513 {
514 struct hnae3_handle *h = hns3_get_handle(netdev);
515 u8 new_flags;
516 int ret;
517
518 new_flags = hns3_get_netdev_flags(netdev);
519
520 ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
521 if (ret) {
522 netdev_err(netdev, "sync uc address fail\n");
523 if (ret == -ENOSPC)
524 new_flags |= HNAE3_OVERFLOW_UPE;
525 }
526
527 if (netdev->flags & IFF_MULTICAST) {
528 ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
529 hns3_nic_mc_unsync);
530 if (ret) {
531 netdev_err(netdev, "sync mc address fail\n");
532 if (ret == -ENOSPC)
533 new_flags |= HNAE3_OVERFLOW_MPE;
534 }
535 }
536
537 hns3_update_promisc_mode(netdev, new_flags);
538 /* User mode Promisc mode enable and vlan filtering is disabled to
539 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
540 * vlan fitering is enabled
541 */
542 hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
543 h->netdev_flags = new_flags;
544 }
545
546 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
547 {
548 struct hns3_nic_priv *priv = netdev_priv(netdev);
549 struct hnae3_handle *h = priv->ae_handle;
550
551 if (h->ae_algo->ops->set_promisc_mode) {
552 return h->ae_algo->ops->set_promisc_mode(h,
553 promisc_flags & HNAE3_UPE,
554 promisc_flags & HNAE3_MPE);
555 }
556
557 return 0;
558 }
559
560 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
561 {
562 struct hns3_nic_priv *priv = netdev_priv(netdev);
563 struct hnae3_handle *h = priv->ae_handle;
564 bool last_state;
565
566 if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
567 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
568 if (enable != last_state) {
569 netdev_info(netdev,
570 "%s vlan filter\n",
571 enable ? "enable" : "disable");
572 h->ae_algo->ops->enable_vlan_filter(h, enable);
573 }
574 }
575 }
576
577 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
578 u16 *mss, u32 *type_cs_vlan_tso)
579 {
580 u32 l4_offset, hdr_len;
581 union l3_hdr_info l3;
582 union l4_hdr_info l4;
583 u32 l4_paylen;
584 int ret;
585
586 if (!skb_is_gso(skb))
587 return 0;
588
589 ret = skb_cow_head(skb, 0);
590 if (ret)
591 return ret;
592
593 l3.hdr = skb_network_header(skb);
594 l4.hdr = skb_transport_header(skb);
595
596 /* Software should clear the IPv4's checksum field when tso is
597 * needed.
598 */
599 if (l3.v4->version == 4)
600 l3.v4->check = 0;
601
602 /* tunnel packet.*/
603 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
604 SKB_GSO_GRE_CSUM |
605 SKB_GSO_UDP_TUNNEL |
606 SKB_GSO_UDP_TUNNEL_CSUM)) {
607 if ((!(skb_shinfo(skb)->gso_type &
608 SKB_GSO_PARTIAL)) &&
609 (skb_shinfo(skb)->gso_type &
610 SKB_GSO_UDP_TUNNEL_CSUM)) {
611 /* Software should clear the udp's checksum
612 * field when tso is needed.
613 */
614 l4.udp->check = 0;
615 }
616 /* reset l3&l4 pointers from outer to inner headers */
617 l3.hdr = skb_inner_network_header(skb);
618 l4.hdr = skb_inner_transport_header(skb);
619
620 /* Software should clear the IPv4's checksum field when
621 * tso is needed.
622 */
623 if (l3.v4->version == 4)
624 l3.v4->check = 0;
625 }
626
627 /* normal or tunnel packet*/
628 l4_offset = l4.hdr - skb->data;
629 hdr_len = (l4.tcp->doff * 4) + l4_offset;
630
631 /* remove payload length from inner pseudo checksum when tso*/
632 l4_paylen = skb->len - l4_offset;
633 csum_replace_by_diff(&l4.tcp->check,
634 (__force __wsum)htonl(l4_paylen));
635
636 /* find the txbd field values */
637 *paylen = skb->len - hdr_len;
638 hnae3_set_bit(*type_cs_vlan_tso,
639 HNS3_TXD_TSO_B, 1);
640
641 /* get MSS for TSO */
642 *mss = skb_shinfo(skb)->gso_size;
643
644 return 0;
645 }
646
647 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
648 u8 *il4_proto)
649 {
650 union {
651 struct iphdr *v4;
652 struct ipv6hdr *v6;
653 unsigned char *hdr;
654 } l3;
655 unsigned char *l4_hdr;
656 unsigned char *exthdr;
657 u8 l4_proto_tmp;
658 __be16 frag_off;
659
660 /* find outer header point */
661 l3.hdr = skb_network_header(skb);
662 l4_hdr = skb_transport_header(skb);
663
664 if (skb->protocol == htons(ETH_P_IPV6)) {
665 exthdr = l3.hdr + sizeof(*l3.v6);
666 l4_proto_tmp = l3.v6->nexthdr;
667 if (l4_hdr != exthdr)
668 ipv6_skip_exthdr(skb, exthdr - skb->data,
669 &l4_proto_tmp, &frag_off);
670 } else if (skb->protocol == htons(ETH_P_IP)) {
671 l4_proto_tmp = l3.v4->protocol;
672 } else {
673 return -EINVAL;
674 }
675
676 *ol4_proto = l4_proto_tmp;
677
678 /* tunnel packet */
679 if (!skb->encapsulation) {
680 *il4_proto = 0;
681 return 0;
682 }
683
684 /* find inner header point */
685 l3.hdr = skb_inner_network_header(skb);
686 l4_hdr = skb_inner_transport_header(skb);
687
688 if (l3.v6->version == 6) {
689 exthdr = l3.hdr + sizeof(*l3.v6);
690 l4_proto_tmp = l3.v6->nexthdr;
691 if (l4_hdr != exthdr)
692 ipv6_skip_exthdr(skb, exthdr - skb->data,
693 &l4_proto_tmp, &frag_off);
694 } else if (l3.v4->version == 4) {
695 l4_proto_tmp = l3.v4->protocol;
696 }
697
698 *il4_proto = l4_proto_tmp;
699
700 return 0;
701 }
702
703 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
704 u8 il4_proto, u32 *type_cs_vlan_tso,
705 u32 *ol_type_vlan_len_msec)
706 {
707 union {
708 struct iphdr *v4;
709 struct ipv6hdr *v6;
710 unsigned char *hdr;
711 } l3;
712 union {
713 struct tcphdr *tcp;
714 struct udphdr *udp;
715 struct gre_base_hdr *gre;
716 unsigned char *hdr;
717 } l4;
718 unsigned char *l2_hdr;
719 u8 l4_proto = ol4_proto;
720 u32 ol2_len;
721 u32 ol3_len;
722 u32 ol4_len;
723 u32 l2_len;
724 u32 l3_len;
725
726 l3.hdr = skb_network_header(skb);
727 l4.hdr = skb_transport_header(skb);
728
729 /* compute L2 header size for normal packet, defined in 2 Bytes */
730 l2_len = l3.hdr - skb->data;
731 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
732 HNS3_TXD_L2LEN_S, l2_len >> 1);
733
734 /* tunnel packet*/
735 if (skb->encapsulation) {
736 /* compute OL2 header size, defined in 2 Bytes */
737 ol2_len = l2_len;
738 hnae3_set_field(*ol_type_vlan_len_msec,
739 HNS3_TXD_L2LEN_M,
740 HNS3_TXD_L2LEN_S, ol2_len >> 1);
741
742 /* compute OL3 header size, defined in 4 Bytes */
743 ol3_len = l4.hdr - l3.hdr;
744 hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
745 HNS3_TXD_L3LEN_S, ol3_len >> 2);
746
747 /* MAC in UDP, MAC in GRE (0x6558)*/
748 if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
749 /* switch MAC header ptr from outer to inner header.*/
750 l2_hdr = skb_inner_mac_header(skb);
751
752 /* compute OL4 header size, defined in 4 Bytes. */
753 ol4_len = l2_hdr - l4.hdr;
754 hnae3_set_field(*ol_type_vlan_len_msec,
755 HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
756 ol4_len >> 2);
757
758 /* switch IP header ptr from outer to inner header */
759 l3.hdr = skb_inner_network_header(skb);
760
761 /* compute inner l2 header size, defined in 2 Bytes. */
762 l2_len = l3.hdr - l2_hdr;
763 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
764 HNS3_TXD_L2LEN_S, l2_len >> 1);
765 } else {
766 /* skb packet types not supported by hardware,
767 * txbd len fild doesn't be filled.
768 */
769 return;
770 }
771
772 /* switch L4 header pointer from outer to inner */
773 l4.hdr = skb_inner_transport_header(skb);
774
775 l4_proto = il4_proto;
776 }
777
778 /* compute inner(/normal) L3 header size, defined in 4 Bytes */
779 l3_len = l4.hdr - l3.hdr;
780 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
781 HNS3_TXD_L3LEN_S, l3_len >> 2);
782
783 /* compute inner(/normal) L4 header size, defined in 4 Bytes */
784 switch (l4_proto) {
785 case IPPROTO_TCP:
786 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
787 HNS3_TXD_L4LEN_S, l4.tcp->doff);
788 break;
789 case IPPROTO_SCTP:
790 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
791 HNS3_TXD_L4LEN_S,
792 (sizeof(struct sctphdr) >> 2));
793 break;
794 case IPPROTO_UDP:
795 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
796 HNS3_TXD_L4LEN_S,
797 (sizeof(struct udphdr) >> 2));
798 break;
799 default:
800 /* skb packet types not supported by hardware,
801 * txbd len fild doesn't be filled.
802 */
803 return;
804 }
805 }
806
807 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
808 * and it is udp packet, which has a dest port as the IANA assigned.
809 * the hardware is expected to do the checksum offload, but the
810 * hardware will not do the checksum offload when udp dest port is
811 * 4789.
812 */
813 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
814 {
815 #define IANA_VXLAN_PORT 4789
816 union {
817 struct tcphdr *tcp;
818 struct udphdr *udp;
819 struct gre_base_hdr *gre;
820 unsigned char *hdr;
821 } l4;
822
823 l4.hdr = skb_transport_header(skb);
824
825 if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
826 return false;
827
828 skb_checksum_help(skb);
829
830 return true;
831 }
832
833 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
834 u8 il4_proto, u32 *type_cs_vlan_tso,
835 u32 *ol_type_vlan_len_msec)
836 {
837 union {
838 struct iphdr *v4;
839 struct ipv6hdr *v6;
840 unsigned char *hdr;
841 } l3;
842 u32 l4_proto = ol4_proto;
843
844 l3.hdr = skb_network_header(skb);
845
846 /* define OL3 type and tunnel type(OL4).*/
847 if (skb->encapsulation) {
848 /* define outer network header type.*/
849 if (skb->protocol == htons(ETH_P_IP)) {
850 if (skb_is_gso(skb))
851 hnae3_set_field(*ol_type_vlan_len_msec,
852 HNS3_TXD_OL3T_M,
853 HNS3_TXD_OL3T_S,
854 HNS3_OL3T_IPV4_CSUM);
855 else
856 hnae3_set_field(*ol_type_vlan_len_msec,
857 HNS3_TXD_OL3T_M,
858 HNS3_TXD_OL3T_S,
859 HNS3_OL3T_IPV4_NO_CSUM);
860
861 } else if (skb->protocol == htons(ETH_P_IPV6)) {
862 hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
863 HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
864 }
865
866 /* define tunnel type(OL4).*/
867 switch (l4_proto) {
868 case IPPROTO_UDP:
869 hnae3_set_field(*ol_type_vlan_len_msec,
870 HNS3_TXD_TUNTYPE_M,
871 HNS3_TXD_TUNTYPE_S,
872 HNS3_TUN_MAC_IN_UDP);
873 break;
874 case IPPROTO_GRE:
875 hnae3_set_field(*ol_type_vlan_len_msec,
876 HNS3_TXD_TUNTYPE_M,
877 HNS3_TXD_TUNTYPE_S,
878 HNS3_TUN_NVGRE);
879 break;
880 default:
881 /* drop the skb tunnel packet if hardware don't support,
882 * because hardware can't calculate csum when TSO.
883 */
884 if (skb_is_gso(skb))
885 return -EDOM;
886
887 /* the stack computes the IP header already,
888 * driver calculate l4 checksum when not TSO.
889 */
890 skb_checksum_help(skb);
891 return 0;
892 }
893
894 l3.hdr = skb_inner_network_header(skb);
895 l4_proto = il4_proto;
896 }
897
898 if (l3.v4->version == 4) {
899 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
900 HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
901
902 /* the stack computes the IP header already, the only time we
903 * need the hardware to recompute it is in the case of TSO.
904 */
905 if (skb_is_gso(skb))
906 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
907 } else if (l3.v6->version == 6) {
908 hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
909 HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
910 }
911
912 switch (l4_proto) {
913 case IPPROTO_TCP:
914 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
915 hnae3_set_field(*type_cs_vlan_tso,
916 HNS3_TXD_L4T_M,
917 HNS3_TXD_L4T_S,
918 HNS3_L4T_TCP);
919 break;
920 case IPPROTO_UDP:
921 if (hns3_tunnel_csum_bug(skb))
922 break;
923
924 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
925 hnae3_set_field(*type_cs_vlan_tso,
926 HNS3_TXD_L4T_M,
927 HNS3_TXD_L4T_S,
928 HNS3_L4T_UDP);
929 break;
930 case IPPROTO_SCTP:
931 hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
932 hnae3_set_field(*type_cs_vlan_tso,
933 HNS3_TXD_L4T_M,
934 HNS3_TXD_L4T_S,
935 HNS3_L4T_SCTP);
936 break;
937 default:
938 /* drop the skb tunnel packet if hardware don't support,
939 * because hardware can't calculate csum when TSO.
940 */
941 if (skb_is_gso(skb))
942 return -EDOM;
943
944 /* the stack computes the IP header already,
945 * driver calculate l4 checksum when not TSO.
946 */
947 skb_checksum_help(skb);
948 return 0;
949 }
950
951 return 0;
952 }
953
954 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
955 {
956 /* Config bd buffer end */
957 hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
958 HNS3_TXD_BDTYPE_S, 0);
959 hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
960 hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
961 hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
962 }
963
964 static int hns3_fill_desc_vtags(struct sk_buff *skb,
965 struct hns3_enet_ring *tx_ring,
966 u32 *inner_vlan_flag,
967 u32 *out_vlan_flag,
968 u16 *inner_vtag,
969 u16 *out_vtag)
970 {
971 #define HNS3_TX_VLAN_PRIO_SHIFT 13
972
973 if (skb->protocol == htons(ETH_P_8021Q) &&
974 !(tx_ring->tqp->handle->kinfo.netdev->features &
975 NETIF_F_HW_VLAN_CTAG_TX)) {
976 /* When HW VLAN acceleration is turned off, and the stack
977 * sets the protocol to 802.1q, the driver just need to
978 * set the protocol to the encapsulated ethertype.
979 */
980 skb->protocol = vlan_get_protocol(skb);
981 return 0;
982 }
983
984 if (skb_vlan_tag_present(skb)) {
985 u16 vlan_tag;
986
987 vlan_tag = skb_vlan_tag_get(skb);
988 vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
989
990 /* Based on hw strategy, use out_vtag in two layer tag case,
991 * and use inner_vtag in one tag case.
992 */
993 if (skb->protocol == htons(ETH_P_8021Q)) {
994 hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
995 *out_vtag = vlan_tag;
996 } else {
997 hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
998 *inner_vtag = vlan_tag;
999 }
1000 } else if (skb->protocol == htons(ETH_P_8021Q)) {
1001 struct vlan_ethhdr *vhdr;
1002 int rc;
1003
1004 rc = skb_cow_head(skb, 0);
1005 if (rc < 0)
1006 return rc;
1007 vhdr = (struct vlan_ethhdr *)skb->data;
1008 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1009 << HNS3_TX_VLAN_PRIO_SHIFT);
1010 }
1011
1012 skb->protocol = vlan_get_protocol(skb);
1013 return 0;
1014 }
1015
1016 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1017 int size, int frag_end, enum hns_desc_type type)
1018 {
1019 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1020 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1021 struct device *dev = ring_to_dev(ring);
1022 u32 ol_type_vlan_len_msec = 0;
1023 u16 bdtp_fe_sc_vld_ra_ri = 0;
1024 struct skb_frag_struct *frag;
1025 unsigned int frag_buf_num;
1026 u32 type_cs_vlan_tso = 0;
1027 struct sk_buff *skb;
1028 u16 inner_vtag = 0;
1029 u16 out_vtag = 0;
1030 unsigned int k;
1031 int sizeoflast;
1032 u32 paylen = 0;
1033 dma_addr_t dma;
1034 u16 mss = 0;
1035 u8 ol4_proto;
1036 u8 il4_proto;
1037 int ret;
1038
1039 if (type == DESC_TYPE_SKB) {
1040 skb = (struct sk_buff *)priv;
1041 paylen = skb->len;
1042
1043 ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1044 &ol_type_vlan_len_msec,
1045 &inner_vtag, &out_vtag);
1046 if (unlikely(ret))
1047 return ret;
1048
1049 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1050 skb_reset_mac_len(skb);
1051
1052 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1053 if (ret)
1054 return ret;
1055 hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1056 &type_cs_vlan_tso,
1057 &ol_type_vlan_len_msec);
1058 ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1059 &type_cs_vlan_tso,
1060 &ol_type_vlan_len_msec);
1061 if (ret)
1062 return ret;
1063
1064 ret = hns3_set_tso(skb, &paylen, &mss,
1065 &type_cs_vlan_tso);
1066 if (ret)
1067 return ret;
1068 }
1069
1070 /* Set txbd */
1071 desc->tx.ol_type_vlan_len_msec =
1072 cpu_to_le32(ol_type_vlan_len_msec);
1073 desc->tx.type_cs_vlan_tso_len =
1074 cpu_to_le32(type_cs_vlan_tso);
1075 desc->tx.paylen = cpu_to_le32(paylen);
1076 desc->tx.mss = cpu_to_le16(mss);
1077 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079
1080 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1081 } else {
1082 frag = (struct skb_frag_struct *)priv;
1083 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1084 }
1085
1086 if (dma_mapping_error(ring->dev, dma)) {
1087 ring->stats.sw_err_cnt++;
1088 return -ENOMEM;
1089 }
1090
1091 desc_cb->length = size;
1092
1093 frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1094 sizeoflast = size % HNS3_MAX_BD_SIZE;
1095 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1096
1097 /* When frag size is bigger than hardware limit, split this frag */
1098 for (k = 0; k < frag_buf_num; k++) {
1099 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1100 desc_cb->priv = priv;
1101 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1102 desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1103 DESC_TYPE_SKB : DESC_TYPE_PAGE;
1104
1105 /* now, fill the descriptor */
1106 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1107 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1108 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1109 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1110 frag_end && (k == frag_buf_num - 1) ?
1111 1 : 0);
1112 desc->tx.bdtp_fe_sc_vld_ra_ri =
1113 cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1114
1115 /* move ring pointer to next.*/
1116 ring_ptr_move_fw(ring, next_to_use);
1117
1118 desc_cb = &ring->desc_cb[ring->next_to_use];
1119 desc = &ring->desc[ring->next_to_use];
1120 }
1121
1122 return 0;
1123 }
1124
1125 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1126 struct hns3_enet_ring *ring)
1127 {
1128 struct sk_buff *skb = *out_skb;
1129 struct skb_frag_struct *frag;
1130 int bdnum_for_frag;
1131 int frag_num;
1132 int buf_num;
1133 int size;
1134 int i;
1135
1136 size = skb_headlen(skb);
1137 buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1138
1139 frag_num = skb_shinfo(skb)->nr_frags;
1140 for (i = 0; i < frag_num; i++) {
1141 frag = &skb_shinfo(skb)->frags[i];
1142 size = skb_frag_size(frag);
1143 bdnum_for_frag =
1144 (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1145 if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1146 return -ENOMEM;
1147
1148 buf_num += bdnum_for_frag;
1149 }
1150
1151 if (buf_num > ring_space(ring))
1152 return -EBUSY;
1153
1154 *bnum = buf_num;
1155 return 0;
1156 }
1157
1158 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1159 struct hns3_enet_ring *ring)
1160 {
1161 struct sk_buff *skb = *out_skb;
1162 int buf_num;
1163
1164 /* No. of segments (plus a header) */
1165 buf_num = skb_shinfo(skb)->nr_frags + 1;
1166
1167 if (unlikely(ring_space(ring) < buf_num))
1168 return -EBUSY;
1169
1170 *bnum = buf_num;
1171
1172 return 0;
1173 }
1174
1175 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1176 {
1177 struct device *dev = ring_to_dev(ring);
1178 unsigned int i;
1179
1180 for (i = 0; i < ring->desc_num; i++) {
1181 /* check if this is where we started */
1182 if (ring->next_to_use == next_to_use_orig)
1183 break;
1184
1185 /* unmap the descriptor dma address */
1186 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1187 dma_unmap_single(dev,
1188 ring->desc_cb[ring->next_to_use].dma,
1189 ring->desc_cb[ring->next_to_use].length,
1190 DMA_TO_DEVICE);
1191 else if (ring->desc_cb[ring->next_to_use].length)
1192 dma_unmap_page(dev,
1193 ring->desc_cb[ring->next_to_use].dma,
1194 ring->desc_cb[ring->next_to_use].length,
1195 DMA_TO_DEVICE);
1196
1197 ring->desc_cb[ring->next_to_use].length = 0;
1198
1199 /* rollback one */
1200 ring_ptr_move_bw(ring, next_to_use);
1201 }
1202 }
1203
1204 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1205 {
1206 struct hns3_nic_priv *priv = netdev_priv(netdev);
1207 struct hns3_nic_ring_data *ring_data =
1208 &tx_ring_data(priv, skb->queue_mapping);
1209 struct hns3_enet_ring *ring = ring_data->ring;
1210 struct netdev_queue *dev_queue;
1211 struct skb_frag_struct *frag;
1212 int next_to_use_head;
1213 int next_to_use_frag;
1214 int buf_num;
1215 int seg_num;
1216 int size;
1217 int ret;
1218 int i;
1219
1220 /* Prefetch the data used later */
1221 prefetch(skb->data);
1222
1223 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1224 case -EBUSY:
1225 u64_stats_update_begin(&ring->syncp);
1226 ring->stats.tx_busy++;
1227 u64_stats_update_end(&ring->syncp);
1228
1229 goto out_net_tx_busy;
1230 case -ENOMEM:
1231 u64_stats_update_begin(&ring->syncp);
1232 ring->stats.sw_err_cnt++;
1233 u64_stats_update_end(&ring->syncp);
1234 netdev_err(netdev, "no memory to xmit!\n");
1235
1236 goto out_err_tx_ok;
1237 default:
1238 break;
1239 }
1240
1241 /* No. of segments (plus a header) */
1242 seg_num = skb_shinfo(skb)->nr_frags + 1;
1243 /* Fill the first part */
1244 size = skb_headlen(skb);
1245
1246 next_to_use_head = ring->next_to_use;
1247
1248 ret = priv->ops.fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1249 DESC_TYPE_SKB);
1250 if (ret)
1251 goto head_fill_err;
1252
1253 next_to_use_frag = ring->next_to_use;
1254 /* Fill the fragments */
1255 for (i = 1; i < seg_num; i++) {
1256 frag = &skb_shinfo(skb)->frags[i - 1];
1257 size = skb_frag_size(frag);
1258
1259 ret = priv->ops.fill_desc(ring, frag, size,
1260 seg_num - 1 == i ? 1 : 0,
1261 DESC_TYPE_PAGE);
1262
1263 if (ret)
1264 goto frag_fill_err;
1265 }
1266
1267 /* Complete translate all packets */
1268 dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1269 netdev_tx_sent_queue(dev_queue, skb->len);
1270
1271 wmb(); /* Commit all data before submit */
1272
1273 hnae3_queue_xmit(ring->tqp, buf_num);
1274
1275 return NETDEV_TX_OK;
1276
1277 frag_fill_err:
1278 hns3_clear_desc(ring, next_to_use_frag);
1279
1280 head_fill_err:
1281 hns3_clear_desc(ring, next_to_use_head);
1282
1283 out_err_tx_ok:
1284 dev_kfree_skb_any(skb);
1285 return NETDEV_TX_OK;
1286
1287 out_net_tx_busy:
1288 netif_stop_subqueue(netdev, ring_data->queue_index);
1289 smp_mb(); /* Commit all data before submit */
1290
1291 return NETDEV_TX_BUSY;
1292 }
1293
1294 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1295 {
1296 struct hnae3_handle *h = hns3_get_handle(netdev);
1297 struct sockaddr *mac_addr = p;
1298 int ret;
1299
1300 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1301 return -EADDRNOTAVAIL;
1302
1303 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1304 netdev_info(netdev, "already using mac address %pM\n",
1305 mac_addr->sa_data);
1306 return 0;
1307 }
1308
1309 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1310 if (ret) {
1311 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1312 return ret;
1313 }
1314
1315 ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1316
1317 return 0;
1318 }
1319
1320 static int hns3_nic_do_ioctl(struct net_device *netdev,
1321 struct ifreq *ifr, int cmd)
1322 {
1323 struct hnae3_handle *h = hns3_get_handle(netdev);
1324
1325 if (!netif_running(netdev))
1326 return -EINVAL;
1327
1328 if (!h->ae_algo->ops->do_ioctl)
1329 return -EOPNOTSUPP;
1330
1331 return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1332 }
1333
1334 static int hns3_nic_set_features(struct net_device *netdev,
1335 netdev_features_t features)
1336 {
1337 netdev_features_t changed = netdev->features ^ features;
1338 struct hns3_nic_priv *priv = netdev_priv(netdev);
1339 struct hnae3_handle *h = priv->ae_handle;
1340 int ret;
1341
1342 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1343 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1344 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1345 else
1346 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1347 }
1348
1349 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1350 h->ae_algo->ops->enable_vlan_filter) {
1351 if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1352 h->ae_algo->ops->enable_vlan_filter(h, true);
1353 else
1354 h->ae_algo->ops->enable_vlan_filter(h, false);
1355 }
1356
1357 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1358 h->ae_algo->ops->enable_hw_strip_rxvtag) {
1359 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1360 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1361 else
1362 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1363
1364 if (ret)
1365 return ret;
1366 }
1367
1368 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1369 if (features & NETIF_F_NTUPLE)
1370 h->ae_algo->ops->enable_fd(h, true);
1371 else
1372 h->ae_algo->ops->enable_fd(h, false);
1373 }
1374
1375 netdev->features = features;
1376 return 0;
1377 }
1378
1379 static void hns3_nic_get_stats64(struct net_device *netdev,
1380 struct rtnl_link_stats64 *stats)
1381 {
1382 struct hns3_nic_priv *priv = netdev_priv(netdev);
1383 int queue_num = priv->ae_handle->kinfo.num_tqps;
1384 struct hnae3_handle *handle = priv->ae_handle;
1385 struct hns3_enet_ring *ring;
1386 unsigned int start;
1387 unsigned int idx;
1388 u64 tx_bytes = 0;
1389 u64 rx_bytes = 0;
1390 u64 tx_pkts = 0;
1391 u64 rx_pkts = 0;
1392 u64 tx_drop = 0;
1393 u64 rx_drop = 0;
1394
1395 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1396 return;
1397
1398 handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1399
1400 for (idx = 0; idx < queue_num; idx++) {
1401 /* fetch the tx stats */
1402 ring = priv->ring_data[idx].ring;
1403 do {
1404 start = u64_stats_fetch_begin_irq(&ring->syncp);
1405 tx_bytes += ring->stats.tx_bytes;
1406 tx_pkts += ring->stats.tx_pkts;
1407 tx_drop += ring->stats.tx_busy;
1408 tx_drop += ring->stats.sw_err_cnt;
1409 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1410
1411 /* fetch the rx stats */
1412 ring = priv->ring_data[idx + queue_num].ring;
1413 do {
1414 start = u64_stats_fetch_begin_irq(&ring->syncp);
1415 rx_bytes += ring->stats.rx_bytes;
1416 rx_pkts += ring->stats.rx_pkts;
1417 rx_drop += ring->stats.non_vld_descs;
1418 rx_drop += ring->stats.err_pkt_len;
1419 rx_drop += ring->stats.l2_err;
1420 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1421 }
1422
1423 stats->tx_bytes = tx_bytes;
1424 stats->tx_packets = tx_pkts;
1425 stats->rx_bytes = rx_bytes;
1426 stats->rx_packets = rx_pkts;
1427
1428 stats->rx_errors = netdev->stats.rx_errors;
1429 stats->multicast = netdev->stats.multicast;
1430 stats->rx_length_errors = netdev->stats.rx_length_errors;
1431 stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1432 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1433
1434 stats->tx_errors = netdev->stats.tx_errors;
1435 stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1436 stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1437 stats->collisions = netdev->stats.collisions;
1438 stats->rx_over_errors = netdev->stats.rx_over_errors;
1439 stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1440 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1441 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1442 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1443 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1444 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1445 stats->tx_window_errors = netdev->stats.tx_window_errors;
1446 stats->rx_compressed = netdev->stats.rx_compressed;
1447 stats->tx_compressed = netdev->stats.tx_compressed;
1448 }
1449
1450 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1451 {
1452 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1453 struct hnae3_handle *h = hns3_get_handle(netdev);
1454 struct hnae3_knic_private_info *kinfo = &h->kinfo;
1455 u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1456 u8 tc = mqprio_qopt->qopt.num_tc;
1457 u16 mode = mqprio_qopt->mode;
1458 u8 hw = mqprio_qopt->qopt.hw;
1459 bool if_running;
1460 int ret;
1461
1462 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1463 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1464 return -EOPNOTSUPP;
1465
1466 if (tc > HNAE3_MAX_TC)
1467 return -EINVAL;
1468
1469 if (!netdev)
1470 return -EINVAL;
1471
1472 if_running = netif_running(netdev);
1473 if (if_running) {
1474 hns3_nic_net_stop(netdev);
1475 msleep(100);
1476 }
1477
1478 ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1479 kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1480 if (ret)
1481 goto out;
1482
1483 ret = hns3_nic_set_real_num_queue(netdev);
1484
1485 out:
1486 if (if_running)
1487 hns3_nic_net_open(netdev);
1488
1489 return ret;
1490 }
1491
1492 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1493 void *type_data)
1494 {
1495 if (type != TC_SETUP_QDISC_MQPRIO)
1496 return -EOPNOTSUPP;
1497
1498 return hns3_setup_tc(dev, type_data);
1499 }
1500
1501 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1502 __be16 proto, u16 vid)
1503 {
1504 struct hnae3_handle *h = hns3_get_handle(netdev);
1505 struct hns3_nic_priv *priv = netdev_priv(netdev);
1506 int ret = -EIO;
1507
1508 if (h->ae_algo->ops->set_vlan_filter)
1509 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1510
1511 if (!ret)
1512 set_bit(vid, priv->active_vlans);
1513
1514 return ret;
1515 }
1516
1517 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1518 __be16 proto, u16 vid)
1519 {
1520 struct hnae3_handle *h = hns3_get_handle(netdev);
1521 struct hns3_nic_priv *priv = netdev_priv(netdev);
1522 int ret = -EIO;
1523
1524 if (h->ae_algo->ops->set_vlan_filter)
1525 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1526
1527 if (!ret)
1528 clear_bit(vid, priv->active_vlans);
1529
1530 return ret;
1531 }
1532
1533 static int hns3_restore_vlan(struct net_device *netdev)
1534 {
1535 struct hns3_nic_priv *priv = netdev_priv(netdev);
1536 int ret = 0;
1537 u16 vid;
1538
1539 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1540 ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1541 if (ret) {
1542 netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1543 vid, ret);
1544 return ret;
1545 }
1546 }
1547
1548 return ret;
1549 }
1550
1551 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1552 u8 qos, __be16 vlan_proto)
1553 {
1554 struct hnae3_handle *h = hns3_get_handle(netdev);
1555 int ret = -EIO;
1556
1557 if (h->ae_algo->ops->set_vf_vlan_filter)
1558 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1559 qos, vlan_proto);
1560
1561 return ret;
1562 }
1563
1564 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1565 {
1566 struct hnae3_handle *h = hns3_get_handle(netdev);
1567 bool if_running = netif_running(netdev);
1568 int ret;
1569
1570 if (!h->ae_algo->ops->set_mtu)
1571 return -EOPNOTSUPP;
1572
1573 /* if this was called with netdev up then bring netdevice down */
1574 if (if_running) {
1575 (void)hns3_nic_net_stop(netdev);
1576 msleep(100);
1577 }
1578
1579 ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1580 if (ret)
1581 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1582 ret);
1583 else
1584 netdev->mtu = new_mtu;
1585
1586 /* if the netdev was running earlier, bring it up again */
1587 if (if_running && hns3_nic_net_open(netdev))
1588 ret = -EINVAL;
1589
1590 return ret;
1591 }
1592
1593 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1594 {
1595 struct hns3_nic_priv *priv = netdev_priv(ndev);
1596 struct hns3_enet_ring *tx_ring = NULL;
1597 int timeout_queue = 0;
1598 int hw_head, hw_tail;
1599 int i;
1600
1601 /* Find the stopped queue the same way the stack does */
1602 for (i = 0; i < ndev->real_num_tx_queues; i++) {
1603 struct netdev_queue *q;
1604 unsigned long trans_start;
1605
1606 q = netdev_get_tx_queue(ndev, i);
1607 trans_start = q->trans_start;
1608 if (netif_xmit_stopped(q) &&
1609 time_after(jiffies,
1610 (trans_start + ndev->watchdog_timeo))) {
1611 timeout_queue = i;
1612 break;
1613 }
1614 }
1615
1616 if (i == ndev->num_tx_queues) {
1617 netdev_info(ndev,
1618 "no netdev TX timeout queue found, timeout count: %llu\n",
1619 priv->tx_timeout_count);
1620 return false;
1621 }
1622
1623 tx_ring = priv->ring_data[timeout_queue].ring;
1624
1625 hw_head = readl_relaxed(tx_ring->tqp->io_base +
1626 HNS3_RING_TX_RING_HEAD_REG);
1627 hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1628 HNS3_RING_TX_RING_TAIL_REG);
1629 netdev_info(ndev,
1630 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1631 priv->tx_timeout_count,
1632 timeout_queue,
1633 tx_ring->next_to_use,
1634 tx_ring->next_to_clean,
1635 hw_head,
1636 hw_tail,
1637 readl(tx_ring->tqp_vector->mask_addr));
1638
1639 return true;
1640 }
1641
1642 static void hns3_nic_net_timeout(struct net_device *ndev)
1643 {
1644 struct hns3_nic_priv *priv = netdev_priv(ndev);
1645 struct hnae3_handle *h = priv->ae_handle;
1646
1647 if (!hns3_get_tx_timeo_queue_info(ndev))
1648 return;
1649
1650 priv->tx_timeout_count++;
1651
1652 /* request the reset, and let the hclge to determine
1653 * which reset level should be done
1654 */
1655 if (h->ae_algo->ops->reset_event)
1656 h->ae_algo->ops->reset_event(h->pdev, h);
1657 }
1658
1659 static const struct net_device_ops hns3_nic_netdev_ops = {
1660 .ndo_open = hns3_nic_net_open,
1661 .ndo_stop = hns3_nic_net_stop,
1662 .ndo_start_xmit = hns3_nic_net_xmit,
1663 .ndo_tx_timeout = hns3_nic_net_timeout,
1664 .ndo_set_mac_address = hns3_nic_net_set_mac_address,
1665 .ndo_do_ioctl = hns3_nic_do_ioctl,
1666 .ndo_change_mtu = hns3_nic_change_mtu,
1667 .ndo_set_features = hns3_nic_set_features,
1668 .ndo_get_stats64 = hns3_nic_get_stats64,
1669 .ndo_setup_tc = hns3_nic_setup_tc,
1670 .ndo_set_rx_mode = hns3_nic_set_rx_mode,
1671 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
1672 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
1673 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
1674 };
1675
1676 static bool hns3_is_phys_func(struct pci_dev *pdev)
1677 {
1678 u32 dev_id = pdev->device;
1679
1680 switch (dev_id) {
1681 case HNAE3_DEV_ID_GE:
1682 case HNAE3_DEV_ID_25GE:
1683 case HNAE3_DEV_ID_25GE_RDMA:
1684 case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1685 case HNAE3_DEV_ID_50GE_RDMA:
1686 case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1687 case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1688 return true;
1689 case HNAE3_DEV_ID_100G_VF:
1690 case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1691 return false;
1692 default:
1693 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1694 dev_id);
1695 }
1696
1697 return false;
1698 }
1699
1700 static void hns3_disable_sriov(struct pci_dev *pdev)
1701 {
1702 /* If our VFs are assigned we cannot shut down SR-IOV
1703 * without causing issues, so just leave the hardware
1704 * available but disabled
1705 */
1706 if (pci_vfs_assigned(pdev)) {
1707 dev_warn(&pdev->dev,
1708 "disabling driver while VFs are assigned\n");
1709 return;
1710 }
1711
1712 pci_disable_sriov(pdev);
1713 }
1714
1715 static void hns3_get_dev_capability(struct pci_dev *pdev,
1716 struct hnae3_ae_dev *ae_dev)
1717 {
1718 if (pdev->revision >= 0x21) {
1719 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1720 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1721 }
1722 }
1723
1724 /* hns3_probe - Device initialization routine
1725 * @pdev: PCI device information struct
1726 * @ent: entry in hns3_pci_tbl
1727 *
1728 * hns3_probe initializes a PF identified by a pci_dev structure.
1729 * The OS initialization, configuring of the PF private structure,
1730 * and a hardware reset occur.
1731 *
1732 * Returns 0 on success, negative on failure
1733 */
1734 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1735 {
1736 struct hnae3_ae_dev *ae_dev;
1737 int ret;
1738
1739 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1740 GFP_KERNEL);
1741 if (!ae_dev) {
1742 ret = -ENOMEM;
1743 return ret;
1744 }
1745
1746 ae_dev->pdev = pdev;
1747 ae_dev->flag = ent->driver_data;
1748 ae_dev->dev_type = HNAE3_DEV_KNIC;
1749 ae_dev->reset_type = HNAE3_NONE_RESET;
1750 hns3_get_dev_capability(pdev, ae_dev);
1751 pci_set_drvdata(pdev, ae_dev);
1752
1753 hnae3_register_ae_dev(ae_dev);
1754
1755 return 0;
1756 }
1757
1758 /* hns3_remove - Device removal routine
1759 * @pdev: PCI device information struct
1760 */
1761 static void hns3_remove(struct pci_dev *pdev)
1762 {
1763 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1764
1765 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1766 hns3_disable_sriov(pdev);
1767
1768 hnae3_unregister_ae_dev(ae_dev);
1769 }
1770
1771 /**
1772 * hns3_pci_sriov_configure
1773 * @pdev: pointer to a pci_dev structure
1774 * @num_vfs: number of VFs to allocate
1775 *
1776 * Enable or change the number of VFs. Called when the user updates the number
1777 * of VFs in sysfs.
1778 **/
1779 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1780 {
1781 int ret;
1782
1783 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1784 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1785 return -EINVAL;
1786 }
1787
1788 if (num_vfs) {
1789 ret = pci_enable_sriov(pdev, num_vfs);
1790 if (ret)
1791 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1792 else
1793 return num_vfs;
1794 } else if (!pci_vfs_assigned(pdev)) {
1795 pci_disable_sriov(pdev);
1796 } else {
1797 dev_warn(&pdev->dev,
1798 "Unable to free VFs because some are assigned to VMs.\n");
1799 }
1800
1801 return 0;
1802 }
1803
1804 static void hns3_shutdown(struct pci_dev *pdev)
1805 {
1806 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1807
1808 hnae3_unregister_ae_dev(ae_dev);
1809 devm_kfree(&pdev->dev, ae_dev);
1810 pci_set_drvdata(pdev, NULL);
1811
1812 if (system_state == SYSTEM_POWER_OFF)
1813 pci_set_power_state(pdev, PCI_D3hot);
1814 }
1815
1816 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1817 pci_channel_state_t state)
1818 {
1819 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1820 pci_ers_result_t ret;
1821
1822 dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1823
1824 if (state == pci_channel_io_perm_failure)
1825 return PCI_ERS_RESULT_DISCONNECT;
1826
1827 if (!ae_dev) {
1828 dev_err(&pdev->dev,
1829 "Can't recover - error happened during device init\n");
1830 return PCI_ERS_RESULT_NONE;
1831 }
1832
1833 if (ae_dev->ops->process_hw_error)
1834 ret = ae_dev->ops->process_hw_error(ae_dev);
1835 else
1836 return PCI_ERS_RESULT_NONE;
1837
1838 return ret;
1839 }
1840
1841 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1842 {
1843 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1844 struct device *dev = &pdev->dev;
1845
1846 dev_info(dev, "requesting reset due to PCI error\n");
1847
1848 /* request the reset */
1849 if (ae_dev->ops->reset_event) {
1850 ae_dev->ops->reset_event(pdev, NULL);
1851 return PCI_ERS_RESULT_RECOVERED;
1852 }
1853
1854 return PCI_ERS_RESULT_DISCONNECT;
1855 }
1856
1857 static void hns3_reset_prepare(struct pci_dev *pdev)
1858 {
1859 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1860
1861 dev_info(&pdev->dev, "hns3 flr prepare\n");
1862 if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1863 ae_dev->ops->flr_prepare(ae_dev);
1864 }
1865
1866 static void hns3_reset_done(struct pci_dev *pdev)
1867 {
1868 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1869
1870 dev_info(&pdev->dev, "hns3 flr done\n");
1871 if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1872 ae_dev->ops->flr_done(ae_dev);
1873 }
1874
1875 static const struct pci_error_handlers hns3_err_handler = {
1876 .error_detected = hns3_error_detected,
1877 .slot_reset = hns3_slot_reset,
1878 .reset_prepare = hns3_reset_prepare,
1879 .reset_done = hns3_reset_done,
1880 };
1881
1882 static struct pci_driver hns3_driver = {
1883 .name = hns3_driver_name,
1884 .id_table = hns3_pci_tbl,
1885 .probe = hns3_probe,
1886 .remove = hns3_remove,
1887 .shutdown = hns3_shutdown,
1888 .sriov_configure = hns3_pci_sriov_configure,
1889 .err_handler = &hns3_err_handler,
1890 };
1891
1892 /* set default feature to hns3 */
1893 static void hns3_set_default_feature(struct net_device *netdev)
1894 {
1895 struct hnae3_handle *h = hns3_get_handle(netdev);
1896 struct pci_dev *pdev = h->pdev;
1897
1898 netdev->priv_flags |= IFF_UNICAST_FLT;
1899
1900 netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1901 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1902 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1903 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1904 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1905
1906 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1907
1908 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1909
1910 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1911 NETIF_F_HW_VLAN_CTAG_FILTER |
1912 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1913 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1914 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1915 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1916 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1917
1918 netdev->vlan_features |=
1919 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1920 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1921 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1922 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1923 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1924
1925 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1926 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1927 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1928 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1929 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1930 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1931
1932 if (pdev->revision >= 0x21) {
1933 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1934
1935 if (!(h->flags & HNAE3_SUPPORT_VF)) {
1936 netdev->hw_features |= NETIF_F_NTUPLE;
1937 netdev->features |= NETIF_F_NTUPLE;
1938 }
1939 }
1940 }
1941
1942 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1943 struct hns3_desc_cb *cb)
1944 {
1945 unsigned int order = hnae3_page_order(ring);
1946 struct page *p;
1947
1948 p = dev_alloc_pages(order);
1949 if (!p)
1950 return -ENOMEM;
1951
1952 cb->priv = p;
1953 cb->page_offset = 0;
1954 cb->reuse_flag = 0;
1955 cb->buf = page_address(p);
1956 cb->length = hnae3_page_size(ring);
1957 cb->type = DESC_TYPE_PAGE;
1958
1959 return 0;
1960 }
1961
1962 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1963 struct hns3_desc_cb *cb)
1964 {
1965 if (cb->type == DESC_TYPE_SKB)
1966 dev_kfree_skb_any((struct sk_buff *)cb->priv);
1967 else if (!HNAE3_IS_TX_RING(ring))
1968 put_page((struct page *)cb->priv);
1969 memset(cb, 0, sizeof(*cb));
1970 }
1971
1972 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1973 {
1974 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1975 cb->length, ring_to_dma_dir(ring));
1976
1977 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1978 return -EIO;
1979
1980 return 0;
1981 }
1982
1983 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1984 struct hns3_desc_cb *cb)
1985 {
1986 if (cb->type == DESC_TYPE_SKB)
1987 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1988 ring_to_dma_dir(ring));
1989 else if (cb->length)
1990 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1991 ring_to_dma_dir(ring));
1992 }
1993
1994 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1995 {
1996 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1997 ring->desc[i].addr = 0;
1998 }
1999
2000 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2001 {
2002 struct hns3_desc_cb *cb = &ring->desc_cb[i];
2003
2004 if (!ring->desc_cb[i].dma)
2005 return;
2006
2007 hns3_buffer_detach(ring, i);
2008 hns3_free_buffer(ring, cb);
2009 }
2010
2011 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2012 {
2013 int i;
2014
2015 for (i = 0; i < ring->desc_num; i++)
2016 hns3_free_buffer_detach(ring, i);
2017 }
2018
2019 /* free desc along with its attached buffer */
2020 static void hns3_free_desc(struct hns3_enet_ring *ring)
2021 {
2022 int size = ring->desc_num * sizeof(ring->desc[0]);
2023
2024 hns3_free_buffers(ring);
2025
2026 if (ring->desc) {
2027 dma_free_coherent(ring_to_dev(ring), size,
2028 ring->desc, ring->desc_dma_addr);
2029 ring->desc = NULL;
2030 }
2031 }
2032
2033 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2034 {
2035 int size = ring->desc_num * sizeof(ring->desc[0]);
2036
2037 ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
2038 &ring->desc_dma_addr,
2039 GFP_KERNEL);
2040 if (!ring->desc)
2041 return -ENOMEM;
2042
2043 return 0;
2044 }
2045
2046 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2047 struct hns3_desc_cb *cb)
2048 {
2049 int ret;
2050
2051 ret = hns3_alloc_buffer(ring, cb);
2052 if (ret)
2053 goto out;
2054
2055 ret = hns3_map_buffer(ring, cb);
2056 if (ret)
2057 goto out_with_buf;
2058
2059 return 0;
2060
2061 out_with_buf:
2062 hns3_free_buffer(ring, cb);
2063 out:
2064 return ret;
2065 }
2066
2067 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2068 {
2069 int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2070
2071 if (ret)
2072 return ret;
2073
2074 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2075
2076 return 0;
2077 }
2078
2079 /* Allocate memory for raw pkg, and map with dma */
2080 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2081 {
2082 int i, j, ret;
2083
2084 for (i = 0; i < ring->desc_num; i++) {
2085 ret = hns3_alloc_buffer_attach(ring, i);
2086 if (ret)
2087 goto out_buffer_fail;
2088 }
2089
2090 return 0;
2091
2092 out_buffer_fail:
2093 for (j = i - 1; j >= 0; j--)
2094 hns3_free_buffer_detach(ring, j);
2095 return ret;
2096 }
2097
2098 /* detach a in-used buffer and replace with a reserved one */
2099 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2100 struct hns3_desc_cb *res_cb)
2101 {
2102 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2103 ring->desc_cb[i] = *res_cb;
2104 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2105 ring->desc[i].rx.bd_base_info = 0;
2106 }
2107
2108 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2109 {
2110 ring->desc_cb[i].reuse_flag = 0;
2111 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2112 + ring->desc_cb[i].page_offset);
2113 ring->desc[i].rx.bd_base_info = 0;
2114 }
2115
2116 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2117 int *pkts)
2118 {
2119 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2120
2121 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2122 (*bytes) += desc_cb->length;
2123 /* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2124 hns3_free_buffer_detach(ring, ring->next_to_clean);
2125
2126 ring_ptr_move_fw(ring, next_to_clean);
2127 }
2128
2129 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2130 {
2131 int u = ring->next_to_use;
2132 int c = ring->next_to_clean;
2133
2134 if (unlikely(h > ring->desc_num))
2135 return 0;
2136
2137 return u > c ? (h > c && h <= u) : (h > c || h <= u);
2138 }
2139
2140 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2141 {
2142 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2143 struct hns3_nic_priv *priv = netdev_priv(netdev);
2144 struct netdev_queue *dev_queue;
2145 int bytes, pkts;
2146 int head;
2147
2148 head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2149 rmb(); /* Make sure head is ready before touch any data */
2150
2151 if (is_ring_empty(ring) || head == ring->next_to_clean)
2152 return; /* no data to poll */
2153
2154 if (unlikely(!is_valid_clean_head(ring, head))) {
2155 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2156 ring->next_to_use, ring->next_to_clean);
2157
2158 u64_stats_update_begin(&ring->syncp);
2159 ring->stats.io_err_cnt++;
2160 u64_stats_update_end(&ring->syncp);
2161 return;
2162 }
2163
2164 bytes = 0;
2165 pkts = 0;
2166 while (head != ring->next_to_clean) {
2167 hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2168 /* Issue prefetch for next Tx descriptor */
2169 prefetch(&ring->desc_cb[ring->next_to_clean]);
2170 }
2171
2172 ring->tqp_vector->tx_group.total_bytes += bytes;
2173 ring->tqp_vector->tx_group.total_packets += pkts;
2174
2175 u64_stats_update_begin(&ring->syncp);
2176 ring->stats.tx_bytes += bytes;
2177 ring->stats.tx_pkts += pkts;
2178 u64_stats_update_end(&ring->syncp);
2179
2180 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2181 netdev_tx_completed_queue(dev_queue, pkts, bytes);
2182
2183 if (unlikely(pkts && netif_carrier_ok(netdev) &&
2184 (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2185 /* Make sure that anybody stopping the queue after this
2186 * sees the new next_to_clean.
2187 */
2188 smp_mb();
2189 if (netif_tx_queue_stopped(dev_queue) &&
2190 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2191 netif_tx_wake_queue(dev_queue);
2192 ring->stats.restart_queue++;
2193 }
2194 }
2195 }
2196
2197 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2198 {
2199 int ntc = ring->next_to_clean;
2200 int ntu = ring->next_to_use;
2201
2202 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2203 }
2204
2205 static void
2206 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2207 {
2208 struct hns3_desc_cb *desc_cb;
2209 struct hns3_desc_cb res_cbs;
2210 int i, ret;
2211
2212 for (i = 0; i < cleand_count; i++) {
2213 desc_cb = &ring->desc_cb[ring->next_to_use];
2214 if (desc_cb->reuse_flag) {
2215 u64_stats_update_begin(&ring->syncp);
2216 ring->stats.reuse_pg_cnt++;
2217 u64_stats_update_end(&ring->syncp);
2218
2219 hns3_reuse_buffer(ring, ring->next_to_use);
2220 } else {
2221 ret = hns3_reserve_buffer_map(ring, &res_cbs);
2222 if (ret) {
2223 u64_stats_update_begin(&ring->syncp);
2224 ring->stats.sw_err_cnt++;
2225 u64_stats_update_end(&ring->syncp);
2226
2227 netdev_err(ring->tqp->handle->kinfo.netdev,
2228 "hnae reserve buffer map failed.\n");
2229 break;
2230 }
2231 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2232 }
2233
2234 ring_ptr_move_fw(ring, next_to_use);
2235 }
2236
2237 wmb(); /* Make all data has been write before submit */
2238 writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2239 }
2240
2241 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2242 struct hns3_enet_ring *ring, int pull_len,
2243 struct hns3_desc_cb *desc_cb)
2244 {
2245 struct hns3_desc *desc;
2246 u32 truesize;
2247 int size;
2248 int last_offset;
2249 bool twobufs;
2250
2251 twobufs = ((PAGE_SIZE < 8192) &&
2252 hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2253
2254 desc = &ring->desc[ring->next_to_clean];
2255 size = le16_to_cpu(desc->rx.size);
2256
2257 truesize = hnae3_buf_size(ring);
2258
2259 if (!twobufs)
2260 last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2261
2262 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2263 size - pull_len, truesize);
2264
2265 /* Avoid re-using remote pages,flag default unreuse */
2266 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2267 return;
2268
2269 if (twobufs) {
2270 /* If we are only owner of page we can reuse it */
2271 if (likely(page_count(desc_cb->priv) == 1)) {
2272 /* Flip page offset to other buffer */
2273 desc_cb->page_offset ^= truesize;
2274
2275 desc_cb->reuse_flag = 1;
2276 /* bump ref count on page before it is given*/
2277 get_page(desc_cb->priv);
2278 }
2279 return;
2280 }
2281
2282 /* Move offset up to the next cache line */
2283 desc_cb->page_offset += truesize;
2284
2285 if (desc_cb->page_offset <= last_offset) {
2286 desc_cb->reuse_flag = 1;
2287 /* Bump ref count on page before it is given*/
2288 get_page(desc_cb->priv);
2289 }
2290 }
2291
2292 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2293 struct hns3_desc *desc)
2294 {
2295 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2296 int l3_type, l4_type;
2297 u32 bd_base_info;
2298 int ol4_type;
2299 u32 l234info;
2300
2301 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2302 l234info = le32_to_cpu(desc->rx.l234_info);
2303
2304 skb->ip_summed = CHECKSUM_NONE;
2305
2306 skb_checksum_none_assert(skb);
2307
2308 if (!(netdev->features & NETIF_F_RXCSUM))
2309 return;
2310
2311 /* We MUST enable hardware checksum before enabling hardware GRO */
2312 if (skb_shinfo(skb)->gso_size) {
2313 skb->ip_summed = CHECKSUM_UNNECESSARY;
2314 return;
2315 }
2316
2317 /* check if hardware has done checksum */
2318 if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2319 return;
2320
2321 if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2322 hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2323 hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2324 hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2325 u64_stats_update_begin(&ring->syncp);
2326 ring->stats.l3l4_csum_err++;
2327 u64_stats_update_end(&ring->syncp);
2328
2329 return;
2330 }
2331
2332 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2333 HNS3_RXD_L3ID_S);
2334 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2335 HNS3_RXD_L4ID_S);
2336
2337 ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2338 HNS3_RXD_OL4ID_S);
2339 switch (ol4_type) {
2340 case HNS3_OL4_TYPE_MAC_IN_UDP:
2341 case HNS3_OL4_TYPE_NVGRE:
2342 skb->csum_level = 1;
2343 /* fall through */
2344 case HNS3_OL4_TYPE_NO_TUN:
2345 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2346 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2347 l3_type == HNS3_L3_TYPE_IPV6) &&
2348 (l4_type == HNS3_L4_TYPE_UDP ||
2349 l4_type == HNS3_L4_TYPE_TCP ||
2350 l4_type == HNS3_L4_TYPE_SCTP))
2351 skb->ip_summed = CHECKSUM_UNNECESSARY;
2352 break;
2353 default:
2354 break;
2355 }
2356 }
2357
2358 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2359 {
2360 if (skb_has_frag_list(skb))
2361 napi_gro_flush(&ring->tqp_vector->napi, false);
2362
2363 napi_gro_receive(&ring->tqp_vector->napi, skb);
2364 }
2365
2366 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2367 struct hns3_desc *desc, u32 l234info,
2368 u16 *vlan_tag)
2369 {
2370 struct pci_dev *pdev = ring->tqp->handle->pdev;
2371
2372 if (pdev->revision == 0x20) {
2373 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2374 if (!(*vlan_tag & VLAN_VID_MASK))
2375 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2376
2377 return (*vlan_tag != 0);
2378 }
2379
2380 #define HNS3_STRP_OUTER_VLAN 0x1
2381 #define HNS3_STRP_INNER_VLAN 0x2
2382
2383 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2384 HNS3_RXD_STRP_TAGP_S)) {
2385 case HNS3_STRP_OUTER_VLAN:
2386 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2387 return true;
2388 case HNS3_STRP_INNER_VLAN:
2389 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2390 return true;
2391 default:
2392 return false;
2393 }
2394 }
2395
2396 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2397 unsigned char *va)
2398 {
2399 #define HNS3_NEED_ADD_FRAG 1
2400 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2401 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2402 struct sk_buff *skb;
2403
2404 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2405 skb = ring->skb;
2406 if (unlikely(!skb)) {
2407 netdev_err(netdev, "alloc rx skb fail\n");
2408
2409 u64_stats_update_begin(&ring->syncp);
2410 ring->stats.sw_err_cnt++;
2411 u64_stats_update_end(&ring->syncp);
2412
2413 return -ENOMEM;
2414 }
2415
2416 prefetchw(skb->data);
2417
2418 ring->pending_buf = 1;
2419 ring->frag_num = 0;
2420 ring->tail_skb = NULL;
2421 if (length <= HNS3_RX_HEAD_SIZE) {
2422 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2423
2424 /* We can reuse buffer as-is, just make sure it is local */
2425 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2426 desc_cb->reuse_flag = 1;
2427 else /* This page cannot be reused so discard it */
2428 put_page(desc_cb->priv);
2429
2430 ring_ptr_move_fw(ring, next_to_clean);
2431 return 0;
2432 }
2433 u64_stats_update_begin(&ring->syncp);
2434 ring->stats.seg_pkt_cnt++;
2435 u64_stats_update_end(&ring->syncp);
2436
2437 ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2438 __skb_put(skb, ring->pull_len);
2439 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2440 desc_cb);
2441 ring_ptr_move_fw(ring, next_to_clean);
2442
2443 return HNS3_NEED_ADD_FRAG;
2444 }
2445
2446 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2447 struct sk_buff **out_skb, bool pending)
2448 {
2449 struct sk_buff *skb = *out_skb;
2450 struct sk_buff *head_skb = *out_skb;
2451 struct sk_buff *new_skb;
2452 struct hns3_desc_cb *desc_cb;
2453 struct hns3_desc *pre_desc;
2454 u32 bd_base_info;
2455 int pre_bd;
2456
2457 /* if there is pending bd, the SW param next_to_clean has moved
2458 * to next and the next is NULL
2459 */
2460 if (pending) {
2461 pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2462 ring->desc_num;
2463 pre_desc = &ring->desc[pre_bd];
2464 bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2465 } else {
2466 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2467 }
2468
2469 while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2470 desc = &ring->desc[ring->next_to_clean];
2471 desc_cb = &ring->desc_cb[ring->next_to_clean];
2472 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2473 if (!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2474 return -ENXIO;
2475
2476 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2477 new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2478 HNS3_RX_HEAD_SIZE);
2479 if (unlikely(!new_skb)) {
2480 netdev_err(ring->tqp->handle->kinfo.netdev,
2481 "alloc rx skb frag fail\n");
2482 return -ENXIO;
2483 }
2484 ring->frag_num = 0;
2485
2486 if (ring->tail_skb) {
2487 ring->tail_skb->next = new_skb;
2488 ring->tail_skb = new_skb;
2489 } else {
2490 skb_shinfo(skb)->frag_list = new_skb;
2491 ring->tail_skb = new_skb;
2492 }
2493 }
2494
2495 if (ring->tail_skb) {
2496 head_skb->truesize += hnae3_buf_size(ring);
2497 head_skb->data_len += le16_to_cpu(desc->rx.size);
2498 head_skb->len += le16_to_cpu(desc->rx.size);
2499 skb = ring->tail_skb;
2500 }
2501
2502 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2503 ring_ptr_move_fw(ring, next_to_clean);
2504 ring->pending_buf++;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2511 u32 bd_base_info)
2512 {
2513 u16 gro_count;
2514 u32 l3_type;
2515
2516 gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2517 HNS3_RXD_GRO_COUNT_S);
2518 /* if there is no HW GRO, do not set gro params */
2519 if (!gro_count)
2520 return;
2521
2522 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2523 * to skb_shinfo(skb)->gso_segs
2524 */
2525 NAPI_GRO_CB(skb)->count = gro_count;
2526
2527 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2528 HNS3_RXD_L3ID_S);
2529 if (l3_type == HNS3_L3_TYPE_IPV4)
2530 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2531 else if (l3_type == HNS3_L3_TYPE_IPV6)
2532 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2533 else
2534 return;
2535
2536 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2537 HNS3_RXD_GRO_SIZE_M,
2538 HNS3_RXD_GRO_SIZE_S);
2539 if (skb_shinfo(skb)->gso_size)
2540 tcp_gro_complete(skb);
2541 }
2542
2543 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2544 struct sk_buff *skb)
2545 {
2546 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2547 struct hnae3_handle *handle = ring->tqp->handle;
2548 enum pkt_hash_types rss_type;
2549
2550 if (le32_to_cpu(desc->rx.rss_hash))
2551 rss_type = handle->kinfo.rss_type;
2552 else
2553 rss_type = PKT_HASH_TYPE_NONE;
2554
2555 skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2556 }
2557
2558 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2559 struct sk_buff **out_skb)
2560 {
2561 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2562 struct sk_buff *skb = ring->skb;
2563 struct hns3_desc_cb *desc_cb;
2564 struct hns3_desc *desc;
2565 u32 bd_base_info;
2566 u32 l234info;
2567 int length;
2568 int ret;
2569
2570 desc = &ring->desc[ring->next_to_clean];
2571 desc_cb = &ring->desc_cb[ring->next_to_clean];
2572
2573 prefetch(desc);
2574
2575 length = le16_to_cpu(desc->rx.size);
2576 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2577
2578 /* Check valid BD */
2579 if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2580 return -ENXIO;
2581
2582 if (!skb)
2583 ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2584
2585 /* Prefetch first cache line of first page
2586 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2587 * line size is 64B so need to prefetch twice to make it 128B. But in
2588 * actual we can have greater size of caches with 128B Level 1 cache
2589 * lines. In such a case, single fetch would suffice to cache in the
2590 * relevant part of the header.
2591 */
2592 prefetch(ring->va);
2593 #if L1_CACHE_BYTES < 128
2594 prefetch(ring->va + L1_CACHE_BYTES);
2595 #endif
2596
2597 if (!skb) {
2598 ret = hns3_alloc_skb(ring, length, ring->va);
2599 *out_skb = skb = ring->skb;
2600
2601 if (ret < 0) /* alloc buffer fail */
2602 return ret;
2603 if (ret > 0) { /* need add frag */
2604 ret = hns3_add_frag(ring, desc, &skb, false);
2605 if (ret)
2606 return ret;
2607
2608 /* As the head data may be changed when GRO enable, copy
2609 * the head data in after other data rx completed
2610 */
2611 memcpy(skb->data, ring->va,
2612 ALIGN(ring->pull_len, sizeof(long)));
2613 }
2614 } else {
2615 ret = hns3_add_frag(ring, desc, &skb, true);
2616 if (ret)
2617 return ret;
2618
2619 /* As the head data may be changed when GRO enable, copy
2620 * the head data in after other data rx completed
2621 */
2622 memcpy(skb->data, ring->va,
2623 ALIGN(ring->pull_len, sizeof(long)));
2624 }
2625
2626 l234info = le32_to_cpu(desc->rx.l234_info);
2627 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2628
2629 /* Based on hw strategy, the tag offloaded will be stored at
2630 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2631 * in one layer tag case.
2632 */
2633 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2634 u16 vlan_tag;
2635
2636 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2637 __vlan_hwaccel_put_tag(skb,
2638 htons(ETH_P_8021Q),
2639 vlan_tag);
2640 }
2641
2642 if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2643 u64_stats_update_begin(&ring->syncp);
2644 ring->stats.non_vld_descs++;
2645 u64_stats_update_end(&ring->syncp);
2646
2647 dev_kfree_skb_any(skb);
2648 return -EINVAL;
2649 }
2650
2651 if (unlikely((!desc->rx.pkt_len) ||
2652 hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2653 u64_stats_update_begin(&ring->syncp);
2654 ring->stats.err_pkt_len++;
2655 u64_stats_update_end(&ring->syncp);
2656
2657 dev_kfree_skb_any(skb);
2658 return -EFAULT;
2659 }
2660
2661 if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2662 u64_stats_update_begin(&ring->syncp);
2663 ring->stats.l2_err++;
2664 u64_stats_update_end(&ring->syncp);
2665
2666 dev_kfree_skb_any(skb);
2667 return -EFAULT;
2668 }
2669
2670 u64_stats_update_begin(&ring->syncp);
2671 ring->stats.rx_pkts++;
2672 ring->stats.rx_bytes += skb->len;
2673 u64_stats_update_end(&ring->syncp);
2674
2675 ring->tqp_vector->rx_group.total_bytes += skb->len;
2676
2677 /* This is needed in order to enable forwarding support */
2678 hns3_set_gro_param(skb, l234info, bd_base_info);
2679
2680 hns3_rx_checksum(ring, skb, desc);
2681 *out_skb = skb;
2682 hns3_set_rx_skb_rss_type(ring, skb);
2683
2684 return 0;
2685 }
2686
2687 int hns3_clean_rx_ring(
2688 struct hns3_enet_ring *ring, int budget,
2689 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2690 {
2691 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2692 struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2693 int recv_pkts, recv_bds, clean_count, err;
2694 int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2695 struct sk_buff *skb = ring->skb;
2696 int num;
2697
2698 num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2699 rmb(); /* Make sure num taken effect before the other data is touched */
2700
2701 recv_pkts = 0, recv_bds = 0, clean_count = 0;
2702 num -= unused_count;
2703
2704 while (recv_pkts < budget && recv_bds < num) {
2705 /* Reuse or realloc buffers */
2706 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2707 hns3_nic_alloc_rx_buffers(ring,
2708 clean_count + unused_count);
2709 clean_count = 0;
2710 unused_count = hns3_desc_unused(ring) -
2711 ring->pending_buf;
2712 }
2713
2714 /* Poll one pkt */
2715 err = hns3_handle_rx_bd(ring, &skb);
2716 if (unlikely(!skb)) /* This fault cannot be repaired */
2717 goto out;
2718
2719 if (err == -ENXIO) { /* Do not get FE for the packet */
2720 goto out;
2721 } else if (unlikely(err)) { /* Do jump the err */
2722 recv_bds += ring->pending_buf;
2723 clean_count += ring->pending_buf;
2724 ring->skb = NULL;
2725 ring->pending_buf = 0;
2726 continue;
2727 }
2728
2729 /* Do update ip stack process */
2730 skb->protocol = eth_type_trans(skb, netdev);
2731 rx_fn(ring, skb);
2732 recv_bds += ring->pending_buf;
2733 clean_count += ring->pending_buf;
2734 ring->skb = NULL;
2735 ring->pending_buf = 0;
2736
2737 recv_pkts++;
2738 }
2739
2740 out:
2741 /* Make all data has been write before submit */
2742 if (clean_count + unused_count > 0)
2743 hns3_nic_alloc_rx_buffers(ring,
2744 clean_count + unused_count);
2745
2746 return recv_pkts;
2747 }
2748
2749 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2750 {
2751 struct hns3_enet_tqp_vector *tqp_vector =
2752 ring_group->ring->tqp_vector;
2753 enum hns3_flow_level_range new_flow_level;
2754 int packets_per_msecs;
2755 int bytes_per_msecs;
2756 u32 time_passed_ms;
2757 u16 new_int_gl;
2758
2759 if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2760 return false;
2761
2762 if (ring_group->total_packets == 0) {
2763 ring_group->coal.int_gl = HNS3_INT_GL_50K;
2764 ring_group->coal.flow_level = HNS3_FLOW_LOW;
2765 return true;
2766 }
2767
2768 /* Simple throttlerate management
2769 * 0-10MB/s lower (50000 ints/s)
2770 * 10-20MB/s middle (20000 ints/s)
2771 * 20-1249MB/s high (18000 ints/s)
2772 * > 40000pps ultra (8000 ints/s)
2773 */
2774 new_flow_level = ring_group->coal.flow_level;
2775 new_int_gl = ring_group->coal.int_gl;
2776 time_passed_ms =
2777 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2778
2779 if (!time_passed_ms)
2780 return false;
2781
2782 do_div(ring_group->total_packets, time_passed_ms);
2783 packets_per_msecs = ring_group->total_packets;
2784
2785 do_div(ring_group->total_bytes, time_passed_ms);
2786 bytes_per_msecs = ring_group->total_bytes;
2787
2788 #define HNS3_RX_LOW_BYTE_RATE 10000
2789 #define HNS3_RX_MID_BYTE_RATE 20000
2790
2791 switch (new_flow_level) {
2792 case HNS3_FLOW_LOW:
2793 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2794 new_flow_level = HNS3_FLOW_MID;
2795 break;
2796 case HNS3_FLOW_MID:
2797 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2798 new_flow_level = HNS3_FLOW_HIGH;
2799 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2800 new_flow_level = HNS3_FLOW_LOW;
2801 break;
2802 case HNS3_FLOW_HIGH:
2803 case HNS3_FLOW_ULTRA:
2804 default:
2805 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2806 new_flow_level = HNS3_FLOW_MID;
2807 break;
2808 }
2809
2810 #define HNS3_RX_ULTRA_PACKET_RATE 40
2811
2812 if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2813 &tqp_vector->rx_group == ring_group)
2814 new_flow_level = HNS3_FLOW_ULTRA;
2815
2816 switch (new_flow_level) {
2817 case HNS3_FLOW_LOW:
2818 new_int_gl = HNS3_INT_GL_50K;
2819 break;
2820 case HNS3_FLOW_MID:
2821 new_int_gl = HNS3_INT_GL_20K;
2822 break;
2823 case HNS3_FLOW_HIGH:
2824 new_int_gl = HNS3_INT_GL_18K;
2825 break;
2826 case HNS3_FLOW_ULTRA:
2827 new_int_gl = HNS3_INT_GL_8K;
2828 break;
2829 default:
2830 break;
2831 }
2832
2833 ring_group->total_bytes = 0;
2834 ring_group->total_packets = 0;
2835 ring_group->coal.flow_level = new_flow_level;
2836 if (new_int_gl != ring_group->coal.int_gl) {
2837 ring_group->coal.int_gl = new_int_gl;
2838 return true;
2839 }
2840 return false;
2841 }
2842
2843 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2844 {
2845 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2846 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2847 bool rx_update, tx_update;
2848
2849 if (tqp_vector->int_adapt_down > 0) {
2850 tqp_vector->int_adapt_down--;
2851 return;
2852 }
2853
2854 if (rx_group->coal.gl_adapt_enable) {
2855 rx_update = hns3_get_new_int_gl(rx_group);
2856 if (rx_update)
2857 hns3_set_vector_coalesce_rx_gl(tqp_vector,
2858 rx_group->coal.int_gl);
2859 }
2860
2861 if (tx_group->coal.gl_adapt_enable) {
2862 tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2863 if (tx_update)
2864 hns3_set_vector_coalesce_tx_gl(tqp_vector,
2865 tx_group->coal.int_gl);
2866 }
2867
2868 tqp_vector->last_jiffies = jiffies;
2869 tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2870 }
2871
2872 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2873 {
2874 struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2875 struct hns3_enet_ring *ring;
2876 int rx_pkt_total = 0;
2877
2878 struct hns3_enet_tqp_vector *tqp_vector =
2879 container_of(napi, struct hns3_enet_tqp_vector, napi);
2880 bool clean_complete = true;
2881 int rx_budget;
2882
2883 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2884 napi_complete(napi);
2885 return 0;
2886 }
2887
2888 /* Since the actual Tx work is minimal, we can give the Tx a larger
2889 * budget and be more aggressive about cleaning up the Tx descriptors.
2890 */
2891 hns3_for_each_ring(ring, tqp_vector->tx_group)
2892 hns3_clean_tx_ring(ring);
2893
2894 /* make sure rx ring budget not smaller than 1 */
2895 rx_budget = max(budget / tqp_vector->num_tqps, 1);
2896
2897 hns3_for_each_ring(ring, tqp_vector->rx_group) {
2898 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2899 hns3_rx_skb);
2900
2901 if (rx_cleaned >= rx_budget)
2902 clean_complete = false;
2903
2904 rx_pkt_total += rx_cleaned;
2905 }
2906
2907 tqp_vector->rx_group.total_packets += rx_pkt_total;
2908
2909 if (!clean_complete)
2910 return budget;
2911
2912 if (likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) &&
2913 napi_complete(napi)) {
2914 hns3_update_new_int_gl(tqp_vector);
2915 hns3_mask_vector_irq(tqp_vector, 1);
2916 }
2917
2918 return rx_pkt_total;
2919 }
2920
2921 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2922 struct hnae3_ring_chain_node *head)
2923 {
2924 struct pci_dev *pdev = tqp_vector->handle->pdev;
2925 struct hnae3_ring_chain_node *cur_chain = head;
2926 struct hnae3_ring_chain_node *chain;
2927 struct hns3_enet_ring *tx_ring;
2928 struct hns3_enet_ring *rx_ring;
2929
2930 tx_ring = tqp_vector->tx_group.ring;
2931 if (tx_ring) {
2932 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2933 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2934 HNAE3_RING_TYPE_TX);
2935 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2936 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2937
2938 cur_chain->next = NULL;
2939
2940 while (tx_ring->next) {
2941 tx_ring = tx_ring->next;
2942
2943 chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2944 GFP_KERNEL);
2945 if (!chain)
2946 goto err_free_chain;
2947
2948 cur_chain->next = chain;
2949 chain->tqp_index = tx_ring->tqp->tqp_index;
2950 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2951 HNAE3_RING_TYPE_TX);
2952 hnae3_set_field(chain->int_gl_idx,
2953 HNAE3_RING_GL_IDX_M,
2954 HNAE3_RING_GL_IDX_S,
2955 HNAE3_RING_GL_TX);
2956
2957 cur_chain = chain;
2958 }
2959 }
2960
2961 rx_ring = tqp_vector->rx_group.ring;
2962 if (!tx_ring && rx_ring) {
2963 cur_chain->next = NULL;
2964 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2965 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2966 HNAE3_RING_TYPE_RX);
2967 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2968 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2969
2970 rx_ring = rx_ring->next;
2971 }
2972
2973 while (rx_ring) {
2974 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2975 if (!chain)
2976 goto err_free_chain;
2977
2978 cur_chain->next = chain;
2979 chain->tqp_index = rx_ring->tqp->tqp_index;
2980 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2981 HNAE3_RING_TYPE_RX);
2982 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2983 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2984
2985 cur_chain = chain;
2986
2987 rx_ring = rx_ring->next;
2988 }
2989
2990 return 0;
2991
2992 err_free_chain:
2993 cur_chain = head->next;
2994 while (cur_chain) {
2995 chain = cur_chain->next;
2996 devm_kfree(&pdev->dev, chain);
2997 cur_chain = chain;
2998 }
2999
3000 return -ENOMEM;
3001 }
3002
3003 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3004 struct hnae3_ring_chain_node *head)
3005 {
3006 struct pci_dev *pdev = tqp_vector->handle->pdev;
3007 struct hnae3_ring_chain_node *chain_tmp, *chain;
3008
3009 chain = head->next;
3010
3011 while (chain) {
3012 chain_tmp = chain->next;
3013 devm_kfree(&pdev->dev, chain);
3014 chain = chain_tmp;
3015 }
3016 }
3017
3018 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3019 struct hns3_enet_ring *ring)
3020 {
3021 ring->next = group->ring;
3022 group->ring = ring;
3023
3024 group->count++;
3025 }
3026
3027 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3028 {
3029 struct pci_dev *pdev = priv->ae_handle->pdev;
3030 struct hns3_enet_tqp_vector *tqp_vector;
3031 int num_vectors = priv->vector_num;
3032 int numa_node;
3033 int vector_i;
3034
3035 numa_node = dev_to_node(&pdev->dev);
3036
3037 for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3038 tqp_vector = &priv->tqp_vector[vector_i];
3039 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3040 &tqp_vector->affinity_mask);
3041 }
3042 }
3043
3044 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3045 {
3046 struct hnae3_ring_chain_node vector_ring_chain;
3047 struct hnae3_handle *h = priv->ae_handle;
3048 struct hns3_enet_tqp_vector *tqp_vector;
3049 int ret = 0;
3050 int i;
3051
3052 hns3_nic_set_cpumask(priv);
3053
3054 for (i = 0; i < priv->vector_num; i++) {
3055 tqp_vector = &priv->tqp_vector[i];
3056 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3057 tqp_vector->num_tqps = 0;
3058 }
3059
3060 for (i = 0; i < h->kinfo.num_tqps; i++) {
3061 u16 vector_i = i % priv->vector_num;
3062 u16 tqp_num = h->kinfo.num_tqps;
3063
3064 tqp_vector = &priv->tqp_vector[vector_i];
3065
3066 hns3_add_ring_to_group(&tqp_vector->tx_group,
3067 priv->ring_data[i].ring);
3068
3069 hns3_add_ring_to_group(&tqp_vector->rx_group,
3070 priv->ring_data[i + tqp_num].ring);
3071
3072 priv->ring_data[i].ring->tqp_vector = tqp_vector;
3073 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3074 tqp_vector->num_tqps++;
3075 }
3076
3077 for (i = 0; i < priv->vector_num; i++) {
3078 tqp_vector = &priv->tqp_vector[i];
3079
3080 tqp_vector->rx_group.total_bytes = 0;
3081 tqp_vector->rx_group.total_packets = 0;
3082 tqp_vector->tx_group.total_bytes = 0;
3083 tqp_vector->tx_group.total_packets = 0;
3084 tqp_vector->handle = h;
3085
3086 ret = hns3_get_vector_ring_chain(tqp_vector,
3087 &vector_ring_chain);
3088 if (ret)
3089 return ret;
3090
3091 ret = h->ae_algo->ops->map_ring_to_vector(h,
3092 tqp_vector->vector_irq, &vector_ring_chain);
3093
3094 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3095
3096 if (ret)
3097 goto map_ring_fail;
3098
3099 netif_napi_add(priv->netdev, &tqp_vector->napi,
3100 hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3101 }
3102
3103 return 0;
3104
3105 map_ring_fail:
3106 while (i--)
3107 netif_napi_del(&priv->tqp_vector[i].napi);
3108
3109 return ret;
3110 }
3111
3112 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3113 {
3114 struct hnae3_handle *h = priv->ae_handle;
3115 struct hns3_enet_tqp_vector *tqp_vector;
3116 struct hnae3_vector_info *vector;
3117 struct pci_dev *pdev = h->pdev;
3118 u16 tqp_num = h->kinfo.num_tqps;
3119 u16 vector_num;
3120 int ret = 0;
3121 u16 i;
3122
3123 /* RSS size, cpu online and vector_num should be the same */
3124 /* Should consider 2p/4p later */
3125 vector_num = min_t(u16, num_online_cpus(), tqp_num);
3126 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3127 GFP_KERNEL);
3128 if (!vector)
3129 return -ENOMEM;
3130
3131 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3132
3133 priv->vector_num = vector_num;
3134 priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3135 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3136 GFP_KERNEL);
3137 if (!priv->tqp_vector) {
3138 ret = -ENOMEM;
3139 goto out;
3140 }
3141
3142 for (i = 0; i < priv->vector_num; i++) {
3143 tqp_vector = &priv->tqp_vector[i];
3144 tqp_vector->idx = i;
3145 tqp_vector->mask_addr = vector[i].io_addr;
3146 tqp_vector->vector_irq = vector[i].vector;
3147 hns3_vector_gl_rl_init(tqp_vector, priv);
3148 }
3149
3150 out:
3151 devm_kfree(&pdev->dev, vector);
3152 return ret;
3153 }
3154
3155 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3156 {
3157 group->ring = NULL;
3158 group->count = 0;
3159 }
3160
3161 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3162 {
3163 struct hnae3_ring_chain_node vector_ring_chain;
3164 struct hnae3_handle *h = priv->ae_handle;
3165 struct hns3_enet_tqp_vector *tqp_vector;
3166 int i, ret;
3167
3168 for (i = 0; i < priv->vector_num; i++) {
3169 tqp_vector = &priv->tqp_vector[i];
3170
3171 ret = hns3_get_vector_ring_chain(tqp_vector,
3172 &vector_ring_chain);
3173 if (ret)
3174 return ret;
3175
3176 ret = h->ae_algo->ops->unmap_ring_from_vector(h,
3177 tqp_vector->vector_irq, &vector_ring_chain);
3178 if (ret)
3179 return ret;
3180
3181 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3182
3183 if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
3184 (void)irq_set_affinity_hint(
3185 priv->tqp_vector[i].vector_irq,
3186 NULL);
3187 free_irq(priv->tqp_vector[i].vector_irq,
3188 &priv->tqp_vector[i]);
3189 }
3190
3191 priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3192 hns3_clear_ring_group(&tqp_vector->rx_group);
3193 hns3_clear_ring_group(&tqp_vector->tx_group);
3194 netif_napi_del(&priv->tqp_vector[i].napi);
3195 }
3196
3197 return 0;
3198 }
3199
3200 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3201 {
3202 struct hnae3_handle *h = priv->ae_handle;
3203 struct pci_dev *pdev = h->pdev;
3204 int i, ret;
3205
3206 for (i = 0; i < priv->vector_num; i++) {
3207 struct hns3_enet_tqp_vector *tqp_vector;
3208
3209 tqp_vector = &priv->tqp_vector[i];
3210 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3211 if (ret)
3212 return ret;
3213 }
3214
3215 devm_kfree(&pdev->dev, priv->tqp_vector);
3216 return 0;
3217 }
3218
3219 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3220 int ring_type)
3221 {
3222 struct hns3_nic_ring_data *ring_data = priv->ring_data;
3223 int queue_num = priv->ae_handle->kinfo.num_tqps;
3224 struct pci_dev *pdev = priv->ae_handle->pdev;
3225 struct hns3_enet_ring *ring;
3226
3227 ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3228 if (!ring)
3229 return -ENOMEM;
3230
3231 if (ring_type == HNAE3_RING_TYPE_TX) {
3232 ring_data[q->tqp_index].ring = ring;
3233 ring_data[q->tqp_index].queue_index = q->tqp_index;
3234 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3235 } else {
3236 ring_data[q->tqp_index + queue_num].ring = ring;
3237 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3238 ring->io_base = q->io_base;
3239 }
3240
3241 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3242
3243 ring->tqp = q;
3244 ring->desc = NULL;
3245 ring->desc_cb = NULL;
3246 ring->dev = priv->dev;
3247 ring->desc_dma_addr = 0;
3248 ring->buf_size = q->buf_size;
3249 ring->desc_num = q->desc_num;
3250 ring->next_to_use = 0;
3251 ring->next_to_clean = 0;
3252
3253 return 0;
3254 }
3255
3256 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3257 struct hns3_nic_priv *priv)
3258 {
3259 int ret;
3260
3261 ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3262 if (ret)
3263 return ret;
3264
3265 ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3266 if (ret) {
3267 devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3268 return ret;
3269 }
3270
3271 return 0;
3272 }
3273
3274 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3275 {
3276 struct hnae3_handle *h = priv->ae_handle;
3277 struct pci_dev *pdev = h->pdev;
3278 int i, ret;
3279
3280 priv->ring_data = devm_kzalloc(&pdev->dev, h->kinfo.num_tqps *
3281 sizeof(*priv->ring_data) * 2,
3282 GFP_KERNEL);
3283 if (!priv->ring_data)
3284 return -ENOMEM;
3285
3286 for (i = 0; i < h->kinfo.num_tqps; i++) {
3287 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3288 if (ret)
3289 goto err;
3290 }
3291
3292 return 0;
3293 err:
3294 while (i--) {
3295 devm_kfree(priv->dev, priv->ring_data[i].ring);
3296 devm_kfree(priv->dev,
3297 priv->ring_data[i + h->kinfo.num_tqps].ring);
3298 }
3299
3300 devm_kfree(&pdev->dev, priv->ring_data);
3301 return ret;
3302 }
3303
3304 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3305 {
3306 struct hnae3_handle *h = priv->ae_handle;
3307 int i;
3308
3309 for (i = 0; i < h->kinfo.num_tqps; i++) {
3310 devm_kfree(priv->dev, priv->ring_data[i].ring);
3311 devm_kfree(priv->dev,
3312 priv->ring_data[i + h->kinfo.num_tqps].ring);
3313 }
3314 devm_kfree(priv->dev, priv->ring_data);
3315 }
3316
3317 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3318 {
3319 int ret;
3320
3321 if (ring->desc_num <= 0 || ring->buf_size <= 0)
3322 return -EINVAL;
3323
3324 ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3325 GFP_KERNEL);
3326 if (!ring->desc_cb) {
3327 ret = -ENOMEM;
3328 goto out;
3329 }
3330
3331 ret = hns3_alloc_desc(ring);
3332 if (ret)
3333 goto out_with_desc_cb;
3334
3335 if (!HNAE3_IS_TX_RING(ring)) {
3336 ret = hns3_alloc_ring_buffers(ring);
3337 if (ret)
3338 goto out_with_desc;
3339 }
3340
3341 return 0;
3342
3343 out_with_desc:
3344 hns3_free_desc(ring);
3345 out_with_desc_cb:
3346 kfree(ring->desc_cb);
3347 ring->desc_cb = NULL;
3348 out:
3349 return ret;
3350 }
3351
3352 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3353 {
3354 hns3_free_desc(ring);
3355 kfree(ring->desc_cb);
3356 ring->desc_cb = NULL;
3357 ring->next_to_clean = 0;
3358 ring->next_to_use = 0;
3359 }
3360
3361 static int hns3_buf_size2type(u32 buf_size)
3362 {
3363 int bd_size_type;
3364
3365 switch (buf_size) {
3366 case 512:
3367 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3368 break;
3369 case 1024:
3370 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3371 break;
3372 case 2048:
3373 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3374 break;
3375 case 4096:
3376 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3377 break;
3378 default:
3379 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3380 }
3381
3382 return bd_size_type;
3383 }
3384
3385 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3386 {
3387 dma_addr_t dma = ring->desc_dma_addr;
3388 struct hnae3_queue *q = ring->tqp;
3389
3390 if (!HNAE3_IS_TX_RING(ring)) {
3391 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3392 (u32)dma);
3393 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3394 (u32)((dma >> 31) >> 1));
3395
3396 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3397 hns3_buf_size2type(ring->buf_size));
3398 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3399 ring->desc_num / 8 - 1);
3400
3401 } else {
3402 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3403 (u32)dma);
3404 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3405 (u32)((dma >> 31) >> 1));
3406
3407 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3408 ring->desc_num / 8 - 1);
3409 }
3410 }
3411
3412 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3413 {
3414 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3415 int i;
3416
3417 for (i = 0; i < HNAE3_MAX_TC; i++) {
3418 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3419 int j;
3420
3421 if (!tc_info->enable)
3422 continue;
3423
3424 for (j = 0; j < tc_info->tqp_count; j++) {
3425 struct hnae3_queue *q;
3426
3427 q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3428 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3429 tc_info->tc);
3430 }
3431 }
3432 }
3433
3434 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3435 {
3436 struct hnae3_handle *h = priv->ae_handle;
3437 int ring_num = h->kinfo.num_tqps * 2;
3438 int i, j;
3439 int ret;
3440
3441 for (i = 0; i < ring_num; i++) {
3442 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3443 if (ret) {
3444 dev_err(priv->dev,
3445 "Alloc ring memory fail! ret=%d\n", ret);
3446 goto out_when_alloc_ring_memory;
3447 }
3448
3449 u64_stats_init(&priv->ring_data[i].ring->syncp);
3450 }
3451
3452 return 0;
3453
3454 out_when_alloc_ring_memory:
3455 for (j = i - 1; j >= 0; j--)
3456 hns3_fini_ring(priv->ring_data[j].ring);
3457
3458 return -ENOMEM;
3459 }
3460
3461 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3462 {
3463 struct hnae3_handle *h = priv->ae_handle;
3464 int i;
3465
3466 for (i = 0; i < h->kinfo.num_tqps; i++) {
3467 hns3_fini_ring(priv->ring_data[i].ring);
3468 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3469 }
3470 return 0;
3471 }
3472
3473 /* Set mac addr if it is configured. or leave it to the AE driver */
3474 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3475 {
3476 struct hns3_nic_priv *priv = netdev_priv(netdev);
3477 struct hnae3_handle *h = priv->ae_handle;
3478 u8 mac_addr_temp[ETH_ALEN];
3479 int ret = 0;
3480
3481 if (h->ae_algo->ops->get_mac_addr && init) {
3482 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3483 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3484 }
3485
3486 /* Check if the MAC address is valid, if not get a random one */
3487 if (!is_valid_ether_addr(netdev->dev_addr)) {
3488 eth_hw_addr_random(netdev);
3489 dev_warn(priv->dev, "using random MAC address %pM\n",
3490 netdev->dev_addr);
3491 }
3492
3493 if (h->ae_algo->ops->set_mac_addr)
3494 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3495
3496 return ret;
3497 }
3498
3499 static int hns3_restore_fd_rules(struct net_device *netdev)
3500 {
3501 struct hnae3_handle *h = hns3_get_handle(netdev);
3502 int ret = 0;
3503
3504 if (h->ae_algo->ops->restore_fd_rules)
3505 ret = h->ae_algo->ops->restore_fd_rules(h);
3506
3507 return ret;
3508 }
3509
3510 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3511 {
3512 struct hnae3_handle *h = hns3_get_handle(netdev);
3513
3514 if (h->ae_algo->ops->del_all_fd_entries)
3515 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3516 }
3517
3518 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3519 {
3520 struct hns3_nic_priv *priv = netdev_priv(netdev);
3521
3522 priv->ops.fill_desc = hns3_fill_desc;
3523 if ((netdev->features & NETIF_F_TSO) ||
3524 (netdev->features & NETIF_F_TSO6))
3525 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3526 else
3527 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3528 }
3529
3530 static int hns3_client_start(struct hnae3_handle *handle)
3531 {
3532 if (!handle->ae_algo->ops->client_start)
3533 return 0;
3534
3535 return handle->ae_algo->ops->client_start(handle);
3536 }
3537
3538 static void hns3_client_stop(struct hnae3_handle *handle)
3539 {
3540 if (!handle->ae_algo->ops->client_stop)
3541 return;
3542
3543 handle->ae_algo->ops->client_stop(handle);
3544 }
3545
3546 static int hns3_client_init(struct hnae3_handle *handle)
3547 {
3548 struct pci_dev *pdev = handle->pdev;
3549 u16 alloc_tqps, max_rss_size;
3550 struct hns3_nic_priv *priv;
3551 struct net_device *netdev;
3552 int ret;
3553
3554 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3555 &max_rss_size);
3556 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3557 if (!netdev)
3558 return -ENOMEM;
3559
3560 priv = netdev_priv(netdev);
3561 priv->dev = &pdev->dev;
3562 priv->netdev = netdev;
3563 priv->ae_handle = handle;
3564 priv->tx_timeout_count = 0;
3565
3566 handle->kinfo.netdev = netdev;
3567 handle->priv = (void *)priv;
3568
3569 hns3_init_mac_addr(netdev, true);
3570
3571 hns3_set_default_feature(netdev);
3572
3573 netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3574 netdev->priv_flags |= IFF_UNICAST_FLT;
3575 netdev->netdev_ops = &hns3_nic_netdev_ops;
3576 SET_NETDEV_DEV(netdev, &pdev->dev);
3577 hns3_ethtool_set_ops(netdev);
3578 hns3_nic_set_priv_ops(netdev);
3579
3580 /* Carrier off reporting is important to ethtool even BEFORE open */
3581 netif_carrier_off(netdev);
3582
3583 ret = hns3_get_ring_config(priv);
3584 if (ret) {
3585 ret = -ENOMEM;
3586 goto out_get_ring_cfg;
3587 }
3588
3589 ret = hns3_nic_alloc_vector_data(priv);
3590 if (ret) {
3591 ret = -ENOMEM;
3592 goto out_alloc_vector_data;
3593 }
3594
3595 ret = hns3_nic_init_vector_data(priv);
3596 if (ret) {
3597 ret = -ENOMEM;
3598 goto out_init_vector_data;
3599 }
3600
3601 ret = hns3_init_all_ring(priv);
3602 if (ret) {
3603 ret = -ENOMEM;
3604 goto out_init_ring_data;
3605 }
3606
3607 ret = register_netdev(netdev);
3608 if (ret) {
3609 dev_err(priv->dev, "probe register netdev fail!\n");
3610 goto out_reg_netdev_fail;
3611 }
3612
3613 ret = hns3_client_start(handle);
3614 if (ret) {
3615 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3616 goto out_reg_netdev_fail;
3617 }
3618
3619 hns3_dcbnl_setup(handle);
3620
3621 /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3622 netdev->max_mtu = HNS3_MAX_MTU;
3623
3624 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3625
3626 return ret;
3627
3628 out_reg_netdev_fail:
3629 out_init_ring_data:
3630 (void)hns3_nic_uninit_vector_data(priv);
3631 out_init_vector_data:
3632 hns3_nic_dealloc_vector_data(priv);
3633 out_alloc_vector_data:
3634 priv->ring_data = NULL;
3635 out_get_ring_cfg:
3636 priv->ae_handle = NULL;
3637 free_netdev(netdev);
3638 return ret;
3639 }
3640
3641 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3642 {
3643 struct net_device *netdev = handle->kinfo.netdev;
3644 struct hns3_nic_priv *priv = netdev_priv(netdev);
3645 int ret;
3646
3647 hns3_client_stop(handle);
3648
3649 hns3_remove_hw_addr(netdev);
3650
3651 if (netdev->reg_state != NETREG_UNINITIALIZED)
3652 unregister_netdev(netdev);
3653
3654 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3655 netdev_warn(netdev, "already uninitialized\n");
3656 goto out_netdev_free;
3657 }
3658
3659 hns3_del_all_fd_rules(netdev, true);
3660
3661 hns3_force_clear_all_rx_ring(handle);
3662
3663 ret = hns3_nic_uninit_vector_data(priv);
3664 if (ret)
3665 netdev_err(netdev, "uninit vector error\n");
3666
3667 ret = hns3_nic_dealloc_vector_data(priv);
3668 if (ret)
3669 netdev_err(netdev, "dealloc vector error\n");
3670
3671 ret = hns3_uninit_all_ring(priv);
3672 if (ret)
3673 netdev_err(netdev, "uninit ring error\n");
3674
3675 hns3_put_ring_config(priv);
3676
3677 priv->ring_data = NULL;
3678
3679 out_netdev_free:
3680 free_netdev(netdev);
3681 }
3682
3683 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3684 {
3685 struct net_device *netdev = handle->kinfo.netdev;
3686
3687 if (!netdev)
3688 return;
3689
3690 if (linkup) {
3691 netif_carrier_on(netdev);
3692 netif_tx_wake_all_queues(netdev);
3693 netdev_info(netdev, "link up\n");
3694 } else {
3695 netif_carrier_off(netdev);
3696 netif_tx_stop_all_queues(netdev);
3697 netdev_info(netdev, "link down\n");
3698 }
3699 }
3700
3701 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3702 {
3703 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3704 struct net_device *ndev = kinfo->netdev;
3705 bool if_running;
3706 int ret;
3707
3708 if (tc > HNAE3_MAX_TC)
3709 return -EINVAL;
3710
3711 if (!ndev)
3712 return -ENODEV;
3713
3714 if_running = netif_running(ndev);
3715
3716 if (if_running) {
3717 (void)hns3_nic_net_stop(ndev);
3718 msleep(100);
3719 }
3720
3721 ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3722 kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3723 if (ret)
3724 goto err_out;
3725
3726 ret = hns3_nic_set_real_num_queue(ndev);
3727
3728 err_out:
3729 if (if_running)
3730 (void)hns3_nic_net_open(ndev);
3731
3732 return ret;
3733 }
3734
3735 static int hns3_recover_hw_addr(struct net_device *ndev)
3736 {
3737 struct netdev_hw_addr_list *list;
3738 struct netdev_hw_addr *ha, *tmp;
3739 int ret = 0;
3740
3741 /* go through and sync uc_addr entries to the device */
3742 list = &ndev->uc;
3743 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3744 ret = hns3_nic_uc_sync(ndev, ha->addr);
3745 if (ret)
3746 return ret;
3747 }
3748
3749 /* go through and sync mc_addr entries to the device */
3750 list = &ndev->mc;
3751 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3752 ret = hns3_nic_mc_sync(ndev, ha->addr);
3753 if (ret)
3754 return ret;
3755 }
3756
3757 return ret;
3758 }
3759
3760 static void hns3_remove_hw_addr(struct net_device *netdev)
3761 {
3762 struct netdev_hw_addr_list *list;
3763 struct netdev_hw_addr *ha, *tmp;
3764
3765 hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3766
3767 /* go through and unsync uc_addr entries to the device */
3768 list = &netdev->uc;
3769 list_for_each_entry_safe(ha, tmp, &list->list, list)
3770 hns3_nic_uc_unsync(netdev, ha->addr);
3771
3772 /* go through and unsync mc_addr entries to the device */
3773 list = &netdev->mc;
3774 list_for_each_entry_safe(ha, tmp, &list->list, list)
3775 if (ha->refcount > 1)
3776 hns3_nic_mc_unsync(netdev, ha->addr);
3777 }
3778
3779 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3780 {
3781 while (ring->next_to_clean != ring->next_to_use) {
3782 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3783 hns3_free_buffer_detach(ring, ring->next_to_clean);
3784 ring_ptr_move_fw(ring, next_to_clean);
3785 }
3786 }
3787
3788 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3789 {
3790 struct hns3_desc_cb res_cbs;
3791 int ret;
3792
3793 while (ring->next_to_use != ring->next_to_clean) {
3794 /* When a buffer is not reused, it's memory has been
3795 * freed in hns3_handle_rx_bd or will be freed by
3796 * stack, so we need to replace the buffer here.
3797 */
3798 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3799 ret = hns3_reserve_buffer_map(ring, &res_cbs);
3800 if (ret) {
3801 u64_stats_update_begin(&ring->syncp);
3802 ring->stats.sw_err_cnt++;
3803 u64_stats_update_end(&ring->syncp);
3804 /* if alloc new buffer fail, exit directly
3805 * and reclear in up flow.
3806 */
3807 netdev_warn(ring->tqp->handle->kinfo.netdev,
3808 "reserve buffer map failed, ret = %d\n",
3809 ret);
3810 return ret;
3811 }
3812 hns3_replace_buffer(ring, ring->next_to_use,
3813 &res_cbs);
3814 }
3815 ring_ptr_move_fw(ring, next_to_use);
3816 }
3817
3818 return 0;
3819 }
3820
3821 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3822 {
3823 while (ring->next_to_use != ring->next_to_clean) {
3824 /* When a buffer is not reused, it's memory has been
3825 * freed in hns3_handle_rx_bd or will be freed by
3826 * stack, so only need to unmap the buffer here.
3827 */
3828 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3829 hns3_unmap_buffer(ring,
3830 &ring->desc_cb[ring->next_to_use]);
3831 ring->desc_cb[ring->next_to_use].dma = 0;
3832 }
3833
3834 ring_ptr_move_fw(ring, next_to_use);
3835 }
3836 }
3837
3838 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3839 {
3840 struct net_device *ndev = h->kinfo.netdev;
3841 struct hns3_nic_priv *priv = netdev_priv(ndev);
3842 struct hns3_enet_ring *ring;
3843 u32 i;
3844
3845 for (i = 0; i < h->kinfo.num_tqps; i++) {
3846 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3847 hns3_force_clear_rx_ring(ring);
3848 }
3849 }
3850
3851 static void hns3_clear_all_ring(struct hnae3_handle *h)
3852 {
3853 struct net_device *ndev = h->kinfo.netdev;
3854 struct hns3_nic_priv *priv = netdev_priv(ndev);
3855 u32 i;
3856
3857 for (i = 0; i < h->kinfo.num_tqps; i++) {
3858 struct netdev_queue *dev_queue;
3859 struct hns3_enet_ring *ring;
3860
3861 ring = priv->ring_data[i].ring;
3862 hns3_clear_tx_ring(ring);
3863 dev_queue = netdev_get_tx_queue(ndev,
3864 priv->ring_data[i].queue_index);
3865 netdev_tx_reset_queue(dev_queue);
3866
3867 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3868 /* Continue to clear other rings even if clearing some
3869 * rings failed.
3870 */
3871 hns3_clear_rx_ring(ring);
3872 }
3873 }
3874
3875 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3876 {
3877 struct net_device *ndev = h->kinfo.netdev;
3878 struct hns3_nic_priv *priv = netdev_priv(ndev);
3879 struct hns3_enet_ring *rx_ring;
3880 int i, j;
3881 int ret;
3882
3883 for (i = 0; i < h->kinfo.num_tqps; i++) {
3884 ret = h->ae_algo->ops->reset_queue(h, i);
3885 if (ret)
3886 return ret;
3887
3888 hns3_init_ring_hw(priv->ring_data[i].ring);
3889
3890 /* We need to clear tx ring here because self test will
3891 * use the ring and will not run down before up
3892 */
3893 hns3_clear_tx_ring(priv->ring_data[i].ring);
3894 priv->ring_data[i].ring->next_to_clean = 0;
3895 priv->ring_data[i].ring->next_to_use = 0;
3896
3897 rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3898 hns3_init_ring_hw(rx_ring);
3899 ret = hns3_clear_rx_ring(rx_ring);
3900 if (ret)
3901 return ret;
3902
3903 /* We can not know the hardware head and tail when this
3904 * function is called in reset flow, so we reuse all desc.
3905 */
3906 for (j = 0; j < rx_ring->desc_num; j++)
3907 hns3_reuse_buffer(rx_ring, j);
3908
3909 rx_ring->next_to_clean = 0;
3910 rx_ring->next_to_use = 0;
3911 }
3912
3913 hns3_init_tx_ring_tc(priv);
3914
3915 return 0;
3916 }
3917
3918 static void hns3_store_coal(struct hns3_nic_priv *priv)
3919 {
3920 /* ethtool only support setting and querying one coal
3921 * configuation for now, so save the vector 0' coal
3922 * configuation here in order to restore it.
3923 */
3924 memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3925 sizeof(struct hns3_enet_coalesce));
3926 memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3927 sizeof(struct hns3_enet_coalesce));
3928 }
3929
3930 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3931 {
3932 u16 vector_num = priv->vector_num;
3933 int i;
3934
3935 for (i = 0; i < vector_num; i++) {
3936 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3937 sizeof(struct hns3_enet_coalesce));
3938 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3939 sizeof(struct hns3_enet_coalesce));
3940 }
3941 }
3942
3943 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3944 {
3945 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3946 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3947 struct net_device *ndev = kinfo->netdev;
3948 struct hns3_nic_priv *priv = netdev_priv(ndev);
3949
3950 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3951 return 0;
3952
3953 /* it is cumbersome for hardware to pick-and-choose entries for deletion
3954 * from table space. Hence, for function reset software intervention is
3955 * required to delete the entries
3956 */
3957 if (hns3_dev_ongoing_func_reset(ae_dev)) {
3958 hns3_remove_hw_addr(ndev);
3959 hns3_del_all_fd_rules(ndev, false);
3960 }
3961
3962 if (!netif_running(ndev))
3963 return 0;
3964
3965 return hns3_nic_net_stop(ndev);
3966 }
3967
3968 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3969 {
3970 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3971 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
3972 int ret = 0;
3973
3974 if (netif_running(kinfo->netdev)) {
3975 ret = hns3_nic_net_up(kinfo->netdev);
3976 if (ret) {
3977 netdev_err(kinfo->netdev,
3978 "hns net up fail, ret=%d!\n", ret);
3979 return ret;
3980 }
3981 }
3982
3983 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
3984
3985 return ret;
3986 }
3987
3988 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3989 {
3990 struct net_device *netdev = handle->kinfo.netdev;
3991 struct hns3_nic_priv *priv = netdev_priv(netdev);
3992 bool vlan_filter_enable;
3993 int ret;
3994
3995 ret = hns3_init_mac_addr(netdev, false);
3996 if (ret)
3997 return ret;
3998
3999 ret = hns3_recover_hw_addr(netdev);
4000 if (ret)
4001 return ret;
4002
4003 ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4004 if (ret)
4005 return ret;
4006
4007 vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4008 hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4009
4010 /* Hardware table is only clear when pf resets */
4011 if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4012 ret = hns3_restore_vlan(netdev);
4013 if (ret)
4014 return ret;
4015 }
4016
4017 ret = hns3_restore_fd_rules(netdev);
4018 if (ret)
4019 return ret;
4020
4021 /* Carrier off reporting is important to ethtool even BEFORE open */
4022 netif_carrier_off(netdev);
4023
4024 ret = hns3_nic_alloc_vector_data(priv);
4025 if (ret)
4026 return ret;
4027
4028 hns3_restore_coal(priv);
4029
4030 ret = hns3_nic_init_vector_data(priv);
4031 if (ret)
4032 goto err_dealloc_vector;
4033
4034 ret = hns3_init_all_ring(priv);
4035 if (ret)
4036 goto err_uninit_vector;
4037
4038 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4039
4040 return ret;
4041
4042 err_uninit_vector:
4043 hns3_nic_uninit_vector_data(priv);
4044 priv->ring_data = NULL;
4045 err_dealloc_vector:
4046 hns3_nic_dealloc_vector_data(priv);
4047
4048 return ret;
4049 }
4050
4051 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4052 {
4053 struct net_device *netdev = handle->kinfo.netdev;
4054 struct hns3_nic_priv *priv = netdev_priv(netdev);
4055 int ret;
4056
4057 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4058 netdev_warn(netdev, "already uninitialized\n");
4059 return 0;
4060 }
4061
4062 hns3_force_clear_all_rx_ring(handle);
4063
4064 ret = hns3_nic_uninit_vector_data(priv);
4065 if (ret) {
4066 netdev_err(netdev, "uninit vector error\n");
4067 return ret;
4068 }
4069
4070 hns3_store_coal(priv);
4071
4072 ret = hns3_nic_dealloc_vector_data(priv);
4073 if (ret)
4074 netdev_err(netdev, "dealloc vector error\n");
4075
4076 ret = hns3_uninit_all_ring(priv);
4077 if (ret)
4078 netdev_err(netdev, "uninit ring error\n");
4079
4080 clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4081
4082 return ret;
4083 }
4084
4085 static int hns3_reset_notify(struct hnae3_handle *handle,
4086 enum hnae3_reset_notify_type type)
4087 {
4088 int ret = 0;
4089
4090 switch (type) {
4091 case HNAE3_UP_CLIENT:
4092 ret = hns3_reset_notify_up_enet(handle);
4093 break;
4094 case HNAE3_DOWN_CLIENT:
4095 ret = hns3_reset_notify_down_enet(handle);
4096 break;
4097 case HNAE3_INIT_CLIENT:
4098 ret = hns3_reset_notify_init_enet(handle);
4099 break;
4100 case HNAE3_UNINIT_CLIENT:
4101 ret = hns3_reset_notify_uninit_enet(handle);
4102 break;
4103 default:
4104 break;
4105 }
4106
4107 return ret;
4108 }
4109
4110 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num)
4111 {
4112 struct hns3_nic_priv *priv = netdev_priv(netdev);
4113 struct hnae3_handle *h = hns3_get_handle(netdev);
4114 int ret;
4115
4116 ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
4117 if (ret)
4118 return ret;
4119
4120 ret = hns3_get_ring_config(priv);
4121 if (ret)
4122 return ret;
4123
4124 ret = hns3_nic_alloc_vector_data(priv);
4125 if (ret)
4126 goto err_alloc_vector;
4127
4128 hns3_restore_coal(priv);
4129
4130 ret = hns3_nic_init_vector_data(priv);
4131 if (ret)
4132 goto err_uninit_vector;
4133
4134 ret = hns3_init_all_ring(priv);
4135 if (ret)
4136 goto err_put_ring;
4137
4138 return 0;
4139
4140 err_put_ring:
4141 hns3_put_ring_config(priv);
4142 err_uninit_vector:
4143 hns3_nic_uninit_vector_data(priv);
4144 err_alloc_vector:
4145 hns3_nic_dealloc_vector_data(priv);
4146 return ret;
4147 }
4148
4149 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
4150 {
4151 return (new_tqp_num / num_tc) * num_tc;
4152 }
4153
4154 int hns3_set_channels(struct net_device *netdev,
4155 struct ethtool_channels *ch)
4156 {
4157 struct hns3_nic_priv *priv = netdev_priv(netdev);
4158 struct hnae3_handle *h = hns3_get_handle(netdev);
4159 struct hnae3_knic_private_info *kinfo = &h->kinfo;
4160 bool if_running = netif_running(netdev);
4161 u32 new_tqp_num = ch->combined_count;
4162 u16 org_tqp_num;
4163 int ret;
4164
4165 if (ch->rx_count || ch->tx_count)
4166 return -EINVAL;
4167
4168 if (new_tqp_num > hns3_get_max_available_channels(h) ||
4169 new_tqp_num < kinfo->num_tc) {
4170 dev_err(&netdev->dev,
4171 "Change tqps fail, the tqp range is from %d to %d",
4172 kinfo->num_tc,
4173 hns3_get_max_available_channels(h));
4174 return -EINVAL;
4175 }
4176
4177 new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
4178 if (kinfo->num_tqps == new_tqp_num)
4179 return 0;
4180
4181 if (if_running)
4182 hns3_nic_net_stop(netdev);
4183
4184 ret = hns3_nic_uninit_vector_data(priv);
4185 if (ret) {
4186 dev_err(&netdev->dev,
4187 "Unbind vector with tqp fail, nothing is changed");
4188 goto open_netdev;
4189 }
4190
4191 hns3_store_coal(priv);
4192
4193 hns3_nic_dealloc_vector_data(priv);
4194
4195 hns3_uninit_all_ring(priv);
4196 hns3_put_ring_config(priv);
4197
4198 org_tqp_num = h->kinfo.num_tqps;
4199 ret = hns3_modify_tqp_num(netdev, new_tqp_num);
4200 if (ret) {
4201 ret = hns3_modify_tqp_num(netdev, org_tqp_num);
4202 if (ret) {
4203 /* If revert to old tqp failed, fatal error occurred */
4204 dev_err(&netdev->dev,
4205 "Revert to old tqp num fail, ret=%d", ret);
4206 return ret;
4207 }
4208 dev_info(&netdev->dev,
4209 "Change tqp num fail, Revert to old tqp num");
4210 }
4211
4212 open_netdev:
4213 if (if_running)
4214 hns3_nic_net_open(netdev);
4215
4216 return ret;
4217 }
4218
4219 static const struct hnae3_client_ops client_ops = {
4220 .init_instance = hns3_client_init,
4221 .uninit_instance = hns3_client_uninit,
4222 .link_status_change = hns3_link_status_change,
4223 .setup_tc = hns3_client_setup_tc,
4224 .reset_notify = hns3_reset_notify,
4225 };
4226
4227 /* hns3_init_module - Driver registration routine
4228 * hns3_init_module is the first routine called when the driver is
4229 * loaded. All it does is register with the PCI subsystem.
4230 */
4231 static int __init hns3_init_module(void)
4232 {
4233 int ret;
4234
4235 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4236 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4237
4238 client.type = HNAE3_CLIENT_KNIC;
4239 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4240 hns3_driver_name);
4241
4242 client.ops = &client_ops;
4243
4244 INIT_LIST_HEAD(&client.node);
4245
4246 ret = hnae3_register_client(&client);
4247 if (ret)
4248 return ret;
4249
4250 ret = pci_register_driver(&hns3_driver);
4251 if (ret)
4252 hnae3_unregister_client(&client);
4253
4254 return ret;
4255 }
4256 module_init(hns3_init_module);
4257
4258 /* hns3_exit_module - Driver exit cleanup routine
4259 * hns3_exit_module is called just before the driver is removed
4260 * from memory.
4261 */
4262 static void __exit hns3_exit_module(void)
4263 {
4264 pci_unregister_driver(&hns3_driver);
4265 hnae3_unregister_client(&client);
4266 }
4267 module_exit(hns3_exit_module);
4268
4269 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4270 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4271 MODULE_LICENSE("GPL");
4272 MODULE_ALIAS("pci:hns-nic");
4273 MODULE_VERSION(HNS3_MOD_VERSION);